
FACTA UNIVERSITATIS (NIŠ)
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Lebesgue Points of Multi-Dimensional Functions

Ferenc Weisz

Abstract: Lebesgue and Walsh-Lebesgue points are introduced for higher dimen-
sional functions and it is proved that a.e. point is a (Walsh)-Lebesgue point of a func-
tion f from the spaceL(logL)d−1. Every functionf ∈ L(logL)d−1 is Fejér summable
at each (Walsh)-Lebesgue point.

Keywords: Lebesgue point, Walsh-Lebesgue point, Walsh functions, Fejér-
summability.

1 Introduction

I T WAS PROVEDby Fejér [1] that the(C,1) or Fejér means of the one-dimensional
trigonometric Fourier series of a continuous function converge uniformly to the

function. The same problem for integrable functions was investigated by Lebesgue
[2]. He proved that for every integrable functionf ,

1
n+1

n

∑
k=0

sk f (x) → f (x) as n→ ∞

at each Lebesgue point off , wheresk f denotes thekth partial sum of the Fourier
series off . Almost every point is a Lebesgue point off (see Zygmund [3] or Butzer
and Nessel [4]).

The concept of Lebesgue points was extended to the one-dimensional Walsh
system by the author in [5], the points are called Walsh-Lebesgue points in this
case. The definition of Walsh-Lebesgue points is not a simpleadaptation of the
one of Lebesgue points, it needs new ideas, because the Walsh-Fejér kernels differ
entirely from the trigonometric Fejér kernel. It was proved there that a.e. point
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is a Walsh-Lebesgue point of a one-dimensional integrable function. Moreover,
the Fejér means of the Walsh-Fourier series off ∈ L1[0,1) converge tof at each
Walsh-Lebesgue point. The a.e. convergence of the Fejér means was proved earlier
by Fine [6] (see also Schipp [7]).

In this paper we generalize the definition of Lebesgue and Walsh-Lebesgue
points for higher dimensions. We prove that a.e. point is a (Walsh)-Lebesgue point
of f ∈ L(logL)d−1. The Fejér means of the Walsh-Fourier series off ∈ L(logL)d−1

converge tof at each (Walsh)-Lebesgue point.

2 Lebesgue Points

For a setX 6= /0 let X
d be its Cartesian productX× . . .×X taken with itselfd-

times. We briefly writeLp(X
d) instead ofLp(X

d,λ ) space equipped with the norm
(or quasi-norm)‖ f‖p := (

∫

Xd | f |p dλ )1/p (0 < p ≤ ∞), whereλ is the Lebesgue
measure andX denotes the torusT = [−1/2,1/2] or the unit interval[0,1).

In the one-dimensional case Lebesgue differentiation theorem says that

lim
h→0

1
h

∫ x+h

x
f (t)dt = f (x)

for a.e.x∈ T, where f ∈ L1(T). This motivates the next definition. A pointx∈ T

is called aLebesgue pointof a function f if

lim
h→0

1
h

∫ x+h

x
| f (t)− f (x)|dt = 0.

Using Lebesgue differentiation theorem we can prove in the usual way that a.e.
point x ∈ T is a Lebesgue point off ∈ L1(T) (see e.g. Butzer and Nessel [4] or
Stein and Weiss [8]).

Feichtinger and Weisz [9] extended the definition of Lebesgue points to higher
dimensions as follows. Thestrong Hardy-Littlewood maximal functionis defined
by

Ms f (x) := sup
x∈I

1
|I |

∫

I
| f |dλ ,

where f ∈ L1(T
d), x ∈ T

d and the supremum is taken over all rectanglesI ⊂ T
d

with sides parallel to the axes. It is known that in the one-dimensional case the
maximal function is of weak type(1,1), i.e.,

sup
ρ>0

ρλ (Ms f > ρ) ≤C1‖ f‖1, ( f ∈ L1(T)).
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However, for higher dimensions there is a functionf ∈ L1(T
d) such thatMs f = ∞

a.e. ThusMs cannot be of weak type(1,1) if d > 1, but we have

sup
ρ>0

ρλ (Ms f > ρ) ≤Cd +Cd‖ f‖L1(logL)d−1, (1)

whereCd is depending only ond. Moreover,

‖Ms f‖p ≤Cp‖ f‖p ( f ∈ Lp(T
d),1 < p≤ ∞,d ≥ 1). (2)

For these results see Zygmund [3], Stein [10] or Weisz [11, p.71]. Set log+ u =
1{u>1} logu. Recall that a functionf is in the setL1(logL)k(Td) if

‖ f‖L1(logL)k :=
∫

Td
| f |(log+ | f |)k dλ < ∞.

