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Lectin receptor-like kinases (LecRLKs), a plant-specific receptor-like kinase (RLK) sub-
family, have been recently found to play crucial roles in plant development and responses
to abiotic and biotic stresses. In this review, we first describe the classification and
structures of Lectin RLKs. Then we focus on the analysis of functions of LecRLKs
in various biological processes and discuss the status of LecRLKs from the ligands
they recognize, substrate they target, signaling pathways they are involved in, to the
overall regulation of growth-defense tradeoffs. LecRLKs and the signaling components
they interact with constitute recognition and protection systems at the plant cell surface
contributing to the detection of environmental changes monitoring plant fitness.

Keywords: lectin, lectin receptor-like kinase, receptor-like kinase, plant defense, abiotic stress, biotic stress,
plant development

INTRODUCTION

Plants encounter various biotic and abiotic stresses during its growth and development. When
plants are under biotic stress from bacteria, fungi, viruses, and herbivory insects, signatures on the
surface of microbes, called pathogen-associated molecular patterns (PAMP), such as flagellin and
elongation factor (EF-Tu), could be explicitly perceived by sets of receptors located at the plant cell
surface, called pattern recognition receptors (PRRs) (Abdul Malik et al., 2020). The PAMP-signal
perception of PRRs then initiates the first layer of plant innate immunity, called PAMP triggered
immunity (PTI). PTI usually includes callose deposition, MAPK activation, calcium influx, reactive
oxygen species (ROS) production, and salicylic acid accumulation (Jones and Dangl, 2006). A large
number of receptor-like kinases (RLKs) and receptor-like proteins (RLPs) are deployed by plants
as PRRs and often function as part of a multiprotein complex at the cell surface during PTI (He
and Wu, 2016). One of the most well-studied plant PRRs is FLAGELLIN-SENSITIVE 2 (FLS2), an
Arabidopsis RLK which recognizes the conserved 22 amino acids of bacterial flagellin (flg22) and
forms a complex with its co-receptor BRASSINOSTEROID INSENSITIVE 1-associated receptor
kinase 1 (BAK1) immediately after the perception to initiate PTI response (Macho and Zipfel, 2014).
Generally, a plant RLK contains an extracellular domain for ligand perception, a transmembrane
domain and an intracellular kinase domain, whereas an RLP lacks the cytoplasmic kinase domain
and often functions together with RLKs (Ramonell et al., 2005; Wan et al., 2008). The extracellular
domains of RLKs are highly variable, rendering their capabilities to perceive a great variety of
signals. In addition to the recognition of PAMP signals, studies have shown that RLKs are involved
in responses against abiotic stresses, plant-microbe symbiosis and the regulation of plant growth
and development (Vaid et al., 2013; Sun et al., 2017; Tang et al., 2017). Depending on the structure
of ectodomains, RLKs are divided into 17 classes (Wang J. et al., 2019). The Lectin RLK (LecRLK)

Frontiers in Plant Science | www.frontiersin.org 1 December 2020 | Volume 11 | Article 596301

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.596301
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2020.596301
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.596301&domain=pdf&date_stamp=2020-12-10
https://www.frontiersin.org/articles/10.3389/fpls.2020.596301/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-596301 December 4, 2020 Time: 18:52 # 2

Sun et al. Plant LecRLKs

class was named for its lectin/lectin-like ectodomain which can
bind carbohydrates. While there is no homolog of LecRLKs found
in the genomes of humans and fungi, LecRLKs are specifically
widespread in plants (Vaid et al., 2013). There are 75 LecRLKs
in Arabidopsis, 173 in rice, 231 in Populus, 198 in Eucalyptus,
189 in soybean, 38 LecRKs in N. benthamiana, 113 in potato, 46
in cucumber and 22 in tomato (Vaid et al., 2012; Wang et al.,
2015; Yang et al., 2016; Liu et al., 2018; Lv et al., 2020; Zhang
et al., 2020). Although the leucine-rich-repeat (LRR) RLK family
is the largest and the most studied RLKs, recently LecRLKs have
been emerging to be another key player of the RLK families,
especially in plant innate immunity (Sun et al., 2017). Arabidopsis
and rice are currently the two plant models where LecRLKs are
well characterized. Although LecRLKs have been reported to be
expressed in various plant tissues, including seed, root, stem, leaf
and bud tissues, the specific function of many LecLRKs is still not
well understood (De Hoff et al., 2009; Ezura et al., 2017). In this
review, we analyze recent findings on the structure and function
of LecRLKs and propose prospects of LecRLKs related research.

LECTIN RLKs CLASSIFICATION AND
STRUCTURES

In general, LecRLKs have three domains: an extracellular lectin
domain, a transmembrane domain and a kinase domain. Based
on the distinct extracellular lectin domain, they are classified into
three types: L-type, G-type, and C-type (Figure 1A). There are 42
L-type, 32 G-type and 1 C-type LecRLKs in Arabidopsis, and 72
L-type, 100 G-type, and 1 C-type LecRLKs in rice, and 50 L-type,
180 G-type, and 1 C-type LecRLKs in Populus (Vaid et al., 2012;
Yang et al., 2016).

