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Foreword

This is a set of lecture notes on cryptography compiled for 6.87s, a one week long course on cryptography taught
at MIT by Shafi Goldwasser and Mihir Bellare in the summers of 1996–2002, 2004, 2005 and 2008.

Cryptography is of course a vast subject. The thread followed by these notes is to develop and explain the
notion of provable security and its usage for the design of secure protocols.

Much of the material in Chapters 2, 3 and 7 is a result of scribe notes, originally taken by MIT graduate
students who attended Professor Goldwasser’s Cryptography and Cryptanalysis course over the years, and later
edited by Frank D’Ippolito who was a teaching assistant for the course in 1991. Frank also contributed much
of the advanced number theoretic material in the Appendix. Some of the material in Chapter 3 is from the
chapter on Cryptography, by R. Rivest, in the Handbook of Theoretical Computer Science. Chapters 4, 5, 6,
8, 9 and 11, and Sections 10.5 and 7.4.6, are from the Introduction to Modern Cryptography notes by Bellare
and Rogaway [23], and we thank Phillip Rogaway for permission to include this material. Rosario Gennaro (as
Teaching Assistant for the course in 1996) contributed Section 10.6, Section 12.4, Section 12.5, and Appendix D
to the notes, and also compiled, from various sources, some of the problems in Appendix E.

All rights reserved.

Shafi Goldwasser and Mihir Bellare Cambridge, Massachusetts, July 2008.
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C h a p t e r 1

Introduction to Modern Cryptography

Cryptography is about communication in the presence of an adversary. It encompasses many problems (encryp-
tion, authentication, key distribution to name a few). The field of modern cryptography provides a theoretical
foundation based on which we may understand what exactly these problems are, how to evaluate protocols that
purport to solve them, and how to build protocols in whose security we can have confidence. We introduce the
basic issues by discussing the problem of encryption.

1.1 Encryption: Historical Glance

The most ancient and basic problem of cryptography is secure communication over an insecure channel. Party
A wants to send to party B a secret message over a communication line which may be tapped by an adversary.

The traditional solution to this problem is called private key encryption. In private key encryption A and B
hold a meeting before the remote transmission takes place and agree on a pair of encryption and decryption
algorithms E and D, and an additional piece of information S to be kept secret. We shall refer to S as the
common secret key. The adversary may know the encryption and decryption algorithms E and D which are
being used, but does not know S.

After the initial meeting when A wants to send B the cleartext or plaintext message m over the insecure
communication line, A encrypts m by computing the ciphertext c = E(S, m) and sends c to B. Upon receipt,
B decrypts c by computing m = D(S, c). The line-tapper (or adversary), who does not know S, should not be
able to compute m from c.

Let us illustrate this general and informal setup with an example familiar to most of us from childhood, the
substitution cipher. In this method A and B meet and agree on some secret permutation f : Σ → Σ (where Σ
is the alphabet of the messages to be sent). To encrypt message m = m1 . . . mn where mi ∈ Σ, A computes
E(f,m) = f(m1) . . . f(mn). To decrypt c = c1 . . . cn where ci ∈ Σ, B computes D(f, c) = f−1(c1) . . . f−1(cn) =
m1 . . . mn = m. In this example the common secret key is the permutation f . The encryption and decryption
algorithms E and D are as specified, and are known to the adversary. We note that the substitution cipher is
easy to break by an adversary who sees a moderate (as a function of the size of the alphabet Σ) number of
ciphertexts.

A rigorous theory of perfect secrecy based on information theory was developed by Shannon [192] in 1943. 1. In
this theory, the adversary is assumed to have unlimited computational resources. Shannon showed that secure
(properly defined) encryption system can exist only if the size of the secret information S that A and B agree
on prior to remote transmission is as large as the number of secret bits to be ever exchanged remotely using the
encryption system.

1Shannon’s famous work on information theory was an outgrowth of his work on security ([193]).

11
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An example of a private key encryption method which is secure even in presence of a computationally unbounded
adversary is the one time pad. A and B agree on a secret bit string pad = b1b2 . . . bn, where bi ∈R {0, 1} (i.e
pad is chosen in {0, 1}n with uniform probability). This is the common secret key. To encrypt a message
m = m1m2 . . . mn where mi ∈ {0, 1}, A computes E(pad,m) = m ⊕ pad (bitwise exclusive or). To decrypt
ciphertext c ∈ {0, 1}n, B computes D(pad, c) = pad ⊕ c = pad ⊕ (m ⊕ pad) = m. It is easy to verify that ∀m, c
the Prpad [E(pad,m) = c] = 1

2n . From this, it can be argued that seeing c gives “no information” about what
has been sent. (In the sense that the adversary’s a posteriori probability of predicting m given c is no better
than her a priori probability of predicting m without being given c.)

Now, suppose A wants to send B an additional message m′. If A were to simply send c = E(pad,m′), then the
sum of the lengths of messages m and m′ will exceed the length of the secret key pad, and thus by Shannon’s
theory the system cannot be secure. Indeed, the adversary can compute E(pad,m)⊕E(pad,m′) = m⊕m′ which
gives information about m and m′ (e.g. can tell which bits of m and m‘ are equal and which are different). To
fix this, the length of the pad agreed upon a-priori should be the sum total of the length of all messages ever to
be exchanged over the insecure communication line.

1.2 Modern Encryption: A Computational Complexity Based The-
ory

Modern cryptography abandons the assumption that the Adversary has available infinite computing resources,
and assumes instead that the adversary’s computation is resource bounded in some reasonable way. In particular,
in these notes we will assume that the adversary is a probabilistic algorithm who runs in polynomial time.
Similarly, the encryption and decryption algorithms designed are probabilistic and run in polynomial time.

The running time of the encryption, decryption, and the adversary algorithms are all measured as a function
of a security parameter k which is a parameter which is fixed at the time the cryptosystem is setup. Thus,
when we say that the adversary algorithm runs in polynomial time, we mean time bounded by some polynomial
function in k.

Accordingly, in modern cryptography, we speak of the infeasibility of breaking the encryption system and
computing information about exchanged messages where as historically one spoke of the impossibility of breaking
the encryption system and finding information about exchanged messages. We note that the encryption systems
which we will describe and claim “secure” with respect to the new adversary are not “secure” with respect to a
computationally unbounded adversary in the way that the one-time pad system was secure against an unbounded
adversary. But, on the other hand, it is no longer necessarily true that the size of the secret key that A and
B meet and agree on before remote transmission must be as long as the total number of secret bits ever to
be exchanged securely remotely. In fact, at the time of the initial meeting, A and B do not need to know in
advance how many secret bits they intend to send in the future.

We will show how to construct such encryption systems, for which the number of messages to be exchanged
securely can be a polynomial in the length of the common secret key. How we construct them brings us to
anther fundamental issue, namely that of cryptographic, or complexity, assumptions.

As modern cryptography is based on a gap between efficient algorithms for encryption for the legitimate users
versus the computational infeasibility of decryption for the adversary, it requires that one have available prim-
itives with certain special kinds of computational hardness properties. Of these, perhaps the most basic is a
one-way function. Informally, a function is one-way if it is easy to compute but hard to invert. Other primi-
tives include pseudo-random number generators, and pseudorandom function families, which we will define and
discuss later. From such primitives, it is possible to build secure encryption schemes.

Thus, a central issue is where these primitives come from. Although one-way functions are widely believed to
exist, and there are several conjectured candidate one-way functions which are widely used, we currently do
not know how to mathematically prove that they actually exist. We shall thus design cryptographic schemes
assuming we are given a one-way function. We will use the conjectured candidate one-way functions for our
working examples, throughout our notes. We will be explicit about what exactly can and cannot be proved and
is thus assumed, attempting to keep the latter to a bare minimum.
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We shall elaborate on various constructions of private-key encryption algorithms later in the course.

The development of public key cryptography in the seventies enables one to drop the requirement that A and
B must share a key in order to encrypt. The receiver B can publish authenticated2 information (called the
public-key) for anyone including the adversary, the sender A, and any other sender to read at their convenience
(e.g in a phone book). We will show encryption algorithms in which whoever can read the public key can send
encrypted messages to B without ever having met B in person. The encryption system is no longer intended
to be used by a pair of prespecified users, but by many senders wishing to send secret messages to a single
recipient. The receiver keeps secret (to himself alone!) information (called the receiver’s private key) about the
public-key, which enables him to decrypt the cyphertexts he receives. We call such an encryption method public
key encryption.

We will show that secure public key encryption is possible given a trapdoor function. Informally, a trapdoor
function is a one-way function for which there exists some trapdoor information known to the receiver alone,
with which the receiver can invert the function. The idea of public-key cryptosystems and trapdoor functions
was introduced in the seminal work of Diffie and Hellman in 1976 [71, 72]. Soon after the first implementations
of their idea were proposed in [176], [170], [143].

A simple construction of public key encryption from trapdoor functions goes as follows. Recipient B can choose
at random a trapdoor function f and its associated trapdoor information t, and set its public key to be a
description of f and its private key to be t. If A wants to send message m to B, A computes E(f, m) = f(m).
To decrypt c = f(m), B computes f−1(c) = f−1(f(m)) = m. We will show that this construction is not secure
enough in general, but construct probabilistic variants of it which are secure.

1.3 A Short List of Candidate One Way Functions

As we said above, the most basic primitive for cryptographic applications is a one-way function which is “easy”
to compute but “hard” to invert. (For public key encryption, it must also have a trapdoor.) By “easy”, we
mean that the function can be computed by a probabilistic polynomial time algorithm, and by “hard” that any
probabilistic polynomial time (PPT) algorithm attempting to invert it will succeed with “small” probability
(where the probability ranges over the elements in the domain of the function.) Thus, to qualify as a potential
candidate for a one-way function, the hardness of inverting the function should not hold only on rare inputs to
the function but with high probability over the inputs.

Several candidates which seem to posses the above properties have been proposed.

1. Factoring. The function f : (x, y) 7→ xy is conjectured to be a one way function. The asymptotically
proven fastest factoring algorithms to date are variations on Dixon’s random squares algorithm [131]. It

is a randomized algorithm with running time L(n)
√

2 where L(n) = e
√

log n log log n. The number field sieve
by Lenstra, Lenstra, Manasee, and Pollard with modifications by Adlemann and Pomerance is a factoring
algorithm proved under a certain set of assumptions to factor integers in expected time

e((c+o(1))(log n)
1
3 (log log n)

2
3 )

[133, 3].

2. The discrete log problem. Let p be a prime. The multiplicative group Z∗
p = ({x < p|(x, p) = 1}, · mod p)

is cyclic, so that Z∗
p = {gi mod p|1 ≤ i ≤ p − 1} for some generator g ∈ Z∗

p . The function f : (p, g, x) 7→
(gx mod p, p, g) where p is a prime and g is a generator for Z∗

p is conjectured to be a one-way function.
Computing f(p, g, x) can be done in polynomial time using repeated squaring. However, The fastest
known proved solution for its inverse, called the discrete log problem is the index-calculus algorithm,

with expected running time L(p)
√

2 (see [131]). An interesting problem is to find an algorithm which will
generate a prime p and a generator g for Z∗

p . It is not known how to find generators in polynomial time.

However, in [8], E. Bach shows how to generate random factored integers (in a given range N
2 . . . N).

2Saying that the information is “authenticated” means that the sender is given a guarantee that the information was published
by the legal receiver. How this can be done is discussed in a later chapter.
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Coupled with a fast primality tester (as found in [131], for example), this can be used to efficiently
generate random tuples (p − 1, q1, . . . , qk) with p prime. Then picking g ∈ Z∗

p at random, it can be

checked if (g, p − 1) = 1, ∀qi, g
p−1
qi mod p 6= 1, and gp−1 mod p = 1, in which case order(g) = p − 1

(order(g) = |{gi mod p|1 ≤ i ≤ p− 1}|). It can be shown that the density of Z∗
p generators is high so that

few guesses are required. The problem of efficiently finding a generator for a specific Z∗
p is an intriguing

open research problem.

3. Subset sum. Let ai ∈ {0, 1}n,~a = (a1, . . . , an), si ∈ {0, 1}, ~s = (s1, . . . , sn), and let f : (~a,~s) 7→
(~a,

∑n
i=1 siai). An inverse of (~a,

∑n
i=1 siai) under f is any (~a,~s′i) so that

∑n
i=1 siai =

∑n
i=1 s′iai. This

function f is a candidate for a one way function. The associated decision problem (given (~a, y), does
there exists ~s so that

∑n
i=1 siai = y?) is NP-complete. Of course, the fact that the subset-sum problem

is NP-complete cannot serve as evidence to the one-wayness of fss. On the other hand, the fact that the
subset-sum problem is easy for special cases (such as “hidden structure” and low density) can not serve
as evidence for the weakness of this proposal. The conjecture that f is one-way is based on the failure
of known algorithm to handle random high density instances. Yet, one has to admit that the evidence in
favor of this candidate is much weaker than the evidence in favor of the two previous ones.

4. DES with fixed message. Fix a 64 bit message M and define the function f(K) = DESK(M) which takes
a 56 bit key K to a 64 bit output f(K). This appears to be a one-way function. Indeed, this construction
can even be proven to be one-way assuming DES is a family of pseudorandom functions, as shown by
Luby and Rackoff [139].

5. RSA. This is a candidate one-way trapdoor function. Let N = pq be a product of two primes. It is
believed that such an N is hard to factor. The function is f(x) = xe mod N where e is relatively prime to
(p− 1)(q − 1). The trapdoor is the primes p, q, knowledge of which allows one to invert f efficiently. The
function f seems to be one-way. To date the best attack is to try to factor N , which seems computationally
infeasible.

In Chapter 2 we discuss formal definitions of one-way functions and are more precise about the above construc-
tions.

1.4 Security Definitions

So far we have used the terms “secure” and “break the system” quite loosely. What do we really mean? It
is clear that a minimal requirement of security would be that: any adversary who can see the ciphertext and
knows which encryption and decryption algorithms are being used, can not recover the entire cleartext. But,
many more properties may be desirable. To name a few:

1. It should be hard to recover the messages from the ciphertext when the messages are drawn from arbitrary
probability distributions defined on the set of all strings (i.e arbitrary message spaces). A few examples
of message spaces are: the English language, the set {0, 1}). We must assume that the message space is
known to the adversary.

2. It should be hard to compute partial information about messages from the ciphertext.

3. It should be hard to detect simple but useful facts about traffic of messages, such as when the same
message is sent twice.

4. The above properties should hold with high probability.

In short, it would be desirable for the encryption scheme to be the mathematical analogy of opaque envelopes
containing a piece of paper on which the message is written. The envelopes should be such that all legal senders
can fill it, but only the legal recipient can open it.

We must answer a few questions:
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• How can “opaque envelopes” be captured in a precise mathematical definition? Much of Chapters 6 and 7
is dedicated to discussing the precise definition of security in presence of a computationally bounded
adversary.

• Are “opaque envelopes” achievable mathematically? The answer is positive . We will describe the the
proposals of private (and public) encryption schemes which we prove secure under various assumptions.

We note that the simple example of a public-key encryptions system based on trapdoor function, described in
the previous section, does not satisfy the above properties. We will show later, however, probabilistic variants of
the simple system which do satisfy the new security requirements under the assumption that trapdoor functions
exist. More specifically, we will show probabilistic variants of RSA which satisfy the new security requirement
under, the assumption that the original RSA function is a trapdoor function, and are similar in efficiency to the
original RSA public-key encryption proposal.

1.5 The Model of Adversary

The entire discussion so far has essentially assumed that the adversary can listen to cyphertexts being exchanged
over the insecure channel, read the public-file (in the case of public-key cryptography), generate encryptions
of any message on his own (for the case of public-key encryption), and perform probabilistic polynomial time
computation. This is called a passive adversary.

One may imagine a more powerful adversary who can intercept messages being transmitted from sender to
receiver and either stop their delivery all together or alter them in some way. Even worse, suppose the adversary
can request a polynomial number of cyphertexts to be decrypted for him. We can still ask whether there exists
encryption schemes (public or secret) which are secure against such more powerful adversaries.

Indeed, such adversaries have been considered and encryption schemes which are secure against them designed.
The definition of security against such adversaries is more elaborate than for passive adversaries.

In Chapters 6 and 7 we consider a passive adversary who knows the probability distribution over the message
space. We will also discuss more powerful adversaries and appropriate definitions of security.

1.6 Road map to Encryption

To summarize the introduction, our challenge is to design both secure private-key and public-key encryption
systems which provably meet our definition of security and in which the operations of encryption and decryption
are as fast as possible for the sender and receiver.

Chapters 6 and 7 embark on an in depth investigation of the topic of encryption, consisting of the following
parts. For both private-key and public-key encryption, we will:

• Discuss formally how to define security in presence of a bounded adversary.

• Discuss current proposals of encryption systems and evaluate them respect to the security definition
chosen.

• Describe how to design encryption systems which we can prove secure under explicit assumptions such as
the existence of one-way functions, trapdoor functions, or pseudo random functions.

• Discuss efficiency aspects of encryption proposals, pointing out to possible ways to improve efficiency by
performing some computations off-line, in batch mode, or in a incremental fashion.

We will also overview some advanced topics connected to encryption such chosen-ciphertext security, non-
malleability, key-escrow proposals, and the idea of shared decryption among many users of a network.



C h a p t e r 2

One-way and trapdoor functions

One Way functions, namely functions that are “easy” to compute and “hard” to invert, are an extremely
important cryptographic primitive. Probably the best known and simplest use of one-way functions, is for
passwords. Namely, in a time-shared computer system, instead of storing a table of login passwords, one can
store, for each password w, the value f(w). Passwords can easily be checked for correctness at login, but even
the system administrator can not deduce any user’s password by examining the stored table.

In Section 1.3 we had provided a short list of some candidate one-way functions. We now develop a theoretical
treatment of the subject of one-way and trapdoor functions, and carefully examine the candidate one-way
functions proposed in the literature. We will occasionaly refer to facts about number theory discussed in
Chapter C.

We begin by explaining why one-way functions are of fundamental importance to cryptography.

2.1 One-Way Functions: Motivation

In this section, we provide motivation to the definition of one-way functions. We argue that the existence of
one-way functions is a necessary condition to the existence of most known cryptographic primitives (including
secure encryption and digital signatures). As the current state of knowledge in complexity theory does not allow
to prove the existence of one-way function, even using more traditional assumptions as P 6= NP, we will have
to assume the existence of one-way functions. We will later try to provide evidence to the plausibility of this
assumption.

As stated in the introduction chapter, modern cryptography is based on a gap between efficient algorithms
guaranteed for the legitimate user versus the unfeasibility of retrieving protected information for an adver-
sary. To make the following discussion more clear, let us concentrate on the cryptographic task of secure data
communication, namely encryption schemes.

In secure encryption schemes, the legitimate user is able to decipher the messages (using some private infor-
mation available to him), yet for an adversary (not having this private information) the task of decrypting the
ciphertext (i.e., “breaking” the encryption) should be infeasible. Clearly, the breaking task can be performed by
a non-deterministic polynomial-time machine. Yet, the security requirement states that breaking should not be
feasible, namely could not be performed by a probabilistic polynomial-time machine. Hence, the existence of se-
cure encryption schemes implies that there are tasks performed by non-deterministic polynomial-time machines
yet cannot be performed by deterministic (or even randomized) polynomial-time machines. In other words, a
necessary condition for the existence of secure encryption schemes is that NP is not contained in BPP (and
hence that P 6= NP).

However, the above mentioned necessary condition (e.g., P 6= NP) is not a sufficient one. P 6= NP only implies

16
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that the encryption scheme is hard to break in the worst case. It does not rule-out the possibility that the
encryption scheme is easy to break in almost all cases. In fact, one can easily construct “encryption schemes”
for which the breaking problem is NP-complete and yet there exist an efficient breaking algorithm that succeeds
on 99% of the cases. Hence, worst-case hardness is a poor measure of security. Security requires hardness on
most cases or at least average-case hardness. Hence, a necessary condition for the existence of secure encryption
schemes is the existence of languages in NP which are hard on the average. Furthermore, P 6= NP is not
known to imply the existence of languages in NP which are hard on the average.

The mere existence of problems (in NP) which are hard on the average does not suffice. In order to be able to
use such problems we must be able to generate such hard instances together with auxiliary information which
enable to solve these instances fast. Otherwise, the hard instances will be hard also for the legitimate users and
they gain no computational advantage over the adversary. Hence, the existence of secure encryption schemes
implies the existence of an efficient way (i.e. probabilistic polynomial-time algorithm) of generating instances
with corresponding auxiliary input so that

(1) it is easy to solve these instances given the auxiliary input; and

(2) it is hard on the average to solve these instances (when not given the auxiliary input).

We avoid formulating the above “definition”. We only remark that the coin tosses used in order to generate the
instance provide sufficient information to allow to efficiently solve the instance (as in item (1) above). Hence,
without loss of generality one can replace condition (2) by requiring that these coin tosses are hard to retrieve
from the instance. The last simplification of the above conditions essentially leads to the definition of a one-way
function.

2.2 One-Way Functions: Definitions

In this section, we present several definitions of one-way functions. The first version, hereafter referred to as
strong one-way function (or just one-way function), is the most convenient one. We also present weak one-way
functions which may be easier to find and yet can be used to construct strong one way functios, and non-uniform
one-way functions.

2.2.1 (Strong) One Way Functions

The most basic primitive for cryptographic applications is a one-way function. Informally, this is a function
which is “easy” to compute but “hard” to invert. Namely, any probabilistic polynomial time (PPT) algorithm
attempting to invert the one-way function on a element in its range, will succeed with no more than “negligible”
probability, where the probability is taken over the elements in the domain of the function and the coin tosses
of the PPT attempting the inversion.

This informal definition introduces a couple of measures that are prevalent in complexity theoretic cryptography.
An easy computation is one which can be carried out by a PPT algorithm; and a function ν: N → R is negligible
if it vanishes faster than the inverse of any polynomial. More formally,

Definition 2.1 ν is negligible if for every constant c ≥ 0 there exists an integer kc such that ν(k) < k−c for all
k ≥ kc.

Another way to think of it is ν(k) = k−ω(1).

A few words, concerning the notion of negligible probability, are in place. The above definition and discussion
considers the success probability of an algorithm to be negligible if as a function of the input length the success
probability is bounded by any polynomial fraction. It follows that repeating the algorithm polynomially (in
the input length) many times yields a new algorithm that also has a negligible success probability. In other
words, events which occur with negligible (in n) probability remain negligible even if the experiment is repeated
for polynomially (in k) many times. Hence, defining negligible success as “occurring with probability smaller
than any polynomial fraction” is naturally coupled with defining feasible as “computed within polynomial
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time”. A “strong negation” of the notion of a negligible fraction/probability is the notion of a non-negligible
fraction/probability. we say that a function ν is non-negligible if there exists a polynomial p such that for all
sufficiently large k’s it holds that ν(k) > 1

p(k) . Note that functions may be neither negligible nor non-negligible.

Definition 2.2 A function f : {0, 1}∗ → {0, 1}∗ is one-way if:

(1) there exists a PPT that on input x output f(x);

(2) For every PPT algorithm A there is a negligible function νA such that for sufficiently large k,

Pr
[

f(z) = y : x
$← {0, 1}k ; y ← f(x) ; z ← A(1k, y)

]

≤ νA(k)

Remark 2.3 The guarantee is probabilistic. The adversary is not unable to invert the function, but has a low
probability of doing so where the probability distribution is taken over the input x to the one-way function
where x if of length k, and the possible coin tosses of the adversary. Namely, x is chosen at random and y is
set to f(x).

Remark 2.4 The advsersary is not asked to find x; that would be pretty near impossible. It is asked to find
some inverse of y. Naturally, if the function is 1-1 then the only inverse is x.

Remark 2.5 Note that the adversary algorithm takes as input f(x) and the security parameter 1k (expressed
in unary notatin) which corresponds to the binary length of x. This represents the fact the adversary can work
in time polynomial in |x|, even if f(x) happends to be much shorter. This rules out the possibility that a
function is considered one-way merely because the inverting algorithm does not have enough time to print the
output. Consider for example the function defined as f(x) = y where y is the log k least significant bits of x
where |x| = k. Since the |f(x)| = log |x| no algorithm can invert f in time polynomial in |f(x)|, yet there exists
an obvious algorithm which finds an inverse of f(x) in time polynomial in |x|. Note that in the special case of
length preserving functions f (i.e., |f(x)| = |x| for all x’s), the auxiliary input is redundant.

Remark 2.6 By this definition it trivially follows that the size of the output of f is bounded by a polynomial
in k, since f(x) is a poly-time computable.

Remark 2.7 The definition which is typical to definitions from computational complexity theory, works with
asymptotic complexity—what happens as the size of the problem becomes large. Security is only asked to hold
for large enough input lengths, namely as k goes to infinity. Per this definition, it may be entirely feasible
to invert f on, say, 512 bit inputs. Thus such definitions are less directly relevant to practice, but useful for
studying things on a basic level. To apply this definition to practice in cryptography we must typically envisage
not a single one-way function but a family of them, parameterized by a security parameter k. That is, for each
value of the security parameter k there is be a specific function f : {0, 1}k → {0, 1}∗. Or, there may be a family
of functions (or cryptosystems) for each value of k. We shall define such familes in subsequent section.

The next two sections discuss variants of the strong one-way function definition. The first time reader is
encouraged to directly go to Section 2.2.4.

2.2.2 Weak One-Way Functions

One way functions come in two flavors: strong and weak. The definition we gave above, refers to a strong way
function. We could weaken it by replacing the second requirement in the definition of the function by a weaker
requirement as follows.

Definition 2.8 A function f : {0, 1}∗ → {0, 1}∗ is weak one-way if:
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(1) there exists a PPT that on input x output f(x);

(2) There is a polynomial functions Q such that for every PPT algorithm A, and for sufficiently large k,

Pr
[

f(z) 6= y : x
$← {0, 1}k ; y ← f(x) ; z ← A(1k, y)

]

≥ 1

Q(k)

The difference between the two definitions is that whereas we only require some non-negligible fraction of the
inputs on which it is hard to invert a weak one-way function, a strong one-way function must be hard to invert
on all but a negligible fraction of the inputs. Clearly, the latter is preferable, but what if only weak one-way
functions exist ? Our first theorem is that the existence of a weak one way function implies the existence of a
strong one way function. Moreover, we show how to construct a strong one-way function from a weak one. This
is important in practice as illustarted by the following example.

Example 2.9 Consider for example the function f : Z × Z 7→ Z where f(x, y) = x · y. This function can be
easily inverted on at least half of its outputs (namely, on the even integers) and thus is not a strong one way
function. Still, we said in the first lecture that f is hard to invert when x and y are primes of roughly the same
length which is the case for a polynomial fraction of the k-bit composite integers. This motivated the definition
of a weak one way function. Since the probability that an k-bit integer x is prime is approximately 1/k, we get
the probability that both x and y such that |x| = |y| = k are prime is approximately 1/k2. Thus, for all k,
about 1 − 1

k2 of the inputs to f of length 2k are prime pairs of equal length. It is believed that no adversary
can invert f when x and y are primes of the same length with non-negligible success probability, and under this
belief, f is a weak one way function (as condition 2 in the above definition is satisfied for Q(k) = O(k2)).

Theorem 2.10 Weak one way functions exist if and only if strong one way functions exist.

Proof Sketch: By definition, a strong one way function is a weak one way function. Now assume that f is a
weak one way function such that Q is the polynomial in condition 2 in the definition of a weak one way function.
Define the function

f1(x1 . . . xN ) = f(x1) . . . f(xN )

where N = 2kQ(k) and each xi is of length k.

We claim that f1 is a strong one way function. Since f1 is a concatenation of N copies of the function f , to
correctly invert f1, we need to invert f(xi) correctly for each i. We know that every adversary has a probability
of at least 1

Q(k) to fail to invert f(x) (where the probability is taken over x ∈ {0, 1}k and the coin tosses of the

adversary), and so intuitively, to invert f1 we need to invert O(kQ(k)) instances of f . The probability that the
adversary will fail for at least one of these instances is extremely high.

The formal proof (which is omitted here and will be given in appendix) will take the form of a reduction; that is,
we will assume for contradiction that f1 is not a strong one way function and that there exists some adversary
A1 that violates condition 2 in the definition of a strong one way function. We will then show that A1 can be
used as a subroutine by a new adversary A that will be able to invert the original function f with probability
better than 1− 1

Q(|x|) (where the probability is taken over the inputs x ∈ {0, 1}k and the coin tosses of A). But

this will mean that f is not a weak one way function and we have derived a contradiction.

This proof technique is quite typical of proofs presented in this course. Whenever such a proof is presented it
is important to examine the cost of the reduction. For example, the construction we have just outlined is not
length preserving, but expands the size of the input to the function quadratically.

2.2.3 Non-Uniform One-Way Functions

In the above two definitions of one-way functions the inverting algorithm is probabilistic polynomial-time.
Stronger versions of both definitions require that the functions cannot be inverted even by non-uniform families
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of polynomial size algorithm We stress that the “easy to compute” condition is still stated in terms of uniform
algorithms. For example, following is a non-uniform version of the definition of (strong) one-way functions.

Definition 2.11 A function f is called non-uniformly strong one-way if the following two conditions hold

(1) easy to compute: as before There exists a PPT algorithm to compute for f .

(2) hard to invert: For every (even non-uniform) family of polynomial-size algorithms A = {Mk}k∈N, there
exists a negligble νA such that for all sufficiently large k’s

Pr
[

f(z) 6= y : x
$← {0, 1}k ; y ← f(x) ; z ← Mk(y)

]

≤ νA(k)

Note that it is redundent to give 1k as an auxiliary input to Mk.

It can be shown that if f is non-uniformly one-way then it is (strongly) one-way (i.e., in the uniform sense). The
proof follows by converting any (uniform) probabilistic polynomial-time inverting algorithm into a non-uniform
family of polynomial-size algorithm, without decreasing the success probability. Details follow. Let A′ be a
probabilistic polynomial-time (inverting) algorithm. Let rk denote a sequence of coin tosses for A′ maximizing
the success probability of A′. The desired algorithm Mk incorporates the code of algorithm A′ and the sequence
rk (which is of length polynomial in k).

It is possible, yet not very plausible, that strongly one-way functions exist and but there are no non-uniformly
one-way functions.

2.2.4 Collections Of One Way Functions

Instead of talking about a single function f : {0, 1}∗ → {0, 1}∗, it is often convenient to talk about collections of
functions, each defined over some finite domain and finite ranges. We remark, however, that the single function
format makes it easier to prove properties about one way functions.

Definition 2.12 Let I be a set of indices and for i ∈ I let Di and Ri be finite. A collection of strong one way
functions is a set F = {fi : Di → Ri}i∈I satisfying the following conditions.

(1) There exists a PPT S1 which on input 1k outputs an i ∈ {0, 1}k ∩ I

(2) There exists a PPT S2 which on input i ∈ I outputs x ∈ Di

(3) There exists a PPT A1 such that for i ∈ I and x ∈ Di, A1(i, x) = fi(x).

(4) For every PPT A there exists a negligible νA such that ∀ k large enough

Pr
[

fi(z) = y : i
$← I ; x

$← Di ; y ← fi(x) ; z ← A(i, y)
]

≤ νA(k)

(here the probability is taken over choices of i and x, and the coin tosses of A).

In general, we can show that the existence of a single one way function is equivalent to the existence of a
collection of one way functions. We prove this next.

Theorem 2.13 A collection of one way functions exists if and only if one way functions exist.

Proof: Suppose that f is a one way function.

Set F = {fi : Di → Ri}i∈I where I = {0, 1}∗ and for i ∈ I, take Di = Ri = {0, 1}|i| and fi(x) = f(x).
Furthermore, S1 uniformly chooses on input 1k, i ∈ {0, 1}k, S2 uniformly chooses on input i, x ∈ Di = {0, 1}|i|
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and A1(i, x) = fi(x) = f(x). (Note that f is polynomial time computable.) Condition 4 in the definition of a
collection of one way functions clearly follows from the similar condition for f to be a one way function.

Now suppose that F = {fi : Di → Ri}i∈I is a collection of one way functions. Define fF (1k, r1, r2) =
A1(S1(1

k, r1), S2(S1(1
k, r1), r2)) where A1, S1, and S2 are the functions associated with F as defined in Defini-

tion 2.12. In other words, fF takes as input a string 1k ◦ r1 ◦ r2 where r1 and r2 will be the coin tosses of S1

and S2, respectively, and then

• Runs S1 on input 1k using the coin tosses r1 to get the index i = S1(1
k, r1) of a function fi ∈ F .

• Runs S2 on the output i of S1 using the coin tosses r2 to find an input x = S2(i, r2).

• Runs A1 on i and x to compute fF (1k, r1, r2) = A1(i, x) = fi(x).

Note that randomization has been restricted to the input of fF and since A1 is computable in polynomial time,
the conditions of a one way function are clearly met.

A possible example is the following, treated thoroughly in Section 2.3.

Example 2.14 The hardness of computing discrete logarithms yields the following collection of functions.
Define EXP = {EXPp,g(i) = gi mod p, EXPp, g : Zp → Z∗

p}<p,g>∈I for I = {< p, g > p prime, g generator
for Z∗

p}.

2.2.5 Trapdoor Functions and Collections

Infromally, a trapdoor function f is a one-way function with an extra property. There also exists a secret inverse
function (thetrapdoor) that allows its possessor to efficiently invert f at any point in the domain of his choosing.
It should be easy to compute f on any point, but infeasible to invert f on any point without knowledge of the
inverse function . Moreover, it should be easy to generate matched pairs of f ’s and corresponding trapdoor.
Once a matched pair is generated, the publication of f should not reveal anything about how to compute its
inverse on any point.

Definition 2.15 A trapdoor function is a one-way function f : {0, 1}∗ → {0, 1}∗ such that there exists a
polynomial p and a probabilistic polynomial time algorithm I such that for every k there exists an tk ∈ {0, 1}∗
such that |tk| ≤ p(k) and for all x ∈ {0, 1}∗, I(f(x), tk) = y such that f(y) = f(x).

An example of a function which may be trapdoor if factoring integers is hard was proposed by Rabin[170]. Let
f(x, n) = x2 mod n where n = pq a product of two primes and x ∈ Z∗

n. Rabin[170] has shown that inverting
f is easy iff factoring composite numbers product of two primes is easy. The most famous candidate trapdoor
function is the RSA[176] function f(x, n, l) = xl mod n where (l, φ(n)) = 1.

Again it will be more convenient to speak of families of trapdoor functions parameterized by security parameter
k.

Definition 2.16 Let I be a set of indices and for i ∈ I let Di be finite. A collection of strong one way trapdoor
functions is a set F = {fi : Di → Di}i∈I satisfying the following conditions.

(1) There exists a polynomial p and a PTM S1 which on input 1k outputs pairs (i, ti) where i ∈ I ∩ {0, 1}k

and |ti| < p(k) The information ti is referred to as the trapdoor of i.

(2) There exists a PTM S2 which on input i ∈ I outputs x ∈ Di

(3) There exists a PTM A1 such that for i ∈ I, x ∈ Di A1(i, x) = fi(x).

(4) There exists a PTM A2 such that A2(i, ti, fi(x)) = x for all x ∈ Di and for all i ∈ I (that is, fi is easy to
invert when ti is known).
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(5) For every PPT A there exists a negligble νA such that ∀ k large enough

Pr
[

fi(z) = y : i
$← I ; x

$← Di ; y ← fi(x) ; z ← A(i, y)
]

≤ νA(k)

A possible example is the following treated in in detail in the next sections.

Example 2.17 [The RSA collections of possible trapdoor functions ] Let p, q denote primes, n = pq, Z∗
n = {1 ≤

x ≤ n, (x, n) = 1} the multiplicative group whose cardinality is ϕ(n) = (p − 1)(q − 1), and e ∈ Zp−1 relatively
prime to ϕ(n). Our set of indices will be I = {< n, e > such that n = pq |p| = |q|} and the trapdoor associated
with the particular index < n, e > be d such that ed = 1 mod φ(n). Let RSA = {RSA<n,e> : Z∗

n → Z∗
n}<n,e>∈I

where RSA<n,e>(x) = xe mod n

2.3 In Search of Examples

Number theory provides a source of candidates for one way and trapdoor functions. Let us start our search for
examples by a digression into number theorey. See also the mini-course on number theory in Appendix C.

Calculating Inverses in Z∗
p

Consider the set Z∗
p = {x : 1 ≤ x < p and gcd(x, p) = 1} where p is prime. Z∗

p is a group under multiplicaton
modulo p. Note that to find the inverse of x ∈ Z∗

p; that is, an element y ∈ Z∗
p such that yx ≡ 1 mod p, we can

use the Euclidean algorithm to find integers y and z such that yx + zp = 1 = gcd(x, p). Then, it follows that
yx ≡ 1 mod p and so y mod p is the desired inverse.

The Euler Totient Function ϕ(n)

Euler’s Totient Function ϕ is defined by ϕ(n) = |{x : 1 ≤ x < p and gcd(x, n) = 1}. The following are facts
about ϕ.

(1) For p a prime and α ≥ 1, ϕ(pα) = pα−1(p − 1).

(2) For integers m,n with gcd(m, n) = 1, ϕ(mn) = ϕ(m)ϕ(n).

Using the rules above, we can find ϕ for any n because, in general,

ϕ(n) = ϕ(

k∏

i=1

pi
αi)

=

k∏

i=1

ϕ(pi
αi)

=

k∏

i=1

pi
αi−1(pi − 1)

Z∗
p Is Cyclic

A group G is cyclic if and only if there is an element g ∈ G such that for every a ∈ G, there is an integer i such
that gi = a. We call g a generator of the group G and we denote the index i by indg(a).
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Theorem 2.18 (Gauss) If p is prime then Z∗
p is a cyclic group of order p − 1. That is, there is an element

g ∈ Z∗
p such that gp−1 ≡ 1 mod p and gi 6≡ 1 mod p for i < p − 1.

¿From Theorem 2.18 the following fact is immediate.

Fact 2.19 Given a prime p, a generator g for Z∗
p, and an element a ∈ Z∗

p, there is a unique 1 ≤ i ≤ p − 1 such

that a = gi.

The Legendre Symbol

Fact 2.20 If p is a prime and g is a generator of Z∗
p, then

gc = gagb mod p ⇔ c = a + b mod p − 1

¿From this fact it follows that there is an homomorphism f : Z∗
p → Zp−1 such that f(ab) = f(a) + f(b). As

a result we can work with Zp−1 rather than Z∗
p which sometimes simplifies matters. For example, suppose we

wish to determine how many elements in Z∗
p are perfect squares (these elements will be referred to as quadratic

residues modulo p). The following lemma tells us that the number of quadratic residues modulo p is 1
2 |Z∗

p|.

Lemma 2.21 a ∈ Z∗
p is a quadratic residue modulo p if and only if a = gx mod p where x satisfies 1 ≤ x ≤ p−1

and is even.

Proof: Let g be a generator in Z∗
p.

(⇐) Suppose an element a = g2x for some x. Then a = s2 where s = gx.
(⇒) Consider the square of an element b = gy. b2 = g2y ≡ ge mod p where e is even since 2y is reduced modulo
p − 1 which is even. Therefore, only those elements which can be expressed as ge, for e an even integer, are
squares.

Consequently, the number of quadratic residues modulo p is the number of elements in Z∗
p which are an even

power of some given generator g. This number is clearly 1
2 |Z∗

p|.
The Legendre Symbol Jp(x) specifies whether x is a perfect square in Z∗

p where p is a prime.

Jp(x) =







1 if x is a square in Z∗
p

0 if gcd(x, p) 6= 1
−1 if x is not a square in Z∗

p

The Legendre Symbol can be calculated in polynomial time due to the following theorem.

Theorem 2.22 [Euler’s Criterion] Jp(x) ≡ x
p−1
2 mod p.

Using repeated doubling to compute exponentials, one can calculate x
p−1
2 in O(|p|3) steps. Though this Jp(x)

can be calculated when p is a prime, it is not known how to determine for general x and n, whether x is a square
in Z∗

n.

2.3.1 The Discrete Logarithm Function

Let EXP be the function defined by EXP(p, g, x) = (p, g, gx mod p). We are particularly interested in the case
when p is a prime and g is a generator of Z∗

p . Deine an index set I = {(p, g) : p is prime and g is a generator of Z∗
p}.

For (p, g) ∈ I, it follows by Fact 2.19 that EXP(p, g, x) has a unique inverse and this allows us to define for



24 Goldwasser and Bellare

y ∈ Z∗
p the discrete logarithm function DL by DL(p, g, y) = (p, g, x) where x ∈ Zp−1 and gx ≡ y mod p. Given

p and g, EXP(p, g, x) can easily be computed in polynomial time. However, it is unknown whether or not its
inverse DL can be computed in polynomial time unless p − 1 has very small factors (see [164]). Pohlig and
Hellman [164] present effective techniques for this problem when p − 1 has only small prime factors.

The best fully proved up-to-date algorithm for computing discrete logs is the Index-calculus algorithm. The

expected running time of such algorithm is polynomial in e
√

k log k where k is the size of the modulos p. There is
a recent variant of the number field sieve algorithm for discrete logarithm which seems to work in faster running

time of e(k log k)
1
3 . It interesting to note that working over the finite field GF (2k) rather than working modulo p

seems to make the problem substantially easier (see Coppersmith [61] and Odlyzko [158]). Curiously, computing
discrete logarithms and factoring integers seem to have essentially the same difficulty at least as indicated by
the current state of the art algorithms.

With all this in mind, we consider EXP a good candidate for a one way function. We make the following explicit
assumption in this direction. The assumption basically says that there exists no polynomial time algorithm that
can solvethe discrete log problem with prime modulos.

Strong Discrete Logarithm Assumption (DLA):1 For every polynomial Q and every PPT A, for all
sufficiently large k,

Pr[A(p, g, y) = x such that y ≡ gx mod p where 1 ≤ x ≤ p − 1] <
1

Q(k)

(where the probability is taken over all primes p such that |p| ≤ k, the generators g of Z∗
p, x ∈ Z∗

p and the coin
tosses of A).

An immediate consequence of this assumption we get

Theorem 2.23 Under the strong discrete logarithm assumption there exists a strong one way function; namely,
exponentiation modulo a prime p.

Some useful properties of EXP and DL follow.

Remark 2.24 If DL(p, g1, y) is easy to calculate for some generator g1 ∈ Z∗
p then it is also easy to calculate

DL(p, g2, y) for any other generator g2 ∈ Z∗
p. (The group Z∗

p has ϕ(p − 1) generators.) To see this suppose
that x1 = DL(p, g1, y) and x2 = DL(p, g2, y). If g2 ≡ g1

z mod p where gcd(z, p − 1) then y ≡ g1
x2z mod p and

consequently, x2 ≡ z−1x1 mod p − 1.

The following result shows that to efficiently calculate DL(p, g, y) for (p, g) ∈ I it will suffice to find a polynomial
time algorithm which can calculate DL(p, g, y) on at least a 1

Q(|p|) fraction of the possible inputs y ∈ Z∗
p for

some polynomial Q.

Proposition 2.25 Let ǫ, δ ∈ (0, 1) and let S be a subset of the prime integers. Suppose there is a probabilistic
algorithm A such that for all primes p ∈ S and for all generators g of Z∗

p

Pr[A(p, g, y) = x such that gx ≡ y mod p] > ǫ

(where the probability is taken over y ∈ Z∗
p and the coin tosses of A) and A runs in time polynomial in |p|. Then

there is a probabilistic algorithm A′ running in time polynomial in ǫ−1, δ−1, and |p| such that for all primes

1We note that a weaker assumption can be made concerning the discrete logarithm problem, and by the standard construction
one can still construct a strong one-way function. We will assume for the purpose of the course the first stronger assumption.
Weak Discrete Logarithm Assumption: There is a polynomial Q such that for every PTM A there exists an integer k0 such

that ∀k > k0 Pr[A(p, g, y) = x such that y ≡ gx mod p where 1 ≤ x ≤ p − 1] < 1 − 1
Q(k)

(where the probability is taken over all

primes p such that |p| ≤ k, the generators g of Z∗

p, x ∈ Z∗

p and the coin tosses of A).
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p ∈ S, generators g of Z∗
p, and y ∈ Z∗

p

Pr[A′(p, g, y) = x such that gx ≡ y mod p] > 1 − δ

(where the probability is taken over the coin tosses of A′).

Proof: Choose the smallest integer N for which 1
eN < δ.

Consider the algorithm A′ running as follows on inputs p ∈ S, g a generator of Z∗
p and y ∈ Z∗

p.

Repeat ǫ−1N times.
Randomly choose z such that 1 ≤ z ≤ p − 1.
Let w = A(p, g, gzy)
If A succeeds then gw = gzy = gz+x mod p where x = DLp,g(y)

and therefore DLp,g(y) = w − z mod p − 1.
Otherwise, continue to next iteration.

End loop

We can estimate the probability that A′ fails:

Pr[A′(p, g, y) fails] = Pr[A single iteration of the loop of A′ fails]ǫ
−1N

< (1 − ǫ)
ǫ−1N

< (e−N )
< δ

Note that since N = O(log(δ−1)) = O(δ−1), A′ is a probabilistic algorithm which runs in time polynomial in
ǫ−1, δ−1, and |p|.

The discrete logarithm problem also yields the following collection of functions.

Let I = {(p, g) : p is prime and g is a generator of Z∗
p} and define

EXP = {EXPp,g : Zp−1 → Z∗
p where EXPp,g(x) = gx mod p}(p,g)∈I .

Then, under the strong discrete logarithm assumption, EXP is a collection of strong one way functions. This
claim will be shown to be true next.

Theorem 2.26 Under the strong discrete logarithm assumption there exists a collection of strong one way
functions.

Proof: We shall show that under the DLA EXP is indeed a collection of one way functions. For this we must
show that it satisfies each of the conditions in the definition of a collection of one way functions.

For condition 1, define S1 to run as follows on input 1k.

(1) Run Bach’s algorithm (given in [8]) to get a random integer n such that |n| = k along with its factorization.

(2) Test whether n + 1 is prime. See primality testing in section C.9.

(3) If so, let p = n + 1. Given the prime factorization of p − 1 we look for generators g of Z∗
p as follows.

(1) Choose g ∈ Z∗
p at random.
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(2) If p − 1 =
∏

i

qi
αi is the prime factorization of p − 1 then for each qi check that g

p−1
qi 6≡ 1 mod p.

If so, then g is a generator of Z∗
p. Output p and g.

Otherwise, repeat from step 1.

Claim 2.27 g is a generator of Z∗
p if for each prime divisor q of p − 1, g

p−1
q 6≡ 1 mod p.

Proof: The element g is a generator of Z∗
p if gp−1 ≡ 1 mod p and gj 6≡ 1 mod p for all j such that 1 ≤ j < p−1;

that is, g has order p − 1 in Z∗
p.

Now, suppose that g satisfies the condition of Claim 2.27 and let m be the order of g in Z∗
p. Then m | p − 1.

If m < p − 1 then there exists a prime q such that m | p−1
q ; that is, there is an integer d such that md = p−1

q .

Therefore g
p−1

q = (gm)d ≡ 1 mod n contradicting the hypothesis. Hence, m = p − 1 and g is a generator of Z∗
p.

Also, note that the number of generators in Z∗
p is ϕ(p − 1) and in [178] it is shown that

ϕ(k) >
k

6 log log k
.

Thus we expect to have to choose O(log log p) candidates for g before we obtain a generator. Hence, S1 runs in
expected polynomial time.

For condition 2 in the definition of a collection of one way functions, we can define S2 to simply output x ∈ Zp−1

at random given i = (p, g).

Condition 3 is true since the computation of gx mod p can be performed in polynomial time and condition 4
follows from the strong discrete logarithm assumption.

2.3.2 The RSA function

In 1977 Rivest, Shamir, and Adleman [176] proposed trapdoor function candidate motivated by finding a public-
key cryptosystem satisfying the requirements proposed by Diffie and Hellman. The trapdoor function proposed
is RSA(n, e, x) = xe mod n where the case of interest is that n is the product of two large primes p and q and
gcd(e, φ(n)) = 1. The corresponding trapdoor information is d such that d · e ≡ 1 mod φ(n).

Viewd as a collection, let RSA = {RSAn,e : Z∗
n → Z∗

n where RSAn,e(x) = xe mod n}(n,e)∈I . for I = {< n, e >
s.t. n = pq |p| = |q|, (e, φ(n)) = 1} .

RSA is easy to compute. How hard is it to invert? We know that if we can factor n we can invert RSA
via the Chinese Remainder Theorem, however we don’t know if the converse is true. Thus far, the best way
known to invert RSA is to first factor n. There are a variety of algorithms for this task. The best running

time for a fully proved algorithm is Dixon’s random squares algorithms which runs in time O(e
√

log n log log n).
In practice we may consider others. Let ℓ = |p| where p is the smallest prime divisor of n. The Elliptic Curve

algorithm takes expected time O(e
√

2ℓ log ℓ). The Quadratic Sieve algorithm runs in expected O(e
√

ln n ln ln n).
Notice the difference in the argument of the superpolynomial component of the running time. This means that
when we suspect that one prime factor is substantially smaller than the other, we should use the Elliptic Curve
method, otherwise one should use the Quadratic sieve. The new number field sieve algorithm seems to achieve

a O(e1.9(ln n)1/3(ln ln n)2/3

) running time which is a substantial improvement asymptotically although in practice
it still does not seem to run faster than the Quadratic Sieve algorithm for the size of integers which people
currently attempt to factor. The recommended size for n these days is 1024 bits.
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With all this in mind, we make an explicit assumption under which one can prove that RSA provides a collection
of trapdoor functions.

Strong RSA Assumption:2 Let Hk = {n = pq : p 6= q are primes and |p| = |q| = k}. Then for every
polynomial Q and every PTM A, there exists an integer k0 such that ∀k > k0

Pr[A(n, e,RSAn,e(x)) = x] <
1

Q(k)

(where the probability is taken over all n ∈ Hk, e such that gcd(e, ϕ(n)) = 1, x ∈ Z∗
n, and the coin tosses of A).

We need to prove some auxilary claims.

Claim 2.28 For (n, e) ∈ I, RSAn,e is a permutation over Z∗
n.

Proof: Since gcd(e, ϕ(n)) = 1 there exists an integer d such that ed ≡ 1 mod ϕ(n). Given x ∈ Z∗
n, consider the

element xd ∈ Z∗
n. Then RSAn,e(x

d) ≡ (xd)e ≡ xed ≡ x mod n. Thus, the function RSAn,e : Z∗
n −→ Z∗

n is onto
and since |Z∗

n| is finite it follows that RSAn,e is a permutation over Z∗
n.

Remark 2.29 Note that the above is a constructive proof that RSA has an unique inverse. Since gcd(e, ϕ(n)) =
1 if we run the extended Euclidean algorithm we can find d ∈ Z∗

n such that

RSA−1
n,e(x) = (xe mod n)d mod n = xed mod n = x mod n

. Note that once we found a d such that ed ≡ 1 mod ϕ(n) then we can invert RSAn,e efficiently because then
RSAn,e(x)d ≡ xed ≡ x mod ϕ(n).

Theorem 2.30 Under the strong RSA assumption, RSA is a collection of strong one way trapdoor permuta-
tions.

Proof: First note that by Claim 2.28, RSAn,e is a permutation of Z∗
n. We must also show that RSA satisfies each

of the conditions in Definition 2.16. For condition 1, define S1 to compute, on input 1k, a pair (n, e) ∈ I∩{0, 1}k

and corresponding d such that ed ≡ 1 mod ϕ(n). The algorithm picks two random primes of equal size by
choosing random numbers and testing them for primality and setting n to be their procuct, then e ∈ Zφ(n) is
chosen at random, and finally d is computed in polynomial time by first computing ϕ(n) = (p − 1)(q − 1) and
then using the extended Euclidean algorithm. For condition 2, define S2 to randomly generate x ∈ Z∗

n on input
(n, e). Let A1((n, e), x) = RSAn,e(x). Note that exponentiation modulo n is a polynomial time computation
and therefore condition 3 holds. Condition 4 follows from the Strong RSA assumption. For condition 5, let
A2((n, e), d, RSAn,e(x)) ≡ RSAn,e(x)d ≡ xed ≡ x mod n and this is a polynomial time computation.

One of the properties of the RSA function is that if we have a polynomial time algorithm that inverts RSAn,e

on at least a polynomial proportion of the possible inputs x ∈ Z∗
n then a subsequent probabilistic expected

polynomial time algorithm can be found which inverts RSAn,e on almost all inputs x ∈ Z∗
n. This can be taken

to mean that for a given n, e if the function is hard to invert then it is almost everywhere hard to invert.

Proposition 2.31 Let ǫ, δ ∈ (0, 1) and let S ⊆ I. Suppose there is a probabilistic algorithm A such that for
all (n, e) ∈ S

Pr[A(n, e, RSAn,e(x)) = x] > ǫ

2A weaker assumption can be made which under standard constructions is equivalent to the stronger one which is made in this
class. Weak RSA Assumption: Let Hk = {n = pq : p 6= q are prime and |p| = |q| = k}. There is a polynomial Q such that for

every PTM A, there exists an integer k0 such that ∀k > k0 Pr[A(n, e, RSAn,e(x)) = x] < 1 − 1
Q(k)

(where the probability is taken

over all n ∈ Hk, e such that gcd(e, ϕ(n)) = 1, x ∈ Z∗

n, and the coin tosses of A).
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(where the probability is taken over x ∈ Z∗
n and the coin tosses of A) and A runs in time polynomial in |n|.

Then there is a probabilistic algorithm A′ running in time polynomial in ǫ−1, δ−1, and |n| such that for all
(n, e) ∈ S, and x ∈ Z∗

n

Pr[A′(n, e, RSAn,e(x)) = x] > 1 − δ

(where the probability is taken over the coin tosses of A′).

Proof: Choose the smallest integer N for which 1
eN < δ.

Consider the algorithm A′ running as follows on inputs (n, e) ∈ S and RSAn,e(x).

Repeat ǫ−1N times.
Randomly choose z ∈ Z∗

n.
Let y = A(n, e, RSAn,e(x) · RSAn,e(z)) = A(n, e, RSAn,e(xz)).
If A succeeds then y = xz and therefore x = yz−1 mod n. Output x.
Otherwise, continue to the next iteration.

End loop

We can estimate the probability that A′ fails:

Pr[A′(n, e,RSAn,e(x)) 6= x] = Pr[A single iteration of the loop of A′ fails]ǫ
−1N

< (1 − ǫ)
ǫ−1N

< (e−N )
< δ

Note that since N = O(log(δ−1)) = O(δ−1), A′ is a probabilistic algorithm which runs in time polynomial in
ǫ−1, δ−1, and |n|.

Open Problem 2.32 It remains to determine whether a similar result holds if the probability is also taken
over the indices (n, e) ∈ I. Specifically, if ǫ, δ ∈ (0, 1) and A is a PTM such that

Pr[A(n, e, RSAn,e(x)) = x] > ǫ

(where the probability is taken over (n, e) ∈ I, x ∈ Z∗
n and the coin tosses of A), does there exist a PTM A′

running in time polynomial in ǫ−1 and δ−1 such that

Pr[A′(n, e, RSAn,e(x)) = x] > 1 − δ

(where the probability is taken over (n, e) ∈ I and the coin tosses of A′)?

2.3.3 Connection Between The Factorization Problem And Inverting RSA

Fact 2.33 If some PPT algorithm A can factor n then there exists a PPT A′ that can invert RSA〈n,e〉.

The proof is obvious as φ(n) = (p− 1)(q − 1). The trapdoor information d can be found by using the extended
Euclidean algorithm because d = e−1 mod φ(n).

Fact 2.34 If there exists a PTM B which on input 〈n, e〉 finds d such that ed ≡ 1 mod φ(n) then there exists
a PTM, B′ that can factor n.

Open Problem 2.35 It remains to determine whether inverting RSA and factoring are equivalent. Namely,
if there is a PTM C which, on input 〈n, e〉, can invert RSA〈n,e〉, does there exist a PTM C ′ that can factor n?
The answer to this question is unknown. Note that Fact 2.34 does not imply that the answer is yes, as there
may be other methods to invert RSA which do not necessarily find d.
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2.3.4 The Squaring Trapdoor Function Candidate by Rabin

Rabin in [170] introduced a candidate trapdoor function which we call the squaring function. The squaring
function resemble the RSA function except that Rabin was able to actually prove that inverting the squaring
function is as hard as factoring integers. Thus, inverting the squaring function is a computation which is at
least as hard as inverting the RSA function and possibly harder.

Definition 2.36 Let I = {n = pq : p and q are distinct odd primes.}. For n ∈ I, the squaring function
SQUAREn : Z∗

n −→ Z∗
n is defined by SQUAREn(x) ≡ x2 mod n. The trapdoor information of n = pq ∈ I is

tn = (p, q). We will denote the entire collection of Rabin’s functions by RABIN = {SQUAREn : Z∗
n −→ Z∗

n}n∈I .

Remark 2.37 Observe that while Rabin’s function squares its input, the RSA function uses a varying exponent;
namely, e where gcd(e, φ(n)) = 1. The requirement that gcd(e, φ(n)) = 1 guarentees that the RSA function is
a permutation. On the other hand, Rabin’s function is 1 to 4 and thus it does not have a uniquely defined
inverse. Specifically, let n = pq ∈ I and let a ∈ Z∗

p. As discussed in section C.4, if a ≡ x2 mod p then x and −x
are the distinct square roots of a modulo p and if a ≡ y2 mod q then y and −y are the distinct square roots of a
modulo q. Then, there are four solutions to the congruence a ≡ z2 mod n, constructed as follows. Let c, d ∈ Zn

be the Chinese Remainder Theorem coefficients as discussed in Appendix C.4. Then

c =

{
1 mod p
0 mod q

and

d =

{
0 mod p
1 mod q

and the four solutions are cx + dy, cx − dy, −cx + dy, and −cx − dy.

The main result is that RABIN is a collection of strong one way trapdoor functions and the proof relies on an
assumption concerning the difficulty of factoring. We state this assumption now.

Factoring Assumption: Let Hk = {pq : p and q are prime and |p| = |q| = k}. Then for every polynomial Q
and every PTM A, ∃k0 such that ∀k > k0

Pr[A(n) = p : p | n and p 6= 1, n] <
1

Q(k)

(where the probability is taken over all n ∈ Hk and the coin tosses of A).

Our ultimate goal is to prove the following result.

Theorem 2.38 Under the factoring assumption, RABIN is a collection of one way trapdoor functions.

Before proving this, we consider two auxiliary lemmas. Lemma 2.39 constructs a polynomial-time machine A
which computes square roots modulo a prime. Lemma 2.42 constructs another polynomial-time machine, SQRT,
that inverts Rabin’s function using the trapdoor information; specifically, it computes a square root modulo
composites given the factorization. SQRT makes calls to A.

Lemma 2.39 Let p be an odd prime and let a be a square modulo p. There exists a probabilistic algorithm A
running in expected polynomial time such that A(p, a) = x where x2 ≡ a mod p.

Proof: Let p be an odd prime and let a be a quadratic residue in Z∗
p. There are two cases to consider;

p ≡ 1 mod 4 and p ≡ 3 mod 4.

Case 1 p ≡ 3 mod 4; that is, p = 4m + 3 for some integer m.
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Since a is a square we have 1 = Jp(a) ≡ a
p−1
2 mod p =⇒ a2m+1 ≡ 1 mod p

=⇒ a2m+2 ≡ a mod p

Therefore, am+1 is a square root of a modulo p.

Case 2 p ≡ 1 mod 4; that is, p = 4m + 1 for some integer m.

As in Case 1, we will attempt to find an odd exponent e such that ae ≡ 1 mod p.

Again, a is a square and thus 1 = Jp(a) ≡ a
p−1
2 mod p =⇒ a2m ≡ 1 mod p.

However, at this point we are not done as in Case 1 because the exponent on a in the above congruence is even.
But notice that a2m ≡ 1 mod p =⇒ am ≡ ±1 mod p. If am ≡ 1 mod p with m odd, then we proceed as in Case
1.

This suggests that we write 2m = 2lr where r is an odd integer and compute a2l−ir mod p for i = 1, . . . , l with
the intention of reaching the congruence ar ≡ 1 mod p and then proceeding as in Case 1. However, this is not

guarenteed as there may exist an integer l′ satisfying 0 ≤ l′ < l such that a2l′r ≡ −1 mod p. If this congruence is

encountered, we can recover as follows. Choose a quadratic nonresidue b ∈ Z∗
p. Then −1 = Jp(b) ≡ b

p−1
2 mod p

and therefore a2l′r · b2lr = a2l′r · b p−1
2 ≡ 1 mod p. Thus, by multiplying by b2lr ≡ −1 mod p, we obtain a new

congruence (arb2l−l′r)
2l′

≡ 1 mod p. We proceed by taking square roots in this congruence. Since l′ < l, we will,

after l steps, arrive at arb2s ≡ 1 mod p where s is integral. At this point we have ar+1b2s ≡ a mod p =⇒ a
r+1
2 bs

is a square root of a mod p.

From the above discussion (Cases 1 and 2) we obtain a probabilistic algorithm A for taking square roots. The
algorithm A runs as follows on input a, p where Jp(a) = 1.

(1) If p = 4m + 3 for some integer m then output am+1 as a square root of a mod p.

(2) If p = 4m+1 for some integer m then randomly choose b ∈ Z∗
p until a value is found satisfying Jp(b) = −1.

(1) Initialize i = 2m and j = 0.

(2) Repeat until i is odd.

i ← i
2 and j ← j

2 .

If aibj = −1 then j ← j + 2m.

Output a
i+1
2 b

j
2 as a square root of a mod p.

This algorithm terminates after O(l) iterations because in step 2 (ii) the exponent on a is divided by 2. Note
also, that since exactly half of the elements in Z∗

p are quadratic nonresidues, it is expected that 2 iterations will
be required to find an appropriate value for b at the beginning of step 2. Thus, A runs in expected polynomial
time and this completes the proof of Lemma 2.39.

Remark 2.40 There is a deterministic algorithm due to René Schoof (see [185]) which computes the square
root of a quadratic residue a modulo a prime p in time polynomial in |p| and a (specifically, the algorithm

requires O((a
1
2+ǫ log p)9) elementary operations for any ǫ > 0). However, it is unknown whether there exists a

deterministic algorithm running in time polynomial in |p|.

Open Problem 2.41 Does there exist a deterministic algorithm that computes square roots modulo a prime
p in time polynomial in |p|?
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The next result requires knowledge of the Chinese Remainder Theorem. The statement of this theorem as well
as a constructive proof is given in Appendix C.4. In addition, a more general form of the Chinese Remainder
Theorem is presented there.

Lemma 2.42 Let p and q be primes, n = pq and a a square modulo p. There exists a probabilistic algorithm
SQRT running in expected polynomial time such that SQRT (p, q, n, a) = x where x2 ≡ a mod n.

Proof: The algorithm SQRT will first make calls to A, the algorithm of Lemma 2.39, to obtain square roots
of a modulo each of the primes p and q. It then combines these square roots, using the Chinese Remainder
Theorem, to obtain the required square root.

The algorithm SQRT runs as follows.

(1) Let A(p, a) = x1 and A(q, a) = x2.

(2) Use the Chinese Remainder Theorem to find (in polynomial time) y ∈ Zn such that y ≡ x1 mod p and
y ≡ x2 mod q and output y.

Algorithm SQRT runs correctly because y2 ≡
{

x2
1 ≡ a mod p

x2
2 ≡ a mod q

=⇒ y2 ≡ a mod n.

On the other hand, if the factors of n are unknown then the computation of square roots modulo n is as hard
as factoring n. We prove this result next.

Lemma 2.43 Computing square roots modulo n ∈ Hk is as hard as factoring n.

Proof: Suppose that I is an algorithm which on input n ∈ Hk and a a square modulo n outputs y such that
a ≡ y2 mod n and consider the following algorithm B which on input n outputs a nontrivial factor of n.

(1) Randomly choose x ∈ Z∗
n.

(2) Set y = I(n, x2 mod n).

(3) Check if x ≡ ±y mod n. If not then gcd(x − y, n) is a nontrivial divisor of n. Otherwise, repeat from 1.

Algorithm B runs correctly because x2 ≡ y2 mod n =⇒ (x+ y)(x− y) ≡ 0 mod n and so n|[(x+ y)(x− y)]. But
n 6 | (x− y) because x 6≡ y mod n and n 6 | (x + y) because x 6≡ −y mod n. Therefore, gcd(x− y, n) is a nontrivial
divisor of n. Note also that the congruence a ≡ x2 mod n has either 0 or 4 solutions (a proof of this result is
presented in Appendix C.4). Therefore, if I(n, x2) = y then x ≡ ±y mod n with probability 1

2 and hence the
above algorithm is expected to terminate in 2 iterations.

We are now in a position to prove the main result, Theorem 2.38.

Proof: For condition 1, define S1 to find on input 1k an integer n = pq where p and q are primes of equal length
and |n| = k. The trapdoor information is the pair of factors (p, q).

For condition 2 in the definition of a collection of one way trapdoor functions, define S2 to simply output x ∈ Z∗
n

at random given n.

Condition 3 is true since the computation of x2 mod n can be performed in polynomial time and condition 4
follows from the factoring assumption and Lemma 2.43.

Condition 5 follows by applying the algorithm SQRT from Lemma 2.42.
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Lemma 2.43 can even be made stronger as we can also prove that if the algorithm I in the proof of Lemma 2.43
works only on a small portion of its inputs then we are still able to factor in polynomial time.

Proposition 2.44 Let ǫ, δ ∈ (0, 1) and let S ⊆ Hk. Suppose there is a probabilistic algorithm I such that for
all n ∈ S

Pr[I(n, a) = x such that a ≡ x2 mod n] > ǫ

(where the probability is taken over n ∈ S, a ∈ Z∗
n

2, and the coin tosses of I). Then there exists a probabilistic
algorithm FACTOR running in time polynomial in ǫ−1, δ−1, and |n| such that for all n ∈ S,

Pr[FACTOR(n) = d such that d | n and d 6= 1, n] > 1 − δ

(where the probability is taken over n and over the coins tosses of FACTOR).

Proof: Choose the smallest integer N such that 1
eN < δ.

Consider the algorithm FACTOR running as follows on inputs n ∈ S.

Repeat 2ǫ−1N times.
Randomly choose x ∈ Z∗

n.
Set y = I(n, x2 mod n).
Check if x ≡ ±y mod n. If not then gcd(x − y, n) is a nontrivial divisor of n.
Otherwise, continue to the next iteration.

End loop

We can estimate the probability that FACTOR fails. Note that even when I(n, x2 mod n) produces a square
root of x2 mod n, FACTOR(n) will be successful exactly half of the time.

Pr[FACTOR(n) fails to factor n] = Pr[A single iteration of the loop of FACTOR fails]ǫ
−1N

< (1 − 1
2ǫ)

2ǫ−1N

< (e−N )
< δ

Since N = O(log(δ−1)) = O(δ−1), FACTOR is a probabilistic algorithm which runs in time polynomial in ǫ−1,
δ−1, and |n|.

2.3.5 A Squaring Permutation as Hard to Invert as Factoring

We remarked earlier that Rabin’s function is not a permutation. If n = pq where p and q are primes and
p ≡ q ≡ 3 mod 4 then we can reduce the Rabin’s function SQUAREn to a permutation gn by restricting its
domain to the quadratic residues in Z∗

n, denoted by Qn. This will yield a collection of one way permutations as
we will see in Theorem 2.3.5. This suggestion is due to Blum and Williams.

Definition 2.45 Let J = {pq : p 6= q are odd primes, |p| = |q|, and p ≡ q ≡ 3 mod 4}. For n ∈ J let the
function gn : Qn −→ Qn be defined by gn(x) ≡ x2 mod n and let BLUM-WILLIAMS = {gn}n∈J .

We will first prove the following result.

Lemma 2.46 Each function gn ∈ BLUM-WILLIAMS is a permutation. That is, for every element y ∈ Qn

there is a unique element x ∈ Qn such that x2 = y mod n.
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Proof: Let n = p1p2 ∈ J. Note that by the Chinese Remainder Theorem, y ∈ Qn if and only if y ∈ Qn and
y ∈ Qp1 and y ∈ Qp2 . Let ai and −ai be the square roots of y mod pi for i = 1, 2. Then, as is done in the proof
of the Chinese Remainder Theorem, we can construct Chinese Remainder Theorem coefficients c1, c2 such that

c1 =

{
1 mod p1

0 mod p2
and c2 =

{
0 mod p1

1 mod p2
and consequently, the four square

roots of y mod n are w1 = c1a1 + c2a2,
w2 = c1a1 − c2a2,
w3 = −c1a1 − c2a2 = −(c1a1 + c2a2) = −w1,

and w4 = −c1a1 + c2a2 = −(c1a1 − c2a2) = −w2.

Since p1 ≡ p2 ≡ 3 mod 4, there are integers m1 and m2 such that p1 = 4m1 + 3 and p2 = 4m2 + 3. Thus,

Jp1(w3) = Jp1(−w1) = Jp1(−1)Jp1(w1) = (−1)
p1−1

2 Jp1(w1) = −Jp1(w1) because p1−1
2 is odd and similarly,

Jp1
(w4) = −Jp1

(w2), Jp2
(w3) = −Jp2

(w1), and Jp2
(w4) = −Jp2

(w2). Therefore, without loss of generality, we
can assume that Jp1(w1) = Jp1(w2) = 1 (and so Jp1(w3) = Jp1(w4) = −1).

Since only w1 and w2 are squares modulo p1 it remains to show that only one of w1 and w2 is a square modulo
n or equivalently modulo p2.

First observe that Jp2(w1) ≡ (w1)
p2−1

2 ≡ (c1a1+c2a2)
2m2+1 ≡ (a2)

2m2+1 mod p2 and that Jp2(w2) ≡ (w2)
p2−1

2 ≡
(c1a1 − c2a2)

2m2+1 ≡ (−a2)
2m2+1 mod p2 (because c1 ≡ 0 mod p2 and c2 ≡ 1 mod p2). Therefore, Jp2(w2) =

−Jp2(w1). Again, without loss of generality, we can assume that Jp2(w1) = 1 and Jp2(w2) = −1 and hence, w1

is the only square root of y that is a square modulo both p1 and p2. Therefore, w1 is the only square root of y
in Qn.

Theorem 2.47 [Williams, Blum] BLUM-Williams is a collection of one-way trapdoor permutations.

Proof: This follows immediately from Lemma 2.46 because each function gn ∈ J is a permutation. The trapdoor
information of n = pq is tn = (p, q).

2.4 Hard-core Predicate of a One Way Function

Recall that f(x) does not necessarily hide everything about x even if f is a one-way function. E.g. if f is the
RSA function then it preserves the Jacobi symbol of x, and if f is the discrete logarithm function EXP then it is
easy to compute the least significant bit of x from f(x) by a simple Legendre symbol calculation. Yet, it seems
likely that there is at least one bit about x which is hard to “guess” from f(x), given that x in its entirety is
hard to compute. The question is: can we point to specific bits of x which are hard to compute, and how hard
to compute are they. The answer is encouraging. A number of results are known which give a particular bit of
x which is hard to guess given f(x) for some particular f ’s such as RSA and the discrete logarithm function.
We will survey these results in subsequent sections.

More generally, we call a predicate about x which is impossible to compute from f(x) better than guessing it
at random a hard-core predicate for f .

We first look at a general result by Goldreich and Levin [98] which gives for any one-way function f a predicate
B such that it is as hard to guess B(x) from f(x) as it is to invert f .

Historical Note: The idea of a hard-core predicate for one-way functions was introduced by Blum, Goldwasser
and Micali. It first appears in a paper by Blum and Micali [44] on pseduo random number generation. They
showed that a if the EXP function (fp,g(x) = gx (mod p)) is hard to invert then it is hard to even guess better
than guessing at random the most significant bit of x. Under the assumption that quadratic residues are hard to
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distinguish from quadratic non-residues modulo composite moduli, Goldwasser and Micali in [102] showed that
the squaring function has a hard core perdicate as well. Subsequently, Yao [208] showed a general result that
given any one way function, there is a predicate B(x) which is as hard to guess from f(x) as to invert f for any
function f . Goldreich and Levin’s result is a significantly simpler construction than Yao’s earlier construction.

2.4.1 Hard Core Predicates for General One-Way Functions

We now introduce the concept of a hard-core predicate of a function and show by explicit construction that any
strong one way function can be modified to have a hard-core predicate.

Note: Unless otherwise mentioned, the probabilities during this section are calculated uniformly over all coin
tosses made by the algorithm in question.

Definition 2.48 A hard-core predicate of a function f : {0, 1}∗ → {0, 1}∗ is a boolean predicate B : {0, 1}∗ →
{0, 1}, such that

(1) ∃PPT A, such that ∀xA(x) = B(x)

(2) ∀PPTG, ∀ constants c, ∃ k0, s.t.∀k>k0

Pr[G(f(x)) = B(x)] <
1

2
+

1

kc
.

The probability is taken over the random coin tosses of G, and random choices of x of length k.

Intuitively, the definition guarantees that given x, B(x) is efficiently computable, but given only f(x), it is hard
to even “guess” B(x); that is, to guess B(x) with a probability significantly better than 1

2 .

Yao, in [208], showed that the existence of any trapdoor length-preserving permutation implies the existence
of a trapdoor predicate. Goldreich and Levin greatly simplified Yao’s construction and show that any one-way
function can be modified to have a trapdoor predicate as follows (we state a simple version of their general
result).

Theorem 2.49 [98] Let f be a (strong) length preserving one-way function. Define f ′(x ◦ r) = f(x) ◦ r, where
|x| = |r| = k, and ◦ is the concatenation function. Then

B(x ◦ r) = Σk
i=1xiri(mod 2).

is a hard-core predicate for f ′.

Note: v ◦w denotes concatenation of strings v and w. Computing B from f ′ is trivial as f(x) and r are easily
recoveravle from f ′(x, r). Finaly notice that if f is one-way then so is f ′.

For a full proof of the theorem we refer the reader to [98].

It is trivial to extend the definition of a hard-core predicate for a one way function, to a collection of hard core
predicates for a collection of one-way functions.

Definition 2.50 A hard-core predicate of a one-way function collection F = {fi : Di → Ri}i∈I is a collection
of boolean predicates B = {Bi : Di → Ri}i∈I such that

(1) ∃PPT A, such that ∀i, x A(i, x) = Bi(x)

(2) ∀PPTG, ∀ constants c, ∃ , k0, s.t. ∀k>k0

Pr[G(i, fi(x)) = Bi(x)] <
1

2
+

1

kc
.

The probability is taken over the random coin tosses of G, random choices of i ∈ I ∩ {0, 1}k and random
x ∈ Di.
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2.4.2 Bit Security Of The Discrete Logarithm Function

Let us examine the bit security of the EXP collection of functions directly rather than through the Goldreich
Levin general construction.

We will be interested in the most significant bit of the discrete logarithm x of y modulo p.

For (p, g) ∈ I and y ∈ Z∗
p, let Bp,g(y) =







0 if y = gx mod p

where 0 ≤ x < p−1
2

1 if y = gx mod p

where p−1
2 ≤ x < p − 1

.

We want to show that if for p a prime and g a generator of Z∗
p, EXPp,g(x) ≡ gx mod p is hard to invert,

then given y = EXPp,g(x), Bp,g(y) is hard to compute in a very strong sense; that is, in attempting to compute
Bp,g(y) we can do no better than essentially guessing its value randomly. The proof will be by way of a reduction.
It will show that if we can compute Bp,g(y) in polynomial time with probability greater than 1

2 + ǫ for some
non-negligible ǫ > 0 then we can invert EXPp,g(x) in time polynomial in |p|, |g|, and ǫ−1. The following is a
formal statement of this fact.

Theorem 2.51 Let S be a subset of the prime integers. Suppose there is a polynomial Q and a PTM G such
that for all primes p ∈ S and for all generators g of Z∗

p

Pr[G(p, g, y) = Bp,g(y)] >
1

2
+

1

Q(|p|)

(where the probability is taken over y ∈ Z∗
p and the coin tosses of G). Then for every polynomial P , there is a

PTM I such that for all primes p ∈ S, generators g of Z∗
p, and y ∈ Z∗

p

Pr[I(p, g, y) = x such that y ≡ gx mod p] > 1 − 1

P (|p|)

(where the probability is taken over the coin tosses of I).

We point to [44] for a proof of the above theorem.

As a corollary we immediately get the following.

Definition 2.52 Define MSBp,g(x) = 0 if 1 ≤ x < p−1
2 and 1 otherwise for x ∈ Zp−1, and MSB =

{MSBp,g(x) : Zp−1 → {0, 1}}(p,g)∈I . for I = {(p, g) : p is prime and g is a generator of Z∗
p}.

Corollary 2.53 Under the strong DLA, MSB is a collection of hard-core predicates for EXP.

It can be shown that actually O(log log p) of the most significant bits of x ∈ Zp−1 are hidden by the function
EXPp,g(x). We state this result here without proof.

Theorem 2.54 For a PTM A, let

α = Pr[A(p, g, gx, xlog log pxlog log p−1 . . . x0) = 0 | x = x|p| . . . x0]

(where the probability is taken over x ∈ Z∗
n and the coin tosses of A) and let

β = Pr[A(p, g, gx, rlog log prlog log p−1 . . . r0) = 0 | ri ∈R {0, 1}]

(where the probability is taken over x ∈ Z∗
n, the coin tosses of A, and the bits ri). Then under the Discrete

Logarithm Assumption, we have that for every polynomial Q and every PTM A, ∃k0 such that ∀k > k0,
|α − β| < 1

Q(k) .
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Corollary 2.55 Under the Discrete Logarithm Assumption we have that for every polynomial Q and every
PTM A, ∃k0 such that ∀k > k0 and ∀kp < log log p

Pr[A(p, g, gx, xkp . . . x0) = xkp+1] <
1

2
+

1

Q(k)

(where the probability is taken over the primes p such that |p| = k, the generators g of Z∗
p, x ∈ Z∗

p, and the coin
tosses of A).

For further information on the simultaneous or individual security of the bits associated with the discrete
logarithm see [136, 112].

2.4.3 Bit Security of RSA and SQUARING functions

Let I = {< n, e > — n = pq |p| = |q|, (e, φ(n)) = 1} , and RSA = {RSA<n,e> : Z∗
n → Z∗

n}<n,e>∈I be the
collection of functions as defined in 2.17.

Alexi, Chor, Goldreich and Schnoor [6] showed that guessing the least significant bit of x from RSA<n,e>(x)
better than at random is as hard as inverting RSA.

Theorem 2.56 [6] Let S ⊂ I. Let c > 0. If there exists a probabilistic polynomial-time algorithm O such that
for (n, e) ∈ S,

prob(O(n, e, xe mod n) = least significant bit of x mod n) ≥ 1

2
+

1

kc

(taken over coin tosses of O and random choices of x ∈ Z∗
n) Then there exists a probabilistic expected polynomial

time algorithm A such that for all n, e ∈ S, for all x ∈ Z∗
n, A(n, e, xe mod n) = x mod n.

Now define LSB = {LSB<n,e> : Z∗
n → Z∗

n}<n,e>∈I where LSB<n,e>(x) =least significant bit of x.

A direct corollary to the above theorem is.

Corollary 2.57 Under the (strong) RSA assumption, LSB is a collection of hard core predicates for RSA.

A similar result can be shown for the most signifant bit of x and in fact for the log log n least (and most) signif-
icant bits of x simultaneously. Moreover, similar results can be shown for the RABIN and BLUM-WILLIAMS
collections. We refer to [6], [205] for the detailed results and proofs. Also see [84] for reductions of improved
security.

2.5 One-Way and Trapdoor Predicates

A one-way predicate, first introduced in [101, 102] is a notion which preceeds hard core predicates for one-way
functions and is strongly related to it. It will be very useful for both design of secure encryption and protocol
design.

A one-way predicate is a boolean function B : {0, 1}∗ → {0, 1} for which

(1) Sampling is possible: There exists a PPT algorithm that on input v ∈ {0, 1} and 1k, selects a random x
such that B(x) = v and |x| ≤ k.

(2) Guessing is hard: For all c > 0, for all k sufficiently large, no PPT algorithm given x ∈ {0, 1}k can compute
B(x) with probability greater than 1

2 + 1
kc . (The probability is taken over the random choices made by

the adversary and x such that |x| ≤ k.)

A trapdoor predicate is a one-way predicate for which there exists, for every k, trapdoor information tk whose
size is bounded by a polynomial in k and whose knowledge enables the polynomial-time computation of B(x),
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for all x such that |x| ≤ k.

Restating as a collection of one-way and trapdoor predicates is easy.

Definition 2.58 Let I be a set of indices and for i ∈ I let Di be finite. A collection of one-way predicates is a
set B = {Bi : Di → {0, 1}}i∈I satisfying the following conditions. Let Dv

i = {x ∈ Di, Bi(x) = v.

(1) There exists a polynomial p and a PTM S1 which on input 1k finds i ∈ I ∩ {0, 1}k.

(2) There exists a PTM S2 which on input i ∈ I and v ∈ {0, 1} finds x ∈ Di such that Bi(x) = v.

(3) For every PPT A there exists a negligble νA such that ∀ k large enough

Pr
[

z = v : i
$← I ∩ {0, 1}k ; v

$← {0, 1} ; x
$← Dv

i ; z
$← A(i, x)

]

≤ 1

2
+ νA(k)

Definition 2.59 Let I be a set of indices and for i ∈ I let Di be finite. A collection of trapdoor predicates is
a set B = {Bi : Di → {0, 1}}i∈I satisfying the following conditions. Let Dv

i = {x ∈ Di, Bi(x) = v.

(1) There exists a polynomial p and a PTM S1 which on input 1k finds pairs (i, ti) where i ∈ I ∩ {0, 1}k and
|ti| < p(k) The information ti is referred to as the trapdoor of i.

(2) There exists a PTM S2 which on input i ∈ I and v ∈ {0, 1} finds x ∈ Di such that Bi(x) = v.

(3) There exists a PTM A1 such that for i ∈ I and trapdoor ti, x ∈ Di A1(i, ti, x) = Bi(x).

(4) For every PPT A there exists a negligble νA such that ∀ k large enough

Pr
[

z = v : i
$← I ∩ {0, 1}k ; v

$← {0, 1} ; x
$← Dv

i ; z ← A(i, x)
]

≤ 1

2
+ νA(k)

Note that this definition implies that D0
i is roughly the same size as D1

i .