If k = 0 thenL1(logL)k(Td) = L1(T
d). We can say that the role ofL1(T) in one

dimension is played in higher dimensions byL1(logL)d−1(Td).

Inequalities (1) and (2) imply

lim
h→0

1

∏d
j=1 h j

∫ x1+h1

x1

. . .

∫ xd+hd

xd

f (t)dt = f (x)

for a.e. x ∈ T
d, where f ∈ L1(logL)d−1(Td) or f ∈ Lp(T

d) (1 < p ≤ ∞). Note
that L1(logL)d−1(Td) ⊃ Lp(T

d) (1 < p ≤ ∞). Hereh → 0 is understood in the
Pringsheim’s sense, i.e.,h j → 0 for all j = 1, . . . ,d.

A point x∈ T
d is called aLebesgue pointof f if Ms f (x) is finite and

lim
h→0

1

∏d
j=1h j

∫ x1+h1

x1

. . .

∫ xd+hd

xd

| f (t)− f (x)|dt = 0.

The next theorem is proved in Feichtinger and Weisz [9].

Theorem 1 Almost every point x∈T
d is a Lebesgue point of f∈ L1(logL)d−1(Td).

3 Fejér Means of Fourier Series

For a one-dimensional integrable functionf the nth Fourier coefficient is defined
by

f̂ (n) =

∫

T

f (t)e−2πınt dt (n∈ Z).
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Thenth partial sum of the trigonometric Fourier series off is given by

sn f (x) :=
n

∑
k=−n

f̂ (k)e2πıkx (n∈ N).

One of the deepest results in harmonic analysis is Carleson’s theorem [12,13]:

sn f → f a.e. asn→ ∞,

wheneverf ∈ Lp(T) (1 < p < ∞). This theorem does not hold, ifp = 1. However,
some summability results can be obtained in this case, too.

TheFejér-meansof f are defined by

σn f (x) :=
1

n+1

n

∑
k=0

sk f (x) =
n

∑
k=−n

(

1−
|k|

n+1

)

f̂ (k)e2πıkx =
∫

T

f (t)Kn(x+ t)dt,

wherex∈ T,n∈ N andKn denote theFejér kernels. As mentioned in the introduc-
tion, Lebesgue [2] proved for allf ∈ L1(T) that

σn f → f at each Lebesgue point off asn→ ∞.

In the multi-dimensional case let thenth Fourier coefficient of a functionf ∈
L1(T

d) be defined by

f̂ (n) =
∫

Td
f (t)e−2πın·t dt (n∈ Z

d),

whereu·x := ∑d
k=1ukxk, (x = (x1, . . . ,xd) ∈ R

d,u = (u1, . . . ,ud) ∈ R
d). Denote by

sn f thenth partial sumof the trigonometric Fourier series off :

sn f (x) :=
d

∑
j=1

nj

∑
kj=−nj

f̂ (k)e2πık·x (n∈ N
d).

Under∑d
j=1∑nj

kj=−nj
we mean the sum∑n1

k1=−n1
. . .∑nd

kd=−nd
.

Carleson’s result does not hold for higher dimensions (see Fefferman [14]). The
only known result is that

sn,...,n f → f a.e. asn→ ∞, (3)

wheneverf ∈ Lp(T
d) (1 < p < ∞) (Fefferman [15]).
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Now we introduce theFejér-meansof f by

σn f (x) :=
1

∏d
i=1(ni +1)

d

∑
j=1

nj

∑
kj=0

sk f (x) =
d

∑
j=1

nj

∑
kj=−nj

( d

∏
i=1

(

1−
|ki |

ni +1

))

f̂ (k)e2πık·x,

(x∈ T
d,n∈ N

d). In the following theorem we generalize Lebesgue’s theoremjust
mentioned (see Feichtinger and Weisz [9]).

Theorem 2 For all Lebesgue points of f∈ L1(logL)d−1(Td) we have

lim
n→∞

σn f (x) = f (x).

