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1 Introduction

Estimation of traditional spatial autoregressive (SAR) models requires non-linear optimiza-
tion for estimation and inference. The conventional spatial autoregressive approach intro-
duces additional theoretical complexity relative to non-spatial autoregressive models and
is difficult to implement in large samples. We advocate use of a matrix exponential spa-
tial specification (MESS) of dependence that replaces the conventional geometric decay of
influence over space with an exponential pattern of decay. We show that this results in the-
oretical simplicity as well as improved numerical performance relative to the conventional
spatial autoregression.

Chiu, Leonard, and Tsui (1996) proposed the use of the matrix exponential for covari-
ance matrix modelling and discussed several of its advantages. One advantage is that the
matrix exponential always leads to positive definite covariance matrices, eliminating the
need to restrict the parameter space or test for positive definiteness during optimization. A
second advantage is that inversion of the matrix exponential takes a simple mathematical
form that is easy to implement in applied practice. Finally, use of the matrix exponential
spatial specification leads to a log-likelihood where a troublesome term involving the log-
determinant of an nxn covariance matrix vanishes. Collectively, these aspects of the matrix
exponential spatial specification greatly simplify maximum likelihood as well as Bayesian
estimation and inference. Specifically, we are able to provide a closed-form solution for
maximum likelihood estimates, and produce Bayesian estimates using univariate integra-
tion over a scalar polynomial expression. In addition, we show how MESS can be used for
model diagnostics and comparison of models based on different spatial weight structures
or sets of explanatory variables. We demonstrate these procedures using a number of data
sets that vary in size and area of application.

Section 2 presents the MESS model, associated likelihood, and means of finding closed-
form maximum likelihood estimates. Bayesian estimation of the model is discussed in
section 3, and Bayesian model comparison is taken up in section 4. Section 5 provides
applied illustrations of the various techniques using a number of spatial data sets.

2 The MESS model and maximum likelihood solutions

Section 2.1 sets forth the matrix exponential spatial specification, and section 2.2 compares
the data generating processes associated with a conventional SAR model to the MESS data
generating process. Section 2.3 presents the log-likelihood and simplifications that follow
from characteristics of the matrix exponential, while section 2.4 provides a closed-form
solution for MESS model parameter estimates. Section 2.5 discusses estimates of dispersion
for the parameters and section 2.6 gives means of computing model diagnostics for the
MESS.

2.1 The Matrix exponential spatial specification

We begin by assuming the dependent variable vector y exhibits spatial dependence such
that observation i may depend on neighboring observations, j ∈ ℵ, where ℵ denotes a set of
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neighboring observations. We model this spatial dependence using a linear transformation
Sy of the dependent variable y, as in (1) or (2).

Sy = Xβ + ε (1)
y = S−1Xβ + S−1ε (2)

The vector y contains the n observations on the dependent variable, X represents the
nxk matrix of observations on the independent variables, and the n-element vector ε is
distributed N(0, σ2In). The nxn matrix S is positive definite. One obtains the traditional
SAR model when S = (I − ρD), where D represents an nxn non-negative spatial weight
matrix. Elements of Dij are set to positive values for observations j ∈ ℵ, and by convention,
Dii = 0. Often, D is row-stochastic such that Dι = ι, where ι denotes a vector of ones. Row-
stochastic spatial weight matrices, or multidimensional linear filters, have a long history of
application in spatial statistics (e.g., Ord (1975)). The row-stochastic weight matrix has
favorable statistical, numeric, and interpretive properties. For example, the product of a
row-stochastic weight matrix D and a random variable vector v produces a vector of spatial
local averages, Dv.

Instead of the spatial autoregressive definition of S = (I − ρD), we propose using,

S = eαD =
∞∑

t=0

αtDt

t!
(3)

with α denoting a scalar parameter. In other words, we advocate using a matrix exponential
transformation to model spatial dependence. While this appears quite different from the
conventional spatial autoregressive model, we will show that the similarities outweigh the
differences. Although the matrix exponential transformation behaves in a similar fashion
as the spatial autoregressive specification, it has a number of advantages. In fact, Chiu,
Leonard, and Tsui (1996) proposed the use of the matrix exponential for covariance matrix
modelling and discussed several of its salient properties, some of which are:

Property 1: S is positive definite,

Property 2: S−1 = (eαD)−1 = e−αD,

Property 3: |eαD| = etrace(αD).

These properties lead to a number of practical advantages. Property 1 indicates that the
matrix exponential leads to positive definite covariance matrices, and thus avoids the need to
restrict the parameter space, or to carry out tests for positive definiteness during parameter
estimation. Property 2 leads to simple mathematical inversion of the matrix exponential
and correspondingly simple numerical inversion procedures, which benefit both theoretical
and applied work. It will be shown in 2.3, that Property 3 eliminates a troublesome log-
determinant involving an nxn covariance matrix from the log-likelihood of the MESS model.
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2.2 A comparison with spatial autoregressive models

The data generating process (DGP) for the traditional SAR model can be expressed as in
(4), having expectation E(ys) shown in (5).

ys = (In − ρD)−1Xβ + (In − ρD)−1ε (4)

E(ys) = (In − ρD)−1Xβ =
∞∑
i=0

ρiDiXβ (5)

Theoretical economic models have been used to justify this type of DGP for cases in-
volving spatial spillovers, spatial competition and latent unobservable variables with spatial
dependence (Brueckner, 2002), and for production processes in a spatial context (López-
Bazo, et al., 1999). We provide one justification of the MESS model DGP by demonstrating
a close correspondence between the expectation E(ym) from the MESS model and E(ys)
of the conventional spatial autoregressive model. Using Property 2 above, S−1 = e−αD, we
can express the data generating process for the MESS model as in (6), with expectation
E(ym) in (7).

ym = S−1Xβ + S−1ε (6)

E(ym) = S−1Xβ =
∞∑
i=0

(−α)iDi

i!
Xβ (7)

One approach to specifying the dependence structure in the spatial connectivity matrix
D is to rely on non-zero weights assigned to some number m of nearest neighbor obser-
vations. In this situation, the spatial weight matrix D operates to produce dependence of
individual observations on the m nearest neighbors. Powers of this weight matrix reflect
neighbors to these m nearest neighbors, so that the ith row of D2 contains positive values
for neighbors to the m nearest neighbors to observation i. Similar relations hold for higher
powers of D that identify higher-order neighbors.

The spatial weight matrix D in conventional specifications is often row-standardized
to have row-sums of unity. Since products of row-stochastic matrices are row-stochastic,
we have by definition that Dι = ι, D(Dι) = ι, and so on. The same holds true for any
power of S, since the powers are simply linear combinations of the powers of D, all of
which are proportional to a row-stochastic matrix. Thus, if D is row-stochastic, eαD will
be proportional to a row-stochastic matrix. In fact, the row sums equal eα.

To illustrate the close connection between the MESS and SAR DGP, we used a number
of spatial data samples based on n = 49, 3,107, 22,210, and 57,188 observations and a spatial
weight matrix based on the five nearest neighbors to examine the correspondence between
the vectors E(ys) and E(ym).1 The DGP for the SAR model was used to generate E(ys)
over a 0.01 grid of values for ρ between -0.99 and 0.99. Using the DGP for the MESS model

1The 49 observation data set was constructed using latitude-longitude centroids from Anselin (1988) on
neighborhoods from Columbus, Ohio, the 3,107 observation sample was constructed from US counties, the
22,210 observation sample used US agricultural zip-code areas, and the 57,188 observation sample was based
on US census tracts.
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to produce E(ym), we solved for the value of α that minimized the sum of squared errors
between E(ym) and E(ys). Values of α between -2.75 and 1.0 were capable of producing
E(ym) such that the R−squared between E(ym) and E(ys) was 0.99 in the interval from
ρ = −0.99 to ρ = 0.8, and above 0.98 for the remaining values of ρ. This correspondence is
not surprising given that we are replacing the SAR model geometric pattern of decay with
a flexible pattern of exponential decay.

The relation between α and ρ values suggests a correspondence, ρ = 1−exp(α), between
the traditional spatial dependence parameter ρ and α. A plot of this correspondence is
shown in Figure 1, where results based on the four spatial samples used in the experiment
are presented. The correspondence is exact for ρ = 0, allowing us to interpret α = 0 as
indicative of no spatial dependence, and we note that negative values for α correspond to
positive spatial dependence (ρ > 0), with positive values indicating negative dependence
(ρ < 0). This should serve as a useful rule-of-thumb for practitioners, allowing translation
of α estimates of the spatial dependence parameter to the traditional spatial autocorrelation
scale.

2.3 MESS log-likelihood

The log-likelihood for the MESS model is in (8), and a profile log-likelihood where β and σ
have been concentrated out of the likelihood is in (9).

ln L(β, σ, α; y) = −n

2
{(lnσ2) + ln(2π)}+ ln|S| − 1

2σ2
(y′S′MSy) (8)

ln L(α; y) = κ + ln|S| − (n/2)ln(y′S′MSy) (9)

Where κ represents a scalar constant and both M = In − H and H = X(X ′X)−1X ′ are
idempotent matrices. The term |S| is the Jacobian of the transformation from y to Sy.

