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Abstract. We show that for quasi-greedy bases in real or complex Banach spaces
the error of the thresholding greedy algorithm of order N is bounded by the best N -
term error of approximation times a function of N which depends on the democracy
functions and the quasi-greedy constant of the basis. If the basis is democratic this
function is bounded by C logN . We show with two examples that this bound is
attained for quasi-greedy democratic bases.

1. Introduction

Let (X, ‖.‖) be a Banach space (real or complex) and B = {ej}∞j=1 a countable

normalized basis1. Let ΣN , N = 1, 2, 3, . . . be the set of all y ∈ X with at most N
non-null coefficients in the unique basis representation. For x ∈ X, the N-term error
of approximation with respect to B is

σN(x) = σN(x;B,X) := inf
y∈ΣN

‖x− y‖X , N = 1, 2, 3, . . .

Given x =
∑∞

k=1 ak(x)ek ∈ X , let π denote any bijection of N such that

|aπ(k)(x)| ≥ |aπ(k+1)(x)| for all k ∈ N . (1.1)

The thresholding greedy algorithm of order N (TGA) is defined by

GN(x) = Gπ
N(x;B,X) :=

N∑
k=1

aπ(k)(x)eπ(k) .

It is not always true that GN(x) → x (in X) as N → ∞ . A basis B is called quasi-
greedy if GN(x)→ x as N →∞ for all x ∈ X . This turns out to be equivalent (see

[22, Theorem 1]) to the existence of some constant K̃ such that

sup
N
‖GN(x)‖ ≤ K̃‖x‖ for all x ∈ X . (1.2)

We define the quasi-greedy constant K of the basis B to be the least K̃ such that
(1.2) holds for all permutations π satisfying (1.1).
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Given a basis B in a Banach space X, a Lebesgue-type inequality for the TGA
is an inequality of the form

‖x−GN(x)‖ ≤ C(N)σN(x) , x ∈ X ,
where C(N) is a nondecreasing function of N . For a survey on Lebesgue-type inequal-
ities for the greedy algorithm see [18, 19] and the references therein. We specially
mention the recent papers [20, 21], which deal with Lebesgue-type inequalities for
quasi-greedy bases in Lp spaces (see also [5]).

The purpose of this paper is to study such inequalities for quasi-greedy bases in
general Banach spaces, thus complementing and in some cases improving the results
in [20, 21, 5]. Towards this end we define the sequence

CN := sup
x∈X

‖x−GN(x)‖
σN(x)

.

Following the notation in previous papers, we write

hl(n) = inf
|A|=n

∥∥∑
j∈A

ej
∥∥, hr(n) = sup

|A|=n

∥∥∑
j∈A

ej
∥∥ and µ(N) = sup

n≤N

hr(n)

hl(n)
.

These functions are implicit in the first works on N -term approximation. For instance,
µ(N) is defined in [22], and hl, hr appear explicitly in [11]. In [8, 9] the latter are
called left and right democracy functions of the basis B.

For A ⊂ N, we denote by SA the projection operator

x =
∑∞

j=1 ajej 7−→ SA(x) =
∑

j∈A ajej ,

and consider also the sequence

kN := sup
|A|≤N

‖SA‖.

Our main result is the following:

Theorem 1.1. If {ej}∞j=1 is a (normalized) quasi-greedy basis in a Banach space X
(real or complex), then

CN ≈ max{µ(N), kN}, ∀ N = 1, 2, ... (1.3)

Remarks:

(1) When {ej} is unconditional, then kN = O(1), so we obtain as a special case
Theorem 4 in [22].

(2) For quasi-greedy bases it can be shown that

kN ≤ c logN. (1.4)

This is essentially contained in [4, Lemma 8.2] (see also [5, Lemma 2.3]). Since
this result is often used in the paper, we outline a proof in §5 below.

(3) When {ej} is quasi-greedy, some upper bounds for CN have recently appeared
in the literature: in [21, Theorem 2.1] it was shown that

CN . µ(N) kN , (1.5)

while in [10, Thm 1.1] it is proved that

CN .
∑

1≤k≤N

µ(k)

k

(
. µ(N) logN

)
. (1.6)
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Notice that (1.3), being an equivalence, improves strictly over these in some
cases. For instance, if X is such that µ(N) ≈ (logN)α and say kN ≈ logN ,
then (1.5) and (1.6) would only give CN . (logN)α+1, while Theorem 1.1
implies CN ≈ (logN)min{α,1}. For constructions of such examples, see (6.9)
below.

(4) When {ej} is quasi-greedy and democratic (i.e. µ(N) = O(1)), then (1.3) and
(1.4) give

CN ≈ kN . logN. (1.7)

We show in section 6 that this logarithmic bound can actually be attained,
answering a question posed in [10]. One such example is given by the Haar
basis in BV (Rd), d > 1 (see §6). This is in contrast with the Hilbert space
case, where it was recently noticed by Wojtaszczyk that kN cannot attain logN
([25]; see also §9 below).

Let also denote by σ̃N(x) the expansional best approximation to x, that is if x =∑∞
k=1 akek , then

σ̃N(x) = σ̃N(x;B,X) := inf
A, |A|=N

{‖x−
∑
k∈A

akek‖}.

In this case it is known that, for quasi-greedy bases,

C̃N := sup
x∈X

‖x−GN(x)‖
σ̃N(x)

≈ µ(N); (1.8)

see [21, Theorem 2.2] for the upper bound (the lower bound was essentially in [22];
see also Proposition 3.1 below). In [10] it was asked whether one could prove bounds
for CN using (1.8) and suitable bounds on the sequence

DN := sup
x∈X

σ̃N(x)

σN(x)
≥ 1.

Here we prove the following

Theorem 1.2. For any (normalized, not necessarily quasi-greedy) basis {ej} we have

kN
4
≤ DN ≤ 2kN , ∀ N = 1, 2, ... (1.9)

Remark: The right hand side of (1.9) together with (1.4) gives σ̃N(x) . (logN)σN(x)
for quasi-greedy bases. This was noticed in [5, Lemma 2.4], answering a question from
[10]. The left hand side of (1.9) seems to be new.

Our last result is the following theorem, which answers a question of Wojtaszczyk
(personal communication to the second author on November, 2011).