4 Walsh-Lebesgue Points

The definition of the Walsh-Lebesgue points should fulfill the next two require-
ments: a.e. point is a Walsh-Lebesgue point of an integrablefunction and the
Walsh-Fejér means of an integrable function converge at all Walsh-Lebesgue
points. The proof of the one-dimensional version of Theorem2 is based on the
fact, that the Fejér kernelsKn can be estimated by an integrable, on[0,1/2] non-
increasing functionK′

n such that‖K′
n‖1 ≤C for all n∈ N. Recall that

K′
n(x) = C(n+1)1[0,1/(n+1)] +

C
(n+1)x2 1[1/(n+1),1/2].

This does not hold for the Walsh-Fejér kernelsK2n (for the definition see the next
section), because

K2n(x) =
1
2

(

2−nD2n(x)+
n

∑
k=0

2k−nD2n(x+̇ek)
)

,

where

D2n(x) =

{

2n, if x∈ [0,2−n),

0, if x∈ [2−n,1)

are the Walsh-Dirichlet kernels,̇+ denotes the dyadic addition andek := 2−k−1.
It is easy to see that ifK′

n denotes the smallest non-increasing function for which
Kn ≤ K′

n then‖K′
2n‖1 =Cn. Because of this difference of the Fejér and Walsh-Fejér

kernels, a new definition of Lebesgue points is needed in the dyadic case.

By a dyadic intervalwe mean one of the form[k2−n,(k+ 1)2−n) for some
k,n∈ N, 0≤ k < 2n. Givenn∈ N andx∈ [0,1) let In(x) be the dyadic interval of
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length 2−n which containsx. A Cartesian product ofd dyadic intervals is called
a dyadic rectangle. For n ∈ N

d andx ∈ [0,1)d let In(x) := In1(x1)× . . .× Ind(xd),
wheren= (n1, . . . ,nd) andx = (x1, . . . ,xd). Theσ -algebra generated by the dyadic
rectangles{In(x) : x∈ [0,1)d} will be denoted byFn (n∈ N

d). Let En denote the
conditional expectation operator with respect toFn. Obviously, if f ∈ L1[0,1)d

then(En f ,n∈ N
d) is a martingale.

Butzer and Wagner [16] introduced the dyadic derivative off with the limit of

dn f (x) :=
n−1

∑
k=0

2k−1( f (x)− f (x+̇ek)) (x∈ [0,1))

asn→ ∞. For f ∈ L1[0,1) let F(x) :=
∫

In(x) f and investigate the function

dnF(x) =
n−1

∑
k=0

2k−1
(

∫

In(x)
f −

∫

In(x+̇ek)
f
)

.

Since the first terms on the right hand side can be well handled, in the definition of
Walsh-Lebesgue points we will consider the second terms, only. We can prove (see
Schipp, Wade, Simon and Pál [17] or Weisz [11]) that limn→∞ dnF(x) = 0 a.e. Since
2n∫

In(x) f = En f (x), by the corresponding martingale theorem limn→∞ En f (x) =
f (x) a.e. Thus

1
2

n

∑
k=0

2k
∫

In(x+̇ek)
f = (2n−

1
2
)
∫

In(x)
f −dnF(x)

tends tof (x) for a.e.x∈ [0,1) asn→ ∞.

Motivated by this fact, the author introduced the one-dimensional Walsh-
Lebesgue pointsin [5] as follows: x ∈ [0,1) is a Walsh-Lebesgue point off ∈
L1[0,1), if

lim
n→∞

n

∑
k=0

2k
∫

In(x+̇ek)
| f (t)− f (x)|dt = 0.

We proved in [5] that a.e. pointx∈ [0,1) is a Walsh-Lebesgue point of an integrable
function f .

In the multi-dimensional case a pointx∈ [0,1)d is aWalsh-Lebesgue pointof
f ∈ L1[0,1)d, if

lim
n→∞

d

∑
j=1

nj

∑
kj=0

2k
∫

In(x+̇ek)
| f (t)− f (x)|dt = 0, (4)
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where 2k := 2k1 · · ·2kd andek := (ek1, . . . ,ekd). If we define

Vn f (x) :=
d

∑
j=1

nj

∑
kj =0

2k−nEn f (x+̇ek),

then it is easy to see thatx is a Walsh-Lebesgue point off if and only if

lim
n→∞

Vn(| f − f (x)|)(x) = 0,

becauseEn f (x) = 2n∫

In(x) f . We ( [18]) have shown the next theorem for the oper-
ator

V f := sup
n∈Nd

|Vn f |.