2.5.1 Examples of Sets of Trapdoor Predicates

A Set of Trapdoor Predicates Based on the Quadratic Residue Assumption

Let Qn denote the set of all quadratic residues (or squares) modulo n; that is, x ∈ Qn iff there exists a y such
that x ≡ y2 mod n.

Recall that the Jacobi symbol (Jn(x)) is defined for any x ∈ Z∗
n and has a value in {−1, 1}; this value is easily

computed by using the law of quadratic reciprocity, even if the factorization of n is unknown. If n is prime
then x ∈ Qn ⇔ (Jn(x)) = 1; and if n is composite, x ∈ Qn ⇒ (Jn(x)) = 1. We let J+1

n denote the set
{x | x ∈ Z∗

n ∧ (Jn(x)) = 1} , and we let Q̃n denote the set of pseudo-squares modulo n: those elements of J+1
n

which do not belong to Qn. If n is the product of two primes then |Qn| = |Q̃n|, and for any pseudo-square y
the function fy(x) = y · x maps Qn one-to-one onto Q̃n.

The quadratic residuousity problem is: given a composite n and x ∈ J+1
n , to determine whether x is a square

or a pseudo-square modulo n. This problem is believed to be computationally difficult, and is the basis for a
number of cryptosystems.

The following theorem informally shows for every n, if the quadratic residusosity is hard to compute at all then
it is hard to distinguish between squares and non-squares for almost everywhere.
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Theorem 2.60 [101, 102]: Let S ⊂ {ns.t.n = pq, p, q, primes} If there exists a probabilistic polynomial-time
algorithm O such that for n ∈ S,

prob(O(n, x) decides correctly whether x ∈ J+1
n ) >

1

2
+ ǫ , (2.1)

where this probability is taken over the choice of x ∈ J+1
n and O’s random choices, then there exists a probabilistic

algorithm B with running time polynomial in ǫ−1, δ−1 and |n| such that for all n ∈ S, for all x ∈ J+1
n ,

prob(B(x, n) decides correctly whether x ∈ Qn|x ∈ J+1
n ) > 1 − δ , (2.2)

where this probability is taken over the random coin tosses of B.

Namely, a probabilistic polynomial-time bounded adversary can not do better (except by a smaller than any
polynomial advantage) than guess at random whether x ∈ Jn is a square mod n, if quadratic residuosity problem
is not in polynomial time.

This suggests immediately the following set of predicates: Let

QRn,z(x) =

{
0 if x is a square mod n
1 if x is a non-square mod n

}

where QRn,z : J+1
n → {0, 1} and Ik = {n#z | n = pq, |p| = |q| = k

2 , p and q primes, (Jn(z)) = +1, z a non-
square mod n}. It is clear that QR = {QRn,z} is a set of trapdoor predicates where the trapdoor information
associated with every index < n, z > is the factorization < p, q >. Lets check this explicitly.

(1) To select pairs (i, ti) at random, first pick two primes, p and q, of size
∣
∣k
2

∣
∣ at random, determining n.

Next, search until we find a non-square z in Z∗
n with Jacobi symbol +1. The pair we have found is then

(< n, z >, < p, q >). We already know how to do all of these operations in expected polynomial time .

(2) Follows from the existence of the following algorithm to select elements out of Dv
n,z:

• To select x ∈ D0
n,z, let x = y2 mod n where y is an element of Z∗

n chosen at random.

• To select x ∈ D1
n,z, let x = zy2 mod n where y is an element of Z∗

n chosen at random.

(3) To compute QRn,z(x) given < p, q >, we compute (Jp(x)) and (x
q ). If both are +1 then QRn,z(x) is 0,

otherwise it is 1.

(4) This follows from the Quadaratic Residuosity Assumption and the above theorem.

A Set of Trapdoor Predicates Based on the RSA Assumption

Define Bn,e(x) = the least significant bit of xd mod n for x ∈ Z∗
n where ed = 1 mod φ(n). Then, to select

uniformly an x ∈ Z∗
n such that Bn,e(x) = v simply select a y ∈ Z∗

n whose least significant bit is v and set
x = ye mod n. Given d it is easy to compute Bn,e(x) = least significant bit of xd mod n.

The security of this construction follows trivially from the definition of collection of hard core predicates for the
RSA collection of functions.
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Pseudo-random bit generators

In this chapter, we discuss the notion of pseudo-random generators. Intuitively, a PSRG is a deterministic
program used to generate long sequence of bits which looks like random sequence, given as input a short random
sequence (the input seed).
The notion of PSRG has applications in various fields:

Cryptography:
In the case of private key encryption, Shannon showed (see lecture 1) that the length of the clear text
should not exceed the length of the secret key, that is, the two parties have to agree on a very long string
to be used as the secret key. Using a PSRG G, they need to agree only on a short seed r, and exchange
the message G(r)

⊕
m.

Algorithms Design:
An algorithm that uses a source of random bits, can manage with a shorter string, used as a seed to a
PSRG.

Complexity Theory:
Given a probabilistic algorithm, an important question is whether we can make it deterministic. Using the
notion of a PSRG we can prove, assuming the existence of one-way function that BPP ⊆ ∩ǫDTIME(2nǫ

)

In this chapter we will define good pseudo random number generators and give constructions of them under the
assumption that one way functions exist.

We first ask where do can we actually find truly random bit sequences. 1

3.0.2 Generating Truly Random bit Sequences

Generating a one-time pad (or, for that matter, any cryptographic key) requires the use of a “natural” source
of random bits, such as a coin, a radioactive source or a noise diode. Such sources are absolutely essential for
providing the initial secret keys for cryptographic systems.

However, many natural sources of random bits may be defective in that they produce biased output bits (so
that the probability of a one is different than the probability of a zero), or bits which are correlated with each
other. Fortunately, one can remedy these defects by suitably processing the output sequences produced by the
natural sources.

1some of the preliminary discussion in the following three subsections is taken from Rivest’s survey article on cryptography
which appears in the handbook of computer science

39
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To turn a source which supplies biased but uncorrelated bits into one which supplies unbiased uncorrelated bits,
von Neumann proposed grouping the bits into pairs, and then turning 01 pairs into 0’s, 10 pairs into 1’s, and
discarding pairs of the form 00 and 11 [206]. The result is an unbiased uncorrelated source, since the 01 and 10
pairs will have an identical probability of occurring. Elias [79] generalizes this idea to achieve an output rate
near the source entropy.

Handling a correlated bit source is more difficult. Blum [42] shows how to produce unbiased uncorrelated bits
from a biased correlated source which produces output bits according to a known finite Markov chain.

For a source whose correlation is more complicated, Santha and Vazirani [182] propose modeling it as a slightly
random source, where each output bit is produced by a coin flip, but where an adversary is allowed to choose
which coin will be flipped, from among all coins whose probability of yielding “Heads” is between δ and 1 − δ.
(Here δ is a small fixed positive quantity.) This is an extremely pessimistic view of the possible correlation;
nonetheless U. Vazirani [203] shows that if one has two, independent, slightly-random sources X and Y then
one can produce “almost independent” ǫ-biased bits by breaking the outputs of X and Y into blocks x,y of
length k = Ω(1/δ2 log(1/δ) log(1/ǫ)) bits each, and for each pair of blocks x,y producing as output the bit x ·y
(the inner product of x and y over GF (2)). This is a rather practical and elegant solution. Chor and Goldreich
[58] generalize these results, showing how to produce independent ǫ-biased bits from even worse sources, where
some output bits can even be completely determined.

These results provide effective means for generating truly random sequences of bits—an essential requirement
for cryptography—from somewhat defective natural sources of random bits.

3.0.3 Generating Pseudo-Random Bit or Number Sequences

The one-time pad is generally impractical because of the large amount of key that must be stored. In practice, one
prefers to store only a short random key, from which a long pad can be produced with a suitable cryptographic
operator. Such an operator, which can take a short random sequence x and deterministically “expand” it into
a pseudo-random sequence y, is called a pseudo-random sequence generator. Usually x is called the seed for the
generator. The sequence y is called “pseudo-random” rather than random since not all sequences y are possible
outputs; the number of possible y’s is at most the number of possible seeds. Nonetheless, the intent is that for
all practical purposes y should be indistinguishable from a truly random sequence of the same length.

It is important to note that the use of pseudo-random sequence generator reduces but does not eliminate the
need for a natural source of random bits; the pseudo-random sequence generator is a “randomness expander”,
but it must be given a truly random seed to begin with.

To achieve a satisfactory level of cryptographic security when used in a one-time pad scheme, the output of the
pseudo-random sequence generator must have the property that an adversary who has seen a portion of the
generator’s output y must remain unable to efficiently predict other unseen bits of y. For example, note that an
adversary who knows the ciphertext C can guess a portion of y by correctly guessing the corresponding portion
of the message M , such as a standardized closing “Sincerely yours,”. We would not like him thereby to be able
to efficiently read other portions of M , which he could do if he could efficiently predict other bits of y. Most
importantly, the adversary should not be able to efficiently infer the seed x from the knowledge of some bits of
y.

How can one construct secure pseudo-random sequence generators?

Classical Pseudo-random Generators are Unsuitable

Classical techniques for pseudo-random number generation [125, Chapter 3] which are quite useful and effective
for Monte Carlo simulations are typically unsuitable for cryptographic applications. For example, linear feedback
shift registers [108] are well-known to be cryptographically insecure; one can solve for the feedback pattern given
a small number of output bits.

Linear congruential random number generators are also insecure. These generators use the recurrence

Xi+1 = aXi + b (mod m) (3.1)
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to generate an output sequence {X0, X1, . . .} from secret parameters a, b, and m, and starting point X0. It
is possible to infer the secret parameters given just a few of the Xi [163]. Even if only a fraction of the bits
of each Xi are revealed, but a, b, and m are known, Frieze, H̊astad, Kannan, Lagarias, and Shamir show how
to determine the seed X0 (and thus the entire sequence) using the marvelous lattice basis reduction (or “L3”)
algorithm of Lenstra, Lenstra, and Lovász [87, 132].

As a final example of the cryptographic unsuitability of classical methods, Kannan, Lenstra, and Lovasz
[122] use the L3 algorithm to show that the binary expansion of any algebraic number y (such as

√
5 =

10.001111000110111 . . .) is insecure, since an adversary can identify y exactly from a sufficient number of bits,
and then extrapolate y’s expansion.

3.0.4 Provably Secure Pseudo-Random Generators: Brief overview

This section provides a brief overview of the history of the modern history of pseudo random bit generators.
Subsequent section define these concepts formally and give constructions.

The first pseudo-random sequence generator proposed for which one can prove that it is impossible to predict
the next number in the sequence from the previous numbers assuming that it is infeasible to invert the RSA
function is due to Shamir [189]. However, this scheme generates a sequence of numbers rather than a sequence
of bits, and the security proof shows that an adversary is unable to predict the next number, given the previous
numbers output. This is not strong enough to prove that, when used in a one-time pad scheme, each bit of the
message will be well-protected.

Blum and Micali [44] introduced the first method for designing provably secure pseudo-random bit sequence
generators, based on the use of one-way predicates. They call a pseudo-random bit generator secure if an
adversary cannot guess the next bit in the sequence from the prefix of the sequence, better than guessing at
random. Blum and Micali then proposed a particular generator based on the difficulty of computing discrete
logarithms. Blum, Blum, and Shub [39] propose another generator, called the squaring generator , which is
simpler to implement and is provably secure assuming that the quadratic residuosity problem is hard. Alexi,
Chor, Goldreich, and Schnorr [6] show that the assumption that the quadratic residuosity problem is hard can
be replaced by the weaker assumption that factoring is hard. A related generator is obtained by using the
RSA function. Kaliski shows how to extend these methods so that the security of the generator depends on
the difficulty of computing elliptic logarithms; his techniques also generalize to other groups [120, 121]. Yao
[208] shows that the pseudo-random generators defined above are perfect in the sense that no probabilistic
polynomial-time algorithm can guess with probability greater by a non-negligible amount than 1/2 whether an
input string of length k was randomly selected from {0, 1}k or whether it was produced by one of the above
generators. One can rephrase this to say that a generator that passes the next-bit test is perfect in the sense that
it will pass all polynomial-time statistical tests. The Blum-Micali and Blum-Blum-Shub generators, together
with the proof of Yao, represent a major achievement in the development of provably secure cryptosystems.
Impagliazzo, Luby, Levin and H̊astad show that actually the existence of a one-way function is equivalent to
the existence of a pseudo random bit generator which passes all polynomial time statistical tests.

3.1 Definitions

Definition 3.1 Let Xn, Yn be probability distributions on {0, 1}n (That is, by t ∈ Xn we mean that t ∈ {0, 1}n

and it is selected according to the distribution Xn). We say that {Xn} is poly-time indistinguishable from
{Yn} if ∀PTM A, ∀ polynomial Q, ∃n0, s.t ∀n > n0,

| Pr
t∈Xn

(A(t) = 1) − Pr
t∈Yn

(A(t) = 1)| <
1

Q(n)

i.e., for sufficiently long strings, no PTM can tell whether the string was sampled according to Xn or according
to Yn.
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Intuitively, Pseudo random distribution would be a indistinguishable from the uniform distribution. We denote
the uniform probability distribution on {0, 1}n by Un. That is, for every α ∈ {0, 1}n, Prx∈Un [x = α] = 1

2n .

Definition 3.2 We say that {Xn} is pseudo random if it is poly-time indistinguishable from {Un}. That is,
∀PTM A, ∀ polynomial Q, ∃n0, such that ∀n > n0,

| Pr
t∈Xn

[A(t) = 1] − Pr
t∈Un

[A(t) = 1]| <
1

Q(n)

Comments:

The algorithm A used in the above definition is called a polynomial time statistical test. (Knuth, vol. 2, suggests
various examples of statistical tests). It is important to note that such a definition cannot make sense for a
single string, as it can be drawn from either distribution.

If ∃A and Q such that the condition in definition 2 is violated, we say that Xn fails the test A.

Definition 3.3 A polynomial time deterministic program G : {0, 1}k → {0, 1}k̂ is a pseudo-random generator
(PSRG) if the following conditions are satisfied.

1. k̂ > k

2. {Gk̂}k̂ is pseudo-random where Gk̂ is the distribution on {0, 1}k̂ obtained as follows: to get t ∈ Gk̂:

pick x ∈ Uk

set t = G(x)

That is, ∀PTMA, ∀ polynomial Q,∀ sufficiently large k,

| Pr
t∈Gk̂

(A(t) = 1) − Pr
t∈Uk̂

(A(t) = 1)| <
1

Q(k̂)
(3.2)

3.2 The Existence Of A Pseudo-Random Generator

Next we prove the existence of PSRG’s, if length-preserving one way permutations exist. It has been shown
that if one-way functions exist (without requiring them to be length-preserving permutations) then one-way
functions exist, but we will not show this here.

Theorem 3.4 Let f : {0, 1}∗ → {0, 1}∗ be a length preserving one-way permutation. Then

1. ∃PSRG G : {0, 1}k → {0, 1}k+1 (such G is called an extender).

2. ∀ polynomial Q, ∃PSRG GQ : {0, 1}k → {0, 1}Q(k).

Proof:
Proof of 1: Let f be as above. Let B be the hard core bit of f . (that is, B is a boolean predicate, B :
{0, 1}∗ → {0, 1}, s.t it is efficient to compute B(x) given x, but given only f(x), it is hard to compute B(x)
with probability greater than 1

2 + ǫ for non-negligible ǫ. ) Recall that we showed last class that every OWF
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f(x) can be converted into f1(x, r) for which B′(x, r) =
∑|x|

1 xiri mod 2 is a hard core bit. For notational ease,
assume that B is already a hard-core bit for f .

Define
G1(x) = f(x) ◦ B(x)

(◦ denotes the string concatenation operation). We will prove that G1(x) has the required properties. Clearly,
G1 is computed in poly-time, and for |x| = k, |G1(x)| = k + 1. It remains to show that the distribution {G1

k+1}
is pseudo random.

Intuition : Indeed, knowing f(x) should not help us to predict B(x). As f is a permutation, f(Uk) is uniform
on {0, 1}k, and any separation between Uk+1 and Gk+1 must caused by the hard core bit. We would like to
show that any such separation would enable us to predict B(x) given only f(x) and obtain a contradiction to
B being a hard core bit for f .

We proceed by contradiction: Assume that (G is not good) ∃ statistical test A, polynomial Q s.t

Pr
t∈Gk+1

(A(t) = 1) − Pr
t∈Uk+1

(A(t) = 1) >
1

Q(k + 1)

(Note that we have dropped the absolute value from the inequality 3.2. This can be done wlog. We will later
see what would change if the the other direction of the inequality were true).

Intuitively, we may thus interpret that if A answers 1 on a string t it is more likely that t is drawn from
distribution Gk+1, and if A answers 0 on string t that it is more likely that t is drawn from distribution Uk+1.

We note that the probability that A(f(x) ◦ b) returns 1, is the sum of the weighted probability that A returns
1 conditioned on the case that B(x) = b and conditioned on the case B(x) = 1. By, the assumed separation
above, we get that it is more likely that A(f(x) ◦ b) will return 1 when b = B(x). This easily translates to an
algorithm for predicting the hard core bit of f(x).

Formally, we have

Prx∈Uk,b∈U1 [A(f(x) ◦ b) = 1] = Pr[A(f(x) ◦ b) = 1 | b = B(x)] · Pr[b = B(x)]

+ Pr[A(f(x) ◦ b) = 1 | b = B(x)] · Pr[b = B(x)]
= 1

2 (α + β)

where α = Pr[A(f(x) ◦ b) = 1 | b = B(x)] and β = Pr[A(f(x) ◦ b) = 1 | b = B(x)].

From the assumption we therefore get

Prx∈Uk
[A(f(x) ◦ B(x)) = 1] − Prx∈Uk

[A(f(x) ◦ b) = 1] = α − 1
2 (α + β)

= 1
2 (α − β)

> 1
Q(k) .

We now exhibit a polynomial time algorithm A′ that on input f(x) computes B(x) with success probability
significantly better than 1/2.
A′ takes as input f(x) and outputs either a 0 or 1.

1. choose b ∈ {0, 1}

2. run A(f(x) ◦ b)
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3. If A(f(x) ◦ b) = 1, output b, otherwise output b.

Notice that, when dropping the absolute value from the inequality 3.2, if we take the second direction we just
need to replace b by b in the definition of A′.

Claim 3.5 Pr[A′(f(x) = B(x))] > 1
2 + 1

Q(k) .

Proof:

Pr[A′(f(x) = b)] Pr[A(f(x) ◦ b) = 1 | b = B(x)] Pr[b = B(x))

Pr[A(f(x) ◦ b) = 0|b = B(x)) Pr[b = B(x)]
+ 1

2α + 1
2 (1 − β)

= 1
2 + 1

2 (α − β)
> 1

2 + 1
Q(k) .

This contradicts the hardness of computing B(x). It follows that G1 is indeed a PSRG.
Proof of 2: Given a PSRG G that expands random strings of length k to pseudo-random strings of length
k + 1, we need to show that, ∀ polynomial Q, ∃PSRG GQ : {0, 1} → {0, 1}Q(k). We define GQ by first using G
Q(k) times as follows:

x → G → f(x) ◦ B(x)
f(x) ◦ B(x) → G → f(f(x)) ◦ B(f(x))
f2(x) ◦ B(f(x)) → G → f3(x) ◦ B(f2(x))

•
•
•

fQ(k)−2(x) ◦ B(fQ(k)−1(x)) → G → fQ(k)(x) ◦ B(fQ(k)−1(x))

The output of GQ(x) is the concatenation of the last bit from each string i.e.,

GQ(x) = B(x) ◦ B(f(x)) ◦ · · · ◦ B(fQ(k)−1(x) =

bG
1 (x) ◦ bG

2 (x) ◦ · · · ◦ bG
Q(|x|)(x)

Clearly, GQ is poly-time and it satisfies the length requirements. We need to prove that the distribution
generated by GQ, GQ(Uk), is poly-time indistinguishable from UQ(k). We proceed by contradiction, (and show
that it implies that G is not PSRG)
If GQk is not poly-time indistinguishable from UQ(k), ∃ statistical test A, and ∃ polynomial P , s.t.

Pr
t∈GQ(k)

(A(t) = 1) − Pr
t∈UQ(k)

(A(t) = 1) >
1

P (k)

(As before we omit the absolute value). We now define a sequence D1, D2, ..., DQ(k) of distributions on {0, 1}Q(k),
s.t. D1 is uniform (i.e. strings are random), DQ(k) = GQ(k), and the intermediate Di’s are distributions
composed of concatenation of random followed by pseudorandom distributions. Specifically,
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t ∈ D1 is obtained by letting t = s where s ∈ UQ(k)

t ∈ D2 is ontained by letting t = s ◦ B(x) where s ∈ UQ(k)−1, x ∈ Uk

t ∈ D3 is ontained by letting t = s ◦ B(x) ◦ B(f(x)) where s ∈ UQ(k)−2, x ∈ Uk

•
•
•

t ∈ DQ(k) is ontained by letting t = B(x)... ◦ B(fQ(k)−1(x)) where x ∈ Uk

Since the sequence ‘moves’ from D1 = UQ(k) to DQ(k) = GQ(k), and we have an algorithms A that distinguishes
between them, there must be two successive distributions between which A distinguishes.
i.e. ∃ i, 1 ≤ i ≤ Q(k), s.t.

Pr
t∈Di

(A(t) = 1) − Pr
t∈Di+1

(A(t) = 1) >
1

P (k)Q(k)

We now present a poly-time algorithm A′ that distinguishes between Uk+1 and Gk+1, with success probability
significantly better than 1

2 , contradicting the fact that G is a PSRG.

A′ works as follows on input α = α1α2...αk+1 = α′ ◦ b

1. Choose 1 ≤ i ≤ q(k) at random.

2. Let
t = γ1 ◦ ... ◦ γQ(k)−i−1 ◦ b ◦ bG

1 (α′) ◦ bG
2 (α′) ◦ ... ◦ bG

i (α′)

where the γj are chosen randomly.

(Note that t ∈ Di if α′ ◦ b ∈ Uk+1, and that t ∈ Di+1 if α′ ◦ b ∈ Gk+1.)

3. We now run A(t). If we get 1, A′ returns 0 If we get 0, A′ returns 1

(i.e if A returns 1, it is interpreted as a vote for Di and therefore for b 6= B(α‘) and α ∈ Uk+1. On the
other hand, if A returns 0, it is interpreted as a vote for Di+1 and therefore for b = B(α′) and α ∈ Gk+1.)

It is immediate that:

Pr
α∈Uk+1

(A′(α) = 1) − Pr
α∈Gk+1

(A′(α) = 1) >
1

P (k)Q2(k)

The extra 1
Q(k) factor comes form the random choice of i. This violates the fact that G was a pseudo random

generator as we proved in part 1. This is a contradiction

3.3 Next Bit Tests

If a pseudo-random bit sequence generator has the property that it is difficult to predict the next bit from
previous ones with accuracy greater than 1

2 by a non-negligible amount in time polynomial in the size of the
seed, then we say that the generator passes the “next-bit” test.

Definition 3.6 A next bit test is a special kind of statistical test which takes as input a prefix of a sequence
and outputs a prediction of the next bit.

Definition 3.7 A (discrete) probability distribution on a set S is a function D : S → [0, 1] ⊂ R so that
∑

s∈S D(s) = 1. For brevity, probability distributions on {0, 1}k will be subscripted with a k. The notation
x ∈ Xn means that x is chosen so that ∀z ∈ {0, 1}nPr[x = z] = Xn(z). In what follows, Un is the uniform
distribution.

Recall the definition of a pseudo-random number generator:
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Definition 3.8 A pseudo-random number generator (PSRG) is a polynomial time deterministic algorithm so
that:

1. if |x| = k then |G(x)| = k̂

2. k̂ > k,

3. Gk̂ is pseudo-random2, where Gk̂ is the probability distribution induced by G on {0, 1}k̂.

Definition 3.9 We say that a pseudo-random generator passes the next bit test A if for every polynomial Q
there exists ,an integer k0 such that for all k̂ > k0 and p < k̂

Pr
t∈Gk̂

[A(t1t2 . . . tp) = tp+1] <
1

2
+

1

Q(k)

Theorem 3.10 G passes all next bit tests ⇔ G passes all statistical tests.

Proof:

(⇐) Trivial.

(⇒) Suppose, for contradiction, that G passes all next bit test but fails some statistical test A. We will use
A to construct a next bit test A′ which G fails. Define an operator ⊙ on probability distributions so that
[Xn ⊙ Ym](z) = Xn(zn) · Ym(zm) where z = zn ◦ zm, |zn| = n, |zm| = m (◦ is concatenation). For j ≤ k̂
let Gj,k̂ be the probability distribution induced by Gk̂ on {0, 1}j by taking prefixes. (That is Gj,k̂(x) =
∑

z∈{0,1}k̂,z extends x Gk̂(z).)

Define a sequence of distributions Hi = Gi,k̂⊙Uk̂−i on {0, 1}k̂ of “increasing pseudo-randomness.” Then H0 = Uk̂

and Hk̂ = Gk̂. Because G fails A, A can differentiate between Uk̂ = H0 and Gk̂ = Hk̂; that is, ∃Q ∈ Q[x] so that
|Prt∈H0

[A(t) = 1] − Prt∈Hk̂
[A(t) = 1]| > 1

Q(k) . We may assume without loss of generality that A(t) = 1 more

often when t is chosen from Uk̂ (otherwise we invert the output of A) so that we may drop the absolute value

markers on the left hand side. Then ∃i, 0 ≤ i ≤ k̂ − 1 so that Prt∈Hi [A(t) = 1] − Prt∈Hi+1 [A(t) = 1] > 1
k̂Q(k)

.

The next bit test A′ takes t1t2 . . . ti and outputs a guess for ti+1. A′ first constructs

s0 = t1t2 . . . ti0ri+2ri+3 . . . rk̂

s1 = t1t2 . . . ti1r̂i+2r̂i+3 . . . r̂k̂

where rj and r̂j are random bits for i + 2 ≤ j ≤ k̂. A′ then computes A(s0) and A(s1).

If A(s0) = A(s1), then A′ outputs a random bit.

If 0 = A(s0) = A(s1), then A′ outputs 0.

If 1 = A(s0) = A(s1), then A′ outputs 1.

Claim 3.11 By analysis similar to that done in the previous lecture, Pr[A′(t1t2 . . . ti) = ti+1] > 1
2 + 1

k̂Q(k)
.

2A pseudo-random distribution is one which is polynomial time indistinguishable from U
k̂
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Thus we reach a contradiction: A′ is a next bit test that G fails, which contradicts our assumption that G
passes all next bit tests.

3.4 Examples of Pseudo-Random Generators

Each of the one way functions we have discussed induces a pseudo-random generator. Listed below are these
generators (including the Blum/Blum/Shub generator which will be discussed afterwards) and their associated
costs. See [44, 39, 176].

Name One way function Cost of computing Cost of computing
one way function jthbit of generator

RSA xe mod n, n = pq k3 jk3

Rabin x2 mod n, n = pq k2 jk2

Blum/Micali EXP(p, g, x) k3 jk3

Blum/Blum/Shub (see below) k2 max(k2 log j, k3)

3.4.1 Blum/Blum/Shub Pseudo-Random Generator

The Blum/Blum/Shub pseudo-random generator uses the (proposed) one way function gn(x) = x2 mod n where
n = pq for primes p and q so that p ≡ q ≡ 3 mod 4. In this case, the squaring endomorphism x 7→ x2 on Z∗

n

restricts to an isomorphism on (Z∗
n)

2
, so gn is a permutation on (Z∗

n)
2
. (Recall that every square has a unique

square root which is itself a square.)

Claim 3.12 The least significant bit of x is a hard bit for the one way function gn.

The jth bit of the Blum/Blum/Shub generator may be computed in the following way:

B(x2j

mod n) = B(xα mod m)

where α ≡ 2j mod φ(n). If the factors of n are known, then φ(n) = (p − 1)(q − 1) may be computed so that α
may be computed prior to the exponentiation. α = 2j mod φ(n) may be computed in O(k2 log j) time and xα

may be be computed in k3 time so that the computation of B(x2j

) takes O(max(k3, k2 log j)) time.

An interesting feature of the Blum/Blum/Shub generator is that if the factorization of n is known, the 2
√

n th

bit can be generated in time polynomial in |n|. The following question can be raised: let GBBS(x, p, q) =

B(f2
√

n

(x)) ◦ . . . ◦ B(f2
√

n+2k(x)) for n = pq and |x| = k. Let GBBS
2k be the distribution induced by GBBS on

{0, 1}2k.

Open Problem 3.13 Is this distribution GBBS
2k pseudo-random? Namely, can you prove that

∀Q ∈ Q[x],∀PTM A, ∃k0,∀k > k0|Prt∈GBBS
2k

[A(t) = 1] − Prt∈U2k
[A(t) = 1]| <

1

Q(2k)

The previous proof that G is pseudo-random doesn’t work here because in this case the factorization of n is
part of the seed so no contradiction will be reached concerning the difficulty of factoring.

More generally,

Open Problem 3.14 Pseudo-random generators, given seed x, implicitly define an infinite string gx
1gx

2 . . ..
Find a pseudo-random generator so that the distribution created by restricting to any polynomially selected
subset of bits of gx is pseudo-random. By polynomially selected we mean examined by a polynomial time
machine which can see gx

i upon request for a polynomial number of i’s (the machine must write down the i’s,
restricting |i| to be polynomial in |x|).
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Block ciphers

Block ciphers are the central tool in the design of protocols for shared-key cryptography (aka. symmetric)
cryptography. They are the main available “technology” we have at our disposal. This chapter will take a look
at these objects and describe the state of the art in their construction.

It is important to stress that block ciphers are just tools—raw ingredients for cooking up something more useful.
Block ciphers don’t, by themselves, do something that an end-user would care about. As with any powerful
tool, one has to learn to use this one. Even an excellent block cipher won’t give you security if you use don’t use
it right. But used well, these are powerful tools indeed. Accordingly, an important theme in several upcoming
chapters will be on how to use block ciphers well. We won’t be emphasizing how to design or analyze block
ciphers, as this remains very much an art.

This chapter gets you acquainted with some typical block ciphers, and discusses attacks on them. In particular
we’ll look at two examples, DES and AES. DES is the “old standby.” It is currently the most widely-used block
cipher in existence, and it is of sufficient historical significance that every trained cryptographer needs to have
seen its description. AES is a modern block cipher, and it is expected to supplant DES in the years to come.

4.1 What is a block cipher?

A block cipher is a function E: {0, 1}k × {0, 1}n → {0, 1}n. This notation means that E takes two inputs, one
being a k-bit string and the other an n-bit string, and returns an n-bit string. The first input is the key. The
second might be called the plaintext, and the output might be called a ciphertext. The key-length k and the
block-length n are parameters associated to the block cipher. They vary from block cipher to block cipher, as
of course does the design of the algorithm itself.

For each key K ∈ {0, 1}k we let EK : {0, 1}n → {0, 1}n be the function defined by EK(M) = E(K, M). For
any block cipher, and any key K, it is required that the function EK be a permutation on {0, 1}n. This means
that it is a bijection (ie., a one-to-one and onto function) of {0, 1}n to {0, 1}n. (For every C ∈ {0, 1}n there
is exactly one M ∈ {0, 1}n such that EK(M) = C.) Accordingly EK has an inverse, and we denote it E−1

K .
This function also maps {0, 1}n to {0, 1}n, and of course we have E−1

K (EK(M)) = M and EK(E−1
K (C)) = C

for all M,C ∈ {0, 1}n. We let E−1: {0, 1}k ×{0, 1}n → {0, 1}n be defined by E−1(K, C) = E−1
K (C). This is the

inverse block cipher to E.

The block cipher E is a public and fully specified algorithm. Both the cipher E and its inverse E−1 should
be easily computable, meaning given K, M we can readily compute E(K,M), and given K, C we can readily
compute E−1(K, C). By “readily compute” we mean that there are public and relatively efficient programs
available for these tasks.

48
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function DESK(M) // |K| = 56 and |M | = 64

(K1, . . . , K16) ← KeySchedule(K) // |Ki| = 48 for 1 ≤ i ≤ 16

M ← IP(M)
Parse M as L0‖R0 // |L0| = |R0| = 32

for r = 1 to 16 do
Lr ← Rr−1 ; Rr ← f(Kr, Rr−1)⊕Lr−1

C ← IP−1(L16‖R16)
return C

Figure 4.1: The DES block cipher. The text and other figures describe the subroutines KeySchedule, f, IP, IP−1.

In typical usage, a random key K is chosen and kept secret between a pair of users. The function EK is then
used by the two parties to process data in some way before they send it to each other. Typically, we will assume
the adversary will be able to obtain some input-output examples for EK , meaning pairs of the form (M, C)
where C = EK(M). But, ordinarily, the adversary will not be shown the key K. Security relies on the secrecy
of the key. So, as a first cut, you might think of the adversary’s goal as recovering the key K given some
input-output examples of EK . The block cipher should be designed to make this task computationally difficult.
(Later we will refine the view that the adversary’s goal is key-recovery, seeing that security against key-recovery
is a necessary but not sufficient condition for the security of a block cipher.)

We emphasize that we’ve said absolutely nothing about what properties a block cipher should have. A function
like EK(M) = M is a block cipher (the “identity block cipher”), but we shall not regard it as a “good” one.

How do real block ciphers work? Lets take a look at some of them to get a sense of this.

4.2 Data Encryption Standard (DES)

The Data Encryption Standard (DES) is the quintessential block cipher. Even though it is now quite old, and
on the way out, no discussion of block ciphers can really omit mention of this construction. DES is a remarkably
well-engineered algorithm which has had a powerful influence on cryptography. It is in very widespread use,
and probably will be for some years to come. Every time you use an ATM machine, you are using DES.

4.2.1 A brief history

In 1972 the NBS (National Bureau of Standards, now NIST, the National Institute of Standards and Technol-
ogy) initiated a program for data protection and wanted as part of it an encryption algorithm that could be
standardized. They put out a request for such an algorithm. In 1974, IBM responded with a design based on
their “Lucifer” algorithm. This design would eventually evolve into the DES.

DES has a key-length of k = 56 bits and a block-length of n = 64 bits. It consists of 16 rounds of what is called
a “Feistel network.” We will describe more details shortly.

After NBS, several other bodies adopted DES as a standard, including ANSI (the American National Standards
Institute) and the American Bankers Association.

The standard was to be reviewed every five years to see whether or not it should be re-adopted. Although there
were claims that it would not be re-certified, the algorithm was re-certified again and again. Only recently did
the work for finding a replacement begin in earnest, in the form of the AES (Advanced Encryption Standard)
effort.

4.2.2 Construction

The DES algorithm is depicted in Figure 4.1. It takes input a 56-bit key K and a 64 bit plaintext M . The
key-schedule KeySchedule produces from the 56-bit key K a sequence of 16 subkeys, one for each of the rounds
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IP IP−1

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Figure 4.2: Tables describing the DES initial permutation IP and its inverse IP−1.

function f(J,R) // |J | = 48 and |R| = 32

R ← E(R) ; R ← R ⊕ J
Parse R as R1‖R2‖R3‖R4‖R5‖R6‖R7‖R8 // |Ri| = 6 for 1 ≤ i ≤ 8

for i = 1, . . . , 8 do
Ri ← Si(Ri) // Each S-box returns 4 bits

R ← R1‖R2‖R3‖R4‖R5‖R6‖R7‖R8 // |R| = 32 bits

R ← P(R)
return R

Figure 4.3: The f -function of DES. The text and other figures describe the subroutines used.

that follows. Each subkey is 48-bits long. We postpone the discussion of the KeySchedule algorithm.

The initial permutation IP simply permutes the bits of M , as described by the table of Figure 4.2. The table
says that bit 1 of the output is bit 58 of the input; bit 2 of the output is bit 50 of the input; . . . ; bit 64 of the
output is bit 7 of the input. Note that the key is not involved in this permutation. The initial permutation does
not appear to affect the cryptographic strength of the algorithm, and its purpose remains a bit of a mystery.

The permuted plaintext is now input to a loop, which operates on it in 16 rounds. Each round takes a 64-bit
input, viewed as consisting of a 32-bit left half and a 32-bit right half, and, under the influence of the sub-key
Kr, produces a 64-bit output. The input to round r is Lr−1‖Rr−1, and the output of round r is Lr‖Rr. Each
round is what is called a Feistel round, named after Horst Feistel, one the IBM designers of a precursor of DES.
Figure 4.1 shows how it works, meaning how Lr‖Rr is computed as a function of Lr−1‖Rr−1, by way of the
function f , the latter depending on the sub-key Kr associated to the r-th round.

One of the reasons to use this round structure is that it is reversible, important to ensure that DESK is a
permutation for each key K, as it should be to qualify as a block cipher. Indeed, given Lr‖Rr (and Kr) we can
recover Lr−1‖Rr−1 via Rr−1 ← Lr and Lr−1 ← f(K − r, Lr)⊕Rr.

Following the 16 rounds, the inverse of the permutation IP, also depicted in Figure 4.2, is applied to the 64-bit
output of the 16-th round, and the result of this is the output ciphertext.

A sequence of Feistel rounds is a common high-level design for a block cipher. For a closer look we need to see
how the function f(·, ·) works. It is shown in Figure 4.3. It takes a 48-bit subkey J and a 32-bit input R to
return a 32-bit output. The 32-bit R is first expanded into a 48-bit via the function E described by the table
of Figure 4.4. This says that bit 1 of the output is bit 32 of the input; bit 2 of the output is bit 1 of the input;
. . . ; bit 48 of the output is bit 1 of the input.

Note the E function is quite structured. In fact barring that 1 and 32 have been swapped (see top left and
bottom right) it looks almost sequential. Why did they do this? Who knows. That’s the answer to most things
about DES.

Now the sub-key J is XORed with the output of the E function to yield a 48-bit result that we continue to
denote by R. This is split into 8 blocks, each 6-bits long. To the i-th block we apply the function Si called
the i-th S-box. Each S-box is a function taking 6 bits and returning 4 bits. The result is that the 48-bit R is
compressed to 32 bits. These 32 bits are permuted according to the P permutation described in the usual way
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E P

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

Figure 4.4: Tables describing the expansion function E and final permutation P of the DES f -function.

by the table of Figure 4.4, and the result is the output of the f function. Let us now discuss the S-boxes.

Each S-box is described by a table as shown in Figure 4.5. Read these tables as follows. Si takes a 6-bit input.
Write it as b1b2b3b4b5b6. Read b3b4b5b6 as an integer in the range 0, . . . , 15, naming a column in the table
describing Si. Let b1b2 name a row in the table describing Si. Take the row b1b2, column b3b4b5b6 entry of the
table of Si to get an integer in the range 0, . . . , 15. The output of Si on input b1b2b3b4b5b6 is the 4-bit string
corresponding to this table entry.

The S-boxes are the heart of the algorithm, and much effort was put into designing them to achieve various
security goals and resistance to certain attacks.

Finally, we discuss the key schedule. It is shown in Figure 4.6. Each round sub-key Kr is formed by taking
some 48 bits of K. Specifically, a permutation called PC-1 is first applied to the 56-bit key to yield a permuted
version of it. This is then divided into two 28-bit halves and denoted C0‖D0. The algorithm now goes through
16 rounds. The r-th round takes input Cr−1‖Dr−1, computes Cr‖Dr, and applies a function PC-2 that extracts
48 bits from this 56-bit quantity. This is the sub-key Kr for the r-th round. The computation of Cr‖Dr is quite
simple. The bits of Cr−1 are rotated to the left j positions to get Cr, and Dr is obtained similarly from Dr−1,
where j is either 1 or 2, depending on r.

The functions PC-1 and PC-2 are tabulated in Figure 4.7. The first table needs to be read in a strange way. It
contains 56 integers, these being all integers in the range 1, . . . , 64 barring multiples of 8. Given a 56-bit string
K = K[1] . . . K[56] as input, the corresponding function returns the 56-bit string L = L[1] . . . L[56] computed
as follows. Suppose 1 ≤ i ≤ 56, and let a be the i-th entry of the table. Write a = 8q + r where 1 ≤ r ≤ 7.
Then let L[i] = K[a − q]. As an example, let us determine the first bit, L[1], of the output of the function on
input K. We look at the first entry in the table, which is 57. We divide it by 8 to get 57 = 8(7) + 1. So L[1]
equals K[57 − 7] = K[50], meaning the 1st bit of the output is the 50-th bit of the input. On the other hand
PC-2 is read in the usual way as a map taking a 56-bit input to a 48 bit output: bit 1 of the output is bit 14
of the input; bit 2 of the output is bit 17 of the input; . . . ; bit 56 of the output is bit 32 of the input.

Well now you know how DES works. Of course, the main questions about the design are: why, why and why?
What motivated these design choices? We don’t know too much about this, although we can guess a little. And
one of the designers of DES, Don Coppersmith, has written a short paper which provides some information.

4.2.3 Speed

One of the design goals of DES was that it would have fast implementations relative to the technology of its
time. How fast can you compute DES? In roughly current technology (well, nothing is current by the time one
writes it down!) one can get well over 1 Gbit/sec on high-end VLSI. Specifically at least 1.6 Gbits/sec, maybe
more. That’s pretty fast. Perhaps a more interesting figure is that one can implement each DES S-box with at
most 50 two-input gates, where the circuit has depth of only 3. Thus one can compute DES by a combinatorial
circuit of about 8 · 16 · 50 = 640 gates and depth of 3 · 16 = 48 gates.

In software, on a fairly modern processor, DES takes something like 80 cycles per byte. This is disappointingly
slow—not surprisingly, since DES was optimized for hardware and was designed before the days in which
software implementations were considered feasible or desirable.
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S1 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
1 0 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
1 1 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
0 1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
1 0 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
1 1 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
0 1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
1 0 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 1 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
0 1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
1 0 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
1 1 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
0 1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
1 0 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
1 1 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
0 1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
1 0 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
1 1 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
0 1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 0 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
1 1 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
0 1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
1 0 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
1 1 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Figure 4.5: The DES S-boxes.

4.3 Key recovery attacks on block ciphers

Now that we know what a block cipher looks like, let us consider attacking one. This is called cryptanalysis of
the block cipher.

We fix a block cipher E: {0, 1}k × {0, 1}n → {0, 1}n having key-size k and block size n. It is assumed that the
attacker knows the description of E and can compute it. For concreteness, you can think of E as being DES.

Historically, cryptanalysis of block ciphers has focused on key-recovery. The cryptanalyst may think of the
problem to be solved as something like this. A k-bit key T , called the target key, is chosen at random. Let
q ≥ 0 be some integer parameter.

Given: The adversary has a sequence of q input-output examples of ET , say

(M1, C1), . . . , (Mq, Cq)

where Ci = ET (Mi) for i = 1, . . . , q and M1, . . . ,Mq are all distinct n-bit strings.
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Algorithm KeySchedule(K) // |K| = 56

K ← PC-1(K)
Parse K as C0‖D0

for r = 1, . . . , 16 do
if r ∈ {1, 2, 9, 16} then j ← 1 else j ← 2 fi
Cr ← leftshiftj(Cr−1) ; Dr ← leftshiftj(Dr−1)
Kr ← PC-2(Cr‖Dr)

return(K1, . . . , K16)

Figure 4.6: The key schedule of DES. Here leftshiftj denotes the function that rotates its input to the left by j
positions.

PC-1 PC-2

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Figure 4.7: Tables describing the PC-1 and PC-2 functions used by the DES key schedule of Figure 4.6.

Find: The adversary wants to find the target key T .

Let us say that a key K is consistent with the input-output examples (M1, C1), . . . , (Mq, Cq) if EK(Mi) = Ci for
all 1 ≤ i ≤ q. We let

ConsE((M1, C1), . . . , (Mq, Cq))

be the set of all keys consistent with the input-output examples (M1, C1), . . . , (Mq, Cq). Of course the target
key T is in this set. But the set might be larger, containing other keys. A key-recovery attack cannot hope
to differentiate the target key from other members of the set ConsE((M1, C1), . . . , (Mq, Cq)). Thus, the goal is
sometimes viewed as simply being to find some key in this set, or even the entire set. For practical block ciphers
though, if enough input-output examples are used, the size of this set is usually one, so that one can indeed find
the target key. We will exemplify all this when we consider specific attacks.

Some typical kinds of “attack” that are considered within this framework:

Known-message attack: M1, . . . , Mq are any distinct points; the adversary has no control over them, and
must work with whatever it gets.

Chosen-message attack: M1, . . . , Mq are chosen by the adversary, perhaps even adaptively. That is, imagine
it has access to an “oracle” for the function EK . It can feed the oracle M1 and get back C1 = EK(M1). It can
then decide on a value M2, feed the oracle this, and get back C2, and so on.

Clearly a chosen-message attack gives the adversary much more power, but is also less realistic in practice.

The most obvious attack strategy is exhaustive key search. The adversary goes through all possible keys
K ′ ∈ {0, 1}k until it finds one that explains the input-output pairs. Here is the attack in detail, using q = 1,
meaning one input-output example. For i = 1, . . . , 2k let Ti denote the i-th k-bit string (in lexicographic order).

EKSE(M1, C1)
for i = 1, . . . , 2k do

if E(Ti, M1) = C1 then return Ti fi
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This attack always returns a key consistent with the given input-output example (M1, C1). Whether or not it
is the target key depends on the block cipher, and in particular on its key length and block length, and in some
cases the probability of this is too small. The likelihood of the attack returning the target key can be increased
by testing against more input-output examples:

EKSE((M1, C1), . . . , (Mq, Cq))
for i = 1, . . . , 2k do

if E(Ti, M1) = C1 then
if ( E(Ti, M2) = C2 AND · · · AND E(Ti,Mq) = Cq ) then return Ti fi

A fairly small vaue of q, say somewhat more than k/n, is enough that this attack will usually return the target
key itself. For DES, q = 2 is enough.

Thus, no block cipher is perfectly secure. It is always possible for an attacker to recover the key. A good block
cipher, however, is designed to make this task computationally prohibitive.

How long does exhaustive key-search take? Since q is small we can neglect the difference in running time between
the two versions of the attack above, and focus for simplicity on the first attack. In the worst case, it uses 2k

computations of the block cipher. However it could be less since one could get lucky. For example if the target
key is in the first half of the search space, only 2k−1 computations would be used. So a better measure is how
long it takes on the average. This is

2k
∑

i=1

i · Pr[K = Ti] =

2k
∑

i=1

i

2k
=

1

2k
·

2k
∑

i=1

i =
1

2k
· 2k(2k + 1)

2
=

2k + 1

2
≈ 2k−1

computations of the block cipher. This is because the target key is chosen at random, so with probability 1/2k

equals Ti, and in that case the attack uses i E-computations to find it.

Thus to make key-recovery by exhaustive search computationally prohibitive, one must make the key-length k
of the block cipher large enough.

Let’s look at DES. We noted above that there is VLSI chip that can compute it at the rate of 1.6 Gbits/sec.
How long would key-recovery via exhaustive search take using this chip? Since a DES plaintext is 64 bits, the
chip enables us to perform (1.6 ·109)/64 = 2.5 ·107 DES computations per second. To perform 255 computations
(here k = 56) we thus need 255/(2.5 · 107) ≈ 1.44 · 109 seconds, which is about 45.7 years. This is clearly
prohibitive.

It turns out that that DES has a property called key-complementation that one can exploit to reduce the size
of the search space by one-half, so that the time to find a key by exhaustive search comes down to 22.8 years.
But this is still prohibitive.

Yet, the conclusion that DES is secure against exhaustive key search is actually too hasty. We will return to
this later and see why.

Exhaustive key search is a generic attack in the sense that it works against any block cipher. It only involves
computing the block cipher and makes no attempt to analyze the cipher and find and exploit weaknesses.
Cryptanalysts also need to ask themselves if there is some weakness in the structure of the block cipher they
can exploit to obtain an attack performing better than exhaustive key search.

For DES, the discovery of such attacks waited until 1990. Differential cryptanalysis is capable of finding a
DES key using about 247 input-output examples (that is, q = 247) in a chosen-message attack [33, 34]. Linear
cryptanalysis [140] improved differential in two ways. The number of input-output examples required is reduced
to 244, and only a known-message attack is required. (An alternative version uses 242 chosen plaintexts [124].)

These were major breakthroughs in cryptanalysis that required careful analysis of the DES construction to find
and exploit weaknesses. Yet, the practical impact of these attacks is small. Why? Ordinarily it would be
impossible to obtain 244 input-output examples. Furthermore, the storage requirement for these examples is
prohibitive. A single input-output pair, consisting of a 64-bit plaintext and 64-bit ciphertext, takes 16 bytes of
storage. When there are 244 such pairs, we need 16 · 244 = 2.81 · 1014 bits, or about 281 terabytes of storage,
which is enormous.
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Linear and differential cryptanalysis were however more devastating when applied to other ciphers, some of
which succumbed completely to the attack.

So what’s the best possible attack against DES? The answer is exhaustive key search. What we ignored above
is that the DES computations in this attack can be performed in parallel. In 1993, Weiner argued that one can
design a $1 million machine that does the exhaustive key search for DES in about 3.5 hours on the average [207].
His machine would have about 57,000 chips, each performing numerous DES computations. More recently, a
DES key search machine was actually built by the Electronic Frontier Foundation, at a cost of $250,000 [88]. It
finds the key in 56 hours, or about 2.5 days on the average. The builders say it will be cheaper to build more
machines now that this one is built.

Thus DES is feeling its age. Yet, it would be a mistake to take away from this discussion the impression that
DES is a weak algorithm. Rather, what the above says is that it is an impressively strong algorithm. After all
these years, the best practical attack known is still exhaustive key search. That says a lot for its design and its
designers.

Later we will see that we would like security properties from a block cipher that go beyond resistance to key-
recovery attacks. It turns out that from that point of view, a limitation of DES is its block size. Birthday
attacks “break” DES with about q = 232 input output examples. (The meaning of “break” here is very different
from above.) Here 232 is the square root of 264, meaning to resist these attacks we must have bigger block size.
The next generation of ciphers—things like AES—took this into account.

4.4 Iterated-DES and DESX

The emergence of the above-discussed key-search engines lead to the view that in practice DES should be
considered broken. Its shortcoming was its key-length of 56, not long enough to resist exhaustive key search.

People looked for cheap ways to strengthen DES, turning it, in some simple way, into a cipher with a larger key
length. One paradigm towards this end is iteration.

4.4.1 Double-DES

Let K1, K2 be 56-bit DES keys and let M be a 64-bit plaintext. Let

2DES(K1‖K2,M) = DES(K2, DES(K1,M)) .

This defines a block cipher 2DES: {0, 1}112 × {0, 1}64 → {0, 1}64 that we call Double-DES. It has a 112-bit key,
viewed as consisting of two 56-bit DES keys. Note that it is reversible, as required to be a block cipher:

2DES−1(K1‖K2, C) = DES−1(K1, DES−1(K2, C)) .

for any 64-bit C.

The key length of 112 is large enough that there seems little danger of 2DES succumbing to an exhaustive key
search attack, even while exploiting the potential for parallelism and special-purpose hardware. On the other
hand, 2DES also seems secure against the best known cryptanalytic techniques, namely differential and linear
cryptanalysis, since the iteration effectively increases the number of Feistel rounds. This would indicate that
2DES is a good way to obtain a DES-based cipher more secure than DES itself.

However, although 2DES has a key-length of 112, it turns out that it can be broken using about 257 DES and
DES−1 computations by what is called a meet-in-the-middle attack, as we now illustrate. Let K1‖K2 denote
the target key and let C1 = 2DES(K1‖K2, M1). The attacker, given M1, C1, is attempting to find K1‖K2. We
observe that

C1 = DES(K2,DES(K1,M1)) ⇒ DES−1(K2, C1) = DES(K1, M1) .

This leads to the following attack. Below, for i = 1, . . . , 256 we let Ti denote the i-th 56-bit string (in lexicographic
order):
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MinM2DES(M1, C1)
for i = 1, . . . , 256 do L[i] ← DES(Ti,M1)
for j = 1, . . . , 256 do R[j] ← DES−1(Tj , C1)
S ← { (i, j) : L[i] = R[j] }
Pick some (l, r) ∈ S and return Tl‖Tr

For any (i, j) ∈ S we have
DES(Ti,M1) = L[i] = R[j] = DES−1(Tj , C1)

and as a consequence DES(Tj ,DES(Ti,M1)) = C1. So the key Ti‖Tj is consistent with the input-output example
(M1, C1). Thus,

{ Tl‖Tr : (l, r) ∈ S } = ConsE((M1, C1)) .

The attack picks some pair (l, r) from S and outputs Tl‖Tr, thus returning a key consistent with the input-output
example (M1, C1).

The set S above is likely to be quite large, of size about 256+56/264 = 248, meaning the attack as written is not
likely to return the target key itself. However, by using a few more input-output examples, it is easy to whittle
down the choices in the set S until it is likely that only the target key remains.

The attack makes 256 + 256 = 257 DES or DES−1 computations. The step of forming the set S can be
implemented in linear time in the size of the arrays involved, say using hashing. (A naive strategy takes time
quadratic in the size of the arrays.) Thus the running time is dominated by the DES,DES−1 computations.

The meet-in-the-middle attack shows that 2DES is quite far from the ideal of a cipher where the best attack
is exhaustive key search. However, this attack is not particularly practical, even if special purpose machines
are designed to implement it. The machines could do the DES, DES−1 computations quickly in parallel, but to
form the set S the attack needs to store the arrays L, R, each of which has 256 entries, each entry being 64 bits.
The amount of storage required is 8 · 257 ≈ 1.15 · 1018 bytes, or about 1.15 · 106 terabytes, which is so large that
implementing the attack is impractical.

There are some strategies that modify the attack to reduce the storage overhead at the cost of some added time,
but still the attack does not appear to be practical.

Since a 112-bit 2DES key can be found using 257 DES or DES−1 computations, we sometimes say that 2DES

has an effective key length of 57.

4.4.2 Triple-DES

The triple-DES ciphers use three iterations of DES or DES−1. The three-key variant is defined by

3DES3(K1‖K2‖K3,M) = DES(K3,DES−1(K2,DES(K1,M)) ,

so that 3DES3: {0, 1}168 × {0, 1}64 → {0, 1}64. The two-key variant is defined by

3DES2(K1‖K2,M) = DES(K2, DES−1(K1, DES(K2,M)) ,

so that 3DES2: {0, 1}112 ×{0, 1}64 → {0, 1}64. You should check that these functions are reversible so that they
do qualify as block ciphers. The term “triple” refers to there being three applications of DES or DES−1. The
rationale for the middle application being DES−1 rather than DES is that DES is easily recovered via

DES(K, M) = 3DES3(K‖K‖K, M) (4.1)

DES(K, M) = 3DES2(K‖K, M) . (4.2)

As with 2DES, the key length of these ciphers appears long enough to make exhaustive key search prohibitive,
even with the best possible engines, and, additionally, differential and linear cryptanalysis are not particularly
effective because iteration effectively increases the number of Feistel rounds.

3DES3 is subject to a meet-in-the-middle attack that finds the 168-bit key using about 2112 computations of
DES or DES−1, so that it has an effective key length of 112. There does not appear to be a meet-in-the-middle
attack on 3DES2 however, so that its key length of 112 is also its effective key length.
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The 3DES2 cipher is popular in practice and functions as a canonical and standard replacement for DES. 2DES,
although having the same effective key length as 3DES2 and offering what appears to be the same or at least
adequate security, is not popular in practice. It is not entirely apparent why 3DES2 is preferred over 2DES, but
the reason might be Equation (4.2).

4.4.3 DESX

Although 2DES, 3DES3 and 3DES2 appear to provide adequate security, they are slow. The first is twice as slow
as DES and the other two are three times as slow. It would be nice to have a DES based block cipher that had
a longer key than DES but was not significantly more costly. Interestingly, there is a simple design that does
just this. Let K be a 56-bit DES key, let K1, K2 be 64-bit strings, and let M be a 64-bit plaintext. Let

DESX(K‖K1‖K2,M) = K2 ⊕ DES(K, K1⊕M) .

This defines a block cipher DESX: {0, 1}184 × {0, 1}64 → {0, 1}64. It has a 184-bit key, viewed as consisting of
a 56-bit DES key plus two auxiliary keys, each 64 bits long. Note that it is reversible, as required to be a block
cipher:

DESX−1(K‖K1‖K2, C) = K1 ⊕ DES−1(K,K2⊕C) .

The key length of 184 is certainly enough to preclude exhaustive key search attacks. DESX is no more secure
than DES against linear of differential cryptanalysis, but we already saw that these are not really practical
attacks.

There is a meet-in-the-middle attack on DESX. It finds a 184-bit DESX key using 2120 DES and DES−1

computations. So the effective key length of DESX seems to be 120, which is large enough for security.

DESX is less secure than Double or Triple DES because the latter are more more resistant than DES to linear
and differential cryptanalysis while DESX is only as good as DES itself in this regard. However, this is good
enough; we saw that in practice the weakness of DES was not these attacks but rather the short key length
leading to successful exhaustive search attacks. DESX fixes this, and very cheaply. In summary, DESX is popular
because it is much cheaper than Double of Triple DES while providing adequate security.

4.4.4 Why a new cipher?

DESX is arguably a fine cipher. Nonetheless, there were important reasons to find and standardize a new cipher.

We will in Section 5.8 that the security provided by a block cipher depends not only on its key length and
resistance to key-search attacks but on its block length. A block cipher with block length n can be “broken” in
time around 2n/2. When n = 64, this is 232, which is quite small. Although 2DES, 3DES3, 3DES2,DESX have a
higher (effective) key length than DES, they preserve its block size and thus are no more secure than DES from
this point of view. It was seen as important to have a block cipher with a block length n large enough that a
2n/2 time attack was not practical. This was one motivation for a new cipher.

Perhaps the larger motivation was speed. Desired was a block cipher that ran faster than DES in software.

4.5 Advanced Encryption Standard (AES)

In 1998 the National Institute of Standards and Technology (NIST/USA) announced a “competition” for a new
block cipher. The new block cipher would, in time, replace DES. The relatively short key length of DES was
the main problem that motivated the effort: with the advances in computing power, a key space of 256 keys was
just too small. With the development of a new algorithm one could also take the opportunity to address the
modest software speed of DES, making something substantially faster, and to increase the block size from 64
to 128 bits (the choice of 64 bits for the block size can lead to security difficulties, as we shall later see. Unlike
the design of DES, the new algorithm would be designed in the open and by the public.

Fifteen algorithms were submitted to NIST. They came from around the world. A second round narrowed the
choice to five of these algorithms. In the summer of 2001 NIST announced their choice: an algorithm called
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function AESK(M)
(K0, . . . , K10) ← expand(K)
s ← M⊕K0

for r = 1 to 10 do
s ← S(s)
s ← shift-rows(s)
if r ≤ 9 then s ← mix-cols(s) fi
s ← s⊕Kr

endfor
return s

Figure 4.8: The function AES128. See the accompanying text and figures for definitions of the maps expand,
S, shift-rows, mix-cols.

Rijndael. The algorithm should be embodied in a NIST FIPS (Federal Information Processing Standard) any
day now; right now, there is a draft FIPS. Rijndael was designed by Joan Daemen and Vincent Rijmen (from
which the algorithm gets its name), both from Belgium. It is descendent of an algorithm called Square.

In this section we shall describe AES.

A word about notation. Purists would prefer to reserve the term “AES” to refer to the standard, using the
word “Rijndael” or the phrase “the AES algorithm” to refer to the algorithm itself. (The same naming pundits
would have us use the acronym DEA, Data Encryption Algorithm, to refer to the algorithm of the DES, the
Data Encryption Standard.) We choose to follow common convention and refer to both the standard and
the algorithm as AES. Such an abuse of terminology never seems to lead to any misunderstandings. (Strictly
speaking, AES is a special case of Rijndael. The latter includes more options for block lengths than AES does.)

The AES has a block length of n = 128 bits, and a key length k that is variable: it may be 128, 192 or 256
bits. So the standard actually specifies three different block ciphers: AES128, AES192, AES256. These three
block ciphers are all very similar, so we will stick to describing just one of them, AES128. For simplicity, in the
remainder of this section, AES means the algorithm AES128. We’ll write C = AESK(M) where |K| = 128 and
|M | = |C| = 128.

We’re going to describe AES in terms of four additional mappings: expand, S, shift-rows, and mix-cols. The
function expand takes a 128-bit string and produces a vector of eleven keys, (K0, . . . , K10). The remaining
three functions bijectively map 128-bits to 128-bits. Actually, we’ll be more general for S, letting git be a map
on (({0, 1})8)+. Let’s postpone describing all of these maps and start off with the high-level structure of AES,
which is given in Figure 4.8.

Refer to Figure 4.8. The value s is called the state. One initizlizes the state to M and the final state is the
ciphertext C one gets by enciphering M . What happens in each iteration of the for loop is called a round.
So AES consists of ten rounds. The rounds are identical except that each uses a different subkey Ki and, also,
round 10 omits the call to mix-cols.

To understand what goes on in S and mix-cols we will need to review a bit of algebra. Let us make a pause
to do that. We describe a way to do arithmetic on bytes. Identify each byte a = a7a6a5a4a3a2a1a0 with the
formal polynomial a7x

7 + a6x
6 + a+5x5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0. We can add two bytes by taking their
bitwise xor (which is the same as the mod-2 sum the corresponding polynomials). We can multiply two bytes
to get a degree 14 (or less) polynomial, and then take the remainder of this polynomial by the fixed irreducible
polynomial

m(x) = x8 + x4 + x3 + x + 1 .

This remainder polynomial is a polynomial of degree at most seven which, as before, can be regarded as a byte.
In this way, we can add and multiply any two bytes. The resulting algebraic structure has all the properties
necessary to be called a finite field. In particular, this is one representation of the finite field known as GF(28)—
the Galois field on 28 = 256 points. As a finite field, you can find the inverse of any nonzero field point (the
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63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Figure 4.9: The AES S-box, which is a function S : {0, 1}8 → {0, 1}8 specified by the following list. All values
in hexadecimal. The meaning is: S(00) = 63, S(01) = 7c, . . ., S(ff) = 16.

zero-element is the zero byte) and you can distribute addition over multiplication, for example.

There are some useful tricks when you want to multiply two bytes. Since m(x) is another name for zero,
x8 = x4 + x3 + x + 1 = {1b}. (Here the curly brackets simply indicate a hexadecimal number.) So it is easy to
multiply a byte a by the byte x = {02}: namely, shift the 8-bit byte a one position to the left, letting the first
bit “fall off” (but remember it!) and shifting a zero into the last bit position. We write this operation 〈〈〈 1. If
that first bit of a was a 0, we are done. If the first bit was a 1, we need to add in (that is, xor in) x8 = {1b}.
In summary, for a a byte, a · x = a · {02} is a 〈〈〈 1 if the first bit of a is 0, and it is (a 〈〈〈 1)⊕{1b} if the first
bit of a is 1.

Knowing how to multiply by x = {02} let’s you conveniently multiply by other quantities. For example, to
compute {a1} · {03} compute {a1} · ({02}⊕{01}) = {a1} · {02}⊕{a1} · {01} = {42}⊕{1b}⊕a1 = {f8}. Try
some more examples on your own.

As we said, each nonzero byte a has a multiplicative inverse, inv(a) = a−1, The mapping we will denote
S : {0, 1}8 → {0, 1}8 is obtained from the map inv : a 7→ a−1. First, patch this map to make it total on
{0, 1}8 by setting inv({00}) = {00}. Then, to compute S(a), first replace a by inv(a), number the bits of a by
a = a7a6a5a4a3a2a1a0, and return the value a′, where a′ = a′

7a
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All arithmetic is in GF(2), meaning that addition of bits is their xor and multiplication of bits is the conjunction
(and).

All together, the map S is give by Figure 4.9, which lists the values of

S(0), S(1), . . . , S(255) .

In fact, one could forget how this table is produced, and just take it for granted. But the fact is that it is made
in the simple way we have said.

Now that we have the function S, let us extend it (without bothering to change the name) to a function with
domain {{0, 1}8}+. Namely, given an m-byte string A = A[1] . . . A[m], set S(A) to be S(A[1]) . . . S(A[m]). In
other words, just apply S bytewise.
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function expand(K)
K0 ← K
for i ← 1 to 10 do

Ki[0] ← Ki−1[0]⊕S(Ki−1[3] 〈〈〈 8)⊕Ci

Ki[1] ← Ki−1[1]⊕Ki[0]
Ki[2] ← Ki−1[2]⊕Ki[1]
Ki[3] ← Ki−1[3]⊕Ki[2]

od
return (K0, . . . ,K10)

Figure 4.10: The AES128 key-expansion algorithm maps a 128-bit key K into eleven 128-bit subkeys,
K0, . . . , K10. Constants (C1, . . . ,C10) are ({02000000}, {04000000}, {08000000}, {10000000}, {20000000},
{40000000}, {80000000}, {1B000000}, {36000000}, {6C000000}). All other notation is described in the accom-
panying text.

Now we’re ready to understand the first map, S(s). One takes the 16-byte state s and applies the 8-bit lookup
table to each of its bytes to get the modified state s.

Moving on, the shift-rows operation works like this. Imagine plastering the 16 bytes of s = s0s1 . . . s15 going
top-to-bottom, then left-to-right, to make a 4 × 4 table:

s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

For the shift-rows step, left circularly shift the second row by one position; the third row by two positions; and
the the fourth row by three positions. The first row is not shifted at all. Somewhat less colorfully, the mapping
is simply

shift-rows(s0s1s2 · · · s15) = s0s5s10s15s4s9s14s3s8s13s2s7s12s1s6s11

Using the same convention as before, the mix-cols step takes each of the four columns in the 4 × 4 table and
applies the (same) transformation to it. Thus we define mix-cols(s) on 4-byte words, and then extend this to a
16-byte quantity wordwise. The value of mix-cols(a0a1a2a3) = a′

0a
′
1a

′
2a

′
3 is defined by:







a′
0

a′
1

a′
2

a′
3
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02 03 01 01
01 02 03 01
01 02 02 03
03 01 01 02
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a1

a2

a3







An equivalent way to explain this step is to say that we are multiplying a(x) = a3x
3 + a2x

2 + a1x
1 + a0 by the

fixed polynomial c(x) = {03}x3 + {01}x2 + {01}x + {02} and taking the result modulo x4 + 1.

At this point we have described everything but the key-expansion map, expand. That map is given in Figure 4.10.

We have now completed the definition of AES. One key property is that AES is a block cipher: the map is
invertible. This follows because every round is invertible. That a round is invertible follows from each of its
steps being invertible, which is a consequence of S being a permutation and the matrix used in mix-cols having
an inverse .

In the case of DES, the rationale for the design were not made public. Some explanation for different aspects of
the design have become more apparent over time as we have watched the effects on DES of new attack strategies,
but fundamentally, the question of why the design is as it is has not received a satisfying cipher. In the case of
AES there was significantly more documentation of the rationale for design choices. (See the book The design
of Rijndael by the designers [66]).
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Nonetheless, the security of block ciphers, including DES and AES, eventually comes down to the statement
that “we have been unable to find effective attacks, and we have tried attacks along the following lines . . ..” If
people with enough smarts and experience utter this statement, then it suggests that the block cipher is good.
Beyond this, it’s hard to say much. Yet, by now, our community has become reasonably experienced designing
these things. It wouldn’t even be that hard a game were it not for the fact we tend to be agressive in optimizing
the block-cipher’s speed. (Some may come to the opposite opinion, that it’s a very hard game, seeing just
how many reasonable-looking block ciphers have been broken.) Later we give some vague sense of the sort of
cleverness that people muster against block ciphers.

4.6 Limitations of key-recovery based security

As discussed above, classically, the security of block ciphers has been looked at with regard to key recovery.
That is, analysis of a block cipher E has focused primarily on the following question: given some number q
of input-output examples (M1, C1), . . . , (Mq, Cq), where T is a random, unknown key and Ci = ET (Mi), how
hard is it for an attacker to find T? A block cipher is viewed as “secure” if the best key-recovery attack is
computationally infeasible, meaning requires a value of q or a running time t that is too large to make the attack
practical. In the sequel, we refer to this as security against key-recovery.

However, as a notion of security, security against key-recovery is quite limited. A good notion should be
sufficiently strong to be useful. This means that if a block cipher is secure, then it should be possible to use
the block cipher to make worthwhile constructions and be able to have some guarantee of the security of these
constructions. But even a cursory glance at common block cipher usages shows that good security in the sense
of key recovery is not sufficient for security of the usages of block ciphers.

As an example, consider that we typically want to think of C = EK(M) as an “encryption” of plaintext M
under key K. An adversary in possession of C but not knowing K should find it computationally infeasible to
recover M , or even some part of M such as its first half. Security against key-recovery is certainly necessary
for this, because if the adversary could find K it could certainly compute M , via M = E−1

K (M). But security
against key-recovery is not sufficient to ensure that M cannot be recovered given K alone. As an example,
consider the block cipher E: {0, 1}128 × {0, 1}256 → {0, 1}256 defined by EK(M) = AESK(M [1])‖M [2] where
M [1] is the first 128 bits of M and M [2] is the last 128 bits of M . Key recovery is as hard as for AES, but a
ciphertext reveals the second half of the plaintext.

This might seem like an artificial example. Many people, on seeing this, respond by saying: “But, clearly, DES
and AES are not designed like this.” True. But that is missing the point. The point is that security against
key-recovery alone does not make a “good” block cipher.

But then what does make a good block cipher? This questions turns out to not be so easy to answer. Certainly
one can list various desirable properties. For example, the ciphertext should not reveal half the bits of the
plaintext. But that is not enough either. As we see more usages of ciphers, we build up a longer and longer
list of security properties SP1, SP2, SP3, . . . that are necessary for the security of some block cipher based
application.

Such a long list of necessary but not sufficient properties is no way to treat security. What we need is one
single “MASTER” property of a block cipher which, if met, guarantees security of lots of natural usages of
the cipher.

Such a property is that the block cipher be a pseudorandom permutation (PRF), a notion explored in another
chapter.

4.7 Problems

Problem 4.1 Show that for all K ∈ {0, 1}56 and all x ∈ {0, 1}64

DESK(x) = DESK(x) .

This is called the key-complementation property of DES.
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Problem 4.2 Explain how to use the key-complementation property of DES to speed up exhaustive key search
by about a factor of two. Explain any assumptions that you make.

Problem 4.3 Find a key K such that DESK(·) = DES−1
K (·). Such a key is sometimes called a “weak” key.

Problem 4.4 As with AES, suppose we are working in the finite field with 28 elements, representing field
points using the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1. Compute the byte that is the result of
multiplying bytes:

{e1} · {05}

Problem 4.5 For AES, we have given two different descriptions of mix-cols: one using matric multiplication
(in GF(28)) and one based on multiplying by a fixed polynomial c(x) modulo a second fixed polynomial,
d(x) = x4 + 1. Show that these two methods are equivalent.

Problem 4.6 Verify that the matrix used for mix-cols has as its inverse the matrix







0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e







Explain why all entries in this matrix begin with a zero-byte.

Problem 4.7 How many different permutations are there from 128 bits to 128 bits? How man different
functions are then from 128 bits to 128 bits?

Problem 4.8 Upper and lower bound, as best you can, the probability that a random function from 128 bits
to 128 bits is actually a permutation.

Problem 4.9 Without consulting any of the numerous public-domain implementations available, implement
AES, on your own, from the spec or from the description provided by this chapter. Then test your implemen-
tation according to the test vectors provided in the AES documentation.

Problem 4.10 Justify and then refute (both) the following proposition: enciphering under AES can be imple-
mented faster than deciphering.



C h a p t e r 5

Pseudo-random functions

Pseudorandom functions (PRFs) and their cousins, pseudorandom permutations (PRPs), figure as central tools
in the design of protocols, especially those for shared-key cryptography. At one level, PRFs and PRPs can be
used to model block ciphers, and they thereby enable the security analysis of protocols based on block ciphers.
But PRFs and PRPs are also a useful conceptual starting point in contexts where block ciphers don’t quite fit
the bill because of their fixed block-length. So in this chapter we will introduce PRFs and PRPs and investigate
their basic properties.

5.1 Function families

A function family is a map F : K × D → R. Here K is the set of keys of F and D is the domain of F and R
is the range of F . The set of keys and the range are finite, and all of the sets are nonempty. The two-input
function F takes a key K and an input X to return a point Y we denote by F (K, X). For any key K ∈ K we
define the map FK : D → R by FK(X) = F (K, Y ). We call the function FK an instance of function family F .
Thus F specifies a collection of maps, one for each key. That’s why we call F a function family or family of
functions.

Sometimes we write Keys(F ) for K, Dom(F ) for D, and Range(F ) for R.

Usually K = {0, 1}k for some integer k, the key length. Often D = {0, 1}ℓ for some integer ℓ called the input
length, and R = {0, 1}L for some integers L called the output length. But sometimes the domain or range could
be sets containing strings of varying lengths.

There is some probability distribution on the (finite) set of keys K. Unless otherwise indicated, this distribution

will be the uniform one. We denote by K
$← K the operation of selecting a random string from K and naming

it K. We denote by f
$← F the operation: K

$← K ; f ← FK . In other words, let f be the function FK where K
is a randomly chosen key. We are interested in the input-output behavior of this randomly chosen instance of
the family.

A permutation is a bijection (i.e. a one-to-one onto map) whose domain and range are the same set. That is, a
map π: D → D is a permutation if for every y ∈ D there is exactly one x ∈ D such that π(x) = y. We say that
F is a family of permutations if Dom(F ) = Range(F ) and each FK is a permutation on this common set.

Example 5.1 A block cipher is a family of permutations. In particular DES is a family of permutations
DES: K × D → R with

K = {0, 1}56 and D = {0, 1}64 and R = {0, 1}64 .

Here the key length is k = 56 and the input length and output length are ℓ = L = 64. Similarly AES (when
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“AES” refers to “AES128”) is a family of permutations AES: K × D → R with

K = {0, 1}128 and D = {0, 1}128 and R = {0, 1}128 .

Here the key length is k = 128 and the input length and output length are ℓ = L = 128.

5.2 Random functions and permutations

Let D, R ⊆ {0, 1}∗ be finite nonempty sets and let ℓ, L ≥ 1 be integers. There are two particular function families
that we will often consider. One is Func(D,R), the family of all functions of D to R. The other is Perm(D), the
family of all permutations on D. For compactness of notation we let Func(ℓ,L), Func(ℓ), and Perm(ℓ) denote
Func(D,R), Func(D,D), and Perm(D), respectively, where D = {0, 1}ℓ and R = {0, 1}L. A randomly chosen
instance of Func(D,R) will be a random function from D to R, and a randomly chosen instance of Perm(D) will
be a random permutation on D. Let us now look more closely at these families in turn.

5.2.1 Random functions

The family Func(D,R) has domain D and range R. The set of instances of Func(D,R) is the set of all functions
mapping D to R. The key describing any particular instance function is simply a description of this instance
function in some canonical notation. For example, order the domain D lexicographically as X1, X2, . . ., and
then let the key for a function f be the list of values (f(X1), f(X2), . . .). The key-space of Func(D,R) is simply
the set of all these keys, under the uniform distribution.

Let us illustrate in more detail for the case of Func(ℓ,L). The key for a function in this family is simply a list
of of all the output values of the function as its input ranges over {0, 1}ℓ. Thus

Keys(Func(ℓ,L)) = { (Y1, . . . , Y2ℓ) : Y1, . . . , Y2ℓ ∈ {0, 1}L }

is the set of all sequences of length 2ℓ in which each entry of a sequence is an L-bit string. For any x ∈ {0, 1}ℓ

we interpret X as an integer in the range {1, . . . , 2ℓ} and set

Func(ℓ,L)((Y1, . . . , Y2ℓ), X) = YX .

Notice that the key space is very large; it has size 2L2ℓ

. There is a key for every function of ℓ-bits to L-bits,
and this is the number of such functions. The key space is equipped with the uniform distribution, so that

f
$← Func(ℓ,L) is the operation of picking a random function of ℓ-bits to L-bits.

Example 5.2 We exemplify Func(3,2), meaning ℓ = 3 and L = 2. The domain is {0, 1}3 and the range is
{0, 1}2. An example instance f of the family is illustrated below via its input-output table:

x 000 001 010 011 100 101 110 111
f(x) 10 11 01 11 10 00 00 10

The key corresponding to this particular function is

(10, 11, 01, 11, 10, 00, 00, 10) .

The key-space of Func(3,2) is the set of all such sequences, meaning the set of all 8-tuples each component of
which is a two bit string. There are

22·23

= 216 = 65, 536

such tuples, so this is the size of the key-space.

We will hardly ever actually think about these families in terms of this formalism. It is worth pausing here to
see how to think about them more intuitively, because they are important objects.
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We will consider settings in which you have black-box access to a function g. This means that there is a box to
which you can give any value X of your choice (provided X is in the domain of g), and the box gives you back
g(X). But you can’t “look inside” the box; your only interface to it is the one we have specified.

A random function g: D → R (where R is a finite set) being placed in this box corresponds to the following.
Each time you give the box an input, you get back a random element of R, with the sole constraint that if you
twice give the box the same input X, it will be consistent, returning both times the same output g(X).

The dynamic view of a random function can be thought of as implemented by the following computer program.
The program maintains the function in the form of a table T where T [X] holds the value of the function at X.
Initially, the table is empty. The program processes an input X ∈ D as follows:

if T [X] is not defined

then Y
$← R ; T [X] ← Y

fi
return T [X]

The answer on any point is random and independent of the answers on other points. It is this “dynamic” view
that we suggest the reader have in mind when thinking about random functions or random permutations.

One must remember that the term “random function” is misleading. It might lead one to think that certain
functions are “random” and others are not. (For example, maybe the constant function that always returns 0L

on any input is not random, but a function with many different range values is random.) This is not right. The
randomness of the function refers to the way it was chosen, not to an attribute of the selected function itself.
When you choose a function at random, the constant function is just as likely to appear as any other function.
It makes no sense to talk of the randomness of an individual function; the term “random function” just means
a function chosen at random.

Example 5.3 Let’s do some simple probabilistic computations to understand random functions. In all of the
following, the probability is taken over a random choice of f from Func(ℓ,L), meaning that we have executed

the operation f
$← Func(ℓ,L).

(1) Fix X ∈ {0, 1}ℓ and Y ∈ {0, 1}L. Then:

Pr [f(X) = Y ] = 2−L .

Notice that the probability doesn’t depend on ℓ. Nor does it depend on the values of X,Y .

(2) Fix X1, X2 ∈ {0, 1}ℓ and Y1, Y2 ∈ {0, 1}L, and assume X1 6= X2. Then

Pr [f(X1) = Y1 | f(X2) = Y2] = 2−L .

The above is a conditional probability, and says that even if we know the value of f on X1, its value on a
different point X2 is equally likely to be any L-bit string.

(3) Fix X1, X2 ∈ {0, 1}ℓ and Y ∈ {0, 1}L. Then:

Pr [f(X1) = Y and f(X2) = Y ] =

{
2−2L if X1 6= X2

2−L if X1 = X2

(4) Fix X1, X2 ∈ {0, 1}ℓ and Y ∈ {0, 1}L. Then:

Pr [f(X1) ⊕ f(X2) = Y ] =







2−L if X1 6= X2

0 if X1 = X2 and Y 6= 0L

1 if X1 = X2 and Y = 0L

(5) Suppose l ≤ L and let τ : {0, 1}L → {0, 1}l denote the function that on input Y ∈ {0, 1}L returns the first
l bits of Y . Fix distinct X1, X2 ∈ {0, 1}ℓ, Y1 ∈ {0, 1}L and Z2 ∈ {0, 1}l. Then:

Pr [τ(f(X2)) = Z2 | f(X1) = Y1] = 2−l .
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5.2.2 Random permutations

The family Perm(D) has domain and range D. The set of instances of Perm(D) is the set of all permutations
on D. The key describing a particular instance is some description of the function. Again, let us illustrate with
Perm(ℓ). In this case

Keys(Perm(ℓ)) = {(Y1, . . . , Y2ℓ) : Y1, . . . , Y2ℓ ∈ {0, 1}ℓ and

Y1, . . . , Y2ℓ are all distinct} .

For any X ∈ {0, 1}ℓ we interpret X as an integer in the range {1, . . . , 2ℓ} and set

Perm(ℓ)((Y1, . . . , Y2ℓ), X) = YX .

The key space is again equipped with the uniform distribution, so that π
$← Perm(l) is the operation of picking

a random permutation on {0, 1}ℓ. In other words, all the possible permutations on {0, 1}ℓ are equally likely.

Example 5.4 We exemplify Perm(3), meaning ℓ = 3. The domain and range are both {0, 1}3. An example
instance π of the family is illustrated below via its input-output table:

x 000 001 010 011 100 101 110 111
π(x) 010 111 101 011 110 100 000 001

The function π is a permutation because each 3-bit string occurs exactly once in the second row of the table.
The key corresponding to this particular permutation is

(010, 111, 101, 011, 110, 100, 000, 001) .

The key-space of Perm(3) is the set of all such sequences, meaning the set of all 8-tuples whose components
consist of all 3-bit strings in some order. There are

8! = 40, 320

such tuples, so this is the size of the key-space.

In the dynamic view, we again want to consider having black-box access to a permutation π. A random
permutation π: D → D (where D is a finite set) being placed in this box corresponds to the following. If you
give the box an input X ∈ D, it returns the same answer as before if X has already been queried, but, if not,
it returns a point chosen at random from D − S where S is the set of all values previously returned by the box
in response to queries different from X.

The dynamic view of a random permutation can be thought of as implemented by the following computer
program. The program maintains the function in the form of a table T where T [X] holds the value of the
function at X. Initially, the table is empty, and the set S below is also empty. The program processes an input
X ∈ D as follows:

if T [X] is not defined

then Y
$← D − S ; T [X] ← Y ; S ← S ∪ {T [X]}

fi
return T [X]

The answer on any point is random, but not independent of the answers on other points, since it is distinct
from those.

Example 5.5 Random permutations are somewhat harder to work with than random functions, due to the
lack of independence between values on different points. Let’s look at some probabilistic computations involving
them. In all of the following, the probability is taken over a random choice of π from Perm(ℓ), meaning that we

have executed the operation π
$← Perm(ℓ).
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(1) Fix X,Y ∈ {0, 1}ℓ. Then:
Pr [π(X) = Y ] = 2−ℓ .