Theorem 1.3. If {ej}∞j=1 is a quasi-greedy basis in X, then there exists c > 0 such
that for all N, k = 1, 2, . . .∥∥x−GN+k(x)

∥∥ ≤ c
(

1 +
hr(N)

hl(k)

)
σN(x), ∀ x ∈ X.



4 GUSTAVO GARRIGÓS, EUGENIO HERNÁNDEZ, AND TIMUR OIKHBERG

Results of this type have appeared before in the literature. For unconditional bases,
this theorem was proved in [11, Thm 5]; see also [23, Thm 4]. For quasi-greedy
democratic bases it is essentially contained in [6]. Here we extend its validity to
general quasi-greedy bases.

A slightly weaker version of Theorem 1.3 can also be found in [13]; namely, given
N and k there exists a set A of cardinality not exceeding N + k such that∥∥x− SA(x)

∥∥ ≤ c
(

1 +
hr(N)

hl(k)

)
σN(x), ∀ x ∈ X.

The improvement in Theorem 1.3 consists in showing that the set A can be obtained
by running the greedy algorithm.

We finally remark that the proofs of Theorems 1.1, 1.2 and 1.3 combine ideas present
in various of the above quoted references, but whose main lines essentially stem from
the original work of Konyagin and Temlyakov [12].

Acknowledgements. This work started when the second and third authors par-
ticipated in the Concentration week on greedy algorithms in Banach spaces and com-
pressed sensing held on July 18-22, 2011, at Texas A&M University. We express our
gratitude to the Organizing Committee for the invitation to participate in this meet-
ing. In addition, the third author thanks the second author for arranging his visit
to UAM, where this work continued. A preliminary version of this paper ([10]) was
written by the second author and posted in ArXiv in November 2011.

2. Proof of Theorem 1.1: upper bounds

The proof follows the strategy developed in [12], together with two known estimates
for quasi-greedy bases. First, as mentioned in §1, there exists a (smallest) constant
K such that

‖GN(x)‖ ≤ K ‖x‖, ∀ x ∈ X, ∀ N = 1, 2, . . . , (2.1)

see [22, Th 1]. Also, there exist c1, c2 > 0 such that

c1(min
k∈A
|ak|) ‖

∑
k∈A

ek‖ ≤ ‖
∑
k∈A

akek‖ ≤ c2(max
k∈A
|ak|)‖

∑
k∈A

ek‖. (2.2)

These inequalities are proved in [6, Lemmas 2.1 and 2.2] for real scalars ak, setting
c1 = 1/(4K2) and c2 = 2K. For completeness, in the appendix (§10) we outline the
proof also for complex scalars ak, in which case one can let c1 = 1/(8

√
2K2) and

c2 = 4
√

2K.

We shall write a∗k(x) for the decreasing rearrangement of the basis coefficients of x;
that is, if x =

∑∞
j=1 ajej, we set a∗k(x) = |aπ(k)| when π is any permutation of N such

that |aπ(1)| ≥ |aπ(2)| ≥ |aπ(3)| ≥ ... As in [10], we shall use the following simple (but
crucial) observation.

Lemma 2.1. For all A ⊂ N and x ∈ X we have a∗k
(
SA(x)

)
≤ a∗k(x).

We now prove the theorem. Fix N ≥ 1 and x ∈ X. Take any y =
∑

j∈A yjej with

|A| = N . We shall show that

‖x−GN(x)‖ ≤ c max{µ(N), kN} ‖x− y‖. (2.3)
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Then, taking the infimum of the right hand side over all y ∈ ΣN , we obtain the upper
estimate for CN in (1.3).

Write GN(x) = SΓ(x) with |Γ| = N . Then

‖x−GN(x)‖ = ‖x− SA(x) + SA(x)− SΓ(x)‖
≤ ‖x− SA(x)‖+ ‖SA\Γ(x)‖+ ‖SΓ\A(x)‖.

The first and third terms are easily bound by c kN‖x− y‖; namely,

‖x− SA(x)‖ ≤ ‖x− y‖+ ‖SA(y)− SA(x)‖ ≤ (1 + kN)‖x− y‖,
while

‖SΓ\A(x)‖ =
∥∥SΓ\A(x− y)

∥∥ ≤ kN ‖x− y‖.
We next show that ‖SA\Γ(x)‖ can be controlled by c µ(N)‖x− y‖. First notice that∥∥SA\Γ(x)

∥∥ ≤ c2( max
k∈A\Γ

|ak|)
∥∥ ∑
k∈A\Γ

ek
∥∥ ≤ c2 µ(N) ( min

k∈Γ\A
|ak|)

∥∥∑
k∈Γ̃

ek
∥∥ (2.4)

where we choose as Γ̃ any set of cardinality |Γ̃| = |A \ Γ| = |Γ \ A| in which x − y
attains the largest coefficients, i.e. G|Γ\A|

(
x− y

)
= SΓ̃(x− y). From Lemma 2.1 one

easily sees that

min
k∈Γ\A

∣∣ak(x)
∣∣ = min

k∈Γ\A

∣∣ak(SΓ\A(x− y)
)∣∣ = a∗|Γ\A|

(
SΓ\A(x− y)

)
≤ a∗|Γ\A|(x− y) = min

k∈Γ̃

∣∣ak(x− y)
∣∣.

Thus, using again (2.2), one can bound the right side of (2.4) by a constant times

µ(N)
∥∥SΓ̃(x− y)

∥∥ = µ(N)
∥∥G|Γ\A|(x− y)

∥∥ ≤ K µ(N) ‖x− y‖,
as we wished to prove. Notice that the final multiplicative constant involved in this
process is of order Kc2/c1 = O(K4). 2

3. Proof of Theorem 1.1: lower bounds

The bound CN & µ(N) was proved by Wojtaszczyk when {ej} is an unconditional
basis; [22, Thm 4]. As pointed out in [10], these arguments can easily be adapted to
the more general setting of quasi-greedy bases; we include the proof for completeness.
Recall that K is our notation for the quasi-greedy constant defined in (2.1).

Proposition 3.1. If {ej} is quasi greedy then CN ≥ C̃N ≥ 1
3K
µ(N).

We shall use the following lemma. Here we denote 1A =
∑

j∈A ej.

Lemma 3.2. If {ej} is quasi greedy with constant K, then for every N there exist
disjoint sets A,B such that

|A| = |B| ≤ N and
‖1A‖
‖1B‖

≥ 1
3K
µ(N).