Lectin Domain
The first identified LecRLK is an L-type LecRLK in Arabidopsis
(Herve et al., 1996). A typical L-type LecRLK contains a legume-
like extracellular lectin domain (Wang and Bouwmeester, 2017).
Although they share the typical β-sandwich fold structure,
legume lectin proteins are soluble and present monosaccharide
(glucose/fucose/mannose) binding specificity whereas L-type
LecRLKs are plasma membrane-located and have a conserved
hydrophobic cavity for binding to hydrophobic ligands, such as
complex glycans, plant hormones and PAMPs (Bellande et al.,
2017). In addition, legume lectin proteins are typically located
in storage vacuoles, cytoplasm, the nucleus, and extracellular
space, and are abundantly expressed in legume seeds (Van
Damme et al., 2004). L-type LecRLKs contain the extended 17-aa
residues formed loop at the C-terminal end of the lectin domain
(Vaid et al., 2013). Moreover, during plant-microbe interactions,
legume lectins can either bind to the carbohydrate moieties on
the microbial cell wall or cell membrane and inhibit their growth
at a distance away from the plant or favor the attachment of the
bacteria to root epidermal cells during symbiosis (De Hoff et al.,
2009). However, L-type LecRLKs can recognize extracellular
signals and initiate complex signaling responses in the plant.

G-type LecRLKs contain an α-mannose binding bulb lectin
domain, an S-locus glycoprotein domain (SLG), a Plasminogen/

FIGURE 1 | Classification and structure of LecRLKs. (A) There are three
different types of LecRLKs based on the distinct extracellular domain: L-type
LecRLKs with a legume like lectin domain, G-type LecRLKs with an
α-mannose binding bulb lectin domain, an S-locus glycoprotein domain
(SLG), a PAN and/or Epidermal Growth Factor (EGF) domain, and C-type
LecRLKs with a calcium-dependent lectin domain. (B) Other predicted
structures of LecRLKs. Some LecRLKs are predicted to have no
transmembrane domain or kinase domain or have multiple transmembrane
domains and different orientations.

Apple/Nematode (PAN) domain and/or Epidermal Growth
Factor (EGF) domain between the extracellular lectin domain
and the transmembrane region (Tang et al., 2017). Compared
to the structure of L-type LecRLKs, the G-type LecRLK
lectin domain contains a β-barrel structure with 12 β-strands
and shows potential binding affinity to α-D mannose, the
detailed function of which is still not known (Vaid et al.,
2013). S-locus domain is well-studied for its function in self-
incompatibility (Kachroo et al., 2001). The PAN motif has been
shown to participate in protein-protein interaction and protein-
carbohydrate interaction, while the EGF domain has potential to
be involved in disulfide bonds formation (Naithani et al., 2007).

C-type LecRLKs are the smallest group in plant LecRLKs with
only one member found in rice, Arabidopsis, Populus, Eucalyptus
and Hydra vulgaris, the function of which is still waiting to be
elucidated. However, its calcium-dependent lectin domain has
been found in mammalian proteins involved in innate immune
response and self-/non-self-recognition (Reidling et al., 2000;
Sanabria et al., 2010).
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Transmembrane Domain
Generally, LecRLKs have distinct lectin domains and contain
more conserved transmembrane and cytoplasmic kinase
domains. However, not all lectin kinases contain transmembrane
domains. A genome-wide analysis of LecRLKs in Populus further
divided PtLecRLKs into 8 classes, according to the prediction on
transmembrane domains (TM) and the orientation of the other
domains (Yang et al., 2016). For example, the first three classes
all contain one TM domain, classes IV, V and VI all contain two
TM domains, whereas classes VII and VIII contain three TM
domains (Figure 1B). Although experimental studies need to be
done to test the actual structure and orientation of LecRLKs, this
study opened a new perspective of the structure and function
of LecRLKs. The potential intracellular location of the lectin
domain and extracellular location of the kinase domain prospect
that LecRLKs might sense signals within the plant cell and trigger
downstream signaling transduction in the apoplast, which may
link to plant-environment interaction or the communication
between plant cells. In addition, the TM domains of LecRLKs
may also be involved in ligand recognition, which has been
reported in other RLKs (Chen et al., 2006; Bi et al., 2016;
Hohmann et al., 2017). Taken together, transmembrane domains
of LecRLKs are not only required for the plasma membrane
localization of LecRLKs, but may also be essential for the ligand
recognition and signal transduction.

Kinase Domain
Lectin receptor-like kinases were initially predicted to be Ser/Thr
kinases because of the presence of DIKPAN and GT(FIL)GYIAPE
within their kinase domain, and several studies have confirmed
the Ser/Thr kinase activity of several LecRLKs (Herve et al., 1999).
However, due to the findings that many other classes of RLKs
show dual activities of both Ser/Thr kinase and Tyrosine kinase,
there is still a possibility that some LecRLKs contain dual kinase
activities (Taylor et al., 2016). Enzyme kinetic analysis showed
that several divalent metal cations such as Mn2+ and Mg2+

could promote the autophosphorylation activity of LecRLKs and
their general kinase activity (Nishiguchi et al., 2002; He et al.,
2004). It points out that the kinase activity of LecRLKs might
be related to the plant physiological homeostasis (He et al.,
2004). Furthermore, the C-terminal tail of the kinase domain,
containing a conserved xGxxx(V/I/L)P start and a GR doublet
end, has been reported to be crucial for its catalytic activity and
the interaction with downstream signaling molecules (Weiner
and Zagzag, 2000). Collectively, kinase domain is crucial for the
signal transduction of LecRLKs-mediated pathways. However,
more enzymatic and biochemical analyses are required to clarify
the activity of the kinase domain.

