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Lebesgue Points of Multi-Dimensional Functions

Ferenc Weisz

Abstract: Lebesgue and Walsh-Lebesgue points are introduced forehigimen-
sional functions and it is proved that a.e. point is a (Walsthesgue point of a func-
tion f from the spacé (logL)%-1. Every functionf € L(logL)4 is Fejer summable
at each (Walsh)-Lebesgue point.

Keywords: Lebesgue point, Walsh-Lebesgue point, Walsh functiongérie
summability.

1 Introduction

T WAS PROVEDby Fejér [1] that théC, 1) or Fejér means of the one-dimensional
trigonometric Fourier series of a continuous function @ge uniformly to the
function. The same problem for integrable functions wasstigated by Lebesgue
[2]. He proved that for every integrable functidn

1 n

meoSkf(X) —f(x) as n—o

at each Lebesgue point &f wherescf denotes théth partial sum of the Fourier
series off. Almost every point is a Lebesgue pointiofsee Zygmund [3] or Butzer
and Nessel [4]).

The concept of Lebesgue points was extended to the one-giomath Walsh
system by the author in [5], the points are called Walsh-Eghe points in this
case. The definition of Walsh-Lebesgue points is not a siragigptation of the
one of Lebesgue points, it needs new ideas, because the-Ré&gkshkernels differ
entirely from the trigonometric Fejér kernel. It was prdvehere that a.e. point
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is a Walsh-Lebesgue point of a one-dimensional integralnhetfon. Moreover,
the Fejéer means of the Walsh-Fourier seried @f L1]0,1) converge tof at each
Walsh-Lebesgue point. The a.e. convergence of the Fejg@nsngas proved earlier
by Fine [6] (see also Schipp [7]).

In this paper we generalize the definition of Lebesgue andshvakbesgue
points for higher dimensions. We prove that a.e. point is al§¥\j-Lebesgue point
of f € L(logL)%2. The Fejér means of the Walsh-Fourier serie$ afL (logL)d*
converge tof at each (Walsh)-Lebesgue point.

2 Lebesgue Points

For a setX # 0 let X9 be its Cartesian produdf x ... x X taken with itselfd-
times. We briefly writd_p(Xd) instead oﬂ_p(Xd,)\) space equipped with the norm
(or quasi-norm)|| f||p := (Jxa |f|PdA)¥P (0 < p < ), whereA is the Lebesgue
measure an&X denotes the toru¥§ = [-1/2,1/2] or the unit interval0, 1).

In the one-dimensional case Lebesgue differentiationrdmesays that

im 2 [ fat— f
h'inoﬁ/x (t)dt = f(x)

fora.e.x e T, wheref € L1(T). This motivates the next definition. A poirte T
is called aLebesgue poindf a function f if

li Lt f f(x)|d

lim 2 f©) -~ f(ldt=0
Using Lebesgue differentiation theorem we can prove in thealway that a.e.
pointx € T is a Lebesgue point of € L;(T) (see e.g. Butzer and Nessel [4] or
Stein and Weiss [8]).

Feichtinger and Weisz [9] extended the definition of Lebesgoints to higher
dimensions as follows. Th&trong Hardy-Littlewood maximal functias defined
by

Msf (X) 1= sup— /|f|d)\
xel |||
where f € L1(T%), x € T9 and the supremum is taken over all rectangles T
with sides parallel to the axes. It is known that in the oneetisional case the
maximal function is of weak typél, 1), i.e.,

sug)p)\(Msf > p) <Cql fl1, (f € Ly(T)).
p>
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However, for higher dimensions there is a functibe L1(TY) such thaiMsf = o
a.e. ThusVis cannot be of weak typél, 1) if d > 1, but we have

SugpA(Msf>>p)f§CH‘FCﬁH”hﬂmgu¢4a @
p>

whereCy is depending only od. Moreover,
IMsfllp <Cpllfllp  (feLp(T),1<p<e,d>1). (2)
For these results see Zygmund [3], Stein [10] or Weisz [117}. Set log u=

11y>1; logu. Recall that a functiorf is in the setLs(logL)*(T?) if

IFllsogue = [, |Fl(log" [£) dr <o
If k=0 thenL;(logL)*(T9) = L1(T9). We can say that the role &f;(T) in one
dimension is played in higher dimensions Iby(logL)?~1(T9).
Inequalities (1) and (2) imply
) 1 Xg+hy Xd+hy
lim (/ / F(t)dt = f(x)
X

g )
hi}ol_lj:lhj 1 X4

for a.e. x € T9, where f € Ly(logL)4=1(T9) or f € Lp(T9) (1 < p < »). Note
that L1(logL)4=1(T9) o Lp(T%) (1 < p < »). Hereh — 0 is understood in the
Pringsheim’s sense, i.éh; — Oforall j =1,...,d.

A pointx € TY is called aLebesgue pointf f if Msf(x) is finite and

1 X1+hy /Xd +hg

lim f(t) — f(x)|dt=0.
im ], £(6)— 1)

7 Xd

The next theorem is proved in Feichtinger and Weisz [9].