Proof. We may assume that µ(N) > 3K (otherwise choose |A| = |B| = 1). Then
there exist A,B (not necessarily disjoint) with |A| = |B| ≤ N and

max{1
2
µ(N), 3K} < ‖1A‖

‖1B‖
.



6 GUSTAVO GARRIGÓS, EUGENIO HERNÁNDEZ, AND TIMUR OIKHBERG

The quasi-greedy condition implies that ‖1A∩B‖ ≤ K‖1B‖, which inserted above gives

3K <
‖1A‖
‖1B‖

≤ K
‖1A‖
‖1A∩B‖

and therefore ‖1A∩B‖ ≤ 1
3
‖1A‖. Thus

‖1A‖
‖1B‖

≤
‖1A∩B‖+ ‖1A\B‖

‖1B‖
≤ 1

3

‖1A‖
‖1B‖

+
‖1A\B‖
‖1B‖

,

which can be rewritten as

‖1A‖
‖1B‖

≤ 3
2

‖1A\B‖
‖1B‖

.

Now set Ã := (A \B) ∪ C, for any C, disjoint with B, such that |Ã| = |B|. Then

1
2
µ(N) ≤ ‖1A‖

‖1B‖
≤ 3

2

‖1A\B‖
‖1B‖

≤ 3
2
K
‖1Ã‖
‖1B‖

,

which gives the desired result since Ã ∩B = ∅. �

PROOF of Proposition 3.1: Consider sets A and B as in the lemma, and take
any set C, disjoint with A ∪ B, such that |C| = N − |A| = N − |B|. Choosing
x = (1 + 2ε)1B + (1 + ε)1C + 1A we have

‖x−GN(x)‖ = ‖1A‖ ≥ 1
3K
µ(N) ‖1B‖ ≥ 1

(1+2ε)3K
µ(N)σ̃N(x),

which proves the result when ε→ 0.
2

To establish the lower bound in Theorem 1.1 it remains to show the following.

Proposition 3.3. For any basis (not necessarily quasi-greedy) we have

CN ≥ kN/4. (3.1)

Proof. Assume that kN ≥ 4 (otherwise (3.1) is trivial). For fixed N find A ⊂ N
with |A| ≤ N and x ∈ X such that ‖SA(x)‖ > (kN/2)‖x‖. We may assume that
x =

∑
j∈B xjej with B finite and ‖x‖ = 1. Note that ‖x−SA(x)‖ ≥ ‖SA(x)‖−‖x‖ ≥

kN/4.

Take any number r > max |xj|, and set y = x− SA(x) + r1Ã. Here Ã is any set of
cardinality N containing A and (if necessary) some indices in Bc. Then

‖y −GN(y)‖ = ‖x− SA(x)‖ ≥ kN/4.

On the other hand, since r1Ã − SA(x) ∈ ΣN we have

σN(y) ≤ ‖y − (r1Ã − SA(x))‖ = ‖x‖ = 1,

which gives (3.1). �



LEBESGUE-TYPE INEQUALITIES FOR QUASI-GREEDY BASES 7

4. Proof of Theorem 1.2

The upper bound DN ≤ 2kN is elementary. Indeed, let x ∈ X and p =
∑

k∈P bkek ∈
ΣN with |P | = N . Then,

σ̃N(x) ≤ ‖x− SP (x)‖ ≤ ‖x− p‖+ ‖SP (x− p)‖ ≤ (1 + kN)‖x− p‖.

Taking the infimum over all p ∈ ΣN we obtain

σ̃N(x) ≤ (1 + kN)σN(x) ,

which proves DN ≤ 2kN .
For the converse we argue as in the proof of Proposition 3.3. That is, we choose

an x =
∑

j∈B xjej with ‖x‖ = 1, and a set A so that ‖x − SA(x)‖ ≥ kN/4, and we

let y = x − SA(x) + r1Ã as before. This time we shall choose r > (2 + kN + k2N)2c,
where c is the basis constant, and we shall prove that, with this choice

σ̃N(y) ≥ kN
4
σN(y),

which clearly implies DN ≥ kN/4.
As shown before, σN(y) ≤ 1, so we need to prove that

σ̃N(y) = inf
|C|≤N

‖y −
∑

(B\A)∩C

xjej − r1Ã∩C‖ ≥ kN/4. (4.1)

Suppose we are given one such set C which is not equal to Ã. Then there must be

some j0 ∈ Ã \ C, and we would have

‖y −
∑

(B\A)∩C

xjej − r1Ã∩C‖ = ‖
∑

B\(A∪C)

xjej + r1Ã\C‖

≥ r
∥∥1Ã\C∥∥ − ∥∥ ∑

B\(A∪C)

xjej
∥∥

≥ r
2c
‖ej0‖ −

∥∥x− SA∪C(x)
∥∥ ≥ r

2c
− (1 + k2N) > 1 + kN ,

where in the third line we have used that ej0 = Pj0(1Ã\C) − Pj0−1(1Ã\C), and the
partial sums operators Pj have norm bounded by c . On the other hand, if we use

C = Ã we obtain a better estimate∥∥y − r1Ã∥∥ =
∥∥x− SA(x)

∥∥ ≤ 1 + kN .

Therefore,

σ̃N(y) =
∥∥y − r1Ã∥∥ =

∥∥x− SA(x)
∥∥ ≥ kN/4 ,

proving (4.1).

5. An upper bound for kN

We prove a bound for the constants kN when {ej} is a quasi-greedy basis.

Theorem 5.1. If the basis is quasi-greedy, there exists c > 0 such that

kN ≤ c logN, ∀ N = 2, 3, ... (5.1)

This was essentially shown in [4, Lemma 8.2] (see also [5, Lemma 2.3]), but we
include a self-contained proof for completeness. We need two easy lemmas.
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Lemma 5.2. Let (X, {ej}) be quasi-greedy. Consider x =
∑

i aiei ∈ X and 0 ≤ α <
β <∞ . Let F = {i : |ai| ∈ (α, β]}. Then ‖SF (x)‖ ≤ 2K‖x‖ .