LecRLKs IN PLANT-MICROBE
PATHOGENIC INTERACTION

The characteristic lectin domain and kinase domain of LecRLKs
provide a broad perspective on the cellular functions of LecRLKs
(Bellande et al., 2017). The highly variable lectin domain
implicates a wide range of ligands that LecRLKs may recognize.

In addition, the phosphorylation activity of the kinase domain
as the most common post-translational modification mechanism,
projects a high number of downstream signaling LecRLKs can
possibly transduce (Yin et al., 2019). As many other RLKs have
been well characterized for their role in PAMP recognition and
plant defense, increasing evidence support that LecRLKs are
important players in the plant-microbe interactions (Figure 2).

The structural similarity to legume lectin proteins has implied
the involvement of L-type LecRLKs in recognizing microbial
surface signals. Several L-type LecRLKs have been reported
to be activated by PAMP signal perception and trigger PTI
and other plant responses against biotrophic pathogens. For

FIGURE 2 | Functions of LecRLKs in plant stress responses. Environmental
factors from abiotic and biotic stresses could be perceived by LecRLKs
located at the plasma membrane, which can transduce the signal and trigger
plant defense and stress responses. LecRK-IX.2 might serve as the
downstream of FLS2. After it is activated, LecRK-IX.2 can phosphorylate
RBOHD which then phosphorylates MAPK3/MAPK6 triggering defense genes
expression. LecRK-I.9 could recognize external ATP (eATP) which then
activates its autophosphorylation and kinase activity, causing the
phosphorylation of RBOHD and MAPK3/MAPK6. The tripeptide Arg-Gly-Asp
(RGD) ligand of IPI-O, a Phytophthora infestans effector, could be recognized
by LecRK-I.9, which then disrupts its function in cell wall-plasma membrane
adhesions and plant defense. SIT1 and LecRK-VI.2 can also activate
MAPK3/MAPK6, while SIT1 is activated under salt stress, LecRK-VI.2 is
involved in plant defense against several bacterial pathogens. After being
activated by lipopolysaccharides (LPS), LORE undergoes autophosphorylation
and phosphorylates cytoplasmic receptor kinases PBL34/PBL35/PBL36.
Pseudomonas syringae effector HopAO1 could target LORE1 and suppress
LORE1 triggered immune response. LecRK-I.8 perceives external NAD+

signal, triggers ROS burst and SA accumulation and induces defense genes’
expression. NaLecRK1 suppresses SA production and contributes to
JA-mediated defense.
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example, an L-type LecRLK in Arabidopsis, LecRK-IX.2, serves
as a positive regulator of PAMPs triggered immunity (Luo
et al., 2017). First, pathogen infection of Pseudomonas syringae
DC3000 activates the transcription of LecRK-IX.2 in an FLS2-
dependent pattern. Second, the overexpression plants of LecRK-
IX.2 exhibited a resistant phenotype to P. syringae DC3000
and enhanced ROS production and SA accumulation probably
through the phosphorylation and activation of RbohD, a key
player in PTI response. Finally, LecRK-IX.2 is required for the
activation of flg22-induced PTI, indicating that LecRK-IX.2 likely
acts downstream of FLS2 and upstream of SA accumulation.
Whether LecRK-IX.2 directly interacts with FLS2 or its co-
receptors such as BAK1/BIK1 and then gets phosphorylated by
BAK1 or BIK1 still require further investigation.

Similar to LecRK-IX.2, LecRK-I.9, another L-type LecRLK
in Arabidopsis known as DOES NOT RESPOND TO
NUCLEOTIDES 1 (DORN1), also confers plant resistance
to P. syringae DC3000, however, via downregulating MYC2-
mediated JA pathway (Wang et al., 2016). The recent
identification that DORN1 recognizes extracellular ATP
(eATP) signals and directly phosphorylates RBOHD, triggering
Ca2+ influx, MAPK activation, the accumulation of ROS, and
defense gene expression has provided a thorough explanation
of the function of DORN1 in plant defense (Choi et al., 2014;
Chen et al., 2017; Wang L. et al., 2018). Additionally, LecRK-I.5,
which shares 74% amino acid similarity to DORN1 but shows
higher eATP binding affinity, has been identified to interact with
DORN1 and synergically contribute to plant defense against
bacterial phytopathogen P. syringae (Pham et al., 2020). These
studies suggest that these L-type LecRLKs are involved in PTI,
SA and JA signaling pathways and contribute to plant defense
against biotrophic pathogens. Since PTI, SA and JA signaling
cascades are internally correlated, manipulation of one of them
might alter the other signaling responses. Because JA is well-
known as a critical regulator in plant-necrotrophic pathogen
interaction, it is not surprising to see that DORN1 participates
in the plant defense against Botrytis cinerea, a necrotrophic
pathogen (Tripathi et al., 2018).