Theorem 1 Almost every point % T%is a Lebesgue point ofd L3 (logL)d-%(T9).

3 Fejér Means of Fourier Series

For a one-dimensional integrable functidrthe nth Fourier coefficient is defined
by
ﬂmz/fmemmm (nez).
JT
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Thenth partial sum of the trigonometric Fourier seriesfak given by

shf(x) = i f(ke™  (neN).
k=—n

One of the deepest results in harmonic analysis is Carlesbabrem [12, 13]:
sf— f a.e. an — oo,

wheneverf € Ly(T) (1 < p < «). This theorem does not hold, if= 1. However,
some summability results can be obtained in this case, too.

TheFejéer-meansf f are defined by

onf (x) ::ﬁk;skf(x):k_z_n( _n|Tk|1> f(k)ez’“k":/Tf(t)Kn(ert)dt,

wherex € T, n € N andK,, denote thd-ejér kernels As mentioned in the introduc-
tion, Lebesgue [2] proved for afl € L1(T) that

onf — f at each Lebesgue point éfasn — .

In the multi-dimensional case let tlmth Fourier coefficient of a functior ¢
L1(TY) be defined by

f(n) = df(t)e‘zm”'tdt (nezd),
T

whereu- X := z‘k’:lukxk, (X=(X1,...,%4) € RY u= (ug,...,uq) € RY). Denote by
s, f thenth partial sumof the trigonometric Fourier series ¢f

d o
SHEESY f(ke#™*  (neNY).
1=1kj==n;
Undery{_;5,/_ , we meanthe sumigl_ . ...5_ .

Carleson’s result does not hold for higher dimensions (sfiefman [14]). The
only known result is that
nf— f a.e. as — oo, 3)

1111

wheneverf Lp(']I‘d) (1< p < o) (Fefferman [15]).
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Now we introduce thé&ejer-meanof f by

nj

- 1 : _ d il J |k|| £ muk-x
e 2 2, 2, () e

= -

(x € T9,n e NY). In the following theorem we generalize Lebesgue’s thegiesn
mentioned (see Feichtinger and Weisz [9]).

Theorem 2 For all Lebesgue points of € L1(logL)%~%(T9) we have

lim onf(x) = f(X).

N—oo

4 Walsh-Lebesgue Points

The definition of the Walsh-Lebesgue points should fulfik thext two require-
ments: a.e. point is a Walsh-Lebesgue point of an integralsietion and the
Walsh-Fejér means of an integrable function converge laWalsh-Lebesgue
points. The proof of the one-dimensional version of Theom based on the
fact, that the Fejér kernels, can be estimated by an integrable, [6nl/2] non-
increasing functiorkK;, such that|K}||1 < C for all n € N. Recall that

C
Kn(X) = C(n+1)101/(n+ 1)) + Wl[l/(nﬂ),l/z]-

This does not hold for the Walsh-Fejér kernils (for the definition see the next
section), because

Kon(X) = % (2_nD2n (X) + kizk‘”Dzn (x+a<)) )

where

Dan(X) = 2" if xe[0,27"),
7o, i xe[2 1)

are the Walsh-Dirichlet kernelsy denotes the dyadic addition aegd:= 2—k-1

It is easy to see that K/, denotes the smallest non-increasing function for which
Kn < K}, then||K2 |1 = Cn. Because of this difference of the Fejér and Walsh-Fejér
kernels, a new definition of Lebesgue points is needed inyhdid case.

By a dyadic intervalwe mean one of the fornk2=", (k+ 1)2~") for some
k,neN,0<k< 2" Givenne N andx € [0,1) let I5(x) be the dyadic interval of
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length 2" which containsx. A Cartesian product ofl dyadic intervals is called
a dyadic rectangle Forn € N4 andx € [0,1)9 let In(X) := In, (X1) X ... X Iny(Xd),
wheren= (ny,...,nqg) andx= (xg,...,Xq). Theo-algebra generated by the dyadic
rectangles{I(x) : x € [0,1)} will be denoted by#, (n € NY). Let E, denote the
conditional expectation operator with respect®. Obviously, if f € L1[0,1)¢
then(E, f,n € N9) is a martingale.

Butzer and Wagner [16] introduced the dyadic derivativd @fith the limit of

%Zk_ f(x+ea))  (x€0,1))

asn— oo. For f € L1[0,1) let F(x) := | f and investigate the function

"ot
diE(x) = § 26 / fo / f
" (X) kZO ( In(X) In(x+6x) )

Since the first terms on the right hand side can be well haniidtie definition of
Walsh-Lebesgue points we will consider the second ternig, e can prove (see
Schipp, Wade, Simon and Pal [17] or Weisz [11]) thatlim d,F (X) = 0 a.e. Since
2" . f = Eaf(x), by the corresponding martingale theorem Jim, Enf(x) =
f(x )ae Thus

1n2k/ f—(2”—})/ f— dnF (%)
2k: In(x+&x) B 2" Jin(%) A

tends tof (x) for a.e.x € [0,1) asn — co.