Property 3 above allows us to greatly simplify the MESS log-likelihood using:

trace(D) = 0

|eαD| = etrace(αD)

= e0 = 1

This results in a concentrated log-likelihood taking the form:

lnL(α; y) = κ− (n/2)ln(y′S′MSy) (10)

Maximizing the concentrated log-likelihood (10) is equivalent to minimizing (y′S′MSy),
the overall sum-of-squared errors with respect to α. Thus, one can interpret the search
for an optimal S as a search for a coordinate system (possibly oblique) which has the
same multidimensional volume as the orthogonal Cartesian coordinate system that has the
same determinant, but yields a better goodness-of-fit or sum-of-squared errors among the
variables.
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2.4 A closed form solution for the parameters

In contrast to conventional spatial autoregressive models, the MESS model has a closed-form
solution. By way of preliminaries, we note that for row-stochastic, non-negative matrices
D, a maximum value of 1 will exist in any row, meaning that elements of the powers of D
do not rise with the power, so a power series converges rapidly. This allows us to implement
the infinite series definition of S using a truncated power series expansion containing q
terms. This leads to Dq−1 as the highest degree term, allowing formation of an nxq matrix
Y comprised of powers of D times y as shown in (11).2

Y = [y Dy D2y . . .Dq−1y] (11)

Note that one does not need to compute the n by n matrix S separately, as S always
appears in conjunction with the n by 1 vector y.3 This allows computation of Sy in O((q−
1)n2) operations for dense D by sequential left-multiplication of y by D to form n−element
vectors, (i.e., Dy, D(Dy) = D2y, and so on). Typically, the matrix D is sparse when
populated with non-zero elements based on a finite number m of nearest neighbors, leading
to a dramatic decline in the number of operations required to compute Sy. The number of
operations required drops to O((q − 1)n 6=0), where n 6=0 denotes the number of non-zeros.
For the nearest neighbor spatial weight matrix approach, the operation count associated
with computing Sy is linear in n.

To solve for parameter estimates of the model, we define the diagonal q by q matrix W
containing part of the coefficients of the power series as shown in (12).

W =


1/0!

1/1!
. . .

1/(q − 1)!

 (12)

In addition, we define the q-element column vector v shown in (13) that contains powers of
the scalar real parameter α, |α| < ∞.

v = [1 α α2 . . . αq−1]′ (13)

Using (11), (12), and (13), we can rewrite Sy as shown in (14).

Sy = Y Wv (14)

Pre-multiplying Sy by the least-squares idempotent matrix M yields the residuals e, allow-
ing us to express the overall sum-of-squared errors, u′u as in (15),

u′u = v′WY ′M ′MY Wv = v′(WY ′MY W )v = v′Qv (15)
2Given the rapid decline in the coefficients in the power series, αt/t!, achieving a satisfactory progression

with nine or ten terms seems feasible. We show later that α takes on values between -2 and 1 for spatial
dependence magnitudes encountered in applied practice. For α = −2, we have: (α9/9!) = −0.0014 and
(α10/10!) = 0.00028, which would be multiplied times elements of D that are less than unity.

3Sidje (1998) has also used this as a point of departure in the computation of matrix exponentials. In
addition, Sidje provides other algorithms for computing the matrix exponential right multiplied by a vector.
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where Q = WY ′MY W . Appendix A contains a proof that their exists an unique minimum
to this quadratic form despite the presence of polynomial constraints as embodied in (13).

Turning attention to actually finding the optimum, we write the overall sum-of-squared
errors v′Qv as a 2q−2 degree polynomial in the variable α. The coefficients in the polynomial
are the sum of all terms appearing in Q associated with each power of α. The number of
coefficients of a 2q−2 degree polynomial equals 2q−1 due to the constant term (coefficient
associated with the degree 0 term). Specifically, the coefficients c, a 2q− 1 element column
vector are shown in (16),

ct−1 =
q∑

i=1

q∑
j=1

QijInd((i + j) = t) (16)

where Ind() is an indicator function taking on values of 1 when the condition is true. The
terms associated with the same power of α have subscripts i, j that sum to the same value.
For example, αiαj = αt when i + j = t, which means that each coefficient ci is the sum of
the elements along the anti-diagonals of Q. This allows us to rewrite v′Qv as the 2q − 2
degree polynomial P (α), shown in (17).

P (α) =
2q−1∑
i=1

ciα
i−1 = v′Qv (17)

To find the minimum of the sum-of-squared errors, we differentiate the polynomial P (α) in
(17) with respect to α, equate to zero, and solve for α as shown in (18).

dP (α)
dα

=
2q−1∑
i=2

ci(i− 1)αi−2 = 2v′Q

(
dv

dα

)
= 0 (18)

The derivative dP (α)/dα is a degree 2q − 3 polynomial and thus has 2q − 3 possible
roots. The problem of finding all the roots of a polynomial has a well-defined solution.
Specifically, the roots equal the eigenvalues of the companion matrix associated with the
polynomial (Horn and Johnson (1993, p. 146-147)).4 We note that computation of the
eigenvalues requires O(8q3) operations in this case and does not depend upon n, making
this approach amenable to large spatial data samples. Solution for the maximum likelihood
estimates involves trivial numerical calculations to find eigenvalues of the small companion
matrix, so we refer to this as a closed-form solution.

In Appendix A we show that this solution that minimizes the sum-of-squared errors
and maximizes the MESS likelihood is unique. Such unique optima do not always occur
in spatial statistics. See Warnes and Ripley (1987) and Mardia and Watkins (1989)) for a
discussion of the potential multimodality of the likelihood.

2.5 Estimates of dispersion

Given that the log-likelihood can be evaluated rapidly owning to the elimination of the log-
determinant term that appears in conventional SAR models, a numerical Hessian approach

4Other methods also exist for finding the roots of polynomials. See Press et al. (1996, p. 362-372) for a
review of these.
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can be used to produce estimates of dispersion for the parameters. We have compared
estimates of dispersion from this approach to those from Bayesian estimation in numerous
applied settings and found these to be accurate. We note that due to the properties of the
matrix exponential, analytical derivatives of the likelihood function are reasonably easy to
calculate. This would allow the possibility of a method of moments estimation scheme as
in Kelejian and Prucha (1998, 1999), a subject for future investigation.

An alternative approach to inference is to carry out likelihood ratio tests that reflect
exclusion of each explanatory variable in the model. Conventional likelihood ratio tests
would compute the deviance (twice the difference in the log-likelihoods) and this would as-
ymptotically follow a χ2(J) distribution, where J is the number of exclusionary restrictions
(Fan, Hung, and Wong (2000)). The signed root deviance equals the square root of twice
the difference in log-likelihoods (deviance) between the unrestricted and restricted models,
given the sign of the parameter estimate, and can be treated similar to a t−statistic for in-
ference (Chen and Jennrich (1996)). A test for significant spatial dependence can be based
on the null hypothesis: α = 0, which involves using the least-squares log-likelihood in the
signed root deviance calculation to produce an inference.

Efficient computation of likelihood ratio tests for individual explanatory variables re-
quires updating the sum-of-squared errors matrix Q without recomputing the actual regres-
sions. Let B̂ = (X ′X)−1X ′Y denote the k by q matrix of estimates from the regression
of Y on X, where Y is defined in (11). Let Ê = Y − XB̂ denote the n by q matrix of
errors from the regression. Expression (19) shows the restricted least squares estimate for
B̃j , (j = 1 . . . q),

B̃j = B̂j + (X ′X)−1R′(R(X ′X)−1R′)−1(r −RB̂j) (19)

where r and R denote an h by 1 vector, and h by k matrix, constructed to impose h
hypotheses.5

Let ∆Bj in (20) denote the change in the restricted least squares estimates versus the
unrestricted estimates for the jth regression.

∆Bj = B̃j − B̂j = (X ′X)−1R′(R(X ′X)−1R′)−1(r −RB̂j) (20)

The inner product of any two vectors of restricted regression errors appears in (21).

Ẽ′
j1Ẽj2 = (Y −XB̃j1)′(Y −XB̃j2) = (Êj1 −X∆Bj1)′(Êj2 −X∆Bj2) (21)

where Ẽj1, Ẽj2 represent the vectors of restricted regression errors and j1, j2 = 1, . . . , q.
Expanding (21) yields (22).

Ẽ′
j1Ẽj2 = Ê′

j1Êj2 + (∆Bj1)′(X ′X)(∆Bj2) (22)

Two of the possible terms vanish due to the enforced orthogonality between the residuals
and the data in least-squares, and we can expand the second term from (22) and cancel
terms leading to a simple expression shown in (23) for the increase in error arising from
restrictions.

5See Gentle (1998, p. 166) for the standard restricted least squares estimator as well as some other
techniques for computing these estimates.
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(∆Bj1)′(X ′X)(∆Bj2) = (r −RB̂j1)′[R(X ′X)−1R′]−1(r −RB̂j2) (23)

Finally, define the q by q matrix of cross-products of restricted least-squares regressions
as Ẽ′Ẽ with j1, j2th element Ẽ′

j1Ẽj2, leading to a restricted sum of squared errors, QR =
W (Ẽ′Ẽ)W .