Another example is LecRK-VI.2, an L-type LecRLK, which
serves as a positive regulator of PTI and promotes plant defense
against both biotrophic pathogen and necrotrophic pathogen
such as Pectobacterium carotovorum and Botrytis cinerea. LecRK-
VI.2 forms a complex with FLS2, specifically activates MAPK
signaling cascade, induces the transcription of several PTI
markers such as WRKY53 and FRK1, and controls stomata
closure during PTI (Singh et al., 2012; Wang L. et al., 2018).
However, unlike LecRK-IX.2 or DORN1, LecRK-VI.2 shows no
effects on early PAMP responses including ROS production,
FLS2/BAK1 interaction or BIK phosphorylation in Arabidopsis,
implying that LecRK-VI.2 works downstream of FLS2 and
upstream of MAPK signaling (Singh et al., 2012, 2013). Ectopic
expression of LecRK-VI.2 in N. benthamiana confers resistance to
both biotrophic and necrotrophic pathogens, but not fungi, and
shows broad PTI responses such as ROS accumulation and callose
deposition (Huang et al., 2014). These indicate that LecRK-
VI.2 confers general plant defense against bacteria. Similarly,
LecRK-V.2 and LecRK-VII.1 in Arabidopsis are involved in the

JA-mediated stomatal immunity (Yekondi et al., 2018; Wang C.
et al., 2019). Aside from L-type LecRLKs, G-type LecRLKs
also participate in plant-microbe interactions. A G-type LecRLK
in rice, OslecRK, has been reported to confer plant defense
against BPH, blast disease and leaf blight disease (Cheng et al.,
2013). OslecRK mutants are more susceptible to the infections
of Nilaparvata lugens, Magnaporthe grisea, and Xanthomonas
oryzae pv. oryzae compared to wild type, and mRNA levels of
several defense-related genes such as PR1, LOX2, and CHS are
decreased in OslecRK mutants, suggesting that OslecRK could
activate multiple signaling responses in plant innate immunity.
The finding that OslecRK directly interacts with an actin-
depolymerizing factor (OsADF) via its kinase domain provided
insights into a mode of action in which OsADF relays the
signal from OslecRK and then triggers downstream signaling
responses. Taken together, LecRLKs may be involved in multiple
and complex signaling pathways of plant defense against both
biotrophic and necrotrophic pathogens.

After the early stage PAMP infection, pathogens could release
type III effectors into host cells, which can trigger either a much
higher amplitude of immunity (ETI) or susceptibility (ETS)
(Grant et al., 2006). While PTI and ETI share a lot in common,
whether LecRLKs also play a role in ETI is an interesting
topic for investigation. For example, under the infection of
Phytophthora infestans, silencing of NbLRK1 showed delayed
hypersensitive response (HR) which is a typical characteristic
of ETI (Kanzaki et al., 2008). In addition to the potential roles
in ETI, LecRLKs may act as the targets of virulence effectors in
ETS. Many virulence effectors have been shown to directly target
PTI components to inhibit immune responses or target essential
players in plant metabolism to trigger host susceptibility.
For example, HopB1 could cleave phosphorylated BIK1 to
impair PTI. Excitingly, a recent study reported the P. syringae
effector HopAO1 targets LORE, a G-type LecRLK. In the early
stage of P. syringae infection, the perception of the bacterial
lipopolysaccharide (LPS) triggers LORE auto-phosphorylation.
Then phosphorylated LORE phosphorylates receptor-like
cytoplasmic kinases PBL34/PBL35/PBL36 and activates immune
responses (Ranf et al., 2015). In the late stage of P. syringae
infection, HopAO1, is secreted into the host cells. HopAO1
could interact with and dephosphorylate LORE, which causes
reduced phosphorylation of PBL34/PBL35/PBL36, suppresses
LORE-PBL34/PBL35/PBL36 activated immune response, and
triggers host susceptibility (Shang-Guan et al., 2018; Kutschera
et al., 2019; Luo et al., 2020). Moreover, a Phytophthora infestans
effector IPI-O has been reported to target Arabidopsis DORN1
through the tripeptide Arg-Gly-Asp (RGD) and disrupt its
function in the maintenance of cell wall-plasma membrane
(CW-PM) adhesions and host defense (Bouwmeester et al.,
2011). These findings indicate that LecRLKs may participate in
ETI and could serve as potential targets of virulence effectors
conferring host susceptibility (ETS).

Along with their roles in the mediation of plant-bacterial
interaction, LecRLKs have been reported to be involved in
different plant-fungal interactions. Similar to bacteria, fungal
cell wall is the interface of plant-fungal interaction. It is
mainly comprised of chitin, α- and β- linked glucans and

Frontiers in Plant Science | www.frontiersin.org 4 December 2020 | Volume 11 | Article 596301

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-596301 December 4, 2020 Time: 18:52 # 5