This is the same as if π had been selected at random from Func(ℓ,ℓ) rather than from Perm(ℓ). However,
the similarity vanishes when more than one point is to be considered.

(2) Fix X1, X2 ∈ {0, 1}ℓ and Y1, Y2 ∈ {0, 1}L, and assume X1 6= X2. Then

Pr [π(X1) = Y1 | π(X2) = Y2] =

{ 1

2ℓ − 1
if Y1 6= Y2

0 if Y1 = Y2

The above is a conditional probability, and says that if we know the value of π on X1, its value on a
different point X2 is equally likely to be any L-bit string other than π(X1). So there are 2ℓ − 1 choices for
π(X2), all equally likely, if Y1 6= Y2.

(3) Fix X1, X2 ∈ {0, 1}ℓ and Y ∈ {0, 1}L. Then:

Pr [π(X1) = Y and π(X2) = Y ] =

{
0 if X1 6= X2

2−ℓ if X1 = X2

This is true because a permutation can never map distinct X1 and X2 to the same point.

(4) Fix X1, X2 ∈ {0, 1}ℓ and Y ∈ {0, 1}ℓ. Then:

Pr [π(X1) ⊕ π(X2) = Y ] =







1

2ℓ − 1
if X1 6= X2 and Y 6= 0ℓ

0 if X1 6= X2 and Y = 0ℓ

0 if X1 = X2 and Y 6= 0ℓ

1 if X1 = X2 and Y = 0ℓ

In the case X1 6= X2 and Y 6= 0ℓ this is computed as follows:

Pr [π(X1) ⊕ π(X2) = Y ]

=
∑

Y1

Pr [π(X2) = Y1⊕Y | π(X1) = Y1] · Pr [π(X1) = Y1]

=
∑

Y1

1

2ℓ − 1
· 1

2ℓ

= 2ℓ · 1

2ℓ − 1
· 1

2ℓ

=
1

2ℓ − 1
.

Above, the sum is over all Y1 ∈ {0, 1}ℓ. In evaluating the conditional probability, we used item 2 above
and the assumption that Y 6= 0ℓ.

(5) Suppose l ≤ ℓ and let τ : {0, 1}ℓ → {0, 1}l denote the function that on input Y ∈ {0, 1}ℓ returns the first l
bits of Y . (Note that although π is a permutation, τ(π(·)) is not a permutation when l < ℓ.) Fix distinct
X1, X2 ∈ {0, 1}ℓ, Y1 ∈ {0, 1}L and Z2 ∈ {0, 1}l. Then:

Pr [τ(π(X2)) = Z2 | π(X1) = Y1] =







2ℓ−l

2ℓ − 1
if Z2 6= Y1[1 . . . l]

2ℓ−l − 1

2ℓ − 1
if Z2 = Y1[1 . . . l]

This is computed as follows. Let

S = { Y2 ∈ {0, 1}ℓ : Y2[1 . . . l] = Z2 and Y2 6= Y1 } .
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We note that |S| = 2ℓ−l if Y1[1 . . . l] 6= Z2 and |S| = 2ℓ−l − 1 if Y1[1 . . . l] = Z2. Then

Pr [τ(π(X2)) = Z2 | π(X1) = Y1] =
∑

Y2∈S

Pr [π(X2) = Y2 | π(X1) = Y1]

= |S| · 1

2ℓ − 1
,

and the claim follows from what we said about the size of S.

5.3 Pseudorandom functions

A pseudorandom function is a family of functions with the property that the input-output behavior of a random
instance of the family is “computationally indistinguishable” from that of a random function. Someone who has
only black-box access to a function, meaning can only feed it inputs and get outputs, has a hard time telling
whether the function in question is a random instance of the family in question or a random function. The
purpose of this section is to arrive at a suitable definition of this notion. Later we will look at motivation and
applications.

We fix a family of functions F : K×D → R. (You may want to think K = {0, 1}k, D = {0, 1}ℓ and R = {0, 1}L

for some integers k, ℓ, L ≥ 1.) Imagine that you are in a room which contains a terminal connected to a computer
outside your room. You can type something into your terminal and send it out, and an answer will come back.
The allowed questions you can type must be elements of the domain D, and the answers you get back will be
elements of the range R. The computer outside your room implements a function g: D → R, so that whenever
you type a value X you get back g(X). However, your only access to g is via this interface, so the only thing
you can see is the input-output behavior of g. We consider two different ways in which g will be chosen, giving
rise to two different “worlds.”

World 0: The function g is drawn at random from Func(D,R), namely, the function g is selected via g
$←

Func(D,R).

World 1: The function g is drawn at random from F , namely, the function g is selected via g
$← F . (Recall

this means that a key is chosen via K
$← K and then g is set to FK .)

You are not told which of the two worlds was chosen. The choice of world, and of the corresponding function g,
is made before you enter the room, meaning before you start typing questions. Once made, however, these
choices are fixed until your “session” is over. Your job is to discover which world you are in. To do this, the only
resource available to you is your link enabling you to provide values X and get back g(X). After trying some
number of values of your choice, you must make a decision regarding which world you are in. The quality of
pseudorandom family F can be thought of as measured by the difficulty of telling, in the above game, whether
you are in World 0 or in World 1.

In the formalization, the entity referred to as “you” above is an algorithm called the adversary. The adversary
algorithm A may be randomized. We formalize the ability to query g as giving A an oracle which takes input
any string X ∈ D and returns g(X). We write Ag to mean that adversary A is being given oracle access to
function g. (It can only interact with the function by giving it inputs and examining the outputs for those
inputs; it cannot examine the function directly in any way.) Algorithm A can decide which queries to make,
perhaps based on answers received to previous queries. Eventually, it outputs a bit b which is its decision as to
which world it is in. Outputting the bit “1” means that A “thinks” it is in world 1; outputting the bit “0” means
that A thinks it is in world 0. The following definition associates to any such adversary a number between 0
and 1 that is called its prf-advantage, and is a measure of how well the adversary is doing at determining which
world it is in. Further explanations follow the definition.

Definition 5.6 Let F : K×D → R be a family of functions, and let A be an algorithm that takes an oracle for
a function g: D → R, and returns a bit. We consider two experiments:
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Experiment Expprf-1
F (A)

K
$← K

b
$← AFK

Return b

Experiment Expprf-0
F (A)

g
$← Func(D,R)

b
$← Ag

Return b

The prf-advantage of A is defined as

Advprf
F (A) = Pr

[

Expprf-1
F (A) = 1

]

− Pr
[

Expprf-0
F (A) = 1

]

.

It should be noted that the family F is public. The adversary A, and anyone else, knows the description of the
family and is capable, given values K, X, of computing F (K, X).

The worlds are captured by what we call experiments. The first experiment picks a random instance FK of
family F and then runs adversary A with oracle g = FK . Adversary A interacts with its oracle, querying it
and getting back answers, and eventually outputs a “guess” bit. The experiment returns the same bit. The
second experiment picks a random function g: D → R and runs A with this as oracle, again returning A’s
guess bit. Each experiment has a certain probability of returning 1. The probability is taken over the random
choices made in the experiment. Thus, for the first experiment, the probability is over the choice of K and any
random choices that A might make, for A is allowed to be a randomized algorithm. In the second experiment,
the probability is over the random choice of g and any random choices that A makes. These two probabilities
should be evaluated separately; the two experiments are completely different.

To see how well A does at determining which world it is in, we look at the difference in the probabilities that
the two experiments return 1. If A is doing a good job at telling which world it is in, it would return 1 more
often in the first experiment than in the second. So the difference is a measure of how well A is doing. We call
this measure the prf-advantage of A. Think of it as the probability that A “breaks” the scheme F , with “break”
interpreted in a specific, technical way based on the definition.

Different adversaries will have different advantages. There are two reasons why one adversary may achieve a
greater advantage than another. One is that it is more “clever” in the questions it asks and the way it processes
the replies to determine its output. The other is simply that it asks more questions, or spends more time
processing the replies. Indeed, we expect that as an adversary sees more and more input-output examples of g,
or spends more computing time, its ability to tell which world it is in should go up.

The “security” of family F as a pseudorandom function must thus be thought of as depending on the resources
allowed to the attacker. We may want to want to know, for any given resource limitations, what is the prf-
advantage achieved by the most “clever” adversary amongst all those who are restricted to the given resource
limits.

The choice of resources to consider can vary. One resource of interest is the time-complexity t of A. Another
resource of interest is the number of queries q that A asks of its oracle. Another resource of interest is the total
length µ of all of A’s queries. When we state results, we will pay attention to such resources, showing how they
influence maximal adversarial advantage.

Let us explain more about the resources we have mentioned, giving some important conventions underlying
their measurement. The first resource is the time-complexity of A. To make sense of this we first need to fix
a model of computation. We fix some RAM model, as discussed in Chapter 1. Think of the model used in
your algorithms courses, often implicitly, so that you could measure the running time. However, we adopt the
convention that the time-complexity of A refers not just to the running time of A, but to the maximum of
the running times of the two experiments in the definition, plus the size of the code of A. In measuring the
running time of the first experiment, we must count the time to choose the key K at random, and the time to
compute the value FK(x) for any query x made by A to its oracle. In measuring the running time of the second
experiment, we count the time to choose the random function g in a dynamic way, meaning we count the cost
of maintaining a table of values of the form (X, g(X)). Entries are added to the table as g makes queries. A
new entry is made by picking the output value at random.

The number of queries made by A captures the number of input-output examples it sees. In general, not all
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strings in the domain must have the same length, and hence we also measure the sum of the lengths of all
queries made.

The strength of this definition lies in the fact that it does not specify anything about the kinds of strategies
that can be used by a adversary; it only limits its resources. A adversary can use whatever means desired to
distinguish the function as long as it stays within the specified resource bounds.

What do we mean by a “secure” PRF? Definition 5.6 does not have any explicit condition or statement regarding
when F should be considered “secure.” It only associates to any adversary A attacking F a prf-advantage
function. Intuitively, F is “secure” if the value of the advantage function is “low” for all adversaries whose
resources are “practical.”

This is, of course, not formal. However, we wish to keep it this way because it better reflects reality. In real
life, security is not some absolute or boolean attribute; security is a function of the resources invested by an
attacker. All modern cryptographic systems are breakable in principle; it is just a question of how long it takes.

This is our first example of a cryptographic definition, and it is worth spending time to study and understand
it. We will encounter many more as we go along. Towards this end let us summarize the main features of the
definitional framework as we will see them arise later. First, there are experiments, involving an adversary. Then,
there is some advantage function associated to an adversary which returns the probability that the adversary
in question “breaks” the scheme. These two components will be present in all definitions. What varies is the
experiments; this is where we pin down how we measure security.

5.4 Pseudorandom permutations

A family of functions F : K×D → D is a pseudorandom permutation if the input-output behavior of a random
instance of the family is “computationally indistinguishable” from that of a random permutation on D.

In this setting, there are two kinds of attacks that one can consider. One, as before, is that the adversary gets
an oracle for the function g being tested. However when F is a family of permutations, one can also consider
the case where the adversary gets, in addition, an oracle for g−1. We consider these settings in turn. The first
is the setting of chosen-plaintext attacks while the second is the setting of chosen-ciphertext attacks.

5.4.1 PRP under CPA

We fix a family of functions F : K × D → D. (You may want to think K = {0, 1}k and D = {0, 1}ℓ, since this
is the most common case. We do not mandate that F be a family of permutations although again this is the
most common case.) As before, we consider an adversary A that is placed in a room where it has oracle access
to a function g chosen in one of two ways.

World 0: The function g is drawn at random from Perm(D), namely, we choose g according to g
$← Perm(D).

World 1: The function g is drawn at random from F , namely g
$← F . (Recall this means that a key is chosen

via K
$← K and then g is set to FK .)

Notice that World 1 is the same in the PRF setting, but World 0 has changed. As before the task facing the
adversary A is to determine in which world it was placed based on the input-output behavior of g.

Definition 5.7 Let F : K×D → D be a family of functions, and let A be an algorithm that takes an oracle for
a function g: D → D, and returns a bit. We consider two experiments:

Experiment Expprp-cpa-1
F (A)

K
$← K

b
$← AFK

Return b

Experiment Expprp-cpa-0
F (A)

g
$← Perm(D)

b
$← Ag

Return b



Cryptography: Lecture Notes 71

The prp-cpa-advantage of A is defined as

Advprp-cpa
F (A) = Pr

[

Expprp-cpa-1
F (A) = 1

]

− Pr
[

Expprp-cpa-0
F (A) = 1

]

.

The intuition is similar to that for Definition 5.6. The difference is that here the “ideal” object that F is being
compared with is no longer the family of random functions, but rather the family of random permutations.

Experiment Expprp-cpa-1
F (A) is actually identical to Expprf-1

F (A). The probability is over the random choice
of key K and also over the coin tosses of A if the latter happens to be randomized. The experiment returns
the same bit that A returns. In Experiment Expprp-cpa-0

F (A), a permutation g: D → D is chosen at random,
and the result bit of A’s computation with oracle g is returned. The probability is over the choice of g and the
coins of A if any. As before, the measure of how well A did at telling the two worlds apart, which we call the
prp-cpa-advantage of A, is the difference between the probabilities that the experiments return 1.

Conventions regarding resource measures also remain the same as before. Informally, a family F is a secure
PRP under CPA if Advprp-cpa

F (A) is “small” for all adversaries using a “practical” amount of resources.

5.4.2 PRP under CCA

We fix a family of permutations F : K × D → D. (You may want to think K = {0, 1}k and D = {0, 1}ℓ, since
this is the most common case. This time, we do mandate that F be a family of permutations.) As before,
we consider an adversary A that is placed in a room, but now it has oracle access to two functions, g and its
inverse g−1. The manner in which g is chosen is the same as in the CPA case, and once g is chosen, g−1 is
automatically defined, so we do not have to say how it is chosen.

World 0: The function g is drawn at random from Perm(D), namely via g
$← Perm(D). (So g is just a random

permutation on D.)

World 1: The function g is drawn at random from F , namely g
$← F .

In World 1 we let g−1 = F−1
K be the inverse of the chosen instance, while in World 0 it is the inverse of the

chosen random permutation. As before the task facing the adversary A is to determine in which world it was
placed based on the input-output behavior of its oracles.

Definition 5.8 Let F : K×D → D be a family of permutations, and let A be an algorithm that takes an oracle
for a function g: D → D, and also an oracle for the function g−1: D → D, and returns a bit. We consider two
experiments:

Experiment Expprp-cca-1
F (A)

K
$← K

b
$← AFK ,F−1

K

Return b

Experiment Expprp-cca-0
F (A)

g
$← Perm(D)

b
$← Ag,g−1

Return b

The prp-cca-advantage of A is defined as

Advprp-cca
F (A) = Pr

[

Expprp-cca-1
F (A) = 1

]

− Pr
[

Expprp-cca-0
F (A) = 1

]

.

The intuition is similar to that for Definition 5.6. The difference is that here the adversary has more power: not
only can it query g, but it can directly query g−1. Conventions regarding resource measures also remain the
same as before. However, we will be interested in some additional resource parameters. Specifically, since there
are now two oracles, we can count separately the number of queries, and total length of these queries, for each.
As usual, informally, a family F is a secure PRP under CCA if Advprp-cca

F (A) is “small” for all adversaries
using a “practical” amount of resources.
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5.4.3 Relations between the notions

If an adversary does not query g−1 the oracle might as well not be there, and the adversary is effectively
mounting a chosen-plaintext attack. Thus we have the following:

Proposition 5.9 [PRP-CCA implies PRP-CPA] Let F : K×D → D be a family of permutations and let A
be a (PRP-CPA attacking) adversary. Suppose that A runs in time t, asks q queries, and these queries total µ
bits. Then there exists a (PRP-CCA attacking) adversary B that runs in time t, asks q chosen-plaintext queries,
these queries totaling µ bits, and asks no chosen-ciphertext queries, where

Advprp-cca
F (B) ≥ Advprp-cpa

F (A) .

Though the technical result is easy, it is worth stepping back to explain its interpretation. The theorem says
that if you have an adversary A that breaks F in the PRP-CPA sense, then you have some other adversary B
breaks F in the PRP-CCA sense. Furthermore, the adversary B will be just as efficient as the adversary A was.
As a consequence, if you think there is no reasonable adversary B that breaks F in the PRP-CCA sense, then
you have no choice but to believe that there is no reasonable adversary A that breaks F in the PRP-CPA sense.
The inexistence of a reasonable adversary B that breaks F in the PRP-CCA sense means that F is PRP-CCA
secure, while the inexistence of a reasonable adversary A that breaks F in the PRP-CPA sense means that F
is PRP-CPA secure. So PRP-CCA security implies PRP-CPA security, and a statement like the proposition
above is how, precisely, one makes such a statement.

5.5 Modeling block ciphers

One of the primary motivations for the notions of pseudorandom functions (PRFs) and pseudorandom permu-
tations (PRPs) is to model block ciphers and thereby enable the security analysis of protocols that use block
ciphers.

As discussed in Section 4.6, classically the security of DES or other block ciphers has been looked at only with
regard to key recovery. That is, analysis of a block cipher F has focused on the following question: Given some
number of input-output examples

(X1, FK(X1)), . . . , (Xq, FK(Xq))

where K is a random, unknown key, how hard is it to find K? The block cipher is taken as “secure” if the
resources required to recover the key are prohibitive. Yet, as we saw, even a cursory glance at common block
cipher usages shows that hardness of key recovery is not sufficient for security. We had discussed wanting a
master security property of block ciphers under which natural usages of block ciphers could be proven secure.
We suggest that this master property is that the block cipher be a secure PRP, under either CPA or CCA.

We cannot prove that specific block ciphers have this property. The best we can do is assume they do, and
then go on to use them. For quantitative security assessments, we would make specific conjectures about the
advantage functions of various block ciphers. For example we might conjecture something like:

Advprp-cpa
DES (At,q) ≤ c1 ·

t/TDES

255
+ c2 ·

q

240

for any adversary At,q that runs in time at most t and asks at most q 64-bit oracle queries. Here TDES is the time
to do one DES computation on our fixed RAM model of computation, and c1, c2 are some constants depending
only on this model. In other words, we are conjecturing that the best attacks are either exhaustive key search
or linear cryptanalysis. We might be bolder with regard to AES and conjecture something like

Advprp-cpa
AES (Bt,q) ≤ c1 ·

t/TAES

2128
+ c2 ·

q

2128
.

for any adversary Bt,q that runs in time at most t and asks at most q 128-bit oracle queries. We could also
make similar conjectures regarding the strength of block ciphers as PRPs under CCA rather than CPA.
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More interesting is Advprf
DES(t, q). Here we cannot do better than assume that

Advprf
DES(At,q) ≤ c1 ·

t/TDES

255
+

q2

264

Advprf
AES(Bt,q) ≤ c1 ·

t/TAES

2128
+

q2

2128
.

for any adversaries At,q, Bt,q running in time at most t and making at most q oracle queries. This is due to
the birthday attack discussed later. The second term in each formula arises simply because the object under
consideration is a family of permutations.

We stress that these are all conjectures. There could exist highly effective attacks that break DES or AES as a
PRF without recovering the key. So far, we do not know of any such attacks, but the amount of cryptanalytic
effort that has focused on this goal is small. Certainly, to assume that a block cipher is a PRF is a much
stronger assumption than that it is secure against key recovery. Nonetheless, the motivation and arguments we
have outlined in favor of the PRF assumption stay, and our view is that if a block cipher is broken as a PRF
then it should be considered insecure, and a replacement should be sought.

5.6 Example Attacks

Let us illustrate the models by providing adversaries that attack different function families in these models.

Example 5.10 We define a family of functions F : {0, 1}k × {0, 1}ℓ → {0, 1}L as follows. We let k = Lℓ and
view a k-bit key K as specifying an L row by ℓ column matrix of bits. (To be concrete, assume the first L
bits of K specify the first column of the matrix, the next L bits of K specify the second column of the matrix,
and so on.) The input string X = X[1] . . . X[ℓ] is viewed as a sequence of bits, and the value of F (K,x) is the
corresponding matrix vector product. That is

FK(X) =








K[1, 1] K[1, 2] · · · K[1, ℓ]
K[2, 1] K[2, 2] · · · K[2, ℓ]

...
...

K[L, 1] K[L, 2] · · · K[L, ℓ]







·








X[1]
X[2]

...
X[l]








=








Y [1]
Y [2]

...
Y [L]








where
Y [1] = K[1, 1] · x[1] ⊕ K[1, 2] · x[2] ⊕ . . . ⊕ K[1, ℓ] · x[ℓ]
Y [2] = K[2, 1] · x[1] ⊕ K[2, 2] · x[2] ⊕ . . . ⊕ K[2, ℓ] · x[ℓ]

... =
...

Y [L] = K[L, 1] · x[1] ⊕ K[L, 2] · x[2] ⊕ . . . ⊕ K[L, ℓ] · x[ℓ] .

Here the bits in the matrix are the bits in the key, and arithmetic is modulo two. The question we ask is whether
F is a “secure” PRF. We claim that the answer is no. The reason is that one can design an adversary algorithm
A that achieves a high advantage (close to 1) in distinguishing between the two worlds.

We observe that for any key K we have FK(0ℓ) = 0L. This is a weakness since a random function of ℓ-bits
to L-bits is very unlikely to return 0L on input 0ℓ, and thus this fact can be the basis of a distinguishing
adversary. Let us now show how the adversary works. Remember that as per our model it is given an oracle
g: {0, 1}ℓ → {0, 1}L and will output a bit. Our adversary D works as follows:

Adversary Dg

Y ← g(0ℓ)
if Y = 0L then return 1 else return 0

This adversary queries its oracle at the point 0ℓ, and denotes by Y the ℓ-bit string that is returned. If y = 0L

it bets that g was an instance of the family F , and if y 6= 0L it bets that g was a random function. Let us now
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see how well this adversary does. We claim that

Pr
[

Expprf-1
F (D) = 1

]

= 1

Pr
[

Expprf-0
F (D) = 1

]

= 2−L .

Why? Look at Experiment Expprf-1
F (D) as defined in Definition 5.6. Here g = FK for some K. In that case it is

certainly true that g(0ℓ) = 0L so by the code we wrote for D the latter will return 1. On the other hand look at

Experiment Expprf-0
F (D) as defined in Definition 5.6. Here g is a random function. As we saw in Example 5.3,

the probability that g(0ℓ) = 0L will be 2−L, and hence this is the probability that D will return 1. Now as per
Definition 5.6 we subtract to get

Advprf
F (D) = Pr

[

Expprf-1
F (D) = 1

]

− Pr
[

Expprf-0
F (D) = 1

]

= 1 − 2−L .

Now let t be the time complexity of D. This is O(ℓ + L) plus the time for one computation of F , coming to
O(ℓ2L). The number of queries made by D is just one, and the total length of all queries is l. Our conclusion
is that there exists an extremely efficient adversary whose prf-advantage is very high (almost one). Thus, F is
not a secure PRF.

Example 5.11 . Suppose we are given a secure PRF F : {0, 1}k × {0, 1}ℓ → {0, 1}L. We want to use F to
design a PRF G: {0, 1}k × {0, 1}ℓ → {0, 1}2L. The input length of G is the same as that of F but the output
length of G is twice that of F . We suggest the following candidate construction: for every k-bit key K and
every ℓ-bit input x

GK(x) = FK(x)‖FK(x) .

Here “‖” denotes concatenation of strings, and x denotes the bitwise complement of the string x. We ask
whether this is a “good” construction. “Good” means that under the assumption that F is a secure PRF, G
should be too. However, this is not true. Regardless of the quality of F , the construct G is insecure. Let us
demonstrate this.

We want to specify an adversary attacking G. Since an instance of G maps ℓ bits to 2L bits, the adversary D
will get an oracle for a function g that maps ℓ bits to 2L bits. In World 0, g will be chosen as a random function
of ℓ bits to 2L bits, while in World 1, g will be set to GK where K is a random k-bit key. The adversary must
determine in which world it is placed. Our adversary works as follows:

Adversary Dg

y1 ← g(1ℓ)
y2 ← g(0ℓ)
Parse y1 as y1 = y1,1‖y1,2 with |y1,1| = |y1,2| = L
Parse y2 as y2 = y2,1‖y2,2 with |y2,1| = |y2,2| = L
if y1,1 = y2,2 then return 1 else return 0

This adversary queries its oracle at the point 1ℓ to get back y1 and then queries its oracle at the point 0ℓ to
get back y2. Notice that 1ℓ is the bitwise complement of 0ℓ. The adversary checks whether the first half of y1

equals the second half of y2, and if so bets that it is in World 1. Let us now see how well this adversary does.
We claim that

Pr
[

Expprf-1
G (D) = 1

]

= 1

Pr
[

Expprf-0
G (D) = 1

]

= 2−L .

Why? Look at Experiment Expprf-1
G (D) as defined in Definition 5.6. Here g = GK for some K. In that case

we have

GK(1ℓ) = FK(1ℓ)‖FK(0ℓ)

GK(0ℓ) = FK(0ℓ)‖FK(1ℓ)
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by definition of the family G. Notice that the first half of GK(1ℓ) is the same as the second half of GK(0ℓ). So

D will return 1. On the other hand look at Experiment Expprf-0
G (D) as defined in Definition 5.6. Here g is a

random function. So the values g(1ℓ) and g(0ℓ) are both random and independent 2L bit strings. What is the
probability that the first half of the first string equals the second half of the second string? It is exactly the
probability that two randomly chosen L-bit strings are equal, and this is 2−L. So this is the probability that D
will return 1. Now as per Definition 5.6 we subtract to get

Advprf
G (D) = Pr

[

Expprf-1
G (D) = 1

]

− Pr
[

Expprf-0
G (D) = 1

]

= 1 − 2−L .

Now let t be the time complexity of D. This is O(ℓ + L) plus the time for two computations of G, coming to
O(ℓ + L) plus the time for four computations of F . The number of queries made by D is two, and the total
length of all queries is 2ℓ. Thus we have exhibited an efficient adversary with a very high prf-advantage, showing
that G is not a secure PRF.

5.7 Security against key recovery

We have mentioned several times that security against key recovery is not sufficient as a notion of security for
a block cipher. However it is certainly necessary: if key recovery is easy, the block cipher should be declared
insecure. We have indicated that we want to adopt as notion of security for a block cipher the notion of a
PRF or a PRP. If this is to be viable, it should be the case that any function family that is insecure under key
recovery is also insecure as a PRF or PRP. In this section we verify this simple fact. Doing so will enable us to
exercise the method of reductions.

We begin by formalizing security against key recovery. We consider an adversary that, based on input-output
examples of an instance FK of family F , tries to find K. Its advantage is defined as the probability that it
succeeds in finding K. The probability is over the random choice of K, and any random choices of the adversary
itself.

We give the adversary oracle access to FK so that it can obtain input-output examples of its choice. We do not
constrain the adversary with regard to the method it uses. This leads to the following definition.

Definition 5.12 Let F : K × D → R be a family of functions, and let B be an algorithm that takes an oracle
for a function g: D → R and outputs a string. We consider the experiment:

Experiment Expkr
F (B)

K
$← Keys(F )

K ′ ← BFK

If K = K ′ then return 1 else return 0

The kr-advantage of B is defined as

Advkr
F (B) = Pr

[

Expkr
F (B) = 1

]

.

This definition has been made general enough to capture all types of key-recovery attacks. Any of the classical
attacks such as exhaustive key search, differential cryptanalysis or linear cryptanalysis correspond to different,
specific choices of adversary B. They fall in this framework because all have the goal of finding the key K based
on some number of input-output examples of an instance FK of the cipher. To illustrate let us see what are the
implications of the classical key-recovery attacks on DES for the value of the key-recovery advantage function
of DES. Assuming the exhaustive key-search attack is always successful based on testing two input-output
examples leads to the fact that there exists an adversary B such that Advkr

DES(B) = 1 and B makes two oracle
queries and has running time about 255 times the time TDES for one computation of DES. On the other hand,
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linear cryptanalysis implies that there exists an adversary B such that Advkr
DES(B) ≥ 1/2 and B makes 244

oracle queries and has running time about 244 times the time TDES for one computation of DES.

For a more concrete example, let us look at the key-recovery advantage of the family of Example 5.10.

Example 5.13 Let F : {0, 1}k × {0, 1}l → {0, 1}L be the family of functions from Example 5.10. We saw that
its prf-advantage was very high. Let us now compute its kr-advantage. The following adversary B recovers the
key. We let ej be the l-bit binary string having a 1 in position j and zeros everywhere else. We assume that the
manner in which the key K defines the matrix is that the first L bits of K form the first column of the matrix,
the next L bits of K form the second column of the matrix, and so on.

Adversary BFK

K ′ ← λ // λ is the empty string

for j = 1, . . . , l do
yj ← FK(ej)
K ′ ← K ′‖yj

return K ′

The adversary B invokes its oracle to compute the output of the function on input ej . The result, yj , is exactly
the j-th column of the matrix associated to the key K. The matrix entries are concatenated to yield K ′, which
is returned as the key. Since the adversary always finds the key we have

Advkr
F (B) = 1 .

The time-complexity of this adversary is t = O(l2L) since it makes q = l calls to its oracle and each computation
of FK takes O(lL) time. The parameters here should still be considered small: l is 64 or 128, which is small for
the number of queries. So F is insecure against key-recovery.

Note that the F of the above example is less secure as a PRF than against key-recovery: its advantage function
as a PRF had a value close to 1 for parameter values much smaller than those above. This leads into our next
claim, which says that for any given parameter values, the kr-advantage of a family cannot be significantly more
than its prf or prp-cpa advantage.

Proposition 5.14 Let F : K× D → R be a family of functions, and let B be a key-recovery adversary against
F . Assume B’s running time is at most t and it makes at most q < |D| oracle queries. Then there exists a PRF
adversary A against F such that A has running time at most t plus the time for one computation of F , makes
at most q + 1 oracle queries, and

Advkr
F (B) ≤ Advprf

F (A) +
1

|R| . (5.1)

Furthermore if D = R then there also exists a PRP CPA adversary A against F such that A has running time
at most t plus the time for one computation of F , makes at most q + 1 oracle queries, and

Advkr
F (B) ≤ Advprp-cpa

F (A) +
1

|D| − q
. (5.2)

The Proposition implies that if a family of functions is a secure PRF or PRP then it is also secure against all
key-recovery attacks. In particular, if a block cipher is modeled as a PRP or PRF, we are implicitly assuming
it to be secure against key-recovery attacks.

Before proceeding to a formal proof let us discuss the underlying ideas. The problem that adversary A is trying
to solve is to determine whether its given oracle g is a random instance of F or a random function of D to R.
A will run B as a subroutine and use B’s output to solve its own problem.
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B is an algorithm that expects to be in a world where it gets an oracle FK for some random key K ∈ K, and
it tries to find K via queries to its oracle. For simplicity, first assume that B makes no oracle queries. Now,
when A runs B, it produces some key K ′. A can test K ′ by checking whether F (K ′, x) agrees with g(x) for
some value x. If so, it bets that g was an instance of F , and if not it bets that g was random.

If B does make oracle queries, we must ask how A can run B at all. The oracle that B wants is not available.
However, B is a piece of code, communicating with its oracle via a prescribed interface. If you start running B,
at some point it will output an oracle query, say by writing this to some prescribed memory location, and stop.
It awaits an answer, to be provided in another prescribed memory location. When that appears, it continues
its execution. When it is done making oracle queries, it will return its output. Now when A runs B, it will
itself supply the answers to B’s oracle queries. When B stops, having made some query, A will fill in the reply
in the prescribed memory location, and let B continue its execution. B does not know the difference between
this “simulated” oracle and the real oracle except in so far as it can glean this from the values returned.

The value that B expects in reply to query x is FK(x) where K is a random key from K. However, A returns
to it as the answer to query x the value g(x), where g is A’s oracle. When A is in World 1, g(x) is an instance
of F and so B is functioning as it would in its usual environment, and will return the key K with a probability
equal to its kr-advantage. However when A is in World 0, g is a random function, and B is getting back values
that bear little relation to the ones it is expecting. That does not matter. B is a piece of code that will run to
completion and produce some output. When we are in World 0, we have no idea what properties this output
will have. But it is some key in K, and A will test it as indicated above. It will fail the test with high probability
as long as the test point x was not one that B queried, and A will make sure the latter is true via its choice of
x. Let us now proceed to the actual proof.

Proof of Proposition 5.14: We prove the first equation and then briefly indicate how to alter the proof to
prove the second equation.

As per Definition 5.6, adversary A will be provided an oracle for a function g: D → R, and will try to determine
in which World it is. To do so, it will run adversary B as a subroutine. We provide the description followed by
an explanation and analysis.

Adversary Ag

i ← 0
Run adversary B, replying to its oracle queries as follows
When B makes an oracle query x do

i ← i + 1 ; xi ← x
yi ← g(xi)
Return yi to B as the answer

Until B stops and outputs a key K ′

Let x be some point in D − {x1, . . . , xq}
y ← g(x)
if F (K ′, x) = y then return 1 else return 0

As indicated in the discussion preceding the proof, A is running B and itself providing answers to B’s oracle
queries via the oracle g. When B has run to completion it returns some K ′ ∈ K, which A tests by checking
whether F (K ′, x) agrees with g(x). Here x is a value different from any that B queried, and it is to ensure that
such a value can be found that we require q < |D| in the statement of the Proposition. Now we claim that

Pr
[

Expprf-1
F (A) = 1

]

≥ Advkr
F (B) (5.3)

Pr
[

Expprf-0
F (A) = 1

]

=
1

|R| . (5.4)

We will justify these claims shortly, but first let us use them to conclude. Subtracting, as per Definition 5.6, we
get

Advprf
F (A) = Pr

[

Expprf-1
F (A) = 1

]

− Pr
[

Expprf-0
F (A) = 1

]
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≥ Advkr
F (B) − 1

|R|

as desired. It remains to justify Equations (5.3) and (5.4).

Equation (5.3) is true because in Expprf-1
F (A) the oracle g is a random instance of F , which is the oracle that

B expects, and thus B functions as it does in Expkr
F (B). If B is successful, meaning the key K ′ it outputs

equals K, then certainly A returns 1. (It is possible that A might return 1 even though B was not successful.
This would happen if K ′ 6= K but F (K ′, x) = F (K, x). It is for this reason that Equation (5.3) is in inequality

rather than an equality.) Equation (5.4) is true because in Expprf-0
F (A) the function g is random, and since

x was never queried by B, the value g(x) is unpredictable to B. Imagine that g(x) is chosen only when x is
queried to g. At that point, K ′, and thus F (K ′, x), is already defined. So g(x) has a 1/|R| chance of hitting
this fixed point. Note this is true regardless of how hard B tries to make F (K ′, x) be the same as g(x).

For the proof of Equation (5.2), the adversary A is the same. For the analysis we see that

Pr
[

Expprp-cpa-1
F (A) = 1

]

≥ Advkr
F (B)

Pr
[

Expprp-cpa-0
F (A) = 1

]

≤ 1

|D| − q
.

Subtracting yields Equation (5.2). The first equation above is true for the same reason as before. The second
equation is true because in World 0 the map g is now a random permutation of D to D. So g(x) assumes,
with equal probability, any value in D except y1, . . . , yq, meaning there are at least |D| − q things it could be.
(Remember R = D in this case.)

The following example illustrates that the converse of the above claim is far from true. The kr-advantage of
a family can be significantly smaller than its prf or prp-cpa advantage, meaning that a family might be very
secure against key recovery yet very insecure as a prf or prp, and thus not useful for protocol design.

Example 5.15 Define the block cipher E: {0, 1}k × {0, 1}ℓ → {0, 1}ℓ by EK(x) = x for all k-bit keys K and
all ℓ-bit inputs x. We claim that it is very secure against key-recovery but very insecure as a PRP under CPA.
More precisely, we claim that for any adversary B,

Advkr
E (B) = 2−k ,

regardless of the running time and number of queries made by B. On the other hand there is an adversary A,
making only one oracle query and having a very small running time, such that

Advprp-cpa
E (A) ≥ 1 − 2−ℓ .

In other words, given an oracle for EK , you may make as many queries as you want, and spend as much time
as you like, before outputting your guess as to the value of K, yet your chance of getting it right is only 2−k.
On the other hand, using only a single query to a given oracle g: {0, 1}ℓ → {0, 1}ℓ, and very little time, you can
tell almost with certainty whether g is an instance of E or is a random function of ℓ bits to ℓ bits. Why are
these claims true? Since EK does not depend on K, an adversary with oracle EK gets no information about
K by querying it, and hence its guess as to the value of K can be correct only with probability 2−k. On the
other hand, an adversary can test whether g(0ℓ) = 0ℓ, and by returning 1 if and only if this is true, attain a
prp-advantage of 1 − 2−ℓ.

5.8 The birthday attack

Suppose E: {0, 1}k × {0, 1}ℓ → {0, 1}ℓ is a family of permutations, meaning a block cipher. If we are given
an oracle g: {0, 1}ℓ → {0, 1}ℓ which is either an instance of E or a random function, there is a simple test to
determine which of these it is. Query the oracle at distinct points x1, x2, . . . , xq, and get back values y1, y2, . . . , yq.
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You know that if g were a permutation, the values y1, y2, . . . , yq must be distinct. If g was a random function,
they may or may not be distinct. So, if they are distinct, bet on a permutation.

Surprisingly, this is pretty good adversary, as we will argue below. Roughly, it takes q =
√

2ℓ queries to get an
advantage that is quite close to 1. The reason is the birthday paradox. If you are not familiar with this, you
may want to look at Appendix A.1, and then come back to the following.

This tells us that an instance of a block cipher can be distinguished from a random function based on seeing a
number of input-output examples which is approximately 2ℓ/2. This has important consequences for the security
of block cipher based protocols.

Proposition 5.16 Let E: {0, 1}k × {0, 1}ℓ → {0, 1}ℓ be a family of permutations. Suppose q satisfies 2 ≤ q ≤
2(ℓ+1)/2. Then there is an adversary A, making q oracle queries and having running time about that to do q
computations of E, such that

Advprf
E (A) ≥ 0.3 · q(q − 1)

2ℓ
. (5.5)

Proof of Proposition 5.16: Adversary A is given an oracle g: {0, 1}ℓ → {0, 1}ℓ and works like this:

Adversary Ag

for i = 1, . . . , q do
Let xi be the i-th ℓ-bit string in lexicographic order
yi ← g(xi)

if y1, . . . , yq are all distinct then return 1, else return 0

Let us now justify Equation (5.5). Letting N = 2ℓ, we claim that

Pr
[

Expprf-1
E (A) = 1

]

= 1 (5.6)

Pr
[

Expprf-0
E (A) = 1

]

= 1 − C(N, q) . (5.7)

Here C(N, q), as defined in Appendix A.1, is the probability that some bin gets two or more balls in the
experiment of randomly throwing q balls into N bins. We will justify these claims shortly, but first let us use
them to conclude. Subtracting, we get

Advprf
E (A) = Pr

[

Expprf-1
E (A) = 1

]

− Pr
[

Expprf-0
E (A) = 1

]

= 1 − [1 − C(N, q)]

= C(N, q)

≥ 0.3 · q(q − 1)

2ℓ
.

The last line is by Proposition A.1. It remains to justify Equations (5.6) and (5.7).

Equation (5.6) is clear because in World 1, g = EK for some key K, and since E is a family of permutations, g is
a permutation, and thus y1, . . . , yq are all distinct. Now, suppose A is in World 0, so that g is a random function
of ℓ bits to ℓ bits. What is the probability that y1, . . . , yq are all distinct? Since g is a random function and
x1, . . . , xq are distinct, y1, . . . , yq are random, independently distributed values in {0, 1}ℓ. Thus we are looking
at the birthday problem. We are throwing q balls into N = 2ℓ bins and asking what is the probability of there
being no collisions, meaning no bin contains two or more balls. This is 1 − C(N, q), justifying Equation (5.7).
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5.9 The PRP/PRF switching lemma

When we come to analyses of block cipher based constructions, we will find a curious dichotomy: PRPs are what
most naturally model block ciphers, but analyses are often considerably simpler and more natural assuming the
block cipher is a PRF. To bridge the gap, we relate the prp-security of a block cipher to its prf-security. The
following says, roughly, these two measures are always close—they don’t differ by more than the amount given
by the birthday attack. Thus a particular family of permutations E may have prf-advantage that exceeds its
prp-advantage, but not by more than 0.5 q2/2n.

Lemma 5.17 [PRP/PRF Switching Lemma] Let E: K × {0, 1}n → {0, 1}n be a function family. Let A
be an adversary that asks at most q oracle queries. Then

∣
∣
∣Pr[ρ

$← Func(n) : Aρ⇒1] − Pr[π
$← Perm(n) : Aπ⇒1]

∣
∣
∣ ≤ q(q − 1)

2n+1
. (5.8)

As a consequence, we have that

∣
∣
∣Advprf

E (A) − Advprp
E (A)

∣
∣
∣ ≤ q(q − 1)

2n+1
. (5.9)

The lemma is from [16], but a better proof can be found in [23].

5.10 Sequences of families of PRFs and PRPs

Above, the function families we consider have a finite key-space, and typcially also domains and ranges that
are finite sets. A sequence of families of functions is a sequence F 1, F 2, F 3, . . ., written {Fn}n≥1. Each Fn is a
family of functions with input length l(n), output length L(n) and key length k(n), where l, L, k are functions
of the security parameter n, called the input, output and key lengths of the sequence, respectively.

In modeling block ciphers, families as we have considered them are the appropriate abstraction. There are
several reasons, however, for which we may also want to consider sequences of families. One is that security can
be defined asymptotically, which is definitionally more convenient, particulary because in that case we do have
a well-defined notion of security, rather than merely having measures of insecurity as above. Also, when we look
to designs whose security is based on the presumed hardness of number-theoretic problems, we naturally get
sequences of families rather than families. Let us now state the definition of pseudorandomness for a sequence
of families. (We omit the permutation case, which is analogous.)

Let F = {Fn}n≥1 be a sequence of function families with input length l(·) and output length L(·). We say that
F is polynomial-time computable if there is a polynomial p and an algorithm which given n,K and x outputs
Fn(K, x) in time p(n). To define security, we now consider a sequence {Dn}n≥1 of distinguishers. We say that
D is polynomial time if there is a polynomial p such that Dn always halts in p(n) steps.

Definition 5.18 Let F = {Fn}n≥1 be a sequence of function families and let D = {Dn}n≥1 be a sequence of

distinguishers. The prf-advantage of D is the function Advprf
F,D(·), defined for every n by

Advprf
F,D(n) = Advprf

F n(Dn) .

We say that F is a PRF if it is polynomial-time computable and also the function Advprf
F,D(·) is negligible for

every polynomial-time distinguisher sequence D.

Notice that this time the definition insists that the functions themselves can be efficiently computed.

Where can we find such PRFs? There are a variety of ways. We can build them out of pseudorandom bit
generators or one-way functions, a conservative but to date inefficient approach. There are more efficient
constructions whose security is based on the presumed hardness of specific number-theoretic problems.
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The notion of a pseudorandom bit generator (PRBG) was discussed in Chapter 3. Recall it is a polynomial
time computable function G which takes a k bit seed and produces a p(k) > k bit sequence of bits that look
random to any efficient test.

The first construction of PRF families was from PRBGs which are length doubling: the output length is twice
the input length.

Theorem 5.19 [97] Given a length-doubling pseudorandom bit generator we can construct a sequence of fam-
ilies F which is a PRF.

The construction, called the binary tree construction, is like this. The function G induces a tree of functions
Gz in the following way:

• Define G0(x) ◦ G1(x) = G(x) where k = |G0(x)| = |G1(x)|.

• Define Gz◦0(x) ◦ Gz◦1(x) = Gz(x) where k = |Gz◦0| = |Gz◦1|.

Then fi(x) is defined in terms of the binary tree induced by G as follows: ∀xfi(x) = Gx(i). We now let
F = {F k}k≥1 where F k is {fi : {0, 1}k → {0, 1}k||i| = k}. It is shown in [97] that this is secure.

Another construction based on a primitive called synthesizers was given by Naor and Reingold [150]. This yields
a PRBG based construction which is more parallelizable than the binary tree based one.

We saw before that we can construct PRBGs from one-way functions [115, 111]. It follows from the above
that we can build (infinite) PRF families from one-way functions. Furthermore, one can see that given any
pseudorandom function family one can construct a one-way function [114]. Thus we have the following.

Theorem 5.20 There exists a sequence of families which is a PRF if and only if there exist one-way functions.

This is quite a strong statement. One-way functions are a seemingly weak primitive, a priori quite unrelated to
PRFs. Yet the one can be transformed into the other. Unfortunately the construction is not efficient enough
to be practical.

Naor and Reingold have suggested a construction of a sequence of families F = {Fn}n≥1 which they prove is a
PRF assuming that the DDH (Decisional Diffie-Hellman) problem is hard [151]. In this construct, evaluation
of particular function from Fn on an l(n)-bit input requires l(n) modular multiplications and one modular
exponentiation, over an underlying group.

5.11 Some applications of PRFs

5.11.1 Cryptographically Strong Hashing

Let P1, P2 be polynomials so that ∀x, P1(x) > P2(x). Define FP1,P2 = {f : {0, 1}P1(k) → {0, 1}P1(k)}. Then we
wish to hash names into address where |Name| = P1(k) and |Address| = P2(k). We may use pseudo-random
functions to hash these names so that Address = fi(Name).

Claim 5.21 If there exist one way functions, then for all polynomials P , and for all integers k sufficiently
large, the previous hashing algorithm admits no more than O( 1

2
√

Address
)+ 1

P (k) collisions even if, after fixing the

scheme, the names are chosen by an adversary with access to previous (Name, Address) pairs.

5.11.2 Prediction

A prediction test T (1k)
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1. queries an oracle for f ∈ Fk, discovering (x1, f(x1)), . . . , (xl, f(xl)),

2. outputs an “exam”, x, and

3. is given y so that with probability 1
2 , y = f(x) (otherwise, y is chosen randomly in {0, 1}|f(x)| − {f(x)}).

4. outputs 1 if it guesses that y = f(x), 0 otherwise.

F is said to pass the prediction test T if ∀Q ∈ Q[x],∃k0,∀k > k0,

Pr[T (1k) guesses correctly given y in step 3] <
1

2
+

1

Q(k)

The above pseudo-random functions then pass all prediction tests (assuming there exist one way functions).

5.11.3 Learning

Define a concept space S and a concept C ⊆ S. A learner is exposed to a number of pairs (ei,±i) where ei ∈ S
and ±i = + ⇔ ei ∈ C. The learner is then requested to determine if a given e ∈ S is an element of C.

The above pseudo-random function show that if there exist one way functions, then there exist concepts not
learnable in polynomial time. (The concept in this case would be {x, f(x)} ⊆ {x, y}.)

5.11.4 Identify Friend or Foe

Consider the situation of two forces of war planes fighting an air battle. Each plane wishes to identify potential
targets as friendly or enemy. This can be done using pseudo-random functions in the following way:

1. All the planes on a certain force know i.

2. To identify a target, a plane sends the target a random number r and expects to receive back fi(r) if the
target is a friend.

Then, even though the enemy planes see many pairs of the form (x, f(x)), they cannot compute f(y) for y they
have not yet seen.

5.11.5 Private-Key Encryption

Let A and B privately agree on i. Then to encrypt message m, A produces a random string r and sends
(r, fi(r) ⊕ m). B can compute fi(r) and so compute fi(r) ⊕ m ⊕ fi(r) = m. Assuming that there exist one
way functions, such a system is secure again chosen ciphertext attack, that is, secure even if the adversary can
compute (r, fi(r)) for a collection of r’s. See Chapter 6 for more on this.

5.12 Historical notes

The concept of pseudorandom functions is due to Goldreich, Goldwasser and Micali [97], while that of pseudoran-
dom permutation is due to Luby and Rackoff [138]. These works are in the complexity-theoretic or “asymptotic”
setting, where one considers an infinite sequence of families rather than just one family, and defines security by
saying that polynomial-time adversaries have “negligible” advantage. The approach used for the bulk of the
current chapter, motivated by the desire to model block ciphers, is called “concrete security,” and originates
with [13]. Definitions 5.6 and 5.7 are from [13], as are Propositions 5.16 and 5.17.
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5.13 Problems

Problem 5.22 Let E: {0, 1}k × {0, 1}n → {0, 1}n be a secure PRP. Consider the family of permutations
E′: {0, 1}k × {0, 1}2n → {0, 1}2n defined by for all x, x′ ∈ {0, 1}n by

E′
K(x‖x′) = EK(x)‖EK(x⊕x′) .

Show that E′ is not a secure PRP.

Problem 5.23 Consider the following block cipher E : {0, 1}3 × {0, 1}2 → {0, 1}2:

key 0 1 2 3
0 0 1 2 3
1 3 0 1 2
2 2 3 0 1
3 1 2 3 0
4 0 3 2 1
5 1 0 3 2
6 2 1 0 3
7 3 2 1 0

(The eight possible keys are the eight rows, and each row shows where the points to which 0, 1, 2, and 3 map.)
Compute the maximal prp-advantage an adversary can get (a) with one query, (b) with four queries, and (c)
with two queries.

Problem 5.24 Present a secure construction for the problem of Example 5.11. That is, given a PRF F : {0, 1}k×
{0, 1}n → {0, 1}n, construct a PRF G: {0, 1}k × {0, 1}n → {0, 1}2n which is a secure PRF as long as F is se-
cure.

Problem 5.25 Design a block cipher E : {0, 1}k × {0, 1}128 → {0, 1}128 that is secure (up to a large num-
ber of queries) against non-adaptive adversaries, but is completely insecure (even for two queries) against an
adaptive adversary. (A non-adaptive adversary readies all her questions M1, . . . , Mq, in advance, getting back
EK(M1), ..., EK(Mq). An adaptive adversary is the sort we have dealt with throughout: each query may depend
on prior answers.)

Problem 5.26 Let a[i] denote the i-th bit of a binary string i, where 1 ≤ i ≤ |a|. The inner product of n-bit
binary strings a, b is

〈 a, b 〉 = a[1]b[1]⊕a[2]b[2]⊕ · · ·⊕a[n]b[n] .

A family of functions F : {0, 1}k×{0, 1}ℓ → {0, 1}L is said to be inner-product preserving if for every K ∈ {0, 1}k

and every distinct x1, x2 ∈ {0, 1}ℓ − {0ℓ} we have

〈 F (K,x1), F (K, x2) 〉 = 〈 x1, x2 〉 .

Prove that if F is inner-product preserving then there exists an adversary A, making at most two oracle queries
and having running time 2 · TF + O(ℓ), where TF denotes the time to perform one computation of F , such that

Advprf
F (A) ≥ 1

2
·
(

1 +
1

2L

)

.

Explain in a sentence why this shows that if F is inner-product preserving then F is not a secure PRF.

Problem 5.27 Let E: {0, 1}k × {0, 1}ℓ → {0, 1}ℓ be a block cipher. The two-fold cascade of E is the block
cipher E(2): {0, 1}2k × {0, 1}ℓ → {0, 1}ℓ defined by

E(2)(K1‖K2, x) = E(K1, E(K2, x))

for all K1,K2 ∈ {0, 1}k and all x ∈ {0, 1}ℓ. Prove that if E is a secure PRP then so is E(2).
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Problem 5.28 Let A be a adversary that makes at most q total queries to its two oracles, f and g, where
f, g : {0, 1}n → {0, 1}n. Assume that A never asks the same query X to both of its oracles. Define

Adv(A) = Pr[π ← Perm(n) : Aπ(·),π(·) = 1] − Pr[π, π′ ← Perm(n) : Aπ(·),π′(·) = 1].

Prove a good upper bound for Adv(A), say Adv(A) ≤ q2/2n.

Problem 5.29 Let F : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ be a family of functions and r ≥ 1 an integer. The r-round
Feistel cipher associated to F is the family of permutations F (r): {0, 1}rk ×{0, 1}2ℓ → {0, 1}2ℓ defined as follows
for any K1, . . . ,Kr ∈ {0, 1}k and input x ∈ {0, 1}2ℓ:

Function F (r)(K1‖ · · · ‖Kr, x)
Parse x as L0‖R0 with |L0| = |R0| = ℓ
For i = 1, . . . , r do

Li ← Ri−1 ; Ri ← F (Ki, Ri−1)⊕Li−1

EndFor
Return Lr‖Rr

(a) Prove that there exists an adversary A, making at most two oracle queries and having running time about
that to do two computations of F , such that

Advprf
F (2)(A) ≥ 1 − 2−ℓ .

(b) Prove that there exists an adversary A, making at most two queries to its first oracle and one to its second
oracle, and having running time about that to do three computations of F or F−1, such that

Advprp-cca
F (3) (A) ≥ 1 − 3 · 2−ℓ .

Problem 5.30 Let E: K × {0, 1}n → {0, 1}n be a function family and let A be an adversary that asks at

most q queries. In trying to construct a proof that |Advprp
E (A) − Advprf

E (A)| ≤ q2/2n+1, Michael and Peter
put forward an argument a fragment of which is as follows:

Consider an adversary A that asks at most q oracle queries to a function ρ, where ρ is determined by
randomly sampling from Func(n). Let C (for “collision”) be the event that A asks some two distinct
queries X and X ′ and the oracle returns the same answer. Then clearly

Pr[π
$← Perm(n) : Aπ⇒1] = Pr[ρ

$← Func(n) : Aρ⇒1 | C].

Show that Michael and Peter have it all wrong: prove that Pr[π
$← Perm(n) : Aπ⇒1] is not necessarily the

same as Pr[ρ
$← Func(n) : Aρ⇒1 | C]. Do this by selecting a number n and constructing an adversary A for

which the left and right sides of the equation above are unequal.
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Private-key encryption

The symmetric setting considers two parties who share a key and will use this key to imbue communicated data
with various security attributes. The main security goals are privacy and authenticity of the communicated
data. The present chapter looks at privacy and Chapter 9 looks at authenticity. Chapters 4 and 5 describe
tools we shall use here.

6.1 Symmetric encryption schemes

The primitive we will consider is called an encryption scheme. Such a scheme specifies an encryption algorithm,
which tells the sender how to process the plaintext using the key, thereby producing the ciphertext that is
actually transmitted. An encryption scheme also specifies a decryption algorithm, which tells the receiver how
to retrieve the original plaintext from the transmission while possibly performing some verification, too. Finally,
there is a key-generation algorithm, which produces a key that the parties need to share. The formal description
follows.

Definition 6.1 A symmetric encryption scheme SE = (K, E ,D) consists of three algorithms, as follows:

• The randomized key generation algorithm K returns a string K. We let Keys(SE) denote the set of all
strings that have non-zero probability of being output by K. The members of this set are called keys. We

write K
$← K for the operation of executing K and letting K denote the key returned.

• The encryption algorithm E , which might be randomized or stateful, takes a key K ∈ Keys(SE) and a

plaintext M ∈ {0, 1}∗ to return a ciphertext C ∈ {0, 1}∗ ∪ {⊥}. We write C
$← EK(M) for the operation

of executing E on K and M and letting C denote the ciphertext returned.

• The deterministic decryption algorithm D takes a key K ∈ Keys(SE) and a ciphertext C ∈ {0, 1}∗ to
return some M ∈ {0, 1}∗∪{⊥}. We write M ← DK(C) for the operation of executing D on K and C and
letting M denote the message returned.

The scheme is said to provide correct decryption if for any key K ∈ Keys(SE) and any message M ∈ {0, 1}∗

Pr
[

C
$← EK(M) : C = ⊥ OR DK(C) = M

]

= 1 .

The key-generation algorithm, as the definition indicates, is randomized. It takes no inputs. When it is run, it
flips coins internally and uses these to select a key K. Typically, the key is just a random string of some length,

85
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in which case this length is called the key length of the scheme. When two parties want to use the scheme, it is
assumed they are in possession of K generated via K.

How they came into joint possession of this key K in such a way that the adversary did not get to know K is
not our concern here, and will be addressed later. For now we assume the key has been shared.

Once in possession of a shared key, the sender can run the encryption algorithm with key K and input message
M to get back a string we call the ciphertext. The latter can then be transmitted to the receiver.

The encryption algorithm may be either randomized or stateful. If randomized, it flips coins and uses those to
compute its output on a given input K, M . Each time the algorithm is invoked, it flips coins anew. In particular,
invoking the encryption algorithm twice on the same inputs may not yield the same response both times.

We say the encryption algorithm is stateful if its operation depends on a quantity called the state that is
initialized in some pre-specified way. When the encryption algorithm is invoked on inputs K,M , it computes a
ciphertext based on K,M and the current state. It then updates the state, and the new state value is stored.
(The receiver does not maintain matching state and, in particular, decryption does not require access to any
global variable or call for any synchronization between parties.) Usually, when there is state to be maintained,
the state is just a counter. If there is no state maintained by the encryption algorithm the encryption scheme
is said to be stateless.

The encryption algorithm might be both randomized and stateful, but in practice this is rare: it is usually one
or the other but not both.

When we talk of a randomized symmetric encryption scheme we mean that the encryption algorithm is ran-
domized. When we talk of a stateful symmetric encryption scheme we mean that the encryption algorithm is
stateful.

The receiver, upon receiving a ciphertext C, will run the decryption algorithm with the same key used to create
the ciphertext, namely compute DK(C). The decryption algorithm is neither randomized nor stateful.

Many encryption schemes restrict the set of strings that they are willing to encrypt. (For example, perhaps
the algorithm can only encrypt plaintexts of length a positive multiple of some block length n, and can only
encrypt plaintexts of length up to some maximum length.) These kinds of restrictions are captured by having
the encryption algorithm return the special symbol ⊥ when fed a message not meeting the required restriction.
In a stateless scheme, there is typically a set of strings, called the plaintext space, such that

Pr
[

C
$← EK(M) : C 6= ⊥

]

= 1

for all K and all M in the plaintext space. In a stateful scheme, whether or not EK(M) returns ⊥ depends not
only on M but also possibly on the value of the state variable. For example, when a counter is being used, it
is typical that there is a limit to the number of encryptions performed, and when the counter reaches a certain
value the encryption algorithm returns ⊥ no matter what message is fed to it.

The correct decryption requirement simply says that decryption works: if a message M is encrypted under a
key K to yield a ciphertext C, then one can recover M by decrypting C under K. This holds, however, only if
C 6= ⊥. The condition thus says that, for each key K ∈ Keys(SE) and message M ∈ {0, 1}∗, with probability
one over the coins of the encryption algorithm, either the latter outputs ⊥ or it outputs a ciphertext C which
upon decryption yields M . If the scheme is stateful, this condition is required to hold for every value of the
state.

Correct decryption is, naturally, a requirement before one can use a symmetric encryption scheme in practice, for
if this condition is not met, the scheme fails to communicate information accurately. In analyzing the security
of symmetric encryption schemes, however, we will see that it is sometimes useful to be able to consider ones
that do not meet this condition.

6.2 Some symmetric encryption schemes

We now provide a few examples of encryption schemes. We stress that not all of the schemes that follow are
secure encryption schemes. Some are secure and some are not, as we will see later. All the schemes here satisfy
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the correct decryption requirement.

6.2.1 The one-time-pad encryption scheme

We begin with the classical one-time-pad.

Scheme 6.2 [One-time-pad encryption] The one-time-pad encryption scheme SE = (K, E ,D) is stateful
and deterministic. The key-generation algorithm simply returns a random k-bit string K, where the key-length
k is a parameter of the scheme, so that the key space is Keys(SE) = {0, 1}k. The encryptor maintains a counter
ctr which is initially zero. The encryption and decryption algorithms operate as follows:

algorithm EK(M)
Let static ctr ← 0
Let m ← |M |
if ctr + m > k then return ⊥
C ← M⊕K[ctr + 1 .. ctr + m]
ctr ← ctr + m
return 〈ctr − m, C〉

algorithm DK(〈ctr, C〉)
Let m ← |M |
if ctr + m > k then return ⊥
M ← C⊕K[ctr + 1 .. ctr + m]
return M

Here X[i .. j] denotes the i-th through j-th bit of the binary string X. By 〈ctr, C〉 we mean a string that
encodes the number ctr and the string C. The most natural encoding is to encode ctr using some fixed number
of bits, at least lg k, and to prepend this to C. Conventions are established so that every string Y is regarded as
encoding some ctr, C for some ctr, C. The encryption algorithm XORs the message bits with key bits, starting
with the key bit indicated by one plus the current counter value. The counter is then incremented by the length
of the message. Key bits are not reused, and thus if not enough key bits are available to encrypt a message,
the encryption algorithm returns ⊥. Note that the ciphertext returned includes the value of the counter. This
is to enable decryption. (Recall that the decryption algorithm, as per Definition 6.1, must be stateless and
deterministic, so we do not want it to have to maintain a counter as well.)

6.2.2 Some modes of operation

The following schemes rely either on a family of permutations (i.e., a block cipher) or a family of functions.
Effectively, the mechanisms spell out how to use the block cipher to encrypt. We call such a mechanism a
mode of operation of the block cipher. For some of the schemes it is convenient to assume that the length of the
message to be encrypted is a positive multiple of a block length associated to the family. Accordingly, we will let
the encryption algorithm returns ⊥ if this is not the case. In practice, one could pad the message appropriately
so that the padded message always had length a positive multiple of the block length, and apply the encryption
algorithm to the padded message. The padding function should be injective and easily invertible. In this way
you would create a new encryption scheme.

The first scheme we consider is ECB (Electronic Codebook Mode), whose security is considered in Section 6.5.1.

Scheme 6.3 [ECB mode] Let E: K × {0, 1}n → {0, 1}n be a block cipher. Operating it in ECB (Electronic
Code Book) mode yields a stateless symmetric encryption scheme SE = (K, E ,D). The key-generation algorithm

simply returns a random key for the block cipher, meaning it picks a random string K
$← K and returns it. The

encryption and decryption algorithms are depicted in Figure 6.1. “Break M into n-bit blocks M [1] · · ·M [m]”
means to set m = |M |/n and, for i ∈ {1, . . . , m}, set M [i] to the i-th n-bit block in M , that is, (i − 1)n + 1
through in of M . Similarly for breaking C into C[1] · · ·C[m]. Notice that this time the encryption algorithm
did not make any random choices. (That does not mean it is not, technically, a randomized algorithm; it is
simply a randomized algorithm that happened not to make any random choices.)

The next scheme, cipher-block chaining (CBC) with random initial vector, is the most popular block-cipher
mode of operation, used pervasively in practice.
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algorithm EK(M)
if (|M | mod n 6= 0 or |M | = 0) then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]
for i ← 1 to m do

C[i] ← EK(M [i])
C ← C[1] · · ·C[m]
return C

algorithm DK(C)
if (|C| mod n 6= 0 or |C| = 0) then return ⊥
Break C into n-bit blocks C[1] · · ·C[m]
for i ← 1 to m do

M [i] ← E−1
K (C[i])

M ← M [1] · · ·M [m]
return M

Figure 6.1: ECB mode.

algorithm EK(M)
if (|M | mod n 6= 0 or |M | = 0) then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]

C[0] ← IV
$← {0, 1}n

for i ← 1 to m do
C[i] ← EK(C[i − 1]⊕M [i])

C ← C[1] · · ·C[m]
return 〈IV, C〉

algorithm DK(〈IV, C〉)
if (|C| mod n 6= 0 or |M | = 0) then return ⊥
Break C into n-bit blocks C[1] · · ·C[m]
C[0] ← IV
for i ← 1 to m do

M [i] ← E−1
K (C[i])⊕C[i − 1])

M ← M [1] · · ·M [m]
return M

Figure 6.2: CBC$ mode.

Scheme 6.4 [CBC$ mode] Let E: K × {0, 1}n → {0, 1}n be a block cipher. Operating it in CBC mode
with random IV yields a stateless symmetric encryption scheme, SE = (K, E ,D). The key generation algorithm

simply returns a random key for the block cipher, K
$← K. The encryption and decryption algorithms are

depicted in Figure 6.2. The IV (“initialization vector”) is C[0], which is chosen at random by the encryption
algorithm. This choice is made independently each time the algorithm is invoked.

For the following schemes it is useful to introduce some notation. If n ≥ 1 and i ≥ 0 are integers then we let
NtSn(i) denote the n-bit string that is the binary representation of integer i mod 2n. If we use a number i ≥ 0
in a context for which a string I ∈ {0, 1}n is required, it is understood that we mean to replace i by I = NtSn(i).
The following is a counter-based version of CBC mode, whose security is considered in Section 6.5.3.

Scheme 6.5 [CBCC mode] Let E: K × {0, 1}n → {0, 1}n be a block cipher. Operating it in CBC mode
with counter IV yields a stateful symmetric encryption scheme, SE = (K, E ,D). The key generation algorithm
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algorithm EK(M)
static ctr ← 0
if (|M | mod n 6= 0 or |M | = 0) then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]
if ctr ≥ 2n then return ⊥
C[0] ← IV ← [ctr]n
for i ← 1 to m do

C[i] ← EK(C[i − 1]⊕M [i])
C ← C[1] · · ·C[m]
ctr ← ctr + 1
return 〈IV, C〉

algorithm DK(〈IV, C〉)
if (|C| mod n 6= 0 or |C| = 0) then return ⊥
Break C into n-bit blocks C[1] · · ·C[m]
if IV + m > 2n then return ⊥
C[0] ← IV
for i ← 1 to m do

M [i] ← E−1
K (C[i])⊕C[i − 1])

M ← M [1] · · ·M [m]
return M

Figure 6.3: CBCC mode.

simply returns a random key for the block cipher, K
$← K. The encryptor maintains a counter ctr which is

initially zero. The encryption and decryption algorithms are depicted in Figure 6.3. The IV (“initialization
vector”) is C[0], which is set to the current value of the counter. The counter is then incremented each time a
message is encrypted. The counter is a static variable, meaning that its value is preserved across invocations of
the encryption algorithm.

The CTR (counter) modes that follow are not much used, to the best of our knowledge, but perhaps wrongly
so. We will see later that they have good privacy properties. In contrast to CBC, the encryption procedure is
parallelizable, which can be exploited to speed up the process in the presence of hardware support. It is also
the case that the methods work for strings of arbitrary bit lengths, without doing anything “special” to achieve
this end. There are two variants of CTR mode, one random and the other stateful, and, as we will see later,
their security properties are different. For security analyses see Section 6.7 and Section 6.10.1.

Scheme 6.6 [CTR$ mode] Let F : K × {0, 1}ℓ → {0, 1}L be a family of functions. (Possibly a block
cipher, but not necessarily.) Then CTR mode over F with a random starting point is a probabilistic, stateless
symmetric encryption scheme, SE = (K, E ,D). The key-generation algorithm simply returns a random key
for E. The encryption and decryption algorithms are depicted in Figure 6.4. The starting point R is used to
define a sequence of values on which FK is applied to produce a “pseudo one-time pad” to which the plaintext
is XORed. The starting point R chosen by the encryption algorithm is a random ℓ-bit string. To add an ℓ-bit
string R to an integer i—when we write FK(R + i)—convert the ℓ-bit string R into an integer in the range
[0 .. 2ℓ −1] in the usual way, add this number to i, take the result modulo 2ℓ, and then convert this back into an
ℓ-bit string. Note that the starting point R is included in the ciphertext, to enable decryption. On encryption,
the pad Pad is understood to be the empty string when m = 0.

We now give the counter-based version of CTR mode.

Scheme 6.7 [CTRC mode] Let F : K× {0, 1}ℓ → {0, 1}L be a family of functions. (Possibly a block cipher,
but not necessarily.) Operating it in CTR mode with a counter starting point is a stateful symmetric encryption
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algorithm EK(M)
m ← ⌈|M |/L⌉
R

$← {0, 1}ℓ

Pad ← FK(R + 1)‖FK(R + 2)‖ · · · ‖FK(R + m)
Pad ← the first |M | bits of Pad

C ′ ← M⊕Pad

C ← R‖C ′

return C

algorithm DK(C)
if |C| < ℓ then return ⊥
Parse C into R‖C ′ where |R| = ℓ
m ← ⌈|C ′|/L⌉
Pad ← FK(R + 1)‖FK(R + 2)‖ · · · ‖FK(R + m)
Pad ← the first |C ′| bits of Pad

M ← C ′⊕Pad

return M

Figure 6.4: CTR$ mode using a family of functions F : K × {0, 1}ℓ → {0, 1}L. This version of counter mode is
randomized and stateless.

scheme, SE = (K, E ,D), which we call CTRC. The key-generation algorithm simply returns a random key for F .
The encryptor maintains a counter ctr which is initially zero. The encryption and decryption algorithms are
depicted in Figure 6.5. Position index ctr is not allowed to wrap around: the encryption algorithm returns ⊥
if this would happen. The position index is included in the ciphertext in order to enable decryption. The
encryption algorithm updates the position index upon each invocation, and begins with this updated value the
next time it is invoked.

We will return to the security of these schemes after we have developed the appropriate notions.

6.3 Issues in privacy

Let us fix a symmetric encryption scheme SE = (K, E ,D). Two parties share a key K for this scheme, this key

having being generated as K
$← K. The adversary does not a priori know K. We now want to explore the issue

of what the privacy of the scheme might mean. For this chapter, security is privacy, and we are trying to get
to the heart of what security is about.

The adversary is assumed able to capture any ciphertext that flows on the channel between the two parties. It
can thus collect ciphertexts, and try to glean something from them. Our first question is: what exactly does
“glean” mean? What tasks, were the adversary to accomplish them, would make us declare the scheme insecure?
And, correspondingly, what tasks, were the adversary unable to accomplish them, would make us declare the
scheme secure?

It is easier to think about insecurity than security, because we can certainly identify adversary actions that
indubitably imply the scheme is insecure. So let us begin here.

For example, if the adversary can, from a few ciphertexts, derive the underlying key K, it can later decrypt
anything it sees, so if the scheme allowed easy key recovery from a few ciphertexts it is definitely insecure.

Now, the mistake that is often made is to go on to reverse this, saying that if key recovery is hard, then the
scheme is secure. This is certainly not true, for there are other possible weaknesses. For example, what if,
given the ciphertext, the adversary could easily recover the plaintext M without finding the key? Certainly the
scheme is insecure then too.



Cryptography: Lecture Notes 91

algorithm EK(M)
static ctr ← 0
m ← ⌈|M |/L⌉
If ctr + m ≥ 2ℓ then return ⊥
Pad ← FK(ctr + 1)‖FK(ctr + 2)‖ · · · ‖FK(ctr + m)
Pad ← the first |M | bits of Pad

C ← M⊕Pad

ctr ← ctr + m
return 〈ctr − m,C〉

algorithm DK(〈i, C〉)
m ← ⌈|C|/L⌉
Pad ← FK(i + 1)‖FK(i + 2)‖ · · · ‖FK(i + m)
Pad ← the first |C| bits of Pad

M ← Pad⊕C
return M

Figure 6.5: CTRC mode using a family of functions F : K × {0, 1}ℓ → {0, 1}L. This version of counter mode
uses stateful (but deterministic) encryption.

So should we now declare a scheme secure if it is hard to recover a plaintext from the ciphertext? Many people
would say yes. Yet, this would be wrong too.

One reason is that the adversary might be able to figure out partial information about M . For example, even
though it might not be able to recover M , the adversary might, given C, be able to recover the first bit of M ,
or the sum of all the bits of M . This is not good, because these bits might carry valuable information.

For a concrete example, say I am communicating to my broker a message which is a sequence of “buy” or “sell”
decisions for a pre-specified sequence of stocks. That is, we have certain stocks, numbered 1 through m, and bit
i of the message is 1 if I want to buy stock i and 0 otherwise. The message is sent encrypted. But if the first
bit leaks, the adversary knows whether I want to buy or sell stock 1, which may be something I don’t want to
reveal. If the sum of the bits leaks, the adversary knows how many stocks I am buying.

Granted, this might not be a problem at all if the data were in a different format. However, making assumptions,
or requirements, on how users format data, or how they use it, is a bad and dangerous approach to secure
protocol design. An important principle of good cryptographic design is that the encryption scheme should
provide security regardless of the format of the plaintext. Users should not have to worry about the how they
format their data: they format it as they like, and encryption should provide privacy nonetheless.

Put another way, as designers of security protocols, we should not make assumptions about data content or
formats. Our protocols must protect any data, no matter how formatted. We view it as the job of the protocol
designer to ensure this is true.

At this point it should start becoming obvious that there is an infinite list of insecurity properties, and we can
hardly attempt to characterize security as their absence. We need to think about security in a different and
more direct way and arrive at some definition of it.

This important task is surprisingly neglected in many treatments of cryptography, which will provide you with
many schemes and attacks, but never actually define the goal by saying what an encryption scheme is actually
trying to achieve and when it should be considered secure rather than merely not known to be insecure. This
is the task that we want to address.

One might want to say something like: the encryption scheme is secure if given C, the adversary has no idea
what M is. This however cannot be true, because of what is called a priori information. Often, something
about the message is known. For example, it might be a packet with known headers. Or, it might be an English
word. So the adversary, and everyone else, has some information about the message even before it is encrypted.
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We want schemes that are secure in the strongest possible natural sense. What is the best we could hope for?
It is useful to make a thought experiment. What would an “ideal” encryption be like? Well, it would be as
though some angel took the message M from the sender and delivered it to the receiver, in some magic way.
The adversary would see nothing at all. Intuitively, our goal is to approximate this as best as possible. We
would like encryption to have the properties of ideal encryption. In particular, no partial information would
leak.

We do deviate from the ideal in one way, though. Encryption is not asked to hide the length of the plaintext
string. This information not only can leak but is usually supposed to be known to the adversary a priori.

As an example, consider the ECB encryption scheme of Scheme 6.3. Given the ciphertext, can an eavesdropping
adversary figure out the message? It is hard to see how, since it does not know K, and if F is a “good” block
cipher, then it ought to have a hard time inverting FK without knowledge of the underlying key. Nonetheless
this is not a good scheme. Consider just the case n = 1 of a single block message. Suppose a missile command
center has just two messages, 1n for fire and 0n for don’t fire. It keeps sending data, but always one of these
two. What happens? When the first ciphertext C1 goes by, the adversary may not know what is the plaintext.
But then, let us say it sees a missile taking off. Now, it knows the message M1 underlying C1 was 1n. But then
it can easily decrypt all subsequent messages, for if it sees a ciphertext C, the message is 1n if C = C1 and 0n

if C 6= C1.

In a secure encryption scheme, it should not be possible to relate ciphertexts of different messages of the same
length in such a way that information is leaked.

Not allowing message-equalities to be leaked has a dramatic implication. Namely, encryption must be proba-
bilistic or depend on state information. If not, you can always tell if the same message was sent twice. Each
encryption must use fresh coin tosses, or, say, a counter, and an encryption of a particular message may be
different each time. In terms of our setup it means E is a probabilistic or stateful algorithm. That’s why we
defined symmetric encryption schemes, above, to allow these types of algorithms.

The reason this is dramatic is that it goes in many ways against the historical or popular notion of encryption.
Encryption was once thought of as a code, a fixed mapping of plaintexts to ciphertexts. But this is not the
contemporary viewpoint. A single plaintext should have many possible ciphertexts (depending on the random
choices or the state of the encryption algorithm). Yet it must be possible to decrypt. How is this possible? We
have seen several examples above.

One formalization of privacy is what is called perfect security, an information-theoretic notion introduced by
Shannon and showed by him to be met by the one-time pad scheme. Perfect security asks that regardless of
the computing power available to the adversary, the ciphertext provides it no information about the plaintext
beyond the a priori information it had prior to seeing the ciphertext. Perfect security is a very strong attribute,
but achieving it requires a key as long as the total amount of data encrypted, and this is not usually practical.
So here we look at a notion of computational security. The security will only hold with respect to adversaries
of limited computing power. If the adversary works harder, she can figure out more, but a “feasible” amount
of effort yields no noticeable information. This is the important notion for us and will be used to analyze the
security of schemes such as those presented above.

6.4 Indistinguishability under chosen-plaintext attack

Having discussed the issues in Section 6.3 above, we will now distill a formal definition of security.

6.4.1 Definition

The basic idea behind indistinguishability (or, more fully, left-or-right indistinguishability under a chosen-
plaintext attack) is to consider an adversary (not in possession of the secret key) who chooses two messages
of the same length. Then one of the two messages is encrypted, and the ciphertext is given to the adversary.
The scheme is considered secure if the adversary has a hard time telling which of the two messages was the one
encrypted.
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Oracle EK(LR(M0,M1, b)) // b ∈ {0, 1} and M0, M1 ∈ {0, 1}∗

if |M0| 6= |M1| then return ⊥
C

$← EK(Mb)
return C

Figure 6.6: Left-or-right (lor) encryption oracle used to define IND-CPA security of encryption scheme SE =
(K, E ,D).

We will actually give the adversary a little more power, letting her choose a whole sequence of pairs of equal-
length messages. Let us now detail the game.

The adversary chooses a sequence of pairs of messages, (M0,1,M1,1), . . . , (M0,q,M1,q), where, in each pair, the
two messages have the same length. We give to the adversary a sequence of ciphertexts C1, . . . , Cq where either
(1) Ci is an encryption of M0,i for all 1 ≤ i ≤ q or, (2) Ci is an encryption of M1,i for all 1 ≤ i ≤ q. In doing
the encryptions, the encryption algorithm uses the same key but fresh coins, or an updated state, each time.
The adversary gets the sequence of ciphertexts and now it must guess whether M0,1, . . . , M0,q were encrypted
or M1,1, . . . , M1,q were encrypted.

To further empower the adversary, we let it choose the sequence of message pairs via a chosen plaintext attack.
This means that the adversary chooses the first pair, then receives C1, then chooses the second pair, receives C2,
and so on. (Sometimes this is called an adaptive chosen-plaintext attack, because the adversary can adaptively
choose each query in a way responsive to the earlier answers.)

Let us now formalize this. We fix some encryption scheme SE = (K, E ,D). It could be either stateless or
stateful. We consider an adversary A. It is a program which has access to an oracle to which it can provide
as input any pair of equal-length messages. The oracle will return a ciphertext. We will consider two possible
ways in which this ciphertext is computed by the oracle, corresponding to two possible “worlds” in which the
adversary “lives”. To do this, first define the left-or-right encryption oracle (abbreviated lr-encryption oracle)
EK(LR(·, ·, b)) as shown in Figure 6.6. The oracle encrypts one of the messages, the choice of which being made
according to the bit b. Now the two worlds are as follows:

World 0: The oracle provided to the adversary is EK(LR(·, ·, 0)). So, whenever the adversary makes a query

(M0,M1) with |M0| = |M1|, the oracle computes C
$← EK(M0), and returns C as the answer.

World 1: The oracle provided to the adversary is EK(LR(·, ·, 1)). So, whenever the adversary makes a query

(M0,M1) with |M0| = |M1| to its oracle, the oracle computes C
$← EK(M1), and returns C as the answer.

We also call the first world (or oracle) the “left” world (or oracle), and the second world (or oracle) the “right”
world (or oracle). The problem for the adversary is, after talking to its oracle for some time, to tell which of
the two oracles it was given. Before we pin this down, let us further clarify exactly how the oracle operates.

Think of the oracle as a subroutine to which A has access. Adversary A can make an oracle query (M0,M1) by
calling the subroutine with arguments (M0,M1). In one step, the answer is then returned. Adversary A has no
control on how the answer is computed, nor can A see the inner workings of the subroutine, which will typically
depend on secret information that A is not provided. Adversary A has only an interface to the subroutine—the
ability to call it as a black-box, and get back an answer.

First assume the given symmetric encryption scheme SE is stateless. The oracle, in either world, is probabilistic,
because it calls the encryption algorithm. Recall that this algorithm is probabilistic. Above, when we say

C
$← EK(Mb), it is implicit that the oracle picks its own random coins and uses them to compute ciphertext C.

The random choices of the encryption function are somewhat “under the rug” here, not being explicitly repre-
sented in the notation. But these random bits should not be forgotten. They are central to the meaningfulness
of the notion and the security of the schemes.

If the given symmetric encryption scheme SE is stateful, the oracles, in either world, become stateful, too.
(Think of a subroutine that maintains a “static” variable across successive calls.) An oracle begins with a state
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value initialized to a value specified by the encryption scheme. For example, in CTRC mode, the state is an
integer ctr that is initialized to 0. Now, each time the oracle is invoked, it computes EK(Mb) according to the
specification of algorithm E . The algorithm may, as a side-effect, update the state, and upon the next invocation
of the oracle, the new state value will be used.

The following definition associates to a symmetric encryption scheme SE and an adversary A a pair of experi-
ments, one capturing each of the worlds described above. The adversary’s advantage, which measures its success
in breaking the scheme, is the difference in probabilities of the two experiments returning the bit one.

Definition 6.8 Let SE = (K, E ,D) be a symmetric encryption scheme, and let A be an algorithm that has
access to an oracle. We consider the following experiments:

Experiment Expind-cpa-1
SE (A)

K
$← K

d
$← AEK(LR(·,·,1))

Return d

Experiment Expind-cpa-0
SE (A)

K
$← K

d
$← AEK(LR(·,·,0))

Return d

The oracle used above is specified in Figure 6.6. The IND-CPA advantage of A is defined as

Advind-cpa
SE (A) = Pr

[

Expind-cpa-1
SE (A) = 1

]

− Pr
[

Expind-cpa-0
SE (A) = 1

]

.

As the above indicates, the choice of which world we are in is made just once, at the beginning, before the
adversary starts to interact with the oracle. In world 0, all message pairs sent to the oracle are answered by
the oracle encrypting the left message in the pair, while in world 1, all message pairs are answered by the oracle
encrypting the right message in the pair. The choice of which does not flip-flop from oracle query to oracle
query.

If Advind-cpa
SE (A) is small (meaning close to zero), it means that A is outputting 1 about as often in world 0 as

in world 1, meaning it is not doing a good job of telling which world it is in. If this quantity is large (meaning
close to one—or at least far from zero) then the adversary A is doing well, meaning our scheme SE is not secure,
at least to the extent that we regard A as “reasonable.”

Informally, for symmetric encryption scheme SE to be secure against chosen plaintext attack, the IND-CPA
advantage of an adversary must be small, no matter what strategy the adversary tries. However, we have to be
realistic in our expectations, understanding that the advantage may grow as the adversary invests more effort
in its attack. Security is a measure of how large the advantage of the adversary might when compared against
the adversary’s resources.