We note that the quantities B̂j and the Cholesky factors of X ′X are already known
from the unrestricted regressions. However, [R(X ′X)−1R′]−1 requires O(h3) operations for
its decomposition. Typically, h will be small, as in the case of testing the effect of deleting
a single variable where h = 1. Since computing the increase in errors from the restrictions
requires O(h3) operations and resolving the first order conditions requires O(8q3) operations,
deviance (i.e., likelihood ratio) tests or signed root deviance statistics do not depend upon
n.

2.6 Spatial model diagnostics

Christensen, Johnson, and Pearson (1992), Haining (1994), and Martin (1992) investigated
regression-type diagnostics for spatial models that employ an estimated variance-covariance
matrix, Ω(θ) parameterized by a vector θ.

Maximum likelihood estimation of SAR models encounters difficulties with many of the
standard deletion diagnostics, which often rely upon linearity for speed. The logistical
difficulties of performing n non-linear optimizations to perform deletion diagnostics poses a
barrier to the routine usage of these popular diagnostics in a spatial setting. However, the
simplicity and speed of MESS can facilitate computation of these diagnostics in a spatial
setting. As an example, if we let Z = MY W , so that Q = Z ′Z, and zi = (Z ′

ij , j = 1, . . . , q),
a q by 1 vector. We denote Q when the ith observation is deleted as Q(i) and rely on
standard regression results for one-out sum-of-squared errors (e.g., Christensen (1996, p.
345)), as in (24).

Q(i) = Q− ziz
′
i

(1−Hii)
(24)

Using the same quick mechanism for finding roots of polynomials we can produce a se-
quence of row-deletion diagnostic statistics that measure the influence or leverage impact of
excluding individual observations. Of course, these diagnostics might be altered to delete a
single observation as well as neighboring observations in a spatial setting as pointed out by
Christensen (1996, p. 348).

3 Bayesian estimation of the model

A Bayesian approach to the MESS model includes specification of prior distributions for
the parameters α, β, σ in the model. Prior information regarding the parameters β and σ is
unlikely to exert much influence on the posterior distribution of these estimates in the case
of very large samples, where the MESS model holds an advantage over more traditional
spatial autoregressive models. However, priors placed on the parameter α may exert an
influence even in large samples, because of the important role played by spatial dependence
in these models.
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In section 3.1 we develop Bayesian estimates for the canonical case of a normal-gamma
prior, that is a normal for β and inverted gamma prior for σ, as well as an arbitrary
prior for α. Univariate numerical integration is required with respect to the parameter
α, so we have flexibility in the choice of this prior and proceed using π(α) to denote an
arbitrary prior. When these priors for β, σ, α become diffuse, the log-marginal posterior
for α approaches an expression proportional to the log-likelihood concentrated with respect
to β and σ, indicating that the posterior mode from Bayesian estimation which involves
univariate numerical integration over α would equal the maximum likelihood estimate for
α. This is a result equivalent to that found for Bayesian estimation of traditional regression
models.

3.1 The case of normal-gamma conjugate priors

The prior pdf’s for the parameters β and σ take the normal, inverted gamma conjugate
forms shown in (25), and we let π(α) denote an arbitrary prior.

π(β, σ) = π(β|σ)π(σ)

π(β|σ) =
|C|1/2

(2π)k/2σk
exp

[
− 1

2σ2
(β − β̄)′C(β − β̄)

]

π(σ) =
K

σν+1
exp

(
−νs̄2

2σ

)
K = 2(νs̄2/2)ν/2/Γ(ν/2) (25)

The normal prior pdf for β has prior mean β̄ and variance-covariance matrix σ2C,
where C is a positive definite symmetric matrix specified by the practitioner. If we let
C = [(1/g)X ′X]−1, a kxk matrix based on the sample data matrix X and the scalar g
which controls prior uncertainty, we have the g−prior proposed by Zellner (1986). The
inverted gamma prior pdf for σ has parameters ν and s̄2, where 0 < ν, s̄2 < ∞ for a proper
prior. K is a normalizing constant, and Γ is the gamma function.

Using Bayes’ theorem to combine the likelihood and prior, we will be interested in the
marginal posterior for the parameter α, which can be obtained by analytically integrating
out the elements of β and the parameter σ (Zellner, 1971 pp. 308-09). Specifically:

∫
π(β|σ)π(σ)π(α)p(y|β, σ, α)dβdσdα (26)

=
K|C|1/2

2π(n+k)/2

∫ 1
σn+ν+k+1

exp(− 1
2σ2

[νs̄2 + P (α)

+ (β − β̄)′C(β − β̄) + (β − β̂)′X ′X(β − β̂)])π(α)dβdσdα

where β̂ = (X ′X)−1X ′S(α)y, regression estimates for β assuming α is known, and P (α) is
the 2q − 2 degree polynomial shown in (17). Recall that the determinant |S| will be unity
by virtue of Property 3, so this term does not appear in (26). Using the properties of the
multivariate normal pdf and the inverted gamma pdf to integrate with respect to β and σ,
we define:
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Q1 = (β̄ − β̃)′C(β̄ − β̃),
Q2 = (β̂ − β̃)′X ′X(β̂ − β̃),
β̃ = A−1(Cβ̄ + X ′Xβ̂),
A = X ′X + C,

and arrive at:

p(α|y) =
1
2

K

(2π)n/2

( |C|
|A|

)1/2

2(n+ν)/2Γ[(n + ν)/2] (27)

·
∫ (

νs̄2 + P (α) + Q1 + Q2

)−(n+ν)/2
π(α)dα

Note that the determinants |A| and |C| do not depend on α, and P (α) =
∑2q−1

i=1 ciα
i−1. We

can define a constant of integration:

κ =
1
2

K

(2π)n/2

( |C|
|A|

)1/2

2(n+ν)/2Γ[(n + ν)/2] (28)

allowing further simplification of (27).

p(α|y) = κ

∫ νs̄2 +
2q−1∑
i=1

ciα
i−1 + Q1 + Q2

−(n+ν)/2

π(α)dα (29)

We consider the case where the priors for β, σ and α become diffuse. For the prior on
β, we can let the roots of C → 0 leading to a null matrix C, or let g → ∞ in the case of
the g−prior. These lead to Q1 → 0 and β̂ → β̃, meaning the term Q2 → 0. The prior on
σ becomes diffuse when ν, s̄2 → 0, eliminating the term νs̄2 and creating an exponent of
−n/2. Assuming the arbitrary prior on α is diffuse, the expression in (29) approaches:

p(α|y) ∝
∫ 2q−1∑

i=1

ciα
i−1

−n/2

dα (30)

Univariate numerical integration can be carried out to find the posterior distribution for α
in the case of (29) with priors, or in the case of (30) where the priors are diffuse. We note
that in the face of diffuse priors, the log of p(α|y) in (30) is proportional to the log-likelihood
function for the MESS model, since P (α) =

∑2q−1
i=1 ciα

i−1 = (y′S′MSy) as in (10). The
means that numerical integration over α will produce a posterior mode for α that will equal
the value from maximizing the likelihood over α, a result similar to that found for Bayesian
regression analysis.

It is also the case that as n the number of observations grows large, the expression in
(29) approaches (30), a point made by Jeffreys and developed fully in Zellner (1971, pp.
31-34). This follows from the fact that the log-likelihood will be of order n, whereas prior
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information does not depend on the sample size n, leading the likelihood factor to dominate
the posterior pdf in (29).

It is informative to contrast this result with that arising in SAR models. Following a
similar approach to that used above where the priors on β, σ and ρ become diffuse, we arrive
at the marginal posterior for ρ, shown in (31) (see Hepple (1995a,1995b)).

p(ρ|y) ∝
∫
|In − ρD|

(
u′u
)−n/2

dρ

u = (In − ρD)y −Xβ(ρ)
β(ρ) = (X ′X)−1X ′(In − ρD)y (31)

The univariate numerical integration over ρ ranges in the open interval (1/µmin, 1/µmax),
where µ are eigenvalues of the weight matrix D.6 This requires calculating the eigenvalues
of the n by n spatial weight matrix as well as the log-determinant of the n by n matrix
(In − ρD) over this range of ρ values, a computationally expensive operation.7

In contrast, solution for α in the case of diffuse priors for the Bayesian MESS model
requires simple univariate integration involving the scalar polynomial P (α). For the case
involving informative priors in (29), we also need to include the prior π(α) as well as
β̂(α) = (X ′X)−1X ′S(α)y and β̃(α) = A−1(Cβ̄ + X ′Xβ̂(α)) in the univariate numerical
integration procedure.

Turning attention to the posterior distribution for β in the Bayesian MESS model, we
can use the multivariate t−density centered at β(α), suggesting that the posterior mean
can be computed analytically using:

E(β|y, X) = (X ′X + C)−1(X ′S(ᾱ)y + Cβ̄) (32)

where ᾱ denotes the posterior mean from (29). As in the case of α, diffuse priors on β lead
to C approaching a null matrix, producing a posterior mode for the β parameters that will
equal those from maximum likelihood. The posterior covariance matrix unconditional on α
takes the form shown in (33), which requires univariate integration of the scalar polynomial
expression for P (α).

var-cov(β) =
1

n + ν

(∫
(P (α)p(α|y, X)π(α)dα

)
(X ′X + C)−1 (33)

Given the multivariate t−density for β, individual elements βi take the form of a uni-
variate Student t−density conditional on α, and are essentially the standard expressions
for normal multiple regression from Zellner (1971, pp. 67-68). Here as in the case of the
posterior distribution for α, the scalar polynomial expression P (α) plays an important role
in simplifying the tasks involved.