Sun et al. Plant LecRLKs

glycoproteins, many of which have been found to be PAMPs
and could be recognized by host membrane-bound receptors
triggering host immune responses. For example, chitin could
be recognized by LYK5 and CERK1, a lysin motif receptor
kinase and a LysM receptor kinase in Arabidopsis. LYK5 and
CERK1 could form a heterodimer and induce plant immune
response through the activation of MAPK cascade (Cao et al.,
2014; Erwig et al., 2017). The characteristic carbohydrate-binding
lectin domains of LecRLKs are believed to play crucial roles
in carbohydrate signal perception and have much more critical
contributions in fungal cell wall recognition. For example, an
L-type LecRLK in Haynaldia villosa, LecRK-V, has been shown
to confer resistance to wheat powdery mildew through the
association with ROS production and SA pathway (Wang Z.
et al., 2018). The expression levels of SA signaling-related
genes (TaPR1 and TaPR2) and the expression levels of ROS
generating genes (TaNOX, TaCAT and TaGST) in the transgenic
LecRK-V plants are all induced after the infection of Bgt.
These findings suggest the involvement of SA signaling and
ROS pathway in LecRK-V mediated fungal pathogen resistance.
Second, chitin treatment and Bgt treatment could both induce
the transcriptional activation of LecRK-V. Furthermore, a G-type
LecRLK from rice, Pi-d2, has been reported to contribute to plant
defense against the fungal pathogen Magnaporthe grisea (Chen
et al., 2006; Li et al., 2015). A single amino acid substitution at
position 441 from Isoleucine (I) to Methionine (M) within its
transmembrane domain could differentiate the resistant Pi-d2
allele from the susceptible ones. Although this I441M amino acid
substitution does not change the plasma membrane localization
of Pi-d2, protein structural prediction assays have identified
significant structural differences between the resistant Pi-d2
allele (I441) and the susceptible allele (M441). The altered TM
structure may not be able to relay ligand recognition information
from extracellular space into intracellular kinase domain. These
findings indicate the important role of TMs in the action
of LecRLKs in plant-fungi interaction. A recent genome-wide
associated mapping on Populus trichocarpa-Sphaerulina musiva
system identified two LecRLKs associated with differential host
responses to this fungal pathogen (Muchero et al., 2018). The
first one is an L-type LecRLK which was highly expressed in
the resistant Populus genotypes and was specifically induced in
resistant Populus genotypes under S. musiva attack. The latter
one is a G-type LecRLK and is generally highly expressed in
susceptible Populus genotypes, and S. musiva infection could not
trigger significant transcriptional level changes of this G-type
LecRLK (Muchero et al., 2018). When the lectin domains of these
two LecRLKs were purified and incubated with cell wall fractions
of S. musiva, the G-type LecRLK showed higher binding affinity
to the cell wall fractions than the L-type LecRLK regardless
of KOH treatment. Furthermore, both the G-type and L-type
LecRLKs showed significantly higher cell wall binding affinities
after the S. musiva cell wall fractions were treated by KOH,
suggesting that the ligand recognition was dependent on the
alkaline extractable cell wall fractions. However, the difficulties
in bulk expression and purification of these glycosylated proteins
make it challenging to biochemically characterize the functions
of these LecRLKs, in particular ligand identification. In addition,

further phenotypic analyses are required to confirm and specify
their functions in plant resistance/susceptibility including the use
of overexpression and knockout plants of LecRLKs. Collectively,
these studies enlightened our understanding on the role of
LecRLKs in general plant-fungal interactions and indicated
the potential application of LecRLKs on host resistance to
pathogenic fungi.

Similar to the involvement in plant-microbe interactions,
it has been shown from several different plant species that
LecRLKs are involved in insect egg perception and the perception
of insect feeding. An L-type LecRLK in Arabidopsis, LecRK-
I.8, was found to be locally upregulated at the transcriptional
level upon the Pieris brassicae oviposition and egg extract (EE)
treatment, while in lecRK-I.8 mutant plant, EE treatment caused
significant reduction of ROS, SA production, PR1 expression
and cell death (Gouhier-Darimont et al., 2019). Interestingly,
LecRK-I.8 has been shown to bind to extracellular NAD+

(Wang et al., 2017). However, whether NAD+ reception by
LecRK-I.8 is the trigger of plant immune responses against
insect egg and what is the downstream target of LecRK-I.8 still
require further investigation. A G-type LecRLK in Nicotiana
attenuata, NaLecRK1, was also shown to be involved in the
perception of insect feeding. NaLecRK1 could be transcriptionally
induced under the attack of Manduca sexta, which promotes
the suppression of SA production and contributes to the
accumulation of JA-mediated defense response (Gilardoni et al.,
2011). Furthermore, the transcriptional level of NaLecRK1 is
downregulated by COI1, a key player in JA signaling. Collectively,
these studies indicate that LecRLKs participate in insect elicitors
perception and trigger cell signaling responses to different insect
attacks, and that the expression level of LecRLKs is under tight
control by extracellular and intracellular signals.

LecRLKs IN PLANT-MICROBE
SYMBIOSIS

In addition to various biotic challenges, plants could establish
beneficial relationships with different microbes. LecRLKs
have been reported to be involved in the plant-microbe
symbiotic relationship. A G-type LecRLK in Medicago
truncatula, MtLecRK1;1, has been found to be transcriptionally
downregulated upon the addition of Sinorhizobium meliloti
or Nod factors, while overexpression of MtLecRK1;1 in roots
show more nodules formed compared to control, suggesting
that MtLecRK1;1 is involved in the legume-rhizobia symbiosis
(Navarro-Gochicoa et al., 2003; Bouwmeester and Govers, 2009;
De Hoff et al., 2009). However, although MtLecRK1;1 has key
conserved residues involved in monosaccharide binding and
molecular modeling predicted its capability of binding with
Nod factors, there is no increase in Nod factor binding in roots
when MtLecRK1;1 is overexpressed without its kinase domain,
suggesting that the full protein might be required for its ligand
binding activity (Navarro-Gochicoa et al., 2003). As many other
RLKs and RLPs often function as a multi-protein complex
and legume lectins have also been reported to form dimers,
potential homodimerization of LecRLKs and heterodimerization
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of LecRLKs with other RLKs or co-receptors also deserve to
be considered during the functional analysis of LecRLKs. For
example, in Arabidopsis, LecRKIII.1 and LecRKIII.2 have been
reported to form homodimers through their C-terminal kinase
domains and then function in drought and salt stress responses.
Whether the kinase domain is required for its Nod factor binding
capability and whether MtLecRK1;1 can bind to Nod factors
require further protein-protein interaction studies to clarify.
Moreover, a G-type LecRLK in Populus, PtLecRLK1, has recently
been identified as a key player in the Populus-L. bicolor symbiosis
(Labbe et al., 2019). The transcriptomic study has shown
the transcriptional induction of PtLecRLK1 by L. bicolor and
overexpression of PtLecRLK1 in Arabidopsis, which is a non-host
for L. bicolor, could initiate the symbiosis between L. bicolor and
Arabidopsis (Labbe et al., 2019). Although further studies are
required to disclose the fungi signal perception and downstream
targets and signaling responses mediated by PtLecRLK1, these
findings demonstrated the key status of LecRLKs in host-fungi
compatibility and provided insights on the further application of
beneficial ectomycorrhizal fungi to crops.