Proof. Let G = {i : |ai| > α} and H = {i : |ai| > β}. By the definition of quasi-
greediness, max{‖SG(x)‖, ‖SH(x)‖} ≤ K‖x‖ . However, SF (x) = SG(x) − SH(x) .
Apply the triangle inequality to finish the proof. �

Lemma 5.3. Let (X, {ej}) be quasi-greedy. Consider x =
∑

i aiei ∈ X and 0 < α <
β <∞ . Then, for any P ⊂ F = {i : |ai| ∈ (α, β]}, we have

‖SP (x)‖ ≤ K
c2

c1

β

α
‖SF (x)‖ ,

where c1, c2 are as in (2.2).

Proof. We use (2.2) (see [6] or Proposition 10.5 below). We have

‖SP (x)‖ = ‖
∑
i∈P

aiei‖ ≤ c2β‖
∑
i∈P

ei‖ .

By quasi-greediness

‖
∑
i∈P

ei‖ ≤ K‖
∑
i∈F

ei‖ .

Finally,

‖
∑
i∈F

ei‖ ≤
1

c1α
‖
∑
i∈F

aiei‖ =
1

c1α
‖SF (x)‖ .

�

We now prove Theorem 5.1. Take |A| = N ≥ 2 . Let x =
∑

i aiei . By scaling we
may assume maxi |ai| = 1. Under this assumption

‖x‖ ≥ (1/K). (5.2)

In fact, if maxi |ai| = |ai0| = 1 for some i0, then 1 = |ai0 |‖ei0‖ = ‖G1(x)‖ ≤ K‖x‖,
proving (5.2).

Let ` ∈ N so that 2−` ≤ 1
N
< 21−`. Represent A as a disjoint union of sets ∪`k=1Ak,

where Ak = {i ∈ A : 2−k < |ai| ≤ 21−k}, 1 ≤ k ≤ `− 1, and A` = {i ∈ A : |ai| ≤ 21−`}.
Then, by (5.2),

‖SA`x‖ ≤
∑
i∈A`

|ai|‖ei‖ ≤ 21−`|A`| ≤
2|A`|
N
≤ 2 ≤ 2K‖x‖.

For 1 ≤ k ≤ `− 1, let Fk = {i ∈ N : 2−k < |ai| ≤ 21−k}. By Lemmas 5.3 and 5.2

‖SAk(x)‖ ≤ c′ ‖SFk(x)‖ ≤ c′′ ‖x‖,

with c′′ = 4K2c2/c1. Therefore,

‖SA(x)‖ ≤
∑̀
k=1

‖SAk(x)‖ ≤ (2K + c′′(`− 1))‖x‖.

As `− 1 ≤ log2N , we have shown (5.1) with c of the order K2c2/c1 = O(K5).
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6. Examples

We compute (asymptotically) the Lebesgue-type constants CN for some explicit
examples of quasi-greedy democratic bases. Notice that, in view of Theorem 1.1, for
such bases we have

CN ≈ kN = sup
|A|≤N

‖SA‖.

Example 1: the Lindenstrauss basis. Consider the system of vectors in `1 defined by

xn = en − 1
2

(
e2n + e2n+1

)
, n = 1, 2, . . .

where en denotes the canonical basis. It is known that {xn}∞n=1 is a monotone basic
sequence in `1, and a conditional basis in its closed linear span D; see e.g. [15, p. 27]
or [16, p. 455]. The space D was introduced by J. Lindenstrauss in [14] and has other
interesting properties in functional analysis. In particular, it was shown by Dilworth
and Mitra [7] that {xn}∞n=1 is a quasi-greedy basis in D.

Here we show that

kN ≈ logN,

which in particular gives a direct proof that the Lindenstrauss basis is not uncondi-
tional. By Theorem 5.1, it suffices to show the lower bound. We first notice that

∥∥ n∑
k=1

bkxk
∥∥
`1

= |b1| +
n∑
k=2

∣∣bk − 1
2
bb k

2
c
∣∣ +

1

2

2n+1∑
k=n+1

∣∣bb k
2
c
∣∣.

Now consider

x =
∑n−1

j=0

∑
2j≤k<2j+1 2−jxk .

Clearly,

‖x‖`1 = 1 +
n−1∑
j=1

∑
2j≤k<2j+1

∣∣2−j − 1
2

2−(j−1)
∣∣ +

∑
2n≤k<2n+1

2−n = 2.

Now choose A = ∪ 0≤j<n
j even

[2j, 2j+1) ∩ N, so that N := |A| ≈ 2n. Then, if say n is odd,

∥∥SAx∥∥`1 = 1 +
n∑
j=1

∑
2j≤k<2j+1

2−j = n+ 1 ≈ logN.

Thus kN ≥ ‖SA‖ & logN , proving our claim.

Example 2. An important example of quasi-greedy basis arises in the context of
BV (Rd), d > 1. This space is not separable, so we consider the closed linear span X
of the d-dimensional (non-homogeneous) Haar system in the BV -norm

‖f‖BV (Rd) = ‖f‖L1(Rd) + |f |BV (Rd),

where |f |BV is the total variation of the distributional gradient ∇f (as defined e.g. in
[2, (1.1)]). It follows from the results in [3, 24] that the Haar system is a quasi-greedy
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democratic basis in X (see e.g. [24, Thm 10])2. We claim that in this case

kN ≈ logN.

It suffices to show the lower bound. For this we will argue as in [1], to find func-
tions fN ∈ Σ2N with ‖fN‖BV (Rd) = O(1), and sets AN with |AN | = N such that
|SAN (fN)|BV ≥ c logN .

To do this carefully we first set some notation. The Haar functions are defined by

hej,k(x) = 2j(d−1)

d∏
`=1

he`(2jx` − k`), j ≥ 0, k ∈ Zd, e ∈ {0, 1}d, x ∈ Rd, (6.1)

where h0 = χ[0,1) and h1 = χ[0, 1
2

) − χ[ 1
2
,1). With this definition the Haar system is

semi-normalized, i.e. c1 < ‖hej,k‖BV (Rd) < c2. The (non-homogeneous) Haar system is
obtained restricting to indices λ = (j,k, e) with e 6= 0 when j > 0. We sometimes
write it H = {hλ}λ∈Λ. As explained above, it is a quasi-greedy democratic basis in X,
the ‖ · ‖BV -closure of its linear span.