As already noted, we use univariate integration to compute: E(P (α)|y, X) = σ̄ =∫
P (α)p(α|y, X)π(α)dα as part of our solution for the variance-covariance matrix for β.

This provides us with an expression for the posterior mean of σ.
6See for example Lemma 2 in Sun et al., 1999.
7Barry and Pace (1999) provide a computationally efficient approach to estimating the log-determinant

over a grid of values for ρ ∈ [1/µmin, 1/µmax]. In addition, they provide a vector expression for −n/2·log(u′u)
ranging over values of ρ in this grid which also facilitates univariate numerical integration.
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4 Bayesian model comparison

Other authors have set forth the Bayesian theory behind model comparison which in-
volves specifying prior probabilities for each of the discrete set of alternative models M =
M1,M2, . . . ,Mm under consideration, which we label π(Mi), as well as prior distributions
for the parameters π(η), where η = (α, β, σ) (e.g., Zellner, 1971 and Fernandez, Ley, and
Steel, 2001b). Our focus here is on two types of model comparison. In section 4.1 we
consider models using alternative spatial weight matrices, and in section 4.2 we consider
models with different explanatory variables. We suggest alternative priors for π(η) for these
two scenarios in sections 4.1 and 4.2.

If the sample data are to determine the model probabilities, the prior probabilities
should be set to equal values of 1/m, making each model equally likely apriori. These are
combined with the likelihood for y conditional on η as well as the set of models M , which
we denote p(y|η, M). The joint probability for M,η, and y takes the form:

p(M,η, y) = π(M)π(η|M)p(y|η, M) (34)

Application of Bayes rule produces the joint posterior for both models and parameters
as:

p(M,η|y) =
π(M)π(η|M)p(y|η, M)

p(y)
(35)

The posterior probabilities regarding the models takes the form:

p(M |y) =
∫

p(M,η|y)dη (36)

which requires integration over the parameter vector η. Although the Bayesian theory
of model choice is elegant, integration over the parameter space represents one problem
that arises when implementing this approach. As already shown, obtaining the marginal
posterior for the MESS model is relatively simple in comparison with traditional spatial
autoregressive models.

A second problem that arises in Bayesian model comparison is that posterior model
probabilities can be sensitive to specification of the prior information. Use of diffuse priors
on the model parameters might seem desirable in this situation, but can lead to paradox-
ical outcomes as noted by Lindley (1957). We suggest one approach to dealing with this
problem for the case of model comparisons involving alternative spatial weight matrices.
In section 4.2 where we deal with model comparison involving alternative explanatory vari-
ables, we draw on the work of Fernandez, Ley, and Steel (2001b) to resolve this type of
problem. This second type of model comparison employs a Markov chain Monte Carlo
composition method often labelled MC3. The MC3 method requires posterior odds ratios
that relate model i to model j as shown in (37).8

Oi,j =
p(M = i|y)
p(M = j|y)

(37)

8In the case of uniform prior model probabilities, these odds ratios are referred to as Bayes factors.
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=
π(M = i)

∫
π(η|Mi)p(y|η, Mi)dη

π(M = j)
∫

π(η|Mj)p(y|η, Mj)dη

In the context of regression models, Zellner (1971, pp. 310-11) considers the odds ratio
for the special case of large samples with identical inverted gamma priors for the parameters
σ, and identical normal priors for β in both models. He shows that in this special case,
the odds ratio approaches a likelihood ratio test, depending exclusively on the relative fit
of the two models. This type of situation could arise when comparing models i and j based
on different spatial weight matrices, where all other aspects of the model specification
are held constant. A similar result occurs for the MESS model by adding to Zellner’s
development an identical normal prior on α for both models.9 This approach yields a Bayes
factor constructed using the univariate integral expression (30) in both the numerator and
denominator. As already noted, the integral is analogous to the polynomial expression in
α that appears in the concentrated log-likelihood function representing overall model fit.

4.1 Model comparison over alternative spatial weight matrices

Economic theory often suggests the existence of externalities, spillovers, and other spatial
phenomenon, but rarely suggests the exact extent of the dependence. Typically, estimates
based on a small number of candidate weight matrices are compared with a final set of
estimates and inferences based on one of these spatial weight matrices. Bayesian model
comparison allows a formal treatment of this type of specification uncertainty. Estimates
and inferences can be based on results averaged across models consisting of alternative
weight matrices, referred to as Bayesian model averaging. Posterior model probabilities are
used to produce a single set of estimates that represent a linear combination constructed
using model probabilities as weights. For simplicity, consider a set of possible models
formed using spatial weight matrices based on 1 to m nearest neighbors. Evaluating the
log-marginal for a vector of values of α over a range of support ([αmin, αmax]) yields a vector
of log-marginal values that collectively provides a finite representation of the log-marginal
density. Given this vector, numerical integration can proceed using a variety of different
methods such as Simpson’s rule.10

The key quantity for model comparison is often referred to as the “integrated likelihood,”
which we designate as LI . The integrated likelihood for MESS model comparison would
likely represent a large sample situation equivalent to diffuse priors on β and σ. This
produces an expression involving only α, which will be proper if and only if the product of
the integrated likelihood and prior π(α) are bounded, that is:

0 <

∫ +∞

−∞
LI(α; y)π(α)dα < ∞ (38)

As already noted in discussion of maximum likelihood estimation, a unique interior α
maximizes the likelihood (concentrated with respect to β and σ). The issue of posterior

9We motivate choice of a normal prior more fully in the next section.
10Integration involves the anti-log which often requires scaling. Effective scaling can be accomplished by

storing the vectors of log-marginals as columns in a matrix and subtracting the maximum matrix element
from all elements in the matrix. This produces a value of zero as the largest element, with an anti-log of
unity, providing a solution to the scaling problem that requires no tuning.
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propriety depends upon specific priors for the spatial dependence parameter α. We advocate
use of a normal prior with mean zero and a standard deviation assigned by the investigator
to reflect uncertainty regarding this parameter. This choice of prior is motivated by a
number of considerations. First, since −∞ < α < ∞ and the matrix exponential spatial
structure exhibits symmetry, a normal prior on the strength of spatial dependence seems
reasonable. This is in contrast to SAR models where in general the spatial dependence
parameter ρ has support over a bounded, asymmetric region.

A second motivation for a normal prior on α is that in large samples the posterior for α
should approach a normal distribution. This stems from the argument in Zellner (1971, pp.
31-34), where the posterior distribution for any Bayesian model can be expanded around
the maximum likelihood estimate using a Taylor series. The first term of this expansion
represents a normal distribution that can be used with accuracy of 1/

√
n to approximate

the posterior. Therefore, a normal prior for α serves as a pseudo conjugate prior in applied
problems with large n. To illustrate this point Figure 2 presents the posterior distribution
for α from a data-generated example based on a sample of n = 3, 107 US county observations
and diffuse priors for all parameters in the model. This posterior is displayed alongside a
normal distribution with the same mean and variance, and these show a close correspondence
between the posterior and normal distributions.

Specification of prior uncertainty regarding α is facilitated by the correspondence be-
tween the spatial dependence parameter α and the spatial autocorrelation parameter ρ

.=
1 − exp(α) from the SAR model. This can be used to construct an interval (αmin, αmax)
where α has most of its prior support, allowing a prior standard deviation to be formulated.

Alternative approaches to developing priors for α in situations involving model compar-
ison would be to develop Jeffreys’ independence prior, or a reference prior of the type set
forth in Berger and Bernardo (1989). These types of priors have advantages over informa-
tive priors (see Berger, Pericchi (1996a,1996b) and Berger, Pericchi, and Varshavsky, 1998).
The literature also contains suggestions for a ‘deviance information criterion’ (Speigelhalter
et al. 2001) that combines measures of model fit with a penalty for model complexity based
on the number of parameters. We do not pursue these approaches here, but a subject for
future work would be to examine implementing these methods in the context of Bayesian
MESS model comparison.

Identical priors for the parameters β, σ seem reasonable for the case where the models
compared differ only with respect to the spatial weight matrices employed. As already noted
in this special case, a large sample results in Bayes factors that approach a likelihood ratio
test. We note that the parameters η = (β, σ) of the MESS model would not require explicit
estimation to conduct model comparison tests in this situation. The ability to analytically
integrate out the parameters β and σ serves the same role as concentrating the log-likelihood
with respect to these parameters in a maximum likelihood setting. Computation of Bayes
factors would only require univariate integration over α. Of course, a proper prior on α
must be used and sensitivity of the inferences to this prior need to be checked. There is
an intuitive appeal to the notion that in large samples posterior model inferences should
be robust with respect to prior information. Despite this intuitive appeal, this should be
explored in particular applications. The computational speed of MESS allows practitioners
to construct a range of posteriors based on varying priors and explore the robustness of
posterior model inferences. We will illustrate posterior model comparison of alternative
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spatial weight matrices in section 5, and illustrate the role of prior information.