Theorem 3 For all 1 < p≤ ∞

‖V f‖p ≤Cp‖ f‖p ( f ∈ Lp[0,1)d)

and

sup
ρ>0

ρλ (V f > ρ) ≤C‖ f‖L1(logL)d−1 ( f ∈ L1(logL)d−1[0,1)d). (5)

It is easy to show that (4) holds for every Walsh polynomials and x ∈ [0,1)d.
Since the Walsh polynomials are dense inL1(logL)d−1[0,1)d, (5) and the usual
density argument (see Marcinkievicz and Zygmund [19]) imply

Corollary 1 If f ∈ L1(logL)d−1[0,1)d then

lim
n→∞

d

∑
j=1

nj

∑
kj=0

2k
∫

In(x+̇ek)
| f (t)− f (x)|dt = 0 a.e. x∈ [0,1)d,

thus a.e. point is a Walsh-Lebesgue point of f .

5 Fejér Means of Walsh-Fourier Series

TheRademacher functionsare defined by

r(x) :=

{

1, if x∈ [0, 1
2);

−1, if x∈ [1
2,1),
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and
rn(x) := r(2nx) (x∈ [0,1),n∈ N).

The product system generated by the Rademacher functions istheone-dimensional
Walsh system:

wn :=
∞

∏
k=0

rk
nk,

wheren = ∑∞
k=0 nk2k, (0≤ nk < 2).

The Kronecker product(wn,n ∈ N
d) of d Walsh systems is said to be thed-

dimensional Walsh system. Thus

wn(x) := wn1(x1) · · ·wnd(xd)

wheren = (n1, . . . ,nd) ∈ N
d, x = (x1, . . . ,xd) ∈ [0,1)d.

Thenth Fourier coefficient and the partial sum off ∈ L1[0,1)d are introduced
by

f̂ (n) :=
∫

[0,1)d
f wndλ (n∈ N

d)

and

sn f :=
d

∑
j=1

nj−1

∑
kj =0

f̂ (k)wk (n∈ N
d).

It is known thats2n1,...,2nd f = En f (n∈ N
d) and

s2n1 ,...,2nd f → f in Lp-norm asn→ ∞,

if f ∈ Lp[0,1)d (1≤ p< ∞). If p > 1 then the convergence holds also a.e. (see e.g.
Schipp, Wade, Simon and Pál [17] or Weisz [20]).

The one-dimensional Carleson’s theorem was extended to Walsh-Fourier series
by Billard [21] and Sjölin [22]: if f ∈ Lp[0,1) (1 < p < ∞) then

sn f → f a.e. asn→ ∞.

The a.e. convergence ofsn f is not true in the multi-dimensional case (Fefferman
[14,15]), however, the analogue of (3) holds: forf ∈ L2[0,1)d

sn,...,n f → f a.e. asn→ ∞,

(Móricz [23] or Schipp, Wade, Simon and Pál [17]). In contrary to the trigonomet-
ric case, it is unknown whether this result holds for functions inLp[0,1)d, 1< p< 2.
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To obtain convergence results forL1[0,1) or L(logL)d−1[0,1)d functions we
introduce theFejér meansof f by

σn f :=
1

∏d
i=1 ni

d

∑
j=1

nj

∑
kj=1

sk f =
d

∑
j=1

nj−1

∑
kj=0

( d

∏
i=1

(

1−
ki

ni

))

f̂ (k)wk.

If

Kn :=
1
n

n−1

∑
k=0

(

1−
k
n

)

wk (n∈ N)

denotes the one-dimensionalFejér kernels, then

σn f (x) =
∫

[0,1)d
f (t)(Kn1(x1+̇t1) · · ·Knd(xd+̇td))dt.

The Fejér means off converge tof a.e. if f ∈ L(logL)d−1[0,1)d (see Fine [6]
and Schipp [7] for the one-dimensional case, i.e., for integrable functions and Weisz
[11] for the multi-dimensional case). For Vilenkin-Fourier series these results are
due to Simon [24]. The next result concerning Walsh-Lebesgue points characterizes
the set of convergence and was proved by the author in [5] for one dimension and
in [18] for higher dimensions.

Theorem 4 If f ∈ L1(logL)d−1[0,1)d then

lim
n→∞

σn f (x) = f (x)

for all Walsh-Lebesgue points of f .

Note that the convergence limn→∞ σn f = f a.e. cannot be extended to allf ∈
L1[0,1)d (see Gát [25,26]) and so Theorem 4 is not true for allf ∈ L1[0,1)d.
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