We consider an encryption scheme to be “secure against chosen-plaintext attack” if an adversary restricted
to using “practical” amount of resources (computing time, number of queries) cannot obtain “significant”
advantage. The technical notion is called left-or-right indistinguishability under chosen-plaintext attack, denoted
IND-CPA.

We discuss some important conventions regarding the resources of adversary A. The running time of an
adversary A is the worst case execution time of A over all possible coins of A and all conceivable oracle return
values (including return values that could never arise in the experiments used to define the advantage). Oracle
queries are understood to return a value in unit time, but it takes the adversary one unit of time to read any
bit that it chooses to read. By convention, the running time of A also includes the size of the code of the
adversary A, in some fixed RAM model of computation. This convention for measuring time complexity is the
same as used in other parts of these notes, for all kinds of adversaries.

Other resource conventions are specific to the IND-CPA notion. When the adversary asks its left-or-right
encryption oracle a query (M0, M1) we say that length of this query is max(|M0|, |M1|). (This will equal |M0|
for any reasonable adversary since an oracle query with messages of different lengths results in the adversary
being returned ⊥, so we can assume no reasonable adversary makes such a query.) The total length of queries
is the sum of the length of each query. We can measure query lengths in bits or in blocks, with block having
some understood number of bits n.
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The resources of the adversary we will typically care about are three. First, its time-complexity, measured
according to the convention above. Second, the number of oracle queries, meaning the number of message pairs
the adversary asks of its oracle. These messages may have different lengths, and our third resource measure is
the sum of all these lengths, denoted µ, again measured according to the convention above.

6.4.2 Alternative interpretation

Let us move on to describe a somewhat different interpretation of left-or-right indistinguishability. Why is
Advind-cpa

SE (A) called the “advantage” of the adversary? We can view the task of the adversary as trying to
guess which world it is in. A trivial guess is for the adversary to return a random bit. In that case, it has
probability 1/2 of being right. Clearly, it has not done anything damaging in this case. The advantage of the
adversary measures how much better than this it does at guessing which world it is in, namely the excess over
1/2 of the adversary’s probability of guessing correctly. In this subsection we will see how the above definition
corresponds to this alternative view, a view that lends some extra intuition to the definition and is also useful
in later usages of the definition.

Proposition 6.9 Let SE = (K, E ,D) be a symmetric encryption scheme, and let A be an algorithm that has
access to an oracle that takes input a pair of strings and returns a string. We consider the following experiment:

Experiment Expind-cpa-cg
SE (A)

b
$← {0, 1} ; K

$← K
b′

$← AEK(LR(·,·,b))

if b = b′ then return 1 else return 0

Then

Advind-cpa
SE (A) = 2 · Pr

[

Expind-cpa-cg
SE (A) = 1

]

− 1 .

In the above experiment, adversary A is run with an oracle for world b, where the bit b is chosen at random. A
eventually outputs a bit b′, its guess as to the value of b. The experiment returns 1 if A’s guess is correct. Thus,

Pr
[

Expind-cpa-cg
SE (A) = 1

]

is the probability that A correctly guesses which world it is in. (The “cg” in the superscript naming the
experiment stands for “correct guess.”) The probability is over the initial choice of world as given by the bit
b, the choice of K, the random choices of EK(·) if any, and the coins of A if any. This value is 1/2 when the
adversary deserves no advantage, since one can guess b correctly by a strategy as simple as “always answer zero”
or “answer with a random bit.” The “advantage” of A can thus be viewed as the excess of this probability over
1/2, which, re-scaled, is

2 · Pr
[

Expind-cpa-cg
SE (A) = 1

]

− 1 .

The Proposition says that this rescaled advantage is exactly the same measure as before.

Proof of Proposition 6.9: We let Pr [·] be the probability of event “·” in the experiment Expind-cpa-cg
SE (A),

and refer below to quantities in this experiment. The claim of the Proposition follows by a straightforward
calculation:

Pr
[

Expind-cpa-cg
SE (A) = 1

]

= Pr [b = b′]

= Pr [b = b′ | b = 1] · Pr [b = 1] + Pr [b = b′ | b = 0] · Pr [b = 0]
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= Pr [b = b′ | b = 1] · 1

2
+ Pr [b = b′ | b = 0] · 1

2

= Pr [b′ = 1 | b = 1] · 1

2
+ Pr [b′ = 0 | b = 0] · 1

2

= Pr [b′ = 1 | b = 1] · 1

2
+ (1 − Pr [b′ = 1 | b = 0]) · 1

2

=
1

2
+

1

2
· (Pr [b′ = 1 | b = 1] − Pr [b′ = 1 | b = 0])

=
1

2
+

1

2
·
(

Pr
[

Expind-cpa-1
SE (A) = 1

]

− Pr
[

Expind-cpa-0
SE (A) = 1

])

=
1

2
+

1

2
· Advind-cpa

SE (A) .

We began by expanding the quantity of interest via standard conditioning. The term of 1/2 in the third line
emerged because the choice of b is made at random. In the fourth line we noted that if we are asking whether
b = b′ given that we know b = 1, it is the same as asking whether b′ = 1 given b = 1, and analogously for b = 0.
In the fifth line and sixth lines we just manipulated the probabilities and simplified. The next line is important;
here we observed that the conditional probabilities in question are exactly the probabilities that A returns 1 in
the experiments of Definition 6.8.

6.4.3 Why is this a good definition?

Our thesis is that we should consider an encryption scheme to be “secure” if and only if it is IND-CPA secure,
meaning that the above formalization captures our intuitive sense of privacy, and the security requirements that
one might put on an encryption scheme can be boiled down to this one.

But why? Why does IND-CPA capture “privacy”? This is an important question to address and answer.

In particular, here is one concern. In Section 6.3 we noted a number of security properties that are necessary
but not sufficient for security. For example, it should be computationally infeasible for an adversary to recover
the key from a few plaintext-ciphertext pairs, or to recover a plaintext from a ciphertext.

A test of our definition is that it implies the necessary properties that we have discussed, and others. For
example, a scheme that is secure in the IND-CPA sense of our definition should also be, automatically, secure
against key-recovery or plaintext-recovery. Later, we will prove such things, and even stronger things. For now,
let us continue to get a better sense of how to work with the definition by using it to show that certain schemes
are insecure.

6.5 Example chosen-plaintext attacks

We illustrate the use of our IND-CPA definition in finding attacks by providing an attack on ECB mode, and
also a general attack on deterministic, stateless schemes.

6.5.1 Attack on ECB

Let us fix a block cipher E: K×{0, 1}n → {0, 1}n. The ECB symmetric encryption scheme SE = (K, E ,D) was
described as Scheme 6.3. Suppose an adversary sees a ciphertext C = EK(M) corresponding to some random
plaintext M , encrypted under the key K also unknown to the adversary. Can the adversary recover M? Not
easily, if E is a “good” block cipher. For example if E is AES, it seems quite infeasible. Yet, we have already
discussed how infeasibility of recovering plaintext from ciphertext is not an indication of security. ECB has
other weaknesses. Notice that if two plaintexts M and M ′ agree in the first block, then so do the corresponding
ciphertexts. So an adversary, given the ciphertexts, can tell whether or not the first blocks of the corresponding
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plaintexts are the same. This is loss of partial information about the plaintexts, and is not permissible in a
secure encryption scheme.

It is a test of our definition to see that it captures these weaknesses and also finds the scheme insecure. It does.
To show this, we want to show that there is an adversary that has a high IND-CPA advantage while using a
small amount of resources. We now construct such an adversary A. Remember that A is given a lr-encryption
oracle EK(LR(·, ·, b)) that takes as input a pair of messages and that returns an encryption of either the left or
the right message in the pair, depending on the value of the bit b. The goal of A is to determine the value of b.
Our adversary works like this:

Adversary AEK(LR(·,·,b))

M1 ← 02n ; M0 ← 0n‖1n

C[1]C[2] ← EK(LR(M0,M1, b))
If C[1] = C[2] then return 1 else return 0

Above, X[i] denotes the i-th block of a string X, a block being a sequence of n bits. The adversary’s single
oracle query is the pair of messages M0,M1. Since each of them is two blocks long, so is the ciphertext computed
according to the ECB scheme. Now, we claim that

Pr
[

Expind-cpa-1
SE (A) = 1

]

= 1 and

Pr
[

Expind-cpa-0
SE (A) = 1

]

= 0 .

Why? You have to return to the definitions of the quantities in question, and trace through the experiments
defined there. In world 1, meaning b = 1, the oracle returns C[1]C[2] = EK(0n)‖EK(0n), so C[1] = C[2] and A
returns 1. In world 0, meaning b = 0, the oracle returns C[1]C[2] = EK(0n)EK(1n). Since EK is a permutation,
C[1] 6= C[2]. So A returns 0 in this case.

Subtracting, we get Advind-cpa
SE (A) = 1 − 0 = 1. And A achieved this advantage by making just one oracle

query, whose length, which as per our conventions is just the length of M0, is 2n bits. This means that the ECB
encryption schems is insecure.

As an exercise, try to analyze the same adversary as an adversary against CBC$ or CTR modes, and convince
yourself that the adversary will not get a high advantage.

There is an important feature of this attack that must be emphasized. Namely, ECB is an insecure encryption
scheme even if the underlying block cipher E is highly secure. The weakness is not in the tool being used (here
the block cipher) but in the manner we are using it. It is the ECB mechanism that is at fault. Even the best
of tools are useless if you don’t know how to properly use them.

This is the kind of design flaw that we want to be able to spot and eradicate. Our goal is to find symmetric
encryption schemes that are secure as long as the underlying block cipher is secure. In other words, the scheme
has no inherent flaw; as long as you use good ingredients, the recipe will produce a good meal.

If you don’t use good ingredients? Well, that is your problem. All bets are off.

6.5.2 Any deterministic, stateless schemes is insecure

ECB mode is deterministic and stateless, so that if the same message is encrypted twice, the same ciphertext
is returned. It turns out that this property, in general, results in an insecure scheme, and provides perhaps a
better understanding of why ECB fails. Let us state the general fact more precisely.

Proposition 6.10 Let SE = (K, E ,D) be a deterministic, stateless symmetric encryption scheme. Assume
there is an integer m such that the plaintext space of the scheme contains two distinct strings of length m.
Then there is an adversary A such that

Advind-cpa
SE (A) = 1 .

Adversary A runs in time O(m) and asks just two queries, each of length m.
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The requirement being made on the message space is minimal; typical schemes have messages spaces containing
all strings of lengths between some minimum and maximum length, possibly restricted to strings of some given
multiples. Note that this Proposition applies to ECB and is enough to show the latter is insecure.

Proof of Proposition 6.10: We must describe the adversary A. Remember that A is given an lr-encryption
oracle f = EK(LR(·, ·, b)) that takes input a pair of messages and returns an encryption of either the left or
the right message in the pair, depending on the value of b. The goal of A is to determine the value of b. Our
adversary works like this:

Adversary Af

Let X, Y be distinct, m-bit strings in the plaintext space
C1 ← EK(LR(X, Y, b))
C2 ← EK(LR(Y, Y, b))
If C1 = C2 then return 1 else return 0

Now, we claim that

Pr
[

Expind-cpa-1
SE (A) = 1

]

= 1 and

Pr
[

Expind-cpa-0
SE (A) = 1

]

= 0 .

Why? In world 1, meaning b = 1, the oracle returns C1 = EK(Y ) and C2 = EK(Y ), and since the encryption
function is deterministic and stateless, C1 = C2, so A returns 1. In world 0, meaning b = 0, the oracle returns
C1 = EK(X) and C2 = EK(Y ), and since it is required that decryption be able to recover the message, it must
be that C1 6= C2. So A returns 0.

Subtracting, we get Advind-cpa
SE (A) = 1 − 0 = 1. And A achieved this advantage by making two oracle queries,

each of whose length, which as per our conventions is just the length of the first message, is m bits.

6.5.3 Attack on CBC encryption with counter IV

Let us fix a block cipher E: K × {0, 1}n → {0, 1}n. Let SE = (K, E ,D) be the corresponding counter-based
version of the CBC encryption mode described in Scheme 6.5. We show that this scheme is insecure. The reason
is that the adversary can predict the counter value.

To justify our claim of insecurity, we present an adversary A. As usual it is given an lr-encryption oracle
EK(LR(·, ·, b)) and wants to determine b. Our adversary works like this:

Adversary AEK(LR(·,·,b))

M0,1 ← 0n ; M1,1 ← 0n

M0,2 ← 0n ; M1,2 ← 0n−11

〈IV1, C1〉 $← EK(LR(M0,1,M1,1, b))

〈IV2, C2〉 $← EK(LR(M0,2,M1,2, b))
If C1 = C2 then return 1 else return 0

We claim that

Pr
[

Expind-cpa-1
SE (A) = 1

]

= 1 and

Pr
[

Expind-cpa-0
SE (A) = 1

]

= 0 .

Why? First consider the case b = 0, meaning we are in world 0. In that case IV1 = 0 and IV2 = 1 and
C1 = EK(0) and C2 = EK(1) and so C1 6= C2 and the defined experiment returns 0. On the other hand, if
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b = 1, meaning we are in world 1, then IV1 = 0 and IV21 = 1 and C1 = EK(0) and C2 = EK(0), so the defined
experiment returns 1.

Subtracting, we get Advind-cpa
SE (A) = 1 − 0 = 1, showing that A has a very high advantage. Moreover, A is

practical, using very few resources. So the scheme is insecure.

6.6 IND-CPA implies PR-CPA

In Section 6.3 we noted a number of security properties that are necessary but not sufficient for security. For
example, it should be computationally infeasible for an adversary to recover the key from a few plaintext-
ciphertext pairs, or to recover a plaintext from a ciphertext. A test of our definition is that it implies these
properties, in the sense that a scheme that is secure in the sense of our definition is also secure against key-
recovery or plaintext-recovery.

The situation is analogous to what we saw in the case of PRFs. There we showed that a secure PRF is secure
against key-recovery. In order to have some variation, this time we choose a different property, namely plaintext
recovery. We formalize this, and then show if there was an adversary B capable of recovering the plaintext
from a given ciphertext, then this would enable us to construct an adversary A that broke the scheme in the
IND-CPA sense (meaning the adversary can identify which of the two worlds it is in). If the scheme is secure
in the IND-CPA sense, that latter adversary could not exist, and hence neither could the former.

The idea of this argument illustrates one way to evidence that a definition is good—say the definition of left-
or-right indistinguishability. Take some property that you feel a secure scheme should have, like infeasibility of
key recovery from a few plaintext-ciphertext pairs, or infeasibility of predicting the XOR of the plaintext bits.
Imagine there were an adversary B that was successful at this task. We should show that this would enable
us to construct an adversary A that broke the scheme in the original sense (left-or-right indistinguishability).
Thus the adversary B does not exist if the scheme is secure in the left-or-right sense. More precisely, we use
the advantage function of the scheme to bound the probability that adversary B succeeds.

Let us now go through the plaintext recovery example in detail. The task facing the adversary will be to
decrypt a ciphertext which was formed by encrypting a randomly chosen challenge message of some length m.
In the process we want to give the adversary the ability to see plaintext-ciphertext pairs, which we capture by
giving the adversary access to an encryption oracle. This encryption oracle is not the lr-encryption oracle we

saw above: instead, it simply takes input a single message M and returns a ciphertext C
$← EK(M) computed

by encrypting M . To capture providing the adversary with a challenge ciphertext, we choose a random m-bit

plaintext M , compute C
$← EK(M), and give C to the adversary. The adversary wins if it can output the

plaintext M corresponding to the ciphertext C.

For simplicity we assume the encryption scheme is stateless, and that {0, 1}m is a subset of the plaintext space
associated to the scheme. As usual, when either the encryption or the challenge oracle invoke the encryption
function, it is implicit that they respect the randomized nature of the encryption function, meaning the latter
tosses coins anew upon each invocation of the oracle.

Definition 6.11 Let SE = (K, E ,D) be a stateless symmetric encryption scheme whose plaintext space includes
{0, 1}m and let B be an algorithm that has access to an oracle. We consider the following experiment:

Experiment Exppr-cpa
SE (B)

K
$← K

M ′ $← {0, 1}m

C
$← EK(M ′)

M
$← BEK(·)(C)

If M = M ′ then return 1 else return 0

The PR-CPA advantage of B is defined as

Advpr-cpa
SE (B) = Pr

[
Exppr-cpa

SE (B) = 1
]

.
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In the experiment above, B is executed with its oracle and challenge ciphertext C. The adversary B wins if
it can correctly decrypt C, and in that case the experiment returns 1. In the process, the adversary can make
encryption oracle queries as it pleases.

The following Proposition says that the probability that an adversary successfully recovers a plaintext from a
challenge ciphertext cannot exceed the IND-CPA advantage of the scheme (with resource parameters those of
the plaintext recovery adversary) plus the chance of simply guessing the plaintext. In other words, security in
the IND-CPA sense implies security in the PR-CPA sense.

Proposition 6.12 [IND-CPA ⇒ PR-CPA] Let SE = (K, E ,D) be a stateless symmetric encryption scheme
whose plaintext space includes {0, 1}m. Suppose that B is a (plaintext-recovery) adversary that runs in time t
and asks at most q queries, these queries totaling at most µ bits. Then there exists an adversary A such that

Advpr-cpa
SE (B) ≤ Advind-cpa

SE (A) +
1

2m
.

Furthermore, the running time of A is that of B plus O(µ+m+ c) where c bounds the length of the encryption
of an m-bit string. A makes q + 1 oracle queries and these queries total at most µ + m bits.

Proof of Proposition 6.12: As per Definition 6.8, adversary A will be provided an lr-encryption oracle and
will try to determine in which world it resides. To do so, it will run adversary B as a subroutine. We provide
the description followed by an explanation and analysis.

Adversary AEK(LR(·,·,b))

M0
$← {0, 1}m ; M1

$← {0, 1}m

C ← EK(LR(M0, M1, b))
Run adversary B on input C, replying to its oracle queries as follows

When B makes an oracle query X to g do
Y ← EK(LR(X, X, b))
return Y to B as the answer

When B halts and outputs a plaintext M
If M = M1 then return 1 else return 0

Here A is running B and itself providing answers to B’s oracle queries. To make the challenge ciphertext C
for B, adversary A chooses random messages M0 and M1 and uses its lr-oracle to get the encryption C of
one of them. When B makes an encryption oracle query X, adversary A needs to return EK(X). It does this
by invoking its lr-encryption oracle, setting both messages in the pair to X, so that regardless of the value of
the bit b, the ciphertext returned is an encryption of X, just as B wants. When B outputs a plaintext M ,
adversary A tests whether M = M1 and if so bets that it is in world 1. Otherwise, it bets that it is in world 0.
Now we claim that

Pr
[

Expind-cpa-1
SE (A) = 1

]

≥ Advpr-cpa
SE (B) (6.1)

Pr
[

Expind-cpa-0
SE (A) = 1

]

≤ 2−m . (6.2)

We will justify these claims shortly, but first let us use them to conclude. Subtracting, as per Definition 6.8, we
get

Advind-cpa
SE (A) = Pr

[

Expind-cpa-1
SE (A) = 1

]

− Pr
[

Expind-cpa-0
SE (A) = 1

]

≥ Advpr-cpa
SE (B) − 2−m .

It remains to justify Equations (6.1) and (6.2).
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Adversary B will return M = DK(C) with probability Advpr-cpa
SE (B). In world 1, ciphertext C is an encryption

of M1, so this means that M = M1 with probability at least Advpr-cpa
SE (B), and thus Equation (6.1) is true.

Now assume A is in world 0. In that case, adversary A will return 1 only if B returns M = M1. But B is given
no information about M1, since C is an encryption of M0 and M1 is chosen randomly and independently of M0.
It is simply impossible for B to output M1 with probability greater than 2−m. Thus Equation (6.2) is true.

Similar arguments can be made to show that other desired security properties of a symmetric encryption scheme
follow from this definition. For example, is it possible that some adversary B, given some plaintext-ciphertext
pairs and then a challenge ciphertext C, can compute the XOR of the bits of M = DK(C)? Or the sum of these
bits? Or the last bit of M? Its probability of doing any of these cannot be more than marginally above 1/2
because were it so, we could design an adversary A that won the left-or-right game using resources comparable
to those used by B. We leave as an exercise the formulation and working out of other such examples along the
lines of Proposition 6.12.

Of course one cannot exhaustively enumerate all desirable security properties. But you should be moving
towards being convinced that our notion of left-or-right security covers all the natural desirable properties of
security under chosen plaintext attack. Indeed, we err, if anything, on the conservative side. There are some
attacks that might in real life be viewed as hardly damaging, yet our definition declares the scheme insecure
if it succumbs to one of these. That is all right; there is no harm in making our definition a little demanding.
What is more important is that if there is any attack that in real life would be viewed as damaging, then the
scheme will fail the left-or-right test, so that our formal notion too declares it insecure.

6.7 Security of CTR modes

Recall that the CTR (counter) mode of operation of a family of functions comes in two variants: the randomized
(stateless) version CTRC of Scheme 6.6, and the counter-based (stateful) mechanism CTR$ of Scheme 6.7. Both
modes achieve indistinguishability under a chosen-plaintext attack, but, interestingly, the quantitative security
is a little different. The difference springs from the fact that CTRC achieves perfect indistinguishability if
one uses the random function family Func(n) in the role of the underlying family of functions F—but CTR$
would not achieve perfect indistinguishability even then, because of the possibility that collisions would produce
“overlaps” in the pseudo-one-time pad.

We will state the main theorems about the schemes, discuss them, and then prove them. For the counter version
we have:

Theorem 6.13 [Security of CTRC mode] Let F : K × {0, 1}ℓ → {0, 1}L be a family of functions and let
SE = (K, E ,D) be the corresponding CTRC symmetric encryption scheme as described in Scheme 6.7. Let A
be an adversary (for attacking the IND-CPA security of SE) that runs in time at most t and asks at most q
queries, these totaling at most σ L-bit blocks. Then there exists an adversary B (attacking the PRF security
of F ) such that

Advind-cpa
SE (A) ≤ Advprf

F (B) .

Furthermore B runs in time at most t′ = t + O(q + (ℓ + L)σ) and asks at most q′ = σ oracle queries.

Theorem 6.14 [Security of CTR$ mode] Let F : K × {0, 1}ℓ → {0, 1}L be a block cipher and let SE =
(K, E ,D) be the corresponding CTR$ symmetric encryption scheme as described in Scheme 6.6. Let A be an
adversary (for attacking the IND-CPA security of SE) that runs in time at most t and asks at most q queries,
these totaling at most σ L-bit blocks. Then there exists an adversary B (attacking the PRF security of F ) such
that

Advind-cpa
SE (A) ≤ Advprf

F (B) +
0.5 σ2

2ℓ
.

Furthermore B runs in time at most t′ = t + O(q + (ℓ + L)σ) and asks at most q′ = σ oracle queries.
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The above theorems exemplify the kinds of results that the provable-security approach is about. Namely, we
are able to provide provable guarantees of security of some higher level cryptographic construct (in this case, a
symmetric encryption scheme) based on the assumption that some building block (in this case an underlying
block) is secure. The above results are the first example of the “punch-line” we have been building towards. So
it is worth pausing at this point and trying to make sure we really understand what these theorems are saying
and what are their implications.

If we want to entrust our data to some encryption mechanism, we want to know that this encryption mechanism
really provides privacy. If it is ill-designed, it may not. We saw this happen with ECB. Even if we used a secure
block cipher, the flaws of ECB mode make it an insecure encryption scheme.

Flaws are not apparent in CTR at first glance. But maybe they exist. It is very hard to see how one can be
convinced they do not exist, when one cannot possible exhaust the space of all possible attacks that could be
tried. Yet this is exactly the difficulty that the above theorems circumvent. They are saying that CTR mode
does not have design flaws. They are saying that as long as you use a good block cipher, you are assured that
nobody will break your encryption scheme. One cannot ask for more, since if one does not use a good block
cipher, there is no reason to expect security of your encryption scheme anyway. We are thus getting a conviction
that all attacks fail even though we do not even know exactly how these attacks might operate. That is the
power of the approach.

Now, one might appreciate that the ability to make such a powerful statement takes work. It is for this that we
have put so much work and time into developing the definitions: the formal notions of security that make such
results meaningful. For readers who have less experience with definitions, it is worth knowing, at least, that the
effort is worth it. It takes time and work to understand the notions, but the payoffs are big: you get significant
guarantees of security.

How, exactly, are the theorems saying this? The above discussion has pushed under the rug the quantitative
aspect that is an important part of the results. It may help to look at a concrete example.

Example 6.15 Let us suppose that F is the block cipher AES, so that ℓ = L = 128. Suppose I want to
encrypt q = 230 messages, each being one kilobyte (213 bits) long. I am thus encrypting a total of 243 bits,
which is to say σ = 236 blocks. (This is about one terabyte). Can I do this securely using CTR$? Let A be
an adversary attacking the privacy of my encryption. Theorem 6.14 says that there exists a B satisfying the
stated conditions. How large can Advprf

AES(B) be? It makes q = 236 queries, and it is consistent with our state
of knowledge of the security of AES to assume that such an adversary cannot do better than mount a birthday
attack, meaning its advantage is no more than q2/2128. Then, the theorem tells us that

Advrnd-cpa
SE (A) ≤ σ2

2128
+

0.5 σ2

2128
=

1.5 272

2128
≤ 1

255
.

This is a very small number indeed, saying that our encryption is secure, at least under the assumption that
the best attack on the PRF security of AES is a birthday attack. Note however that if we encrypt 264 blocks
of data, all provable security has been lost.

The example illustrates how to use the theorems to figure out how much security you will get from the CTR
encryption scheme in a given application.

Note that as per the above theorems, encrypting more than σ = 2ℓ/2 blocks of data with CTR$ is not secure
regardless of the quality of F as a PRF. On the other hand, with CTRC, it might be secure, as long as F can
withstand σ queries. This is an interesting and possibly useful distinction. Yet, in the setting in which such
modes are usually employed, the distinction all but vanishes. For, usually, F is a block cipher, and ℓ = L is its
block length. In that case, we know from the birthday attack that the prf-advantage of B may itself be as large
as Θ(σ2/2n), and thus, again, encrypting more than σ = 2ℓ/2 blocks of data is not secure. However, we might
be able to find or build function families F that are not families of permutations and preserve PRF security
against adversaries making more than 2ℓ/2 queries.

6.7.1 Proof of Theorem 6.13

Yes, but it is not there now, and this creates a gap. As long as it is
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algorithm Eg(M)
static ctr ← 0
m ← ⌈|M |/L⌉
If ctr + m ≥ 2ℓ then return ⊥
Pad ← g(ctr + 1)‖g(ctr + 2)‖ · · · ‖g(ctr + m)
Pad ← the first |M | bits of Pad

C ← M⊕Pad

ctr ← ctr + m
return 〈ctr − m, C〉

algorithm Dg(〈i, C〉)
m ← ⌈|C|/L⌉
Pad ← g(i + 1)‖g(i + 2)‖ · · · ‖g(i + m)
Pad ← the first |C| bits of Pad

M ← Pad⊕C
return M

Figure 6.7: Version SE [G] = (K, E ,D) of the CTRC scheme parameterized by a family of functions G.

The paradigm used is quite general in many of its aspects, and we will use it again, not only for encryption
schemes, but for other kinds of schemes that are based on pseudorandom functions.

An important observation regarding the CTR scheme is that the encryption and decryption operations do not
need direct access to the key K, but only access to a subroutine, or oracle, that implements the function FK .
This is important because one can consider what happens when FK is replaced by some other function. To
consider such replacements, we reformulate the scheme. We introduce a scheme that takes as a parameter any
given family of functions G having domain {0, 1}ℓ and range {0, 1}L. As we will see later the cases of interest are
G = F and G = Func(ℓ,L). Let us first however describe this parameterized scheme. In the rest of this proof,
SE [G] = (K, E ,D) denotes the symmetric encryption scheme defined as follows. The key generation algorithm

simply returns a random instance of G, meaning that it picks a function g
$← G from family G at random, and

views g as the key. The encryption and decryption algorithms are shown in Figure 6.7. (The scheme is stateful,
with the encryptor maintaining a counter that is initially zero). As the description indicates, the scheme is
exactly CTRC, except that function g is used in place of FK . This seemingly cosmetic change of viewpoint is
quite useful, as we will see.

We observe that the scheme in which we are interested, and which the theorem is about, is simply SE [F ] where
F is our given family of functions as per the theorem. Now, the proof breaks into two parts. The first step
removes F from the picture, and looks instead at an “idealized” version of the scheme. Namely we consider the
scheme SE [Func(ℓ,L)]. Here, a random function g of ℓ-bits to L-bits is being used where the original scheme
would use FK . We then assess an adversary’s chance of breaking this idealized scheme. We argue that this
chance is actually zero. This is the main lemma in the analysis.

This step is definitely a thought experiment. No real implementation can use a random function in place of FK

because even storing such a function takes an exorbitant amount of memory. But this analysis of the idealized
scheme enables us to focus on any possible weaknesses of the CTR mode itself, as opposed to weaknesses arising
from properties of the underlying block cipher. We can show that this idealized scheme is secure, and that
means that the mode itself is good.

It then remains to see how this “lifts” to a real world, in which we have no ideal random functions, but rather
want to assess the security of the scheme SE [F ] that uses the given family F . Here we exploit the notion of
pseudorandomness to say that the chance of an adversary breaking the SE [F ] can differ from its chance of
breaking the ideal-world scheme SE [Func(ℓ,L)] by an amount not exceeding the probability of breaking the
pseudorandomness of F using comparable resources.

Lemma 6.16 [Security of CTRC using a random function] Let A be any IND-CPA adversary attacking
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SE [Func(ℓ,L)], where the scheme is depicted in Figure 6.7. Then

Advind-cpa
SE[Func(ℓ,L)](A) = 0 .

The lemma considers an arbitrary adversary. Let us say this adversary has time-complexity t, makes q queries
to its lr-encryption oracle, these totaling σ L-bit blocks. The lemma does not care about the values of t, q, or
σ. (Recall, however, that after encrypting a total of 2ℓ blocks, the encryption mechanism will “shut up” and
be of no use.) It says the adversary has zero advantage, meaning no chance at all of breaking the scheme. The
fact that no restriction is made on t indicates that the result is information-theoretic: it holds regardless of how
much computing time the adversary invests.

Of course, this lemma refers to the idealized scheme, namely the one where the function g being used by the
encryption algorithm is random. But remember that ECB was insecure even in this setting. (The attacks we
provided for ECB work even if the underlying cipher E is Perm(n), the family of all permutations on n-bit
strings.) So the statement is not content-free; it is saying something quite meaningful and important about the
CTR mode. It is not true of all modes.

We postpone the proof of the lemma. Instead we will first see how to use it to conclude the proof of the theorem.
The argument here is quite simple and generic.

The lemma tells us that the CTRC encryption scheme is (very!) secure when g is a random function. But we
are interested in the case where g is is an instance of our given family F . So our worry is that the actual scheme
SE [F ] is insecure even though the idealized scheme SE [Func(ℓ,L)] is secure. In other words, we worry that
there might be an adversary having large IND-CPA advantage in attacking SE [F ], even though we know that
its advantage in attacking SE [Func(ℓ,L)] is zero. But we claim that this is not possible if F is a secure PRF.
Intuitively, the existence of such an adversary indicates that F is not approximating Func(ℓ,L) since there is
some detectable event, namely the success probability of some adversary in a certain experiment, that happens
with high probability when F is used and with low probability when Func(ℓ,L) is used. To concretize this
intuition, let A be a IND-CPA adversary attacking SE [F ]. We associate to A an adversary B that is given
oracle access to a function g: {0, 1}ℓ → {0, 1}L and is trying to determine which world it is in, where in world 0 g
is a random instance of Func(ℓ,L) and in world 1 g is a random instance of F . We suggest the following strategy
to the adversary. It runs A, and replies to A’s oracle queries in such a way that A is attacking SE [Func(ℓ,L)]
in B’s world 0, and A is attacking SE [F ] in B’s world 1. The reason it is possible for B to do this is that
it can execute the encryption algorithm Eg(·) of Figure 6.7, which simply requires access to the function g. If
the adversary A wins, meaning it correctly identifies the encryption oracle, B bets that g is an instance of F ;
otherwise, B bets that g is an instance of Func(ℓ,L).

We stress the key point that makes this argument work. It is that the encryption function of the CTRC scheme
invokes the function FK purely as an oracle. If it had, instead, made some direct use of the key K, the paradigm
above would not work. The full proof follows.

Proof of Theorem 6.13: Let A be any IND-CPA adversary attacking SE = (K, E ,D). Assume A makes q
oracle queries totaling µ bits, and has time-complexity t. There there is an adversary B such that

Advind-cpa
SE (A) ≤ 2 · Advprf

F (B) . (6.3)

Furthermore, B will make σ oracle queries and have time-complexity that of A plus O(q + (ℓ + L)σ). Now, the
statement of Theorem 6.13 follows.

Remember that B takes an oracle g: {0, 1}ℓ → {0, 1}L. This oracle is either drawn at random from F or from
Func(ℓ,L) and B does not know which. To find out, B will use A, running it as a subroutine. But remember that
A too gets an oracle, namely an lr-encryption oracle. From A’s point of view, this oracle is simply a subroutine:
A can write, at some location, a pair of messages, and is returned a response by some entity it calls its oracle.
When B runs A as a subroutine, it is B that will “simulate” the lr-encryption oracle for A, meaning B will
provide the responses to any oracle queries that A makes. Here is the description of B:
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Adversary Bg

b
$← {0, 1}

Run adversary A, replying to its oracle queries as follows
When A makes an oracle query (M0,M1) do

C
$← Eg(Mb)

Return C to A as the answer
Until A stops and outputs a bit b′

If b′ = b then return 1 else return 0

Here Eg(·) denotes the encryption function of the generalized CTRC scheme that we defined in Figure 6.7. The
crucial fact we are exploiting here is that this function can be implemented given an oracle for g. Adversary B
itself picks the challenge bit b representing the choice of worlds for A, and then sees whether or not A succeeds
in guessing the value of this bit. If it does, it bets that g is an instance of F , and otherwise it bets that g is an
instance of Func(ℓ,L). For the analysis, we claim that

Pr
[

Expprf-1
F (B) = 1

]

=
1

2
+

1

2
· Advind-cpa

SE[F ] (A) (6.4)

Pr
[

Expprf-0
F (B) = 1

]

=
1

2
+

1

2
· Advind-cpa

SE[Func(ℓ,L)](A) . (6.5)

We will justify these claims shortly, but first let us use them to conclude. Subtracting, as per Definition 5.6, we
get

Advprf
F (B) = Pr

[

Expprf-1
F (B) = 1

]

− Pr
[

Expprf-0
F (B) = 1

]

=
1

2
· Advind-cpa

SE[F ] (A) − 1

2
· Advind-cpa

SE[Func(ℓ,L)](A) (6.6)

=
1

2
· Advind-cpa

SE[F ] (A) .

The last inequality was obtained by applying Lemma 6.16, which told us that the term Advind-cpa
SE[Func(ℓ,L)](A)

was simply zero. Re-arranging terms gives us Equation (6.3). Now let us check the resource usage. Each
computation Eg(Mb) requires |Mb|/L applications of g, and hence the total number of queries made by B to its
oracle g is σ. The time-complexity of B equals that of A plus the overhead for answering the oracle queries. It
remains to justify Equations (6.4) and (6.5).

Adversary B returns 1 when b = b′, meaning that IND-CPA adversary A correctly identified the world b in
which it was placed, or, in the language of Section 6.4.2, made the “correct guess.” The role played by B’s
world is simply to alter the encryption scheme for which this is true. When B is in world 1, the encryption
scheme, from the point of view of A, is SE [F ], and when B is in world 0, the encryption scheme, from the point
of view of A, is SE [Func(ℓ,L)]. Thus, using the notation from Section 6.4.2, we have

Pr
[

Expprf-1
F (B) = 1

]

= Pr
[

Expind-cpa-cg
SE[F ] (A) = 1

]

Pr
[

Expprf-0
F (B) = 1

]

= Pr
[

Expind-cpa-cg
SE[Func(ℓ,L)](A) = 1

]

.

To obtain Equations (6.4) and (6.5) we can now apply Proposition 6.9.

For someone unused to PRF-based proofs of security the above may seem complex, but the underlying idea is
actually very simple, and will be seen over and over again. It is simply that one can view the experiment of
the IND-CPA adversary attacking the encryption scheme as information about the underlying function g being
used, and if the adversary has more success in the case that g is an instance of F than that g is an instance of
Func(ℓ,L), then we have a distinguishing test between F and Func(ℓ,L). Let us now prove the lemma about the
security of the idealized CTRC scheme.
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Proof of Lemma 6.16: The intuition is simple. When g is a random function, its value on successive counter
values yields a one-time pad, a truly random and unpredictable sequence of bits. As long as the number of data
bits encrypted does not exceed L2ℓ, we invoke g only on distinct values in the entire encryption process. And
if an encryption would result in more queries than this, the algorithm simply shuts up, so we can ignore this.
The outputs of g are thus random. Since the data is XORed to this sequence, the adversary gets no information
whatsoever about it.

Now, we must make sure that this intuition carries through in our setting. Our lemma statement makes
reference to our notions of security, so we must use the setup in Section 6.4. The adversary A has access to an
lr-encryption oracle. Since the scheme we are considering is SE [Func(ℓ,L)], the oracle is Eg(LR(·, ·, b)), where
the function Eg was defined in Figure 6.7, and g is a random instance of Func(ℓ,L), meaning a random function.

The adversary makes some number q of oracle queries. Let (Mi,0,Mi,1) be the i-th query, and let mi be the
number of blocks in Mi,0. (We can assume this is the same as the number of blocks in Mi,1, since otherwise the
lr-encryption oracle returns ⊥). Let Mi,c[j] be the value of the j-th ℓ-bit block of Mi,b for b ∈ {0, 1}. Let C ′

i be
the response returned by the oracle to query (Mi,0,Mi,1). It consists of a value that encodes the counter value,
together with mi blocks of ℓ bits each, Ci[1] . . . Ci[mi]. Pictorially:

M1,b = M1,b[1]M1,b[1] . . . M1,b[m1]
C1 = 〈0, C1[1] · · ·C1[m1]〉

M2,b = M2,b[1]M2,b[2] . . . M2,b[m2]
C2 = 〈m1, C2[1] · · ·C2[m2]〉

...
...

Mq,b = Mq,b[1]Mq,b[2] . . . Mq,b[mq]
Cq = 〈m1 + · · · + mq−1, Cq[1] · · ·Cq[mq]〉

What kind of distribution do the outputs received by A have? We claim that the m1 + · · · + mq values Ci[j]
(i = 1, . . . , q and j = 1, . . . , mi) are randomly and independently distributed, not only of each other, but of
the queried messages and the bit b, and moreover this is true in both worlds. Why? Here is where we use a
crucial property of the CTR mode, namely that it XORs data with the value of g on a counter. We observe
that according to the scheme

Ci[j] = g(NtSl(m1 + · · · + mi−1 + j)) ⊕
{

Mi,1[j] if we are in world 1
Mi,0[j] if we are in world 0.

Now, we can finally see that the idea we started with is really the heart of it. The values on which g is being
applied above are all distinct. So the outputs of g are all random and independent. It matters not, then, what
we XOR these outputs with; what comes back is just random.

This tells us that any given output sequence from the oracle is equally likely in both worlds. Since the adversary
determines its output bit based on this output sequence, its probability of returning 1 must be the same in both
worlds,

Pr
[

Expind-cpa-1
SE[Func(ℓ,L)](A) = 1

]

= Pr
[

Expind-cpa-0
SE[Func(ℓ,L)](A) = 1

]

.

Hence A’s IND-CPA advantage is zero.

6.7.2 Proof of Theorem 6.14

The proof of Theorem 6.14 re-uses a lot of what we did for the proof of Theorem 6.13 above. We first look at
the scheme when g is a random function, and then use the pseudorandomness of the given family F to deduce
the theorem. As before we associate to a family of functions G having domain {0, 1}ℓ and range {0, 1}L a
parameterized version of the CTR$ scheme, SE [G] = (K, E ,D). The key generation algorithm simply returns a

random instance of G, meaning picks a function g
$← G from family G at random, and views g as the key, and

the encryption and decryption algorithms are shown in Figure 6.8. Here is the main lemma.
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algorithm Eg(M)
m ← ⌈|M |/L⌉
R

$← {0, 1}ℓ

Pad ← g(R + 1)‖g(R + 2)‖ · · · ‖g(R + m)
Pad ← the first |M | bits of Pad

C ′ ← M⊕Pad

C ← R‖C ′

return C

algorithm Dg(C)
if |C| < ℓ then return ⊥
Parse C into R‖C ′ where |R| = ℓ
m ← ⌈|C ′|/L⌉
Pad ← g(R + 1)‖g(R + 2)‖ · · · ‖g(R + m)
Pad ← the first |C ′| bits of Pad

M ← C ′⊕Pad

return M

Figure 6.8: Version SE [G] = (K, E ,D) of the CTR$ scheme parameterized by a family of functions G.

Lemma 6.17 [Security of CTR$ using a random function] Let A be any IND-CPA adversary attacking
SE [Func(ℓ,L)], where the scheme is depicted in Figure 6.8. Then

Advind-cpa
SE[Func(ℓ,L)](A) ≤ 0.5 σ2

2ℓ
,

assuming A asks a number of queries whose total length is at most σ L-bit blocks.

The proof of Theorem 6.14 given this lemma is easy at this point because it is almost identical to the above
proof of Theorem 6.13, and it is the subject of Problem 6.29. We go on to prove Lemma 6.17.

Before we prove Lemma 6.17, we will analyze a certain probabilistic game. The problem we isolate here is purely
probabilistic; it has nothing to do with encryption or even cryptography.

Lemma 6.18 Let ℓ, q be positive integers, and let m1, . . . ,mq < 2ℓ also be positive integers. Suppose we
pick q integers r1, . . . , rq from [0..2ℓ − 1] uniformly and independently at random. We consider the following
m1 + · · · + mq numbers:

r1 + 1, r1 + 2, · · · , r1 + m1

r2 + 1, r2 + 2, · · · , r2 + m2

...
...

rq + 1, rq + 2, · · · , rq + mq ,

where the addition is performed modulo 2ℓ. We say that a collision occurs if some two (or more) numbers in
the above table are equal. Then

Pr [Col] ≤ (q − 1)(m1 + · · · + mq)

2ℓ
, (6.7)

where Col denotes the event that a collision occurs.

Proof of Lemma 6.18: As with many of the probabilistic settings that arise in this area, this is a question
about some kind of “balls thrown in bins” setting, related to the birthday problem studied in Appendix A.1.
Indeed a reader may find it helpful to study that appendix first.
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Think of having 2ℓ bins, numbered 0, 1, . . . , 2ℓ − 1. We have q balls, numbered 1, . . . , q. For each ball we choose
a random bin which we call ri. We choose the bins one by one, so that we first choose r1, then r2, and so
on. When we have thrown in the first ball, we have defined the first row of the above table, namely the values
r1 + 1, . . . , r1 + m1. Then we pick the assignment r2 of the bin for the second ball. This defines the second row
of the table, namely the values r2 +1, . . . , r2 +m2. A collision occurs if any value in the second row equals some
value in the first row. We continue, up to the q-th ball, each time defining a row of the table, and are finally
interested in the probability that a collision occurred somewhere in the process. To upper bound this, we want
to write this probability in such a way that we can do the analysis step by step, meaning view it in terms of
having thrown, and fixed, some number of balls, and seeing whether there is a collision when we throw in one
more ball. To this end let Coli denote the event that there is a collision somewhere in the first i rows of the
table, for i = 1, . . . , q. Let NoColi denote the event that there is no collision in the first i rows of the table, for
i = 1, . . . , q. Then by conditioning we have

Pr [Col] = Pr [Colq]

= Pr [Colq−1] + Pr [Colq | NoColq−1] · Pr [NoColq−1]

≤ Pr [Colq−1] + Pr [Colq | NoColq−1]

≤
...

≤ Pr [Col1] +

q
∑

i=2

Pr [Coli | NoColi−1]

=

q
∑

i=2

Pr [Coli | NoColi−1] .

Thus we need to upper bound the chance of a collision upon throwing the i-th ball, given that there was no
collision created by the first i − 1 balls. Then we can sum up the quantities obtained and obtain our bound.

We claim that for any i = 2, . . . , q we have

Pr [Coli | NoColi−1] ≤ (i − 1)mi + mi−1 + · · · + m1

2ℓ
. (6.8)

Let us first see why this proves the lemma and then return to justify it. From the above and Equation (6.8) we
have

Pr [Col] ≤
q

∑

i=2

Pr [Coli | NoColi−1]

≤
q

∑

i=2

(i − 1)mi + mi−1 + · · · + m1

2ℓ

=
(q − 1)(m1 + · · · + mq)

2ℓ
.

How did we do the last sum? The term mi occurs with weight i− 1 in the i-th term of the sum, and then with
weight 1 in the j-th term of the sum for j = i + 1, . . . , q. So its total weight is (i − 1) + (q − i) = q − 1.

It remains to prove Equation (6.8). To get some intuition about it, begin with the cases i = 1, 2. When we
throw in the first ball, the chance of a collision is zero, since there is no previous row with which to collide,
so that is simple. When we throw in the second, what is the chance of a collision? The question is, what is
the probability that one of the numbers r2 + 1, . . . , r2 + m2 defined by the second ball is equal to one of the
numbers r1 + 1, . . . , r1 + m1 already in the table? View r1 as fixed. Observe that a collision occurs if and only
if r1 − m2 + 1 ≤ r2 ≤ r1 + m1 − 1. So there are (r1 + m1 − 1) − (r1 − m2 + 1) + 1 = m1 + m2 − 1 choices of r2

that could yield a collision. This means that Pr [Col2 | NoCol1] ≤ (m2 + m1 − 1)/2ℓ.
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We need to extend this argument as we throw in more balls. So now suppose i − 1 balls have been thrown in,
where 2 ≤ i ≤ q, and suppose there is no collision in the first i− 1 rows of the table. We throw in the i-th ball,
and want to know what is the probability that a collision occurs. We are viewing the first i − 1 rows of the
table as fixed, so the question is just what is the probability that one of the numbers defined by ri equals one
of the numbers in the first i− 1 rows of the table. A little thought shows that the worst case (meaning the case
where the probability is the largest) is when the existing i − 1 rows are well spread-out. We can upper bound
the collision probability by reasoning just as above, except that there are i−1 different intervals to worry about
rather than just one. The i-th row can intersect with the first row, or the second row, or the third, and so on,
up to the (i − 1)-th row. So we get

Pr [Coli | NoColi−1] ≤ (mi + m1 − 1) + (mi + m2 − 1) + · · · + (mi + mi−1 − 1)

2ℓ

=
(i − 1)mi + mi−1 + · · · + m1 − (i − 1)

2ℓ
,

and Equation (6.8) follows by just dropping the negative term in the above.

Let us now extend the proof of Lemma 6.16 to prove Lemma 6.17.

Proof of Lemma 6.17: Recall that the idea of the proof of Lemma 6.16 was that when g is a random function,
its value on successive counter values yields a one-time pad. This holds whenever g is applied on some set of
distinct values. In the counter case, the inputs to g are always distinct. In the randomized case they may not be
distinct. The approach is to consider the event that they are distinct, and say that in that case the adversary
has no advantage; and on the other hand, while it may have a large advantage in the other case, that case does
not happen often. We now flush all this out in more detail.

The adversary makes some number q of oracle queries. Let (Mi,0,Mi,1) be the i-th query, and let mi be the
number of blocks in Mi,0.(We can assume this is the same as the number of blocks in Mi,1, since otherwise the
lr-encryption oracle returns ⊥). Let Mi,b[j] be the value of the j-th L-bit block of Mi,b for b ∈ {0, 1}. Let C ′

i be
the response returned by the oracle to query (Mi,0,Mi,1). It consists of the encoding of a number ri ∈ [0..2ℓ −1]
and a mi-block message Ci = Ci[1] · · ·Ci[mi]. Pictorially:

M1,b = M1,b[1]M1,b[1] . . . M1,b[m1]
C1 = 〈r1, C1[1] · · ·C1[m1]〉

M2,b = M2,b[1]M2,b[2] · · ·M2,b[m2]
C2 = 〈r2, C2[1] . . . C2[m2]〉

...
...

Mq,b = Mq,b[1]Mq,b[2] · · ·Mq,b[mq]
Cq = 〈rq, Cq[1] . . . Cq[mq]〉

Let NoCol be the event that the following m1 + · · · + mq values are all distinct:

r1 + 1, r1 + 2, · · · , r1 + m1

r2 + 1, r2 + 2, · · · , r2 + m2

...
...

rq + 1, rq + 2, · · · , rq + mq

Let Col be the complement of the event NoCol, meaning the event that the above table contains at least two
values that are the same. It is useful for the analysis to introduce the following shorthand:

Pr0 [·] = The probability of event “·” in world 0

Pr0 [·] = The probability of event “·” in world 1 .
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We will use the following three claims, which are proved later. The first claim says that the probability of a
collision in the above table does not depend on which world we are in.

Claim 1: Pr1 [Col] = Pr0 [Col]. ✷

The second claim says that A has zero advantage in winning the left-or-right game in the case that no collisions
occur in the table. Namely, its probability of outputting one is identical in these two worlds under the assumption
that no collisions have occurred in the values in the table.

Claim 2: Pr0 [A = 1 | NoCol] = Pr1 [A = 1 | NoCol]. ✷

We can say nothing about the advantage of A if a collision does occur in the table. It might be big. However,
it will suffice to know that the probability of a collision is small. Since we already know that this probability is
the same in both worlds (Claim 1) we bound it just in world 0:

Claim 3: Pr0 [Col] ≤ σ2

2ℓ
. ✷

Let us see how these put together complete the proof of the lemma, and then go back and prove them.

Proof of Lemma given Claims: It is a simple conditioning argument:

Advind-cpa
SE[Func(ℓ,L)](A)

= Pr1 [A = 1] − Pr0 [A = 1]

= Pr1 [A = 1 | Col] · Pr1 [Col] + Pr1 [A = 1 | NoCol] · Pr1 [NoCol]

− Pr0 [A = 1 | Col] · Pr0 [Col] − Pr0 [A = 1 | NoCol] · Pr0 [NoCol]

= (Pr1 [A = 1 | Col] − Pr0 [A = 1 | Col]) · Pr0 [Col]

≤ Pr0 [Col] .

The second-last step used Claims 1 and 2. In the last step we simply upper bounded the parenthesized expression
by 1. Now apply Claim 3, and we are done. ✷

It remains to prove the three claims.

Proof of Claim 1: The event NoCol depends only on the random values r1, . . . , rq chosen by the encryption
algorithm Eg(·). These choices, however, are made in exactly the same way in both worlds. The difference in
the two worlds is what message is encrypted, not how the random values are chosen. ✷

Proof of Claim 2: Given the event NoCol, we have that, in either game, the function g is evaluated at a new point
each time it is invoked. Thus the output is randomly and uniformly distributed over {0, 1}L, independently
of anything else. That means the reasoning from the counter-based scheme as given in Lemma 6.16 applies.
Namely, we observe that according to the scheme

Ci[j] = g(ri + j) ⊕
{

Mi,1[j] if we are in world 1
Mi,0[j] if we are in world 0.

Thus each cipher block is a message block XORed with a random value. A consequence of this is that each
cipher block has a distribution that is independent of any previous cipher blocks and of the messages. ✷

Proof of Claim 3: This follows from Lemma 6.18. We simply note that m1 + · · · + mq = σ. ✷

This concludes the proof.
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algorithm Eg(M)
if (|M | mod n 6= 0 or |M | = 0) then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]

C[0] ← IV
$← {0, 1}n

for i ← 1 to m do
C[i] ← g(C[i − 1]⊕M [i])

C ← C[1] · · ·C[m]
return 〈IV, C〉

algorithm Dg(〈IV, C〉)
return ⊥

Figure 6.9: Version SE [G] = (K, E ,D) of the CBC$ scheme parameterized by a family of functions G.

6.8 Security of CBC with a random IV

In this section we show that CBC encryption using a random IV is IND-CPA secure as long as E is a block
cipher that is a secure PRF or PRP. Namely we show:

Theorem 6.19 [Security of CBC$ mode] Let E: K × {0, 1}n → {0, 1}n be a block cipher and let SE =
(K, E ,D) be the corresponding CBC$ symmetric encryption scheme as described in Scheme 6.6. Let A be an
adversary (for attacking the IND-CPA security of SE) that runs in time at most t and asks at most q queries,
these totaling at most σ n-bit blocks. Then there exists an adversary B (attacking the PRF security of E) such
that

Advind-cpa
SE (A) ≤ Advprf

E (B) +
σ2

2n+1
.

Furthermore B runs in time at most t′ = t + O(q + nσ) and asks at most q′ = σ oracle queries.

To prove this theorem, we proceed as before to introduce a scheme that takes as a parameter any given family
of functions G having domain and range {0, 1}n. The cases of interest are G = E and G = Func(n,n). The
algorithms of the scheme are depicted in Figure 6.9. Note that the decryption algorithm simply returns ⊥, so
that this scheme does not have the correct decryption property. But one can still discuss its security, and it
is important for us to do so. Now, the main result is the information-theoretic one in which the underlying
function family is Func(n,n).

Lemma 6.20 [Security of CBC$ using a random function] Let A be any IND-CPA adversary attacking
SE [Func(n,n)], where the scheme is depicted in Figure 6.9. Then

Advind-cpa
CBC$[Func(n,n)](A) ≤ σ2

2n+1
,

assuming A asks a number of queries whose total length is at most σ n-bit blocks.

Given this lemma, the proof of Theorem 6.19 follows in the usual way, so our main task is to prove the lemma.
This is postponed for now.

6.9 Indistinguishability under chosen-ciphertext attack

So far we have considered privacy under chosen-plaintext attack. Sometimes we want to consider privacy when
the adversary is capable of mounting a stronger type of attack, namely a chosen-ciphertext attack. In this type
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of attack, an adversary has access to a decryption oracle. It can feed this oracle a ciphertext and get back the
corresponding plaintext.

How might such a situation arise? One situation one could imagine is that an adversary at some point gains
temporary access to the equipment performing decryption. It can feed the equipment ciphertexts and see what
plaintexts emerge. (We assume it cannot directly extract the key from the equipment, however.)

If an adversary has access to a decryption oracle, security at first seems moot, since after all it can decrypt
anything it wants. To create a meaningful notion of security, we put a restriction on the use of the decryption
oracle. To see what this is, let us look closer at the formalization. As in the case of chosen-plaintext attacks,
we consider two worlds:

World 0: The adversary is provided the oracle EK(LR(·, ·, 0)) as well as the oracle DK(·).

World 1: The adversary is provided the oracle EK(LR(·, ·, 1)) as well as the oracle DK(·).

The adversary’s goal is the same as in the case of chosen-plaintext attacks: it wants to figure out which world
it is in. There is one easy way to do this. Namely, query the lr-encryption oracle on two distinct, equal length
messages M0,M1 to get back a ciphertext C, and now call the decryption oracle on C. If the message returned
by the decryption oracle is M0 then the adversary is in world 0, and if the message returned by the decryption
oracle is M1 then the adversary is in world 1. The restriction we impose is simply that this call to the decryption
oracle is not allowed. More generally, call a query C to the decryption oracle illegitimate if C was previously
returned by the lr-encryption oracle; otherwise a query is legitimate. We insist that only legitimate queries are
allowed. In the formalization below, the experiment simply returns 0 if the adversary makes an illegitimate
query. (We clarify that a query C is legitimate if C is returned by the lr-encryption oracle after C was queried
to the decryption oracle.)

This restriction still leaves the adversary with a lot of power. Typically, a successful chosen-ciphertext attack
proceeds by taking a ciphertext C returned by the lr-encryption oracle, modifying it into a related ciphertext C ′,
and querying the decryption oracle with C ′. The attacker seeks to create C ′ in such a way that its decryption
tells the attacker what the underlying message M was. We will see this illustrated in Section 6.10 below.

The model we are considering here might seem quite artificial. If an adversary has access to a decryption oracle,
how can we prevent it from calling the decryption oracle on certain messages? The restriction might arise due
to the adversary’s having access to the decryption equipment for a limited period of time. We imagine that
after it has lost access to the decryption equipment, it sees some ciphertexts, and we are capturing the security
of these ciphertexts in the face of previous access to the decryption oracle. Further motivation for the model
will emerge when we see how encryption schemes are used in protocols. We will see that when an encryption
scheme is used in many authenticated key-exchange protocols the adversary effectively has the ability to mount
chosen-ciphertext attacks of the type we are discussing. For now let us just provide the definition and exercise
it.

Definition 6.21 Let SE = (K, E ,D) be a symmetric encryption scheme, let A be an algorithm that has access
to two oracles, and let b be a bit. We consider the following experiment:

Experiment Expind-cca-b
SE (A)

K
$← K

b
$← AEK(LR(·,·,b)) , DK(·)

If A queried DK(·) on a ciphertext previously returned by EK(LR(·, ·, b))
then return 0
else return b

The IND-CCA advantage of A is defined as

Advind-cca
SE (A) = Pr

[

Expind-cca-1
SE (A) = 1

]

− Pr
[

Expind-cca-0
SE (A) = 1

]

.
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The conventions with regard to resource measures are the same as those used in the case of chosen-plaintext
attacks. In particular, the length of a query M0,M1 to the lr-encryption oracle is defined as the length of M0.

We consider an encryption scheme to be “secure against chosen-ciphertext attack” if a “reasonable” adversary
cannot obtain “significant” advantage in distinguishing the cases b = 0 and b = 1 given access to the oracles,
where reasonable reflects its resource usage. The technical notion is called indistinguishability under chosen-
ciphertext attack, denoted IND-CCA.

6.10 Example chosen-ciphertext attacks

Chosen-ciphertext attacks are powerful enough to break all the standard modes of operation, even those like
CTR and CBC that are secure against chosen-plaintext attack. The one-time pad scheme is also vulnerable to
a chosen-ciphertext attack: our notion of perfect security only took into account chosen-plaintext attacks. Let
us now illustrate a few chosen-ciphertext attacks.

6.10.1 Attacks on the CTR schemes

Let F : K×{0, 1}n → {0, 1}ℓ be a family of functions and let SE = (K, E ,D) be the associated CTR$ symmetric
encryption scheme as described in Scheme 6.6. The weakness of the scheme that makes it susceptible to a
chosen-ciphertext attack is the following. Say 〈r, C〉 is a ciphertext of some ℓ-bit message M , and we flip bit i
of C, resulting in a new ciphertext 〈r, C ′〉. Let M ′ be the message obtained by decrypting the new ciphertext.
Then M ′ equals M with the i-th bit flipped. (You should check that you understand why.) Thus, by making a
decryption oracle query of 〈r, C ′〉 one can learn M ′ and thus M . In the following, we show how this idea can
be applied to break the scheme in our model by figuring out in which world an adversary has been placed.

Proposition 6.22 Let F : K × {0, 1}n → {0, 1}ℓ be a family of functions and let SE = (K, E ,D) be the
corresponding CTR$ symmetric encryption scheme as described in Scheme 6.6. Then

Advind-cca
SE (t, 1, ℓ, 1, n + ℓ) = 1

for t = O(n + ℓ) plus the time for one application of F .

The advantage of this adversary is 1 even though it uses hardly any resources: just one query to each oracle.
That is clearly an indication that the scheme is insecure.

Proof of Proposition 6.22: We will present an adversary algorithm A, having time-complexity t, making
1 query to its lr-encryption oracle, this query being of length ℓ, making 1 query to its decryption oracle, this
query being of length n + ℓ, and having

Advind-cca
SE (A) = 1 .

The Proposition follows.

Remember that the lr-encryption oracle EK(LR(·, ·, b)) takes input a pair of messages, and returns an encryption
of either the left or the right message in the pair, depending on the value of b. The goal of A is to determine
the value of b. Our adversary works like this:

Adversary AEK(LR(·,·,b)) , DK(·)

M0 ← 0ℓ ; M1 ← 1ℓ

〈r, C〉 ← EK(LR(M0, M1, b))
C ′ ← C⊕1ℓ

M ← DK(〈r, C ′〉)
If M = M0 then return 1 else return 0
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The adversary’s single lr-encryption oracle query is the pair of distinct messages M0,M1, each one block long.
It is returned a ciphertext 〈r, C〉. It flips the bits of C to get C ′ and then feeds the ciphertext 〈r, C〉 to the
decryption oracle. It bets on world 1 if it gets back M0, and otherwise on world 0. Notice that 〈r, C ′〉 6= 〈r, C〉,
so the decryption query is legitimate. Now, we claim that

Pr
[

Expind-cca-1
SE (A) = 1

]

= 1

Pr
[

Expind-cca-0
SE (A) = 1

]

= 0 .

Hence Advind-cpa
SE (A) = 1−0 = 1. And A achieved this advantage by making just one lr-encryption oracle query,

whose length, which as per our conventions is just the length of M0, is ℓ bits, and just one decryption oracle query,
whose length is n + ℓ bits (assuming an encoding of 〈r,X〉 as n + |X|-bits). So Advpr-cpa

SE (t, 1, ℓ, 1, n + ℓ) = 1.

Why are the two equations claimed above true? You have to return to the definitions of the quantities in
question, as well as the description of the scheme itself, and walk it through. In world 1, meaning b = 1, let
〈r, C〉 denote the ciphertext returned by the lr-encryption oracle. Then

C = FK(r + 1)⊕M1 = FK(r + 1)⊕1ℓ .

Now notice that

M = DK(〈r, C ′〉)

= FK(r + 1)⊕C ′

= FK(r + 1)⊕C⊕1ℓ

= FK(r + 1)⊕(FK(r + 1)⊕1ℓ)⊕1ℓ

= 0ℓ

= M0 .

Thus, the decryption oracle will return M0, and A will return 1. In world 0, meaning b = 0, let 〈r, C[1]〉 denote
the ciphertext returned by the lr-encryption oracle. Then

C = FK(r + 1)⊕M0 = FK(r + 1)⊕0ℓ .

Now notice that

M = DK(〈r, C ′〉)

= FK(r + 1)⊕C ′

= FK(r + 1)⊕C⊕1ℓ

= FK(r + 1)⊕(FK(r + 1)⊕0ℓ)⊕1ℓ

= 1ℓ

= M1 .

Thus, the decryption oracle will return M1, and A will return 0, meaning will return 1 with probability zero.

An attack on CTRC (cf. Scheme 6.7) is similar, and is left to the reader.

6.10.2 Attack on CBC$

Let E: K × {0, 1}n → {0, 1}n be a block cipher and let SE = (K, E ,D) be the associated CBC$ symmetric
encryption scheme as described in Scheme 6.4. The weakness of the scheme that makes it susceptible to a
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chosen-ciphertext attack is the following. Say 〈IV, C[1]〉 is a ciphertext of some n-bit message M , and we flip
bit i of the IV, resulting in a new ciphertext 〈IV′, C[1]〉. Let M ′ be the message obtained by decrypting the
new ciphertext. Then M ′ equals M with the i-th bit flipped. (You should check that you understand why by
looking at Scheme 6.4.) Thus, by making a decryption oracle query of 〈IV′, C[1]〉 one can learn M ′ and thus
M . In the following, we show how this idea can be applied to break the scheme in our model by figuring out in
which world an adversary has been placed.

Proposition 6.23 Let E: K×{0, 1}n → {0, 1}n be a block cipher and let SE = (K, E ,D) be the corresponding
CBC$ encryption scheme as described in Scheme 6.4. Then

Advind-cca
SE (t, 1, n, 1, 2n) = 1

for t = O(n) plus the time for one application of F .

The advantage of this adversary is 1 even though it uses hardly any resources: just one query to each oracle.
That is clearly an indication that the scheme is insecure.

Proof of Proposition 6.23: We will present an adversary A, having time-complexity t, making 1 query to
its lr-encryption oracle, this query being of length n, making 1 query to its decryption oracle, this query being
of length 2n, and having

Advind-cca
SE (A) = 1 .

The proposition follows.

Remember that the lr-encryption oracle EK(LR(·, ·, b)) takes input a pair of messages, and returns an encryption
of either the left or the right message in the pair, depending on the value of b. The goal of A is to determine
the value of b. Our adversary works like this:

Adversary AEK(LR(·,·,b)) , DK(·)

M0 ← 0n ; M1 ← 1n

〈IV, C[1]〉 ← EK(LR(M0,M1, b))
IV′ ← IV⊕1n

M ← DK(〈IV′, C[1]〉)
If M = M0 then return 1 else return 0

The adversary’s single lr-encryption oracle query is the pair of distinct messages M0,M1, each one block long. It
is returned a ciphertext 〈IV, C[1]〉. It flips the bits of the IV to get a new IV, IV′, and then feeds the ciphertext
〈IV′, C[1]〉 to the decryption oracle. It bets on world 1 if it gets back M0, and otherwise on world 0. It is
important that 〈IV′, C[1]〉 6= 〈IV, C[1]〉 so the decryption oracle query is legitimate. Now, we claim that

Pr
[

Expind-cca-1
SE (A) = 1

]

= 1

Pr
[

Expind-cca-0
SE (A) = 1

]

= 0 .

Hence Advind-cca
SE (A) = 1 − 0 = 1. And A achieved this advantage by making just one lr-encryption oracle

query, whose length, which as per our conventions is just the length of M0, is n bits, and just one decryption
oracle query, whose length is 2n bits. So Advind-cca

SE (t, 1, n, 1, 2n) = 1.

Why are the two equations claimed above true? You have to return to the definitions of the quantities in
question, as well as the description of the scheme itself, and walk it through. In world 1, meaning b = 1, the
lr-encryption oracle returns 〈IV, C[1]〉 with

C[1] = EK(IV⊕M1) = EK(IV⊕1n) .
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Now notice that

M = DK(〈IV′, C[1]〉)

= E−1
K (C[1])⊕IV′

= E−1
K (EK(IV⊕1n))⊕IV′

= (IV⊕1n)⊕IV′[0]

= (IV⊕1n)⊕(IV⊕1n)

= 0n

= M0 .

Thus, the decryption oracle will return M0, and A will return 1. In world 0, meaning b = 0, the lr-encryption
oracle returns 〈IV, C[1]〉 with

C[1] = EK(IV⊕M0) = EK(IV⊕0l) .

Now notice that

M = DK(〈IV′, C[1]〉)

= E−1
K (C[1])⊕IV′

= E−1
K (EK(IV⊕0n))⊕IV′

= (IV⊕0n)⊕IV′[0]

= (IV⊕0n)⊕(IV⊕1n)

= 1n

= M1 .

Thus, the decryption oracle will return M1, and A will return 0, meaning will return 1 with probability zero.

6.11 Other methods for symmetric encryption

6.11.1 Generic encryption with pseudorandom functions

There is a general way to encrypt with pseudorandom functions. Suppose you want to encrypt m bit messages.
(Think of m as large.) Suppose we have a pseudorandom function family F in which each key K specifies a
function FK mapping l bits to m bits, for some fixed but quite large value l. Then we can encrypt M via
EK(M) = (r, FK(r)⊕M) for random r. We decrypt (r, C) by computing M = FK(r)⊕C. This is the method of
[97].

Theorem 6.24 [97] Suppose F is a pseudorandom function family with output length m. Then the scheme
(E ,D) define above is a secure private key encryption scheme for m-bit messages.

The difference between this and the CBC and XOR methods is that in the latter, we only needed a PRF
mapping l bits to l bits for some fixed l independent of the message length. One way to get such a PRF is to
use DES or some other block cipher. Thus the CBC and XOR methods result in efficient encryption. To use
the general scheme we have just defined we need to constructing PRFs that map l bits to m bits for large m.

There are several approaches to constructing “large” PRFs, depending on the efficiency one wants and what
assumptions one wants to make. We have seen in Chapter 5 that pseudorandom function families can be built
given one-way functions. Thus we could go this way, but it is quite inefficient. Alternatively, we could try to
build these length extending PRFs out of given fixed length PRFs.
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6.11.2 Encryption with pseudorandom bit generators

A pseudorandom bit generator is a deterministic function G which takes a k-bit seed and produces a p(k) > k
bit sequence of bits that looks pseudorandom. These object were defined and studied in Chapter 3. Recall the
property they have is that no efficient algorithm can distinguish between a random p(k) bit string and the string
G(K) with random K.

Recall the one-time pad encryption scheme: we just XOR the message bits with the pad bits. The problem is
we run out of pad bits very soon. Pseudorandom bit generators provide probably the most natural way to get
around this. If G is a pseudorandom bit generator and K is the k-bit shared key, the parties implicitly share
the long sequence G(K). Now, XOR message bits with the bits of G(K). Never use an output bit of G(K)
more than once. Since we can stretch to any polynomial length, we have enough bits to encrypt.

More precisely, the parties maintain a counter N , initially 0. Let Gi(K) denote the i-th bit of the output of
G(K). Let M be the message to encrypt. Let Mi be its i-th bit, and let n be its length. The sender computes
Ci = GN+i(K)⊕Mi for i = 1, . . . , n and lets C = C1 . . . Cn be the ciphertext. This is transmitted to the
receiver. Now the parties update the counter via N ← N + n. The total number of bits that can be encrypted
is the number p(k) of bits output by the generator. One can show, using the definition of PRBGs, that this
works:

Theorem 6.25 If G is a secure pseudorandom bit generator then the above is a secure encryption scheme.

One seeming disadvantage of using a PRBG is that the parties must maintain a common, synchronized counter,
since both need to know where they are in the sequence G(K). (Note that the schemes we have discussed above
avoid this. Although some of the schemes above may optionally use a counter instead of a random value, this
counter is not a synchronized one: the sender maintains a counter, but the receiver does not, and doesn’t care
that the sender thinks of counters.) To get around this, we might have the sender send the current counter
value N (in the clear) with each message. If authentication is being used, the value N should be authenticated.

The more major disadvantage is that the pseudorandom sequence G(K) may not have random access. To
produce the i-th bit one may have to start from the beginning and produce all bits up to the i-th one. (This
means the time to encrypt M depends on the number and length of message encrypted in the past, not a
desirable feature.) Alternatively the sequence G(K) may be pre-computed and stored, but this uses a lot of
storage. Whether this drawback exists or not depends of course on the choice of PRBG G.

So how do we get pseudorandom bit generators? We saw some number theoretic constructions in Chapter 3.
These are less efficient than block cipher based methods, but are based on different kinds of assumptions which
might be preferable. More importantly, though, these constructions have the drawback that random access is
not possible. Alternatively, one could build pseudorandom bit generators out of finite PRFs. This can be done
so that random access is possible. However the resulting encryption scheme ends up being not too different
from the XOR scheme with a counter so it isn’t clear it is worth a separate discussion.

6.11.3 Encryption with one-way functions

We saw in Chapter 3 that pseudorandom bit generators exist if one-way functions exist [113]. It is also known
that given any secure private key encryption scheme one can construct a one-way function [114]. Thus we have
the following.

Theorem 6.26 There exists a secure private key encryption scheme if and only if there exists a one-way
function.

We will see later that the existence of secure public key encryption schemes requires different kinds of assump-
tions, namely the existence of primitives with “trapdoors.”
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6.12 Historical notes

The pioneering work on the theory of encryption is that of Goldwasser and Micali [102], with refinements by
[148, 96]. This body of work is however in the asymmetric (i.e., public key) setting, and uses the asymptotic
framework of polynomial-time adversaries and negligible success probabilities. The treatment of symmetric
encryption we are using is from [20]. In particular Definition 6.1 and the concrete security framework are from
[20]. The analysis of the CTR and CBC mode encryption schemes, as given in Theorems 6.13, 6.14 and 6.19 is
also from [20]. The approach taken to the analysis of CBC mode is from [23].

6.13 Problems

Problem 6.27 Formalize a notion of security against key-recovery for symmetric encryption schemes, and
prove an analog of Proposition 6.12.

Problem 6.28 The CBC-Chain mode of operation is a CBC variant in which the IV that is used for the very
first message to be encrypted is random, while the IV used for each subsequent encrypted message is the last
block of ciphertext that was generated. The scheme is probabilistic and stateful. Show that CBC-Chain is
insecure by giving a simple and efficient adversary that breaks it in the IND-CPA sense.

Problem 6.29 Using the proof of Theorem 6.13 as a template, prove Theorem 6.14 assuming Lemma 6.17.

Problem 6.30 Devise a secure extension to CBC$ mode that allows messages of any bit length to be encrypted.
Clearly state your encryption and decryption algorithm. Your algorithm should be simple, should “look like”
CBC mode as much as possible, and it should coincide with CBC mode when the message being encrypted is a
multiple of the blocklength. How would you prove your algorithm secure?
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Public-key encryption

The idea of a public-key cryptosystem (PKC) was proposed by Diffie and Hellman in their pioneering paper [72]
in 1976. Their revolutionary idea was to enable secure message exchange between sender and receiver without
ever having to meet in advance to agree on a common secret key. They proposed the concept of a trapdoor
function and how it can be used to achieve a public-key cryptosystem. Shortly there after Rivest, Shamir and
Adelman proposed the first candidate trapdoor function, the RSA. The story of modern cryptography followed.

The setup for a public-key cryptosystem is of a network of users u1 · · ·un rather than an single pair of users.
Each user u in the network has a pair of keys < Pu, Su > associated with him, the public key Pu which is
published under the users name in a “public directory” accessible for everyone to read, and the private-key Su

which is known only to u. The pairs of keys are generated by running a key-generation algorithm. To send
a secret message m to u everyone in the network uses the same exact method, which involves looking up Pu,
computing E(Pu,m) where E is a public encryption algorithm, and sending the resulting ciphertext c to u.
Upon receiving ciphertext c, user u can decrypt by looking up his private key Su and computing D(Su, c) where
D is a public decryption algorithm. Clearly, for this to work we need that D(Su, E(Pu, m)) = m.

A particular PKC is thus defined by a triplet of public algorithms (G,E, D), the key generation, encryption,
and decryption algorithms.

7.1 Definition of Public-Key Encryption

We now formally define a public-key encryption scheme. For now the definition will say nothing about we mean
by “security” of a scheme (which is the subject of much discussion in subsequent sections).

Definition 7.1 A public-key encryption scheme is a triple, (G,E, D), of probabilistic polynomial-time algo-
rithms satisfying the following conditions

(1) key generation algorithm : a probabilistic expected polynomial-time algorithm G, which, on input 1k (the
security parameter) produces a pair (e, d) where e is called the public key , and d is the corresponding
private key. (Notation: (e, d) ∈ G(1k)). We will also refer to the pair (e, d) a pair of encryption/decryption
keys.

(2) An encryption algorithm: a probabilistic polynomial time algorithm E which takes as input a security
parameter 1k, a public-key e from the range of G(1k) and string m ∈ {0, 1}k called the message, and
produces as output string c ∈ {0, 1}∗ called the ciphertext. (We use the notation c ∈ E(1k, e, m) to denote
c being an encryption of message m using key e with security parameter k. When clear, we use shorthand
c ∈ Ee(m), or c ∈ E(m). )
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(3) A decryption algorithm: a probabilistic polynomial time algorithm D that takes as inputs a security
parameter 1k, a private-key d from the range of G(1k), and a ciphertext c from the range of E(1k, e, m),
and produces as output a string m′ ∈ {0, 1}∗, such that for every pair (e, d) in the range of G(1k), for every
m, for every c ∈ D(1k, e, m), the prob(D(1k, d, c) 6= m′) is negligible.

(4) Furthermore, this system is “secure” (see Definition 7.3).

How to use this definition. To use a public-key encryption scheme (G,E, D) with security parameter 1k,
user A runs G(1k) to obtain a pair (e, d) of encryption/decryption keys. User A then ”publishes” e in a public
file, and keeps private d. If anyone wants to send A a message, then need to lookup e and compute E(1k, e, m).
Upon receipt of c ∈ E(1k, e,m), A computes message m = D(1k, d, c).

Comments on the Definitions

Comment 0: Note that essentially there is no difference between the definition of a private-key encryption
scheme and the definition of a public-key encryption scheme at this point. We could have defined a private key
encryption scheme to have one key e for encryption and a different key d for decryption. The difference between
the two definitions comes up in the security definition. In a public-key encryption scheme the adversary or
”breaking algorithm” is given e (the public key) as an additional input; whereas in private-key scheme e is not
given to the adversary (thus without loss of generality one may assume that e = d).

Comment 1: At this stage, encryption using a key of length k is defined only for messages of length k;
generalization is postponed to Convention 7.1.

Comment 2: Note that as algorithm G is polynomial time, the length of its output (e, d) (or e in the private-
key encryption case) is bounded by a polynomial in k. On the other hand, since k also serves as the “security
parameter”, k must be polynomial in |d| (or |e| in the private-key encryption case) in which case “polynomial
in k” is equivalent to “polynomial in |d|”.

Comment 3: Condition (3) in Definition 7.7 and 7.1 may be relaxed so that inequality may occur with
negligible probability. For simplicity, we chose to adopt here the more conservative requirement.

Comment 4: We have allowed the encryption algorithm in both of the above definitions to be probabilistic.
Namely, there can be many cyphertexts corresponding to the same message. In the simple (informal) example
of a public-key encryption scheme based on a trapdoor function outlined in the introduction, every message has
a unique corresponding ciphertext. That is too restrictive as, for example, if E is deterministic, the same inputs
would always produce the same outputs, an undesirable characteristic.

Comment 5: We allowed D to be a probabilistic algorithms. This may conceivably allow the consideration
of encryption schemes which may offer higher security ([50]). Accordingly, we may relax the requirement that
∀m, D(E(m)) = m to hold only with high probability.

Conventions Regarding Definitions

Messages of length not equal to k (the length of the encryption key) are encrypted by breaking them into blocks
of length k and possibly padding the last block. We extend the notation so that

Ee(α1 · · ·αlαl+1) = Ee(α1) · · ·Ee(αl) · Ee(αl+1p)

where |α1| = · · · = |αl| = k, |αl+1|≤k, and p is some standard padding of length k − |αl+1|.
The above convention may be interpreted in two ways. First, it waves the extremely restricting convention by
which the encryption scheme can be used only to encrypt messages of length equal to the length of the key.
Second, it allows to reduce the security of encrypting many messages using the same key to the security of
encrypting a single message.
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The next convention regarding encryption schemes introduces a breach of security: namely, the length of the
cleartext is always revealed by encryption schemes which follow this convention. However, as we show in a latter
section some information about the length of the cleartext must be leaked by any encryption scheme.

The encryption algorithm maps messages of the same length to cryptograms of the same length.

7.2 Simple Examples of PKC: The Trapdoor Function Model

A collection of trapdoor functions, discussed at length in the chapter on one-way functions and trapdoor
functions, has been defined as F = {fi : Di → Di}i∈I where Di ⊆ {0, 1}|i|, and I is a set of indices. Recall that
∀i, fi was easy to compute, but hard to invert; and ∀i, there existed ti such that given ti and fi(x), fi(x) could
be inverted in polynomial time.

Diffie and Hellman suggested using the supposed existence of trapdoor functions to implement Public Key
Cryptosystems as follows.

(1) The generator G on security parameter 1k outputs pairs (f, tf ) where f is a trapdoor function and tf its
associated trapdoor information.

(2) For every message m ∈ M , E(f,m) = f(m).

(3) Given c ∈ E(f, m) and tf , D(tf , c) = f−1(c) = f−1(f(m)) = m.

7.2.1 Problems with the Trapdoor Function Model

There are several immediate problems which come up in using the trapdoor function model for public key
encryption.

We summarize briefly the main problems which will be elaborated on in the next few sections.

(1) Special Message Spaces. The fact that f is a trapdoor function doesn’t imply that inverting f(x) when x
is special is hard. Namely, suppose that the set of messages that we would like to send is drawn from a
highly structured message space such as the English language, or more simply M = {0, 1}, it may be easy
to invert f(m). In fact, it is always easy to distinguish between f(0) and f(1)).

(2) Partial Information. The fact that f is a one-way or trapdoor function doesn’t necessarily imply that
f(x) hide all information about x. Even a bit of leakage many be too much for some applications. For
example, for candidate one-way function f(p, g, x) = gx mod p where p is prime and g is a generator, the
least significant bit of x is always easily computable from f(x). For RSA function f(n, l, x) = xl mod n, the
Jacobi symbol Jn(x) = Jn(xl mod n). Namely, the Jacobi symbol of x is easy to compute from f(n, l, x) –
this was observed by Lipton[135] who used this fast to crack a protocol for Mental poker by Shamir Rivest
and Adleman[191]. See below. Moreover, In fact, for any one-way function f , information such as “the
parity of f(m)” about m is always easy to compute from f(m). See below.

(3) Relationship between Encrypted Messages Clearly, we may be sending messages which are related to each
other in the course of a communication. Some examples are: sending the same secret message to several
recipients, or sending the same message (or slight variants) many times. It is thus desirable and some-
times essential that such dependencies remain secret. In the trapdoor function model, it is trivial to see
that sending the same message twice is always detectable. More serious problems were noted by several
researchers, most notably by H̊astad who shows [110] that if RSA with an exponent l is used, and the same
message (or known linear combinations of the same message) is send to l recipients, then the message can
be computed by an adversary.

7.2.2 Problems with Deterministic Encryption in General

The above problems are actually shared by any public-key cryptosystem in which the encryption algorithm is
deterministic.
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It is obvious for problems 1 and 3 above. It is easy to show also for problem 3 as follows. Let E is any deter-
ministic encryption algorithm, we can extract partial information by using something similar to the following
predicate:

P (x) =

{
1 if E(x) even
0 if E(x) odd

}

It is clear that we can easily compute this predicate since all we have to do is take the low bit of E(x). Unless
E(x) is always even or always odd for all the x’s in the message space, we have obtained partial information
about x. If E(x) is always even or odd, the low bit of E(x) contains no information. But, some other bit of E(x)
must contain some information otherwise the message space is composed of only one message in which case we
have total information. Then, simply use that bit instead of the lowest bit and we have a partial information
obtaining predicate.

7.2.3 The RSA Cryptosystem

In 1977 Shamir, Rivest and Adelman proposed the first implementation of trapdoor function, the RSA function,
[176]. We refer the reader to chapter 2, in particular sections 2.2.5 and Section 2.17 for a thorough treatment
of the RSA trapdoor function.