4.2 Model comparisons involving alternative explanatory variables

Raftery, Madigan, and Hoeting (1997), Fernandez, Ley, and Steel (2001b), and others have
written extensively on Bayesian model averaging over alternative linear regression models
containing differing explanatory variables. The Markov Chain Monte Carlo model com-
position (MC3) approach introduced in Madigan and York (1995) is set forth here for the
MESS model. For a regression model with an intercept and k possible explanatory variables,
there are 2k possible ways to select regressors to be included or excluded from the model.
Later, we consider an example with k = 21 which results in 2, 097, 152 possible models, and
computation of the log-marginal for all possible models quickly becomes tedious.

The MC3 method of Madigan and York (1995) devises a strategic stochastic process
that can move through the potentially large model space and sample regions of high pos-
terior support. This eliminates the need to consider all models by constructing a sample
from relevant parts of the model space, while ignoring irrelevant models. Specifically, they
construct a Markov chain M(i), i = 1, 2, . . . with state space Ξ that has an equilibrium dis-
tribution p(Mi|θ), where p(Mi|θ) denotes the posterior probability of model Mi based on
the data θ. This Markov chain is simulated for i = 1, . . . , T , which will converge as T →∞
almost surely to E(p(η|M, θ) under certain regularity conditions (Smith and Roberts, 1993).
The Markov chain is based on a neighborhood, nbd(M) for each M ∈ Ξ, which consists
of the model M itself along with models containing either one variable more, or one vari-
able less than M . The addition of an explanatory variable to the model is often labelled
a ‘birth process’ whereas deleting a variable from the set of explanatory variables is called
a ‘death process’. A transition matrix, s, is defined by setting s(M → M ′) = 0 for all
M ′ 3 nbd(M) and s(M → M ′) constant for all M ′ ∈ nbd(M). If the chain is currently in
state M , we proceed by drawing M ′ from s(M → M ′). This new model is then accepted
with probability:

min
[
1,

p(M ′|y)
p(M |y)

]
=
[
1, OM ′,M

]
(39)

Where OM ′,M is the odds ratio set forth in (37). Note, the computational ease of con-
structing odds ratios (or Bayes factors for the case of equal prior probabilities assigned to
all candidate models) facilitates construction of a Metropolis-Hastings sampling scheme for
the MC3 method. A vector of the log-marginal values for the current model M is stored
during sampling along with a vector for the proposed model M ′. These are then scaled
and integrated to produce OM ′,M which is used in (39) to determine whether to accept
the new model or stay with the current model. Saving the log-marginal density vectors for
each unique model found during the MCMC sampling allows calculation of posterior model
probabilities over the set of all unique models visited by the sampler.11

11Although the use of birth and death processes in the context of Metropolis-Hastings sampling will
theoretically produce samples from the correct posterior, Richardson and Green (1997), among others,
advocate incorporating a ‘move step’ in addition to the birth and death steps into the algorithm. There is
evidence that combining these move steps that keep the dimension fixed aid convergence of the sampling
process (Denison et al. 1998, Richardson and Green, 1997). The move step takes the form of replacing a
randomly chosen single variable in the current explanatory variables matrix with a randomly chosen variable
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Specifically, we follow Fernandez, Ley and Steel (2001a) and employ Zellner’s g−prior
(Zellner, 1986) for the parameters β in the model:

Sy = ιβ0 + Xβ + ε (40)

where the k the columns of X are in deviations from their means, so that ι′X = 0. The
g−prior on the regression coefficients βMi takes the form shown in (41), and we can rely on
setting g = 1/max{n, k2} as motivated by Fernandez, Ley and Steel (2001a, 2001b).

βMi |σ, ρ ∼ N [0, σ2((1/g)X ′
Mi

XMi)
−1] (41)

π(α, σ) ∝ 1/σ

The marginal likelihood p(y|M = i) under model Mi, the g−prior, and uniform priors
across models takes the form:∫

(
1√
n

Γ((n− 1)/2)
2π(n−1)/2(1 + g)ki/2

[
y′S′(I −Hι −

g

1 + g
HMi)Sy

]−(n−1)/2

dα (42)

where Hι is the projection matrix arising from the constant parameter β0, and HMi is the
projection matrix associated with model Mi containing ki explanatory variables. Again,
the MESS univariate polynomial expression can be used in this setting allowing integration
of the log-marginal likelihood during MCMC sampling.

5 Applied illustrations

The first application in section 5.1 illustrates the ability of the MESS model to produce
estimates and inferences similar to those from conventional SAR models. We have pointed
to numerous analytical advantages of the MESS model over conventional SAR models. Here
we illustrate that this model can provide an alternative to SAR models in applied problems.
A second illustration in section 5.2 demonstrates that prior information has a relatively
small impact for problems involving moderately large sample sizes. The third application
in section 5.3 illustrates model comparison where the models differ in terms of the spatial
weight matrix employed. A final application in section 5.4 considers model comparison in
the context of MC3 determination of appropriate explanatory variables, where models differ
in terms of the explanatory variables.

5.1 A comparison of conventional and MESS models

Information from the 1997 Census of Agriculture on a sample of 24,473 agricultural zip
code areas was used to consider the impact of the conservation reserve program (CRP) and

not currently in the model. Specifically, proposing a model with one less explanatory variable (death step)
and then adding an explanatory variable to this new model proposal (birth step) leaves the resulting model
proposal with the same dimension as the original one, but with a single component altered. This type of
sampling process is often labelled ‘reversible jump’ MCMC. The model proposals that result from birth,
death and move steps are all subjected to the Metropolis-Hastings accept/reject decision shown in (39),
which is valid so long as the probabilities of birth, death and move steps have equal probability of 1/3.
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wetlands reserve program (WRP) on acres harvested in each zip code area. The dependent
variable is the log of acres harvested. Explanatory variables included various categories of
agricultural land-use measured by logged acres in: land in CRP and WRP conservation
programs, idle land, pasture land, rangeland, woodland, land under soil improvement pro-
grams, acres of failed crops, fallow land and an other-land category. Additional explanatory
variables were: the number of farms, the number of various livestock (e.g., beef and milk
cows, hogs and pigs, sheep and lambs, hens and pullets, horses and ponies), a variable
indicating the proportion of owner-operated farms, the proportion of population in the zip
code area that is classified as rural and the proportion classified as farm population. All of
these variables were log-transformed as well.

A spatial lag of each land-usage variable (land in CRP and WRP conservation programs,
idle land, pasture land, rangeland, woodland, land under soil improvement programs, acres
of failed crops, fallow land and an other-land category) was also included in the model to
capture the effect of neighboring zip-code area land-usage on acres harvested. The spatial
lag was constructed by multiplying the spatial weight matrix W times the land use variables
(e.g., y = ρWy + Xβ + WX̃θ + ε, where X̃ contains the land usage explanatory variables).
The spatial weight matrix was constructed using first-order contiguity.

An economic issue of interest is the elasticity response of acres harvested with respect
to acreage placed in the CRP and WRP conservation programs. Table 1 presents estimates
from the conventional SAR model alongside those from maximum likelihood MESS. In
addition to the point estimates, asymptotic t−statistics are presented for both models based
on a numerical Hessian calculation. The use of t−ratios in the table facilitates comparison
between the two sets of estimated standard deviations.

Estimates for all 29 explanatory variables exhibit similar magnitudes and standard de-
viations such that inferences regarding the significance of these variables would be identical
from both sets of estimates. This is also true of the spatial dependence parameters α and
ρ as well as the noise variance, σ2, and the R2 statistics measuring fit of the two mod-
els. Note, the correspondence ρ = 1 − exp(α) suggests a value of ρ̂ = 0.3589, close to the
estimate of 0.41 in the table. Given the estimates in Table 1, both the CRP and WRP
conservation programs had a negative and significant effect on acres harvested. Since the
coefficient on the spatial lag of conservation acreage is not significant, land placed in the
conservation programs in surrounding zip code areas did not exert a significant impact on
acreage harvested.

5.2 The impact of prior information and sample size

The impact of using subjective prior information to specify prior means and variances for
the parameters β, α, and σ should not exert undue influence on the Bayesian MESS model
estimates and inferences in reasonably large spatial samples. Here we provide some evidence
regarding the impact of prior information for sample sizes of 3,107 observations and 24,473
agricultural zip code areas from the previous illustration.