Following [1] we consider the function f = χ[0, 1
3

]×[0,1]d−1 and fn = P2nf , where PJ
denotes the projection onto VJ = span {hej,k | j ≤ J}. The Haar coefficients of f are
easily computed, leading to the expression

fn = 1
3
χ[0,1)d + 1

3

2n∑
j=0

2−j(d−1)
∑

k2,...,kd
0≤k`<2j

h
(1,0,...,0)
j, (k1(j),k2,...,kd) (6.2)

where k1(j) denotes the only integer such that 1
3
∈ ( k

2j
, k+1

2j
), explicitly given by

k1(j) =

{
2j−1

3
if j = even

2j−2
3

if j = odd.
(6.3)

Using for instance [24, Corollary 12] one justifies that ‖fn‖BV = ‖P2nf‖BV = O(1).
Note also that fn ∈ Σ2N with N = O(22n(d−1)).

Consider now the set An consisting only of the indices in (6.2) with j even, so that
|An| = N and

SAn(fn) = 1
3

2n∑
j=0
j even

2−j(d−1)
∑

k2,...,kd
0≤k`<2j

h
(1,0,...,0)
j, (k1(j),k2,...,kd) .

To estimate |SAn(fn)|BV from below we shall use the following linear functional

u ∈ BV 7−→ Φ(u) =

∫
[ 1
3
,∞)×Rd−1

∂x1u.

This is bounded in BV since ∂x1u defines a finite measure. Thus,

|SAn(fn)|BV ≥
∣∣Φ(SAn(fn)

)∣∣. (6.4)

2Democracy is not explicitly stated, but follows easily from the inclusions `1 ↪→ BV ↪→ `1,∞ as
in [2, p. 239]. The fact that the Haar system is a basic sequence in BV (hence a basis in its closed
linear span X), is a consequence of the uniform boundedness of the projections, see [24, Corollary
12]. Finally, it is a seminormalized system with the normalization in (6.1); see [2, (1.6)].



LEBESGUE-TYPE INEQUALITIES FOR QUASI-GREEDY BASES 11

On the other hand, when (j,k, e) ∈ An we can compute explicitly

Φ(hej,k) =

∫
[ 1
3
,∞)

2j(h1)′(2jx1 − k1(j)) dx1

= (h1)′
[

2j

3
− k1(j),∞

)
=

(
δ0 − 2δ1/2 + δ1

) [
2j

3
− k1(j),∞

)
= −1,

where in the last step we have used (6.3) for j = even. Thus∣∣Φ(SAn(fn)
)∣∣ = n/3 ≥ c logN

which together with (6.4) proves our assertion.

Example 3. We now show that CN ≈ kN may be strictly smaller than logN .
Modifying an example in [12], for 1 < p < ∞ we let Xp be the closure of span {ej}
with the norm

|||(xj)||| := max
{
‖(xj)‖`p , sup

m≥1

∣∣∑m
n=1

xn
n1/p′

∣∣ }. (6.5)

A simple generalization of the arguments in [12] shows that the canonical basis is
quasi-greedy and democratic in Xp. We claim that, in this example,

CN ≈ kN ≈ (logN)1/p′ . (6.6)

Clearly, for x =
∑∞

n=1 en ∈ Xp∥∥SAx∥∥`p ≤ ‖x‖`p ≤ |||x|||.
Also, if for simplicity we write ‖x‖bp := supm≥1

∣∣∑m
n=1

xn
n1/p′

∣∣, using Hölder’s inequality
we have ∥∥SAx∥∥bp = sup

m≥1

∣∣∣ m∑
n=1
n∈A

xn
n1/p′

∣∣∣
≤ ‖x‖`p sup

m≥1

( m∑
n=1
n∈A

1

n

)1/p′

. |||x|||
(

log |A|
)1/p′

.

These two inequalities give the upper bound in (6.6).

On the other hand, testing with x =
∑2N

n=1
(−1)nen
n1/p and A = {1, . . . , 2N} ∩ 2Z one

easily sees that

|||x||| ≈ (logN)1/p and |||SA(x)||| ≈ logN.

This gives kN & (logN)1/p′ , establishing (6.6).

Example 4. Above, we considered examples of quasi-greedy bases. We provide an
example of a non quasi-greedy basis where

kn, Cn, Dn & n, n = 1, 2, . . . .

Consider the sequence space `1 with the difference basis

x1 = e1, xn = en − en−1, n = 2, 3, . . .
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Clearly, for finitely supported scalars (bn), one has

‖
∑
n

bnxn‖ = |b1|+
∞∑
n=1

|bn+1 − bn|.

In particular, this basis is normalized with ‖xn‖ = 2.

Let y =
∑2N

n=1 xn, so that ‖y‖ = 1. Taking A = {2, 4, · · · , 2N} we obtain

‖SA(y)‖ = ‖
N∑
n=1

x2n‖ = 2N .

Thus kN ≥ ‖SA(y)‖/‖y‖ ≥ 2N. By Proposition 3.3 and Theorem 1.2, we then conclude
that CN & kN ≈ DN & N .

Example 5. The last example consists of a general procedure showing that kN
and µ(N) may essentially be arbitrary.

Let X and Y be Banach spaces with respective (normalized) bases {ej} and {fj}.
We consider the direct sum space X ⊕ Y, consisting on pairs (x, y) ∈ X × Y with
norm given by ‖x‖X +‖y‖Y. Clearly, the system3 {e1, f1, e2, f2, . . .} is a basis of X⊕Y.
Moreover, we the have the following.

Proposition 6.1. If {ej}∞j=1 is quasi-greedy in X and {fj}∞j=1 quasi-greedy in Y, then
{ej, fj}∞j=1 is quasi-greedy in X⊕ Y. Moreover,

(a) kX⊕YN = max{kXN , kYN}
(b) hX⊕Yr (N) ≈ max{hXr (N), hYr (N)}
(c) min{hX` (N/2), hY` (N/2)} . hX⊕Y` (N) ≤ min{hX` (N), hY` (N)}.

Proof. The proof is elementary. Quasi-greediness follows from

‖GN(x+ y)‖X⊕Y ≤ max
0≤k≤N

(‖Gk(x)‖X + ‖GN−k(y)‖Y) . ‖x‖X + ‖y‖Y.

The statement (a) is an easy consequence of the identity

kX⊕YN = sup
|A1|+|A2|≤N

sup
x∈X,y∈Y

‖x‖X+‖y‖Y 6=0

‖SA1x‖X + ‖SA2y‖Y
‖x‖X + ‖y‖Y

.