Here, let us examine the use of the RSA trapdoor function for the purpose of encryption in the straight forward
manner proposed by Diffie and Hellman. We will show that it will not satisfy the kind of security which we
desire. We will later see that a probabilistic variant will do the job.

Recall the definition of RSA trapdoor function 2.17. Let p, q denote primes, n = pq, Z∗
n = {1 ≤ x ≤ n, (x, n) = 1}

the multiplicative group whose cardinality is ϕ(n) = (p− 1)(q − 1), and e ∈ Zp−1 relatively prime to ϕ(n). Our
set of indices will be I = {< n, e > such that n = pq |p| = |q|} and the trapdoor associated with the particular
index < n, e > be t<n,e> = d such that ed = 1 mod φ(n). Let RSA = {RSA<n,e> : Z∗

n → Z∗
n}<n,e>∈I where

RSA<n,e>(x) = xe mod n

Sparse Message Spaces

We showed that the RSA function has some nice properties that seem especially good for use as a PKC. For
example, we showed for a given pair < n, e >, it is either hard to invert RSA<n,e> for all but a negligible
fraction of x’s in Z∗

n, or easy to invert RSA<n,e>(x) ∀x, x ∈ Z∗ . Does this mean that the RSA cryptosystem
is difficult to break for almost all messages if factoring integers is hard? The answer is negative.

Suppose that the message space M we are interested in is the English language. Then, let Mk = {0, 1}k where
m ∈ Mk is an English sentence. Compared to the entire space, the set of English sentences is quite small. For

example, |Mk|
|Z∗

n| ≤ 1
2
√

n . Thus it is possible that fn,e(x) is easy to invert for all x ∈ Mk, even if the factorization

problem is hard. In other words, English sentences are highly structured; it might well be the case that our
function can be easily inverted on all such inputs. Clearly, we would ultimately like our encryption schemes to
be secure for all types of message spaces, including English text.

Partial Information about RSA

What partial information about x can be computed from RSA<n,e>(x).

We showed in the chapter on one-way and trapdoor functions, that indeed some bits such as the least significant
bit and most significant bit of RSA are very well hidden. This is the good news.

Unfortunately, in some cases very subtle leakage of partial information can defeat the whole purpose of encryp-
tion. We present a “cute” example of this shown by Lipton shortly after RSA was invented.

An Example: Mental Poker (SRA ’76): Mental Poker is a protocol by which two parties each of whom
distrusts the other can deal each other cards from a deck without either being able to cheat. The protocol for
A to deal B a card goes like this:
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(1) A and B agree on a set X = {x1, . . . , x52}, xi ∈ Z∗
n, of random numbers where n = pq, p and q prime and

known to both A and B. These numbers represent the deck of cards, xi representing the ith card in the
deck.

(2) A picks s such that (s, ϕ(n)) = 1, and t such that st ≡ 1 (mod ϕ(n)) secretly. B does the same for e and
f . (I.e., ef ≡ 1 (mod ϕ(n)))

(3) A calculates xs
i mod n for i = 1 . . . 52, shuffles the numbers, and sends them to B.

(4) B calculates (xs
i mod n)

e
mod n for i = 1 . . . 52, shuffles the numbers, and sends them to A.

(5) A calculates ((xs
i mod n)

e
mod n)

t
mod n = xe

i mod n for i = 1 . . . 52. A then chooses a card randomly
(I.e., picks xe

j where j ∈ [1 . . . 52]) and sends it to B.

(6) B then takes (xe
j mod n)

d
mod n = xj mod n. This is the card B has been dealt.

Why it works: Note that so long as no partial information can be obtained from the RSA trapdoor function,
neither A nor B can influence in any way the probably of B getting any given card. A is unable to give B bad
cards and likewise B can not deal himself good cards. This follows from the fact that encrypting the cards is
analogous to placing each of them in boxes locked with padlocks. So long as a card is locked in a box with a
padlock of the other player’s on it, nothing can be told about it and it is indistinguishable from the other locked
boxes.

When B gets the deck in step 3, he has no idea which card is which and thus is unable to influence which card
he is dealt. However, A can still tell them apart since its A’s padlocks that are on the boxes. To prevent A from
being able to influence the cards, B then puts his own locks on the boxes as well and shuffles the deck. Now
A also can not tell the cards apart so when he is forced to make his choice, he is forced to just deal a random
card. Thus, the two players in spite of distrusting each other can play poker.

How to extract partial information from the RSA function: The protocol fails, however, because it is
possible to extract partial information from the RSA function and thus determine to some degree of accuracy
which cards are which and hence influence the outcome of the draw. One way to do this is by computing the
Jacobi symbol since (Jn(xi)) = (Jn(xs

i )) since s is odd. Thus, since half of the xi’s have a Jacobi symbol of 1
on the average since they are random numbers in Z∗

n, we can extract roughly one bit of information from each
of the cards. In order to influence the draw in our favor, we simply determine whether or not the cards with a
Jacobi symbol of 1 or the cards with a Jacobi symbol of -1 are better for us and then draw only from that set
of cards.

One’s immediate reaction to this, of course, is simply to modify the protocol so that in step 1 only numbers
with say a Jacobi symbol of 1 are chosen. Then no information will be gained by computing the Jacobi symbol.
However, this is no guarantee that some other more clever predicate does not exist which can still extract partial
information and indeed such functions must exist by the very nature of trapdoor functions.

Low exponent attacks

Let the exponent be e = 3. We saw that any exponent relatively prime to ϕ(N) is OK, and we can easily choose
N = pq so that 3 is relatively prime to (p− 1)(q− 1) = ϕ(N). This is a popular choice for performance reasons.
Encryption is now fast. And we saw that RSA is still (assumed) one-way under this choice.

So encryption of m is now m3 mod N . Here is an interesting attack illustrating the weaknesses of RSA encryp-
tion, due to Coppersmith, Franklin, Patarin and Reiter [62]. Suppose I encrypt m and then m + 1. I claim you
can recover m. We have ciphertexts:

c1 = m3

c2 = (m + 1)3 = m3 + 3m + 3m2 + 1 = c1 + 3m + 3m2 + 1

Now lets try to solve for m. Perhaps the first thought that springs to mind is that we have a quadratic equation
for m. But taking square roots is hard, so we don’t know how to solve it that way. It turns out the following
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works:
c2 + 2c1 − 1

c2 − c1 + 2
=

(m + 1)3 + 2m3 − 1

(m + 1)3 − m3 + 2
=

3m3 + 3m2 + 3m

3m2 + 3m + 3
= m .

This can be generalized. First, you can generalize to messages m and αm + β for known α, β. Second, it works
for exponents greater than 3. The attack then runs in time O(e2) so it is feasible for small exponents. Finally,
it can work for k messages related by a higher degree polynomial.

These are the kinds of attacks we most definitely would like to avoid.

7.2.4 Rabin’s Public key Cryptosystem

Recall Rabin’s trapdoor function from Chapter 2.

fn(m) ≡ m2 mod n

where n is the product of two large primes, p and q. Once again, this function can yield another example of
a trapdoor/public key cryptosystem except that fn is not as permutation but a 4-to-1 function. An inverse of
fn(m):

f−1
n (m2) = x such that x2 = m2 mod n

However, in practice, when we invert Rabin’s function, we do not simply want any square root of the encrypted
message, but the correct one of the four that was meant to be sent by the sender and would be meaningful to
the intended recipient. So, we need to add a constraint to uniquely identify the root x which must be output by
the decryption algorithm on fn(m2) such as find x such that x2 = m2 mod n, and x ∈ S where S is a property
for which it is quite unlikely that there exists two roots m,x ∈ S. What could S be? Well if the message space
M is sparse in Z∗

n (which would usually be the case), then S may be simply M . In such case it is unlikely that
there exists m 6= m′ ∈ M such that m′2 = m2 mod n. (If M is not sparse, S may be the all x whose last 20
digits are r for some random r. Then to send m in secrecy, (fn(m′) = fn(220m + r), r) need be sent.)

Recall, that earlier in the class, we had shown that inverting Rabin’s function is as hard as factoring. Namely,
we had shown that inverting Rabin’s function for ǫ of the m2 ∈ Z∗

n’s implies the ability to factor. The proof
went as follows:

• Suppose there existed a black box that on inputs x2 responded with a y such that x2 = y2 mod n. Then,
to factor n, choose an i at random from Z∗

n and give as input i2 mod n to the black box. If the box
responds with a y, such that y 6= ±i, then we can indeed factor n by computing gcd(i± y, n). In the case
that y = ±i, we have gained no information, so repeat.

If we think of this black box as a decoding algorithm for the public key system based on Rabin’s function used
to encrypt messages in message space M , can we conclude that if it is possible to decrypt the public key system
fn(m) for m ∈ M , then it is possible to factor n?

If the message space M is sparse, then the answer is no. Why? for the black box (above) to be of any use we
need to feed it with an fn(i) for which there exists an y such that y ∈ M and y 6= i. The probability that such

y exists is about |M |
|Z∗

n| , which may be exponentially small.

If the message space M is not sparse, we run into another problem. Rabin’s scheme would not be secure in the
presence of an active adversary who is capable of a chosen ciphertext attack. This is easy to see again using the
above proof that inverting Rabin’s function is as hard as factoring. Temporary access to a decoding algorithm
for Rabin’s public key encryption for message in M , is the same as having access to the black box of the above
proof. The adversary chooses i at random and feeds the decoding algorithm with fn(i). If the adversary gets
back y such that y2 = i2 mod n, (again, i 6= ±y), factor n, and obtain the secret key. If M is not sparse this
will be the case after trying a polynomial number of i’s. From here on, the adversary would be able to decrypt
any ciphertext with the aid of the secret key and without the need for a black box.

Therefore, either Rabin’s scheme is not equivalent to factoring, which is the case when inverting on a sparse
message space, or (when M is not sparse) it is insecure before a chosen ciphertext adversary.
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7.2.5 Knapsacks

A number of public-key cryptosystems have been proposed which are based on the knapsack (or — more properly
— the subset sum) problem: given a vector a = (a1, a2, . . . , an) of integers, and a target value C, to determine
if there is a length-n vector x of zeroes and ones such that a · x = C. This problem is NP-complete [91].

To use the knapsack problem as the basis for a public-key cryptosystem, you create a public key by creating a
knapsack vector a, and publish that as your public key. Someone else can send you the encryption of a message
M (where M is a length-n bit vector), by sending you the value of the inner product C = M · a. Clearly, to
decrypt this ciphertext is an instance of the knapsack problem. To make this problem easy for you, you need
to build in hidden structure (that is, a trapdoor) into the knapsack so that the encryption operation becomes
one-to-one and so that you can decrypt a received ciphertext easily. It seems, however, that the problem of
solving knapsacks containing a trapdoor is not NP-complete, so that the difficulty of breaking such a knapsack
is no longer related to the P = NP question.

In fact, history has not been kind to knapsack schemes; most of them have been broken by extremely clever
analysis and the use of the powerful L3 algorithm [132] for working in lattices. See [143, 186, 188, 2, 190, 128,
48, 157].

Some knapsack or knapsack-like schemes are still unbroken. The Chor-Rivest scheme [60], and the multiplicative
versions of the knapsack [143] are examples. McEliece has a knapsack-like public-key cryptosystem based on
error-correcting codes [142]. This scheme has not been broken, and was the first scheme to use randomization
in the encryption process.

We are now ready to introduce what is required from a secure Public Key Cryptosystem.

7.3 Defining Security

Brain storming about what it means to be secure brings immediately to mind several desirable properties. Let
us start with the the minimal requirement and build up.

First and foremost the private key should not be recoverable from seeing the public key. Secondly, with high
probability for any message space, messages should not be entirely recovered from seeing their encrypted form
and the public file. Thirdly, we may want that in fact no useful information can be computed about messages
from their encrypted form. Fourthly, we do not want the adversary to be able to compute any useful facts about
traffic of messages, such as recognize that two messages of identical content were sent, nor would we want her
probability of successfully deciphering a message to increase if the time of delivery or relationship to previous
encrypted messages were made known to her.

In short, it would be desirable for the encryption scheme to be the mathematical analogy of opaque envelopes
containing a piece of paper on which the message is written. The envelopes should be such that all legal senders
can fill it, but only the legal recipient can open it.

We must answer a few questions:

• How can “opaque envelopes” be captured in a precise mathematical definition?

• Are “opaque envelopes” achievable mathematically?

Several definitions of security attempting to capture the “opaque envelope” analogy have been proposed. All
definitions proposed so far have been shown to be equivalent. We describe two of them and show they are
equivalent.

7.3.1 Definition of Security: Polynomial Indistinguishability

Informally, we say that an encryption scheme is polynomial time indistinguishable if no adversary can find even
two messages, whose encryptions he can distinguish between. If we recall the envelope analogy, this translates
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to saying says that we cannot tell two envelopes apart.

Definition 7.2 We say that a Public Key Cryptosystem (G,E,D) is polynomial time indistinguishable if for
every PPT M , A, and for every polynomial Q, ∀ sufficiently large k

Pr(A(1k, e, m0, m1, c) = m | (e, d)
$← G(1k) ; {m0,m1} $← M(1k) ; m

$← {m0,m1} ; c
$← E(e,m))

<
1

2
+

1

Q(k)
(7.1)

In other words, it is impossible in polynomial in k time to find two messages m0,m1 such that a polynomial
time algorithm can distinguish between c ∈ E(e,m0) and c ∈ E(e,m1).

Remarks about the definition:

(1) We remark that a stronger form of security would be: the above holding ∀m0,m1, (not only those which
can be found in polynomial time by running M(1k)). Such security can be shown in a non-uniform model,
or when the messages are chosen before the keys, and thus can not involve any information about the secret
keys themselves.

(2) In the case of private-key encryption scheme, the definition changes ever so slightly. The encryption key e
is not given to algorithm A.

(3) Note that any encryption scheme in which the encryption algorithm E is deterministic immediately fails to
pass this security requirement. (e.g given f,m0,m1 and c ∈ {f(m1), f(m0)} it is trivial to decide whether
c = f(m0) or c = f(m1).

(4) Note that even if the adversary know that the messages being encrypted is one of two, he still cannot tell
the distributions of ciphertext of one message apart from the other.

7.3.2 Another Definition: Semantic Security

Consider the following two games. Let h : M → {0, 1}∗, where M is a message space in which we can sample
in polynomial time, or equivalently, a probabilistic polynomial time algorithm M that takes as input 1k and
generates a message m ∈ {0, 1}k, and h(m) is some information about the message (for example, let be such
that h(m) = 1 if m has the letter ’e’ in it, then V = {0, 1}).

• Game 1: I tell the adversary that I am about to choose m ∈ M(1k) and, ask her to guess h(m).

• Game 2: I tell the adversary α ∈ E(m), for some m ∈ M(1k) and once again, ask her to guess h(m).

In both of the above cases we may assume that the adversary knows the message space algorithm M and the
public key P .

In the first game, the adversary only knows that a message m is about to be chosen. In addition to this fact, the
adversary of the Game 2 sees the actual ciphertext itself. For all types of message spaces, semantic security will
essentially require that the probability of the adversary winning Game 1 to be about the same as her probability
of winning Game 2. Namely, that the adversary should not gain any advantage or information from having seen
the ciphertext resulting from our encryption algorithm.

Said differently, this definition will require that for all probability distributions over the message space, no
partial information about the message can be computed from the ciphertext. This requirement is reminiscent
of Shannon’s perfect security definition – with respect to a computationally bounded adversary.

Definition 7.3 We say that an encryption scheme (G,E, D) is semantically secure if for all PPT algorithms
M and A, functions h, polynomials Q there is a PPT B such that for sufficiently large k,

Pr(A(1k, c, e) = h(m) | (e, d)
$← G(1k) ; m

$← M(1k) ; c
$← E(e,m))
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≤ Pr(B(1k) = h(m) | m
$← M(1k)) +

1

Q(k)
(7.2)

Here, Game 1 is represented by PTM B, and Game 2 by PTM A. Again, this can only hold true when the
encryption algorithm is a probabilistic one which selects one of many possible encodings for a message; otherwise,
if E were deterministic, and M = {0, 1}, then any adversary would have 100% chance of guessing correctly h(m)
for m ∈ M by simply testing whether E(0) = c or E(1) = c.

Theorem 7.4 A Public Key Cryptosystem passes Indistinguishable Security if and only if it passes Semantic
Security.

7.4 Probabilistic Public Key Encryption

We turn now to showing how to actually build a public key encryption scheme which is polynomial time
indistinguishable.

In order to do so, we must abandon the trapdoor function PKC model and deterministic algorithms of encryption
all together, in favor of probabilistic encryption algorithm. The probabilistic encryption algorithm which we
will construct will still assume the existence of trapdoor functions and use them as a primitive building block.

The key to the construction is to first answer a simpler problem: How to securely encrypt single bits. We show
two ways to approach this problem. The first is based on trapdoor predicates as discussed in Section 2.5, and
the second is based on hard core predicates as discussed in Section 2.4.

7.4.1 Encrypting Single Bits: Trapdoor Predicates

To encrypt single bits, the notion of one-way and trapdoor predicates was introduced by [102]. It later turned
out to be also quite useful for protocol design. We refer the reader to section 2.5 for a general treatment of this
subject. Here we look at its use for encryption.

The Idea: Briefly, a one-way predicate, is a Boolean function which is hard to compute in a very strong
sense. Namely, an adversary cannot compute the predicate value better than by taking a random guess. Yet,
it is possible to sample the domain of the predicate for elements for which the predicate evaluates to 0 and to
1. A trapdoor predicate possesses the extra feature that there exists some trapdoor information that enables
the computation of the predicate. We can construct examples of collection of trapdoor predicates based on
the intractability of factoring, RSA inversion and the difficulty of distinguishing quadratic residues from non-
residues.

Now, given a collection of trapdoor predicates exist, we use them to set up a cryptosystem for one bit encryption
as follows. Every user A chooses and publishes a random trapdoor predicate, keeping secret the corresponding
trapdoor information. To send A a one bit message m, any other user chooses at random an element in
the domain of the trapdoor predicate for which the predicate evaluates to m. To decrypt, A uses his trapdoor
information to compute the value of predicate on the domain element it receives. Note, that this is a probabilistic
encryption with many possible cyphertexts for 0 as well as 1, where essentially an adversary cannot distinguish
between an encoding of 0 and an encoding of 1.

Recall, the formal definition of trapdoor predicates 2.59.

Let I be a set of indices and for i ∈ I let Di be finite. A collection of trapdoor predicates is a set B = {Bi :
Di → {0, 1}}i∈I satisfying the following conditions. Let Dv

i = {x ∈ Di, Bi(x) = v.

1. There exists a polynomial p and a PTM S1 which on input 1k finds pairs (i, ti) where i ∈ I ∩ {0, 1}k and
|ti| < p(k) The information ti is referred to as the trapdoor of i.

2. There exists a PTM S2 which on input i ∈ I and v ∈ {0, 1} outputs x ∈ Di at random such that Bi(x) = v.
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3. There exists a PTM A1 such that for i ∈ I and trapdoor ti, x ∈ Di A1(i, ti, x) = Bi(x).

4. For every PPT A there exists a negligible νA such that ∀ k large enough

Pr
[

z 6= v : i
$← I ∩ {0, 1}k ; v

$← {0, 1} ; x
$← Dv

i ; z ← A(i, x)
]

≤ νA(k)

Definition 7.5 Assume that B is a collection of trapdoor predicates. We can now define a public key cryp-
tosystem (G,E, D)B for sending single bit messages as follows:

• Key generation algorithm: G(1k) chooses (i, ti) (public key is then i and private key is ti). This is doable
by running algorithm S1.

• Encryption algorithm: Let m ∈ {0, 1} be the message. Encryption algorithm E(i, e) selects x ∈ Dm
i .

(The ciphertext is thus x). This is doable by running algorithm S2.

• Decryption algorithm: D(c, ti) computes Bi(c). This is doable using A1 given the trapdoor information.

It is clear from the definition of a set of trapdoor predicates, that all of the above operations can be done in
expected polynomial time and that messages can indeed be sent this way. It follows immediately from the
definition of trapdoor predicates than indeed this system is polynomially indistinguishable when restricted to
one bit message spaces.

7.4.2 Encrypting Single Bits: Hard Core Predicates

Alternatively, you may take the following perhaps simpler approach, starting directly with trapdoor functions
and using their hard core predicates. For a detailed discussion of trapdoor functions and hard core predicates
for them see section Section 2.59. The discussion here assumes such knowledge.

Recall that a collection of trapdoor permutations is a set F = {fi : Di −→ Di}i∈I such that:

1. S1(1
k) samples (i, ti) where i ∈ I, |i| = k and |ti| < p(k) for some polynomial p.

2. S2(i) samples x ∈ Di.

3. ∃ PTM A1 such that A1(i, x) = fi(x).

4. Pr[A(i, fi(x)) ∈ f−1
i (fi(x))] < 1

Q(k) ∀ PTM A, ∀Q, ∀k > k0.

5. ∃ PTM A2 such that A2(i, ti, fi(x)) = x, ∀x ∈ Di, i ∈ I.

Further, let Bi(x) be hard core for fi(x). Recall that the existence of F implies the existence of F ′ that has a
hard core predicate. So, for notational simplicity assume that F = F ′. Also recall that for the RSA collection
of trapdoor functions, LSB is a collection of hard core predicate the LSB.

Definition 7.6 Given a collection F with hard core predicates B, define public key cryptosystem (G,E, D)B

for sending a single bit as follows:

• Key generation algorithm: G(1k) chooses pair < i, ti > by running S1(1
k). (for RSA, G(1k) chooses

< n, e >, d such that n is an RSA modulus, and ed = 1 mod φ(n).)

• Encryption algorithm: E(i, m) chooses at random an x ∈ Di such that Bi(x) = m, and output as a
ciphertext fi(x). Using the Goldreich Levin construction of a hard core predicate, simply choose x, r such
that the inner product of x and r is m and output f(x) ◦ r. (for RSA, to encrypt bit m, choose at random
an x ∈ Z∗

n such that LSB<n,e>(x) = m and output as a ciphertext RSA<n,e>(x).)



Cryptography: Lecture Notes 129

• Decryption algorithm: To decrypt c = fi(x), given i and ti, the decryption algorithm D(ti, c) compute
Bi(f

−1
i (c)) = Bi(x) = m. Using the Goldreich Levin construction this amounts to given c = fi(x) ◦ r

to computing the inner product of x and r. (for RSA, to decrypt c, given n, e and d, compute the

LSB((RSA<n,e>(x))
d
) = least significant bit of x.)

7.4.3 General Probabilistic Encryption

How should we encrypt arbitrary length messages?

The first answer is to simply encrypt each bit individually using one of the above methods. as above. Before
considering whether this is wise from an efficiency point of view, we need to argue that it indeed will produce a
encryption scheme which is polynomial time indistinguishable. This requires reflection, as even through every
bit individually is secure, it can be the case that say that some predicate computed on all the bits is easily
computable, such as the exclusive or of the bits. This turns out luckily not to be the case, but requires proof.

We now provide construction and proof.

Definition 7.7 We define a probabilistic encryption based on trapdoor collection F with hard core bit B to
be PE = (G,E, D) where:

• G(1k) chooses (i, ti) by running S1(1
k) (Public key is i, private key is ti ).

• Let m = m1 . . . mk where mj ∈ {0, 1} be the message.
E(i,m) encrypts m as follows:

Choose xj ∈R Di such that Bi(xj) = mj for j = 1, . . . , k.
Output c = fi(x1) . . . fi(xk).

• Let c = y1 . . . yk where yi ∈ Di be the cyph ertext.
D(ti, c) decrypts c as follows:

Compute mj = Bi(f
−1
i (yj)) for j = 1, . . . , k.

Output m = m1 . . . mk.

Claim 7.8 If F is a collection of trapdoor permutations then the probabilistic encryption PE = (G,E, D) is
indistinguishably secure.

Proof: Suppose that (G, E, D) is not indistinguishably secure. Then there is a polynomial Q, a PTM A and a
message space algorithm M such that for infinitely many k, ∃m0,m1 ∈ M(1k) with,

Pr[A(1k, i,m0,m1, c) = j|mj ∈ {m0,m1}, c ∈ E(i,mj))] >
1

2
+

1

Q(k)

where the probability is taken over the coin tosses of A, (i, ti) ∈ G(1k), the coin tosses of E and mj ∈ {m0,m1}.
In other words, A says 0 more often when c is an encryption of m0 and says 1 more often when c is an encryption
of m1.

Define distributions Dj = E(i, sj) for j = 0, 1, . . . , k where k = |m0| = |m1| and such that s0 = m0, sk = m1

and sj differs from sj+1 in precisely 1 bit.

Let Pj = Pr[A(1k, i,m0, m1, c) = 1|c ∈ Dj = E(i, sj)].

Then 1
2 + 1

Q(k) < Pr[A chooses j correctly] = (1 − P0)(
1
2 ) + Pk( 1

2 ).
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Hence, Pk − P0 > 2
Q(k) and since

∑k−1
j=0 (Pj+1 − Pj) = Pk − P0, ∃j such that Pj+1 − Pj > 2

Q(k)k .

Now, consider the following algorithm B which takes input i, fi(y) and outputs 0 or 1. Assume that sj and sj+1

differ in the lth bit; that is, sj,l 6= sj+1,l or, equivalently, sj+1 = s̄j .

B runs as follows on input i, fi(y):

(1) Choose y1, . . . , yk such that Bi(yr) = sj,r for r = 1, . . . , k.

(2) Let c = fi(y1), . . . , fi(y), . . . , fi(yk) where fi(y) has replaced fi(yl) in the lth block.

(3) If A(1k, i, ,m0,m1, c) = 0 then output sj,l.
If A(1k, i, ,m0,m1, c) = 0 then output sj+1,l = s̄j,l.

Note that c ∈ E(i, sj) if Bi(y) = sj,l and c ∈ E(i, sj+1) if Bi(y) = sj+1,l.

Thus, in step 3 of algorithm B, outputting sj,l corresponds to A predicting that c is an encoding of sj ; in other
words, c is an encoding of the string nearest to m0.

Claim. Pr[B(i, fi(y)) = Bi(y)] > 1
2 + 1

Q(k)k

Proof:

Pr[B(i, fi(y)) = Bi(y)] = Pr[A(1k, i, m0,m1, c) = 0|c ∈ E(i, sj)] Pr[c ∈ E(i, sj)]
+Pr[A(1k, i,m0,m1, c) = 1|c ∈ E(i, sj+1)] Pr[c ∈ E(i, sj+1)]

≥ (1 − Pj)(
1
2 ) + (Pj+1)(

1
2 )

= 1
2 + 1

2 (Pj+1 − Pj)
> 1

2 + 1
Q(k)k ✷

Thus, B will predict Bi(y) given i, fi(y) with probability better than 1
2 + 1

Q(k)k . This contradicts the assumption

that Bi(y) is hard core for fi(y).

Hence, the probabilistic encryption PE = (G,E,D) is indistinguishably secure.

In fact, the probabilistic encryption PE = (G,E,D) is also semantically secure. This follows from the fact that
semantic and indistinguishable security are equivalent.

7.4.4 Efficient Probabilistic Encryption

How efficient are the probabilistic schemes? In the schemes described so far, the ciphertext is longer than
the cleartext by a factor proportional to the security parameter. However, it has been shown [39, 43] using
later ideas on pseudo-random number generation how to start with trapdoor functions and build a probabilistic
encryption scheme that is polynomial-time secure for which the ciphertext is longer than the cleartext by only
an additive factor. The most efficient probabilistic encryption scheme is due to Blum and Goldwasser [43]
and is comparable with the RSA deterministic encryption scheme in speed and data expansion. Recall, that
private-key encryption seemed to be much more efficient. Indeed, in practice the public-key methods are often
used to transmit a secret session key between two participants which have never met, and subsequently the
secret session key is used in conjunction with a private-key encryption method.

We first describe a probabilistic public key cryptosystem based on any trapdoor function collection which suffers
only from a small additive bandwidth expansion.



Cryptography: Lecture Notes 131

As in the previous probabilistic encryption PE, we begin with a collection of trapdoor permutations F = {fi :
Di → Di} with hard core predicates B = {Bi : Di → {0, 1}. For this section, we consider that Di ⊆ {0, 1}k,
where k = |i|.
Then EPE = (G,E, D) is our PKC based on F with:

Key Generation: G(1k) = S1(1
k) = (i, ti). The public key is i, and the secret key is ti.

Encryption Algorithm: To encrypt m, E(i,m) runs as follows, where l = |m|:
(1) Choose r ∈ Di at random.

(2) Compute fi(r), f
2
i (r), . . . , f l

i (r).

(3) Let p = Bi(r)Bi(fi(r))Bi(f
2
i (r)) . . . Bi(f

l−1
i (r)).

(4) Output the ciphertext c = (p ⊕ m, f l
i (r)).

Decryption Algorithm: To decrypt a ciphertext c = (m′, a), D(ti, c) runs as follows, where l = |m′|:
(1) Compute r such that f l

i (r) = a. We can do this since we can invert fi using the trapdoor information,
ti, and this r is unique since fi is a permutation.

(2) Compute the pad as above for encryption: p = Bi(r)Bi(fi(r)) . . . Bi(f
l−1
i (r)).

(3) Output decrypted message m = m′ ⊕ p.

To consider the efficiency of this scheme, we note that the channel bandwidth is |c| = |m| + k, where k is the
security parameter as defined above. This is a significant improvement over the |m| · k bandwidth achieved by
the scheme proposed in the previous lecture, allowing improvement in security with only minimal increase in
bandwidth.

If Ci1 is the cost of computing fi, and Ci2 is the cost of computing f−1
i given ti, then the cost of encryption is

|m| · Ci1, and the cost of decryption is |m| · Ci2, assuming that the cost of computing Bi is negligible.

Another interesting point is that for all functions currently conjectured to be trapdoor, even with ti, it is
still easier to compute fi than f−1

i , that is, Ci1 < Ci2, though of course, both are polynomial in k = |i|.
Thus in EPE, if it is possible to compute f−l

i more efficiently than as l compositions of f−1
i , then computing

r = f−l
i (a), and then computing fi(r), f

2
i (r), . . . , f l−1

i (r) may reduce the overall cost of decryption. The
following implementation demonstrates this.

7.4.5 An implementation of EPE with cost equal to the cost of RSA

In this section, we consider a particular implementation of EPE as efficient as RSA. This uses for F a subset
of Rabin’s trapdoor functions which were introduced in Lecture 5. Recall that we can reduce Rabin’s functions
to permutations if we only consider the Blum primes, and restrict the domain to the set of quadratic residues.
In fact, we will restrict our attention to primes of the form p ≡ 7 mod 8.1

Let N = {n|n = pq; |p| = |q|; p, q ≡ 7 mod 8}. Then let F = {fn : Dn −→ Dn}n∈N , where fn(x) ≡ x2 mod n,
and Dn = Qn = {y|y ≡ x2 mod n}. Because p, q ≡ 3 mod 4, we have that fn is a permutation on Dn. Bn(x) is
the least significant bit (LSB) of x, which is a hard core bit if and only if factoring is difficult, i.e., the Factoring
Assumption from Lecture 5 is true. (This fact was stated, but not proven, in Lecture 7.)

Then consider the EPE (G,E, D), with:

Generation: G(1k) = (n, (p, q)) where pq = n ∈ N , and |n| = k. Thus n is the public key, and (p,q) is the
secret key.

Encryption: E(n,m), where l = |m| (exactly as in general case above):

(1) Choose r ∈ Qn randomly.

1More recent results indicate that this additional restriction may not be necessary.
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(2) Compute r2, r4, r8, . . . , r2l

(mod n).

(3) Let p = LSB(r)LSB(r2)LSB(r4) . . .LSB(r2l−1

).

(4) Output c = (m ⊕ p, r2l

mod n).

The cost of encrypting is O(k2 · l).
Decryption: D((p, q), c), where c = (m′, a), l = |m′| (as in general case above):

(1) Compute r such that r2l ≡ a mod n.

(2) Compute p = LSB(r)LSB(r2)LSB(r4) . . .LSB(r2l−1

).

(3) Output m = m′ ⊕ p.

Since p, q ≡ 7 mod 8, we have p = 8t + 7 and q = 8s + 7 for some integers s, t. Recall from Lecture 3 that

if p is prime, the Legendre symbol Jp(a) = a
p−1
2 ≡ 1 mod p if and only if a ∈ Qp, Since a ∈ Qn, we also

have a ∈ Qp. Thus we can compute

a ≡ a · a p−1
2 ≡ a1+4t+3 ≡ (a2t+2)2 (mod p),

yielding,
√

a ≡ a2t+2 mod p. Furthermore, a2t+2 = (at+1)2 ∈ Qp, so we can do this repeatedly to find

rp ≡ 2l√
a ≡ a(2t+2)l

mod p. (This is why we require p ≡ 7 mod 8.) Analogously, we can find rq ≡ 2l√
a ≡

a(2s+2)l

mod q, and using the Chinese Remainder Theorem (Lecture 5), we can find r ≡ 2l√
a mod n. The

cost of decrypting in this fashion is O(k3 · l).
However, we can also compute r directly by computing u = (2t +2)l and v = (2s + 2)l first, and in fact, if
the length of the messages is known ahead of time, we can compute u and v off-line. In any event, the cost
of decrypting then is simply the cost of computing au mod p and av mod q, using the Chinese Remainder
Theorem, and then computing p given r, just as when encrypting. This comes out to O(k3+k2 · l) = O(k3)
if l = O(k).

EPE Passes Indistinguishable Security

We wish to show that EPE also passes indistinguishable security. To do this we use the notion of pseudo-
random number generators (PSRG) introduced in the chapter on pseudo random number generation. Note
that PSRG(r, i) = f l

i (r) ◦ Bi(r)Bi(fi(r))Bi(f
2
i (r)) . . . Bi(f

l−1
i (r)) = a ◦ p where p and a are generated while

encrypting messages, (◦ is the concatenation operator.) is a pseudo-random number generator. Indeed, this is
the construction we used to prove the existence of PSRGs, given one-way permutations.

Certainly if the pad p were completely random, it would be impossible to decrypt the message since m′ = m⊕p
maps m′ to a random string for any m. Since p is pseudo-random, it appears random to any PTM without
further information i.e., the trapdoor ti. However, the adversary does know a = f l

i (r), and we have to show
that it cannot use this to compute p.

More precisely, we note that if there exists a PTM A that can distinguish between (m⊕ p) ◦ a and (m⊕R) ◦ a
where R is a completely random string from {0, 1}l, then it can distinguish between p ◦a and R ◦a. We can use
this then, as a statistical test to check whether a given string is a possible output of PSRG, which contradicts
the claim that PSRG is pseudo-random, and thus the claim that fi is one-way. It is left as an exercise to express
this formally.

7.4.6 Practical RSA based encryption

Consider a sender who holds a k-bit to k-bit trapdoor permutation f and wants to transmit a message x to
a receiver who holds the inverse permutation f−1. We concentrate on the case which arises most often in
cryptographic practice, where n = |x| is at least a little smaller than k. Think of f as the RSA function.

Encryption schemes used in practice have the following properties: encryption requires just one computation
of f ; decryption requires just one computation of f−1; the length of the enciphered text should be precisely k;
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and the length n of the text x that can be encrypted is close to k. Examples of schemes achieving these
conditions are [179, 117].

Unfortunately, these are heuristic schemes. A provably secure scheme would be preferable. We have now
seen several provably good asymmetric (i.e. public key) encryption schemes. The most efficient is the Blum-
Goldwasser scheme [43]. But, unfortunately, it still doesn’t match the heuristic schemes in efficiency. Accord-
ingly, practioners are continuing to prefer the heuristic constructions.

This section presents a scheme called the OAEP (Optimal Asymmetric Encryption Padding) which can fill the
gap. It was designed by Bellare and Rogaway [25]. It meets the practical constraints but at the same time has
a security that can be reasonably justified, in the following sense. The scheme can be proven secure assuming
some underlying hash functions are ideal. Formally, the hash functions are modeled as random oracles. In
implementation, the hash functions are derived from cryptographic hash functions.

This random oracle model represents a practical compromise under which we can get efficiency with reasonable
security assurances. See [15] for a full discussion of this approach.

RSA-OAEP is currently included in several standards and draft standards and is implemented in various systems.
In particular, it is the RSA PKCS#1 v2 encryption standard and is also in the IEEE P1363/P1363a draft
standards. It is also used in the SET (Secure Electronic Transactions) protocol of Visa and Mastercard.

Simple embedding schemes and OAEP features

The heuristic schemes invariably take the following form: one (probabilistically, invertibly) embeds x into a
string rx and then takes the encryption of x to be f(rx).2 Let’s call such a process a simple-embedding scheme.
We will take as our goal to construct provably-good simple-embedding schemes which allow n to be close to k.

The best known example of a simple embedding scheme is the RSA PKCS #1 standard. Its design is however ad
hoc; standard assumptions on the trapdoor permutation there (RSA) do not imply the security of the scheme.
In fact, the scheme succumbs to chosen ciphertext attack [38]. The OAEP scheme we discuss below is just as
efficient as the RSA PKCS #1 scheme, but resists such attacks. Moreover, this resistance is backed by proofs
of security. The new version of the RSA PKCS#1 standard, namely v2, uses OAEP.

OAEP is a simple embedding scheme that is bit-optimal (i.e., the length of the string x that can be encrypted
by f(rx) is almost k). It is proven secure assuming the underlying hash functions are ideal. It is shown in [25]
that RSA-OAEP achieves semantic security (as defined by [102]). It is shown in [89] (building on [194]) that it
also achieves a notion called “plaintext-aware encryption” defined in [25, 21]. The latter notion is very strong,
and in particular it is shown in [21] that semantic security plus plaintext awareness implies “ambitious” goals
like chosen-ciphertext security and non-malleability [75] in the ideal-hash model.

Now we briefly describe the basic scheme and its properties. We refer the reader to [25] for full descriptions and
to [25, 89] for proofs of security.

The scheme

Recall k is the security parameter, f mapping k-bits to k-bits is the trapdoor permutation. Let k0 be chosen
such that the adversary’s running time is significantly smaller than 2k0 steps. We fix the length of the message to
encrypt as let n = k−k0−k1 (shorter messages can be suitably padded to this length). The scheme makes use of
a “generator” G: {0, 1}k0 → {0, 1}n+k1 and a “hash function” H: {0, 1}n+k1 → {0, 1}k0 . To encrypt x ∈ {0, 1}n

choose a random k0-bit r and set

EG,H(x) = f(x0k1 ⊕ G(r)‖r ⊕ H(x0k1 ⊕ G(r))).

The decryption DG,H is defined as follows. Apply f−1 to the ciphertext to get a string of the form a‖b with
|a| = k − k0 and |b| = k0. Compute r = H(a)⊕ b and y = G(r)⊕ a. If the last k1 bits of y are not all zero then
reject; else output the first n bits of y as the plaintext.

2It is well-known that a naive embedding like rx = x is no good: besides the usual deficiencies of any deterministic encryption, f

being a trapdoor permutation does not mean that f(x) conceals all the interesting properties of x. Indeed it was exactly such
considerations that helped inspire ideas like semantic security [102] and hardcore bits [44, 208].



134 Goldwasser and Bellare

The use of the redundancy (the 0k1 term and the check for it in decryption) is in order to provide plaintext
awareness.

Efficiency

The function f can be set to any candidate trapdoor permutation such as RSA [176] or modular squaring
[170, 39]. In such a case the time for computing G and H is negligible compared to the time for computing
f, f−1. Thus complexity is discussed only in terms of f, f−1 computations. In this light the scheme requires
just a single application of f to encrypt, a single application of f−1 to decrypt, and the length of the ciphertext
is k (as long as k ≥ n + k0 + k1).

The ideal hash function paradigm

As we indicated above, when proving security we take G,H to be random, and when we want a concrete scheme,
G,H are instantiated by primitives derived from a cryptographic hash function. In this regard we are following
the paradigm of [15] who argue that even though results which assume an ideal hash function do not provide
provable security with respect to the standard model of computation, assuming an ideal hash function and doing
proofs with respect to it provides much greater assurance benefit than purely ad. hoc. protocol design. We refer
the reader to that paper for further discussion of the meaningfulness, motivation and history of this ideal hash
approach.

Exact security

We want the results to be meaningful for practice. In particular, this means we should be able to say meaningful
things about the security of the schemes for specific values of the security parameter (e.g., k = 512). This
demands not only that we avoid asymptotics and address security “exactly,” but also that we strive for security
reductions which are as efficient as possible.

Thus the theorem proving the security of the basic scheme quantifies the resources and success probability of
a potential adversary: let her run for time t, make qgen queries of G and qhash queries of H, and suppose she
could “break” the encryption with advantage ǫ. It then provides an algorithm M and numbers t′, ǫ′ such that
M inverts the underlying trapdoor permutation f in time t′ with probability ǫ′. The strength of the result is
in the values of t′, ǫ′ which are specified as functions of t, qgen, qhash, ǫ and the underlying scheme parameters
k, k0, n (k = k0 + n). Now a user with some idea of the (assumed) strength of a particular f (e.g., RSA on 512
bits) can get an idea of the resources necessary to break our encryption scheme. See [25] for more details.

OAEP achieves semantic security for any trapdoor function f , as shown in [25]. It achieves plaintext awareness,
and thus security against chosen-ciphertext attack, when f is RSA, as shown in [89].

7.4.7 Enhancements

An enhancement to OAEP, made by Johnson and Matyas [118], is to use as redundancy, instead of the 0k1

above, a hash of information associated to the key. This version of OAEP is proposed in the ANSI X9.44 draft
standard.

7.5 Exploring Active Adversaries

Until now we have focused mostly on passive adversaries. But what happens if the adversaries are active? This
gives rise to various stronger-than-semantic notions of security such as non-malleability [75], security against
chosen ciphertext attack, and plaintext awareness [25, 21]. See [21] for a classification of these notions and
discussion of relations among them.



Cryptography: Lecture Notes 135

In particular, we consider security against chosen ciphertext attack. In this model, we assume that our adversary
has temporary access to the decoding equipment, and can use it to decrypt some cyphertexts that it chooses.
Afterwards, the adversary sees the ciphertext it wants to decrypt without any further access to the decoding
equipment. Notice that this is different from simply being able to generate pairs of messages and cyphertexts,
as the adversary was always capable of doing that by simply encrypting messages of its choice. In this case, the
adversary gets to choose the ciphertext and get the corresponding message from the decoding equipment.

We saw in previous sections that such an adversary could completely break Rabin’s scheme. It is not known
whether any of the other schemes discussed for PKC are secure in the presence of this adversary. However,
attempts to provably defend against such an adversary have been made.

One idea is to put checks into the decoding equipment so that it will not decrypt cyphertexts unless it has
evidence that someone knew the message (i.e., that the ciphertext was not just generated without knowledge of
what the message being encoded was). We might think that a simple way to do this would be to require two
distinct encodings of the same message, as it is unlikely that an adversary could find two separate encodings
of the same message without knowing the message itself. Thus a ciphertext would be (α1, α2) where α1, α2 are
chosen randomly from the encryptions of m.

Unfortunately, this doesn’t work because if the decoding equipment fails to decrypt the ciphertext, the adversary
would still gain some knowledge, i.e., that α1 and α2 do not encrypt the same message. For example, in the
probabilistic encryption scheme proposed last lecture, an adversary may wish to learn the hard-core bit Bi(y)
for some unknown y, where it has fi(y). Given decoding equipment with the protection described above, the
adversary could still discover this bit as follows:

(1) Pick m ∈ M(1l), the message space, and let b be the last bit of m.

(2) Pick α1 ∈ E(i,m) randomly and independently.

(3) Recall that α1 = (fi(x1), fi(x2), . . . , fi(xl)), with xj chosen randomly from Di for j = 1, 2, . . . , l. Let
α2 = (fi(x1), . . . , fi(xl−1), fi(y)).

(4) Use the decoding equipment on c = (α1, α2). If it answers m, then Bi(y) = b. If it doesn’t decrypt c, then
Bi(y) = b.

What is done instead uses the notion of Non-Interactive Zero-Knowledge Proofs (NIZK) [45, 153]. The idea is
that anyone can check a NIZK to see that it is correct, but no knowledge can be extracted from it about what
is being proved, except that it is correct. Shamir and Lapidot have shown that if trapdoor functions exist, then
NIZKs exist. Then a ciphertext will consist of three parts: two distinct encodings α1, α2 of the message, and a
NIZK that α1 and α2 encrypt the same message. Then the decoding equipment will simply refuse to decrypt
any ciphertext with an invalid NIZK, and this refusal to decrypt will not give the adversary any new knowledge,
since it already knew that the proof was invalid.

The practical importance of chosen ciphertext attack is illustrated in the recent attack of Bleichenbacher on
the RSA PKCS #1 encryption standard, which has received a lot of attention. Bleichenbacher [38] shows how
to break the scheme under a chosen ciphertext attack. One should note that the OAEP scheme discussed in
Section 7.4.6 above is immune to such attacks.
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Hash Functions

A hash function usually means a function that compresses, meaning the output is shorter than the input. Often,
such a function takes an input of arbitrary or almost arbitrary length to one whose length is a fixed number,
like 160 bits. Hash functions are used in many parts of cryptography, and there are many different types of
hash functions, with differing security properties. We will consider them in this chapter.

8.1 The hash function SHA1

The hash function known as SHA1 is a simple but strange function from strings of almost arbitrary length to
strings of 160 bits. The function was finalized in 1995, when a FIPS (Federal Information Processing Standard)
came out from the US National Institute of Standards that specified SHA1.

Let {0, 1}<ℓ denote the set of all strings of length strictly less than ℓ. The function SHA1: {0, 1}<264 → {0, 1}160

is shown in Figure 8.1. (Since 264 is a very large length, we think of SHA1 as taking inputs of almost arbitrary
length.) It begins by padding the message via the function shapad, and then iterates the compression function
sha1 to get its output. The operations used in the algorithms of Figure 8.1 are described in Figure 8.2. (The
first input in the call to SHF1 in code for SHA1 is a 128 bit string written as a sequence of four 32-bit words,
each word being consisting of 8 hexadecimal characters. The same convention holds for the initialization of the
variable V in the code of SHF1.)

SHA1 is derived from a function called MD4 that was proposed by Ron Rivest in 1990, and the key ideas behind
SHA1 are already in MD4. Besides SHA1, another well-known “child” of MD4 is MD5, which was likewise
proposed by Rivest. The MD4, MD5, and SHA11 algorithms are all quite similar in structure. The first two
produce a 128-bit output, and work by “chaining” a compression function that goes from 512 + 128 bits to 128
bits, while SHA1 produces a 160 bit output and works by chaining a compression function from 512 + 160 bits
to 160 bits.

So what is SHA1 supposed to do? First and foremost, it is supposed to be the case that nobody can find distinct
strings M and M ′ such that SHA1(M) = SHA1(M ′). This property is called collision resistance.

Stop for a moment and think about the collision-resistance requirement, for it is really quite amazing to think
that such a thing could be possible. The function SHA1 maps strings of (almost) any length to strings of 160
bits. So even if you restricted the domain of SHA1 just to “short” strings—let us say strings of length 256
bits—then there must be an enormous number of pairs of strings M and M ′ that hash to the same value.
This is just by the pigeonhole principle: if 2256 pigeons (the 256-bit messages) roost in 2160 holes (the 160-bit
hash values) then some two pigeons (two distinct strings) roost in the same hole (have the same hash). Indeed
countless pigeons must share the same hole. The difficult is only that nobody has as yet identified (meaning,
explicitly provided) even two such pigeons (strings).

136
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algorithm SHA1(M) // |M | < 264

V ← SHF1( 5A827999‖6ED9EBA1‖8F1BBCDC‖CA62C1D6 , M )
return V

algorithm SHF1(K, M) // |K| = 128 and |M | < 264

y ← shapad(M)

Parse y as M1‖M2‖ · · · ‖Mn where |Mi| = 512 (1 ≤ i ≤ n)

V ← 67452301‖EFCDAB89‖98BADCFE‖10325476‖C3D2E1F0
for i = 1, . . . , n do

V ← shf1(K, Mi‖V )

return V

algorithm shapad(M) // |M | < 264

d ← (447 − |M |) mod 512

Let ℓ be the 64-bit binary representation of |M |
y ← M‖1‖0d‖ℓ // |y| is a multiple of 512

return y

algorithm shf1(K,B‖V ) // |K| = 128, |B| = 512 and |V | = 160

Parse B as W0‖W1‖ · · · ‖W15 where |Wi| = 32 (0 ≤ i ≤ 15)

Parse V as V0‖V1‖ · · · ‖V4 where |Vi| = 32 (0 ≤ i ≤ 4)

Parse K as K0‖K1‖K2‖K3 where |Ki| = 32 (0 ≤ i ≤ 3)

for t = 16 to 79 do

Wt ← ROTL1(Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16)

A ← V0 ; B ← V1 ; C ← V2 ; D ← V3 ; E ← V4

for t = 0 to 19 do

Lt ← K0 ; Lt+20 ← K1 ; Lt+40 ← K2 ; Lt+60 ← K3

for t = 0 to 79 do

if (0 ≤ t ≤ 19) then f ← (B ∧ C) ∨ ((¬B) ∧ D)

if (20 ≤ t ≤ 39 OR 60 ≤ t ≤ 79) then f ← B ⊕ C ⊕ D

if (40 ≤ t ≤ 59) then f ← (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D)

temp ← ROTL5(A) + f + E + Wt + Lt

E ← D ; D ← C ; C ← ROTL30(B) ; B ← A ; A ← temp

V0 ← V0 + A ; V1 ← V1 + B ; V2 ← V2 + C ; V3 ← V3 + D ; V4 ← V4 + E

V ← V0‖V1‖V2‖V3‖V4

return V

Figure 8.1: The SHA1 hash function and the underlying SHF1 family.

In trying to define this collision-resistance property of SHA1 we immediately run into “foundational” problems.
We would like to say that it is computationally infeasible to output a pair of distinct strings M and M ′ that
collide under SHA1. But in what sense could it be infeasible? There is a program—indeed a very short an
simple one, having just two “print” statements—whose output specifies a collision. It’s not computationally
hard to output a collision; it can’t be. The only difficulty is our human problem of not knowing what this
program is.

It seems very hard to make a mathematical definition that captures the idea that human beings can’t find
collisions in SHA1. In order to reach a mathematically precise definition we are going to have to change the
very nature of what we conceive to be a hash function. Namely, rather than it being a single function, it will be
a family of functions. This is unfortunate in some ways, because it distances us from concrete hash functions
like SHA1. But no alternative is known.
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X ∧ Y bitwise AND of X and Y
X ∨ Y bitwise OR of X and Y
X ⊕ Y bitwise XOR of X and Y
¬X bitwise complement of X
X + Y integer sum modulo 232 of X and Y

ROTLl(X) circular left shift of bits of X by l positions (0 ≤ l ≤ 31)

Figure 8.2: Operations on 32-bit words used in sha1.

Pre-key attack phase A selects 2 − s points

Key selection phase A key K is selected at random from K

Post-key attack phase A is given K and returns s points

Winning condition The 2 points selected by A form a collision for HK

Figure 8.3: Framework for security notions for collision-resistant hash functions. The three choices of s ∈ {0, 1, 2}
give rise to three notions of security.

8.2 Collision-resistant hash functions

A hash function for us is a family of functions H: K × D → R. Here D is the domain of H and R is the range
of H. As usual, if K ∈ K is a particular key then HK : D → R is defined for all M ∈ D by HK(M) = H(K, M).
This is the instance of H defined by key K.

An example is SHF1: {0, 1}128 × {0, 1}<264 → {0, 1}160, as described in Figure 8.1. This hash function takes a
128-bit key and an input M of at most 264 bits and returns a 160-bit output. The function SHA1 is an instance
of this family, namely the one whose associated key is

5A827999‖6ED9EBA1‖8F1BBCDC‖CA62C1D6 .

Let H: K×D → R be a hash function. Here is some notation we use in this chapter. For any key K and y ∈ R
we let

H−1
K (y) = { x ∈ D : HK(x) = y }

denote the pre-image set of y under HK . Let

Image(HK) = { HK(x) : x ∈ D }

denote the image of HK .

A collision for a function h: D → R is a pair x1, x2 ∈ D of points such that (1) HK(x1) = HK(x2) and
(2) x1 6= x2. The most basic security property of a hash function is collision-resistance, which measures the
ability of an adversary to find a collision for an instance of a family H. There are different notions of collision-
resistance, varying in restrictions put on the adversary in its quest for a collision.

To introduce the different notions, we imagine a game, parameterized by an integer s ∈ {0, 1, 2}, and involving
an adversary A. It consists of a pre-key attack phase, followed by a key-selection phase, followed by a post-key
attack phase. The adversary is attempting to find a collision for HK , where key K is selected at random from
K in the key-selection phase. Recall that a collision consists of a pair x1, x2 of (distinct) points in D. The
adversary is required to specify 2 − s points in the pre-key attack phase, before it has any information about
the key. (The latter has yet to be selected.) Once the adversary has specified these points and the key has been
selected, the adversary is given the key, and will choose the remaining s points as a function of the key, in the
post-key attack phase. It wins if the 2 = (2 − s) + s points it has selected form a collision for HK .
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Expcr2-kk
H (A)

K
$← K ; (x1, x2)

$← A(K)

if ( HK(x1) = HK(x2) and x1 6= x2 and x1, x2 ∈ D )
then return 1 else return 0

Expcr1-kk
H (A)

(x1, st)
$← A() ; K

$← K ; x2
$← A(K, st)

if ( HK(x1) = HK(x2) and x1 6= x2 and x1, x2 ∈ D )
then return 1 else return 0

Expcr0
H (A)

(x1, x2)
$← A() ; K

$← K
if ( HK(x1) = HK(x2) and x1 6= x2 and x1, x2 ∈ D )

then return 1 else return 0

Figure 8.4: Experiments defining security notions for three kinds of collision-resistant hash functions under
known-key attack.

Figure 8.3 summarizes the framework. The three choices of the parameter s give rise to three notions of security.
The higher the value of s the more power the adversary has, and hence the more stringent is the corresponding
notion of security. Figure 8.4 provides in more detail the experiments underlying the three attacks arising from
the above framework. We represent by st information that the adversary wishes to maintain across its attack
phases. It will output this information in the pre-key attack phase, and be provided it at the start of the
post-key attack phase.

In a variant of this model that we consider in Section 8.6, the adversary is not given the key K in the post-key
attack phase, but instead is given an oracle for HK(·). To disambiguate, we refer to our current notions as
capturing collision-resistance under known-key attack, and the notions of Section 8.6 as capturing collision-
resistance under hidden-key attack. The notation in the experiments of Figure 8.4 and Definition 8.1 reflects
this via the use of “kk”, except that for CR0, known and hidden key attacks coincide, and hence we just say
cr0.

The three types of hash functions we are considering are known by other names in the literature, as indicated
in Figure 8.5.

Definition 8.1 Let H: K × D → R be a hash function and let A be an algorithm. We let

Advcr2-kk
H (A) = Pr

[

Expcr2-kk
H (A) = 1

]

Advcr1-kk
H (A) = Pr

[

Expcr1-kk
H (A) = 1

]

Advcr0
H (A) = Pr

[
Expcr0

H (A) = 1
]

.

In measuring resource usage of an adversary we use our usual conventions. Although there is formally no
definition of a “secure” hash function, we will talk of a hash function being CR2, CR1 or CR0 with the intended
meaning that its associated advantage function is small for all adversaries of practical running time.

Note that the running time of the adversary is not really relevant for CR0, because we can always imagine that
hardwired into its code is a “best” choice of distinct points x1, x2, meaning a choice for which

Pr
[

HK(x1) = HK(x2) : K
$← K

]
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Type Name(s) in literature

CR2-KK collision-free, collision-resistant, collision-intractable

CR1-KK universal one-way [152] (aka. target-collision resistant [27])

CR0 universal, almost universal

Figure 8.5: Types of hash functions, with names in our framework and corresponding names found in the
literature.

= max
y1 6=y2

Pr
[

HK(y1) = HK(y2) : K
$← K

]

.

The above value equals Advcr0
H (A) and is the maximum advantage attainable.

Clearly, a CR2 hash function is also CR1 and a CR1 hash function is also CR0. The following states the
corresponding relations formally. The proof is trivial and is omitted.

Proposition 8.2 Let H: K×D → R be a hash function. Then for any adversary A0 there exists an adversary
A1 having the same running time as A0 and

Advcr0
H (A0) ≤ Advcr1-kk

H (A1) .

Also for any adversary A1 there exists an adversary A2 having the same running time as A1 and

Advcr1-kk
H (A1) ≤ Advcr2-kk

H (A2) .

We believe that SHF1 is CR2, meaning that there is no practical algorithm A for which Advcr2-kk
H (A) is

appreciably large. This is, however, purely a belief, based on the current inability to find such an algorithm.
Perhaps, later, such an algorithm will emerge.

It is useful, for any integer n, to get SHF1n: {0, 1}n → {0, 1}160 denote the restriction of SHF1 to the domain
{0, 1}n. Note that a collision for SHF1n

K is also a collision for SHF1K , and it is often convenient to think of
attacking SHF1n for some fixed n rather than SHF1 itself.

8.3 Collision-finding attacks

Let us focus on CR2, which is the most important property for the applications we will see later. We consider
different types of CR2-type collision-finding attacks on a family H: K × D → R where D, R are finite sets. We
assume the family performs some reasonable compression, say |D| ≥ 2|R|. Canonical example families to keep
in mind are H = SHF1n for n ≥ 161 and shf1, the compression function of SHF1.

Collision-resistance does not mean it is impossible to find a collision. Analogous to the case of one-wayness,
there is an obvious collision-finding strategy. Let us enumerate the elements of D in some way, so that D =
{D1, D2, . . . , Dd} where d = |D|. The following adversary A implements an exhaustive search collision-finding
attack:

Adversary A(K)

x1
$← D ; y ← HK(x1)

for i = 1, . . . , q do
if (HK(Di) = y and x1 6= Di) then return x1, Di

return FAIL
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for i = 1, . . . , q do // q is the number of trials

xi
$← D ; yi ← HK(xi)

if (there exists j < i such that yi = yj but xi 6= xj) // collision found

then return xi, xj

return FAIL // No collision found

Figure 8.6: Birthday attack on a hash function H: K×D → R. The attack is successful in finding a collision if
it does not return FAIL.

We call q the number of trials. Each trial involves one computation of HK , so the number of trials is a measure
of the time taken by the attack. To succeed, the attack requires that H−1

K (y) has size at least two, which
happens at least half the time if |D| ≥ 2|R|. However, we would still expect that it would take about q = |D|
trials to find a collision, which is prohibitive, for D is usually large. For example, for F = shf1, the domain
has size 2672, far too large. For SHF1n, we would choose n as small as possible, but need n ≥ 161 to ensure
collisions exist, so the attack uses 2161 computations of HK , which is not practical.

Now here’s another idea. We pick points at random, hoping that their image under HK equals the image under
HK of an initial target point. Call this the random-input collision-finding attack. It is implemented like this:

Adversary A(K)

x1
$← D ; y ← HK(x1)

for i = 1, . . . , q do

x2
$← D

if (HK(x2) = y and x1 6= x2) then return x1, x2

return FAIL

A particular trial finds a collision with probability (about) 1 in |R|, so we expect to find a collision in about
q = |R| trials. This is much better than the |D| trials used by our first attempt. In particular, a collision for
shf1 would be found in time around 2160 rather than 2672. But this is still far from practical. Our conclusion is
that as long as the range size of the hash function is large enough, this attack is not a threat.

We now consider another strategy, called a birthday attack, that turns out to be much better than the above.
It is illustrated in Figure 8.6. It picks at random q points from the domain, and applies HK to each of them. If
it finds two distinct points yielding the same output, it has found a collision for HK . The question is how large
q need be to find a collision. The answer may seem surprising at first. Namely, q = O(

√

|R|) trials suffices.

We will justify this later, but first let us note the impact. Consider SHA1n with n ≥ 161. As we indicated,
the random-input collision-finding attack takes about 2160 trials to find a collision. The birthday attack on the
other hand takes around

√
2160 = 280 trials. This is MUCH less than 2160. Similarly, the birthday attack finds

a collision in shf1 in around 280 trials while while random-input collision-finding takes about 2160 trials.

To see why the birthday attack performs as well as we claimed, we recall the following game. Suppose we have
q balls. View them as numbered, 1, . . . , q. We also have N bins, where N ≥ q. We throw the balls at random
into the bins, one by one, beginning with ball 1. At random means that each ball is equally likely to land in
any of the N bins, and the probabilities for all the balls are independent. A collision is said to occur if some
bin ends up containing at least two balls. We are interested in C(N, q), the probability of a collision. As shown
in the Appendix,

C(N, q) ≈ q2

2N
(8.1)

for 1 ≤ q ≤
√

2N . Thus C(N, q) ≈ 1 for q ≈
√

2N .

The relation to birthdays arises from the question of how many people need be in a room before the probability
of there being two people with the same birthday is close to one. We imagine each person has a birthday that is
a random one of the 365 days in a year. This means we can think of a person as a ball being thrown at random
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into one of 365 bins, where the i-th bin represents having birthday the i-th day of the year. So we can apply the
Proposition from the Appendix with N = 365 and q the number of people in the room. The Proposition says
that when the room contains q ≈

√
2 · 365 ≈ 27 people, the probability that there are two people with the same

birthday is close to one. This number (27) is quite small and may be hard to believe at first hearing, which is
why this is sometimes called the birthday paradox.

To see how this applies to the birthday attack of Figure 8.6, let us enumerate the points in the range as
R1, . . . , RN , where N = |R|. Each such point defines a bin. We view xi as a ball, and imagine that it is thrown
into bin yi, where yi = HK(xi). Thus, a collision of balls (two balls in the same bin) occurs precisely when
two values xi, xj have the same output under HK . We are interested in the probability that this happens as a
function of q. (We ignore the probability that xi = xj , counting a collision only when HK(xi) = HK(xj). It
can be argued that since D is larger than R, the probability that xi = xj is small enough to neglect.)

However, we cannot apply the birthday analysis directly, because the latter assumes that each ball is equally
likely to land in each bin. This is not, in general, true for our attack. Let P (Rj) denote the probability that a
ball lands in bin Rj , namely the probability that HK(x) = Rj taken over a random choice of x from D. Then

P (y) =
|H−1

K (Rj)|
|D| .

In order for P (R1) = P (R2) = · · · = P (RN ) to be true, as required to apply the birthday analysis, it must be
the case that

|H−1
K (R1)| = |H−1

K (R2)| = · · · = |H−1
K (RN )| .

A function HK with this property is called regular, and H is called regular if HK is regular for every K. Our
conclusion is that if H is regular, then the probability that the attack succeeds is roughly C(N, q). So the above
says that in this case we need about q ≈

√
2N =

√

2 · |R| trials to find a collision with probability close to one.

If H is not regular, it turns out the attack succeeds even faster, telling us that we ought to design hash functions
to be as “close” to regular as possible [22].

In summary, there is a 2l/2 or better time attack to find collisions in any hash function outputting l bits. This
leads designers to choose l large enough that 2l/2 is prohibitive. In the case of SHF1 and shf1, the choice
is l = 160 because 280 is indeed a prohibitive number of trials. These functions cannot thus be considered
vulnerable to birthday attack. (Unless they turn out to be extremely non-regular, for which there is no evidence
so far.)

Ensuring, by appropriate choice of output length, that a function is not vulnerable to a birthday attack does
not, of course, guarantee it is collision resistant. Consider the family H: K × {0, 1}161 → {0, 1}160 defined as
follows. For any K and any x, function HK(x) returns the first 160 bits of x. The output length is 160, so a
birthday attack takes 280 time and is not feasible, but it is still easy to find collisions. Namely, on input K,
an adversary can just pick some 160-bit y and output y0, y1. This tells us that to ensure collision-resistance it
is not only important to have a long enough output but also design the hash function so that there no clever
“shortcuts” to finding a collision, meaning no attacks that exploit some weakness in the structure of the function
to quickly find collisions.

We believe that shf1 is well-designed in this regard. Nobody has yet found an adversary that finds a collision
in shf1 using less than 280 trials. Even if a somewhat better adversary, say one finding a collision for shf1 in 265

trials, were found, it would not be devastating, since this is still a very large number of trials, and we would
still consider shf1 to be collision-resistant.

If we believe shf1 is collision-resistant, Theorem 8.8 tells us that SHF1, as well as SHF1n, can also be considered
collision-resistant, for all n.

8.4 One-wayness of collision-resistant hash functions

Intuitively, a family H is one-way if it is computationally infeasible, given HK and a range point y = HK(x),
where x was chosen at random from the domain, to find a pre-image of y (whether x or some other) under HK .
Since this definition too has a hidden-key version, we indicate the known-key in the notation below.
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Definition 8.3 Let H: K × D → R be a family of functions and let A be an algorithm. We consider the
following experiment:

Expow-kk
H (A)

K
$← K ; x

$← D ; y ← HK(x) ; x′ $← A(K, y)

If (HK(x′) = y and x′ ∈ D) then return 1 else return 0

We let

Advow-kk
H (A) = Pr

[

Expow-kk
H (A) = 1

]

.

We now ask ourselves whether collision-resistance implies one-wayness. It is easy to see, however, that, in the
absence of additional assumptions about the hash function than collision-resistance, the answer is “no.” For
example, let H be a family of functions every instance of which is the identity function. Then H is highly
collision-resistant (the advantage of an adversary in finding a collision is zero regardless of its time-complexity
since collisions simply don’t exist) but is not one-way.

However, we would expect that “genuine” hash functions, meaning ones that perform some non-trivial compres-
sion of their data (ie. the size of the range is more than the size of the domain) are one-way. This turns out to
be true, but needs to be carefully quantified. To understand the issues, it may help to begin by considering the
natural argument one would attempt to use to show that collision-resistance implies one-wayness.

Suppose we have an adversary A that has a significant advantage in attacking the one-wayness of hash function
H. We could try to use A to find a collision via the following strategy. In the pre-key phase (we consider a
type-1 attack) we pick and return a random point x1 from D. In the post-key phase, having received the key
K, we compute y = HK(x1) and give K, y to A. The latter returns some x2, and, if it was successful, we know
that HK(x2) = y. So HK(x2) = HK(x1) and we have a collision.

Not quite. The catch is that we only have a collision if x2 6= x1. The probability that this happens turns out
to depend on the quantity:

PreImH(1) = Pr
[

|H−1
K (y)| = 1 : K

$← K ; x
$← D ; y ← HK(x)

]

.

This is the probability that the size of the pre-image set of y is exactly 1, taken over y generated as shown. The
following Proposition says that a collision-resistant function H is one-way as long as PreImH(1) is small.

Proposition 8.4 Let H: K × D → R be a hash function. Then for any A there exists a B such that

Advow-kk
H (A) ≤ 2 · Advcr1-kk

H (B) + PreImH(1) .

Furthermore the running time of B is that of A plus the time to sample a domain point and compute H
once.

The result is about the CR1 type of collision-resistance. However Proposition 8.2 implies that the same is true
for CR2.

A general and widely-applicable corollary of the above Proposition is that collision-resistance implies one-wayness
as long as the domain of the hash function is significantly larger than its range. The following quantifies this.

Corollary 8.5 Let H: K × D → R be a hash function. Then for any A there exists a B such that

Advow-kk
H (A) ≤ 2 · Advcr1-kk

H (B) +
|R|
|D| .

Furthermore the running time of B is that of A plus the time to sample a domain point and compute H once.
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Proof of Corollary 8.5: For any key K, the number of points in the range of HK that have exactly one
pre-image certainly cannot exceed |R|. This implies that

PreImH(1) ≤ |R|
|D| .

The corollary follows from Proposition 8.4.

Corollary 8.5 says that if H is collision-resistant, and performs enough compression that |R| is much smaller
than |D|, then it is also one-way. Why? Let A be a practical adversary that attacks the one-wayness of H.
Then B is also practical, and since H is collision-resistant we know Advcr1-kk

H (B) is low. Equation (8.2) then
tells us that as long as |R|/|D| is small, Advow-kk

H (A) is low, meaning H is one-way.

As an example, let H be the compression function shf1. In that case R = {0, 1}160 and D = {0, 1}672 so
|R|/|D| = 2−512, which is tiny. We believe shf1 is collision-resistant, and the above thus says it is also one-way.

There are some natural hash functions, however, for which Corollary 8.5 does not apply. Consider a hash
function H every instance of which is two-to-one. The ratio of range size to domain size is 1/2, so the right
hand side of the equation of Corollary 8.5 is 1, meaning the bound is vacuous. However, such a function is a
special case of the one considered in the following Proposition.

Corollary 8.6 Suppose 1 ≤ r < d and let H: K × {0, 1}d → {0, 1}r be a hash function which is regular,
meaning |H−1

K (y)| = 2d−r for every y ∈ {0, 1}r and every K ∈ K. Then for any A there exists a B such that

Advow-kk
H (A) ≤ 2 · Advcr1-kk

H (B) .

Furthermore the running time of B is that of A plus the time to sample a domain point and compute H once.

Proof of Corollary 8.6: The assumption d > r implies that PreImH(1) = 0. Now apply Proposition 8.4.

We now turn to the proof of Proposition 8.4.

Proof of Proposition 8.4: Here’s how B works:

Pre-key phase

Adversary B()

x1
$← D ; st ← x1

return (x1, st)

Post-key phase

Adversary B(K, st)
Retrieve x1 from st

y ← HK(x1) ; x2
$← B(K, y)

return x2

Let Pr [·] denote the probability of event “·” in experiment Expcr1-kk
H (B). For any K ∈ K let

SK = { x ∈ D : |H−1
K (HK(x))| = 1 } .

Advcr1-kk
H (B) (8.2)

= Pr [HK(x2) = y ∧ x1 6= x2] (8.3)

≥ Pr [HK(x2) = y ∧ x1 6= x2 ∧ x1 6∈ SK ] (8.4)

= Pr [x1 6= x2 | HK(x2) = y ∧ x1 6∈ SK ] · Pr [HK(x2) = y ∧ x1 6∈ SK ] (8.5)
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≥ 1

2
· Pr [HK(x2) = y ∧ x1 6∈ SK ] (8.6)

≥ 1

2
· (Pr [HK(x2) = y] − Pr [x1 ∈ SK ]) (8.7)

=
1

2
·
(

Advow-kk
H (A) − PreImH(1)

)

. (8.8)

Re-arranging terms yields Equation (8.2). Let us now justify the steps above. Equation (8.3) is by definition
of Advcr1-kk

H (B) and B. Equation (8.4) is true because Pr[E] ≥ Pr[E ∧ F ] for any events E, F . Equation (8.5)
uses the standard formula Pr[E ∧ F ] = Pr[E|F ] · Pr[F ]. Equation (8.6) is justified as follows. Adversary A
has no information about x1 other than that it is a random point in the set H−1

K (y). However if x1 6∈ SK

then |H−1
K (y)| ≥ 2. So the probability that x2 6= x1 is at least 1/2 in this case. Equation (8.7) applies another

standard probabilistic inequality, namely that Pr[E ∧ F ] ≥ Pr[E] − Pr[F ]. Equation (8.8) uses the definitions
of the quantities involved.

8.5 The MD transform

We saw above that SHF1 worked by iterating applications of its compression function shf1. The latter, under
any key, compresses 672 bits to 160 bits. SHF1 works by compressing its input 512 bits at a time using shf1.

The iteration method has been chosen carefully. It turns out that if shf1 is collision-resistant, then SHF1 is
guaranteed to be collision-resistant. In other words, the harder task of designing a collision-resistant hash
function taking long and variable-length inputs has been reduced to the easier task of designing a collision-
resistant compression function that only takes inputs of some fixed length.

This has clear benefits. We need no longer seek attacks on SHF1. To validate it, and be assured it is collision-
resistant, we need only concentrate on validating shf1 and showing the latter is collision-resistant.

This is one case of an important hash-function design principle called the MD paradigm [145, 67]. This paradigm
shows how to transform a compression function into a hash function in such a way that collision-resistance of
the former implies collision-resistance of the latter. We are now going to take a closer look at this paradigm.

Let b be an integer parameter called the block length, and v another integer parameter called the chaining-
variable length. Let h: K × {0, 1}b+v → {0, 1}v be a family of functions that we call the compression function.
We assume it is collision-resistant.

Let B denote the set of all strings whose length is a positive multiple of b bits, and let D be some subset of

{0, 1}<2b

.

Definition 8.7 A function pad: D → B is called a MD-compliant padding function if it has the following
properties for all M,M1,M2 ∈ D:

(1) M is a prefix of pad(M)

(2) If |M1| = |M2| then |pad(M1)| = |pad(M2)|
(3) If M1 6= M2 then the last block of pad(M1) is different from the last block of pad(M2).

A block, above, consists of b bits. Remember that the output of pad is in B, meaning is a sequence of b-bit
blocks. Condition (3) of the definition is saying that if two messages are different then, when we apply pad to
them, we end up with strings that differ in their final blocks.

An example of a MD-compliant padding function is shapad. However, there are other examples as well.

Now let IV be a v-bit value called the initial vector. We build a family H: K × D → {0, 1}v from h and pad as
illustrated in Figure 8.7. Notice that SHF1 is such a family, built from h = shf1 and pad = shapad. The main
fact about this method is the following.
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H(K, M)
y ← pad(M)
Parse y as M1‖M2‖ · · · ‖Mn where |Mi| = b (1 ≤ i ≤ n)

V ← IV

for i = 1, . . . , n do

V ← h(K, Mi‖V )

Return V

Adversary Ah(K)

Run AH(K) to get its output (x1, x2)

y1 ← pad(x1) ; y2 ← pad(x2)

Parse y1 as M1,1‖M1,2‖ · · · ‖M1,n[1] where |M1,i| = b (1 ≤ i ≤ n[1])

Parse y2 as M2,1‖M2,2‖ · · · ‖M2,n[2] where |M2,i| = b (1 ≤ i ≤ n[2])

V1,0 ← IV ; V2,0 ← IV

for i = 1, . . . , n[1] do V1,i ← h(K,M1,i‖V1,i−1)

for i = 1, . . . , n[2] do V2,i ← h(K,M2,i‖V2,i−1)

if (V1,n[1] 6= V2,n[2] OR x1 = x2) return FAIL

if |x1| 6= |x2| then return (M1,n[1]‖V1,n[1]−1,M2,n[2]‖V2,n[2]−1)

n ← n[1] // n = n[1] = n[2] since |x1| = |x2|

for i = n downto 1 do

if M1,i‖V1,i−1 6= M2,i‖V2,i−1 then return (M1,i‖V1,i−1, M2,i‖V2,i−1)

Figure 8.7: Hash function H defined from compression function h via the MD paradigm, and adversary Ah for
the proof of Theorem 8.8.

Theorem 8.8 Let h: K × {0, 1}b+v → {0, 1}v be a family of functions and let H: K × D → {0, 1}v be built
from h as described above. Suppose we are given an adversary AH that attempts to find collisions in H. Then
we can construct an adversary Ah that attempts to find collisions in h, and

Advcr2-kk
H (AH) ≤ Advcr2-kk

h (Ah) . (8.9)

Furthermore, the running time of Ah is that of AH plus the time to perform (|pad(x1)| + |pad(x2)|)/b compu-
tations of h where (x1, x2) is the collision output by AH .

This theorem says that if h is collision-resistant then so is H. Why? Let AH be a practical adversary attacking
H. Then Ah is also practical, because its running time is that of AH plus the time to do some extra computations
of h. But since h is collision-resistant we know that Advcr2-kk

h (Ah) is low. Equation (8.9) then tells us that
Advcr2-kk

H (AH) is low, meaning H is collision-resistant as well.

Proof of Theorem 8.8: Adversary Ah, taking input a key K ∈ K, is depicted in Figure 8.7. It runs AH on
input K to get a pair (x1, x2) of messages in D. We claim that if x1, x2 is a collision for HK then Ah will return
a collision for hK .

Adversary Ah computes V1,n[1] = HK(x1) and V2,n[2] = HK(x2). If x1, x2 is a collision for HK then we know
that V1,n[1] = V2,n[2]. Let us assume this. Now, let us look at the inputs to the application of hK that yielded
these outputs. If these inputs are different, they form a collision for hK .

The inputs in question are M1,n[1]‖V1,n[1]−1 and M2,n[2]‖V2,n[2]−1. We now consider two cases. The first case
is that x1, x2 have different lengths. Item (3) of Definition 8.7 tells us that M1,n[1] 6= M2,n[2]. This means that
M1,n[1]‖V1,n[1]−1 6= M2,n[2]‖V2,n[2]−1, and thus these two points form a collision for hK that can be output by
Ah.

The second case is that x1, x2 have the same length. Item (2) of Definition 8.7 tells us that y1, y2 have the same
length as well. We know this length is a positive multiple of b since the range of pad is the set B, so we let n be
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Expcr2-hk
H (A)

K
$← K ; Run AHK(·)()

If there exist x1, x2 such that

– x1 6= x2 and x1, x2 ∈ D
– Oracle queries x1, x2 were made by A
– The answers returned by the oracle were the same

then return 1 else return 0

Expcr1-hk
H (A)

(x1, st)
$← A() ; K

$← K ; Run AHK(·)(st)

If there exists x2 such that

– x1 6= x2 and x1, x2 ∈ D
– Oracle queries x1, x2 were made by A
– The answers returned by the oracle were the same

then return 1 else return 0

Figure 8.8: Experiments defining security notions for two kinds of collision-resistant hash functions under
hidden-key attack.

the number of b-bit blocks that comprise y1 and y2. Let Vn denote the value V1,n, which by assumption equals
V2,n. We compare the inputs M1,n‖V1,n−1 and M2,n‖V2,n−1 that under hK yielded Vn. If they are different,
they form a collision for hK and can be returned by Ah. If, however, they are the same, then we know that
V1,n−1 = V2,n−1. Denoting this value by Vn−1, we now consider the inputs M1,n−1‖V1,n−2 and M2,n−1‖V2,n−2

that under hK yield Vn−1. The argument repeats itself: if these inputs are different we have a collision for hK ,
else we can step back one more time.

Can we get stuck, continually stepping back and not finding our collision? No, because y1 6= y2. Why is the
latter true? We know that x1 6= x2. But item (1) of Definition 8.7 says that x1 is a prefix of y1 and x2 is a
prefix of y2. So y1 6= y2.

We have argued that on any input K, adversary Ah finds a collision in hK exactly when AH finds a collision
in HK . This justifies Equation (8.9). We now justify the claim about the running time of Ah. The main
component of the running time of Ah is the time to run AH . In addition, it performs a number of computations
of h equal to the number of blocks in y1 plus the number of blocks in y2. There is some more overhead, but
small enough to neglect.

8.6 Collision-resistance under hidden-key attack

In a hidden-key attack, the adversary does not get the key K in the post-key attack phase, but instead gets
an oracle for HK(·). There are again three possible notions of security, analogous to those in Figure 8.3 except
that, in the post-key attack phase, A is not given K but is instead given an oracle for HK(·). The CR0 notion
however coincides with the one for known-key attacks since by the time the post-key attack phase is reached, a
cr0-adversary has already output both its points, so we get only two new notions. Formal experiments defining
these two notions are given in Figure 8.8.

Definition 8.9 Let H: K × D → R be a hash function and let A be an algorithm. We let

Advcr2-hk
H (A) = Pr

[

Expcr2-hk
H (A) = 1

]

Advcr1-hk
H (A) = Pr

[

Expcr1-hk
H (A) = 1

]

.
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8.7 Problems

Problem 8.10 Hash functions have sometimes been constructed using a block cipher, and often this has not
gone well. Let E: K×{0, 1}n → {0, 1}n be a block cipher and consider constructing H: K×({0, 1}n)+ → {0, 1}n

by way of the CBC construction: let the hash of M1 · · ·Mm be Ym where Y0 = 0n and Yi = EK(Hi−1⊕Mi) for
i ≥ 1. Here we select K to be some public constant. Show that this hash function is not collision-resistant (no
matter how good is the block cipher E).

Problem 8.11 Let H : K × {0, 1}a → {0, 1}n be an ǫ-AU hash-function family. Construct from H an ǫ-AU
hash-function family H ′ : K × {0, 1}2a → {0, 1}2n.

Problem 8.12 Let H : K × {0, 1}a → {0, 1}n be an ǫ-AU hash-function family. Construct from H an ǫ2-AU
hash-function family H ′ : K2 × {0, 1}a → {0, 1}2n.



C h a p t e r 9

Message authentication

In most people’s minds, privacy is the goal most strongly associated to cryptography. But message authentication
is arguably even more important. Indeed you may or may not care if some particular message you send out
stays private, but you almost certainly do want to be sure of the originator of each message that you act on.
Message authentication is what buys you that guarantee.

Message authentication allows one party—the Sender—to send a message to another party—the Receiver—
in such a way that if the message is modified en route, then the Receiver will almost certainly detect this.
Message authentication is also called “data-origin authentication,” since it authenticates the point-of-origin for
each message. Message authentication is said to protect the “integrity” of messages, ensuring that each that is
received and deemed acceptable is arriving in the same condition that it was sent out—with no bits inserted,
missing, or modified.

Here we’ll be looking at the shared-key setting for message authentication (remember that message authentica-
tion in the public-key setting is the problem addressed by digital signatures). In this case the Sender and the
Receiver share a secret key, K, which they’ll use to authenticate their transmissions. We’ll define the message
authentication goal and we’ll describe some different ways to achieve it. As usual, we’ll be careful to pin down
the problem we’re working to solve.

9.1 The setting

It is often crucial for an agent who receives a message to be sure who sent it out. If a hacker can call into
his bank’s central computer and produce deposit transactions that appear to be coming from a branch office,
easy wealth is just around the corner. If an unprivilaged user can interact over the network with his company’s
mainframe in such a way that the machine thinks that the packets it is receiving are coming from the system
administrator, then all the machine’s access control mechanisms are for naught. An Internet interlouper who
can provide bogus financial data to on-line investors by making the data seem to have come from a reputable
source when it does not might induce an enemy to make a disasterous investment.

In all of these cases the risk is that an adversary A—the Forger—will create messages that look like they come
from some other party, S, the (legitimate) Sender. The attacker will send a message M to R—the Receiver—
under S’s identity. The Receiver R will be tricked into believing that M origiates with S. Because of this wrong
belief, R may act on M in a way that is somehow inappropriate.