Sample data concerning voter participation in the 1980 Presidential election for 3,107
US counties from Pace and Barry (1997) was used in conjunction with three priors as
well as maximum likelihood estimation. The model uses the log of voter participation
rates as the dependent variable with a constant, median household income, proportion of
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Table 1: A comparison of MESS and SAR estimates

Variable MESS β̂ MESS t SAR β̂ SAR t
constant -0.1719 -13.14 -0.1844 -14.37
conservation (CRP+WRP) -0.0343 -12.08 -0.0328 -11.79
idle land 0.0441 13.75 0.0418 13.30
pasture land 0.0771 17.12 0.0760 17.20
rangeland -0.0490 -12.54 -0.0488 -12.73
woodland 0.0243 6.83 0.0215 6.17
soil improvement 0.0150 4.84 0.0135 4.42
failed acreage 0.0187 6.46 0.0162 5.71
fallow land 0.0364 12.58 0.0349 12.28
other land 0.1663 24.65 0.1699 25.63
farms 0.8613 106.88 0.8438 105.44
beef cows -0.0466 -12.90 -0.0464 -13.09
milk cows 0.0228 11.21 0.0223 11.21
hogs and pigs 0.0091 3.77 0.0092 3.87
sheep and lambs 0.0129 5.22 0.0129 5.36
hens and pullets -0.0122 -4.34 -0.0107 -3.88
horses and ponies -0.0883 -29.26 -0.0843 -28.32
owner operator -0.0234 -20.30 -0.0218 -19.24
rural population 0.0190 15.13 0.0192 15.65
farm population -0.0080 -8.49 -0.0075 -8.10
W·(conservation) -0.0018 -0.45 -0.0044 -1.12
W·(idle land) -0.0644 -11.55 -0.0542 -9.93
W·(pasture land) -0.0373 -6.12 -0.0345 -5.76
W·(rangeland) -0.0644 -12.55 -0.0574 -11.38
W·(woodland) -0.0057 -1.31 -0.0030 -0.69
W·(soil improvement) 0.0416 7.89 0.0449 8.68
W·(failed acreage) -0.0084 -1.77 -0.0051 -1.10
W·(fallow land) 0.0220 5.42 0.0191 4.79
W·(other land) -0.2697 -34.38 -0.3249 -36.27
α -0.4446 -63.62
ρ 0.4129 65.42
σ2 0.0538 0.0518
R2 0.9581 0.9457
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Table 2: The impact of prior information for n = 3, 107 observations

Posterior mean estimates

variables tight medium loose maximum
prior prior prior likelihood

constant 0.6099 0.6866 0.6963 0.6964
college graduates 0.2520 0.2703 0.2726 0.2726
homeowners 0.4955 0.5048 0.5059 0.5059
income -0.1000 -0.1253 -0.1286 -0.1286
α -0.6768 -0.6755 -0.6755 -0.6752
σ2 0.0154 0.0153 0.0153 0.0153

Posterior standard deviations

variables tight medium loose maximum
prior prior prior likelihood

constant 0.0397 0.0421 0.0424 0.0435
college graduates 0.0134 0.0139 0.0139 0.0156
homeowners 0.0151 0.0152 0.0152 0.0152
income 0.0156 0.0164 0.0165 0.0171
α 0.0235 0.0235 0.0235 0.0232
σ2 0.0004 0.0004 0.0004 0.0004

population over 25 years having college degrees, and proportion of population owning homes
as explanatory variables. All variables are log-transformed so coefficient estimates reflect
elasticity responses. This suggests a prior mean for β of zero may be appropriate. Three
alternative diagonal prior covariances were used based on prior standard deviations of 1,
10, and 10, 000 which we refer to as tight, medium and loose imposition of the prior means.
For the parameter α a prior mean of zero was used with three alternative prior standard
deviations of 1, 3, and 100. The prior parameters ν, s̄2 for the noise variance were set to
0.01, reflecting a relatively uninformative prior. We might expect the tight prior to produce
posterior estimates exhibiting some shrinkage towards the prior mean values of zero for both
α and β. The loose prior should exhibit posterior estimates similar to those from maximum
likelihood estimation.

Estimation results are presented in Table 2 and the posterior mean estimates associated
with all three priors are similar to the point estimates from maximum likelihood estimation.
There is some evidence that posterior means associated with tight imposition of the prior
produces shrinkage towards zero in the posterior estimates. The table also presents posterior
estimates for the standard deviation of the parameters, where again the loose imposition of
the prior produces results similar to maximum likelihood.

As the sample size grows, the impact of subjective prior information on the posterior
estimates should become smaller. Since the agriculture model from the previous section
involved log-transformations with coefficients reflecting elasticity responses, the same three
priors were applied to this model to explore this issue.

Posterior mean estimates for this model are presented in Table 3, and posterior standard
deviations in Table 4. No difference exists in the first three decimal digits of the posterior
estimates associated with the medium and loose prior and those from maximum likelihood.
In the case of the tight prior, estimates are the same to two decimal digits. Posterior
standard deviations are identical to three or four decimal digits for all three priors and
maximum likelihood estimates.
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Table 3: Posterior mean estimates for n = 24, 473 observations

variables tight medium loose maximum
prior prior prior likelihood

constant -0.1709 -0.1718 -0.1719 -0.1719
conservation (CRP+WRP) -0.0343 -0.0343 -0.0343 -0.0343
idle land 0.0442 0.0442 0.0441 0.0441
pasture land 0.0773 0.0772 0.0772 0.0772
rangeland -0.0489 -0.0490 -0.0490 -0.0490
woodland 0.0244 0.0244 0.0244 0.0244
soil improvement 0.0151 0.0151 0.0151 0.0151
failed acreage 0.0188 0.0188 0.0188 0.0188
fallow land 0.0365 0.0365 0.0365 0.0365
other land 0.1667 0.1664 0.1663 0.1663
farms 0.8604 0.8613 0.8614 0.8614
beef cows -0.0466 -0.0467 -0.0467 -0.0467
milk cows 0.0228 0.0228 0.0228 0.0228
hogs and pigs 0.0092 0.0092 0.0092 0.0092
sheep and lambs 0.0129 0.0129 0.0129 0.0129
hens and pullets -0.0122 -0.0123 -0.0123 -0.0123
horses and ponies -0.0883 -0.0884 -0.0884 -0.0884
owner operator -0.0234 -0.0234 -0.0234 -0.0234
rural population 0.0190 0.0190 0.0190 0.0190
farm population -0.0080 -0.0080 -0.0080 -0.0080
W·(conservation) -0.0018 -0.0018 -0.0018 -0.0018
W·(idle land) -0.0645 -0.0645 -0.0645 -0.0645
W·(pasture land) -0.0375 -0.0374 -0.0374 -0.0374
W·(rangeland) -0.0645 -0.0644 -0.0644 -0.0644
W·(woodland) -0.0059 -0.0058 -0.0058 -0.0058
W·(soil improvement) 0.0416 0.0417 0.0417 0.0417
W·(failed acreage) -0.0085 -0.0085 -0.0085 -0.0085
W·(fallow land) 0.0220 0.0220 0.0220 0.0220
W·(other land) -0.2693 -0.2697 -0.2697 -0.2697
α -0.4446 -0.4446 -0.4446 -0.4446
σ2 0.0538 0.0538 0.0538 0.0538
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Table 4: Posterior standard deviations for n = 24, 473 observations

variables tight medium loose maximum
prior prior prior likelihood

constant 0.0129 0.0129 0.0129 0.0131
conservation (CRP+WRP) 0.0028 0.0028 0.0028 0.0028
idle land 0.0032 0.0032 0.0032 0.0032
pasture land 0.0045 0.0045 0.0045 0.0045
rangeland 0.0039 0.0039 0.0039 0.0039
woodland 0.0036 0.0036 0.0036 0.0036
soil improvement 0.0031 0.0031 0.0031 0.0031
failed acreage 0.0029 0.0029 0.0029 0.0029
fallow land 0.0029 0.0029 0.0029 0.0029
other land 0.0065 0.0065 0.0065 0.0067
farms 0.0074 0.0074 0.0074 0.0081
beef cows 0.0036 0.0036 0.0036 0.0036
milk cows 0.0020 0.0020 0.0020 0.0020
hogs and pigs 0.0024 0.0024 0.0024 0.0024
sheep and lambs 0.0025 0.0025 0.0025 0.0025
hens and pullets 0.0028 0.0028 0.0028 0.0028
horses and ponies 0.0030 0.0030 0.0030 0.0030
owner operator 0.0011 0.0011 0.0011 0.0012
rural population 0.0013 0.0013 0.0013 0.0013
farm population 0.0009 0.0009 0.0009 0.0009
W·(conservation) 0.0040 0.0040 0.0040 0.0040
W·(idle land) 0.0056 0.0056 0.0056 0.0056
W·(pasture land) 0.0061 0.0061 0.0061 0.0061
W·(rangeland) 0.0051 0.0051 0.0051 0.0051
W·(woodland) 0.0044 0.0044 0.0044 0.0044
W·(soil improvement) 0.0053 0.0053 0.0053 0.0053
W·(failed acreage) 0.0048 0.0048 0.0048 0.0048
W·(fallow land) 0.0041 0.0041 0.0041 0.0041
W·(other land) 0.0065 0.0065 0.0065 0.0078
α 0.0077 0.0077 0.0077 0.0070
σ2 0.0005 0.0005 0.0005 0.0005
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Table 5: Posterior model probabilities for alternative weights and priors

Neighbors/priors g = 1 g = 10 g = 10, 000 log-likelihood
h = 1 h = 3 h = 10, 000

1 0.0000 0.0000 0.0000 -4400.87
2 0.0000 0.0000 0.0000 -4305.54
3 0.0000 0.0000 0.0000 -4233.42
4 0.0000 0.0000 0.0000 -4172.52
5 0.0000 0.0000 0.0000 -4136.45
6 0.0000 0.0000 0.0000 -4111.06
7 0.0000 0.0000 0.0000 -4092.65
8 0.0000 0.0000 0.0000 -4068.25
9 0.9464 0.9533 0.9532 -4055.57
10 0.0536 0.0467 0.0468 -4058.62
contiguity 0.0000 0.0000 0.0000 -4363.82

5.3 Model comparison over alternative spatial weights

The impact of prior information on posterior inferences regarding the appropriate spatial
weight matrix with a reasonably large sample of 3,107 US county observations is illustrated
using the voter participation data from Pace and Barry (1997) described in the previous
section. Three alternative normal priors on β and α centered on prior means of zero were
employed, since the variables were log-transformed allowing interpretation of the coefficients
as elasticities. A relatively uninformative prior on σ based on ν = s̄2 = 0.01 was used. Three
settings of a diagonal prior variance-covariance matrix g · Ik, with g = {1, 10, 104} for β
were used, reflecting tight, medium and loose implementation of the prior mean of zero. A
set of three corresponding variances, h = {1, 3, 104} were applied to the normal prior on α,
again reflecting a continuum from tight to loose.