Motivated by this fact, the author introduced the one-disi@mal Walsh-
Lebesgue points [5] as follows: x € [0,1) is a Walsh-Lebesgue point df €
L1[0,1), if

n
lim 2'</ Cf() = f(|dt=0.
N—oo & In(X+6&)
We proved in [5] that a.e. pointe [0,1) is a Walsh-Lebesgue point of an integrable
function f.

In the multi-dimensional case a pot [0,1)% is aWalsh-Lebesgue poirf
f € L1[0,2)9, if

nng;,z 5 [ O T0ode=o0 @

=1kj=0
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where ¥ :=2k... 2k ande, 1= (g,...,&,). If we define
nj

d
:z zzk "E,f(x+er),
j=1

then it is easy to see thais a Walsh-Lebesgue point dfif and only if

lim Vo([f = f(x)])(x) =0,

n—oo

becausé, f(x) =2 [ f. We ([18]) have shown the next theorem for the oper-
ator
V f:= sup|Vhf|.

neNd

Theorem 3 Forall 1< p< o
IVfllp<Collfllp  (feLpo,1)%)
and

SugP)\ (V> p) <ClflL,10gL)s- (f € La(logL)**[0,1)%).  (5)
p>

It is easy to show that (4) holds for every Walsh polynomiaid =< [0,1)9.
Since the Walsh polynomials are denseLifflogL)?1[0,1)¢, (5) and the usual
density argument (see Marcinkievicz and Zygmund [19]) ynpl
Corollary 1 If f € Ly(logL)9-1[0,1)9 then

d N
lim 2k/_ 1) - f()[dt=0  ae. xe[0,1)7,
(x+ex)

n—oo

{=1K=0

thus a.e. point is a Walsh-Lebesgue point of f.

5 Fejér Means of Walsh-Fourier Series

The Rademacher functiorere defined by
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and
M(x) :=r(2"x) (x€[0,1),n e N).

The product system generated by the Rademacher functitmsdae-dimensional
Walsh system

(o]

. n|
Wy = rer k
K=

wheren =y n2%, (0 < ng < 2).

The Kronecker productw,,n € N9) of d Walsh systems is said to be tde
dimensional Walsh systerihus

Wi (X) 1= Wiy (X1) - - Wn, (Xq)

wheren = (ng,...,ng) € N4, x= (xq,...,%g) € [0,1)C.
Thenth Fourier coefficient and the partial sum bk L]0, 1)d are introduced
by
f(n):= / fw,dd  (neNY)
[0.1)d

and
njfl

d
sfi=3 5 flgw  (neNd).
J=1kj=0
Itis known thatsyn o f = Eqf (n€ NY) and
sm_oaf—f inLp-norm asn— oo,

if felLp[O, 1)¢ (1< p< ). If p> 1 then the convergence holds also a.e. (see e.g.
Schipp, Wade, Simon and Pal [17] or Weisz [20]).

The one-dimensional Carleson’s theorem was extended tehWadurier series
by Billard [21] and Sjolin [22]: iff € Lp[0,1) (1 < p < ») then

sif— f a.e. as — oo,

The a.e. convergence eff is not true in the multi-dimensional case (Fefferman
[14, 15]), however, the analogue of (3) holds: foe L,[0,1)d

S..nf—f a.e. agn — oo,

(Moricz [23] or Schipp, Wade, Simon and Pal [17]). In camyrto the trigonomet-
ric case, itis unknown whether this result holds for funesianL [0, 1)d, l<p<2.



Lebesgue Points of Multi-Dimensional Functions 263

To obtain convergence results fbg[0,1) or L(logL)4-1[0,1)¢ functions we
introduce thd~ejér meansf f by

1 37

d nj-1 d k|
sf =
Man lekazl ,Zl

kzo( (1- F.)) f (1w

Unf =

Kn:= }:i (1— E)wk (neN)

n:

denotes the one-dimensiorfadjér kernels then

onf (09 = /[O o TOK O Ht) K (x0T dt.

The Fejér means of converge tof a.e. if f € L(logL)%~1[0,1)Y (see Fine [6]
and Schipp [7] for the one-dimensional case, i.e., for irgblp functions and Weisz
[11] for the multi-dimensional case). For Vilenkin-Fourgeries these results are
due to Simon [24]. The next result concerning Walsh-Lebegmints characterizes
the set of convergence and was proved by the author in [5]rferdimension and
in [18] for higher dimensions.

Theorem 4 If f € Ly(logL)4-1[0,1)¢ then
lim o, f(x) = f(x)

n—oo

for all Walsh-Lebesgue points of f.

Note that the convergence lim. 0,f = f a.e. cannot be extended to &le
L1[0,1)¢ (see Gat [25,26]) and so Theorem 4 is not true forfadi L1[0, 1)9.
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