The rightful Sender S could be one of many different kinds of entities, like a person, a corporation, a network
address, or a particular process running on a particular machine. As the receiver R, you might know that it
is S that supposedly sent you the message M for a variety of reasons. For example, the message M might be
tagged by an identifier which somehow names S. Or it might be that the manner in which M arrives is a route
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S R

M   M   or
  REJECT

M'

A

S R

K K

M

Figure 9.1: A message-authentication scheme. Sender S wants to send a message M to receiver R in such a
way that R will be sure that M came from S. They share key K. Adversary A controls the communication
channel. Sender S sends an authenticated version of M , M ′, which adversary A may or may not pass on. On
receipt of a message M , receiver R either recovers a message that S really sent, or else R gets an indication
that M is inauthentic.

MAC VF
ACCEPT
      or
REJECT

S R

M Tag

A
K K

Tag

MM

Figure 9.2: A message authentication code (MAC). A MAC is a special-case of a message-authentication scheme,
where the authenticated message is the original message M together with a tag Tag . The adversary controls
the channel, so we can not be sure that M and Tag reach their intended destination. Instead, the Receiver gets
M, T . The Receiver will apply a verification function to K, M and T to decide if M should be regarded as the
transmitted message, M , or as the adversary’s creation.

currently dedicated to servicing traffic from S.

Here we’re going to be looking at the case when S and R already share some secret key, K. How S and R came
to get this shared secret key is a separate question, one that we deal with it in Chapter 11.

Authenticating messages may be something done for the benefit of the Receiver R, but the Sender S will
certainly need to help out—he’ll have to authenticate each of his messages. See Figure 9.1. To authenticate
a message M using the key K the legitimate Sender will apply some “message-authenticating algorithm” S
to K and M , giving rise to an “authenticated message” M ′. The sender S will transmit the authenticated
message M ′ to the receiver R. Maybe the Receiver will get R—and then again, maybe not. The problem is
that an adversary A controls the channel on which messages are being sent. Let’s let M be the message that
the Receiver actually gets. The receiver R, on receipt of M , will apply some “message-recovery algorithm” to K
and M . We want that this should yield one of two things: (1) the original message M , or else (2) an indication
that M should not be regarded as authentic.

Often the authenticated message M ′ is just the original message M together with a fixed-length “tag.” The tag
serves to validate the authenticity of the message M . In this case we call the message-authentication scheme a
message authentication code, or MAC. See Figure 9.2

When the Receiver decides that a message he has received is inauthentic what should he do? The Receiver
might want to just ignore the bogus message: perhaps it was just noise on the channel. Or perhaps taking
action will do more harm than good, opening up new possiblities for denial-of-service attacks. Or the Receiver
may want to take more decisive actions, like tearing down the channel on which the message was received and
informing some human being of apparent mischief. The proper course of action is dictated by the circumstances
and the security policy of the Receiver.

Adversarial success in violating the authenticity of messages demands an active attack: to succeed, the adversary
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has to get some bogus data to the receiver R. If the attacker just watches S and R commuicate she hasn’t won
this game. In some communication scenerios it may be difficult for the adversary to get her own messages to
the receiver R—it might not really control the communication channel. For example, it may be difficult for an
adversary to drop its own messages onto a dedicated phone line or network link. In other environments it may
be trivial, no harder than dropping a packet onto the Internet. Since we don’t know what are the characteristics
of the Sender—Receiver channel it is best to assume the worst and think that the adversary has plenty of power
over the communications media (and even some power over influencing what messages are legitimately sent
out).

We wish to emphasize that the authentication problem is very different from the encryption problem. We are
not worried about secrecy of the message M . Our concern is in whether the adversary can profit by injecting
new messages into the communications stream, not whether she undersands the contents of the communication.
Indeed, as we shall see, encryption provides no ready solution for message authentication.

9.2 Privacy does not imply authenticity

We know how to encrypt data so as to provide privacy, and something often suggested (and done) is to encrypt
as a way to provide data authenticity, too. Fix a symmetric encryption scheme SE = (K, E ,D), and let parties
S and R share a key K for this scheme. When S wants to send a message M to R, she encrypts it, transferring

a ciphertext M ′ = C generated via C
$← EK(M). The receiver B decrypts it and, if it “makes sense”, he regards

the recovered message M = DK(C) as authentic.

The argument that this works is as follows. Suppose, for example, that S transmits an ASCII message M100

which indicates that R should please transfer $100 from the checking account of S to the checking account of
some other party, A. The adversary A wants to change the amount from the $100 to $900. Now if M100 had
been sent in the clear, A can easily modify it. But if M100 is encrypted so that ciphertext C100 is sent, how
is A to modify C100 so as to make S recover the different message M900? The adversary A does not know the
key K, so she cannot just encrypt M900 on her own. The privacy of C100 already rules out that C100 can be
profitably tampered with.

The above argument is completely wrong. To see the flaws let’s first look at a counter-example. If we encrypt
M100 using a one time pad, then all the adversary has to do is to XOR the byte of the ciphertext C100 which
encodes the character “1” with the XOR of the bytes which encode “1” and “9”. That is, when we one-time pad
encrypt, the privacy of the transmission does not make it difficult for the adversary to tamper with ciphertext
so as to produce related ciphertexts.

There are many possible reactions to this counter-example. Let’s look at some.

What you should not conclude is that one-time pad encryption is unsound. The goal of encryption was to
provide privacy, and nothing we have said has suggested that one-time pad encryption does not. Faulting an
encryption scheme for not providing authenticity is like faulting a car for not being able to fly. There is no
reason to expect a tool designed to solve one problem to be effective at solving another. You need an airplane,
not a car, if you want to fly.

You should not conclude that the example is contrived, and that you’d fare far better with some other encryp-
tion method. One-time-pad encryption is not at all contrived. And other methods of encryption, like CBC
encryption, are only marginally better at protecting message integrity. This will be explored in the exercises.

You should not conclude that the failure stemmed from a failure to add “redundancy” before the message was
encrypted. Adding redundancy is something like this: before the Sender S encypts his data he pads it with some
known, fixed string, like 128 bits of zeros. When the receiver decrypts the ciphertext he checks whether the
decrypted string ends in 128 zeros. He rejects the transmission if it does not. Such an approach can, and almost
always will, fail. For example, the added redundancy does absolutely nothing in our one-time pad example.

What you should conclude is that encrypting a message was never an appropriate approach for protecting its
authenticity. With hindsight, this is pretty clear. The fact that data is encrypted need not prevent an adversary
from being able to make the receiver recover data different from that which the sender had intended. Indeed
with most encryption schemes any ciphertext will decrypt to something, so even a random transmission will
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cause the receiver to receive something different from what the Sender intended, which was not to send any
message at all. Now perhaps the random ciphertext will look like garbage to the receiver, or perhaps not. Since
we do not know what the Receiver intends to do with his data it is impossible to say.

Since encryption was not designed for authenticating messages, it very rarely does. We emphasize this because
the belief that good encryption, perahaps after adding redundancy, already provides authenticity, is not only
voiced, but even printed in books or embedded into security systems.

Good cryptographic design is goal-oriented. One must understand and formalize our goal. Only then do we
have the basis on which to design and evaluate potential solutions. Accordingly, our next step is to come up
with a definition for a message-authentication scheme and its security.

9.3 Syntax of message-authentication schemes

A message authentication scheme MA = (K,S,R) is simply a symmetric encryption scheme, consisting of a
triple of algorithms. What is changed is the security goal, which is no longer privacy but authenticity. For this
reason we denote and name the scheme and some of the algorithms differently. What used to be called the
encryption algorithm is now called the message authenticating algorithm; what used to be called the decryption
algorithm is now called the message recovery algorithm.

As we indicated already, a message-authentication code (MAC) is the special case of a message-authentication
scheme in which the authenticated message M ′ consists of M together with a fixed-length string, Tag . Usually
the length of the tag is between 32 and 128 bits. MACs of 32 bits, 64 bits, 96 bits, and 128 bits are common.

It could be confusing, but it is very common practice to call the tag itself a MAC. That is, the scheme itself is
called MAC, but so too is the computed tag.

Definition 9.1 [MAC] A message-authentication code Π consists of three algorithms, Π = (K, MAC, VF), as
follows:

• The randomized key generation algorithm K returns a string K. We let Keys(Π) denote the set of all
strings that have non-zero probability of being output by K. The members of this set are called keys. We

write K
$← K for the operation of executing K and letting K denote the key returned.

• The MAC-generation algorithm MAC, which might be randomized or stateful, takes a key K ∈ Keys(Π)

and a plaintext M ∈ {0, 1}∗ to return a tag Tag ∈ {0, 1}∗ ∪ {⊥}. We write Tag
$← MACK(M) to denote

the operation of executing MAC on K and M and letting Tag denote the tag returned.

• The deterministic MAC-verification algorithm VF takes a key K ∈ Keys(SE), a message M ∈ {0, 1}∗ and
a candidate tag Tag ∈ {0, 1}∗ to return either 1 (accept) or 0 (reject). We write d ← VFK(M, Tag)
to denote the operation of executing VF on K, M and Tag and letting d denote the decision bit returned.

We require that for any key K ∈ Keys(Π) and any message M ∈ {0, 1}∗

Pr
[

Tag
$← MACK(M) : Tag = ⊥ OR VFK(M, Tag) = 1

]

= 1 .

A number τ ≥ 1 is called the tag-length associated to the scheme if for any key K ∈ Keys(Π) and any message
M ∈ {0, 1}∗

Pr
[

Tag
$← MACK(M) : Tag = ⊥ OR |Tag | = τ

]

= 1 .

Any message authentication code gives rise to an associated message authentication scheme in which the au-
thenticated message consists of the message together with the tag. In more detail, if Π = (K, MAC,VF) is a
message authentication code, then its associated message authentication scheme is MA = (K,S,R) where the
key-generation algorithm remains unchanged and
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Algorithm SK(M)

Tag
$← MACK(M)

M ′ ← (M, Tag)
Return M ′

Algorithm RK(M ′)
Parse M ′ as (M, Tag)
If VFK(M, Tag) = 1 then return 1 else return 0

Let us make a few comments about Definition 9.1. First, we emphasize that, so far, we have only defined MAC
and message-authentication scheme “syntax”—we haven’t yet said anything formal about security. Of course
any viable message-authentication scheme will require some security properties. We’ll get there in a moment.
But first we needed to pin down exactly what type of objects we’re talking about.

Note that our definitions don’t permit stateful message-recovery or stateful MAC-verfication. Stateful functions
for the Receiver can be problematic because of the possiblity of messages not reaching their destiation—it is
too easy for the Receiver to be in a state different from the one that we’d like. All the same, stateful MAC
verification functions are essiential for detecting “replay attacks,” and are therefore important tools.

Recall that it was essential for security of an encryption scheme that the encryption algorithm be probabilistic
or stateful—you couldn’t do well at achieving our strong notions of privacy with a determinisitic encryption
algorithm. But this isn’t true for message authentication. It is possible (and even common) to have secure
message authentication schemes in which the message-authenticating algorithm is deterministic or stateless,
and to have secure message-authentication codes in which the MAC-generation algorithm is deterministic or
stateless.

When the MAC-generation algorithm is deterministic and stateless, MAC verification is invariably accomplished
by having the Verifier compute the correct tag for the received message M (using the MAC-generation function)
and checking that it matches the received tag. That is, the MAC-verification function is simply the following:

algorithm VFK(M, Tag)
Tag ′ ← MACK(M)
if (Tag = Tag ′ and Tag ′ 6= ⊥) then return 1 else return 0.

For a deterministic MAC we need only specify the key-generation function and the MAC-generation function:
the MAC-verification function is then understood to be the one just described. That is, a deterministic MAC
may be specified with a pair of functions, Π = (K, MAC), and not a triple of functions, Π = (K,MAC, VF),
with the understanding that one can later refer to VF and it is the canonical algorithm depicted above.

9.4 A definition of security for MACs

Let’s concentrate on MACs. We begin with a discussion of the issues and then state a formal definition.

9.4.1 Towards a definition of security

The goal that we seek to achieve with a MAC is to be able to detect any attempt by the adversary to modify
the transmitted data. We don’t want the adversary to be able to produce messages that the Receiver will deem
authentic—only the Sender should be able to do this. That is, we don’t want that the adversary A to be able
to create a pair (M, Tag) such that VFK(M, Tag) = 1, but M did not originate with the Sender S. Such a pair
(M, Tag) is called a forgery. If the adversary can make such a pair, she is said to have forged.

In some discussions of security people assume that the adversary’s goal is to recover the secret key K. Certainly
if it could do this, it would be a disaster, since it could then forge anything. It is important to understand,
however, that an adversary might be able to forge without being able to recover the key, and if all we asked was
for the adversary to be unable to recover the key, we’d be asking too little. Forgery is what counts, not key
recovery.

Now it should be admitted right away that some forgeries might be useless to the adversary. For example,
maybe the adversary can forge, but it can only forge strings that look random; meanwhile, suppose that all
“good” messages are supposed to have a certain format. Should this really be viewed as a forgery? The answer



154 Goldwasser and Bellare

is yes. If checking that the message is of a certain format was really a part of validitating the message, then that
should have been considered as part of the message-authentication scheme. In the absence of this, it is not for
us to make assumptions about how the messages are formatted or interpreted. We really have no idea. Good
protocol design means the security is guaranteed no matter what is the application. Asking that the adversary
be unable to forge “meaningful” messages, whatever that might mean, would again be asking too little.

In our adversary’s attempt to forge a message we could consider various attacks. The simplest setting is that
the adversary wants to forge a message even though it has never seen any transmission sent by the Sender. In
this case the adversary must concoct a pair (M, Tag) which passes the verification test, even though it hasn’t
obtained any information to help. This is called a no-message attack. It often falls short of capturing the
capabilities of realistic adversaries, since an adversary who can inject bogus messages onto the communications
media can probably see valid messages as well. We should let the adversary use this information.

Suppose the Sender sends the transmission (M, Tag) consisting of some message M and its legitimate tag Tag .
The Receiver will certainly accept this—we demanded that. Now at once a simple attack comes to mind: the
adversary can just repeat this transmission, (M, Tag), and get the Receiver to accept it once again. This attack
is unavoidable, so far, in that we required in the syntax of a MAC for the MAC-verification functions to be
stateless. If the Verifier accepted (M, Tag) once, he’s bound to do it again.

What we have just described is called a replay attack. The adversary sees a valid (M, Tag) from the Sender,
and at some later point in time it re-transmits it. Since the Receiver accepted it the first time, he’ll do so again.

Should a replay attack count as a valid forgery? In real life it usually should. Say the first message was “Transfer
$1000 from my account to the account of party A.” Then party A may have a simple way to enriching herself:
it just keeps replaying this same MAC’ed message, happily watching her bank balance grow.

It is important to protect against replay attacks. But for the moment we will not try to do this. We will say that
a replay is not a valid forgery; to be valid a forgery must be of a message M which was not already produced by
the Sender. We will see later that we can always achieve security against replay attacks by simple means; that
is, we can take any MAC which is not secure against replay attacks and modify it—after making the Verifier
stateful—so that it will be secure against replay attacks. At this point, not worrying about replay attacks results
in a cleaner problem definition. And it leads us to a more modular protocol-design approach—that is, we cut
up the problem into sensible parts (“basic security” and then “replay security”) solving them one by one.

Of course there is no reason to think that the adversary will be limited to seeing only one example message.
Realistic adversaries may see millions of authenticated messages, and still it should be hard for them to forge.

For some MACs the adversary’s ability to forge will grow with the number qs of legitimate message-MAC pairs
it sees. Likewise, in some sucurity systems the number of valid (M, Tag) pairs that the adversary can obtain
may be architecturally limited. (For example, a stateful Signer may be unwilling to MAC more than a certain
number of messages.) So when we give our quantitative treatment of security we will treat qs as an important
adversarial resource.

How exactly do all these tagged messages arise? We could think of there being some distribution on messages that
the Sender will authenticate, but in some settings it is even possible for the adversary to influence which messages
are tagged. In the worst case, imagine that the adversary itself chooses which messages get authenticated. That
is, the adversary chooses a message, gets its MAC, chooses another message, gets its MAC, and so forth. Then
it tries to forge. This is called an adaptive chosen-message attack. It wins if it succeds in forging the MAC of a
message which it has not queried to the sender.

At first glance it may seem like an adaptive chosen-message attack is unrealisticly generous to our adversary;
after all, if an adversary could really obtain a valid MAC for any message it wanted, wouldn’t that make moot
the whole point of authenticting messages? In fact, there are several good arguments for allowing the adversary
such a strong capability. First, we will see examples—higher-level protocols that use MACs—where adaptive
chosen-message attacks are quite realistic. Second, recall our general principles. We want to design schemes
which are secure in any usage. This requires that we make worst-case notions of security, so that when we err in
realistically modelling adversarial capabilities, we err on the side of caution, allowing the adversary more power
than it might really have. Since eventually we will design schemes that meet our stringent notions of security,
we only gain when we assume our adversary to be strong.

As an example of a simple scenerio in which an adaptive chosen-message attack is realistic, imagine that the
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Figure 9.3: The model for a message authentication code. Adversary A has access to a MAC-generation oracle

and a MAC-verification oracle. The adversary wants to get the MAC-verification oracle to accept some (M, Tag)
for which it didn’t earlier ask the MAC-generation oracle for M .

Sender S is forwarding messages to a Receiver R. The Sender receives messages from any number of third
parties, A1, . . . , An. The Sender gets a piece of data M from party Ai along a secure channel, and then the
Sender transmits to the Receiver 〈i〉‖M‖MACK(〈i〉‖M). This is the Sender’s way of attesting to the fact that
he has received message M from party Ai. Now if one of these third parties, say A1, wants to play an adversarial
role, it will ask the Sender to forward its adaptively-chosen messages M1, M2, . . . to the Reciever. If, based on
what it sees, it can learn the key K, or even if it can learn to forge message of the form 〈2〉‖M , so as to produce
a valid 〈2〉‖M‖MACK(〈2〉‖M), then the intent of the protocol will have been defeated, even though most it
has correctly used a MAC.

So far we have said that we want to give our adversary the ability to obtain MACs for messages of her choosing,
and then we want to look at whether or not it can forge: produce a valid (M, Tag) where it never asked the
Sender to MAC M . But we should recognize that a realistic adversary might be able to produce lots of candidate
forgeries, and it may be content if any of these turn out to be valid. We can model this possiblity by giving the
adversary the capability to tell if a prospective (M, Tag) pair is valid, and saying that the adversary forges if it
ever finds an (M, Tag) pair that is but M was not MACed by the Sender.

Whether or not a real adversary can try lots of possible forgeries depends on the context. Suppose the Verifier
is going to tear down a connection the moment he detects an invalid tag. Then it is unrealistic to try to use
this Verifier to help you determine if a candidate pair (M, Tag) is valid—one mistake, and you’re done for. In
this case, thinking of there being a single attempt to forge a message is quite adequtate.

On the other hand, suppose that a Verifier just ignores any improperly tagged message, while it responds in
some noticably different way if it receives a properly authenticated message. In this case a quite reasonable
adversarial strategy may be ask the Verifier about the validity of a large number of candidate (M, Tag) pairs.
The adversary hopes to find at least one that is valid. When the adversary finds such an (M, Tag) pair, we’ll
say that it has won.

Let us summarize. To be fully general, we will give our adversary two different capabities. The first adversarial
capaiblity is to obtain a MAC M for any message that it chooses. We will call this a signing query. The
adversary will make some number of them, qs. The second adversarial capability is to find out if a particular
pair (M, Tag) is valid. We will call this a verification query. The adversary will make some number of them,
qv. Our adversary is said to succeed—to forge—if it ever makes a verification query (M, Tag) and gets a return
value of 1 (accept) even though the message M is not a message that the adversary already knew a tag for by
viture of an earlier signing query. Let us now proceed more formally.

9.4.2 Definition of security

Let MA = (K, MAC, VF) be an arbitrary message authentication scheme. We will formalize a quantitative
notion of security against adpative chosen-message attack. We begin by describing the model.
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We distill the model from the intuition we have described above. There is no need, in the model, to think of the
Sender and the Verifier as animate entities. The purpose of the Sender, from the adversary’s point of view, is to
authenticate messages. So we will embody the Sender as an oracle that the adversray can use to authenticate
any message M . This “signing oracle,” as we will call it, is our way to provide the adversary black-box access
to the function MACK(·). Likewise, the purpose of the Verifier, from the adversary’s point of view, is to have
something to whom to send attempted forgeries. So we will embody the Verifier as an oracle that the adversray
can use to see if a candidate pair (M, Tag) is valid. This “verification oracle,” as we will call it, is our way
to provide the adversary black-box access to the function VFK(·). Thus, when we become formal, the cast of
characters—the Sender, Verifier, and Adversary—gets reduced to just the adversry, running with her oracles.
The Sender and Verifier have vanished.

Definition 9.2 [MAC Security] Let Π = (K,MAC, VF) be a message authentication code, and let A be an
adversary. We consider the following experiment:

Experiment Expuf-cma
Π (A)

K
$← K

Run AMACK(·),VFK(·,·)

If A made a verification query (M, Tag) such that the following are true
– The verification oracle returned 1
– A did not, prior to making verification query (M, Tag),

make signing query M
Then return 1 else return 0

The uf-cma advantage of A is defined as

Advuf-cma
Π (A) = Pr

[

Expuf-cma
Π (A) = 1

]

.

Let us discuss the above definition. Fix a MAC scheme Π. Then we associate to any adversary A its “advantage,”
or “success probability.” We denote this value as Advuf-cma

Π (A). It’s just the chance that A manages to forge.
The probability is over the choice of key K, any probabilistic choices that MAC might make, and the probabilistic
choices, if any, that the adversary A makes.

As usual, the advantage that can be achieved depends both on the adversary strategy and the resources it uses.
Informally, Π is secure if the advantage of a practical adversary is low.

As usual, there is a certain amount of arbitrariness as to which resources we measure. Certainly it is important
to separate the oracle queries (qs and qv) from the time. In practice, signing queries correspond to messages
sent by the legitimate sender, and obtaining these is probably more difficult than just computing on one’s own.
Verification queries correspond to messages the adversary hopes the Verifier will accept, so finding out if it does
accept these queries again requires interaction. Some system architectures may effectively limit qs and qv. No
system architecture can limit t— that is limited primarilly by the adversary’s budget.

We emphasize that there are contexts in which you are happy with a MAC that makes forgery impractical when
qv = 1 and qs = 0 (an “impersonation attack”) and there are contexts in which you are happy when forgery is
imporactical when qv = 1 and qs = 1 (a “substitution attack”). But it is perhaps more common that you’d like
for forgery to be impractical even when qs is large, like 250, and when qv is large, too.

We might talk of the total length of an adversary’s MAC-generation oracle queries, which is the sum of the
lengths of all messages it queries to this oracle. When we say this value is at most µs we mean it is so across
all possible coins of the adversary and all possible answers returned by the oracle. We might talk of the total
length of an adversary’s MAC-verification oracle queries, which is the sum of the lengths of all messages in the
queries its makes to its MAC-verification oracle. (Each such query is a pair, but we count only the length of
the message). The same conventions apply.

Naturally the key K is not directly given to the adversary, and neither are any random choices or counter used
by the MAC-generation algorithm. The adversary sees these things only to the extent that they are reflected
in the answers to her oracle queries.
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9.5 Examples

Let us examine some example message authentication codes and use the definition to assess their strengths and
weaknesses. We fix a PRF F : {0, 1}k × {0, 1}ℓ → {0, 1}L. Our first scheme Π1 = (K,MAC) is a deterministic,
stateless MAC, so that we specify only two algorithms, the third being the canonical associated verification
algorithm discussed above. The key-generation algorithm simply picks at random a k-bit key K and returns it,
while the MAC-generation algorithm works as follows:

algorithm MACK(M)
if (|M | mod ℓ 6= 0 or |M | = 0) then return ⊥
Break M into ℓ bit blocks M = M [1] . . .M [n]
for i = 1, . . . , n do yi ← FK(M [i])
Tag ← y1⊕ · · ·⊕yn

return Tag

Now let us try to assess the security of this message authentication code.

Suppose the adversary wants to forge the tag of a certain given message M . A priori it is unclear this can be
done. The adversary is not in possession of the secret key K, so cannot compute FK and hence will have a hard
time computing Tag . However, remember that the notion of security we have defined says that the adversary
is successful as long as it can produce a correct tag for some message, not necessarily a given one. We now
note that even without a chosen-message attack (in fact without seeing any examples of correctly tagged data)
the adversary can do this. It can choose a message M consisting of two equal blocks, say M = x‖x where x is
some ℓ-bit string, set Tag ← 0L, and make verification query (M, Tag). Notice that VFK(M, Tag) = 1 because
FK(x)⊕FK(x) = 0L = Tag . So the adversary is successful. In more detail, the adversary is:

Adversary A
MACK(·),VFK(·,·)
1

Let x be some ℓ-bit string
M ← x‖x
Tag ← 0L

d ← VFK(M, Tag)

Then Advuf-cma
Π1

(A1) = 1. Furthermore A1 makes no signing oracle queries, uses t = O(ℓ + L) time, and its
verification query has length 2ℓ-bits, so it is very practical.

There are many other attacks. For example we note that

Tag = FK(M [1])⊕FK(M [2])

is not only the tag of M [1]M [2] but also the tag of M [2]M [1]. So it is possible, given the tag of a message, to
forge the tag of a new message formed by permuting the blocks of the old message. We leave it to the reader
to specify the corresponding adversary and compute its advantage.

Let us now try to strengthen the scheme to avoid these attacks. Instead of applying FK to a data block, we
will first prefix the data block with its index. To do this we pick some parameter m with 1 ≤ m ≤ ℓ − 1,
and write the index as an m-bit string. The MAC-generation algorithm of the deterministic, stateless MAC
Π1 = (K,MAC) is as follows:

algorithm MACK(M)
l ← ℓ − m
if (|M | mod l 6= 0 or |M | = 0 or |M |/l ≥ 2m) then return ⊥
Break M into l bit blocks M = M [1] . . .M [n]
for i = 1, . . . , n do yi ← FK(NtSm(i)‖M [i])
Tag ← y1⊕ · · ·⊕yn

return Tag

As before, the verification algorithm is the canonical one that simply recomputes the tag using MAC and checks
whether it is correct.
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As the code indicates, we divide M into blocks, but the size of each block is smaller than in our previous
scheme: it is now only l = ℓ − m bits. Then we prefix the i-th message block with the value i itself, the block
index, written in binary as a string of length exactly m bits. It is to this padded block that we apply FK before
taking the XOR.

Note that encoding of the block index i as an m-bit string is only possible if i < 2m. This means that we
cannot authenticate a message M having more 2m blocks. This explains the conditions under which the MAC-
generation algorithm returns ⊥. However this is hardly a restriction in practice since a reasonable value of m,
like m = 32, is large enough that typical messages fall in the message space.

Anyway, the question we are really concerned with is the security. Has this improved with respect to Π1? Begin
by noticing that the attacks we found on Π1 no longer work. For example if x is an ℓ − m bit string and we
let M = x‖x then its tag is not likely to be 0L. (This would happen only if FK(NtSm(1)‖x) = FK(NtSm(2)‖x)
which is unlikely if F is a good PRF and impossible if F is a block cipher, since every instance of a block
cipher is a permutation.) Similar arguments show that the second attack discussed above, namely that based
on permuting of message blocks, also has low success against the new scheme. Why? In the new scheme, if
M [1],M [2] are strings of length ℓ − m, then

MACK(M [1]M [2]) = FK(NtSm(1)‖M [1])⊕FK(NtSm(2)‖M [2])

MACK(M [2]M [1]) = FK(NtSm(1)‖M [2])⊕FK(NtSm(2)‖M [1]) .

These are unlikely to be equal for the same reasons discussed above. As an exercise, a reader might upper
bound the probability that these values are equal in terms of the value of the advantage of F at appropriate
parameter values.

However, Π2 is still insecure. The attack however require a more non-trivial usage of the chosen-message
attacking ability. The adversary will query the tagging oracle at several related points and combine the responses
into the tag of a new message. We call it A2–

Adversary A
MACK(·)
2

Let a1, b1 be distinct, ℓ − m bit strings
Let a2, b2 be distinct ℓ − m bit strings
Tag1 ← MACK(a1a2) ; Tag2 ← MACK(a1b2) ; Tag3 ← MACK(b1a2)
Tag ← Tag1⊕Tag2⊕Tag3

d ← VFK(b1b2,Tag)

We claim that Advuf-cma
Π2

(A2) = 1. Why? This requires two things. First that VFK(b1b2, Tag) = 1, and second
that b1b2 was never a query to MACK(·) in the above code. The latter is true because we insisted above that
a1 6= b1 and a2 6= b2, which together mean that b1b2 6∈ {a1a2, a1b2, b1a2}. So now let us check the first claim.
We use the definition of the tagging algorithm to see that

Tag1 = FK(NtSm(1)‖a1)⊕FK(NtSm(2)‖a2)

Tag2 = FK(NtSm(1)‖a1)⊕FK(NtSm(2)‖b2)

Tag3 = FK(NtSm(1)‖b1)⊕FK(NtSm(2)‖a2) .

Now look how A2 defined Tag and do the computation; due to cancellations we get

Tag = Tag1⊕Tag2⊕Tag3

= FK(NtSm(1)‖b1)⊕FK(NtSm(2)‖b2) .

This is indeed the correct tag of b1b2, meaning the value Tag ′ that VFK(b1b2, Tag) would compute, so the latter
algorithm returns 1, as claimed. In summary we have shown that this scheme is insecure.

It turns out that a slight modification of the above, based on use of a counter or random number chosen by the
MAC algorithm, actually yields a secure scheme. For the moment however we want to stress a feature of the
above attacks. Namely that these attacks did not cryptanalyze the PRF F . The cryptanalysis of the message
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authentication schemes did not care anything about the structure of F ; whether it was DES, AES, or anything
else. They found weaknesses in the message authentication schemes themselves. In particular, the attacks work
just as well when FK is a random function, or a “perfect” cipher. This illustrates again the point we have been
making, about the distinction between a tool (here the PRF) and its usage. We need to make better usage of
the tool, and in fact to tie the security of the scheme to that of the underlying tool in such a way that attacks
like those illustrated here are provably impossible under the assumption that the tool is secure.

9.6 The PRF-as-a-MAC paradigm

Pseudorandom functions make good MACs, and constructing a MAC in this way is an excellent approach. Here
we show why PRFs are good MACs, and determine the concrete security of the underlying reduction. The
following shows that the reduction is almost tight—security hardly degrades at all.

Let F : Keys × D → {0, 1}τ be a family of functions. We define the associated message authentication code
Π = (K,MAC) via:

algorithm K
K

$← Keys

return K

algorithm MACK(M)
if (M 6∈ D) then return ⊥
Tag ← FK(M)
Return Tag

Since this is a deterministic stateless MAC, we have not specified a verification algorithm. It is understood to
be the canonical one discussed above.

Note that when we think of a PRF as a MAC it is important that the domain of the PRF be whatever one
wants as the domain of the MAC. So such a PRF probably won’t be realized as a block cipher. It may have to
be realized by a PRF that allows for inputs of many different lengths, since you might want to MAC messages
of many different lenghts. As yet we haven’t demonstrated that we can make such PRFs. But we will. Let us
first relate the security of the above MAC to that of the PRF.

Proposition 9.3 Let F : Keys×D → {0, 1}τ be a family of functions and let Π = (K, MAC) be the associated
message authentication code as defined above. Let A by any adversary attacking Π, making qs MAC-generation
queries of total length µs, qv MAC-verification queries of total length µv, and having running time t. Then
there exists an adversary B attacking F such that

Advuf-cma
Π (A) ≤ Advprf

F (B) +
qv

2τ
. (9.1)

Furthermore B makes qs + qv oracle queries of total length µs + µv and has running time t.

Proof: Remember that B is given an oracle for a function f : D → {0, 1}τ . It will run A, providing it an
environment in which A’s oracle queries are answered by B.

Adversary Bf

d ← 0 ; S ← ∅
Run A

When A asks its signing oracle some query M :
Answer f(M) to A ; S ← S ∪ {M}

When A asks its verification oracle some query (M, Tag):
if f(M) = Tag then

answer 1 to A ; if M 6∈ S then d ← 1
else answer 0 to A

Until A halts
return d
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We now proceed to the analysis. We claim that

Pr
[

Expprf-1
F (B) = 1

]

= Advuf-cma
Π (A) (9.2)

Pr
[

Expprf-0
F (B) = 1

]

≤ qv

2τ
. (9.3)

Subtracting, we get Equation (9.1). Let us now justify the two equations above.

In the first case f is an instance of F , so that the simulated environment that B is providing for A is exactly
that of experiment Expuf-cma

Π (A). Since B returns 1 exactly when A makes a successful verification query, we
have Equation (9.2).

In the second case, A is running in an environment that is alien to it, namely one where a random function is
being used to compute MACs. We have no idea what A will do in this environment, but no matter what, we
know that the probability that any particular verification query (M, Tag) with M 6∈ S will be answered by 1 is
at most 2−τ , because that is the probability that Tag = f(M). Since there are at most qv verification queries,
Equation (9.3) follows.

9.7 The CBC MACs

A very popular class of MACs is obtained via cipher-block chaining of a given block cipher.

9.7.1 The basic CBC MAC

Here is the most basic scheme in this class.

Scheme 9.4 [Basic CBC MAC] Let E: {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. The basic CBC MAC
Π = (K,MAC) is a deterministic, stateless MAC that has as a parameter an associated message space Messages.

The key-generation algorithm K simply picks K via K
$← {0, 1}k and returns K. The MAC generation algorithm

is as follows:

Algorithm MACK(M)
If M 6∈ Messages then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]
C[0] ← 0n

For i = 1, . . . ,m do C[i] ← EK(C[i − 1]⊕M [i])
Return C[m]

See Figure 9.4 for an illustration with m = 4. The verification algorithm VF is the canonical one since this
MAC is deterministic: It just checks, on input (K, M, Tag), if Tag = MACK(M).

As we will see below, the choice of message space Messages is very important for the security of the CBC MAC.
If we take it to be {0, 1}mn for some fixed value m, meaning the length of all authenticated messages is the
same, then the MAC is secure. If however we allow the generation of CBC-MACs for messages of different
lengths, by letting the message space be the set of all strings having length a positive multiple of n, then the
scheme is insecure.

Theorem 9.5 [12] Let E: {0, 1}k × {0, 1}n → {0, 1}n be a block cipher, let m ≥ 1 be an integer, and let Π
be the CBC-MAC of Scheme 9.4 over message space {0, 1}mn. Then for any adversary A making at most q
MAC-generation queries, one MAC-verification query and having running time t there exists an adversary B,
making q + 1 oracle queries and having running time t, such that

Advuf-cma
Π (A) ≤ Advprp-cpa

E (B) +
m2q2

2n−1
.
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Figure 9.4: The CBC MAC, here illustrated with a message M of four blocks, M = M1M2M3M4.

Now consider message space that includes strings of different lengths. Specifically, say it includes {0, 1}n and
{0, 1}2n, meaning messges of one or two blocks may be authenticated. Then the following is an adversary that
has advantage one in attacking the CBC MAC:

Adversary AMACK(·)

Let A,B be n bit strings
TagA ← MACK(A) ; TagAB ← MACK(AB)
M ← TagA⊕B ; TagM ← TagAB

d ← VFK(M, TagM )

This adversary makes only two mac-oracle queries and so is very efficient. Thus the basic CBC MAC is insecure
if one uses it to authenticate messages of varying lengths.

9.7.2 Birthday attack on the CBC MAC

The basic idea behind the attack, due to Preneel and Van Oorschott [169] and (independently) to Krawczyk, is
that internal collisions can be exploited for forgery. The attacks presented in [169] are analyzed assuming the
underlying functions are random, meaning the family to which the CBC-MAC transform is applied is Func(l,l)
or Perm(l). Here we do not make such an assumption. This attack is from [12] and works for any family of
permutations. The randomness in the attack (which is the source of birthday collisions) comes from coin tosses
of the forger only. This makes the attack more general. (We focus on the case of permutations because in
practice the CBC-MAC is usually based on a block cipher.)

Proposition 9.6 Let l, m, q be integers such that 1 ≤ q ≤ 2(l+1)/2 and m ≥ 2. Let F : {0, 1}k×{0, 1}l → {0, 1}l

be a block cipher, and let Π be the CBC-MAC of Scheme 9.4 over message space {0, 1}ml. Then there is a
forger A making q + 1 oracle queries, running for time O(lmq log q) and achieving

Advuf-cma
Π (A) ≥ 0.3 · q(q − 1)

2l
.

The time assessment here puts the cost of an oracle call at one unit.

Comparing the above to Theorem 9.5 we see that the upper bound is tight to within a factor of the square of
the number of message blocks.

We now proceed to the proof. We begin with a couple of lemmas. The first lemma considers a slight variant
of the usual birthday problem and shows that the “collision probability” is still the same as that of the usual
birthday problem.
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Lemma 9.7 Let l, q be integers such that 1 ≤ q ≤ 2(l+1)/2. Fix b1, . . . , bq ∈ {0, 1}l. Then

Pr
[

∃ i, j such that i 6= j and bi⊕ri = bj⊕rj : r1, . . . , rq
$← {0, 1}l

]

≥ 0.3 · q(q − 1)

2l
.

Proof: This is just like throwing q balls into N = 2l bins and lower bounding the collision probability, except
that things are “shifted” a bit: the bin assigned to the i-th ball is ri⊕bi rather than ri as we would usually
imagine. But with bi fixed, if ri is uniformly distributed, so is ri⊕bi. So the probabilities are the same as in the
standard birthday problem of Appendix A.1.

The first part of the following lemma states an obvious property of the CBC-MAC transform. The item of
real interest is the second part of the lemma, which says that in the case where the underlying function is
a permutation, the CBC-MAC transform has the property that output collisions occur if and only if input
collisions occur. This is crucial to the attack we will present later.

Lemma 9.8 Let l,m ≥ 2 be integers and f : {0, 1}l → {0, 1}l a function. Suppose α1 · · ·αm and β1 · · ·βm in
{0, 1}ml are such that αk = βk for k = 3, . . . , m. Then

f(α1)⊕α2 = f(β1)⊕β2 ⇒ f (m)(α1 · · ·αm) = f (m)(β1 · · ·βm) .

If f is a permutation then, in addition, the converse is true:

f (m)(α1 · · ·αm) = f (m)(β1 · · ·βm) ⇒ f(α1)⊕α2 = f(β1)⊕β2 .

Proof: The first part follows from the definition of f (m). For the second part let f−1 denote the inverse of the
permutation f . The CBC-MAC computation is easily unraveled using f−1. Thus the procedure

ym ← f (m)(α1 · · ·αm) ; For k = m downto 3 do yk−1 ← f−1(yk)⊕αk End For ; Return f−1(y2)

returns f(α1)⊕α2, while the procedure

ym ← f (m)(β1 · · ·βm) ; For k = m downto 3 do yk−1 ← f−1(yk)⊕βk End For ; Return f−1(y2)

returns f(β1)⊕β2. But the procedures have the same value of ym by assumption and we know that αk = βk for
k = 3, . . . , m, so the procedures return the same thing.

Proof of Proposition 9.6: Before presenting the forger let us discuss the idea.

The forger A has an oracle g = f (m) where f is an instance of F . The strategy of the forger is to make q queries
all of which agree in the last m−2 blocks. The first blocks of these queries are all distinct but fixed. The second
blocks, however, are random and independent across the queries. Denoting the first block of query n by an and
the second block as rn, the forger hopes to have i 6= j such that f(ai)⊕ri = f(aj)⊕rj . The probability of this
happening is lower bounded by Lemma 9.7, but simply knowing the event happens with some probability is
not enough; the forger needs to detect its happening. Lemma 9.8 enables us to say that this internal collision
happens iff the output MAC values for these queries are equal. (This is true because f is a permutation.) We
then observe that if the second blocks of the two colliding queries are modified by the xor to both of some
value a, the resulting queries still collide. The forger can thus forge by modifying the second blocks in this way,
obtaining the MAC of one of the modified queries using the second, and outputting it as the MAC of the second
modified query.

The forger is presented in detail below. It makes use of a subroutine Find that given a sequence σ1, . . . , σq of
values returns a pair (i, j) such that σi = σj if such a pair exists, and otherwise returns (0, 0).
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Forger Ag

Let a1, . . . , aq be distinct l-bit strings

For i = 1, . . . , q do ri
$← {0, 1}l

For i = 1, . . . , q do
xi,1 ← ai ; xi,2 ← ri

For k = 3, . . . , m do xi,k ← 0l

Xi ← xi,1 . . . xi,m

σi ← g(Xi)
End For
(i, j) ← Find(σ1, . . . , σq)
If (i, j) = (0, 0) then abort
Else

Let a be any l-bit string different from 0l

x′
i,2 ← xi,2⊕a ; x′

j,2 ← xj,2⊕a
X ′

i ← xi,1x
′
i,2xi,3 · · ·xi,m ; X ′

j ← xj,1x
′
j,2xj,3 · · ·xj,m

σ′
i ← g(X ′

i)
Return (X ′

j , σ
′
i)

End If

To estimate the probability of success, suppose g = f (m) where f is an instance of F . Let (i, j) be the pair of
values returned by the Find subroutine. Assume (i, j) 6= (0, 0). Then we know that

f (m)(xi,1 · · ·xi,m) = f (m)(xj,1 · · ·xj,m) .

By assumption f is a permutation and by design xi,k = xj,k for k = 3, . . . ,m. The second part of Lemma 9.8
then implies that f(ai)⊕ri = f(aj)⊕rj . Adding a to both sides we get f(ai)⊕(ri⊕a) = f(aj)⊕(rj⊕a). In other
words, f(ai)⊕x′

i,2 = f(aj)⊕x′
j,2. The first part of Lemma 9.8 then implies that f (m)(X ′

i) = f (m)(X ′
j). Thus σ′

i

is a correct MAC of X ′
j . Furthermore we claim that X ′

j is new, meaning was not queried of the g oracle. Since
a1, . . . , aq are distinct, the only thing we have to worry about is that X ′

j = Xj , but this is ruled out because

a 6= 0l.

We have just argued that if the Find subroutine returns (i, j) 6= (0, 0) then the forger is successful, so the
success probability is the probability that (i, j) 6= (0, 0). This happens whenever here is a collision amongst the
q values σ1, . . . , σq. Lemma 9.8 tells us however that there is a collision in these values if and only if there is a
collision amongst the q values f(a1)⊕r1, . . . , f(aq)⊕rq. The probability is over the random choices of r1, . . . , rq.
By Lemma 9.7 the probability of the latter is lower bounded by the quantity claimed in the Proposition. We
conclude the theorem by noting that, with a simple implementation of FindCol (say using a balanced binary
search tree scheme) the running time is as claimed.

9.7.3 Length Variability

For simplicity, let us assume throughout this section that strings to be authenticated have length which is a
multiple of l bits. This restriction is easy to dispense with by using simple and well-known padding methods:
for example, always append a “1” and then append the minimal number of 0’s to make the string a multiple of
l bits.

The CBC MAC does not directly give a method to authenticate messages of variable input lengths. In fact, it
is easy to “break” the CBC MAC construction if the length of strings is allowed to vary. You are asked to do
this in a problem at the end of this chapter. Try it; it is a good exercise in MACs!

One possible attempt to authenticate messages of varying lengths is to append to each string x = x1 · · ·xm

the number m, properly encoded as the final l-bit block, and then CBC MAC the resulting string m + 1
blocks. (Of course this imposes a restriction that m < 2l, not likely to be a serious concern.) We define

f∗
a (x1 · · ·xm) = f

(m+1)
a (x1 · · ·xm m).



164 Goldwasser and Bellare

We show that f∗ is not a secure MAC. Take arbitrary l-bit words b, b′ and c, where b 6= b′. It is easy to check
that given

(1) tb = f∗(b),

(2) tb′ = f∗(b′), and

(3) tb1c = f∗(b‖1‖c)
the adversary has in hand f∗(b′‖1‖tb⊕tb′⊕c) —the authentication tag of a string she has not asked about
before—since this is precisely tb1c.

Despite the failure of the above method there are many suitable ways to obtain a PRF that is good on variable
input lengths. We mention three. In each, let F be a finite function family from and to l-bit strings. Let
x = x1 · · ·xm be the message to which we will apply fa:

(1) Input-length key separation. Set f∗
a (x) = f

(m)
am (x), where am = fa(m).

(2) Length-prepending. Set f∗
a (x) = f

(m+1)
a (m‖x).

(3) Encrypt last block. Set f∗
a1a2

(x) = fa2(f
(m)
a1 (x)).

The first two methods are from [12]. The last method appears in an informational Annex of [116], and has now
been analyzed by Petrank and Rackoff [162]. It is the most attractive method of the bunch, since the length of
x is not needed until the end of the computation, facilitating on-line MAC computation.

9.8 MACing with cryptographic hash functions

Recently there has been a surge of interest in MACing using only cryptographic hash functions like MD5 or
SHA. It is easy to see why. The popular hash functions like MD5 and SHA-1 are faster than block ciphers in
software implementation; these software implementations are readily and freely available; and the functions are
not subject to the export restriction rules of the USA and other countries.

The more difficult question is how best to do it. These hash functions were not originally designed to be used
for message authentication. (One of many difficulties is that hash functions are not keyed primitives, ie. do not
accommodate naturally the notion of secret key.) So special care must be taken in using them to this end.

A variety of constructions have been proposed and analyzed. (See Tsudik [201] for an early description of
such constructions and Touch [200] for a list of Internet protocols that use this approach. Preneel and van
Oorschot [169, 168] survey existing constructions and point out to some of their properties and weaknesses; in
particular, they present a detailed description of the effect of birthday attacks on iterated constructions. They
also present a heuristic construction, the MDx-MAC, based on these findings. Kaliski and Robshaw [119] discuss
and compare various constructions. Performance issues are discussed in [200, 11].) Recently, one construction
seems to be gaining acceptance. This is the HMAC construction of [18]. In particular HMAC was recently
chosen as the mandatory to implement authentication transform for Internet security protocols and for this
purpose is described in an Internet RFC [127]. HMAC is also used in SSL and SSH, and is a NIST standard.

9.8.1 The HMAC construction

Let H be the hash function. For simplicity of description we may assume H to be MD5 or SHA-1; however the
construction and analysis can be applied to other functions as well (see below). H takes inputs of any length
and produces l-bit output (l = 128 for MD5 and l = 160 for SHA-1). Let Text denote the data to which the
MAC function is to be applied and let K be the message authentication secret key shared by the two parties.
(It should not be larger than 64 bytes, the size of a hashing block, and, if shorter, zeros are appended to bring
its length to exactly 64 bytes.) We further define two fixed and different 64 byte strings ipad and opad as follows
(the “i” and “o” are mnemonics for inner and outer):
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ipad = the byte 0x36 repeated 64 times

opad = the byte 0x5C repeated 64 times.

The function HMAC takes the key K and Text, and produces HMACK(Text) =

H(K ⊕ opad,H(K ⊕ ipad, Text)) .

Namely,

(1) Append zeros to the end of K to create a 64 byte string

(2) XOR (bitwise exclusive-OR) the 64 byte string computed in step (1) with ipad

(3) Append the data stream Text to the 64 byte string resulting from step (2)

(4) Apply H to the stream generated in step (3)

(5) XOR (bitwise exclusive-OR) the 64 byte string computed in step (1) with opad

(6) Append the H result from step (4) to the 64 byte string resulting from step (5)

(7) Apply H to the stream generated in step (6) and output the result

The recommended length of the key is at least l bits. A longer key does not add significantly to the security of
the function, although it may be advisable if the randomness of the key is considered weak.

HMAC optionally allows truncation of the final output say to 80 bits.

As a result we get a simple and efficient construction. The overall cost for authenticating a stream Text is close
to that of hashing that stream, especially as Text gets large. Furthermore, the hashing of the padded keys can
be precomputed for even improved efficiency.

Note HMAC uses the hash function H as a black box. No modifications to the code for H are required to
implement HMAC. This makes it easy to use library code for H, and also makes it easy to replace a particular
hash function, such as MD5, with another, such as SHA-1, should the need to do this arise.

9.8.2 Security of HMAC

The advantage of HMAC is that its security can be justified given some reasonable assumptions about the
strength of the underlying hash function.

The assumptions on the security of the hash function should not be too strong, since after all not enough
confidence has been gathered in current candidates like MD5 or SHA. (In particular, we now know that MD5
is not collision-resistant [74]. We will discuss the MD5 case later.) In fact, the weaker the assumed security
properties of the hash function, the stronger the resultant MAC construction.

We make assumptions that reflect the more standard existing usages of the hash function. The properties we
require are mainly a certain kind of weak collision-freeness and some limited “unpredictability.” What is shown
is that if the hash function function has these properties the MAC is secure; the only way the MAC could fail
is if the hash function fails.

The analysis of [18] applies to hash functions of the iterated type, a class that includes MD5 and SHA, and
consists of hash functions built by iterating applications of a compression function CF according to the procedure
of Merkle [144] and Damg̊ard [67]. (In this construction a l-bit initial variable IV is fixed, and the output of
H on text x is computed by breaking x into 512 bit blocks and hashing in stages using CF, in a simple way
that the reader can find described in many places, e.g. [119].) Roughly what [18] say is that an attacker who
can forge the HMAC function can, with the same effort (time and collected information), break the underlying
hash function in one of the following ways:

(1) The attacker finds collisions in the hash function even when the IV is random and secret, or

(2) The attacker is able to compute an output of the compression function even with an IV that is random,
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secret and unknown to the attacker. (That is, the attacker is successful in forging with respect to the
application of the compression function secretly keyed and viewed as a MAC on fixed length messages.)

The feasibility of any of these attacks would contradict some of our basic assumptions about the cryptographic
strength of these hash functions. Success in the first of the above attacks means success in finding collisions, the
prevention of which is the main design goal of cryptographic hash functions, and thus can usually be assumed
hard to do. But in fact, even more is true: success in the first attack above is even harder than finding collisions
in the hash function, because collisions when the IV is secret (as is the case here) is far more difficult than
finding collisions in the plain (fixed IV) hash function. This is because the former requires interaction with the
legitimate user of the function (in order to generate pairs of input/outputs from the function), and disallows the
parallelism of traditional birthday attacks. Thus, even if the hash function is not collision-free in the traditional
sense, our schemes could be secure.

Some “randomness” of hash functions is assumed in their usage for key generation and as pseudo-random
generators. (For example the designers of SHA suggested that SHA be used for this purpose [85].) Randomness
of the function is also used as a design methodology towards achieving collision-resistance. The success of the
second attack above would imply that these randomness properties of the hash functions are very poor.

It is important to realize that these results are guided by the desire to have simple to state assumptions and a
simple analysis. In reality, the construction is even stronger than the analyses indicates, in the sense that even
were the hash functions found not to meet the stated assumptions, the schemes might be secure. For example,
even the weak collision resistance property is an overkill, because in actuality, in our constructions, the attacker
must find collisions in the keyed function without seeing any outputs of this function, which is significantly
harder.

The later remark is relevant to the recently discovered collision attacks on MD5 [74]. While these attacks could
be adapted to attack the weak collision-resistance property of MD5, they do not seem to lead to a breaking of
HMAC even when used with MD5.

9.8.3 Resistance to known attacks

As shown in [169, 19], birthday attacks, that are the basis to finding collisions in cryptographic hash functions,
can be applied to attack also keyed MAC schemes based on iterated functions (including also CBC-MAC, and
other schemes). These attacks apply to most (or all) of the proposed hash-based constructions of MACs. In
particular, they constitute the best known forgery attacks against the HMAC construction. Consideration of
these attacks is important since they strongly improve on naive exhaustive search attacks. However, their
practical relevance against these functions is negligible given the typical hash lengths like 128 or 160. Indeed,
these attacks require the collection of the MAC value (for a given key) on about 2l/2 messages (where l is the
length of the hash output). For values of l ≥ 128 the attack becomes totally infeasible. In contrast to the
birthday attack on key-less hash functions, the new attacks require interaction with the key owner to produce
the MAC values on a huge number of messages, and then allow for no parallelization. For example, when using
MD5 such an attack would require the authentication of 264 blocks (or 273 bits) of data using the same key.
On a 1 Gbit/sec communication link, one would need 250,000 years to process all the data required by such an
attack. This is in sharp contrast to birthday attacks on key-less hash functions which allow for far more efficient
and close-to-realistic attacks [202].

9.9 Universal hash based MACs

Today the most effective paradigm for fast message authentication is based on the use of “almost universal hash
functions”. The design of these hash functions receives much attention and has resulted in some very fast ones
[36], so that universal hash based MACs are the fastest MACs around.
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9.10 Minimizing assumptions for MACs

As with the other primitives of private key cryptography, the existence of secure message authentication schemes
is equivalent to the existence of one-way functions. That one-way functions yield message authentication schemes
follows from Theorem 5.20 and Proposition 9.3. The other direction is [114]. In summary:

Theorem 9.9 There exists a secure message authentication scheme for message space {0, 1}∗ if and only if
there exists a one-way function.

9.11 Problems

Problem 9.10 Consider the following variant of the CBC MAC, intended to allow one to MAC messages of
arbitrary length. The construction uses a block cipher E : {0, 1}k ×{0, 1}n → {0, 1}n, which you should assume
to be secure. The domain for the MAC is ({0, 1}n)+. To MAC M under key K compute CBCK(M‖|M |), where
|M | is the length of M , written in n bits. Of course K has k bits. Show that this MAC is completely insecure:
break it with a constant number of queries.

Problem 9.11 Consider the following variant of the CBC MAC, intended to allow one to MAC messages of
arbitrary length. The construction uses a block cipher E : {0, 1}k ×{0, 1}n → {0, 1}n, which you should assume
to be secure. The domain for the MAC is ({0, 1}n)+. To MAC M under key (K, K ′) compute CBCK(M)⊕K ′.
Of course K has k bits and K ′ has n bits. Show that this MAC is completely insecure: break it with a constant
number of queries.

Problem 9.12 Let SE = (K, E ,D) be a symmetric encryption scheme and let Π = (K′, MAC, VF) be a message

authentication code. Alice (A) and Bob (B) share a secret key K = (K1, K2) where K1
$← K and K2

$← K′.
Alice wants to send messages to Bob in a private and authenticated way. Consider her sending each of the
following as a means to this end. For each, say whether it is a secure way or not, and briefly justify your answer.
(In the cases where the method is good, you don’t have to give a proof, just the intuition.)

(a) M, MACK2(EK1(M))

(b) EK1(M, MACK2(M))

(c) MACK2(EK1(M))

(d) EK1(M), MACK2(M)

(e) EK1(M), EK1(MACK2(M))

(f) C, MACK2(C) where C = EK1(M)

(g) EK1(M, A) where A encodes the identity of Alice; B decrypts the received ciphertext C and checks that
the second half of the plaintext is “A”.

In analyzing these schemes, you should assume that the primitives have the properties guaranteed by their
definitions, but no more; for an option to be good it must work for any choice of a secure encryption scheme
and a secure message authentication scheme.

Now, out of all the ways you deemed secure, suppose you had to choose one to implement for a network security
application. Taking performance issues into account, do all the schemes look pretty much the same, or is there
one you would prefer?

Problem 9.13 Refer to problem 4.3. Given a block cipher E : K × {0, 1}n → {0, 1}n, construct a cipher (a
“deterministic encryption scheme”) with message space {0, 1}∗ that is secure in the sense that you defined.
(Hint: you now know how to construct from E a pseudorandom function with domain {0, 1}∗.)
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Digital signatures

The notion of a digital signature may prove to be one of the most fundamental and useful inventions of modern
cryptography. A signature scheme provides a way for each user to sign messages so that the signatures can later
be verified by anyone else. More specifically, each user can create a matched pair of private and public keys so
that only he can create a signature for a message (using his private key), but anyone can verify the signature
for the message (using the signer’s public key). The verifier can convince himself that the message contents
have not been altered since the message was signed. Also, the signer can not later repudiate having signed the
message, since no one but the signer possesses his private key.

By analogy with the paper world, where one might sign a letter and seal it in an envelope, one can sign an
electronic message using one’s private key, and then seal the result by encrypting it with the recipient’s public
key. The recipient can perform the inverse operations of opening the letter and verifying the signature using his
private key and the sender’s public key, respectively. These applications of public-key technology to electronic
mail are quite widespread today already.

If the directory of public keys is accessed over the network, one needs to protect the users from being sent
fraudulent messages purporting to be public keys from the directory. An elegant solution is the use of a
certificate – a copy of a user’s public key digitally signed by the public key directory manager or other trusted
party. If user A keeps locally a copy of the public key of the directory manager, he can validate all the signed
communications from the public-key directory and avoid being tricked into using fraudulent keys. Moreover,
each user can transmit the certificate for his public key with any message he signs, thus removing the need for
a central directory and allowing one to verify signed messages with no information other than the directory
manager’s public key. Some of the protocol issues involved in such a network organization, are discussed in the
section on key distribution in these lecture notes.

10.1 The Ingredients of Digital Signatures

A digital signature scheme within the public key framework, is defined as a triple of algorithms (G, σ, V ) such
that

• Key generation algorithm G is a probabilistic, polynomial-time algorithm which on input a security pa-
rameter 1k, produces pairs (P, S) where P is called a public key and S a secret key. (We use the notation
(P, S) ∈ G(1k) indicates that the pair (P, S) is produced by the algorithm G.)

• Signing algorithm σ is a probabilistic polynomial time algorithm which is given a security parameter 1k,
a secret key S in range G(1k), and a message m ∈ {0, 1}k and produces as output string s which we
call the signature of m. (We use notation s ∈ σ(1k, S, m) if the signing algorithm is probabilistic and

168
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s = σ(1k, S, m) otherwise. As a shorthand when the context is clear, the secret key may be omitted and
we will write s ∈ σ(S,m) to mean meaning that s is the signature of message m.)

• Verification algorithm V is a probabilistic polynomial time algorithm which given a public key P , a digital
signature s, and a message m, returns 1 (i.e ”true”) or 0 (i.e ”false”) to indicate whether or not the
signature is valid. We require that V (P, s, m) = 1 if s ∈ σ(m) and 0 otherwise. (We may omit the public
key and abbreviate V (P, s, m) as V (s,m) to indicate verifying signature s of message m when the context
is clear.)

• The final characteristic of a digital signature system is its security against a probabilistic polynomial-time
forger. We delay this definition to later.

Note that if V is probabilistic, we can relax the requirement on V to accept valid signatures and reject invalid
signatures with high probability for all messages m, all sufficiently large security parameters k, and all pairs
of keys (P, S) ∈ G(1k). The probability is taken over the coins of V and S. Note also that the message to be
signed may be plain text or encrypted, because the message space of the digital signature system can be any
subset of {0, 1}∗.

10.2 Digital Signatures: the Trapdoor Function Model

Diffie and Hellman [72] propose that with a public key cryptosystem (G,E, D) based on the trapdoor function
model, user A can sign any message M by appending as a digital signature D(M) = f−1(M) to M where f is A’s
trapdoor public function for which A alone knows the corresponding trapdoor information. Anyone can check
the validity of this signature using A’s public key from the public directory, since E(D(M)) = f−1(f(M)). Note
also that this signature becomes invalid if the message is changed, so that A is protected against modifications
after he has signed the message, and the person examining the signature can be sure that the message he has
received that was originally signed by A.

Thus, in their original proposal Diffie and Hellman linked the two tasks of encryption and digital signatures.
We, however, separate these two tasks. It turns out that just as some cryptographic schemes are suited for
encryption but not signatures, many proposals have been made for signature-only schemes which achieve higher
security.

The RSA public-key cryptosystem which falls in the Diffie and Hellman paradigm allows one to implement
digital signatures in a straightforward manner. The private exponent d now becomes the signing exponent , and
the signature of a message M i which falls in the Diffie and Hellman paradigm s now the quantity Md mod n.
Anyone can verify that this signature is valid using the corresponding public verification exponent e by checking
the identity M = (Md)e mod n. If this equation holds, then the signature Md must have been created from M
by the possessor of the corresponding signing exponent d. (Actually, it is possible that the reverse happened and
that the “message” M was computed from the “signature” Md using the verification equation and the public
exponent e. However, such a message is likely to be unintelligible. In practice, this problem is easily avoided
by always signing f(M) instead of M , where f is a standard public one-way function.)

Cast in our notation for digital signature schemes, the Diffie-Hellman proposal is the following triple of algorithms
(G, σ, V ):

• Key Generation: G(1k) picks pairs (fi, ti) from F where i ∈ I ∩ {0, 1}k.

• Signing Algorithm: σ(1k, fi, ti,m) outputs f−1
i (m).

• Verification Algorithm: V (fi, s, m) outputs 1 if fi(s) = m and 0 otherwise.

We will consider the security of this proposal and others. We first define security for digital signatures.



170 Goldwasser and Bellare

10.3 Defining and Proving Security for Signature Schemes

A theoretical treatment of digital signatures security was started by Goldwasser, Micali and Yao in [107] and
continued in [105, 14, 152, 177, 78].

10.3.1 Attacks Against Digital Signatures

We distinguish three basic kinds of attacks, listed below in the order of increasing severity.

• Key-Only Attack: In this attack the adversary knows only the public key of the signer and therefore only
has the capability of checking the validity of signatures of messages given to him.

• Known Signature Attack: The adversary knows the public key of the signer and has seen message/signature
pairs chosen and produced by the legal signer. In reality, this the minimum an adversary can do.

• Chosen Message Attack: The adversary is allowed to ask the signer to sign a number of messages of the
adversary’s choice. The choice of these messages may depend on previously obtained signatures. For
example, one may think of a notary public who signs documents on demand.

For a finer subdivision of the adversary’s possible attacks see [105].

What does it mean to successfully forge a signature?

We distinguish several levels of success for an adversary, listed below in the order of increasing success for the
adversary.

• Existential Forgery: The adversary succeeds in forging the signature of one message, not necessarily of his
choice.

• Selective Forgery: The adversary succeeds in forging the signature of some message of his choice.

• Universal Forgery: The adversary, although unable to find the secret key of the The forger, is able to forge
the signature of any message.

• Total Break : The adversary can compute the signer’s secret key.

Clearly, different levels of security may be required for different applications. Sometimes, it may suffice to show
that an adversary who is capable of a known signature attack can not succeed in selective forgery, while for other
applications (for example when the signer is a notary-public or a tax-return preparer) it may be required that
an adversary capable of a chosen signature attack can not succeed even at existential forgery with non-negligible
probability.

The security that we will aim at, in these notes are that with high probability a polynomial time adversary
would not be able to even existentially forge in the presence of a chosen message attack.

We say that a digital signature is secure if an enemy who can use the real signer as “an oracle” can not
in time polynomial in the size of the public key forge a signature for any message whose signature was not
obtained from the real signer. Formally, let B be a black box which maps messages m to valid signatures, i.e ,
V (P, B(m),m) = 1 for all messages m. Let the forging algorithm F on input the public key P have access to
B, denoted as FB(P ). The forging algorithm runs in two stages: it first launches a chosen message attack, and
then outputs a “new forgery” which is defined to be any message-signature pair such that the message was not
signed before and that signature is valid. We require that for all forging algorithms F , for all polynomials Q,

for all sufficiently large k, Prob(V (P, s,m) = 1 : (P, S)
$← G(1k) ; (m, s)

$← FB(P )) ≤ 1
Q(k) . The probability is

taken over the choice of the keys (P, S) ∈ G(1k) , the coin tosses of the forgery algorithm F , and the coins of B.
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Diffie and Hellman’s original proposal does not meet this strict definition of security; it is possible to existentially
forge with just the public information: Choose an s at random. Apply the public key to s to produce m = f(s).
Now s is a valid signature of m.

Many digital signature systems have been proposed. For a fairly exhaustive list we refer to the paper [105]
handed out.

We examine the security of three systems here.

10.3.2 The RSA Digital Signature Scheme

The first example is based on the RSA cryptosystem.

The public key is a pair of numbers (n, e) where n is the product of two large primes and e is relatively prime
to φ(n), and the secret key is d such that ed = 1 mod φ(n). Signing is to compute σ(m) = mdmodn. Verifying
is to raise the signature to the power e and compare it to the original message.

Claim 10.1 RSA is universallly forgable under a chosen-message attack. (alternatively, existentially forgable
under known message attack)

Proof: If we are able to produce signatures for two messages, the signature of the the product of the two
messages is the product of the signatures. Let m1 and m2 be the two messages. Generate signatures for these
messages with the black box: σ(m1) = m1d mod n, σ(m2) = m2d mod n. Now we can produce the signature
for the product of these two messages: σ(m1m2) = (m1m2)d = m1dm2d = σ(m1)σ(m2) mod n

To produce a signature for a message m, begin by choosing a random number r ∈ 2n∗. Now define m1 and m2
as follows: m1 = mr mod n, and m2 = r−1 mod n Using the strategy above, we can find a signature for the
product of these messages, which is the original message m, as follows: m1m2 = (mr)r−1 = m.

10.3.3 El Gamal’s Scheme

This digital signature system security relies on the difficulty of solving a a problem called the Diffie-Hellman-
key-exchange (DHKE)problem, which is related to the discrete log problem. The DHKE problem is on input
a prime p, a generator g, and gy, gx ∈ Z∗

p , compute output gxy mod p. The best way currently known to
solve the DHKE is to first solve the discrete log problem. Whether computing a discrete log is as hard as the
Diffie-Hellman problem is currently an open question.

The following digital signature scheme is probabilistic. A close variant of it called DSS has been endorsed as a
national standard.

Idea of the scheme:

• Public key: A triple (y, p, g), where y = gx mod p, p is prime and g is a generator for Z∗
p .

• Secret key: x such that y = gx mod p.

• Signing: The signature of message m is a pair (r, s) such that 0 6= r, s 6= p − 1 and gm = yrrs mod p.

• Verifying: Check that gm = yrrs mod p actually holds.

In order to generate a pair (r, s) which constitutes a signature, the signer begins by choosing a random number
k such that 0 6= k 6= p − 1 and GCD(k, p − 1) = 1. Let r = gk(modp). Now we want to compute an s such
that gm = yrrs = gxr+ksmodp. In terms of the exponents, this relationship is m = xr + ks(modp − 1). Hence

s = (m − xr)k−1

modp − 1. The signature of m is the pair (r, s).

Clearly, If an attacker could solve the discrete logarithm problem, he could break the scheme completely by
computing the secret key x from the information in the public file. Moreover, if an attacker finds k for one
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message, he can solve the discrete logarithm problem, so the pseudo random number generator employed to
generate k’s has to be of superior quality.

Claim 10.2 This scheme is existentially forgable in the presence of a known message attack.

Exercise.

Note on a key exchange protocol based on discrete log: It is interesting to note that it is possible for two people
to exchange a secret key without prior secret meeting using the DL problem which is not known to yield a
trapdoor function. This can be done by Persons A and B agree on a prime p and a generator g. Person A
chooses a secret number x and sends gx(modp) to B. Person B chooses a secret number y and sends gy(modp) to
A. Now each user can readily compute gxy(modp); let this be the shared secret key. It is not known if computing
xy is as difficult as DLP .

10.3.4 Rabin’s Scheme

Rabin [170] proposed a method where the signature for a message M was essentially the square root of M ,
modulo n, the product of two large primes. Since the ability to take square roots is provably equivalent to the
ability to factor n, an adversary should not be able to forge any signatures unless he can factor n. For our
purpose let’s consider the variant of it when n = pq and p = q = 3 mod 4, so that the signature is uniquely
determined.

This argument assumes that the adversary only has access to the public key containing the modulus n of the
signer. An enemy may break this scheme with an active attack by asking the real signer to sign M = x2 mod n,
where x has been chosen randomly. If the signer agrees and produces a square root y of M , there is half a chance
that gcd(n, x − y) will yield a nontrivial factor of n — the signer has thus betrayed his own secrets! Although
Rabin proposed some practical techniques for circumventing this problem, they have the effect of eliminating
the constructive reduction of factoring to forgery.

Let us look at this in some detail.

This digital signature scheme is based on the difficulty of computing square roots modulo a composite number.

• Public key: n = pq

• Secret key: primes p, q

• Signing: s =
√

m mod n (assume WLOG that all m are squares)

• Verification: Check that s2 = m mod n.

Claim 10.3 This system is existentially forgable with key-only attack.

Proof: Choose a signature and square it to produce a corresponding message.

Claim 10.4 The system is totally breakable in the face of a chosen message attack.

Proof: We know that if we can find two distinct square roots of a message, we can factor the modulus. Choose
a value s and let m = s2. Now s is a valid signature of m. Submit m to the black box. There is a one in two
chance that it will produce the same signature s. If so, repeat this process. If not, we have both square roots
of m and can recover the factors of n.
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Security when “Breaking” is Equivalent to Factoring

Given the insecurity of Rabin’s scheme in the face of a chosen message attack, one might hypothesize that there
exists no secure digital signature system based on factoring. That is, a scheme wherein:

• “Breaking” the scheme is equivalent to factoring.

• The signature scheme is secure against a chosen message attack.

False proof: We assume (1) and show that (2) is impossible. Since the first statement is that ”breaking” the
scheme is equivalent to factoring, we know that the following reduction must be possible on input of a composite
number n.

• Generate a public key P .

• Produce a message m.

• Produce a valid signature s ∈ σ(P, m) using the ”breaker” algorithm. (Repeat these three steps up to a
polynomial number of times.)

• Factor n.

Conclude that the system must be insecure in the face of a chosen message attack, since we can substitute the
CMA for the ”breaker” algorithm in step 3. QED

What is wrong with this argument? First, there is only a vague definition of the public information P ; it
need not contain the number n. Second, the CMA will always produce signatures with respect to fixed public
information, whereas in the above reduction it may be necessary to use different public information in every
call to the ”breaker”.

10.4 Probabilistic Signatures

Probabilistic techniques have also been applied to the creation of digital signatures. This approach was pioneered
by Goldwasser, Micali, and Yao [107], who presented signature schemes based on the difficulty of factoring and
on the difficulty of inverting the RSA function for which it is provably hard for the adversary to existentially
forge using a known signature attack.

Goldwasser, Micali, and Rivest [105] have strengthened this result by proposing a signature scheme which is not
existentially forgable under a chosen message attack. Their scheme is based on the difficulty of factoring, and
more generally on the existence of claw-free trapdoor permutations (that is, pairs f0, f1 of trapdoor permutations
defined on a common domain for which it is hard to find x, y such that f0(x) = f1(y)).

The scheme, as originally described,although attractive in theory, is quite inefficient. However, it can be modified
to allow more compact signatures, to make no use of memory between signatures other than for the public and
secret keys, and even to remove the need of making random choices for every new signature. In particular,
Goldreich [95] has made suggestions that make the factoring-based version of this scheme more practical while
preserving its security properties.

Bellare and Micali in [14] have shown a digital signature scheme whose security can be based on the existence
of any trapdoor permutation (a weaker requirement than claw-freeness). Then Naor and Yung [152] have
shown how, starting with any one-way permutation, to design a digital signature scheme which is secure against
existential forgery by a chosen signature attack. Finally, Rompel [177] has shown how to sign given any one-way
function. These works build on an early idea due to Lamport on how to sign a single bit in [130]. The idea is as
follows. If f is a one-way function, and Alice has published the two numbers f(x0) = y0 and f(x1) = y1, then
she can sign the message 0 by releasing x0 and she can similarly sign the message 1 by releasing the message
x1. Merkle [146] introduced some extensions of this basic idea, involving building a tree of authenticated values
whose root is stored in the public key of the signer.

We now proceed to describe in detail some of these theoretical developments.
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10.4.1 Claw-free Trap-door Permutations

We introduce the notion of claw-free trap-door permutations and show how to construct a signature scheme
assuming the existence of a claw-free pair of permutations.

Definition 10.5 [f-claw] Let f0, f1 be permutation over a common domain D. We say that (x, y, z) is f-claw
if f0(x) = f1(y) = z.

Definition 10.6 [A family of claw-free permutations] A family F = {f0,i, f1,i : Di → Di}i∈I is called a family
of claw-free trap-door permutations if:

1. There exists an algorithm G such that G(1k) outputs two pairs (f0, t0), (f1, t1) where where ti is the
trapdoor information for fi.

2. There exists PPT an algorithm that given fi and x ∈ Di computes fi(x).

3. ∀ (inverting algorithm) I, there exists some negligible function νI such that for all sufficiently large k,

Prob(f0(x) = f1(y) = z : ((f0, t0), (f1, t1))
$← G(1k) ; (x, y, z)

$← I(f0, f1)) < νI(k)

The following observation shows that the existence of a pair of trap-door permutations does not immediately
imply the existence of a claw-free permutation. For example, define a family of (“RSA”) permutations by

f0,n(x) ≡ x3 mod n f1,n(x) ≡ x5 mod n

(gcd(x, n) = 1, and gcd(15, Φ(n)) = 1). Since the two functions commute, it is easy to create a claw by choosing
w at random and defining x = f1,n(w), y = f0,n(w), and

z = f0,n(x) = f1,n(y) = w15 mod n

In general, the following question is

Open Problem 10.7 Does the existence of a family of trap-door permutations imply the existence of a family
of claw-free trap-door permutations ?

The converse of the above is clearly true: Given a claw-free permutations generator, it is easy to generate
a trap-door permutation. If {f0, f1} is a pair of claw-free permutations over a common domain, that is, it
is computationally infeasible to find a triple x, y, z such that f0(x) = f1(y) = z, then (f0, f

−1
0 ) is trap-door.

(Otherwise, give the inverting algorithm I, z = f1(y); z is also distributed uniformly over D, so with non-
negligible probability, I can produce x = f−1

0 (z). Therefore (x, y, z) is a claw, contradiction.)

10.4.2 Example: Claw-free permutations exists if factoring is hard

Let n = pq, where p and q are primes (p, q ∈ Hk) and p ≡ 3 mod 8, q ≡ 7 mod 8. Observe that about 1/16 of
odd prime pairs fit this requirement. Let QRn denote the set of quadratic residues modn.

We first note that:

1. (Jn(−1)) = +1, but −1 6∈ QRn

2. (Jn(2)) = −1, (and 2 6∈ QRn) .

3. x ∈ QRn has exactly one square root y ∈ QRn (x is a Blum integer), but has four square root y,−y, w,−w
in general. Roots w,−w have Jacobi symbol −1, y and −y have Jacobi symbol +1.
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We now define a family of pairs of functions, and prove, assuming the intractability of factoring, that it is a
family of claw-free trap-door permutations over QRn.
Define, for x ∈ QRn:

f0,n(x) = x2 mod n f1,n(x) = 4x2 mod n

It follows from the above notes that the functions f0,n, f1,n are permutations of QRn.
Claim: {f0,n, f1,n} is claw-free.

Proof: Suppose that the pair is not claw-free. Assume x, y ∈ QRn satisfy

x2 ≡ 4y2 mod n

This implies that (x − 2y)(x + 2y) ≡ 0 mod n. However, checking the Jacobi symbol of both sides we have:

(Jn(x)) = +1 (Jn(2y)) = (
y

n
)(

2

n
) = −1 (Jn(−2y)) = (

−1

n
) = −1

That is, x is a quadratic residue, but ±2y are not. Since x 6≡ ±2y mod n gcd(x±2y, n) will produce a nontrivial
factor on n.

10.4.3 How to sign one bit

We first describe the basic building block of the signature scheme: signing one bit.

Let D be the common domain of the claw-free pair {f0, f1}, and assume x is selected randomly in D.

Public Secret

x ∈ D, f0, f1 f−1
0 , f−1

1

To sign the bit b ∈ {0, 1} let s = σ(b) = f−1
b (x).

To verify the signature s, check that fb(s) = x.

Claim 10.8 The above scheme is existentially secured against Chosen Message Attack.

Proof: Suppose, by way of contradiction, that the scheme is not secure. That is, ∃ a forging algorithm FCMA(P )
that can forge the signature (given the public information); F asks for the signature of b and (∀ polynomial Q
and infinitely many k’s) can sign b correctly with probability > 1/Q(k). To derive the contradiction, we design
an algorithm that, given FCMA, can make claws:

input: f0, f1.

output: x, y, z, such that f0(x) = f1(y) = z (with probability > 1/Q(k)).

(1) Select randomly x ∈ D; flip a coin and put in the public file: z = fcoin(x) ∈ D, f0, f1. (Note that f0, f1

are permutations, so z is uniform in D).

(2) Run algorithm FCMA(P ):

1. If F asks for signature of b = coin, go back to (1).

2. If F asks for signature of b = coin, answer with x = f−1
b (fcoin(x)).

(3) By the assumption, F can produce now a signature for b, y = f−1

b
(fcoin(x)), i.e. z = fb(x) = fb(y). That

is, we have a claw:
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10.4.4 How to sign a message

As before, D is the common domain of the claw-free pair {f0, f1}, and x is selected randomly in D.

Public Secret

x ∈ D, f0, f1 f−1
0 , f−1

1

For x ∈ D, we sign the first message m1 by:

s1 = σ(m1) = f−1
m1 (x)

and verify by:

V (s1,m1) =

{

1 if fm1(s1) = x

0 otherwise

where, for m1 = m1
1m

1
2 . . . m1

k:
f−1

m1 (x) = f−1
m1

k

(. . . (f−1
m1

2
(f−1

m1
1
(x))))

fm1(x) = fm1
1
(. . . (fm1

k−1
(fm1

k
(x))))

Clearly fm is a permutation on D, and is easy to compute. To sign the next message m2, we apply the new
permutation on the previous signature:

s2 = σ(m2) = (f−1
m2 (s

1),m1)

and verify by:

V (s2,m2) =

{

1 if fm2(s2) = s1 and fm1(s1) = x

0 otherwise

Notes:

1. With this scheme, the length of the signature grows linearly with the number of messages signed so far.

2. It is clearly easy to forge signatures for prefix of a message we have already seen. We therefore assume
here that we pre-process the messages to be presented in a prefix-free encoding scheme. (i.e no messages
is a prefix of another message).

Claim: The scheme is not existentially secure with respect to a Known Message Attack.

Proof: Assume ∃F (H, P ) that (∀ polynomial Q and sufficiently large k), given the public information P and
the history H = ((m1, σ(m1)), . . . , (ml, σ(ml))), for messages m1,m2, ..., ml selected by running M(1k), can find
a message m̂ 6= mi, (1 ≤ i ≤ l), can produce a signature σ(m̂) such that

Prob{V (σ(m̂), m̂) = 1} >
1

Q(k)

where the probability is taken over all public files and coin tosses of F .

We now design an algorithm A that uses F to come up with a claw:

input: f0, f1.

output: a, b, c, such that f0(a) = f1(b) = c (with probability > 1/Q(k)).
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(1) Choose m1,m2, . . . , mi ∈ M(1k), x ∈R D. Let z = fml
(. . . (fm1(x))). Let P = {f0, f1, x} be the public

file. (Notice that z is also selected uniformly in D).

(2) Generate the history H = (m1, fm1(z)), . . . (ml, (fml
(. . . (fm1(z)))), Denote m = m1 ◦ m2 ◦ . . . ◦ ml, the

string of all messages generated.

(3) Run the forging algorithm F (H,P ) to produce (m̂, σ(m̂)).

(4) With non negligible probability, σ(m̂) is a valid signature; that is, ”walking back” with fm̂ from σ(m̂),
according to the history it supplies, will get to x, and therefore must meet the path going back from σ(mi)
Let l be the location at which the two paths meet, that is, m agrees with m̂ on the first l − 1 bits, and
denote w = f−1

ml−1
(. . . (f−1

m0
(z))). Assume, w.l.o.g that the l − th bit of m is 0, the l − th bit of m̂ is 1, and

let u, v be the corresponding f−1
0 (w), f−1

1 (w). Output (u, v, w).

Clearly (u, v, w) is a claw. Thus, applying the public f0, f1 on the output of the forging algorithm F results in
a claw, with non-negligible probability; contradiction.

However, this scheme does not seem to be secure against a Chosen Message Attack. At least we do not know
how to prove that it is. In the next section we modify it to achieve this.

10.4.5 A secure signature scheme based on claw free permutations

Let Df be the common domain of the claw-free permutations pair Consider the following scheme, for signing
messages mi ∈ {0, 1}k where i ∈ {1, · · · , B(k)} and B(k) is a polynomial in k:

Choose two pairs of claw-free permutations, (f0, f1) and (g0, g1) for which we know f−1
0 , f−1

1 , g−1
0 , g−1

1 . Choose
X ∈ Df . Let the public key contain Df , X, f0, f1, g0, g1 and let the secret key contain f−1

0 , f−1
1 , g−1

0 , g−1
1 .

PK SK

Df , X, f0, f1 f−1
0 , f−1

1

g0, g1 g−1
0 , g−1

1

Let ◦ be the concatenation function and set the history H1 = ∅. To sign mi, for i ∈ {1, · · · , B(k)}:

1. Choose Ri ∈ Dg uniformly.

2. Set zi
1 = f−1

Hi◦Ri
(X).

3. Set zi
2 = g−1

mi
(Ri).

4. Set signature σ(mi) = (zi
1, z

i
2,Hi).

5. Set Hi+1 = Hi ◦ Ri.

To verify a message-signature pair (m, s) where s = (z1, z2,H),

1. Let R = gm(z2).

2. Check that fH◦R(z1) = X.

If so, then the signature is valid and the verification function V (m, s) = 1. Otherwise, V (m, s) = 0. This scheme
takes advantage of the fact that a new random element zi

1 can be used in place of X for each message so that
the forger is unable to gain information by requesting signatures for a polynomial number of messages.

It is clear that the signing and verification procedures can be performed in polynomial time as required. The
following theorem also shows that it is secure:
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Theorem 10.9 The claw-free permutation signature scheme is existentially secure against CMA if claw-free
permutations exist.

Proof: (by contradiction) Suppose not. Then there is a forger FCMA(f0, f1, g0, g1, X) which consists of the
following two stages:

Stage 1: F obtains signatures σ(mi) for up to B(k) messages mi of its choice.

Stage 2: F outputs (m̂, ŝ) where ŝ = (ẑ1, ẑ2, Ĥ) such that m̂ is different than all mi’s requested in stage 1 and
V (m̂, ŝ) = 1.

We show that if such an F did exist, then there would be a PTM A which would:

Input: Uniformly chosen (h0, h1, Dh) claw-free such that h−1
0 and h−1

1 are not known.

Output: Either a h-claw with probability greater than 1
Q(k) where Q(k) is a polynomial in k.

This is a contradiction by the definition of h0 and h1.