Similarly, (b) follows from

hX⊕Yr (N) = sup
|A1|+|A2|=N

(‖
∑
i∈A1

ei‖X + ‖
∑
j∈A2

fj‖Y).

For (c) one uses

hX⊕Y` (N) = inf
|A1|+|A2|=N

(‖
∑
i∈A1

ei‖X + ‖
∑
j∈A2

fj‖Y) ≤ min{hX` (N), hY` (N)}.

For the lower bound notice that

hX⊕Y` (N) ≥ min
1≤k≤N

{hX` (k) + hY` (N − k)} & min{hX` (N/2), hY` (N/2)},

where in the last step one splits the cases k ≤ N/2 and k > N/2, and uses that hX`
and hY` are almost increasing (by quasi-greediness; see (10.1)). �

3As usual, in X⊕ Y one just writes x in place of (x, 0), and y in place of (0, y).
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As a particular case, consider X as in Example 1, so that

kXN ≈ logN and hX` (N) ≈ hXr (N) ≈ N. (6.7)

Consider also the space Y given by the closure of c00 with the norm

‖(yj)‖Y = sup
A

∑
j∈A

|yj|/(1 + log |A|)α <∞, (6.8)

where α > 0 is fixed. One easily checks that

kYN = 1 and hY` (N) = hYr (N) =
N

(1 + logN)α
.

Combining (6.7), (6.8) and Proposition 6.1 we see that X⊕ Y has

kX⊕YN ≈ logN and µX⊕Y(N) ≈ (logN)α. (6.9)

To show possible applications of our results, construct a quasi-greedy basis with
kN ≈ µ(N) ≈ logN . Theorem 1.1 shows that CN . logN . This is an improvement
over previously known estimates: both [21, Theorem 2.1] and [10, Thm 1.1] only yield
CN . (logN)2.

7. Limitations

One could use Theorem 5.1 to show that a given basis is not quasi-greedy, by
establishing that its kN constants grow faster than c logN for any c > 0. We also
know that kN = O(1) characterizes unconditional bases. It is then fair to ask whether
the slow growth kN ≤ c logN could characterize quasi-greedy bases. Below we show
that it is not the case.

Proposition 7.1. Suppose a sequence 1 ≤ c1 ≤ c2 ≤ . . . increases without a bound
(perhaps very slowly). Then there exists a Banach space X with a normalized basis
(ei) such that k2N ≤ cN , and (ei) is not quasi-greedy.

Proof. Without loss of generality, we may assume cn ≤ n. Furthermore, passing to
the sequence

c′j = min
{
cj,min

i<j
cij/i

}
if necessary, we may assume that the sequence (cj/j) is non-increasing.

For j ∈ N, let Sj = {5j + 1, 5j + 2, . . . , 5j + 2j}. Define a norm on c00 by setting,
for x = (xi),

‖x‖ = max
{

sup
i
|xi|, sup

n
sup
j

cj
2j

∣∣∑
i∈Sj
i≤n

(−1)ixi
∣∣},

and let X be the completion of c00 in this norm. Denote the canonical basis in X by
(ei), which is clearly a monotone basis.

Note that (ei) is not unconditional with constant coefficients, hence not quasi-
greedy. Indeed, for j ∈ N, let S ′j = {5j + 1, 5j + 3, . . . , 5j + 2j − 1}. Then∥∥∑

i∈Sj

ei
∥∥ = 1, while

∥∥∑
i∈S′j

ei
∥∥ =

cj
2
.
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It remains to show that ‖SBx‖ ≤ cN whenever |B| ≤ 2N , and ‖x‖ ≤ 1. Write
x =

∑
i xiei, with supi |xi| ≤ 1. Let Aj = Sj ∩B. Then ‖SBx‖ ≤ max{1, C}, where

C = sup
n

sup
j

cj
2j

∣∣∑
i∈Aj
i≤n

(−1)ixi
∣∣ (7.1)

= sup
n

max
{

max
j≤N

cj
2j

∣∣∑
i∈Aj
i≤n

(−1)ixi
∣∣, sup

j>N

cj
2j

∣∣∑
i∈Aj
i≤n

(−1)ixi
∣∣} (7.2)

≤ max
{

max
j≤N

cj, sup
j>N

Ncj
j

}
= cN . (7.3)

�

8. Proof of Theorem 1.3

We must show that∥∥x−GN+k(x)
∥∥ ≤ c

(
1 +

hr(N)

hl(k)

)
σN(x), ∀ x ∈ X. (8.1)

Observe that this quantifies how many iterations of the greedy algorithm may be
necessary to reach σN(x). As mentioned in §1 estimates of this sort were obtained
in [13, 6, 23, 11], with its roots going back to the work of Konyagin and Temlyakov
[12]. Our proof is a suitable combination of these ideas, plus the argument we used
in Theorem 1.1 to control the term ‖SΓ\A(x)‖.

More precisely, take any p ∈ ΣN , say with supp p ⊂ P and |P | = N . We shall
compare GN+k(x) with p+Gk(x− p) ∈ ΣN+k. Let Γ = suppGN+k(x) and notice that
B = suppGk(x− p) can be chosen4 such that B \ P ⊂ Γ.

Then∥∥x−GN+k(x)
∥∥ = ‖x− SΓx‖
≤ ‖x− SP∪B(x)‖+ ‖SP∪B(x)− SΓx‖
≤ ‖x− SP∪B(x)‖+ ‖S(P∪B)\Γ(x)‖+ ‖SΓ\(P∪B)(x)‖ = I1 + I2 + I3.

The third term can be written as

I3 = ‖G|Γ\(P∪B)|(x− SP∪Bx)‖ ≤ K ‖x− SP∪B(x)‖,
so it suffices to estimate the first two terms.

We begin with I2. Since B \ P ⊂ Γ, we have (P ∪ B) \ Γ = P \ Γ. Use (2.2) and
the definition of hr to obtain

I2 = ‖SP\Γ(x)‖ ≤ c2 max
P\Γ
|ak(x)| ‖

∑
P\Γ

ek‖ ≤ c2 max
P\Γ
|ak(x)|hr(|P \ Γ|).