Posterior model probabilities were calculated for models based on weight matrices with
1 to 10 nearest neighbors, and a weight matrix based on first-order spatial contiguity using
all three sets of priors. These are presented in Table 5, where we see that the priors had
little impact on the posterior model probabilities which all pointed to a model based on
nine nearest neighbors. The last column in the table shows the log-likelihood function
values indicating that a similar conclusion would arise from a likelihood-based approach to
inference regarding the appropriate spatial weight structure.

The ability of any specification test to detect the true model structure depends on a host
of issues such as signal/noise in the data generating process, the prior information employed,
and in the case of the MESS model the value of the spatial dependence parameter α. In the
case of weak spatial dependence, identification of the appropriate spatial weight structure
will be difficult. As an example, a sample of 258 European Union regions was used to
generate a y-vector based on a MESS model with the spatial weight matrix consisting of
the 5 nearest neighbors.

A series of 10 MESS models were generated based on varying α values from -1.2 to 0.6
in 0.2 increments. Other parameters were held constant at: σ2 = 1, βi = 1, i = 1, . . . , 3
and the matrix X was a set of random standard normal deviates. Three priors described
as ’loose’,’medium’ and ’tight’ in the previous section were used for the parameters β,
producing similar results. A normal prior for α with mean zero and large standard deviation
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Table 6: Posterior model probabilities for alternative weights

Neighbors/α -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00
4 0.00 0.00 0.00 0.00 0.04 0.10 0.00 0.03 0.00 0.00
5? 1.00 1.00 0.99 0.96 0.46 0.34 0.01 0.17 0.93 0.99
6 0.00 0.00 0.00 0.03 0.11 0.09 0.03 0.06 0.05 0.00
7 0.00 0.00 0.00 0.00 0.04 0.22 0.08 0.16 0.00 0.00
8 0.00 0.00 0.00 0.00 0.12 0.05 0.15 0.27 0.00 0.00
9 0.00 0.00 0.00 0.00 0.02 0.02 0.20 0.11 0.00 0.00
10 0.00 0.00 0.00 0.00 0.03 0.03 0.10 0.04 0.00 0.00
11 0.00 0.00 0.00 0.00 0.13 0.05 0.12 0.03 0.00 0.00
12 0.00 0.00 0.00 0.00 0.01 0.02 0.25 0.04 0.00 0.00

of 100 was employed, and the prior for σ2 was set to the uninformative ν = s̄2 = 0.01 as in
the previous section.

Posterior model probabilities based on tight priors are presented in Table 6, for models
associated with 1 to 12 nearest neighbor weight matrices and the alternative values of α.
In the presence of relatively strong positive or negative spatial dependence (α less than
-0.4 and greater than 0.2), there are high posterior probabilities associated with the correct
model based on 5 nearest neighbors. When spatial dependence becomes weak, the poste-
rior model probabilities become more uniformly distributed across models associated with
alternative spatial weight matrices, indicating a difficulty in distinguishing the appropriate
weight matrix structure. For the case of α = 0, posterior model probabilities are nearly
equal to the uniform prior probabilities assigned.

To illustrate the impact of sample size on this type of model comparison experiment,
we present results from a large sample of 59,267 US Census tract observations. The data
generating process used for the experiment was a SAR model, again based on 5 nearest
neighbors. Alternative models based on 1 to 10 nearest neighbors were included in the
model comparison experiment. Again, spatial dependence was varied from ρ = −0.8 to
ρ = 0.8 in 0.2 increments. Because of the large sample size entirely diffuse priors on β and
σ were used with a standard normal prior distribution on α.

Posterior model probabilities are presented in Table 7, where posterior model probabil-
ities of unity appear for the 5 nearest neighbors weight matrix (the correct model) for all
non-zero values of the parameter ρ. As in the previous illustration, zero spatial dependence
leads to a relatively uniform set of posterior model probabilities. Intuitively, as the sam-
ple size increases there is additional sample data information with which to determine the
correct spatial weight matrix specification, even in the case of very weak spatial dependence.

5.4 Model comparison for alternative explanatory variables

To illustrate the MC3 methodology in the context of the MESS model, we utilize a dataset
from Fernandez, Ley and Steel (2001a) and Sala-i-Martin (1997) concerning cross-county
growth regressions. The growth rates of per capita GDP from 1960 to 1992 for a group of 72
countries and 21 explanatory variables were examined using the Zellner g−prior discussed
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Table 7: Posterior model probabilities for a very large sample

Neighbors/ρ -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
1 0.00 0.00 0.00 0.00 0.0433 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.0635 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.0686 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.0907 0.00 0.00 0.00 0.00
5? 1.00 1.00 1.00 1.00 0.0919 1.00 1.00 1.00 1.00
6 0.00 0.00 0.00 0.00 0.1052 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.1055 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.1371 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.1545 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.1396 0.00 0.00 0.00 0.00

in section 4.2. The control parameter g for the g−prior was set to 1/k2, reflecting the prior
suggested by Fernandez et al. (2001a), since k2 > n in this application.

Fernandez et al. (2001a) considered a set of 41 possible explanatory variables, but many
of these represent categorical or other variables that proxy spatial locations. For example,
there are dummy variables for Sub-Saharan countries, the absolute latitude of the country,
Spanish, French, British colony dummies, and Latin American country dummies. The use
of the MESS model, which explicitly captures spatial dependence, should reduce the need
to consider these geographical variables. The growth rates were multiplied by 100 for ease
of presentation, so the parameter estimates should be divided by 100 for comparability with
other studies using this dataset.

Given 21 explanatory variables there are 221 = 2, 097, 152 possible ways of combining
these to form alternative models. An MC3 sampling scheme was used to produce sequential
Markov Chain Monte Carlo (MCMC) draws from the complete sequence of conditional dis-
tributions for the parameters in the model. For the parameters β and σ these take the form
of multivariate normal and chi-squared distributions. For the spatial dependence parameter
α, univariate numerical integration was used to determine the conditional posterior and a
draw was carried out using inversion.

We follow Fernandez et al. (2001a) and take advantage of the fact that the log-marginal
posterior can be stored for all unique models encountered during MCMC sampling, allowing
exact computation of posterior model probabilities. In addition, since the chain indicates
which models have posterior support, the empirical frequencies of visits by the chain provide
another method of determining posterior model probabilities. A high positive correlation
between these two model probability measures can be used to examine convergence of the
MCMC sampling scheme.12

For our purposes of demonstration, we carried out 50,000 draws, with 10,000 burn-in
draws. This sampling run uncovered 29,716 unique models, with only 57 models exhibiting

12Fernandez et al. (2001a) report running chains of 2 million draws and finding 149,507 models visited, but
25,219 models cover 90% of the posterior model probability. Only 76 models exhibited posterior probabilities
over 0.1%, and they all included between 6 and 12 regressors. They also report that smaller runs with 500,000
draws and 100,000 burn-in draws produced similar results. For example, the 76 best models were exactly the
same as those based on the run of 2 million draws with 1 million burn-in draws. Their problem involving 41
explanatory variables leads to a much large model space consisting of: 241 = 2, 199, 023, 255, 552 possibilities,
or 1 million times the number of possible models considered here.
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Table 8: Posterior probabilities for variables inclusion in the model

BMA Frequency Frequency of appearance
Post. Prob of visits in the 57 highest posterior

probability models
PRIMARY SCHOOL ENROLLMENT 0.3806 0.3773 3
POPULATION GROWTH 0.3961 0.3804 2
CIVIL LIBERTIES 0.4142 0.4118 2
SIZE OF LABOR FORCE 0.4144 0.4019 5
PUBLIC EDUCATION SHARE 0.4245 0.4091 2
POLITICAL RIGHTS 0.4278 0.4127 3
S.D. OF BLACK-MARKET PREMIUM 0.4383 0.4244 4
WAR DUMMY 0.4455 0.4366 6
FRACTION GDP IN MINING 0.4768 0.4653 7
HIGHER EDUCATION ENROLLMENT 0.5490 0.5239 21
REVOLUTIONS AND COUPS 0.5548 0.5276 12
NON-EQUIPMENT INVESTMENT 0.5831 0.5546 23
EXCHANGE RATE DISTORTIONS 0.5981 0.5751 18
# YEARS OPEN ECONOMY 0.7837 0.7604 53
ECONOMIC ORGANIZATION 0.7942 0.7631 55
AGE 0.9001 0.8791 57
RULE OF LAW 0.9020 0.8749 57
EQUIPMENT INVESTMENT 0.9482 0.9392 57
RATIO OF WORKERS TO POPULATION 0.9579 0.9510 57
LIFE EXPECTANCY 0.9627 0.9548 57
GDP LEVEL IN 1960 0.9728 0.9661 57

posterior probabilities over 0.1%, similar to the results in Fernandez et al. (2001a). Despite
this relatively short sampling time, the two measures of posterior model probability based
on frequency of visits and the BMA posterior calculation exhibited a correlation of 0.9993,
suggesting no problems with convergence. These two measures are presented in Table 8.13

In addition, the table presents the frequency distribution of variables appearing in the 57
highest posterior probability models.