PTM A is based on the fact that when F is successful it does one of the following in stage 2:

Type 1 forgery: Find a g-claw

Type 2 forgery: Find a f -claw

Type 3 forgery: Find f−1
0 (ω) or f−1

1 (ω) for ω = z
B(k)
1 the last point in the history provided by the signer

PTM A consists of two PTM’s A1 and A2 which are run one after the other. A1 attempts to find an h-claw
based on the assumption that F produces a g-claw. A2 attempts to find a h-claw based on the assumption that
F produces a f -claw. Both A1 and A2 will use h0 and h1 in their public keys. In order to sign a message using
h0 and h1, these PTM’s will compute v = hi(R) for some R ∈ Dh and use R as h−1

b (v). Thus, neither A1 nor
A2 will need to invert hb when answering F ’s requests. Note that since hb is a permutation, v will be random
if R is.

Description of A1:

1. Choose (f0, f1, Df ) claw-free such that we know f−1
0 and f−1

1 . Let the public key contain Df , X, f0, f1, g0 =
h0, and g1 = h1. Let the secret key contain f−1

0 and f−1
1 .

PK SK

Df , X, f0, f1 f−1
0 , f−1

1

g0 = h0, g1 = h1

2. Set history H1 = ∅ and run F (f0, f1, g0, g1, X). When F asks for the signature of a message mi,

(a) Choose zi
2 ∈ Dg at random.

(b) Set Ri = gmi(z
i
2).

(c) Set zi
1 = f−1

Hi◦Ri
(X).
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(d) Output (zi
1, z

i
2,Hi).

(e) Set Hi+1 = Hi ◦ Ri.

F then outputs (m̂, ŝ) where ŝ = (ẑ1, ẑ2, Ĥ).

3. Test to see that V (m̂, ŝ) = 1. If not then A1 fails.

4. Let R̂ = gm̂(ẑ2). If R̂ 6= Ri for any i, then A1 fails since F did not produce a type 1 forgery

5. Otherwise, let j be such that R̂ = Rj . We now have hm̂(ẑ2) = hmj
(zj

2) = Rj . From this we easily obtain
a h-claw.

Description of A2:

1. Choose (g0, g1, Dg) claw-free such that we know g−1
0 and g−1

1 . Let f0 = h0 and f1 = h1. Choose
R1, R2, · · · , RB(k) ∈ Dg, c ∈ {0, 1} and z ∈ Df uniformly and independently. Set X = fR1◦R2◦···◦RB(k)◦c(z).

Let the public key contain Df , X, f0, f1, g0 and g1. Let the secret key contain g−1
0 and g−1

1 .

PK SK

Df , X, g0, g1 g−1
0 , g−1

1

f0 = h0, f1 = h1

2. Set history H1 = ∅ and run F (f0, f1, g0, g1, X). When F asks for signature of message mi,

(a) Set zi
1 = fRi+1◦···◦RB(k)

(X).

(b) Set zi
2 = g−1

mi
(Ri).

(c) Output (zi
1, z

i
2,Hi).

(d) Set Hi+1 = Hi ◦ Ri.

F then outputs (m̂, ŝ) where ŝ = (ẑ1, ẑ2, Ĥ).

3. Let R̂ = gm̂(ẑ2).

4. There are three possibilities to consider:

F made type 1 forgery: This means Ĥ ◦ R̂ = Hi for some i. In this case A2 fails.

F made type 2 forgery: There is some first bit in Ĥ ◦ R̂ which differs from A2’s final history HN . As a
result, Ĥ ◦ R̂ = H ◦ b ◦ Ŝ and HN = H ◦ b̄ ◦ S for some b ∈ {0, 1} and strings H, Ŝ, S. From this we
obtain fb(fŜ(ẑ1)) = fb̄(fS(zN

1 )) which provides A2 with a h-claw.

F made type 3 forgery: Ĥ ◦ R̂ = HN ◦ b ◦ S for some bit b and string S. Since the bit d chosen by A2 to
follow HN if another request were made is random, b will be different from d with probability 1/2.
In this case, A2 will have h−1

0 (h−1
HN

(X)) and h−1
1 (h−1

HN
(X)) providing A2 with a h-claw.

Suppose that with probability p1 F (f0, f1, g0, g1, X) provides a type 1 forgery, with probability p2 F (f0, f1, g0, g1, X)
provides a type 2 forgery, and with probability p3 F (f0, f1, g0, g1, X) provides a type 3 forgery. Since f0, f1, g0, g1, h0, h1

are chosen uniformly over claw-free permutations, A1 will succeed with probability p1 and A2 will succeed with
probability p2 + p3

2 . Thus, A1 or A2 will succeed with probability at least max(p1, p2 + p3

2 ) ≥ 1
3Q(k) .
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Notes:

1. Unlike the previous scheme, the signature here need not contain all the previous messages signed by the
scheme; only the elements Ri ∈ Dg are attached to the signature.

2. The length of the signature need not be linear with the number of messages signed. It is possible instead
of linking the Ri together in a linear fashion, to build a tree structure, where R1 authenticates R2 and R3,
and R2 authenticates R4 and R5 and so forth till we construct a full binary tree of depth logarithmic in
B(k) where B(k) is a bound on the total number of signatures ever to be signed. Then, relabel the Rj ’s
in the leafs of this tree as r1, ..., rB(k).

In the computation of the signature of the i-th message, we let zi
2 = g−1

mi (r
i), and let zi

1 = f−1
ri (R) where

R is the father of ri in the tree of authenticated R’s. The signature of the ith message needs to contain
then all R′s on the path from the leaf ri to the root, which is only logarithmic in the number of messages
ever to be signed.

3. The cost of computing a f−1
m (x) is |m|(cost of computing f−1). Next we show that for the implementation

of claw-free functions based on factoring, the m factor can be saved.

Example: Efficient way to compute f−1
m (z)

As we saw in Example 10.4.2, if factoring is hard, a particular family of trap-door permutations is claw free.
Let n = pq, where p and q are primes and p ≡ 3 mod 8, q ≡ 7 mod 8. for x ∈ QRn:

f0,n(x) = x2 mod n f1,n(x) = 4x2 mod n

is this family of claw-free trap-door permutations.

Notation: We write
√

x = y when that y2 = x and y ∈ QRn.

To compute f−1
m (z) we first compute (all computations below are modn):

f−1
00 (z) =

√√
z

f−1
01 (z) =

√√
z

4 = 1√
4

√√
z

f−1
10 (z) =

√
√

z
4 = 1√√

4

√√
z

f−1
11 (z) =

√
1
4

√
z
4

Let i(m) be the integer corresponding to the string m reversed. It is easy to see that in the general case we get:

f−1
m (z) = ( z

4i(m) )
1

2|m|

Now, all we need is to compute the 2|m|th root modn once, and this can be done efficiently, by raising to a
power modΦ(n).

10.4.6 A secure signature scheme based on trapdoor permutations

This section contains the trapdoor permutation signature scheme. We begin by showing the method for signing
a single bit b:

1. Choose a trapdoor permutation f for which we know the inverse. Choose X0, X1 ∈ Df uniformly and
independently. Let the public key contain f, f(X0), and f(X1). Let the secret key contain X0 and X1.

PK SK

f, f(X0), f(X1) X0, X1
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2. The signature of b, σ(b) = Xb.

To verify (b, s) simply test f(s) = f(Xb).

The scheme for signing multiple messages, uses the scheme above as a building block. The problem with signing
multiple messages is that f cannot be reused. Thus, the trapdoor permutation signature scheme generates and
signs a new trapdoor permutation for each message that is signed. The new trapdoor permutation can then be
used to sign the next message.

Description of the trapdoor permutation signature scheme:

1. Choose a trapdoor permutation f1 for which we know the inverse. Choose αj
0, α

j
1 ∈ {0, 1}k for j ∈

{1, · · · , k} and βj
0, β

j
1 ∈ {0, 1}k for j ∈ {1, · · · ,K(k)} where K(k) is a polynomial in k uniformly and

independently. Let the public key contain f1 and all α’s and β’s. Let the secret key contain f−1
1 . Let

history H1 = ∅.

PK SK

f1, α
i
b, β

j
b f−1

1

for b ∈ {0, 1}, i ∈ 1, · · · , k, j ∈ 1, · · · ,K(k)

To sign message mi = m1m2 · · ·mk:

2. Set AUTHα,fi

mi = (f−1
i (α1

m1
), f−1

i (α2
m2

), · · · , f−1
1 (αk

mk
)). AUTHα,fi

mi is the signature of mi using fi and
the α’s.

3. Choose a new trapdoor function fi+1 such that we know f−1
i+1.

4. Set AUTHβ,fi

fi+1
= (f−1

i (β1
fi+1,1

), (f−1
i (β2

fi+1,2
)), · · · , (f−1

i (βK
fi+1,k

(k))))
where fi+1 = fi+1,1 ◦ fi+1,2 ◦ · · · ◦ fi+1,K(k) is the binary representation of fi+1.

5. The signature of mi is σ(mi) = (AUTHα,fi

mi , AUTHβ,fi

fi+1
, Hi). AUTHβ,fi

fi+1
is the signature of fi+1 using fi

and β’s.

6. Set Hi+1 = Hi ◦ (AUTHα,fi

mi , AUTHβ,fi

fi+1
).

Note: We assume that to describe fi+1, K(k) bits are sufficient.

Theorem 10.10 The trapdoor permutation signature scheme is existentially secure against CMA if trapdoor
permutations exist.

Proof: (by contradiction) Suppose not. Then there is a forger F which can request messages of its choice and
then forge a message not yet requested with probability at least 1

Q(k) where Q(k) is a polynomial in k. We show

that if such an F did exist, we could find a PTM A′ which would:

Input: Trapdoor function h for which inverse is unknown and ω ∈ {0, 1}k.

Output: h−1(ω) with probability at least 1
Q′(k) where Q′(k) is a polynomial in k. Probability is taken over h’s,

ω’s, coins of A′.

The construction of A′ is as follows:
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1. A′ will attempt to use h as one of its trapdoor permutations in answering a signature request by F . Since
A′ does not know h−1, it generates an appropriate set of α’s and β’s as follows: Randomly and uniformly
choose γj

b , δj
b ∈ {0, 1}k for all b ∈ {0, 1} and j ∈ {1, · · · , k}. Let αj

b = h(γj
b ) and βj

b = h(δj
b) for the same

range of b and j. Choose n ∈ {1, · · · , B(k)} uniformly. For the first phase, A′ will act very much like a
trapdoor permutation signature scheme with one exception. When it is time for A′ to choose its one way
permutation fn, it will choose h. If A′ were to leave the α’s and β’s unchanged at this point, it would be
able to sign F ’s request for mn though it does not know h−1. However A′ does change one of the α’s or
β’s, as follows:

2. Randomly choose one of the α’s or β’s and set it equal to the input ω. Let the public key contain f1 (this
is h if n = 1), the α’s and β’s:

3. Run F using the current scheme. Note that with probability at least 1
B(k) , F will make at least n message

requests. Note also that when F does request a signature for message mn, A′ will be able to sign mn with
probability 1/2. This is because with probability 1/2 A′ will not have to calculate (using h) the inverse
of the α (or β) which was set to ω.

4. With probability 1
Q(k) , F will successfully output a good forgery (m̂, ŝ). In order for ŝ to be a good

forgery it must not only be verifiable, but it must diverge from the history of requests made to A′. With
probability at least 1

B(k) the forger will choose to diverge from the history precisely at request n. Thus,

F will use h as its trapdoor permutation.

5. If this is the case, the probability is 1
2(k+K(k)) that the forger will invert the α (or β) which was set to ω.

6. If so, A′ outputs h−1(ω).

The probability that A′ succeeds is therefore at least 1
Q′(k) = 1

4(k+K(k))B2(k) and since 4(k + K(k))B2(k) is a

polynomial in k we have a contradiction.

10.5 Concrete security and Practical RSA based signatures

In practice, the most widely employed paradigm for signing with RSA is “hash then decrypt:” First “hash” the
message into a domain point of RSA and then decrypt (ie. exponentiate with the RSA decryption exponent).
The attraction of this paradigm is clear: signing takes just one RSA decryption, and verification just one RSA
encryption. Furthermore it is simple to implement. Thus, in particular, this is the basis of several existing
standards.

In this section we analyze this paradigm. We will see that, unfortunately, the security of the standardized
schemes cannot be justified under standard assumptions about RSA, even assuming the underlying hash func-
tions are ideal. Schemes with better justified security would be recommended.

We have already seen that such schemes do exist. Unfortunately, none of them match the schemes of the hash
then decrypt paradigm in efficiency and simplicity. (See Section 10.5.13 for comparisons). So what can we do?

We present here some schemes that match “hash then decrypt” ones in efficiency but are provably secure
assuming we have access to ideal hash functions. (As discussed in Section 7.4.6, this means that formally, the
hash functions are modeled as random oracles, and in implementation, the hash functions are derived from
cryptographic hash functions. This represents a practical compromise under which we can get efficiency with
reasonable security assurances. See [15] for a full discussion of this approach.)

We present and analyze two schemes. The first is the FDH scheme of [15]. The second is the PSS of [26].
Furthermore we present a scheme called PSS-R which has the feature of message recovery. This is a useful way
to effectively shorten signature sizes.

Let us now expand on all of the above. We begin by looking at current practice. Then we consider the full
domain hash scheme of [15, 26] and discuss its security. Finally we come to PSS and PSS-R, and their exact
security.
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We present these schemes for RSA. The same can be done for the Rabin scheme.

The materiel of this section is taken largely from [26].

In order to make this section self-contained, we repeat some of the basics of previous parts of this chapter. Still
the viewpoint is different, being that of concrete security, so the materiel is not entirely redundant.

10.5.1 Digital signature schemes

In the public key setting, the primitive used to provide data integrity is a digital signature scheme. It is just like
a message authentication scheme except for an asymmetry in the key structure. The key sk used to generate
tags (in this setting the tags are often called signatures) is different from the key pk used to verify signatures.
Furthermore pk is public, in the sense that the adversary knows it too. So while only a signer in possession
of the secret key can generate signatures, anyone in possession of the corresponding public key can verify the
signatures.

Definition 10.11 A digital signature scheme DS = (K,S,V) consists of three algorithms, as follows:

• The randomized key generation algorithm K (takes no inputs and) returns a pair (pk, sk) of keys, the

public key and matching secret key, respectively. We write (pk, sk)
$← K for the operation of executing K

and letting (pk, sk) be the pair of keys returned.

• The signing algorithm S takes the secret key sk and a message M to return a signature or tag σ ∈
{0, 1}∗ ∪ {⊥}. The algorithm may be randomized or stateful. We write σ

$← Ssk(M) or σ
$← S(sk,M) for

the operation of running S on inputs sk, M and letting σ be the signature returned.

• The deterministic verification algorithm V takes a public key pk, a message M , and a candidate signature
σ for M to return a bit. We write d ← Vpk(M, σ) or d ← V(pk,M, σ) to denote the operation of running
V on inputs pk, M, σ and letting d be the bit returned.

We require that Vpk(M,σ) = 1 for any key-pair (pk, sk) that might be output by K,any message M , and any
σ 6= ⊥ that might be output by Ssk(M). If S is stateless then we associate to each public key a message space
Messages(pk) which is the set of all M for which Ssk(M) never returns ⊥.

Let S be an entity that wants to have a digital signature capability. The first step is key generation: S runs K
to generate a pair of keys (pk, sk) for itself. The key generation algorithm is run locally by S. S will produce
signatures using sk, and others will verify these signatures using pk. The latter requires that anyone wishing
to verify S’s signatures must be in possession of this key pk which S has generated. Furthermore, the verifier
must be assured that the public key is authentic, meaning really is the key of S and not someone else.

There are various mechanisms used to ensure that a prospective verifier is in possession of an authentic public
key of the signer. These usually go under the name of key management. Very briefly, here are a few options.
S might “hand” its public key to the verifier. More commonly S registers pk in S’s name with some trusted
server who acts like a public phone book, and anyone wishing to obtain S’s public key requests it of the server
by sending the server the name of S and getting back the public key. Steps must be taken to ensure that this
communication too is authenticated, meaning the verifier is really in communication with the legitimate server,
and that the registration process itself is authentic.

In fact key management is a topic in its own right, and needs an in-depth look. We will address it later. For
the moment, what is important to grasp is the separation between problems. Namely, the key management
processes are not part of the digital signature scheme itself. In constructing and analyzing the security of digital
signature schemes, we make the assumption that any prospective verifier is in possession of an authentic copy
of the public key of the signer. This assumption is made in what follows.

Once the key structure is in place, S can produce a digital signature on some document M by running Ssk(M)
to return a signature σ. The pair (M, σ) is then the authenticated version of the document. Upon receiving a
document M ′ and tag σ′ purporting to be from S, a receiver B verifies the authenticity of the signature by using
the specified verification procedure, which depends on the message, signature, and public key key. Namely he
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computes Vpk(M ′, σ′), whose value is a bit. If this value is 1, it is read as saying the data is authentic, and so
B accepts it as coming from S. Else it discards the data as unauthentic.

A viable scheme of course requires some security properties. But these are not our concern now. First we want
to pin down what constitutes a specification of a scheme, so that we know what are the kinds of objects whose
security we want to assess.

The last part of the definition says that tags that were correctly generated will pass the verification test. This
simply ensures that authentic data will be accepted by the receiver.

The signature algorithm might be randomized, meaning internally flip coins and use these coins to determine
its output. In this case, there may be many correct tags associated to a single message M . The algorithm
might also be stateful, for example making use of a counter that is maintained by the sender. In that case the
signature algorithm will access the counter as a global variable, updating it as necessary.

Unlike encryption schemes, whose encryption algorithms must be either randomized or stateful for the scheme
to be secure, a deterministic, stateless signature algorithm is not only possible, but common.

10.5.2 A notion of security

Digital signatures aim to provide the same security property as message authentication schemes; the only change
is the more flexible key structure. Accordingly, we can build on our past work in understanding and pinning
down a notion of security for message authentication; the one for digital signatures differs only in that the
adversary has access to the public key.

The goal of the adversary F is forgery: It wants to produce document M and tag σ such that Vpk(M, σ) = 1,
but M did not originate with the sender S. The adversary is allowed a chosen-message attack in the process
of trying to produce forgeries, and the scheme is secure if even after such an attack the adversary has low
probability of producing forgeries.

Let DS = (K,S,V) be an arbitrary digital signature scheme. Our goal is to formalize a measure a insecurity
against forgery under chosen-message attack for this scheme. The adversary’s actions are viewed as divided
into two phases. The first is a “learning” phase in which it is given oracle access to Ssk(·), where (pk, sk) was
a priori chosen at random according to K. It can query this oracle up to q times, in any manner it pleases,
as long as all the queries are messages in the underlying message space Plaintexts(pk) associated to this key.
Once this phase is over, it enters a “forgery” phases, in which it outputs a pair (M, σ) with M ∈ Plaintexts(pk).
The adversary is declared successful if Vpk(M,σ) = 1 and M was never a query made by the adversary to the
signing oracle. Associated to any adversary F is thus a success probability. (The probability is over the choice
of keys, any probabilistic choices that S might make, and the probabilistic choices, if any, that F makes.) The
insecurity of the scheme is the success probability of the “cleverest” possible adversary, amongst all adversaries
restricted in their resources to some fixed amount.

Definition 10.12 Let DS = (K,S,V) be a digital signature scheme, and let A be an algorithm that has access
to an oracle and returns a pair of strings. We consider the following experiment:

Experiment Expuf-cma
DS A

(pk, sk)
$← K

(M,σ) ← ASsk(·)(pk)
If the following are true return 1 else return 0:
– Vpk(M, σ) = 1
– M ∈ Messages(pk)
– M was not a query of A to its oracle

The uf-cma-advantage of A is defined as

Advuf-cma
DS A = Pr

[

Expuf-cma
DS A = 1

]

.
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In the case of message authentication schemes, we provided the adversary not only with an oracle for producing
tags, but also with an oracle for verifying them. Above, there is no verification oracle. This is because verification
of a digital signature does not depend on any quantity that is secret from the adversary. Since the adversary
has the public key and knows the algorithm V, it can verify as much as it pleases by running the latter.

When we talk of the time-complexity of an adversary, we mean the worst case total execution time of the entire
experiment. This means the adversary complexity, defined as the worst case execution time of A plus the size
of the code of the adversary A, in some fixed RAM model of computation (worst case means the maximum
over A’s coins or the answers returned in response to A’s oracle queries), plus the time for other operations
in the experiment, including the time for key generation and the computation of answers to oracle queries via
execution of the encryption algorithm.

As adversary resources, we will consider this time complexity, the message length µ, and the number of queries
q to the sign oracle. We define µ as the sum of the lengths of the oracle queries plus the length of the message
in the forgery output by the adversary. In practice, the queries correspond to messages signed by the legitimate
sender, and it would make sense that getting these examples is more expensive than just computing on one’s
own. That is, we would expect q to be smaller than t. That is why q, µ are resources separate from t.

10.5.3 Generation of RSA parameters

The RSA trapdoor permutation is widely used as the basis for digital signature schemes. Let us see how. We
begin with a piece of notation:

Definition 10.13 Let N, f ≥ 1 be integers. The RSA function associated to N, f is the function RSAN,f : Z∗
N →

Z∗
N defined by RSAN,f (w) = wf mod N for all w ∈ Z∗

N .

The RSA function associated to N, f is thus simply exponentiation with exponent f in the group Z∗
N , but it is

useful in the current context to give it a new name. The following summarizes a basic property of this function.
Recall that ϕ(N) is the order of the group Z∗

N .

Proposition 10.14 Let N ≥ 2 and e, d ∈ Z∗
ϕ(N) be integers such that ed ≡ 1 (mod ϕ(N)). Then the

RSA functions RSAN,e and RSAN,d are both permutations on Z∗
N and, moreover, are inverses of each other,

ie. RSA−1
N,e = RSAN,d and RSA−1

N,d = RSAN,e.

A permutation, above, simply means a bijection from Z∗
N to Z∗

N , or, in other words, a one-to-one, onto map.
The condition ed ≡ 1 (mod ϕ(N)) says that d is the inverse of e in the group Z∗

ϕ(N).

Proof of Proposition 10.14: For any x ∈ Z∗
N , the following hold modulo N :

RSAN,d(RSAN,e(x)) ≡ (xe)d ≡ xed ≡ xed mod ϕ(N) ≡ x1 ≡ x .

The third equivalence used the fact that ϕ(N) is the order of the group Z∗
N . The fourth used the assumed

condition on e, d. Similarly, we can show that for any y ∈ Z∗
N ,

RSAN,e(RSAN,d(y)) ≡ y

modulo N . These two facts justify all the claims of the Proposition.

With N, e, d as in Proposition 10.14 we remark that

• For any x ∈ Z∗
N : RSAN,e(x) = MOD-EXP(x, e, N) and so one can efficiently compute RSAN,e(x) given

N, e, x.

• For any y ∈ Z∗
N : RSAN,d(y) = MOD-EXP(y, d, N) and so one can efficiently compute RSAN,d(y) given

N, d, y.
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We now consider an adversary that is given N, e, y and asked to compute RSA−1
N,e(y). If it had d, this could be

done efficiently by the above, but we do not give it d. It turns out that when the paremeters N, e are properly
chosen, this adversarial task appears to be computationally infeasible, and this property will form the basis of
both asymmetric encryption schemes and digital signature schemes based on RSA. Our goal in this section is to
lay the groundwork for these later applications by showing how RSA parameters can be chosen so as to make
the above claim of computational difficulty true, and formalizing the sense in which it is true.

Proposition 10.15 There is an O(k2) time algorithm that on inputs ϕ(N), e where e ∈ Zϕ(N)∗ and N < 2k,
returns d ∈ Zϕ(N)∗ satisfying ed ≡ 1 (mod ϕ(N)).

Proof of Proposition 10.15: Since d is the inverse of e in the group Z∗
ϕ(N), the algorithm consists simply of

running MOD-INV(e, ϕ(N)) and returning the outcome. Recall that the modular inversion algorithm invokes
the extended-gcd algorithm as a subroutine and has running time quadratic in the bit-length of its inputs.

To choose RSA parameters, one runs a generator. We consider a few types of geneators:

Definition 10.16 A modulus generator with associated security parameter k (where k ≥ 2 is an integer) is a
randomized algorithm that takes no inputs and returns integers N, p, q satisfying:

1. p, q are distinct, odd primes

2. N = pq

3. 2k−1 ≤ N < 2k (ie. N has bit-length k).

An RSA generator with associated security parameter k is a randomized algorithm that takes no inputs and
returns a pair ((N, e), (N, p, q, d)) such that the three conditions above are true, and, in addition,

4. e, d ∈ Z∗
(p−1)(q−1)

5. ed ≡ 1 (mod (p − 1)(q − 1))

We call N an RSA modulus, or just modulus. We call e the encryption exponent and d the decryption expo-
nent.

Note that (p − 1)(q − 1) = ϕ(N) is the size of the group Z∗
N . So above, e, d are relatively prime to the order

of the group Z∗
N . As the above indicates, we are going to restrict attention to numbers N that are the product

of two distinct odd primes. Condition (4) for the RSA generator translates to 1 ≤ e, d < (p − 1)(q − 1) and
gcd(e, (p − 1)(q − 1)) = gcd(d, (p − 1)(q − 1)) = 1.

For parameter generation to be feasible, the generation algorithm must be efficient. There are many different
possible efficient generators. We illustrate a few.

In modulus generation, we usually pick the primes p, q at random, with each being about k/2 bits long. The
corresponding modulus generator K$

mod with associated security parameter k works as follows:

Algorithm K$
mod

ℓ1 ← ⌊k/2⌋ ; ℓ2 ← ⌈k/2⌉
Repeat

p
$← {2ℓ1−1, . . . , 2ℓ1 − 1} ; q

$← {2ℓ2−1, . . . , 2ℓ2 − 1}
Until the following conditions are all true:

– TEST-PRIME(p) = 1 and TEST-PRIME(q) = 1
– p 6= q
– 2k−1 ≤ N

N ← pq

Return (N, e), (N, p, q, d)
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Above, TEST-PRIME denotes an algorithm that takes input an integer and returns 1 or 0. It is designed
so that, with high probability, the former happens when the input is prime and the latter when the input is
composite.

Sometimes, we may want modulii product of primes having a special form, for example primes p, q such that
(p−1)/2 and (q−1)/2 are both prime. This corresponds to a different modulus generator, which works as above
but simply adds, to the list of conditions tested to exit the loop, the conditions TEST-PRIME((p − 1)/2)) = 1
and TEST-PRIME((q − 1)/2)) = 1. There are numerous other possible modulus generators too.

An RSA generator, in addition to N, p, q, needs to generate the exponents e, d. There are several options for
this. One is to first choose N, p, q, then pick e at random subject to gcd(N, ϕ(N)) = 1, and compute d via the
algorithm of Proposition 10.15. This random-exponent RSA generator, denoted K$

rsa, is detailed below:

Algorithm K$
rsa

(N, p, q)
$← K$

mod

M ← (p − 1)(q − 1)

e
$← Z∗

M

Compute d by running the algorithm of Proposition 10.15 on inputs M, e

Return ((N, e), (N, p, q, d))

In order to speed-up computation of RSAN,e, however, we often like e to be small. To enable this, we begin by
setting e to some small prime number like 3, and then picking the other parameters appropriately. In particular
we associate to any odd prime number e the following exponent-e RSA generator :

Algorithm Ke
rsa

Repeat

(N, p, q)
$← K$

mod(k)

Until

– e < (p − 1) and e < (q − 1)
– gcd(e, (p − 1)) = gcd(e, (q − 1)) = 1

M ← (p − 1)(q − 1)

Compute d by running the algorithm of Proposition 10.15 on inputs M, e

Return ((N, e), (N, p, q, d))

10.5.4 One-wayness problems

The basic assumed security property of the RSA functions is one-wayness, meaning given N, e, y it is hard to
compute RSA−1

N,e(y). One must be careful to formalize this properly though. The formalization chooses y at
random.

Definition 10.17 Let Krsa be an RSA generator with associated security parameter k, and let A be an algo-
rithm. We consider the following experiment:

Experiment Expow-kea
Krsa

(A)

((N, e), (N, p, q, d))
$← Krsa

x
$← Z∗

N ; y ← xe mod N

x′ $← A(N, e, y)
If x′ = x then return 1 else return 0

The ow-kea-advantage of A is defined as

Advow-kea
Krsa

(A) = Pr
[

Expow-kea
Krsa

(A) = 1
]

.
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Above, “kea” stands for “known-exponent attack.” We might also allow a chosen-exponent attack, abbreviated
“cea,” in which, rather than having the encryption exponent specified by the instance of the problem, one allows
the adversary to choose it. The only condition imposed is that the adversary not choose e = 1.

Definition 10.18 Let Kmod be a modulus generator with associated security parameter k, and let A be an
algorithm. We consider the following experiment:

Experiment Expow-cea
Krsa

(A)

(N, p, q)
$← Kmod

y
$← Z∗

N

(x, e)
$← A(N, y)

If xe ≡ y (mod N) and e > 1
then return 1 else return 0.

The ow-cea-advantage of A is defined as

Advow-cea
K

mod
(A) = Pr

[

Expow-cea
K

mod
(A) = 1

]

.

10.5.5 Trapdoor signatures

Trapdoor signatures represent the most direct way in which to attempt to build on the one-wayness of RSA
in order to sign. We believe that the signer, being in possession of the secret key N, d, is the only one who
can compute the inverse RSA function RSA−1

N,e = RSAN,d. For anyone else, knowing only the public key N, e,
this task is computationally infeasible. Accordingly, the signer signs a message by performing on it this “hard”
operation. This requires that the message be a member of Z∗

N , which, for convenience, is assumed. It is possible
to verify a signature by performing the “easy” operation of computing RSAN,e on the claimed signature and
seeing if we get back the message.

More precisely, let Krsa be an RSA generator with associated security parameter k, as per Definition 10.16. We
consider the digital signature scheme DS = (Krsa,S,V) whose signing and verifying algorithms are as follows:

Algorithm SN,p,q,d(M)
If M 6∈ Z∗

N then return ⊥
x ← Md mod N
Return x

Algorithm VN,e(M, x)
If (M 6∈ Z∗

N or x 6∈ Z∗
N ) then return 0

If M = xe mod N then return 1 else return 0

This is a deterministic stateless scheme, and the message space for public key (N, e) is Messages(N, e) = Z∗
N ,

meaning the only messages that the signer signs are those which are elements of the group Z∗
N . In this scheme

we have denoted the signature of M by x. The signing algorithm simply applies RSAN,d to the message to get
the signature, and the verifying algorithm applies RSAN,e to the signature and tests whether the result equals
the message.

The first thing to check is that signatures generated by the signing algorithm pass the verification test. This is
true because of Proposition 10.14, which tells us that if x = Md mod N then xe = M mod N .

Now, how secure is this scheme? As we said above, the intuition behind it is that the signing operation
should be something only the signer can perform, since computing RSA−1

N,e(M) is hard without knowledge of
d. However, what one should remember is that the formal assumed hardness property of RSA, namely one-
wayness under known-exponent attack (we call it just one-wayness henceforth) as specified in Definition 10.17,
is under a very different model and setting than that of security for signatures. One-wayness tells us that if we
select M at random and then feed it to an adversary (who knows N, e but not d) and ask the latter to find
x = RSA−1

N,e(M), then the adversary will have a hard time succeeding. But the adversary in a signature scheme
is not given a random message M on which to forge a signature. Rather, its goal is to create a pair (M, x) such
that VN,e(M, x) = 1. It does not have to try to imitate the signing algorithm; it must only do something that
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satisfies the verification algorithm. In particular it is allowed to choose M rather than having to sign a given
or random M . It is also allowed to obtain a valid signature on any message other than the M it eventually
outputs, via the signing oracle, corresponding in this case to having an oracle for RSA−1

N,e(·). These features
make it easy for an adversary to forge signatures.

A couple of simple forging strategies are illustrated below. The first is to simply output the forgery in which
the message and signature are both set to 1. The second is to first pick at random a value that will play the
role of the signature, and then compute the message based on it:

Forger F
SN,p,q,d(·)
1 (N, e)

Return (1, 1)

Forger F
SN,p,q,d(·)
2 (N, e)

x
$← Z∗

N ; M ← xe mod N
Return (M, x)

These forgers makes no queries to their signing oracles. We note that 1e ≡ 1 (mod N), and hence the uf-cma-
advantage of F1 is 1. Similarly, the value (M, x) returned by the second forger satisfies xe mod N = M and
hence it has uf-cma-advantage 1 too. The time-complexity in both cases is very low. (In the second case, the
forger uses the O(k3) time to do its exponentiation modulo N .) So these attacks indicate the scheme is totally
insecure.

The message M whose signature the above forger managed to forge is random. This is enough to break the
scheme as per our definition of security, because we made a very strong definition of security. Actually for this
scheme it is possible to even forge the signature of a given message M , but this time one has to use the signing
oracle. The attack relies on the multiplicativity of the RSA function.

Forger FSN,e(·)(N, e)

M1
$← Z∗

N − {1,M} ; M2 ← MM−1
1 mod N

x1 ← SN,e(M1) ; x2 ← SN,e(M2)
x ← x1x2 mod N
Return (M, x)

Given M the forger wants to compute a valid signature x for M . It creates M1,M2 as shown, and obtains
their signatures x1, x2. It then sets x = x1x2 mod N . Now the verification algorithm will check whether
xe mod N = M . But note that

xe ≡ (x1x2)
e ≡ xe

1x
e
2 ≡ M1M2 ≡ M (mod N) .

Here we used the multiplicativity of the RSA function and the fact that xi is a valid signature of Mi for i = 1, 2.
This means that x is a valid signature of M . Since M1 is chosen to not be 1 or M , the same is true of M2, and
thus M was not an oracle query of F . So F succeeds with probability one.

These attacks indicate that there is more to signatures than one-wayness of the underlying function.

10.5.6 The hash-then-invert paradigm

Real-world RSA based signature schemes need to surmount the above attacks, and also attend to other imprac-
ticalities of the trapdoor setting. In particular, messages are not usually group elements; they are possibly long
files, meaning bit strings of arbitrary lengths. Both issues are typically dealt with by pre-processing the given
message M via a hash function to yield a point y in the range of RSAN,e, and then applying RSA−1

N,e to y to
obtain the signature. The hash function is public, meaning its description is known, and anyone can compute
it.

To make this more precise, let Krsa be an RSA generator with associated security parameter k and let Keys be
the set of all modulli N that have positive probability to be output by Krsa. Let Hash be a family of functions
whose key-space is Keys and such that HashN : {0, 1}∗ → Z∗

N for every N ∈ Keys. Let DS = (Krsa,S,V) be the
digital signature scheme whose signing and verifying algorithms are as follows:
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Algorithm SN,p,q,d(M)
y ← HashN (M)
x ← yd mod N
Return x

Algorithm VN,e(M, x)
y ← HashN (M)
y′ ← xe mod N
If y = y′ then return 1 else return 0

Let us see why this might help resolve the weaknesses of trapdoor signatures, and what requirements security
imposes on the hash function.

Let us return to the attacks presented on the trapdoor signature scheme above. Begin with the first forger
we presented, who simply output (1, 1). Is this an attack on our new scheme? To tell, we see what happens
when the above verification algorithm is invoked on input 1, 1. We see that it returns 1 only if HashN (1) ≡ 1e

(mod N). Thus, to prevent this attack it suffices to ensure that HashN (1) 6= 1. The second forger we had
previously set M to xe mod N for some random x ∈ Z∗

N . What is the success probability of this strategy under
the hash-then-invert scheme? The forger wins if xe mod N = Hash(M) (rather than merely xe mod N = M
as before). The hope is that with a “good” hash function, it is very unlikely that xe mod N = HashN (M).
Consider now the third attack we presented above, which relied on the multiplicativity of the RSA function.
For this attack to work under the hash-then-invert scheme, it would have to be true that

HashN (M1) · HashN (M2) ≡ HashN (M) (mod N) . (10.1)

Again, with a “good” hash function, we would hope that this is unlikely to be true.

The hash function is thus supposed to “destroy” the algebraic structure that makes attacks like the above
possible. How we might find one that does this is something we have not addressed.

While the hash function might prevent some attacks that worked on the trapdoor scheme, its use leads to a new
line of attack, based on collisions in the hash function. If an adversary can find two distinct messages M1,M2

that hash to the same value, meaning HashN (M1) = HashN (M2), then it can easily forge signatures, as follows:

Forger FSN,p,q,d(·)(N, e)
x1 ← SN,p,q,d(M1)
Return (M2, x1)

This works because M1, M2 have the same signature. Namely because x1 is a valid signature of M1, and because
M1,M2 have the same hash value, we have

xe
1 ≡ HashN (M1) ≡ HashN (M2) (mod N) ,

and this means the verification procedure will accept x1 as a signature of M2. Thus, a necessary requirement
on the hash function Hash is that it be CR2-KK, meaning given N it should be computationally infeasible to
find distinct values M, M ′ such that HashN (M) = HashN (M ′).

Below we will go on to more concrete instantiations of the hash-then-invert paradigm. But before we do that,
it is important to try to assess what we have done so far. Above, we have pin-pointed some features of the
hash function that are necessary for the security of the signature scheme. Collision-resistance is one. The other
requirement is not so well formulated, but roughly we want to destroy algebraic structure in such a way that
Equation (10.1), for example, should fail with high probability. Classical design focuses on these attacks and
associated features of the hash function, and aims to implement suitable hash functions. But if you have been
understanding the approaches and viewpoints we have been endeavoring to develop in this class and notes, you
should have a more critical perspective. The key point to note is that what we need is not really to pin-point
necessary features of the hash function to prevent certain attacks, but rather to pin-point sufficient features of
the hash function, namely features sufficient to prevent all attacks, even ones that have not yet been conceived.
And we have not done this. Of course, pinning down necessary features of the hash function is useful to gather
intuition about what sufficient features might be, but it is only that, and we must be careful to not be seduced
into thinking that it is enough, that we have identified all the concerns. Practice proves this complacence wrong
again and again.

How can we hope to do better? Return to the basic philosophy of provable security. We want assurance that
the signature scheme is secure under the assumption that its underlying primitives are secure. Thus we must
try to tie the security of the signature scheme to the security of RSA as a one-way function, and some security
condition on the hash function. With this in mind, let us proceed to examine some suggested solutions.
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10.5.7 The PKCS #1 scheme

RSA corporation has been one of the main sources of software and standards for RSA based cryptography. RSA
Labs (now a part of Security Dynamics Corporation) has created a set of standards called PKCS (Public Key
Cryptography Standards). PKCS #1 is about signature (and encryption) schemes based on the RSA function.
This standard is in wide use, and accordingly it will be illustrative to see what they do.

The standard uses the hash-then-invert paradigm, instantiating Hash via a particular hash function PKCS-Hash

which we now describe. Recall we have already discussed collision-resistant hash functions. Let us fix a function
h: {0, 1}∗ → {0, 1}l where l ≥ 128 and which is “collision-resistant” in the sense that nobody knows how to find
any pair of distinct points M, M ′ such that h(M) = h(M ′). Currently the role tends to be played by SHA-1,
so that l = 160. Prior to that it was MD5, which has l = 128. The RSA PKCS #1 standard defines

PKCS-HashN (M) = 00 01 FF FF · · · FF FF 00‖h(M) .

Here ‖ denotes concatenation, and enough FF-bytes are inserted that the length of PKCS-HashN (M) is equal to
k bits. Note the the first four bits of the hash output are zero, meaning as an integer it is certainly at most N ,
and thus most likely in Z∗

N , since most numbers between 1 and N are in Z∗
N . Also note that finding collisions

in PKCS-Hash is no easier than finding collisions in h, so if the latter is collision-resistant then so is the former.

Recall that the signature scheme is exactly that of the hash-then-invert paradigm. For concreteness, let us
rewrite the signing and verifying algorithms:

Algorithm SN,p,q,d(M)
y ← PKCS-HashN (M)
x ← yd mod N
Return x

Algorithm VN,e(M, x)
y ← PKCS-HashN (M)
y′ ← xe mod N
If y = y′ then return 1 else return 0

Now what about the security of this signature scheme? Our first concern is the kinds of algebraic attacks we
saw on trapdoor signatures. As discussed in Section 10.5.6, we would like that relations like Equation (10.1)
fail. This we appear to get; it is hard to imagine how PKCS-HashN (M1) ·PKCS-HashN (M2) mod N could have
the specific structure required to make it look like the PKCS-hash of some message. This isn’t a proof that the
attack is impossible, of course, but at least it is not evident.

This is the point where our approach departs from the classical attack-based design one. Under the latter, the
above scheme is acceptable because known attacks fail. But looking deeper there is cause for concern. The
approach we want to take is to see how the desired security of the signature scheme relates to the assumed or
understood security of the underlying primitive, in this case the RSA function.

We are assuming RSA is one-way, meaning it is computationally infeasible to compute RSA−1
N,e(y) for a ran-

domly chosen point y ∈ Z∗
N . On the other hand, the points to which RSA−1

N,e is applied in the signature scheme

are those in the set SN = { PKCS-HashN (M) : M ∈ {0, 1}∗ }. The size of SN is at most 2l since h outputs l
bits and the other bits of PKCS-HashN (·) are fixed. With SHA-1 this means |SN | ≤ 2160. This may seem like
quite a big set, but within the RSA domain Z∗

N it is tiny. For example when k = 1024, which is a recommended
value of the security parameter these days, we have

|SN |
|Z∗

N | ≤ 2160

21023
=

1

2863
.

This is the probability with which a point chosen randomly from Z∗
N lands in SN . For all practical purposes, it

is zero. So RSA could very well be one-way and still be easy to invert on SN , since the chance of a random point
landing in SN is so tiny. So the security of the PKCS scheme cannot be guaranteed solely under the standard
one-wayness assumption on RSA. Note this is true no matter how “good” is the underlying hash function h (in
this case SHA-1) which forms the basis for PKCS-Hash. The problem is the design of PKCS-Hash itself, in
particular the padding.

The security of the PKCS signature scheme would require the assumption that RSA is hard to invert on the set
SN , a miniscule fraction of its full range. (And even this would be only a necessary, but not sufficient condition
for the security of the signature scheme.)
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Let us try to clarify and emphasize the view taken here. We are not saying that we know how to attack the
PKCS scheme. But we are saying that an absence of known attacks should not be deemed a good reason to
be satisfied with the scheme. We can identify “design flaws,” such as the way the scheme uses RSA, which is
not in accordance with our understanding of the security of RSA as a one-way function. And this is cause for
concern.

10.5.8 The FDH scheme

From the above we see that if the hash-then-invert paradigm is to yield a signature scheme whose security can
be based on the one-wayness of the RSA function, it must be that the points y on which RSA−1

N,e is applied
in the scheme are random ones. In other words, the output of the hash function must always “look random”.
Yet, even this only highlights a necessary condition, not (as far as we know) a sufficient one.

We now ask ourselves the following question. Suppose we had a “perfect” hash function Hash. In that case, at
least, is the hash-then-invert signature scheme secure? To address this we must first decide what is a “perfect”
hash function. The answer is quite natural: one that is random, namely returns a random answer to any query
except for being consistent with respect to past queries. (We will explain more how this “random oracle” works
later, but for the moment let us continue.) So our question becomes: in a model where Hash is perfect, can we
prove that the signature scheme is secure if RSA is one-way?

This is a basic question indeed. If the hash-then-invert paradigm is in any way viable, we really must be able
to prove security in the case the hash function is perfect. Were it not possible to prove security in this model
it would be extremely inadvisable to adopt the hash-then-invert paradigm; if it doesn’t work for a perfect hash
function, how can we expect it to work in any real world setting?

Accordingly, we now focus on this “thought experiment” involving the use of the signature scheme with a perfect
hash function. It is a thought experiment because no specific hash function is perfect. Our “hash function” is
no longer fixed, it is just a box that flips coins. Yet, this thought experiment has something important to say
about the security of our signing paradigm. It is not only a key step in our understanding but will lead us to
better concrete schemes as we will see later.

Now let us say more about perfect hash functions. We assume that Hash returns a random member of Z∗
N

every time it is invoked, except that if twice invoked on the same message, it returns the same thing both
times. In other words, it is an instance of a random function with domain {0, 1}∗ and range Z∗

N . We have seen
such objects before, when we studied pseudorandomness: remember that we defined pseudorandom functions
by considering experiments involving random functions. So the concept is not new. We call Hash a random
oracle, and denote it by H in this context. It is accessible to all parties, signer, verifiers and adversary, but
as an oracle. This means it is only accessible across a specified interface. To compute H(M) a party must
make an oracle call. This means it outputs M together with some indication that it wants H(M) back, and an
appropriate value is returned. Specifically it can output a pair (hash,M), the first component being merely a
formal symbol used to indicate that this is a hash-oracle query. Having output this, the calling algorithm waits
for the answer. Once the value H(M) is returned, it continues its execution.

The best way to think about H is as a dynamic process which maintains a table of input-output pairs. Every
time a query (hash,M) is made, the process first checks if its table contains a pair of the form (M,y) for some
y, and if so, returns y. Else it picks a random y in Z∗

N , puts (M, y) into the table, and returns y as the answer
to the oracle query.

We consider the above hash-then-invert signature scheme in the model where the hash function Hash is a random
oracle H. This is called the Full Domain Hash (FDH) scheme. More precisely, let Krsa be an RSA generator
with associated security parameter k. The FDH-RSA signature scheme associated to Krsa is the digital signature
scheme DS = (Krsa,S,V) whose signing and verifying algorithms are as follows:

Algorithm SH(·)
N,p,q,d(M)

y ← H(M)
x ← yd mod N
Return x

Algorithm VH(·)
N,e (M, x)

y ← H(M)
y′ ← xe mod N
If y = y′ then return 1 else return 0
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The only change with respect to the way we wrote the algorithms for the generic hash-then-invert scheme of
Section 10.5.6 is notational: we write H as a superscript to indicate that it is an oracle accessible only via
the specified oracle interface. The instruction y ← H(M) is implemented by making the query (hash,M) and
letting y denote the answer returned, as discussed above.

We now ask ourselves whether the above signature scheme is secure under the assumption that RSA is one-way.
To consider this question we first need to extend our definitions to encompass the new model. The key difference
is that the success probability of an adversary is taken over the random choice of H in addition to the random
choices previously considered. The forger F as before has access to a signing oracle, but now also has access to
H. Furthermore, S and V now have access to H. Let us first write the experiment that measures the success
of forger F and then discuss it more.

Experiment Expuf-cma
DS F

((N, e), (N, p, q, d))
$← Krsa

H
$← Func({0, 1}∗,Z∗

N )

(M, x)
$← FH(·),SH(·)

N,p,q,d
(·)(N, e)

If the following are true return 1 else return 0:
– VH

pk(M, σ) = 1

– M was not a query of A to its oracle

Note that the forger is given oracle access to H in addition to the usual access to the sign oracle that models
a chosen-message attack. After querying its oracles some number of times the forger outputs a message M and
candidate signature x for it. We say that F is successful if the verification process would accept M, x, but F
never asked the signing oracle to sign M . (F is certainly allowed to make hash query M , and indeed it is hard
to imagine how it might hope to succeed in forgery otherwise, but it is not allowed to make sign query M .) The
uf-cma-advantage of A is defined as

Advuf-cma
DS A = Pr

[

Expuf-cma
DS A = 1

]

.

We will want to consider adversaries with time-complexity at most t, making at most qsig sign oracle queries and
at most qhash hash oracle queries, and with total query message length µ. Resources refer again to those of the
entire experiment. We first define the execution time as the time taken by the entire experiment Expuf-cma

DS F .
This means it includes the time to compute answers to oracle queries, to generate the keys, and even to verify
the forgery. Then the time-complexity t is supposed to upper bound the execution time plus the size of the
code of F . In counting hash queries we again look at the entire experiment and ask that the total number of
queries to H here be at most qhash. Included in the count are the direct hash queries of F , the indirect hash
queries made by the signing oracle, and even the hash query made by the verification algorithm in the last step.
This latter means that qhash is always at least the number of hash queries required for a verification, which
for FDH-RSA is one. In fact for FDH-RSA we will have qhash ≥ qsig + 1, something to be kept in mind when
interpreting later results. Finally µ is the sum of the lengths of all messages in sign queries plus the length of
the final output message M .

However, there is one point that needs to be clarified here, namely that if time-complexity refers to that of the
entire experiment, how do we measure the time to pick H at random? It is an infinite object and thus cannot
be actually chosen in finite time. The answer is that although we write H as being chosen at random upfront
in the experiment, this is not how it is implemented. Instead, imagine H as being chosen dynamically. Think
of the process implementing the table we described, so that random choices are made only at the time the H
oracle is called, and the cost is that of maintaining and updating a table that holds the values of H on inputs
queried so far. Namely when a query M is made to H, we charge the cost of looking up the table, checking
whether H(M) was already defined and returning it if so, else picking a random point from Z∗

N , putting it in
the table with index M , and returning it as well.

In this setting we claim that the FDH-RSA scheme is secure. The following theorem upper bounds its uf-cma-
advantage solely in terms of the ow-kea advantage of the underlying RSA generator.
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Theorem 10.19 Let Krsa be an RSA generator with associated security parameter k, and let DS be the FDH-
RSA scheme associated to Krsa. Let F be an adversary making at most qhash queries to its hash oracle and at
most qsig queries to its signing oracle where qhash ≥ 1 + qsig. Then there exists an adversary I such that

Advuf-cma
DS F ≤ qhash · Advow-kea

Krsa
(I) . (10.2)

and I, F are of comparable resources.

The theorem says that the only way to forge signatures in the FDH-RSA scheme is to try to invert the RSA
function on random points. There is some loss in security: it might be that the chance of breaking the signature
scheme is larger than that of inverting RSA in comparable time, by a factor of the number of hash queries made
in the forging experiment. But we can make Advow-kea

Krsa
(t′) small enough that even qhash ·Advow-kea

Krsa
(t′) is small,

by choosing a larger modulus size k.

One must remember the caveat: this is in a model where the hash function is random. Yet, even this tells
us something, namely that the hash-then-invert paradigm itself is sound, at least for “perfect” hash functions.
This puts us in a better position to explore concrete instantiations of the paradigm.

Let us now proceed to the proof of Theorem 10.19. Remember that inverter I takes as input (N, e), describing
RSAN,e, and also a point y ∈ Z∗

N . Its job is to try to output RSA−1
N,e(y) = yd mod N , where d is the decryption

exponent corresponding to encryption exponent e. Of course, neither d nor the factorization of N are available
to I. The success of I is measured under a random choice of ((N, e), (N, p, q, d)) as given by Krsa, and also a
random choice of y from Z∗

N . In order to accomplish its task, I will run F as a subroutine, on input public
key (N, e), hoping somehow to use F ’s ability to forge signatures to find RSA−1

N,e(y). Before we discuss how I
might hope to use the forger to determine the inverse of point y, we need to take a closer look at what it means
to run F as a subroutine.

Recall that F has access to two oracles, and makes calls to them. At any point in its execution it might output
(hash,M). It will then wait for a return value, which it interprets as H(M). Once this is received, it continues

its execution. Similarly it might output (sign,M) and then wait to receive a value it interprets as SH(·)
N,p,q,d(M).

Having got this value, it continues. The important thing to understand is that F , as an algorithm, merely
communicates with oracles via an interface. It does not control what these oracles return. You might think of
an oracle query like a system call. Think of F as writing an oracle query M at some specific prescribed place
in memory. Some process is expected to put in another prescribed place a value that F will take as the answer.
F reads what is there, and goes on.

When I executes F , no oracles are actually present. F does not know that. It will at some point make an
oracle query, assuming the oracles are present, say query (hash,M). It then waits for an answer. If I wants to
run F to completion, it is up to I to provide some answer to F as the answer to this oracle query. F will take
whatever it is given and go on executing. If I cannot provide an answer, F will not continue running; it will
just sit there, waiting. We have seen this idea of “simulation” before in several proofs: I is creating a “virtual
reality” under which F can believe itself to be in its usual environment.

The strategy of I will be to take advantage of its control over responses to oracle queries. It will choose them
in strange ways, not quite the way they were chosen in Experiment Expuf-cma

DS F . Since F is just an algorithm,
it processes whatever it receives, and eventually will halt with some output, a claimed forgery (M, x). By
clever choices of replies to oracle queries, I will ensure that F is fooled into not knowing that it is not really in
Expuf-cma

DS F , and furthermore x will be the desired inverse of y. Not always, though; I has to be lucky. But it
will be lucky often enough.

We begin by consider the case of a very simple forger F . It makes no sign queries and exactly one hash query
(hash,M). It then outputs a pair (M, x) as the claimed forgery, the message M being the same in the hash
query and the forgery. (In this case we have qsig = 0 and qhash = 2, the last due to the hash query of F and
the final verification query in the experiment.) Now if F is successful then x is a valid signature of M , meaning
xe ≡ H(M) mod N , or, equivalently, x ≡ H(M)d mod N . Somehow, F has found the inverse of H(M), the
value returned to it as the response to oracle query M . Now remember that I’s goal had been to compute
yd mod N where y was its given input. A natural thought suggests itself: If F can invert RSAN,e at H(M),
then I will “set” H(M) to y, and thereby obtain the inverse of y under RSAN,e. I can set H(M) in this way
because it controls the answers to oracle queries. When F makes query (hash,M), the inverter I will simply
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return y as the response. If F then outputs a valid forgery (M, x), we have x = yd mod N , and I can output x,
its job done.

But why would F return a valid forgery when it got y as its response to hash query M? Maybe it will refuse
this, saying it will not work on points supplied by an inverter I. But this will not happen. F is simply an
algorithm and works on whatever it is given. What is important is solely the distribution of the response. In
Experiment Expuf-cma

DS F the response to (hash,M) is a random element of Z∗
N . But y has exactly the same

distribution, because that is how it is chosen in the experiment defining the success of I in breaking RSA as
a one-way function. So F cannot behave any differently in this virtual reality than it could in its real world;
its probability of returning a valid forgery is still Advuf-cma

DS F . Thus for this simple F the success probability
of the inverter in finding yd mod N is exactly the same as the success probability of F in forging signatures.
Equation (10.2) claims less, so we certainly satisfy it.

However, most forgers will not be so obliging as to make no sign queries, and just one hash query consisting of
the very message in their forgery. I must be able to handle any forger.

Inverter I will define a pair of subroutines, H -Sim (called the hash oracle simulator) and S-Sim (called the
sign oracle simulator) to play the role of the hash and sign oracles respectively. Namely, whenever F makes
a query (hash,M) the inverter I will return H -Sim(M) to F as the answer, and whenever F makes a query
(sign,M) the inverter I will return S-Sim(M) to F as the answer. (The S-Sim routine will additionally invoke
H -Sim.) As it executes, I will build up various tables (arrays) that “define” H. For j = 1, . . . , qhash, the j-th
string on which H is called in the experiment (either directly due to a hash query by F , indirectly due to a
sign query by F , or due to the final verification query) will be recorded as Msg [j]; the response returned by the
hash oracle simulator to Msg [j] is stored as Y [j]; and if Msg [j] is a sign query then the response returned to F
as the “signature” is X[j]. Now the question is how I defines all these values.

Suppose the j-th hash query in the experiment arises indirectly, as a result of a sign query (sign,Msg [j]) by
F . In Experiment Expuf-cma

DS F the forger will be returned H(Msg [j])d mod N . If I wants to keep F running
it must return something plausible. What could I do? It could attempt to directly mimic the signing process,
setting Y [j] to a random value (remember Y [j] plays the role of H(Msg [j])) and returning (Y [j])d mod N . But
it won’t be able to compute the latter since it is not in possesion of the secret signing exponent d. The trick,
instead, is that I first picks a value X[j] at random in Z∗

N and sets Y [j] = (X[j])e mod N . Now it can return
X[j] as the answer to the sign query, and this answer is accurate in the sense that the verification relation
(which F might check) holds: we have Y [j] ≡ (X[j])e mod N .

This leaves a couple of loose ends. One is that we assumed above that I has the liberty of defining Y [j] at
the point the sign query was made. But perhaps Msg [j] = Msg [l] for some l < j due to there having been a
hash query involving this same message in the past. Then the hash value Y [j] is already defined, as Y [l], and
cannot be changed. This can be addressed quite simply however: for any hash query Msg [l], the hash simulator
can follow the above strategy of setting the reply Y [l] = (X[l])e mod N at the time the hash query is made,
meaning it prepares itself ahead of time for the possibility that Msg [l] is later a sign query. Maybe it will not
be, but nothing is lost.

Well, almost. Something is lost, actually. A reader who has managed to stay awake so far may notice that
we have solved two problems: how to use F to find yd mod N where y is the input to I, and how to simulate
answers to sign and hash queries of F , but that these processes are in conflict. The way we got yd mod N was
by returning y as the answer to query (hash,M) where M is the message in the forgery. However, we do not
know beforehand which message in a hash query will be the one in the forgery. So it is difficult to know how to
answer a hash query Msg [j]; do we return y, or do we return (X[j])e mod N for some X[j]? If we do the first,
we will not be able to answer a sign query with message Msg [j]; if we do the second, and if Msg [j] equals the
message in the forgery, we will not find the inverse of y. The answer is to take a guess as to which to do. There
is some chance that this guess is right, and I succeeds in that case.

Specifically, notice that Msg [qhash] = M is the message in the forgery by definition since Msg [qhash] is the message
in the final verification query. The message M might occur more than once in the list, but it occurs at least once.
Now I will choose a random i in the range 1 ≤ i ≤ qhash and respond by y to hash query (hash,Msg [i]). To all
other queries j it will respond by first picking X[j] at random in Z∗

N and setting H(Msg [j]) = (X[j])e mod N .
The forged message M will equal Msg [i] with probability at least 1/qhash and this will imply Equation (10.2).
Below we summarize these ideas as a proof of Theorem 10.19.
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It is tempting from the above description to suggest that we always choose i = qhash, since Msg [qhash] = M by
definition. Why won’t that work? Because M might also have been equal to Msg [j] for some j < qhash, and if
we had set i = qhash then at the time we want to return y as the answer to M we find we have already defined
H(M) as something else and it is too late to change our minds.

Proof of Theorem 10.19: We first decribe I in terms of two subroutines: a hash oracle simulator H -Sim(·)
and a sign oracle simulator S-Sim(·). It takes inputs N, e, y where y ∈ Z∗

N and maintains three tables, Msg , X
and Y , each an array with index in the range from 1 to qhash. It picks a random index i. All these are global
variables which will be used also be the subroutines. The intended meaning of the array entries is the following,
for j = 1, . . . , qhash–

Msg [j] – The j-th hash query in the experiment

Y [j] – The reply of the hash oracle simulator to the above, meaning the value
playing the role of H(Msg [j]). For j = i it is y.

X[j] – For j 6= i, the response to sign query Msg [j], meaning it satisfies
(X[j])e ≡ Y [j] (mod N). For j = i it is undefined.

The code for the inverter is below.

Inverter I(N, e, y)
Initialize arrays Msg [1 . . . qhash], X[1 . . . qhash], Y [1 . . . qhash] to empty

j ← 0 ; i
$← {1, . . . , qhash}

Run F on input (N, e)
If F makes oracle query (hash,M)

then h ← H -Sim(M) ; return h to F as the answer
If F makes oracle query (sign,M)

then x ← S-Sim(M) ; return x to F as the answer
Until F halts with output (M, x)
y′ ← H -Sim(M)
Return x

The inverter responds to oracle queries by using the appropriate subroutines. Once it has the claimed forgery,
it makes the corresponding hash query and then returns the signature x.

We now describe the hash oracle simulator. It makes reference to the global variables instantiated in in the
main code of I. It takes as argument a value v which is simply some message whose hash is requested either
directly by F or by the sign simulator below when the latter is invoked by F .

We will make use of a subroutine Find that given an array A, a value v and index m, returns 0 if v 6∈
{A[1], . . . , A[m]}, and else returns the smallest index l such that v = A[l].

Subroutine H -Sim(v)
l ← Find(Msg , v, j) ; j ← j + 1 ; Msg [j] ← v
If l = 0 then

If j = i then Y [j] ← y

Else X[j]
$← Z∗

N ; Y [j] ← (X[j])e mod N
EndIf
Return Y [j]

Else
If j = i then abort
Else X[j] ← X[l] ; Y [j] ← Y [l] ; Return Y [j]
EndIf

EndIf
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The manner in which the hash queries are answered enables the following sign simulator.

Subroutine S-Sim(M)
h ← H -Sim(M)
If j = i then abort
Else return X[j]
EndIf

Inverter I might abort execution due to the “abort” instruction in either subroutine. The first such situation is
that the hash oracle simulator is unable to return y as the response to the i-th hash query because this query
equals a previously replied to query. The second case is that F asks for the signature of the message which is
the i-th hash query, and I cannot provide that since it is hoping the i-th message is the one in the forgery and
has returned y as the hash oracle response.

Now we need to lower bound the ow-kea-advantage of I with respect to Krsa. There are a few observations
involved in verifying the bound claimed in Equation (10.2). First that the “view” of F at any time at which I
has not aborted is the “same” as in Experiment Expuf-cma

DS F . This means that the answers being returned to F
by I are distributed exactly as they would be in the real experiment. Second, F gets no information about the
value i that I chooses at random. Now remember that the last hash simulator query made by I is the message M
in the forgery, so M is certainly in the array Msg at the end of the execution of I. Let l = Find(Msg ,M, qhash)
be the first index at which M occurs, meaning Msg [l] = M but no previous message is M . The random choice
of i then means that there is a 1/qhash chance that i = l, which in turn means that Y [i] = y and the hash oracle
simulator won’t abort. If x is a correct signature of M we will have xe ≡ Y [i] (mod N) because Y [i] is H(M)
from the point of view of F . So I is successful whenever this happens.

10.5.9 PSS0: A security improvement

The FDH-RSA signature scheme has the attractive security attribute of possessing a proof of security under
the assumption that RSA is a one-way function, albeit in the random oracle model. However the quantitative
security as given by Theorem 10.19 could be better. The theorem leaves open the possibility that one could
forge signatures with a probability that is qhash times the probability of being able to invert the RSA function
at a random point, the two actions being measured with regard to adversaries with comparable execution time.
Since qhash could be quite large, say 260, there is an appreciable loss in security here. We now present a scheme
in which the security relation is much tighter: the probability of signature forgery is not appreciably higher
than that of being able to invert RSA in comparable time.

The scheme is called PSS0, for “probabilistic signature scheme, version 0”, to emphasize a key aspect of it,
namely that it is randomized: the signing algorithm picks a new random value each time it is invoked and uses
that to compute signatures. The scheme DS = (Krsa,S,V), like FDH-RSA, makes use of a public hash function
H: {0, 1}∗ → Z∗

N which is modeled as a random oracle. Additonally it has a parameter s which is the length of
the random value chosen by the signing algorithm. We write the signing and verifying algorithms as follows:

Algorithm SH(·)
N,p,q,d(M)

r
$← {0, 1}s

y ← H(r‖M)
x ← yd mod N
Return (r, x)

Algorithm VH(·)
N,e (M, σ)

Parse σ as (r, x) where |r| = s
y ← H(r‖M)
If xe mod N = y

Then return 1 else return 0

Obvious “range checks” are for simplicity not written explicitly in the verification code; for example in a real
implementation the latter should check that 1 ≤ x < N and gcd(x,N) = 1.

This scheme may still be viewed as being in the “hash-then-invert” paradigm, except that the hash is randomized
via a value chosen by the signing algorithm. If you twice sign the same message, you are likely to get different
signatures. Notice that random value r must be included in the signature since otherwise it would not be
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possible to verify the signature. Thus unlike the previous schemes, the signature is not a member of Z∗
N ; it is a

pair one of whose components is an s-bit string and the other is a member of Z∗
N . The length of the signature is

s+k bits, somewhat longer than signatures for deterministic hash-then-invert signature schemes. It will usually
suffice to set l to, say, 160, and given that k could be 1024, the length increase may be tolerable.

The success probability of a forger F attacking DS is measured in the random oracle model, via experiment
Expuf-cma

DS F . Namely the experiment is the same experiment as in the FDH-RSA case; only the scheme DS we
plug in is now the one above. Accordingly we have the insecurity function associated to the scheme. Now we
can summarize the security property of the PSS0 scheme.

Theorem 10.20 Let DS be the PSS0 scheme with security parameters k and s. Let F be an adversary making
qsig signing queries and qhash ≥ 1 + qsig hash oracle queries. Then there exists an adversary I such that

Advuf-cma
DS F ≤ Advow-kea

Krsa
(I) +

(qhash − 1) · qsig

2s
, (10.3)

and the running time of I is that of F plus qhash · O(k3).

Say qhash = 260 and qsig = 240. With l = 160 the additive term above is about 2−60, which is very small. So
for all practical purposes the additive term can be neglected and the security of the PSS0 signature scheme is
tightly related to that of RSA.

We proceed to the proof of Theorem 10.20. The design of I follows the same framework used in the proof of
Theorem 10.19. Namely I, on input N, e, y, will execute F on input N, e, and answer F ’s oracle queries so that
F can complete its execution. From the forgery, I will somehow find yd mod N . I will respond to hash oracle
queries of F via a subroutine H -Sim called the hash oracle simulator, and will respond to sign queries of F via a
subroutine S-Sim called the sign oracle simulator. A large part of the design is the design of these subroutines.
To get some intuition it is helpful to step back to the proof of Theorem 10.19.

We see that in that proof, the multiplicative factor of qhash in Equation (10.2) came from I’s guessing at random
a value i ∈ {1, . . . , qhash}, and hoping that i = Find(Msg ,M, qhash) where M is the message in the forgery. That
is, it must guess the time at which the message in the forgery is first queried of the hash oracle. The best we
can say about the chance of getting this guess right is that it is at least 1/qhash. However if we now want
I’s probability of success to be as in Equation (10.3), we cannot afford to guess the time at which the forgery
message is queried of the hash oracle. Yet, we certainly don’t know this time in advance. Somehow, I has to
be able to take advantage of the forgery to return yd mod N nonetheless.

A simple idea that comes to mind is to return y as the answer to all hash queries. Then certainly a forgery
on a queried message yields the desired value yd mod N . Consider this strategy for FDH. In that case, two
problems arise. First, these answers would then not be random and indpendent, as required for answers to hash
queries. Second, if a message in a hash query is later a sign query, I would have no way to answer the sign
query. (Remember that I computed its reply to hash query Msg [j] for j 6= i as (X[j])e mod N exactly in order
to be able to later return X[j] if Msg [j] showed up as a sign query. But there is a conflict here: I can either do
this, or return y, but not both. It has to choose, and in FDH case it chooses at random.)

The first problem is actually easily settled by a small algebraic trick, exploiting what is called the self-reducibility
of RSA. When I wants to return y as an answer to a hash oracle query Msg [j], it picks a random X[j] in Z∗

N

and returns Y [j] = y · (X[j])e mod N . The value X[j] is chosen randomly and independently each time. Now
the fact that RSAN,e is a permutation means that all the different Y [j] values are randomly and independently
distributed. Furthermore, suppose (M, (r, x)) is a forgery for which hash oracle query r‖M has been made and
got the reponse Y [l] = y · (X[l])e mod N . Then we have (x · X[l]−1)e ≡ y (mod N), and thus the inverse of y
is x · X[l]−1 mod N .

The second problem however, cannot be resolved for FDH. That is exactly why PSS0 pre-pends the random
value r to the message before hashing. This effectively “separates” the two kinds of hash queries: the direct
queries of F to the hash oracle, and the indirect queries to the hash oracle arising from the sign oracle. The
direct hash oracle queries have the form r‖M for some l-bit string r and some message M . The sign query is
just a message M . To answer it, a value r is first chosen at random. But then the value r‖M has low probability
of having been a previous hash query. So at the time any new direct hash query is made, I can assume it will
never be an indirect hash query, and thus reply via the above trick.
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Here now is the full proof.

Proof of Theorem 10.20: We first decribe I in terms of two subroutines: a hash oracle simulator H -Sim(·)
and a sign oracle simulator S-Sim(·). It takes input N, e, y where y ∈ Z∗

N , and maintains four tables, R, V , X
and Y , each an array with index in the range from 1 to qhash. All these are global variables which will be used
also be the subroutines. The intended meaning of the array entries is the following, for j = 1, . . . , qhash–

V [j] – The j-th hash query in the experiment, having the form R[j]‖Msg [j]

R[j] – The first l-bits of V [j]

Y [j] – The value playing the role of H(V [j]), chosen either by the hash simulator or the
sign simulator

X[j] – If V [j] is a direct hash oracle query of F this satisfies Y [j]·X[j]−e ≡ y (mod N). If
V [j] is an indirect hash oracle query this satisfies X[j]e ≡ Y [j] (mod N), meaning
it is a signature of Msg [j].

Note that we don’t actually need to store the array Msg ; it is only referred to above in the explanation of terms.

We will make use of a subroutine Find that given an array A, a value v and index m, returns 0 if v 6∈
{A[1], . . . , A[m]}, and else returns the smallest index l such that v = A[l].

Inverter I(N, e, y)
Initialize arrays R[1 . . . qhash], V [1 . . . qhash], X[1 . . . qhash], Y [1 . . . qhash], to empty
j ← 0
Run F on input N, e
If F makes oracle query (hash, v)

then h ← H -Sim(v) ; return h to F as the answer
If F makes oracle query (sign,M)

then σ ← S-Sim(M) ; return σ to F as the answer
Until F halts with output (M, (r, x))
y ← H -Sim(r‖M) ; l ← Find(V, r‖M, qhash)
w ← x · X[l]−1 mod N ; Return w

We now describe the hash oracle simulator. It makes reference to the global variables instantiated in in the
main code of I. It takes as argument a value v which is assumed to be at least s bits long, meaning of the form
r‖M for some s bit strong r. (There is no need to consider hash queries not of this form since they are not
relevant to the signature scheme.)

Subroutine H -Sim(v)
Parse v as r‖M where |r| = s
l ← Find(V, v, j) ; j ← j + 1 ; R[j] ← r ; V [j] ← v
If l = 0 then

X[j]
$← Z∗

N ; Y [j] ← y · (X[j])e mod N ; Return Y [j]
Else

X[j] ← X[l] ; Y [j] ← Y [l] ; Return Y [j]
EndIf

Every string v queried of the hash oracle is put by this routine into a table V , so that V [j] is the j-th hash
oracle query in the execution of F . The following sign simulator does not invoke the hash simulator, but if
necessary fills in the necessary tables itself.

Subroutine S-Sim(M)
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r
$← {0, 1}s

l ← Find(R, r, j)
If l 6= 0 then abort
Else

j ← j + 1 ; R[j] ← r ; V [j] ← r‖M ; X[j]
$← Z∗

N ; Y [j] ← (X[j])e mod N
Return X[j]

EndIf

Now we need to establish Equation (10.3).

First consider Expow-kea
Krsa

(I) and let Pr1 [·] denote the probability function in this experiment. Let bad1 be the
event that I aborts due to the “abort” instruction in the sign-oracle simulator.

Now consider Expuf-cma
DS F , and let Pr2 [·] denote the probability function in this experiment. Let bad2 be the

event that the sign oracle picks a value r such that F had previously made a hash query r‖M for some M .

Let succ be the event (in either experiment) that F succeeds in forgery. Now we have

Advuf-cma
DS F = Pr2 [succ]

= Pr2

[
succ ∧ bad2

]
+ Pr2 [succ ∧ bad2]

≤ Pr2

[
succ ∧ bad2

]
+ Pr2 [bad2]

= Pr1

[
succ ∧ bad1

]
+ Pr1 [bad1] (10.4)

= Advow-kea
Krsa

(I) + Pr1 [bad1] (10.5)

≤ Advow-kea
Krsa

(I) +
(qhash − 1)qsig

2s
. (10.6)

This establishes Equation (10.3). Let us now provide some explanations for the above.

First, Equation (10.6) is justified as follows. The event in question happens if the random value r chosen in the
sign oracle simulator is already present in the set {R[1], . . . , R[j]}. This set has size at most qhash − 1 at the
time of a sign query, so the probability that r falls in it is at most (qhash − 1)/2s. The sign oracle simulator is
invoked at most qsig times, so the bound follows.

It is tempting to think that the “view” of F at any time at which I has not aborted is the “same” as the view
of F in Experiment Expuf-cma

DS F . This is not true, because it can test whether or not bad occured. That’s why
we consider bad events in both games, and note that

Advow-kea
Krsa

(I) = Pr1

[
succ ∧ bad1

]
= Pr2

[
succ ∧ bad2

]
.

This is justified as follows. Remember that the last hash simulator query made by I is r‖M where M is
the message in the forgery, so r‖M is certainly in the array V at the end of the execution of I. So l =
Find(V, r‖M, qhash) 6= 0. We know that r‖M was not put in V by the sign simulator, because F is not allowed
to have made sign query M . This means the hash oracle simulator has been invoked on r‖M . This means that
Y [l] = y · (X[l])e mod N because that is the way the hash oracle simulator chooses its replies. The correctness
of the forgery means that xe ≡ H(r‖M) (mod N), and the role of the H value here is played by Y [l], so we
get xe ≡ Y [l] ≡ y · X[l] (mod N). Solving this gives (x · X[l]−1)e mod N = y, and thus the inverter is correct
in returning x · X[l]−1 mod N .

It may be worth adding some words of caution about the above. It is tempting to think that

Advow-kea
Krsa

(I) ≥
[

1 − (qhash − 1) · qsig

2s

]

· Advuf-cma
DS F ,

which would imply Equation (10.3) but is actually stronger. This however is not true, because the bad events
and success events as defined above are not independent.
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Figure 10.1: PSS: Components of image y = 0‖w‖r∗‖g2(w) are darkened. The signature of M is yd mod N .

10.5.10 The Probabilistic Signature Scheme – PSS

PSS0 obtained improved security over FDH-RSA but at the cost of an increase in signature size. The scheme
presented here reduces the signature size, so that it has both high security and the same signature size as
FDH-RSA. This is the probabilistic signature scheme (PSS) of [26].

Signature scheme PSS[k0, k1] = (Krsa,SignPSS ,VerifyPSS ) is parameterized by k0 and k1, which are numbers
between 1 and k satisfying k0 + k1 ≤ k− 1. To be concrete, the reader may like to imagine k = 1024, k0 = k1 =
128. Algorithm Krsa is an RSA key generation algorithm as defined in Section 10.5.3. The signing and verifying
algorithms make use of two hash functions. The first, h, called the compressor, maps as h: {0, 1}∗ → {0, 1}k1

and the second, g, called the generator, maps as g: {0, 1}k1 → {0, 1}k−k1−1. (The analysis assumes these to be
ideal. In practice they can be implemented in simple ways out of cryptographic hash functions like MD5, as
discussed in Appendix 10.5.12.) Let g1 be the function which on input w ∈ {0, 1}k1 returns the first k0 bits of
g(w), and let g2 be the function which on input w ∈ {0, 1}k1 returns the remaining k − k0 − k1 − 1 bits of g(w).
We now describe how to sign and verify. Refer to Figure 10.1 for a picture. We write the signing and verifying
algorithms as follows:

Algorithm SignPSS g,h
N,d(M)

r
$← {0, 1}k0 ; w ← h(M‖r)

r∗ ← g1(w)⊕r
y ← 0‖w‖r∗‖g2(w)
x ← yd mod N
Return x

Algorithm VerifyPSS g,h
N,e(M,x)

y ← xe mod N
Parse y as b‖w‖r∗‖γ where

|b| = 1, |w| = k1, |r∗| = k0

r ← r∗⊕g1(w)
If ( h(M‖r) = w and g2(w) = γ and b = 0 )

Then return 1 else return 0

Obvious “range checks” are for simplicity not written explicitly in the verification code; for example in a real
implementation the latter should check that 1 ≤ x < N and gcd(x,N) = 1.

The step r
$← {0, 1}k0 indicates that the signer picks at random a seed r of k0 bits. He then concatenates this

seed to the message M , effectively “randomizing” the message, and hashes this down, via the “compressing”
function, to a k1 bit string w. Then the generator g is applied to w to yield a k0 bit string r∗ = g1(w) and a
k − k0 − k1 − 1 bit string g2(w). The first is used to “mask” the k0-bit seed r, resulting in the masked seed r∗.
Now w‖r∗ is pre-pended with a 0 bit and appended with g2(w) to create the image point y which is decrypted
under the RSA function to define the signature. (The 0-bit is to guarantee that y is in Z∗

N .)

Notice that a new seed is chosen for each message. In particular, a given message has many possible signatures,
depending on the value of r chosen by the signer.

Given (M,x), the verifier first computes y = xe mod N and recovers r∗, w, r. These are used to check that y
was correctly constructed, and the verifier only accepts if all the checks succeed.

Note the efficiency of the scheme is as claimed. Signing takes one application of h, one application of g, and one
RSA decryption, while verification takes one application of h, one application of g, and one RSA encryption.

The following theorem proves the security of the PSS based on the one-wayness of RSA. The relation between
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Figure 10.2: PSS-R: Components of image y = 0‖w‖r∗‖M∗ are darkened.

the two securities is pretty much the same as that for PSS0 that we saw in Theorem 10.20, meaning essentially
tight, and much tighter than the one we saw for the FDH scheme. This time however it was achieved without
increase in signature size.

Theorem 10.21 [26] Let DS be the PSS scheme with security parameters k0 and k1. Let F be an adversary
making qsig signing queries and qhash ≥ 1 + qsig hash oracle queries. Then there exists an adversary I such that

Advuf-cma
DS F ≤ Advow-kea

Krsa
(I) + [3(qhash − 1)2] · (2−k0 + 2−k1) ,

and the running time of I is that of F plus qhash · k0 · O(k3).

The proof is in [26]. It extends the proof of Theorem 10.20 given above.

10.5.11 Signing with Message Recovery – PSS-R

Message recovery. In a standard signature scheme the signer transmits the message M in the clear, at-
taching to it the signature x. In a scheme which provides message recovery, only an “enhanced signature” τ is
transmitted. The goal is to save on the bandwidth for a signed message: we want the length of this enhanced
signature to be smaller than |M | + |x|. (In particular, when M is short, we would like the length of τ to be k,
the signature length.) The verifier recovers the message M from the enhanced signature and checks authenticity
at the same time.

We accomplish this by “folding” part of the message into the signature in such a way that it is “recoverable”
by the verifier. When the length n of M is small, we can in fact fold the entire message into the signature, so
that only a k bit quantity is transmitted. In the scheme below, if the security parameter is k = 1024, we can
fold up to 767 message bits into the signature.

Definition. Formally, the key generation and signing algorithms are as before, but V is replaced by Recover ,
which takes pk and x and returns Recoverpk(x) ∈ {0, 1}∗∪{REJECT}. The distinguished point REJECT is used
to indicate that the recipient rejected the signature; a return value of M ∈ {0, 1}∗ indicates that the verifier
accepts the message M as authentic. The formulation of security is the same except for what it means for the
forger to be successful : it should provide an x such that Recoverpk(x) = M ∈ {0, 1}∗, where M was not a
previous signing query. We demand that if x is produced via x ← Ssk(M) then Recoverpk(x) = M .

A simple variant of PSS achieves message recovery. We now describe that scheme and its security.

The scheme. The scheme PSS-R[k0, k1] = (K,SignPSSR,RecPSSR) is parameterized by k0 and k1, as before.
The key generation algorithm is Krsa, the same as before. As with PSS, the signing and verifying algorithms
depend on hash functions h: {0, 1}∗ → {0, 1}k1 and g: {0, 1}k1 → {0, 1}k−k1−1, and we use the same g1 and g2
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notation. For simplicity of explication, we assume that the messages to be signed have length n = k−k0−k1−1.
(Suggested choices of parameters are k = 1024, k0 = k1 = 128 and n = 767.) In this case, we produce
“enhanced signatures” of only k bits from which the verifier can recover the n-bit message and simultaneously
check authenticity. Signature generation and verification proceed as follows. Refer to Figure 10.2 for a picture.

Algorithm SignPSSRg,h
N,d(M)

r
$← {0, 1}k0 ; w ← h(M‖r)

r∗ ← g1(w)⊕r
M∗ ← g2(w)⊕M
y ← 0‖w‖r∗‖M∗

x ← yd mod N
Return x

Algorithm RecPSSRg,h
N,e(x)

y ← xe mod N
Parse y as b‖w‖r∗‖M∗ where

|b| = 1, |w| = k1, |r∗| = k0

r ← r∗⊕g1(w)
M ← M∗⊕g2(w)
If ( h(M‖r) = w and b = 0 )

Then return M else return REJECT

The difference in SignPSSR with respect to SignPSS is that the last part of y is not g2(w). Instead, g2(w) is
used to “mask” the message, and the masked message M∗ is the last part of the image point y.

The above is easily adapted to handle messages of arbitrary length. A fully-specified scheme would use about
min{k, n + k0 + k1 + 16} bits.

Security. The security of PSS-R is the same as for PSS.

Theorem 10.22 [26] Let DS be the PSS with recovery scheme with security parameters k0 and k1. Let F be
an adversary making qsig signing queries and qhash ≥ 1+qsig hash oracle queries. Then there exists an adversary
I such that

Advuf-cma
DS F ≤ Advow-kea

Krsa
(I) + [3(qhash − 1)2] · (2−k0 + 2−k1) , (10.7)

and the running time of I is that of F plus qhash · O(k3).

The proof of this theorem is very similar to that of Theorem 10.21.

10.5.12 How to implement the hash functions

In the PSS we need a concrete hash function h with output length some given number k1. Typically we will
construct h from some cryptographic hash function H such as H = MD5 or H = SHA-1. Ways to do this
have been discussed before in [15, 25]. For completeness we quickly summarize some of these possibilities. The
simplest is to define h(x) as the appropriate-length prefix of

H(const.〈0〉.x)‖H(const.〈1〉.x)‖H(const.〈2〉.x)‖ · · · .

The constant const should be unique to h; to make another hash function, g, simply select a different constant.

10.5.13 Comparison with other schemes

We have already discussed the PKCS standards [179, 180] and the ISO standard [1] and seen that their security
cannot be justified based on the assumption that RSA is trapdoor one-way. Other standards, such as [9], are
similar to [179], and the same statement applies.

The schemes we discuss in the remainder of this section do not use the hash-then-decrypt paradigm.