Now using Lemma 2.1

max
P\Γ
|ak(x)| ≤ min

Γ\P
|ak(x)| = min

Γ\P

∣∣ak(SΓ\P (x− p)
)∣∣

≤ a∗|Γ\P |(x− p) = min
Γ\P
|ak(x− p)| .

4Different choices may appear in case of ties in the size of coefficients.
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Thus, by (2.2) again

min
Γ\P
|ak(x− p)| ≤

1

c1

‖SΓ\P (x− p)‖
‖
∑

Γ\P ek‖
=

1

c1

‖G|Γ\P |(x− p)‖
‖
∑

Γ\P ek‖
≤ K

c1

‖x− p‖
hl(|Γ \ P |)

.

Combining these inequalities we obtain

I2 ≤
c2

c1

K
hr(|P \ Γ|)
hl(|Γ \ P |)

‖x− p‖.

Observe that since the basis is quasi-greedy, if A ⊂ B we have ‖1A‖ ≤ K‖1B‖ .
Hence, hr(|P \ Γ‖) ≤ Khr(N) since |P \ Γ| ≤ N . Similarly, hl(|Γ \ P |) ≥ 1

K
hl(k)

since k ≤ |Γ \ P | . Thus,

I2 ≤
c2

c1

K3 hr(N)

hl(k)
‖x− p‖ .

We now estimate I1, following the approach in [6]; namely,

I1 = ‖x− SP∪B(x)‖ = ‖x− p − SP∪B(x− p)‖
≤ ‖x− p − SB(x− p)‖+ ‖SP\B(x− p)‖ = J1 + J2.

Clearly
J1 = ‖x− p − Gk(x− p)‖ ≤ (1 +K) ‖x− p‖.

To estimate J2 use (2.2) and the quasi-greediness of the basis to obtain

J2 ≤ c2 max
P\B

∣∣aj(x− p)∣∣hr(|P \B|) ≤ c2 min
B

∣∣aj(x− p)∣∣hr(|P \B|)
≤ c2

c1

hr(|P \B|)
hl(|B|)

∥∥G|B|(x− p)∥∥ ≤ c2

c1

K
hr(|P \B|)

hl(k)
‖x− p‖.

As before, hr(|P \B|) ≤ K hr(N), so we deduce

J2 ≤
c2

c1

K2 hr(N)

hl(k)
‖x− p‖.

Thus, putting together all cases we obtain∥∥x−GN+k(x)
∥∥ ≤ c

(
1 +

hr(N)

hl(k)

)
‖x− p‖, ∀ p ∈ ΣN ,

with the constant c of the order K3c2/c1 = O(K6).

Remarks:

• As pointed out in [11], (8.1) improves over (1.3) in some situations. For in-
stance, assume hl(N) = Nα and hr(N) = Nβ with 0 < α < β ≤ 1. If x is such
that σN(x) = O(N−r) then (1.3) gives∥∥x−GM(x)

∥∥ . Mβ−α σM(x) . M−[r−(β−α)]

while (8.1) gives, when M = k +N with k ≈M ≈ Nβ/α,∥∥x−GM(x)
∥∥ . σcMα/β(x) . M−rα/β.

When r < β, the second estimate improves over the first (for large M). In the
language of approximation spaces (see e.g. [9]), these estimates can also be
read as

Ar∞(X) ↪→ G
max{ rα

β
, r−(β−α)}

∞ (X).
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• The estimate (8.1) is only interesting when limk→∞ hl(k) = ∞ (so that hl(k)
can reach hr(N)), and cannot be improved when hl is just bounded and
hr(N) → ∞. To see the latter, arguing as in Lemma 3.2 one can find dis-
joint sets A,B with |A| = N + k, |B| = N and ‖1B‖/‖1A‖ & hr(N). Setting
x = 21A+1B one sees that ‖x−GN+k(x)‖/σN(x) ≥ ‖1B‖/‖1A‖ & hr(N)→∞.

9. Some questions

Quasi-greedy bases in Lp(Td) were studied in [20, 21]. In these cases one always has

µ(N) . N |
1
p
− 1

2
|, from the type and cotype properties of Lp(Td), 1 < p < ∞. Hence,

using Theorem 1.1 (and (1.4)) one obtains that CN . N |
1
p
− 1

2
| , when p 6= 2, a result

which was proved in [21]. When p = 2, this argument only gives CN . logN , a result
which goes back to [22].

Question 1. (Asked in [20, 5]). Investigate whether, for quasi-greedy bases in a
Hilbert space, the inequality CN . logN can be replaced by a slower growing factor.

Recently, P. Wojtaszczyk [25] has showed us that, for quasi-greedy bases in L2, say
with constant K, there exists α = α(K) < 1, such that CN . (logN)α . Also, it can
be deduced from the results in [5] that CN . (logN)1/2 for all quasi-greedy besselian5

bases in L2. However, no examples where these bounds are attained seem to be known.

Consider now the trigonometric system T d = {eikx : k ∈ Zd} in Lp(Td), 1≤ p≤∞
(understood as C(Td) for p = ∞). Notice that T d is not quasi-greedy in Lp, p 6= 2.
It was proved in [17, Theorem 2.1] that one also has

CN = CN(T d, Lp(Td)) . N |
1
p
− 1

2
| , 1 ≤ p ≤ ∞ .

Question 2. (Asked by V. N. Temlyakov at the Concentration week on greedy
algorithms in Banach spaces and compressed sensing held on July 18-22, 2011 at
Texas A&M University.)

a) Characterize those systems B in Lp(Td), 1 ≤ p ≤ ∞ , such that

CN(B, Lp(Td)) . N |
1
p
− 1

2
| , N = 1, 2, . . .

Notice that if 1 < p 6= 2 <∞ , the characterization must be satisfied by T d as well as
any quasi-greedy basis.

More generally, let v(N) be an increasing function of N .
b) Characterize, in a Banach space X, those systems B (not necessarily quasi-greedy)

for which CN(B,X) . v(N) .

10. Appendix: proof of (2.2)

The proof suggested in [6] for the inequalities in (2.2) is only valid for real scalars
ak ∈ R; we give below a minor modification of their argument that establishes (2.2)
also for complex scalars ak. Below K denotes the quasi-greedy constant in X.

The first two lemmas are similar to [22, Prop 2].