LecRLKs IN PLANT ABIOTIC STRESS

Aside from biotic stresses, plants often encounter various abiotic
environmental challenges, such as salt, drought, heat and cold.
Salt stress reduces crop productivity in many ways, two main
effects of which are osmotic stress and ionic toxicity. Several
reports have presented the involvement of LecRLKs in plant
responses against salt stress (Figure 2). A G-type LecRLK in
Medicago sativa, GsSRK, could maintain Na+/K+ balance under
salt stress potentially through ROS scavenging and the regulation
of osmotic homeostasis (Sun et al., 2013, 2018). A Pisum sativum
LecRLK, PsLecRLK, promotes tissue compartmentalization of
sodium and ROS scavenging activity providing the alleviation of
the ionic and osmotic environment during salinity stress (Vaid
et al., 2015; Passricha et al., 2019). In addition, a rice LecRLK, Salt
Intolerance 2 (SIT2) was identified for its role in salinity stress
tolerance potentially through its function in Na+ extrusion by
manipulating SOS pathway (Passricha et al., 2020). Furthermore,
Salt Intolerance 1 (SIT1), another rice L-type LecRLK, could be
activated by NaCl and mediate salt sensitivity via the activation
of MPK3/MPK6 leading to higher ethylene production and
downstream ROS accumulation (Li et al., 2014; Zhao et al.,
2019). Although this L-type LecRLK has been predicted to bind
monosaccharide or polypeptide, the rapid activation of SIT1
by external NaCl treatment, the requirement of SIT1 in the
activation of MPK3/MPK6 by NaCl, and the requirement of its
kinase activity for salt sensitivity imply that it plays an essential
role in the signaling sensing and transduction of external Na+,
either through directly getting activated by Na+ or sensing the
signal released by Na+ (Li et al., 2014; Passricha et al., 2020) .

In addition to salt stress, LecRLKs have been found to
play key roles in other abiotic stresses. Arabidopsis LecRK-V.5,
DORN1, Populus nigra PnLPK and pepper CaLecRK-S.5 have
been reported to be involved in wounding response. CaLecRK-
S.5 potentially involves the activation of MAPK cascade and

ROS burst (Woo et al., 2016, 2020). Genome-wide analysis of
the LecRLK family in fox tail millet has identified 18 LecRLKs
which may participate in drought and heat stress through
transcriptomic level analysis under drought or heat stresses
(Yu et al., 2018).

Despite that LecRLKs are involved in diverse abiotic stress
responses, the underlying molecular mechanisms remain to be
fully illustrated. It has been proposed that abiotic stress signals
are likely to be recognized by cell surface receptors and then
are transduced to downstream factors. The involvement of ROS
burst and MAPK cascade in abiotic stress responses are same as
biotic stress responses, suggesting overlap in LecRLKs mediated
biotic and abiotic stress responses. Distinctly, ABA has been
shown to be a key player in abiotic stress response, therefore,
it would be interesting to test the role of LecRLKs in ABA
signaling. Furthermore, although ABA is not directly involved
in plant defense, high level of ABA could inhibit SA-mediated
plant immunity through the suppression on MAPK activation
and promote JA biosynthesis and JA-dependent gene expression
in plant defense against some necrotrophic pathogens (Adie et al.,
2007; Mine et al., 2017). On the other hand, the accumulation
of SA could block the downstream ABA signaling responses
(Moeder et al., 2010). Altogether, the engagement of LecRLKs
in the complex phytohormone signaling pathways presents its
crucial position in both biotic and abiotic stress responses.

LecRLKs IN PLANT DEVELOPMENT

Compared to plant-environmental interaction, the role of
LecRLKs in plant growth and development has not been
investigated as much in detail. In rice, OslecRK, which has been
mentioned earlier providing broad-spectrum innate immune
responses, also contributes to seed germination through its signal
transduction from OsADF toward the regulation of α–amylase
genes (Cheng et al., 2013). In Arabidopsis, seed germination has
been found to involve the A4 subfamily of LecRLKs, LecRKA4.1,
LecRKA4.2, LecRKA4.3, and LecRKA4.4, which redundantly and
negatively regulate ABA inhibition of seed germination without
interfering with GA signaling (Xin et al., 2009). However, in
rice, GA and BR but not ABA or JA, have been found to be
able to induce the expression of OsLSK1 and contribute to the
improvement of grain yield. Key players in GA biosynthesis
and signaling pathway, OsKO1, OsKO, GA20ox2 and OsGID2,
are also transcriptionally induced in OsLSK1 transgenic plants
(Zha et al., 2009; Zou et al., 2015). Two other LecRLKs, OsSIK2
in rice and GsSRK in soybean can both be induced by ABA
treatment and contribute to plant architecture, while the former
also delays dark-induced senescence in rice (Chen et al., 2013;
Sun et al., 2018). Moreover, OsLecRK-S.7 in rice and LecRK-
IV.2 in Arabidopsis are required for pollen development and the
former is also responsible for male fertility (Wan et al., 2008; Peng
et al., 2019). Although most of these findings on the involvement
of LecRLKs in plant development still need further investigation
to provide a clear picture, one clue is that plant hormones,
especially ABA and GA, are in close association with the function
of LecRLKs in plant growth and development.
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DISCUSSION AND FUTURE DIRECTION