In table 8 five variables exhibited posterior probabilities of inclusion greater than 90%,
with three of these (GDP LEVEL IN 1960, LIFE EXPECTANCY AND EQUIPMENT
INVESTMENT) matching the variables found by Fernandez et al. (2001a). Departures
from those findings are the RATIO OF WORKERS TO POPULATION, which exhibited
an inclusion probability less than 3 percent in Fernandez et al. (2001a) and the RULE OF
LAW variable which had a probability of inclusion of 51.6 percent. Six variables appear in
all 57 of the highest posterior probability models and two additional variables appear in 53
and 55 of these models. Four other variables appear in between 12 and 23 models, with the
remaining variables appearing in 7 or less models. These results seem consistent with those
in Fernandez et al. (2001a) who report between 6 and 12 variables in their highest posterior
probability models. Due to the lack of direct comparability to the careful and extensive
work of Fernandez et al. (2001a), it seems imprudent to make detailed comparisons of these
results to theirs.

Given posterior model probabilities, one can construct a model averaged set of estimates
and measures of dispersion. Posterior means and standard deviations of the parameter

13As in the case of Fernandez et al. (2001a), a second run of 50,000 draws produced an identical set of 57
high posterior probability models, as did smaller runs based on only 20,000 draws.
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Table 9: Bayesian model averaged estimates

Variable Coefficient std deviation Implied
t−statistic

HO : β = 0

CONSTANT -0.0000 -0.0000 -0.04
GDP LEVEL IN 1960 -0.8873 0.1255 -7.07
PRIMARY SCHOOL ENROLLMENT 0.0021 0.0047 0.45
LIFE EXPECTANCY 0.6070 0.1328 4.57
HIGHER EDUCATION ENROLLMENT -0.0433 0.0309 -1.40
PUBLIC EDUCATION SHARE 0.0004 0.0017 0.24
REVOLUTIONS AND COUPS 0.0177 0.0142 1.25
WAR DUMMY -0.0050 0.0062 -0.81
POLITICAL RIGHTS -0.0018 0.0038 -0.47
CIVIL LIBERTIES -0.0006 0.0026 -0.23
FRACTION GDP IN MINING 0.0065 0.0074 0.88
ECONOMIC ORGANIZATION 0.1358 0.0638 2.13
EXCHANGE RATE DISTORTIONS -0.0307 0.0216 -1.42
EQUIPMENT INVESTMENT 0.3172 0.0867 3.66
NON-EQUIPMENT INVESTMENT 0.0449 0.0295 1.52
S.D. OF BLACK-MARKET PREMIUM -0.0035 0.0040 -0.87
# YEARS OPEN ECONOMY -0.1191 0.0593 -2.01
AGE -0.2108 0.0840 -2.51
RULE OF LAW 0.2845 0.0952 3.00
POPULATION GROWTH 0.0008 0.0030 0.27
RATIO OF WORKERS TO POPULATION -0.2957 0.0601 -4.92
SIZE OF LABOR FORCE -0.0037 0.0047 -0.78
α -0.3324 0.0955 -3.48

estimates can be used to construct a posterior probability weighted set of estimates that
incorporate model uncertainty. This was done using the 57 models exhibiting posterior
probability above 0.1%, with the results presented in Table 9. In Table 9 the spatial
dependence parameter α is more than three standard deviations away from zero suggesting
the presence of spatial dependence in the sample data.

Only five explanatory variables exhibited parameter estimates three or more standard
deviations away from zero, and these five variables exhibited inclusion probabilities greater
than 90%. Estimates for three additional variables were more than two standard deviations
away from zero, AGE, ECONOMIC ORGANIZATION, and # YEARS OPEN ECONOMY.
These three variables exhibit inclusion probabilities between 78 and 90% and appear in 57,
55, 53 of the 57 highest posterior probability models respectively (see Table 8).

6 Conclusion

Researchers frequently rely on spatial autoregressive models in cases where the dependent
variable exhibits spatial dependence. We introduce another spatial dependence model based
on the matrix exponential (MESS) which replaces the geometric pattern of decay in the
SAR model with one of exponential decay. This specification has theoretical as well as
computational advantages over the spatial autoregressive specification. Theoretical and
numeric advantages arise from the ease of inversion, differentiation, and integration of the
matrix exponential. Moreover, the matrix exponential is always a positive definite matrix.
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Finally, the matrix exponential has a simple matrix determinant which vanishes for the
common case of a spatial weight matrix with a trace of zero. This simplification was used to
produce a closed-form solution for maximum likelihood estimates, and to provide Bayesian
estimates based on univariate numerical integration of a scalar polynomial expression.

We illustrated how the analytical and computational advantages of MESS can be ex-
ploited in maximum likelihood and Bayesian modelling situations. Bayesian modelling can
proceed using simple numerical integration or MCMC sampling. Conventional regression
diagnostics as well as Bayesian model comparison methods can be carried out by drawing
on simple extensions of the existing regression model literature. For example, in the case
of a normal-gamma prior for β, σ and a normal prior for the spatial dependence parameter,
we demonstrate that as the priors become diffuse, the modal posterior parameters equal
maximum likelihood estimates, a result that mirrors standard Bayesian linear regression.

In terms of statistical performance of the specification, simulated and applied examples
demonstrated that MESS can be applied to modelling situations where conventional spatial
autoregressive methods have been used. If the sample size is large or the priors are rel-
atively uninformative, estimates and inferences similar to those from maximum likelihood
estimation of conventional spatial autoregressive models arise. We demonstrated the ability
of MESS in the model specification arena using illustrations involving posterior inference
regarding the correct weight matrix specification as well as inference regarding explana-
tory variables for inclusion in the model. These demonstrations suggest that MESS holds
the potential to produce simultaneous estimation and inference regarding both the spatial
weights and explanatory variables. This would provide a unified and formal treatment of
the most important aspects of model uncertainty for spatial regression modelling.
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Appendix A: Uniqueness of the maximum likelihood solution

To narrow the possible number of solutions, we turn to the second order conditions. Positive
definite Q would usually prove sufficient for an interior solution, but the vector v embodies
a polynomial constraint. Therefore, we elaborate on the second order conditions taking into
account the constraints imposed by the structure of v. Consider the second derivative of
the sum-of-squared errors with respect to α shown in (43).

d2v′Qv

dα2
=

2q−1∑
i=3

ci(i− 1)(i− 2)αi−3 = 2

[
(
dv

dα
)′Q(

dv

dα
) + v′Q(

d2v

dα2
)

]
(43)

The first term inside the brackets is positive because it represents a positive definite
quadratic form. We can rewrite the second term in brackets as shown in (44),

v′Q

(
d2v

dα2

)
= v′(QA)v (44)

where A equals,

A =
(

1
α2

)


0
0

(i− 1)(i− 2)
. . .

(q − 1)(q − 2)

 . (45)

The minimum value of α depends on the eigenvalues of v′(QA)v. Note that Q is positive
definite and the real diagonal (and thus Hermitian) matrix A in (45) has two zero and
(q − 2) positive eigenvalues. Horn and Johnson (1993, p. 465) state in Theorem 7.6.3 that
the product of a positive definite matrix Q and a Hermitian matrix A has the same number
of zero, positive, and negative eigenvalues as A. Hence, QA must have two zero and (q− 2)
positive eigenvalues. Therefore, v′(QA)v is positive semi-definite implying that v′QAv has a
minimum value of 0. Since the first term in brackets in (18) always has a positive value, the
entire expression in (1) has a positive value and thus v′Qv is positive definite and strictly
convex in α. Hence, if an interior solution exists to the first order conditions, it must be
unique.

There exists an interior solution to the first order conditions. To see this, examine the
highest degree term in P (α), from (16) shown in (46).

Tmax =
α2(q−1)[y′D′(q−1)MD(q−1)y]

(q!)2
(46)

The term in brackets is the contribution to the overall sum-of-squared errors from the
last term in the truncated Taylor’s series and must be positive. Since α2(q−1) is even in α,
only the magnitude and not the sign of α matter for this result. Since lim|α|→∞Tmax →∞,
implies lim|α|→∞v′Qv →∞, there exists an interior solution to the first order conditions.
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