5Here besselian means ‖(ak)‖`2 . ‖
∑

k akek‖2, for all finitely scalars (ak).
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Lemma 10.1. Let {ej}∞j=1 is a quasi-greedy basis in a Banach space X. For all βj ∈ C
with |βj| = 1, and all finite sets A1 ⊂ A, it holds∥∥∑

j∈A1

βjej
∥∥ ≤ K

∥∥∑
j∈A

βjej
∥∥. (10.1)

Proof. Call A2 = A \A1. For ε > 0, define x =
∑

j∈A1
(1 + ε)βjej +

∑
j∈A2

βjej. Then

‖G|A1|(x)‖ = (1 + ε)
∥∥∑
j∈A1

βjej
∥∥ ≤ K‖x‖ =

∥∥(1 + ε)
∑
j∈A1

βjej +
∑
j∈A2

βjej
∥∥.

Letting ε→ 0 we obtain (10.1). �

Lemma 10.2. Let {ej}∞j=1 is a quasi-greedy basis in a Banach space X. For all
εj ∈ {±1,±i}, and all finite sets A it holds

1
4K

∥∥∑
j∈A

ej
∥∥ ≤ ∥∥∑

j∈A

εjej
∥∥ ≤ 4K

∥∥∑
j∈A

ej
∥∥. (10.2)

Proof. Call Ak = {j ∈ A : εj = ik}, k = 1, . . . , 4. Then, the triangle inequality and
(10.1) (with all βj = 1) give∥∥∑

j∈A

εjej
∥∥ ≤ 4∑

k=1

∥∥∑
j∈Ak

ej
∥∥ ≤ 4K

∥∥∑
j∈A

ej
∥∥,

establishing the right hand side of (10.2). Arguing similarly,∥∥∑
j∈A

ej
∥∥ ≤ 4∑

k=1

∥∥∑
j∈Ak

ej
∥∥ ≤ 4K

∥∥∑
j∈A

εjej
∥∥

where we have now used (10.1) with βj = εj. �

Lemma 10.3. For all complex β = a + ib with |a| + |b| ≤ 1, and for all x, y ∈ X it
holds ∥∥x+ βy

∥∥ ≤ max
{
‖x± y‖, ‖x± iy‖

}
. (10.3)

Proof. We may assume that a ∈ [0, 1). Then

‖x+ βy‖ ≤ ‖ax+ ay‖+ ‖(1− a)x+ iby‖
= a‖x+ y‖+ (1− a)‖x+ iγy‖, (10.4)

where we have set γ = b/(1− a), which is a real number with |γ| ≤ 1. Now

‖x+ iγy‖ =
∥∥1−γ

2
(x− iy) + 1+γ

2
(x+ iy)

∥∥
≤ 1−γ

2

∥∥x− iy∥∥ + 1+γ
2

∥∥x+ iy
∥∥ ≤ max

∥∥x± iy∥∥,
where we have used that −1 ≤ γ ≤ 1. Inserting this into (10.4) easily leads to
(10.3). �

We now justify the right hand bound in (2.2). For a complex number α = a + ib
we shall denote |α|1 = |a|+ |b|. Then, iterating the previous lemma we obtain∥∥∑

j∈A

αjej
∥∥ ≤ max

j∈A
|αj|1 max

εj∈{±1,±i}

∥∥∑
j∈A

εjej
∥∥

≤ 4
√

2K max
j∈A
|αj|

∥∥∑
j∈A

ej
∥∥, (10.5)
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where in the last step we have used Lemma 10.2 and the trivial estimate |α|1 ≤
√

2|α|.
We can now state a slightly more general version of Lemma 10.2.

Lemma 10.4. Let {ej}∞j=1 is a quasi-greedy basis in a Banach space X. For all εj ∈ C
with |εj| = 1, and all finite sets A it holds

1
4
√

2K

∥∥∑
j∈A

ej
∥∥ ≤ ∥∥∑

j∈A

εjej
∥∥ ≤ 4

√
2K

∥∥∑
j∈A

ej
∥∥. (10.6)

Proof. The right hand side is a special case of (10.5). To obtain the left hand side,
we consider the system {ẽj := εjej}, which is also a quasi-greedy basis in X with the
same constant K. Thus, (10.5) for this system (with αj = ε̄j) gives∥∥∑

j∈A

ε̄j ẽj
∥∥ ≤ 4

√
2K

∥∥∑
j∈A

ẽj
∥∥,

but this is the same as the left hand side of (10.6). �

We turn now to the left hand inequality in (2.2), for which we follow the arguments
in [6, p. 579]. We shall prove that, if A is finite then∥∥∑

j∈A

αjej
∥∥ ≥ 1

8
√

2K2 min
j∈A
|αj|

∥∥∑
j∈A

ej
∥∥. (10.7)

Write each scalar αj = εj|αj|, with εj ∈ C such that |εj| = 1, and consider a permu-
tation {j1, . . . , jN} of A such that |αj1| ≥ |αj2| ≥ . . . ≥ |αjN |. Let x =

∑
j∈A αjej and

set G0(x) = 0. Then

|αjN |
∥∥ N∑
`=1

εj`ej`
∥∥ = |αjN |

∥∥∥ N∑
`=1

1
|αj` |

(
G`(x)−G`−1(x)

)∥∥∥ (10.8)

= |αjN |
∥∥∥N−1∑
`=1

(
1
|αj` |
− 1
|αj`+1

|

)
G`(x) + 1

|αjN |
GN(x)

∥∥∥
≤ |αjN |

[
1
|αjN |

+
N−1∑
`=1

(
1

|αj`+1
| −

1
|αj` |

)]
K
∥∥x∥∥ ≤ 2K

∥∥x∥∥.
On the other hand, by Lemma 10.4, the expression on the left of (10.8) can be esti-
mated from below by |αjN | ‖

∑
j∈A ej‖/4

√
2K, from which (10.7) follows.

Thus, putting together (10.5) and (10.7) we have shown

Proposition 10.5. Let {ej}∞j=1 is a quasi-greedy basis in a Banach space X. If A is
finite and αj ∈ C then

1
8
√

2K2 min
j∈A
|αj|

∥∥∑
j∈A

ej
∥∥ ≤ ∥∥∑

j∈A

αjej
∥∥ ≤ 4

√
2K max

j∈A
|αj|

∥∥∑
j∈A

ej
∥∥.
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