As a cell surface receptor, the extracellular lectin domain
of LecRLKs is believed to have the capability to perceive
extracellular signals and transduce the signals to initiate cellular
responses. While L-type LecRLKs have a conserved hydrophobic
cavity responsible for binding hydrophobic ligands like complex
glycans, plant hormones or PAMPs and G-type LecRLKs have
a potential α-D mannose-binding affinity, there are only a
few LecRLK’s ligands reported in plants. DORN1 can directly
perceive extracellular ATPs in Arabidopsis and also directly
interact with the tripeptide Arg-Gly-Asp (RGD) of effector IPI-
O (Bouwmeester et al., 2011; Choi et al., 2014). LecRK-I.8
could directly bind to extracellular NAD+, and LORE can
directly recognize bacterial lipopolysaccharide (LPS) (Ranf et al.,
2015; Wang et al., 2017). PAMPs such as LPS are the typical
characteristics of the microbial cell wall and have been well
studied in the perception by other RLKs, while eATPs, and
eNAD+, as signals released from microbial invasion, were very
challenging to identify. For LecRLKs involved in plant-microbe
interaction, methods such as lectin binding assays, where purified
LecRLK proteins is used to screen against microbial cell wall
fractions, could provide a broad understanding on its roles
in microbial recognition specificity (Hatakeyama et al., 2012).
Further analysis methods such as Gas chromatography-mass
spectrometry (GC-MS) and Nuclear magnetic resonance (NMR)
could be approached to identify the three-dimensional glycan
structure. In addition, glycan microarray has been developed
for high-throughput protein-glycan binding screening to build
a thorough glycan ligands profile of LecRLKs (Geissner and
Seeberger, 2016). Known synthesized glycans are printed onto a
solid glass slide, and purified LecRLK protein can be incubated
with the slide to screen for potential binding which can then
be detected through direct or indirect fluorescence methods
(Geissner et al., 2019). The involvement of LecRLKs in danger-
associated molecular patterns (DAMP), egg-associated molecular
patterns (EAMP), and abiotic stress signal perception indicates
that the ligands probably are more related to the apoplast
metabolic level changes triggered by environmental stresses.
Therefore, metabolomic profile analyses of the plant apoplast
space during the early stage of these environmental stresses
could potentially provide a good understanding of the signals
perceived by LecRLKs. Comparative mass spectroscopy-based
metabolome analysis of plant apoplastic wash fluid before
and after the above-mentioned stress conditions could identify
novel metabolic changes related to plant stress responses
(Green et al., 2020). Taken together the transcriptional and
translational profiles of LecRLKs during the early stage of
these environmental stresses, metabolite composition analysis of
apoplastic wash fluid could prospect signal changes associated
with LecRLKs and plant-environment interaction. However, one
technical limitation is that the current apoplast wash fluid
extraction method is very time-consuming, can only provide
small quantities of apoplast wash fluid, and cannot completely
eliminate cytoplasmic contamination (Gentzel et al., 2019).
Definitive structural determination using NMR analysis will
require a larger amount extraction method or new alternative
methods to provide sufficient apoplast wash fluid.

After the signal perception, the next question is the status
of LecRLKs and how LecRLKs transduce the perceived signal.
Many findings have shown the activation of LecRLKs after signal
perception, but the activation mechanisms are still not well
characterized (Figure 3). Proteomic profile analysis involves not
only the identification of peptides or proteins, but also their
post-translational modifications (Pang et al., 2020). Since most
LecRLKs contain kinase activity, comparative phosphoproteomic
profile analysis could locate and quantify phosphopeptides, then
identify and predict proteins targeted by LecRLKs. Methods
such as Immunoprecipitation-Mass Spectrometry (IP-MS) will be
helpful to determine direct interaction targets when transfected
protoplasts expressing tagged LecRLKs are available. Then
protein-protein interaction detecting methods, such as yeast 2-
hybrid, bimolecular fluorescence complementation (BiFC) and
co-immunoprecipitation (co-IP), can be used to verify their
association and interaction, and enzymatic activity tests can be
adopted to verify the candidate’s role as the phosphorylation
substrate and identify the enzymatic specificity of LecRLKs.
This is a fruitful area that is worth of further investigation.
LecRLKs have been shown to be involved in hormone signaling
pathways such as SA, JA, ABA, GA, Auxin, and ET, either
during plant development or during plant stress responses. First,
several LecRLKs could affect the accumulation of phytohormones
through regulating key phytohormone synthesis genes or
other key players in the signaling pathway. Phytohormones
could also affect the level of LecRLKs through transcriptional
reprogramming. Transcriptomic profile analysis could provide
a broad understanding in the expression level of key players
in phytohormone signaling associated with LecRLKs. Second,
since L-type LecRLKs have a conserved hydrophobic cavity and
several plant hormones, such as ET and Auxin, have been shown
to bind to the hydrophobic pocket of its receptors, definitive
structural analysis such as HPLC-mass spectrometry, NMR and
X-ray crystallography can help define whether LecRLKs could
recognize plant hormones. Third, with phytohormones as the
linker between LecRLKs and downstream signaling responses,
these studies can lead to more explorations on the role of
LecRLKs in plant development and plant stress responses. Most
of plant development and cell signaling processes consume
energy. Plants use their roots and leaves to collect chemical energy
and nutrition through direct absorption and photosynthesis
from the environment, which then is distributed to metabolic
processes for growth/development or defense. When plants are
under stresses, complex hormone crosstalk has been reported
to fine-tune the growth-defense tradeoff (Huot et al., 2014).
LecRLKs have also been shown to be a crucial player in
both plant growth/development and plant defense. During the
naïve status, LecRLKs regulate plant growth/development such
as root and pollen development. When under environmental
stresses, LecRLKs sense those extrinsic signals and initiate specific
responses. Typically, plants encounter multiple environmental
challenges simultaneously. When these different biotic and
abiotic signals are simultaneously perceived by LecRLKs, the
question is how plants integrate them and then process the
priority of growth and defense to maximize plant fitness
(Figure 3). For example, pathogen attack causes the reduction
of extracellular ATPs which then triggers moderate defense
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FIGURE 3 | Future directions of LecRLKs. As a cell surface receptor and
signal transduction mediator, LecRLKs can perceive extracellular signals and
trigger intracellular responses to protect the plant. (1) Determination of the
ligands of LecRLKs could clarify the recognition between plant-microbe and
plant-environment at the molecular level. (2) The activation of LecRLKs after
signal perception. Several findings indicate the formation of homodimer/
heterodimer and auto-phosphorylation are required for LecRLKs’ kinase
function. (3) The signaling pathways LecRLKs are involved in. Identifying their
direct targets could be a very meaningful solution. (4) Transcriptional
regulation of LecRLKs. Exploration of their dynamic transcriptional regulation
mechanism could explain how they are induced during stress and help define
their roles in plant growth and development. (5) LecRLKs have been found to
be phosphorylated and N-glycosylated. Determination of post-translational
modification could help our understanding of the functional dynamics of
LectRLKs. (6) Some LecRLKs serve as key PRRs and are involved in PTI.
There is a very high potential that virulence effectors might target them to
suppress host immunity.

responses, while eATP is also involved in alleviating the decrease
of photosynthesis under pathogen infection (Chivasa et al.,
2009; Sun et al., 2012; Choi et al., 2014; Tatagiba et al.,
2016). As the only eATP receptor found so far, DORN1
has a high probability to play a role in this growth-defense
tradeoff in plants.

Following the specific cellular responses triggered by the
activation of LecRLKs, the complex signaling responses, in
turn, affect the expression of LecRLKs. The basal expression
levels of LecRLKs vary across tissues and organs, as well as
developmental stages. LecRLKs could be highly induced by
different environmental stimuli or during specific developmental
stages. Defining the dynamic transcriptional regulation
mechanisms of LecRLKs will be very helpful for providing

a broader view of the roles of LecRLKs. Comprehensive
transcriptomic profile analysis on the level of LecRLKs during
different stages of environmental stresses could point out the
role of LecRLKs, identify its co-expressed associates dynamically
and depict a broader and consecutive perspective of stress
responses but not just a snapshot of the process. Moreover,
recent proteomic data analysis predicted the post-translational
modification (PTM) of several Arabidopsis and Populus LecRLKs
via phosphorylation and N-glycosylation (Yang et al., 2016;
Bellande et al., 2017). More experimental data are emerging
to support the PTM of LecRLKs. For example, Arabidopsis
LecRK-IX.1 and LecRK-IX.2 have both been reported to be
N-glycosylated (Wang et al., 2015). Since many PTMs have
been shown to be responsible for protein trafficking, prediction
and verification of the PTM of LecRLKs not only provides
insights on the biochemical characterization of LecRLKs,
but also clarifies our understanding on the intracellular
trafficking and localization of LecRLKs. Taken together, the
dynamic transcriptional, translational and post-translational
level analyses will help decipher the overall regulations and
modifications on LecRLKs.

CONCLUSION

LecRLKs could sense self- and non-self-signals, mediate the
signal transduction to contribute to plant growth/development
such as root and pollen development, seed germination,
grain yield and senescence, as well as plant defense against
various environmental challenges from abiotic stresses of
salt and drought to biotic stresses of bacteria, fungi and
herbivory insects. In order to clarify the mechanisms LecRLKs
utilize to regulate those stress responses, it is needed to
decipher the signals LecRLKs perceive, the downstream players
LecRLKs target to transduce the signal, and the signaling
pathways LecRLKs activate or inhibit. While recent findings
have begun to decode these processes, further investigations
are required to present a clear perspective on the function
and action of LecRLKs. Meanwhile, it has been found that
the transcription of several LecRLKs is also under positive
feedback control. The revelation of the dynamic transcriptional
regulation and potential post-translational modification
mechanism of LecRLKs could unravel their role in maintaining
the plant physiological homoeostasis under the naïve state
and environmental challenges. The knowledge presented
by above-mentioned and future studies could favor plant
breeding and engineering strategies in selecting the genetic
traits to maximize plant fitness and crop yield under various
environmental conditions.
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