Signature schemes whose security can be provably based on the RSA assumption include [105, 14, 152, 177, 78].
The major plus of these works is that they do not use an ideal hash function (random oracle) model— the
provable security is in the standard sense. On the other hand, the security reductions are quite loose for each
of those schemes. On the efficiency front, the efficiency of the schemes of [105, 14, 152, 177] is too poor to
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seriously consider them for practice. The Dwork-Naor scheme [78], on the other hand, is computationally quite
efficient, taking two to six RSA computations, although there is some storage overhead and the signatures are
longer than a single RSA modulus. This scheme is the best current choice if one is willing to allow some extra
computation and storage, and one wants well-justified security without assuming an ideal hash function.

Back among signature schemes which assume an ideal hash, a great many have been proposed, based on the
hardness of factoring or other assumptions. Most of these schemes are derived from identification schemes, as
was first done by [83]. Some of these methods are provable (in the ideal hash model), some not. In some of the
proven schemes exact security is analyzed; usually it is not. In no case that we know of is the security tight.
The efficiency varies. The computational requirements are often lower than a hash-then-decrypt RSA signature,
although key sizes are typically larger.

Finally we note related new work. Pointcheval and Stern [165] consider the provable security of signatures in
the random oracle model and show that a modified version of the El Gamal scheme [90], as well as the Schnorr
[184] scheme, can be proven secure. (And the scheme of [83] can be proven secure against attacks in which there
are no signature queries.) But they don’t consider exact security. An interesting question is to consider, and
possibly improve, the exact security of their reductions (making, if necessary, modifications to the schemes).

More recently, some quite simple RSA based signature schemes have appeared that have a proof of security
based on a stronger and less standard assumption about RSA, but which do not rely on random oracles [92, 65].

10.6 Threshold Signature Schemes

Using a threshold signature scheme, digital signatures can be produced by a group of players rather than by
one party. In contrast to the regular signature schemes where the signer is a single entity which holds the secret
key, in threshold signature schemes the secret key is shared by a group of n players. In order to produce a valid
signature on a given message m, individual players produce their partial signatures on that message, and then
combine them into a full signature on m. A distributed signature scheme achieves threshold t < n, if no coalition
of t (or less) players can produce a new valid signature, even after the system has produced many signatures on
different messages. A signature resulting from a threshold signature scheme is the same as if it was produced
by a single signer possessing the full secret signature key. In particular, the validity of this signature can be
verified by anyone who has the corresponding unique public verification key. In other words, the fact that the
signature was produced in a distributed fashion is transparent to the recipient of the signature.

Threshold signatures are motivated both by the need that arises in some organizations to have a group of
employees agree on a given message (or a document) before signing it, as well as by the need to protect signature
keys from the attack of internal and external adversaries. The latter becomes increasingly important with the
actual deployment of public key systems in practice. The signing power of some entities, (e.g., a government
agency, a bank, a certification authority) inevitably invites attackers to try and “steal” this power. The goal of
a threshold signature scheme is twofold: To increase the availability of the signing agency, and at the same time
to increase the protection against forgery by making it harder for the adversary to learn the secret signature
key. Notice that in particular, the threshold approach rules out the naive solution based on traditional secret
sharing (see Chapter 12), where the secret key is shared in a group but reconstructed by a single player each
time that a signature is to be produced. Such protocol would contradict the requirement that no t (or less)
players can ever produce a new valid signature. In threshold schemes, multiple signatures are produced without
an exposure or an explicit reconstruction of the secret key.

Threshold signatures are part of a general approach known as threshold cryptography. This approach has
received considerable attention in the literature; we refer the reader to [70] for a survey of the work in this area.
Particular examples of solutions to threshold signatures schemes can be found in [69, 183] for RSA and in [109]
for ElGamal-type of signatures.

A threshold signature scheme is called robust if not only t or less players cannot produce a valid signature, but
also cannot prevent the remaining players from computing a signature on their own. A robust scheme basically
foils possible denial of service attacks on the part of corrupted servers. The solutions mentined above are not
robust. In this chapter we will concentrate on robust schemes. We will not go into technical details. The goal
of this section is to present the reader with the relevant notions and point to the sources in the literature.
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In the following we will refer to the signing servers with the letters P1, . . . , Pn.

10.6.1 Key Generation for a Threshold Scheme

The task of generating a key for a threshold signature scheme is more complicated than when we are in the
presence of a single signer. Indeed we must generate a public key PK whose matching secret key SK is shared
in some form among the servers P1, . . . , Pn.

A way of doing this is to have some trusted dealer who generates a key pair (PK, SK) for the given signature
scheme, makes PK public and shares SK among the Pi’s using a secret sharing protocol (see Chapter 12.)
However notice that such a key generation mechanisms contradicts the requirement that no single entity should
be able to sign, as now the dealer knows the secret key SK and he is able to sign on his own. This is why people
have been trying to avoid the use of such a dealer during the key generation phase.

For the case of discrete-log based signature schemes, this quest has been successful. Robust threshold signature
schemes for the El Gamal, Schnorr and DSS signature schemes (see [90, 184, 85]) can be found in [53, 159, 94],
all using underlying results of Feldman and Pedersen [82, 160, 161].

Yet, in some cases the dealer solution is the best we can do. For example, if the underlying signature scheme is
RSA, then we do not know how to generate a key in a shared form without the use of a dealer.

10.6.2 The Signature Protocol

Once the key is generated and in some way shared among the servers P1, . . . , Pn we need a signature protocol.

The idea is that on input a message M , the servers will engage in some form of communication that will allow
them to compute a signature σ for M , without revealing the secret key. Such protocol should not leak any
information beyond such signature σ. Also in order to obtain the robustness property, such protocols should
correctly compute the signature even if up to t servers Pi’s are corrupted and behave in any way during the
protocol. If possible the computation required by a server Pi to sign in this distributed manner should be
comparable to the effort required if Pi were signing on his own. Interaction should be reduced to a minimum

For El Gamal-like schemes robust threshold signature schemes can be found in [53, 159]. The specific case of
DSS turned out to be very difficult to handle. The best solution is in [94].

RSA turned out to be even less amenable to the construction of robust schemes. A somewhat inefficient solution
(requires much more computation and a lot of interaction between servers) can be found in [86]. A very efficient
and non-interactive solution was independently proposed in [93].



C h a p t e r 11

Key distribution

We have looked extensively at encryption and data authentication and seen lots of ways to design schemes for
these tasks. We must now address one of the assumptions underlying these schemes. This is the assumption
that the parties have available certain kinds of keys.

This chapter examines various methods for key distribution and key management. A good deal of our effort will
be expended in understanding the most important practical problem in the area, namely session key distribution.

Let us begin with the classic secret key exchange protocol of Diffie and Hellman.

11.1 Diffie Hellman secret key exchange

Suppose Alice and Bob have no keys (shared or public), and want to come up with a joint key which they would
use for private key cryptography. The Diffie-Hellman (DH) secret key exchange (SKE) protocol [72] enables
them to do just this.

11.1.1 The protocol

We fix a prime p and a generator g ∈ Z∗
p . These are public, and known not only to all parties but also to the

adversary E.

A picks x ∈ Zp−1 at random and lets X = gx mod p. She sends X to B

B picks y ∈ Zp−1 at random and lets Y = gy mod p. He sends Y to A.

Now notice that
Xy = (gx)y = gxy = (gy)x = Y x ,

the operations being in the group Z∗
p . Let’s call this common quantity K. The crucial fact is that both parties

can compute it! Namely A computes Y x, which is K, and B computes Xy, which is also K, and now they have
a shared key.

11.1.2 Security against eavesdropping: The DH problem

Is this secure? Consider an adversary that is sitting on the wire and sees the flows that go by. She wants to
compute K. What she sees is X and Y . But she knows neither x nor y. How could she get K? The natural
attack is to find either x or y (either will do!) from which she can easily compute K. However, notice that

206
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computing x given X is just the discrete logarithm problem in Z∗
p , which is widely believed to be intractable

(for suitable choices of the prime p). Similarly for computing y from Y . Accordingly, we would be justified in
having some confidence that this attack would fail.

A number of issues now arise. The first is that computing discrete logarithms is not the only possible attack to
try to recover K from X, Y . Perhaps there are others. To examine this issue, let us formulate the computational
problem the adversary is trying to solve. It is the following:

The DH Problem: Given gx and gy for x, y chosen at random from Zp−1, compute gxy.

Thus the question is how hard is this problem? We saw that if the discrete logarithm problem in Z∗
p is easy

then so is the DH problem; ie. if we can compute discrete logs we can solve the DH problem. Is the converse
true? That is, if we can solve the DH problem, can we compute discrete logarithms? This remains an open
question. To date it seems possible that there is some clever approach to solving the DH problem without
computing discrete logarithms. However, no such approach has been found. The best known algorithm for the
DH problem is to compute the discrete logarithm of either X or Y . This has lead cryptographers to believe that
the DH problem, although not known to be equivalent to the discrete logarithm one, is still a computationally
hard problem, and that as a result the DH secret key exchange is secure in the sense that a computationally
bounded adversary can’t compute the key K shared by the parties.

The DH Assumption: The DH problem is computationally intractable.

These days the size of the prime p is recommended to be at least 512 bits and preferably 1024. As we have
already seen, in order to make sure the discrete logarithm problem modulo p is intractable, p − 1 should have
at least one large factor. In practice we often take p = 2q + 1 for some large prime q.

The relationship between the DH problem and the discrete logarithm problem is the subject of much investiga-
tion. See for example Maurer [141].

11.1.3 The DH cryptosystem

The DH secret key exchange gives rise to a very convenient public key cryptosystem. A party A will choose as
its secret key a random point x ∈ Zp−1, and let X = gx be its public key. Now if party B wants to privately
send A a message M , it would proceed as follows.

First, the parties agree on a private key cryptosystem (E ,D) (cf. Chapter 6). For concreteness assume it is a
DES based cryptosystem, so that it needs a 56 bit key. Now B picks y at random from Zp−1 and computes
the DH key K = Xy = gxy. From this, he extracts a 56 bit key a for the private key cryptosystem according
to some fixed convention, for example by letting a be the first 56 bits of K. He now encrypts the plaintext M
under a using the private key cryptosystem to get the ciphertext C = Ea(M), and transmits the pair (Y, C)
where Y = gy.

A receives (Y, C). Using her secret key x she can compute the DH key K = Y x = gxy, and thus recover a. Now
she can decrypt the ciphertext C according to the private key cryptosystem, via M = Da(C), and thus recover
the plaintext M .

Intuitively, the security would lie in the fact that the adversary is unable to compute K and hence a. This,
however, is not quite right, and brings us to the issue of the bit security of the DH key.

11.1.4 Bit security of the DH key

Above the first 56 bits of the key K = gxy is used as the key to a private key cryptosystem. What we know (are
willing to assume) is that given gx, gy the adversary cannot recover K. This is not enough to make the usage
of K as the key to the private key cryptosystem secure. What if the adversary were able to recover the first 56
bits of K, but not all of K? Then certainly the above cryptosystem would be insecure. Yet, having the first 56
bits of K may not enable one to find K, so that we have not contradicted the DH assumption.
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This is an issue we have seen before in many contexts, for example with one-way functions and with encryption.
It is the problem of partial information. If f is one-way it means given f(x) I can’t find x; it doesn’t mean I
can’t find some bits of x. Similarly, here, that we can’t compute K doesn’t mean we can’t compute some bits
of K.

Indeed, it turns out that computing the last bit (ie. LSB) of K = gxy given gx, gy is easy. To date there do
not seem to be other detectable losses of partial information. Nonetheless it would be unwise to just use some
subset of bits of the DH key as the key to a private key cryptosystem. Assuming that these bits are secure is a
much stronger assumption than the DH assumption.

So what could we do? In practice, we might hash the DH key K to get a symmetric key a. For example,
applying a cryptographic hash function like SHA-1 to K yields 160 bits that might have better “randomness”
properties than the DH key. Now use the first 56 bits of this if you need a DES key.

However, while the above may be a good heuristic in practice, it can’t be validated without very strong assump-
tions on the randomness properties of the hash function. One possibility that can be validated is to extract
hard bits from the DH key via an analogue of Theorem 2.49. Namely, let r be a random string of length |p| and
let b be the dot product of K and r. Then predicting b given gx, gy is infeasible if computing K = gxy given
gx, gy is infeasible. The drawback of this approach is that one gets very few bits. To get 56 bits one would need
to exchange several DH keys and get a few bits from each.

We saw in Chapter 2 that for certain one way functions we can present hardcore predicates, the prediction of
which can be reduced to the problem of inverting the function itself. A theorem like that for the DH key would
be nice, and would indicate how to extract bits to use for a symmetric key. Recently results of this kind have
been proved by Boneh and Venkatesan [46].

11.1.5 The lack of authenticity

At first glance, the DH secret key exchange might appear to solve in one stroke the entire problem of getting
keys to do cryptography. If A wants to share a key with B, they can just do a DH key exchange to get one,
and then use private key cryptography.

Don’t do it. The problem is authenticity. The security of the DH key is against a passive adversary, or
eavesdropper. It is assumed that the adversary will recover the transmitted data but not try to inject data on
the line. In practice, of course, this is an untenable assumption. It is quite easy to inject messages on networks,
and hackers can mount active attacks.

What damage can this do? Here is what the adversary does. She calls up B and simply plays the role of A.
That is, she claims to be A, who is someone with whom B would like to share a key, and then executes the
DH protocol like A would. Namely she picks x at random and sends X = gx to B. B returns Y = gy and
now B and the adversary share the key K = gxy. But B thinks the key is shared with A. He might encrypt
confidential data using K, and then the adversary would recover this data.

Thus in the realistic model of an active adversary, the DH key exchange is of no direct use. The real problem
is to exchange a key in an authenticated manner. It is this that we now turn to.

However, we remark that while the DH key exchange is not a solution, by itself, to the key distribution problem
in the presence of an active adversary, it is a useful tool. We will see how to use it in conjunction with other
tools we will develop to add to session key distribution protocols nice features like “forward secrecy.”

11.2 Session key distribution

Assume now we are in the presence of an active adversary. The adversary can inject messages on the line and
alter messages sent by legitimate parties, in addition to eavesdropping on their communications. We want to
get shared keys.

A little thought will make it clear that if the legitimate parties have no information the adversary does not
know, it will not be possible for them to exchange a key the adversary does not know. This is because the
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adversary can just impersonate one party to another, like in the attack on DH above. Thus, in order to get off
the ground, the legitimate parties need an “information advantage.” This is some information, pre-distributed
over a trusted channel, which the adversary does not know, and which enables them to securely exchange keys
in the future.

We now discuss various ways to realize this information advantage, and the session key distribution problems
to which they give rise. Then we explain the problem in more depth. We largely follow [16, 17].

11.2.1 Trust models and key distribution problems

What forms might the information advantage take? There are various different trust models and corresponding
key distribution problems.

The three party model

This model seems to have been first mentioned by Needham and Schroeder [154]. It has since been popularized
largely by the Kerberos system [199].

In this model there is a trusted party called the authentication server , and denoted S. Each party A in the
system has a key KA which it shares with the server. This is a private key between these two parties, not known
to any other party. When two parties A,B, sharing, respectively, keys KA and KB with S, want to engage in
a communication session, a three party protocol will be executed, involving A, B and S. The result will be to
issue a common key K to A and B. They can then use this key to encrypt or authenticate the data they send
each other.

The distributed key is supposed to be a secure session key. When the parties have completed their communication
session, they will discard the key K. If later they should desire another communication session, the three party
protocol will be re-executed to get a new, fresh session key.

What kinds of security properties should this distributed session key have? We will look at this question in
depth later. It is an important issue, since, as we will see, session key distribution protocols must resist a variety
of novel attacks.

The two party asymmetric model

When public key cryptography can be used, the authentication server’s active role can be eliminated. In this
trust model, the assumption is that A has the public key pkB of B, and B has the public key pkA of A. These
keys are assumed authentic. That is, A is assured the key he holds is really the public key of B and not someone
else, and analogously for B.1

Now, suppose A and B want to engage in a secure communication session. The problem we want to consider is
how they can get a shared, private and authentic session key based on the public keys, via a two party protocol.

Questions pertaining to what exactly is the problem, and why, may arise here. We already know that we
can authenticate and encrypt data with public keys. That is, the parties already have the means to secure
communication. So why do they need a shared session key?

There are several reasons. One is that private key cryptography, at least under current technology, is considerable
more efficient than public key cryptography. The second, however, probably more important, is that it is
convenient to have session keys. They allow one to associate a key uniquely to a session. This is an advantage
for the following reasons.

Keys actually used to encrypt or authenticate data get greater exposure. They are used by applications in ways
that may not be known, or controllable, beforehand. In particular, an application might mis-use a key, or expose

1 How is this situation arrived at? That isn’t a problem we really want to discuss yet: it falls under the issue of key management
and will be discussed later. But, briefly, what we will have is trusted servers which provide public, certified directories of users and
their public keys. The server maintains for each user identity a public key, and provides this upon request to any other user, with a
signature of the server that serves as a certificate of authenticity. Barring this directory service, however, the server plays no active
role.
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it. This might (or might not) compromise the current session, but we would not like it to compromise the long
lived secret key and thus other uses and sessions. Similarly, the long lived secret key of a user A (namely the
secret key skA corresponding to her public key pkA) may be stored in protected hardware and accessed only
via a special interface, while the session key lies on a more exposed machine.

The two party symmetric model

Probably the simplest model is of two parties who already share a long lived key. Each time they wish to engage
in a communication session they will run a protocol to derive a session key.

Again, the motivation is the convenience and security advantages of session keys. We stress the main one. A
host of applications might be run by the users, all wanting keys for one reason or another. We don’t want to
make assumptions about how they use the key. Some might use it in ways that are secure for their own purposes
but compromise the key globally. In order for this not to affect the global security, we assign each run of each
application a separate session key.

11.2.2 History of session key distribution

Although session key distribution is an old problem, it is only recently that a cryptographically sound treatment
of it, in the “provable security” or “reductionist” tradition that these lecture notes are describing, has emerged
[16, 17]. Via this approach we now have models in which to discuss and prove correct protocols, and several
protocols proven secure under standard cryptographic assumptions.

The history prior to this was troubled. Session key distribution is an area in which a large number of papers are
published, proposing protocols to solve the problem. However, many of them are later broken, or suffer from
discernible design flaws.

The problem is deceptively simple. It is easy to propose protocols in which subtle security problems later
emerge.

In the three party case, Needham and Schroeder [154] describe a number of candidate protocols. They had
prophetically ended their paper with a warning on this approach, saying that “protocols such as those developed
here are prone to extremely subtle errors that are unlikely to be detected in normal operations. The need
for techniques to verify the correctness of such protocols is great . . .”. Evidence of the authors’ claim came
unexpectedly when a bug was pointed out in their own “Protocol 1” (Denning and Sacco, [68]).2 Many related
protocols were eventually to suffer the same fate.

As a result of a long history of such attacks there is finally a general consensus that session key distribution is
not a goal adequately addressed by giving a protocol for which the authors can find no attacks.

A large body of work, beginning with Burrows, Abadi and Needham [49], aims to improve on this situation via
the use of special-purpose logics. The aim is to demonstrate a lack of “reasoning problems” in a protocol being
analyzed. The technique has helped to find errors in various protocols, but a proof that a protocol is “logically
correct” does not imply that it is is right (once its abstract cryptographic operations are instantiated). Indeed
it is easy to come up with concrete protocols which are logically correct but blatantly insecure.

Examining the work on the session key distribution problem, one finds that the bulk of it is divorced from basic
cryptographic principles. For example one find over and over again a confusion between data encryption and
data authentication. The most prevalent problem is a lack of specification of what exactly is the problem that
one is trying to solve. There is no model of adversarial capabilities, or definition of security.

Influential works in this area were Bird et. al. [35] and Diffie et. al. [73]. In particular the former pointed to new
classes of attacks, called “interleaving attacks,” which they used to break existing protocols, and they suggested
a protocol (2PP) defeated by none of the interleaving attacks they considered. Building on this, Bellare and
Rogaway provide a model and a definition of security for two party symmetric session key distribution [16]
and for three party session key distribution [17], just like we have for primitives like encryption and signatures.

2 Insofar as there were no formal statements of what this protocol was supposed to do, it is not entirely fair to call it buggy;
but the authors themselves regarded the protocol as having a problem worthy of fixing [155].
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Based on this they derive protocols whose security can be proven based on standard cryptographic assumptions.
It turns out the protocols are efficient too.

Now other well justified protocols are also emerging. For example, the SKEME protocol of Krawczyk [126] is an
elegant and multi-purpose two party session key distribution protocol directed at fulfilling the key distribution
needs of Internet security protocols. Even more recently, a proven-secure protocol for session key distribution
in smart cards was developed by Shoup and Rubin [195].

11.2.3 An informal description of the problem

We normally think of a party in a protocol as being devoted to that protocol alone; it is not doing doing other
things alongside. The main element of novelty in session key distribution is that parties may simultaneously
maintain multiple sessions. A party has multiple instances. It is these instances that are the logical endpoints
of a session, not the party itself.

We let {P1, . . . , PN} denote the parties in the distributed system. As discussed above, a given pair of play-
ers, Pi and Pj may simultaneously maintain multiple sessions (each with its own session key). Thus it is not
really Pi and Pj which form the logical endpoints of a secure session; instead, it is an instance Πs

i,j of Pi and
an instance Πt

j,i of Pj . We emphasize instances as a central aspect of the session key distribution problem, and
one of the things that makes session key distribution different from many other problems.

It is the goal of a session-key distribution protocol to provide Πs
i,j and Πt

j,i with a session key σs,t
i,j to protect

their session. Instances Πs
i,j and Πt

j,i must come up with this key without knowledge of s, t, or whatever other
instances may currently exist in the distributed system.

An active adversary attacks the network. She controls all the communication among the players: she can deliver
messages out of order and to unintended recipients, concoct messages entirely of her own choosing, and start
up entirely new instances of players. Furthermore, she can mount various attacks on session keys which we will
discuss.

11.2.4 Issues in security

Ultimately, what we want to say is that the adversary cannot compromise a session key exchanged between a
pair of instances of the legitimate parties. We must worry about two (related) issues: authentication, and key
secrecy. The first means, roughly, that when an instance of i accepts B then it must have been “talking to” an
instance of j. The second, roughly, means that if Πs

i,j and Πt
j,i share a session key then this key must be secure.

It is an important requirement on session keys that the key of one session be independent of another. This is
because we cannot make assumptions about how a session key will be used in an application. It might end up
exposing it, and we want this not to compromise other session keys. We model this in a worst case way by
allowing the adversary to expose session keys at will. Then we will say that a key shared between partners who
are unexposed must remain secure even if keys of other sessions are exposed.

One of the most important issues is what is meant by security of the key. The way it has traditionally been
viewed is that the key is secure if the adversary cannot compute it. We have by now, however, seen time
and again, in a variety of settings, that this is not the right notion of secrecy. We must also prevent partial
information from leaking. (Examples of why this is important for session keys are easy to find, analogous to the
many examples we have seen previously illustrating this issue.) Accordingly, the definitions ask that a session
key be unpredictable in the sense of a probabilistically encrypted message.

We note that insufficient protection of the session key is a flaw that is present in all session key distribution
protocols of which we are aware barring those of [16, 17]. In fact, this insecurity is often built in by a desire to
have a property that is called “key confirmation.” In order to “confirm” that it has received the session key,
one party might encrypt a fixed message with it, and its ability to do so correctly is read by the other party
as evidence that it has the right session key. But this reveals partial information about the key. It might seem
un-important, but one can find examples of usages of the session key which are rendered insecure by this kind
of key confirmation. In fact “key confirmation,” if needed at all, can be achieved in other ways.
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11.2.5 Entity authentication versus key distribution

The goal of the key distributions we are considering is for the parties to simultaneously authenticate one another
and come into possession of a secure, shared session key. There are several ways one might interpret the notion
of authentication.

The literature has considered two ways. The first is authentication in a very strong sense, considered in [16] for
the two party case. This has been relaxed to a weaker notion in [17], considered for the three party case. The
weaker notion for the two party case is still under research and development.

Which to prefer depends on the setting. The approach we will follow here is to follow the existing literature.
Namely we will consider the stronger notion for the two party setting, and the weaker one for the three party
setting. It may perhaps be more correct to use the weaker notion throughout, and in a future version of these
notes we would hope to do so; the situation at present is simply that the formalizations of the weaker notion
for the two party case have not yet appeared.

11.3 Three party session key distribution

Needham-Schroeder 78 Protocol

Use the following notation:

{X }K = Encryption of X under key K.

Ni = Nonce chosen by i.

Distribution Phase:
A → S: A,B, NA

S → A: { NA, B, α, {α,A }b }a

A → B: {α, A }b

Freshness / Replay check:

B → A: {NB }α

A → B: {NB − 1 }α

The distributed session key is α.

Denning-Sacco 81 – If a session key α is revealed to adversary E after the session is over then later, a compro-
mised session can be created. E has a record of the full conversation—

A → S: A, B, NA

S → A: {NA, B, α, {α, A}b}a

A → B: {α, A}b

B → A: {NB}α

A → B: {NB − 1}α

Now α is leaked. So E does the following—

E → B: {α,A}b

B → A\ E[: ] {N ′
B }α

E → B: {N ′
B − 1 }α

Now B might encrypt a message under α and send it to A. But E can read it!

This has become known as a known key attack.

Why is this a problem?
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The reason is that one user on one machine can run a host of different applications, all wanting security. Each
takes as input a key and uses it as it wishes. View an application as a box, getting a key. But these applications
use the keys in different ways, with different alogirthms. Each uses it appropriately for its purposes, but that
purpose may compromise the key for other purposes.

For example, Application 1 uses the key in the beginning as a one time pad, sending α⊕M for some M . Later,
however, M is revealed. Hence, so is α. But we don’t want this to compromise other sessions. If α is a session
key, no problem. But if it is the long lived key, we are lost.

Similarly, Application 2 uses its key α only for authentication. At the end, for some reason, it reveals the key.
This doesn’t hurt the application. But it dooms the key for later use.

Thus, the user must be able to allocate keys to different applications in such a way that keys of one application
are independent of another. If one is revealed, others are not compromised.

For example how about giving fK(i) to the i-th application that is called up? Maintain i as a counter. The
main problem is replay. Say fK(i) is revealed as above. Now start up a new session claiming this is the key.

Thus our goal should be to distribute session keys in such a way that keys distributed to one session are totally
independent of one another.

This is not the only problem with this protocol. The other problem is a lack of adherence to good design
principles. Rather than illutrate this here, however, let us look at a simplified Kerberos.

Kerberos

This is a simplified version 5. The full Kerberos is a hugely complex thing, with the Kerberos authentication
server, ticket granting service, and clients, but we extract out a basic three party protocol.

A → S: A,B

S → A: {T, α, B}a‖
tB

︷ ︸︸ ︷

{T, α, A}b

A → B: {A, T}α‖tB
B → A: {T + 1}α

Any discernible attacks? Not really. But a lack of basic cryptographic design principles.

Look at the flow {T, α,B}a. It is encrypted. Why? What is the goal? What properties do we want? Is the
desired property secrecy? Certainly for α, but why the rest? So why encrypt? What should we really do? Let’s
try to figure out what is the problem. Let’s look at each term and ask what we want from it:

α: must be secret

Why should T be secret? No need. It is known, pretty much, anyway!

Why should B be secret? It is known!

authentication We want A to know that α came from S. What we need is that it be associated to α in an
“unforgeable” way.

What is the tool to provide authenticity? MACs. Use them. What should this flow really be?

The only thing to encrypt is α. So let C = Ea(α). Now this must be authenticatlly tied to the other quantities.
So the flow should be T, B, C,MACa(T, B, C). Similarly with other quantities. Let them do it. Also {A, T}α

is an encryption. Why? The inner things are not secret data, we don’t want to hide them. What in fact is the
purpose of the flow? Apparently to “confirm” key α. This is not a good way to do it.

I claim sending {A, T}α is a design flaw. Why? It is a deterministic function of α. So it reveals partial
information about α. This can be harmful. This goes back to our previous discussions about what are session
keys. Recall they have to be good for any use. So partial information should not leak.
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A good protocol

Fix a private key encryption scheme (K, E ,D) which is secure in the sense discussed in Chapter 6. Also fix a
message authentication scheme (K′, MAC, VF) which is secure in the sense discussed in Chapter 9. The key KI

shared between the server S and party I is a pair (Ke
I ,Km

I ) of keys, one a key for the encryption scheme and
the other a key for the message authentication scheme. We now consider parties A, B, whose keys KA and KB ,
respectively have this form. A terse representation of the protocol of [17] is is given in Figure 11.1, and a more
complete explanation follows.

Flow 1. A → B: RA

Flow 2. B → S: RA‖RB

Flow 3A. S → A: EKe
A
(α) ‖ MACKm

A
(A‖B‖RA‖EKe

A
(α))

Flow 3B. S → B: EKe
B
(α) ‖ MACKm

B
(A‖B‖RB‖EKe

B
(α))

Figure 11.1: Three party session key distribution protocol.

Here now is a more complete description of the flows and accompanying computations:

(1) In Step 1, party A chooses a random challenge RA and sends it to B.

(2) In Step 2, party B chooses a random challenge RB and sends RA‖RB to S.

(3) In Step 3, S picks a random l-bit session key α which he will distribute. Then S encrypts this session
key under each of the parties’ shared keys. Namely he computes the ciphertexts αA = EKe

A
(α) and

αB = EKe
B
(α). Then S computes µA = MACKm

A
(A‖B‖RA‖αA) and µB = MACKm

B
(A‖B‖RB‖αB). In

flow 3A (resp. 3B) S sends A (resp. B) the message αA‖µA (resp. αB‖µB).

(4) In Step 4A (resp. 4B) Party A (resp. B) receives a message α′
A‖µ′

A (resp. α′
B‖µ′

B) and accepts, with session
key DKe

A
(α′

A) (resp. DKe
B
(α′

B)), if and only if VFKm
A

(A‖B‖RA‖α′
A, µ′

A) = 1 (resp. VFKm
B

(A‖B‖RB‖α′
B ,

µ′
A) = 1).

This protocol has four flows. Typically, the three party key distribution protocols you will see in the literature
have five. Four suffices if it is ok for S to communicate directly with each party. If only one party communicates
directly with S, then five flows are used, since the flow from S to B has to be forwarded via A.

11.4 Authenticated key exchanges

We now look at the two party case, both symmetric and asymmetric. We look at providing authentic exchange
of a session key, meaning the parties want to authenticate one another and simultaneously come into possession
of a shared secret session key. The formal model, and the definition of what constitutes a secure authenticated
session key distribution protocol, are provided in [16]. Here we will only describe some protocols.

First however let us note some conventions. We assume the parties want to come into possession of a l-bit,
random shared secret key, eg. l = 56. (More generally we could distribute a key from some arbitrary samplable
distribution, but for simplicity let’s stick to what is after all the most common case.) The session key will be
denoted by α.

Whenever a party A sends a flow to another party B, it is understood that her identity A accompanies the flow,
so that B knows who the flow purports to come from. (This has nothing to do with cryptography or security:
it is just a service of the communication medium. Note this identity is not secured: the adversary can change
it. If the parties want the claim secured, it is their responsibility to use cryptography to this end, and will see
how they do this.)
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11.4.1 The symmetric case

Let K be the (long-lived) key shared between the parties.

The ISO protocol

The ISO protocol was actually just for authentication, but can be viewed as key distribution in some way. It
doesn’t matter to illustrate the problems.

A N1 ✲ B

EK(N2)‖EK(N1)✛

N2 ✲

Figure 11.2: ISO Protocol

If you want to derive a session key, you can do it by setting the key to FK(N1N2) where F is a PRF family.

The attack is to make A think it authenticated B when in fact B never sent a single message to anyone. It
works by making A talk to itself. Works like this:

A1 → B1: N1. Namely adversary asks A for to start a session, claiming to be B. But the flow goes to E.

E → A2: N1. Namely adversary says she is B and is starting a session with A, and this is the first flow.

A2 → E: EK(N2)‖EK(N1). Namely A responds in the second session, thinking it is talking to B, but E
picks up the flow.

E → A1: EK(N2)‖EK(N1). Namely E claims this is the response from B to A in first session.

A1 → E: N2. A1 decrypts and sends answer in first session, and accepts B.

E → A2: N2 again A2 accepts B.

You have two instances of A, each having accepted B, but B never opened his mouth.

A good protocol

We fix a private key encryption scheme (K, E ,D) and a private key message authentication scheme (K′, MAC, VF).
The key K is divided into two parts, Ke and Km, the first to be used for encryption and the second for message
authentication. The protocol, called Authenticated Key Exchange Protocol 1, is depicted in Figure 11.3, and a
more complete description of the flows follows.

Here is a more complete description of the flows:

(1) A picks at random a string RA and sends it to B

(2) B picks at random a string RB . She also picks at random an l-bit session key α. She encrypts it under Ke

to produce the ciphertext C = EKe(α). She now computes the tag µ = MACKm(B‖A‖RA‖RB‖C). She
sends RB , C, µ to A.
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A RA ✲ B

RB‖EKe(α)‖MACKm(B‖A‖RA‖RB‖EKe(α))✛

MACKm(A‖RB) ✲

Figure 11.3: Protocol AKEP1: Session key distribution in symmetric setting.

(3) A verifies that VFKm(B‖A‖RA‖RB‖C, µ) = 1. If this is the case she computes the tag MACKm(A‖RB)
and sends it to B. She also decrypts C via α = DKe(C) to recover the session key.

(4) B verifies the last tag and accepts (outputting session key α) if the last tag was valid.

Remark 11.1 Notice that both encryption and message authentication are used. As we mentioned above,
one of the commonly found fallacies in session key distribution protocols is to try to use encryption to provide
authentication. One should really use a message authentication code.

Remark 11.2 It is important that the encryption scheme (K, E ,D) used above be secure in the sense we have
discussed in Chapter 6. Recall in particular this means it is probabilistic. A single plaintext has many possible
ciphertexts, depending on the probabilistic choices made by the encryption algorithms. These probabilistic
choices are made by S when the latter encrypts the session key, independently for the two encryptions it
performs. This is a crucial element in the security of the session key.

These remarks apply also to the protocols that follow, appropriately modified, of course, to reflect a change in
setting. We will not repeat the remarks.

11.4.2 The asymmetric case

We will be using public key cryptography. Specifically, we will be using both public key encryption and digital
signatures.

Fix a public key encryption scheme, and let E ,D denote, respectively, the encryption and the decryption
algorithms for this scheme. The former takes a public encryption key pke and message to return a ciphertext,
and the latter takes the secret decryption key ske and ciphertext to return the plaintext. This scheme should
be secure in the sense we have discussed in Chapter 7.

Fix a digital signature scheme, and let S,V denote, respectively, the signature and verification algorithms for
this scheme. The former takes a secret signing key skd and message to return a signature, and the latter takes
the public verification key pkd, message, and candidate signature to return an indication of whether or not the
signature is valid. This scheme should be secure in the sense we have discussed in Chapter 10.

Every user I in the system has a public key pkI which is in fact a pair of public keys, pkI = (pke
I , pkd

I), one for
the encryption scheme and the other for the signature scheme. These keys are known to all other users and the
adversary. However, the user keeps privately the corresponding secret keys. Namely he holds skI = (ske

I , sk
d
I)

and nobody else knows these keys.

Recall the model is that A has B’s public key pkB and B has A’s public key pkA. The protocol for the parties
to get a joint, shared secret key α is depicted in Figure 11.4, and a more complete explanation follows.
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A RA ✲ B

RB‖Epke
A
(α)‖Sskd

B
(B‖A‖RA‖RB‖Epke

A
(α))

✛

Sskd
A
(A‖RB)

✲

Figure 11.4: Protocol for exchange of symmetric key in asymmetric setting.

Here is a more complete description of the flows:

(1) A picks at random a string RA and sends it to B

(2) B picks at random a string RB . She also picks at random an l-bit session key α. She encrypts it
under A’s public key pke

A to produce the ciphertext C = Epke
A
(α). She now computes the signature

µ = Sskd
B
(A‖RA‖RB‖C), under her secret signing key skd

B . She sends RB , C, µ to A.

(3) A verifies that Vpkd
B
(A‖RA‖RB‖C, µ) = 1. If this is the case she computes the signature Sskd

A
(RB) and

sends it to B. She also decrypts C via α = Dske
A
(C) to recover the session key.

(4) B verifies the last signature and accepts (outputting session key α) if the last signature was valid.

11.5 Forward secrecy

Forward secrecy is an extra security property that a session key can have and which seems very desirable.

Consider, for concreteness, the protocol of Figure 11.4 for exchange of a symmetric key in the asymmetric setting.
Suppose A and B have run this protocol and exchanged a session key α, and used it to encrypt data. Suppose
the adversary recorded the transcript of this exchange. This means she has in her possession C = Epke

A
(α), the

encrypted session key, and also any ciphertexts encrypted under α that the parties may have transmitted, call
them C1, C2, . . .. Since the session key distribution protocol is secure, the information she has doesn’t give her
anything; certainly she does not learn the session key α.

Now that session is over. But now suppose, for some reason, the long lived key of A is exposed. Meaning the
adversary, somehow, gets hold of skA = (ske

A, skd
A).

Certainly, the adversary can compromise all future sessions of A. Yet in practice we would expect that A would
soon realize her secret information is lost and revoke her public key pkA = (pke

A, pkd
A) to mitigate the damage.

However, there is another issue. The adversary now has ske and can decrypt the ciphertext C to get α. Using
this, she can decrypt C1, C2, . . . and thereby read the confidential data that the parties sent in the past session.

This does not contradict the security of the basic session key distribution protocol which assumed that the
adversary does not gain access to the long-lived keys. But we might ask for a new and stronger property.
Namely that even if the adversary got the long-lived keys, at least past sessions would not be compromised.
This is called forward secrecy.

Forward secrecy can be accomplished via the Diffie-Hellman key exchange with which we began this chapter.
Let us give a protocol. We do so in the asymmetric, two party setting; analogous protocols can be given in the
other settings. The protocol we give is an extension of the STS protocol of [73]. It is depicted in Figure 11.5
and a more complete explanation follows.
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A gx
✲ B

gy‖Sskd
B
(B‖A‖gx‖gy)

✛

Sskd
A
(A‖gy)

✲

Figure 11.5: Protocol for exchange of symmetric key with forward secrecy.

Here is a more complete description of the flows:

(1) A picks at random a string x, computes X = gx, and sends it to B

(2) B picks at random a string y and lets Y = gy. She now computes the signature µ = Sskd
B
(A‖X‖Y ), under

her secret signing key skd
B . She sends Y, µ to A.

(3) A verifies that Vpkd
B
(A‖X‖Y, µ) = 1. If this is the case she computes the signature Sskd

A
(Y ) and sends it

to B. She also decrypts outputs the DH key gxy = Y x as the session key.

(4) B verifies the last signature and accepts (outputting session key gxy = Xy) if the last signature was valid.

The use of the DH secret key exchange protocol here is intriguing. Is that the only way to get forward secrecy?
It turns out it is. Bellare and Rogaway have noted that secret key exchange is not only sufficient but also
necessary for the forward secrecy property [24].

As we noted in Section 11.1.4, the DH key is not by itself a good key because we cannot guarantee bit security.
Accordingly, the session key in the above should actually be set to, say, H(gxy) rather than gxy itself, for a
“good” hash function H.



C h a p t e r 12

Protocols

Classical cryptography is concerned with the problem of security communication between users by providing
privacy and authenticity. The need for an underlying infrastructure for key management leads naturally into
the topic of key distribution. For many years this is all there was to cryptography.

One of the major contributions of modern cryptography has been the development of advanced protocols. These
protocols enable users to electronically solve many real world problems, play games, and accomplish all kinds
of intriguing and very general distributed tasks. Amongst these are zero-knowledge proofs, secure distributed
computing, and voting protocols. The goal of this chapter is to give a brief introduction to this area.

12.1 Some two party protocols

We make reference to some number theoretic facts in Section C.6.

12.1.1 Oblivious transfer

This protocol was invented by M. Rabin [172].

An oblivious transfer is an unusual protocol wherein Alice transfers a secret bit m to Alice in such a way that
the bit is transferred to Bob with probability 1/2;Bob knows when he gets the bit, but Alice doesn’t know
whether it was transferred or not.

This strange-sounding protocol has a number of useful applications (see, for example [172, 32]). In fact, Kilian
has shown [123] that the ability to perform oblivious transfers is a sufficiently strong primitive to enable any
two-party protocol to be performed.

The following implementation for oblivious transfer has been proposed in the literature (related ideas due to
Rabin and Blum.)

(1) Alice picks two primes p, q at random and multiplies them to produce the modulus N = pq. She encrypts
the message m under this modulus in some standard way, having the property that if you know p, q then
you can decrypt, else you can’t. She sends N and the ciphertext C to Bob.

(2) Bob picks a ∈ Z∗
N at random and sends w = a2 mod N to Alice.

(3) Alice computes the four square roots x,−x, y,−y of w, picks one at random and sends it back to Bob

(4) If Bob got back the root which is not ±a he can factor N and recover m. Else he can’t.

219
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And Alice doesn’t know which happened since a was random.

It is fairly clear that there is no way for A to cheat in this protocol, since A does not know which square root
of z B knows, as x was chosen at random. On first sight it looks like B cannot get anything either, since he
only obtains a square root of a random square. However, a formal proof of this fact is not known. It is not
clear whether B can cheat or not. For example, if B chooses a particular value of z instead of choosing x at
random and setting z = x2 (mod n), then this may lead to an advantage in factoring n. It is conceivable, for
example, that knowing a square root of (n-1)/2 mod n (or some other special value) could allow B to factor n.
Thus condition ii) is satisfied, but we can’t prove whether or not the first condition is satisfied.

If we had a method by which B could prove to A that he indeed followed the protocol and choose x at random
without revealing what x is, the protocol could be modified to provably work. We will see in a later section on
zero-knowledge proofs on how such proofs can be done.

There is another form of OT called 1 out of 2 OT. Here Alice has two secrets, m0 and m1. Bob has a selection
bit c. At the end of the protocol, Bob gets bc and Alice still does not know c. See [81].

12.1.2 Simultaneous contract signing

Alice and Bob want to sign the contract, but only if the other person does as well. That is, neither wants to be
left in the position of being the only one who signs. Thus, if Alice signs first, she is worried Bob will then not
sign, and vice versa. (Maybe easier to think of having two contracts, the first promising something to Alice, the
second to Bob. It is a trade. Obviously, each wants the other one to sign.) This problem was proposed in [81].

One approach is that Alice signs the first letter of her name and sends the contract to Bob. He does likewise,
and sends it back. And so on. Assume their names have the same length. Then this makes some progress
towards a solution. Of course the problem is the person who must go last can stop. But you can make this a
negligible difference. For example, not a letter at a time, but a few millimeters of the letter at a time. No party
is ever much ahead of the other. If at some point they both stop, they both are at about the same point.

Electronically, we are exchanging strings, which are digital signatures of the contract. Alice has signed it to
produce σA and Bob has signed it to produce σB . Now they exchange these strings a bit at a time, each time
sending one more bit.

There is a problem with this. What if one person does not send the signature, but just some garbage string?
The other will not know until the end. Even, Goldreich and Lempel [81] show how oblivious transfer can be
used to fix this.

Alice creates LA which is the signature of the contract together with the phrase “this is my signature of the left
half of the contract.” Similarly she creates RA which is the signature of the contract together with the phrase
“this is my signature of the right half of the contract.” Similarly, Bob creates LB and RB .

Also Alice picks two DES keys, KL
A and KR

A , and encrypts L,R respectively to produce CL
A and CR

A . Similarly
for Bob, replacing As by Bs.

The contract is considered signed if you have both halves of the other person’s signature.

All the ciphertexts are sent to the other party.

Alice 1 out of two OTs (KL
A,KR

A ) to Bob with the latter choosing a random selection bit, and vice versa. Say
Bob gets KL

A and Alice gets KR
B .

Alice and Bob send each the first bits of both DES keys. Keep repeating until all bits of all keys are sent. In
this phase, if a party catches a mistake in the bits corresponding to the key it already has, it aborts, else it
continues.

12.1.3 Bit Commitment

Bob wants Alice to commit to some value, say a bid, so that she can’t change this at a later time as a function
of other things. On the other hand, Alice does not want Bob to know, at this time, what is the value she is
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committing to, but will open it up later, at the right time.

Alice makes up an “electronic safe.” She has a key to it. She puts the value in the safe and sends the safe
to Bob. The latter can’t open it to extract the contents. This is a committal. Later, Alice will decommit by
sending the key. Now Bob can open it. What must be true is that Alice can’t produce a safe having two keys,
such that either open it, and when you look inside, you see different values.

One way to implement this is via collision-free hashing. To commit to x Alice sends yH(x). From this Bob
can’t figure out x, since H is one-way. To decommit, Alice sends x and Bob checks that H(x) = y. But Alice
can’t find x′ 6= x such that H(x′) = y, so can’t cheat.

This however has poor bit security. You can fix it with hardcore bits.

Another way is to use quadratic residues. First, we fix a particular number y ∈ Z∗
N which is known to be a

non-residue. Commit to a 0 by sending a random square mod N , namely x2, and to a 1 by sending a random
non-square mod N , in the form yx2. The QRA says Bob can’t tell which is which. To decommit, reveal x in
either case.

Notice the QR commitment scheme is secure even against a sender who has unbounded computing power. But
not the receiver.

Can you do the opposite? Yes, use discrete logarithms. Let p be a known prime, g ∈ Z∗
p a known generator of

Z∗
p , and s ∈ Z∗

p a known element of unknown discrete logarithm, namely logg(s) is not known. Commit to 0 by
picking x at random and sending y = gx; to a 1 by sending sgx. Notice that to the receiver, each is a random
element of the range. But what if the sender could create a y that could be opened both ways? It would have
the discrete logarithm of s.

Commitment schemes are useful for lots of things. In particular, ZK proofs, but also coin flipping.

12.1.4 Coin flipping in a well

Blum [40] has proposed the problem of coin flipping over the telephone. Alice and Bob want a fair, common,
coin. They want to take a random choice, but neither should be able to dictate it. Heads Alice wins, and tails
Bob wins.

What if Bob says, “I’ll flip the coin and send you the value.” No good. Bob will just flip to win. They must
both influence the value.

Here is a thought. Alice picks a random bit a and sends it to Bob, and Bob picks a random bit b and send it
to Alice, and the value of the coin is a⊕b. The problem is who goes first. If Alice goes first, Bob will choose b
to make the coin whatever he wants. Not fair.

So what Alice does is first commit to her coin. She sends y = Committ(a) to Bob. Now Bob can’t make b a
function of a. He sends back b, in the clear. Alice may want to make a a function of b, but it is too late since a
is committed to. She decommits, and the coin is a⊕b.

12.1.5 Oblivious circuit evaluation

Alice and Bob want to know which of them is older. But neither wants to reveal their age. (Which means they
also don’t want the reveal the age difference, since from this and their own age, each gets the other’s age too!)
They just want a single bit to pop out, pointing to the older one.

Sometimes called the Millionaires problem, with the values being the earning of each millionaire.

In general, the problem is that Alice has an input xA and Bob has an input xB and they want to compute
f(xA, xB) where f is some known function, for example f(xA, xB) = 1 if xA ≥ xB and 0 otherwise. They want
to compute it obliviously, so that at the end of the game they both have the value v = f(xA, xB) but neither
knows anything else.

There are protocols for this task, and they are quite complex. We refer the reader to [10, 47]
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12.1.6 Simultaneous Secret Exchange Protocol

This has been studied in [41, 204, 137, 210].

The protocol given here is an example of a protocol that seems to work at first glance, but is in actuality open
to cheating for similar reasons that the above oblivious transfer protocol was open to cheating. The common
input consists of 1k, α ∈ EnA

(sA), β ∈ EnB
(sB), nA, and nB , where nA and nB are each products of two equal

size primes congruent to 3 mod 4; EnA
(EnB

) are the same encryption as in the oblivious transfer protocol
above with respect to nA (nB respectively). A’s private input has in it the prime factorization nA = pAqA of
nA and B’s contains the same for nB . What we want is for A and B to be able to figure out sB and sA at
the “same time”. We assume equal computing power and knowledge of algorithms. The suggested protocol of
Blum [41] follows .

Step 1: A picks a1, a2, ..., aK at random in Z∗
nB

and then computes bi = a2
i (mod nB) for 1 ≤ i ≤ k. B picks

w1, w2, ..., wk at random in ZnB and then computes xi = wi∗ (mod nA) for 1 ≤ i ≤ k.

Step 2: A sends all the bi’s to B and B sends all the xi’s to A.

Step 3: For each xi A computes yi and zi such that y2
i = z2

i = xi (mod nA) but yi 6= ±zi mod nB . (Note: either
yi or zi equals ±wi.) For each bi, B computes ci and di with similar restrictions. (Note: either ci or di equal ±ai.

Step 4: While 1 ≤ j ≤ k A sends B the jth significant bit of yi and zi for 1 ≤ i ≤ k. B sends A the jth significant
bit of ci and di for 1 ≤ i ≤ k.

Step 5: After completing the above loop, A (and B) figure out the factorization of nB (and nA) with the
information obtained in Step 4. (A computes gcd(ci − di, nB) for each i and B computes gcd (yi − zi, nA) for
each i. Using this information, they figure out sB and sA by decrypting α and β.

Why are k numbers chosen rather that just one? This is to prevent the following type of cheating on the A
and B’s behalf. Suppose only one x was sent to A. A could figure out y and z and then send the jth significant
bits of y and a junk string to B in Step 4, hoping that y = ±w and A will not notice that junk is being sent.
If y = ±w then B has no way of knowing that A is cheating until the last step, at which time A has all the
information he needs to find sB , but B has not gained any new information to find sA. So A can cheat with a
50% chance of success. If, on the other hand, k different x’s are sent to A, A has an exponentially vanishing
chance of successfully cheating in this fashion. Namely Prob(yi = ±wi∀i) ≤ (1

2 )k.

Unfortunately, Shamir, and H̊astad pointed out a way to successfully cheat at this protocol. If, instead of
choosing the wi’s at random, A chooses w1 at random, sets x1 = w2

1 (mod nB), and then sets xi = x1/2i−1

(mod nB), then after one iteration of Step 4, A has all of the information that he needs to factor nB by the
reduction of [106]. So, a seemingly good protocol fails, since B has no way to check whether A chose the xis at
random independently from each as specified in the protocol or not. Note: that this problem is similar to the
problem which arose in the oblivious transfer protocol and can be corrected if A and B could check that each
other was following the protocol.

12.2 Zero-Knowledge Protocols

The previous sections listed a number of cryptographic protocol applications and some problems they suffer
from. In this section we review the theory that has been developed to prove that these protocols are secure, and
to design protocols that are “provably secure by construction”. The key idea is to reduce the general problem
of two-party protocols to a simpler problem: How can A prove to B that x is in a language L so that no more
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knowledge than x ∈ L is revealed. If this could be done for any L ∈ NP A could prove to B that he followed
the protocol steps. We proceed to define the loose terms “interactive proof” (or “proof by a protocol”) and
“zero knowledge”.

12.2.1 Interactive Proof-Systems(IP)

Before defining notion of interactive proof-systems, we define the notion of interactive Turing machine.

Definition 12.1 An interactive Turing machine (ITM) is a Turing machine with a read-only input tape, a
read-only random tape, a read/write worktape, a read-only communication tape, a write-only communication
tape, and a write-only output tape. The random tape contains an infinite sequence of bits which can be thought
of as the outcome of unbiased coin tosses, this tape can be scanned only from left to right. We say that an
interactive machine flips a coin to mean that it reads the next bit from its random tape. The contents of the
write-only communication tape can be thought of as messages sent by the machine; while the contents of the
read-only communication tape can be thought of as messages received by the machine.

Definition 12.2 An interactive protocol is an ordered pair of ITMs (A,B) which share the same input tape;
B’s write-only communication tape is A’s read-only communication tape and vice versa. The machines take
turns in being active with B being active first. During its active stage, the machine first performs some internal
computation based on the contents of its tapes, and second writes a string on its write-only communication tape.
The ith message of A(B) is the string A(B) writes on its write-only communication tape in ith stage. At this
point, the machine is deactivated and the other machine becomes active, unless the protocol has terminated.
Either machine can terminate the protocol, by not sending any message in its active stage. Machine B accepts
(or rejects) the input by entering an accept (or reject) state and terminating the protocol. The first member of
the pair, A, is a computationally unbounded Turing machine. The computation time of machine B is defined
as the sum of B’s computation time during its active stages, and it is bounded by a polynomial in the length
of the input string.

Definition 12.3 Let L ∈ {0, 1}∗ We say that

L has an interactive proof-system if ∃ ITM V s.t.

1. ∃ ITM P s.t (P, V ) is an interactive protocol and ∀x ∈ L s.t |x| is sufficiently large the prob(V accepts) >
2
3 (when probabilities are taken over coin tosses of V and P ).

2. ∀ ITM P s.t (P, V ) is an interactive protocol ∀x /∈ L s.t. |x| is sufficiently large Prob(V accepts) > 1
3

(when probabilities are taken over coin tosses of V and P ’s).

Note that it does not suffice to require that the verifier cannot be fooled by the predetermined prover (such a
mild condition would have presupposed that the “prover” is a trusted oracle). NP is a special case of interactive
proofs, where the interaction is trivial and the verifier tosses no coins.

We say that (P, V ) (for which condition 1 holds) is an interactive proof-system for L.

Define IP = {L | L has interactive proof} .

12.2.2 Examples

Notation

Throughout the lecture notes, whenever an interactive protocol is demonstrated, we let B −→ A : denote an
active stage of machine B, in the end of which B sends A a message. Similarly, A −→ B : denotes an active
stage of machine A.
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Example 1: (From Number Theory)

Let Z∗
n = {x < n, ; (x, n) = 1}

QR = {(x, n) | x < n, (x, n) and ∃y s.t y2 ≡ x mod n}
QNR = {(x, n) | x < n, (x, n) and ∃/y s.t y2 ≡ x mod n}

We demonstrate an interactive proof-system for QNR.

On input (x, n) to interactive protocol (A,B):

B −→ A : B sends to A the list w1 · · ·wk where k =| n | and

wi =

{

z2
i mod n if bi = 1

x · z2
i mod n if bi = 0

where B selected zi ∈ Z∗
n, bi ∈ {0, 1} at random.

A −→ B : A sends to B the list c1 · · · ck s.t.

ci =

{

1 if wi is a quadratic residue mod n

0 otherwise

B accepts iff ∀1≤i≤k, ci = bi

B interprets bi = ci as evidence that (x, n) ∈ QRN ;while bi 6= ci leads him to reject.

We claim that (A,B) is an interactive proof-system for QNR. If (x, n) ∈ QNR, then wi is a quadratic residue
modn iff bi = 1. Thus, the all powerful A can easily compute whether wi is a quadratic residue modn or not,
compute ci correctly and make B accept with probability 1. If (x, n) /∈ QNR and (x, n) ∈ QR then wi is a
random quadratic residue modn regardless of whether bi = 0 or 1. Thus, the probability that A (no matter
how powerful he is) can send ci s.t ci = bi, is bounded by 1

2 for each i and probability that B accepts is at most
( 1
2 )k.

Example 2: (From Graph Theory)

To illustrate the definition of an interactive proof, we present an interactive proof for Graph Non-Isomorphism.
The input is a pair of graphs G1 and G2, and one is required to prove that there exists no 1-1 edge-invariant
mapping of the vertices of the first graph to the vertices of the second graph. (A mapping π from the vertices of
G1 to the vertices G2 is edge-invariant if the nodes v and u are adjacent in G1 iff the nodes π(v) and π(u) are
adjacent in G2.) It is interesting to note that no short NP-proofs are known for this problem; namely Graph
Non-isomorphism is not known to be in NP.

The interactive proof (A,B) on input (G1, G2) proceeds as follows:

B −→ A : B chooses at random one of the two input graphs, Gαi

where αi ∈ {1, 2}. B creates a random isomorphic copy of Gαi and sends it to A. (This is repeated k times, for
1 ≤ i ≤ k, with independent random choices.)

A −→ B : A sends B βi ∈ {1, 2} for all 1 ≤ i ≤ k.

B accepts iff βi = αi for all 1 ≤ i ≤ k.

B interprets βi = αi as evidence that the graphs are not isomorphic; while βi 6= αi leads him to reject.

If the two graphs are not isomorphic, the prover has no difficulty to always answer correctly (i.e., a β equal
to α), and the verifier will accept. If the two graphs are isomorphic, it is impossible to distinguish a random
isomorphic copy of the first from a random isomorphic copy of the second, and the probability that the prover
answers correctly to one “query” is at most 1

2 . The probability that the prover answers correctly all k queries
is ≤ ( 1

2 )k.
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12.2.3 Zero-Knowledge

Now that we have extended the notion of what is an efficient proof-system, we address the question of how
much “knowledge” need to be transferred in order to convince a polynomial-time bounded verifier, of the truth
of a proposition. What do we mean by “knowledge”? For example, consider SAT, the NP -complete language of
satisfiable sentences of propositional calculus. The most obvious proof-system is one in which on logical formula
F the prover gives the verifier a satisfying assignment I, which the verifier can check in polynomial time. If
finding this assignment I by himself would take the verifier more than polynomial time (which is the case if
P 6= NP ), we say that the verifier gains additional knowledge to the mere fact that F ∈ SAT .

Goldwasser, Micali and Rackoff [103] make this notion precise. They call an interactive proof-system for language
L zero-knowledge if ∀x ∈ L whatever the verifier can compute after participating in the interaction with the
prover, could have been computed in polynomial time on the input x alone by a probabilistic polynomial time
Turing machine.

We give the technical definition of zero-knowledge proof-systems and its variants in section 12.2.4, and briefly
mention a few interesting results shown in this area.

12.2.4 Definitions

Let (A,B) be an interactive protocol. Let view be a random variable denoting the verifier view during the
protocol on input x. Namely, for fixed sequence of coin tosses for A and B, view is the sequences of messages
exchanged between verifier and prover, in addition to the string of coin tosses that the verifier used. The string
h denotes any private input that the verifier may have with the only restriction that its length is bounded by a
polynomial in the length of the common input. (view is distributed over both A’s and B’s coin tosses).

We say that (A,B) is perfect zero-knowledge for L if there exists a probabilistic, polynomial time Turing machine
M s.t ∀x ∈ L, for all a > 0, for all strings h such that |h| < |x|a, the random variable M(x, h) and view are
identically distributed. (M(x, h) is distributed over the coin tosses of M on inputs x and h).

We say that (A, B) is statistically zero-knowledge for L if there exists a probabilistic polynomial time Turing
machine M s.t ∀x ∈ L, for all a > 0, for all strings h such that |h| < |x|a,

∑

α

|prob(M(x, h) = α) − prob(view = α)| <
1

|x|c

for all constants c > 0 and sufficiently large |x|.
Intuitively the way to think of statistically zero-knowledge protocols, is that an infinite power “examiner” who
is given only polynomially large samples of {M(x, h)|M ’s coin tosses } and {view |A’s and B’s coin tosses} can’t
tell the two sets apart.

Finally, we say that a protocol (A,B) is computationally zero-knowledge if a probabilistic polynomial time
bounded “examiner” given a polynomial number of samples from the above sets can not tell them apart.
Formally,

We say that (A,B) is computationally zero-knowledge for L if ∃ probabilistic, polynomial time Turing machine
M s.t ∀ polynomial size circuit families C = {C|x|},∀ constants a, d > 0, for all sufficiently large |x| s.t x ∈ L,
and for all strings h such that |h| < |x|a,

prob(C|x|(α) = 1|α random in M(x, h)) − prob(C|x|(α) = 1|α random in view(x))| <
1

|x|d

We say that L has (computational/statistical/perfect) zero-knowledge proof-system if

1. ∃ interactive proof-system (A,B) for L.

2. ∀ ITM’s B′, interactive protocol (A,B′) is (computational/statistical/perfect) zero-knowledge for L.

Clearly,the last definition is the most general of the three. We thus let KC[0] = {L|L has computational zero-knowledge proof-system
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12.2.5 If there exists one way functions, then NP is in KC[0]

By far, the most important result obtained about zero-knowledge is by Goldreich, Micali and Wigderson [99].
They show the following result.

Theorem[99]: if there exist (non-unifrom) polynomial-time indistinguishable encryption scheme then every
NP language has a computational zero-knowledge interactive proof-system.

The non uniformity condition is necessary for technical reasons (i.e the encryption scheme should be secure
against non-uniform adversary. see section 3.7). The latest assumption under which such encryption scheme
exists is the existence of one-way functions (with respect to non-uniform adversary) by results of Imagliazzo-
Levin-Luby and Naor.

The proof outline is to show a zero-knowledge proof system for an NP-complete language, graph three colorabil-
ity. We outline the protocol here. Suppose the prover wish to convince the verifier that a certain input graph
is three-colorable, without revealing to the verifier the coloring that the prover knows. The prover can do so in
a sequence of |E|2 stages, each of which goes as follows.

• The prover switchs the three colors at random (e.g., switching all red nodes to blue, all blue nodes to
yellow, and all yellow nodes to red).

• The prover encrypts the color of each node, using a different probabilistic encryption scheme for each node,
and show the verifier all these encryptions, together with the correspondence indicating which ciphertext
goes with which vertex.

• The verifier selects an edge of the graph at random.

• The prover reveals the decryptions of the colors of the two nodes that are incident to this edge by revealing
the corresponding decryption keys.

• The verifier confirms that the decryptions are proper, and that the two endpoints of the edge are colored
with two different but legal colors.

(any private probabilistic encryption scheme which is polynomial time indistinguishable will work here) If the
graph is indeed three-colorable (and the prover know the coloring), then the verifier will never detect any edge
being incorrectly labeled. However, if the graph is not three-colorable, then there is a chance of at least |E|−1

on each stage that the prover will be caught trying to fool the verifier. The chance that the prover could fool
the verifier for |E|2 stages without being caught is exponentially small.

Note that the history of our communications—in the case that the graph is three-colorable—consists of the
concatenation of the messages sent during each stage. It is possible to prove (on the assumption that secure
encryption is possible) that the probability distribution defined over these histories by our set of possible
interactions is indistinguishable in polynomial time from a distribution that the verifier can create on these
histories by itself, without the provers participation. This fact means that the verifier gains zero (additional)
knowledge from the protocol, other than the fact that the graph is three-colorable.

The proof that graph three-colorability has such a zero-knowledge interactive proof system can be used to prove
that every language in NP has such a zero-knowledge proof system.

12.2.6 Applications to User Identification

Zero knowledge proofs provide a revolutionary new way to realize passwords [104, 83]. The idea is for every user
to store a statement of a theorem in his publicly readable directory, the proof of which only he knows. Upon
login, the user engages in a zero-knowledge proof of the correctness of the theorem. If the proof is convincing,
access permission is granted. This guarantees that even an adversary who overhears the zero-knowledge proof
can not learn enough to gain unauthorized access. This is a novel property which can not be achieved with
traditional password mechanisms. Fiat and Shamir [83] have developed variations on some of the previously
proposed zero-knowledge protocols [104] which are quite efficient and particularly useful for user identification
and passwords.
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12.3 Multi Party protocols

In a typical multi-party protocol problem, a number of parties wish to coordinate their activities to achieve
some goal, even though some (sufficiently small) subset of them may have been corrupted by an adversary. The
protocol should guarantee that the “good” parties are able to achieve the goal even though the corrupted parties
send misleading information or otherwise maliciously misbehave in an attempt to prevent the good parties from
succeeding.

12.3.1 Secret sharing

Secret Sharing protocols were invented independently by Blakley and Shamir [37, 187]. In the multi-party
setting, secret sharing is a fundamental protocol and tool.

The basic idea is protection of privacy of information by distribution. Say you have a key to an important
system. You are afraid you might loose it, so you want to give it to someone else. But no single person can
be trusted with the key. Not just because that person may become untrustworthy, but because the place they
keep the key may be compromised. So the key is shared amongst a bunch of people.

Let’s call the key the secret s. A way to share it amongst five people is split it up as s = s1⊕ · · ·⊕s5 and give
si to person i. No one person can figure out s. Even more, no four people can to it: it takes all five. If they all
get together they can recover s. (Once that is done, they may discard it, ie it may be a one time key! Because
now everyone knows it.)

We call si a share. Who creates the shares? The original holder of s. Sometimes it is one of the n players,
sometimes not. We call this person the dealer.

Notice that si must be given privately to the i-th player. If other players see it, then, of course, this doesn’t
work.

We may want something more flexible. Say we have n people. We want that any t + 1 of them can recover the
secret but no t of them can find out anything about it, for some parameter t. For example, say n = 5 and t = 2.
Any three of your friends can open your system, but no two of them can. This is better since above if one of
them looses their share, the system can’t be opened.

Shamir’s idea is to use polynomials [187]. Let F be a finite field, like Z∗
p . A degree t polynomial is of the form

f(x) = a0 + a1x + · · · + atx
t for coefficients a0, . . . , at ∈ F . It has t + 1 terms, not t! One more term than the

degree. Polynomials have the following nice properties:

Interpolation: Given t + 1 points on the polynomial, namely (x1, y1), . . . , (xt+1, yt+1) where x1, . . . , xt=1

are distinct and yi = f(xi), it is possible to find a0, . . . , at. The algorithm to do this is called interpolation.
You can find it in many books.

Secrecy: Given any t points on the polynomial, namely (x1, y1), . . . , (xt, yt) where x1, . . . , xt are distinct
and yi = f(xi), one can’t figure out anything about a0. More precisely, for any value v, the number of
polynomials satisfying these t constraints does not depend on v. (In fact there is exactly one of them.)

These makes them a tool for secret sharing. Associate to each player i a point xi ∈ F , these points being all
distinct. (So |F | ≥ n). To share secret s, the dealer picks a1, . . . , at at random, sets a0 = s and forms the
polynomial f(x) = a0 + a1x + · · · + atx

t. Now he computes si = f(xi) and sends this privately to player i.
Now if t + 1 players get together they can figure out f and hence s; any set of at most t players can’t figure out
anything about s.

12.3.2 Verifiable Secret Sharing

Shamir’s scheme suffers from two problems. If the dealer of the secret is dishonest, he can give pieces which when
put together do not uniquely define a secret. Secondly, if some of the players are dishonest, at the reconstruction
stage they may provide other players with different pieces than they received and again cause an incorrect secret
to be reconstructed.
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Chor, Goldwasser, Micali, and Awerbuch [59] have observed the above problems and showed how to achieve
secret sharing based on the intractability of factoring which does not suffer from the above problems. They call
the new protocol verifiable secret sharing since now every party can verify that the piece of the secret he received
is indeed a proper piece. Their protocol tolerated up to O(log n) colluders. Benaloh [29], and others [99, 82]
showed how to achieve verifiable secret sharing if any one-way function exists which tolerates a minority of
colluders. In [28] it has been recently shown how to achieve verifiable secret sharing against a third of colluders
using error correcting codes, without making cryptographic assumptions. This was improved to a minority of
colluders in [173].

12.3.3 Anonymous Transactions

Chaum has advocated the use of anonymous transactions as a way of protecting individuals from the mainte-
nance by “Big Brother” of a database listing all their transactions, and proposes using digital pseudonyms to do
so. Using pseudonyms, individuals can enter into electronic transactions with assurance that the transactions
can not be later traced to the individual. However, since the individual is anonymous, the other party may wish
assurance that the individual is authorized to enter into the transaction, or is able to pay. [54, 57].

12.3.4 Multiparty Ping-Pong Protocols

One way of demonstrating that a cryptographic protocol is secure is to show that the primitive operations that
each party performs can not be composed to reveal any secret information.

Consider a simple example due to Dolev and Yao [77] involving the use of public keys. Alice sends a message
M to Bob, encrypting it with his public key, so that the ciphertext C is EB(M) where EB is Bob’s public
encryption key. Then Bob “echos” the message back to Alice, encrypting it with Alice’s public key, so that the
ciphertext returned is C ′ = EA(M). This completes the description of the protocol.

Is this secure? Since the message M is encrypted on both trips, it is clearly infeasible for a passive eavesdropper
to learn M . However, an active eavesdropper X can defeat this protocol. Here’s how: the eavesdropper X
overhears the previous conversation, and records the ciphertext C = EB(M). Later, X starts up a conversation
with Bob using this protocol, and sends Bob the encrypted message EB(M) that he has recorded. Now Bob
dutifully returns to X the ciphertext EX(M), which gives X the message M he desires!

The moral is that an adversary may be able to “cut and paste” various pieces of the protocol together to
break the system, where each “piece” is an elementary transaction performed by a legitimate party during the
protocol, or a step that the adversary can perform himself.

It is sometimes possible to prove that a protocol is invulnerable to this style of attack. Dolev and Yao [77]
pioneered this style of proof; additional work was performed by Dolev, Even, and Karp [76], Yao [209], and
Even and Goldreich [80]. In other cases a modification of the protocol can eliminate or alleviate the danger; see
[174] as an example of this approach against the danger of an adversary “inserting himself into the middle” of
a public-key exchange protocol.

12.3.5 Multiparty Protocols When Most Parties are Honest

Goldreich, Micali, and Wigderson [99] have shown how to “compile” a protocol designed for honest parties into
one which will still work correctly even if some number less than half of the players try to “cheat”. While the
protocol for the honest parties may involve the disclosure of secrets, at the end of the compiled protocol none
of the parties know any more than what they knew originally, plus whatever information is disclosed as the
“official output” of the protocol. Their compiler correctness and privacy is based on the existence of trapdoor
functions.

Ben-Or, Goldwasser and Wigderson [28] and Chaum, Crépeau, and Damgȧrd [55] go one step further. They
assume secret communication between pairs of users as a primitive. Making no intractability assumption, they
show a “compiler” which, given a description (e.g., a polynomial time algorithm or circuit) of any polynomial
time function f , produces a protocol which always computes the function correctly and guarantees that no
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additional information to the function value is leaked to dishonest players . The “compiler” withstands up
to 1/3 of the parties acting dishonestly in a manner directed by a worst-case unbounded-computation-time
adversary.

These “master theorems” promise to be very powerful tool in the future design of secure protocols.

12.4 Electronic Elections

Electronic Elections can be considered the typical example of secure multiparty computations. The general
instance of such a problem is that there are m people, each of them with their own private input xi and we
want to compute the result of a n-ary function f over such values, without revealing them.

In the case of electronic elections the parties are the voters, their input a binary value, the function being
computed is just a simple sum and the result is the tally.

In general, these are the properties that we would like our Election Protocols to have:

1. Only authorized voters can vote.

2. No one can vote more than once.

3. Secrecy of votes is maintained.

4. No one can duplicate anyone else’s vote.

5. The tally is computed correctly.

6. Anybody should be able to check 5.

7. The protocol should be fault-tolerant, meaning it should be able to work even in the presence of a number
of “bad” parties.

8. It should be impossible to coerce a voter into revealing how she voted (e.g. vote-buying)

Usually in in election protocols it is not desirable to involve all the voters Vi in the computation process. So we
assume that there are n government centers C1, . . . , Cn whose task is to collect votes and compute the tally.

12.4.1 The Merritt Election Protocol

Consider the following scheme by Michael Merritt [147].

Each center Ci publishes a public key Ei and keeps secret the corresponding secret key. In order to cast her
vote vj , each voter Vj chooses a random number sj and computes,

E1(E2(. . . En(vj , sj))) = yn+1,j (12.1)

(The need for the second index n + 1 will become clear in a minute, for now it is just irrelevant.)

Now we have the values y’s posted. In order from center Cn to center C1, each center Ci does the following. For
each yi+1,j , Ci chooses a random value ri,j and broadcasts yi,j′ = Ei(yi+1,j , j). The new index j′ is computed
by taking a random permutation πi of the integers [1..n]. That is j′ = πi(j). Ci keeps the permutation secret.

At the end we have
y1,j = E1(E2(. . . En(yn+1,j , rn,j) . . . r2,j)r1,j)

At this point, the verification cycle begins. It consists of two rounds of decryption in the order C1 −→ C2 . . . −→
Cn.
The decrypted values are posted and the tally computed by taking the sums of the votes vj ’s.

(1) and (2) are clearly satisfied. (3) is satisfied, as even if the votes are revealed, what is kept hidden is the
connection between the vote and the voter who casted it. Indeed in order to reconstruct such link we need to
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know all the permutations πi. (4) is not satisfied as voter V1 can easily copy voter V2, by for example casting
the same encrypted string. (5) and (6) are satisfied using the random strings: during the first decryption rounds
each center checks that his random strings appear in the decrypted values, making sure that all his ciphertexts
are being counted. Also at the end of the second decryption round each voter looks for her string sj to make
sure her vote is being counted (choosing a large enough space for the random string should eliminate the risk
of duplicates.) Notice that in order to verify the correctness of the election we need the cooperation of all the
voters (a negative feature especially in large protocols.)

(7) requires a longer discussion. If we are concerned about the secrecy of the votes being lost because of parties
going “bad”, then the protocol is ideal. Indeed even if n − 1 of the centers cooperate, they will not be able to
learn who casted what vote. Indeed they need to know all the permutations πi. However even if one of the
government agencies fails, by for example crashing, the entire system falls apart. The whole election needs to
be repeated.

(8) is not satisfied. Indeed the voter can be forced to reveal both vj and sj and she tries to lie about the vote
she will be discovered since the declared values will not match the ciphertext yn+1,j .

12.4.2 A fault-tolerant Election Protocol

In this section we describe a protocol which has the following features

• satisfies (4), meaning it will be impossible to copy other people vote (the protocol before did not)

• Does not require the cooperation of each voter to publicly verify the tally (better solution to (6) than the
above)

• introduces fault-tolerance: we fix a threshold t and we assume that if there are less than t “bad” centers
the protocol will correctly compute the tally and the secrecy of each vote will be preserved (better solution
to (7) than the above.)

This protocol is still susceptible to coercion (requirement (8)). We will discuss this point at the end.

The ideas behind this approach are due to Josh Benaloh [31]. The protocol described in the following section is
the most efficient one in the literature due to Cramer, Franklin, Schoemakers and Yung [64].

Homomorphic Commitments

Let B be a commitment scheme (a one-way function basically.)

We say that a commitment scheme B is (+,×)-homomorphic if

B(X + Y ) = B(X) × B(Y )

One possible example of such commitment is the following (invented by Pedersen [161]):

Discrete-Log based Homomorphic Commitment: Let p be a prime of the form p = kq + 1 and let g, h be
two elements in the subgroup of order q. We assume nobody knows the discrete log in base g of h. To commit
to a number m in [1..q]:

Ba(m) = ga hm (12.2)

for a randomly chosen a modulo q. To open the commitment a and m must be revealed.

Notice that this is a (+,×)-homomorphic commitment as:

Ba1(m1)Ba2(m2) = ga1hm1ga2hm2 = ga1+a2hm1+m2 = Ba1+a2(m1 + m2)

For now on let E be an (+,×)-homomorphic commitment scheme.
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12.4.3 The protocol

For ease of presentation we will show the protocol in two version. First we assume that there is only one center.
Then we show how to generalize the ideas to the case of many centers.

Vote Casting – 1 center

Assume for now that there is only one center C and let E be his encryption function.

Assuming the votes are either -1 or 1, each voter Vj encrypts his vote vj by computing and posting Baj (vj) for
a randomly chosen aj . Vj also sends the values aj and vj to C encrypted.

The voter now must prove that the vote is correct (i.e. it’s the encryption of a -1 or of a 1.) He does this by
performing a zero-knowledge proof of validity.

For the discrete-log based homomorphic commitment scheme described above, here is a very efficient protocol.
Let us drop the index j for simplicity.

For v = 1:

1. The voter V chooses at random a, r1, d1, w2 modulo q. He posts Ba(v) = gah and also posts α1 =
gr1(Ba(v)h)−d1 , α2 = gw2 .

2. The center C sends a random challenge c modulo q

3. The voter V responds as follows: V computes d2 = c − d1 and r2 = w2 + ad2 and posts d1, d2, r1, r2

4. The center C checks that

• d1 + d2 = c

• gr1 = α1(Ba(v)h)d1

• gr2 = α2(Ba(v)/h)d2

For v = −1:

1. The voter V chooses at random a, r2, d2, w1 modulo q. He posts Ba(v) = ga/h and also posts α1 = gw1 ,
α2 = gr2(Ba(v)/h)−d2

2. The center C sends a random challenge c modulo q

3. The voter V responds as follows: V computes d1 = c − d2 and r1 = w1 + ad1 and posts d1, d2, r1, r2

4. The center C checks that

• d1 + d2 = c

• gr1 = α1(Ba(v)h)d1

• gr2 = α2(Ba(v)/h)d2

For now on we will refer to the above protocol as Proof(Ba(v)).

Tally Computation – 1 center

At the end of the previous phase we were left with Baj (vj) for each voter Vj . The center reveals the tally
T =

∑

j vj and also the value A =
∑

j aj . Everybody can check that the tally is correct by performing the
following operation:

BA(T ) =
∏

j

Baj (vj)

which should be true for the correct tally, because of the homomorphic property of B.

The 1-center version of the protocol however has the drawback that this center learns everybody’s vote.
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Vote Casting – n centers

Assume n centers C1, . . . , Cn and let Ei be the encryption function of Ci.

In this case voter Vj encrypts the vote vj in the following manner. First he commits to the vote by posting

Bj = Baj (vj)

for a randomly chosen aj modulo q. He also proves that this is a correct vote by performing Proof(Baj (vj)).

Then he shares the values aj and vj among the centers using Shamir’s (t, n) threshold secret sharing. That is,
he chooses random polynomials Hj(X) and Aj(X) of degree t such that Hj(0) = vj and Aj(0) = aj . Let

Rj(X) = vj + r1,jX + . . . + rt,jX
t

Sj(X) = aj + s1,jX + . . . + st,jX
t

The coefficients are all modulo q.

Now the voter sends the value ui,j = Rj(i) and wi,j = Sj(i) to the center Ci (encrypted with Ei.)

Finally he commits to the coefficients of the polynomial Hj by posting

Bℓ,j = Bsℓ,j
(rℓ,j)

The centers perform the following check

gwi,j hui,j = Bj

t∏

ℓ=1

(Bℓ,j)
iℓ

(12.3)

to make sure that the shares he received encrypted are correct.

Tally counting – n centers

Each center Ci posts the partial sums:

Ti =
∑

j

ui,j

this is the sum of the shares of the votes received by each player.

Ai =
∑

j

wi,j

this is the sum of the shares of the random string aj used to commit to the vote by each player.

Anybody can check that the center is revealing the right stuff by using the homomorphic property of the
commitment scheme B. Indeed it must hold that

gAihTi =

m∏

j=1

(

Bj

t∏

ℓ=1

(Bℓ,j)
jℓ

)

(12.4)

Notices that the correct Ti’s are shares of the tally T in a (t, n) Shamir’s secret sharing scheme. So it is enough
to take t + 1 of them to interpolate the tally.

Notice: Equations (12.3) and (12.4) are valid only under the assumption that nobody knows the discrete log
in base g of h. Indeed who knows some value can open the commitment B in both ways and so reveal incorrect
values that satisfies such equations.

Analysis: Let’s go through the properties one by one. (1) and (2) are clearly satisfied. (3) is satisfied assuming
that at most t centers can cooperate to learn the vote. If t + 1 centers cooperate, then the privacy of the votes
is lost. (4) is true for the following reason: assume that V1 is trying to copy the action of V2. When it comes
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to the point of proving the correctness of the vote (i.e. perform Proof(B)), V1 will probably receive a different
challenge c than V2. He will not be able to answer it and he will be eliminated from the election. (5) is true
under the discrete-log assumption (see note above.) (6) is true as anybody can check on the the ZK proofs and
Equations (12.3) and (12.4). (7) is true as we need only t + 1 good centers to reconstruct the tally.

It is easy to see that because we need t+1 good centers and at most t centers can be bad, the maximum number
of corrupted centers being tolerated by the protocol is n

2 − 1.

(8) is not satisfied. This is because somebody could be coerced into revealing both a and v when posting the
commitment Ba(v).

12.4.4 Uncoercibility

The problem of coercion of voters is probably the most complicated one. What exactly does it mean? In how
many ways can a coercer, try to force a voter to cast a given vote.

Let’s try to simplify the problem. We will consider two possible kinds of coercer. One who contacts the voter
before the election starts and one who contacts the voter after the election is concluded.

The “before” coercer has a greater power. He can tell the voter what vote to cast and also what randomness to
use during the protocol. This basically would amount to fix the behavior of the voter during the protocol. If the
voter does not obey, it will be easy for the coercer to detect such occurrence. There have been some solutions
proposed to this problem that use some form of physical assumption. For example one could allow the voter to
exchange a limited number of bits over a secure channel with the voting centers [30, 181]. This would hopefully
prevent the coercer from noticing that the voter is not following his instructions. Or one could force the voter
to use some tamper-proof device that encrypts messages for him, choosing the randomness. This would prevent
the coercer from forcing the user to use some fixed coin tosses as the user has no control on what coins the
tamper-proof device is going to generate.

The “after” coercer has a smaller power. He can only go to the voter and ask to see the vote v and the
randomness ρ used by the voter during the protocol. Maybe there could be a way for the voter to construct
different v′ and ρ′ that “match” his execution of the protocol. This is not possible in the protocol above (unless
the voter solves the discrete log problem.) Recently however a protocol for this purpose has been proposed by
Canetti and Gennaro [51]. They use a new tool called deniable encryption (invented by Canetti, Dwork, Naor
and Ostrovsky [50]), which is a new form of public key probabilistic encryption E with the following property.

Let m be the message and r the coin tosses of the sender. The sender computes the ciphertext c = Er(m).
After if somebody approaches him and asks for the value of m, the sender will be able to produce m′ and r′

such that Er′(m′) = c.

12.5 Digital Cash

The primary means of making monetary transactions on the Internet today is by sending credit card information
or establishing an account with a vendor ahead of time.

The major opposition to credit card based Internet shopping is that it is not anonymous. Indeed it is susceptible
to monitoring, since the identity of the customer is established every time he/she makes a purchase. In real
life we have the alternative to use cash whenever we want to buy something without establishing our identity.
The term digital cash describes cryptographic techniques and protocols that aim to recreate the concept of
cash-based shopping over the Internet.

First we will describe a general approach to digital cash based on public-key cryptography. This approach was
originally suggested by David Chaum [54]. Schemes based on such approach achieve the anonymity property.

12.5.1 Required properties for Digital Cash

The properties that one would like to have from Digital Cash schemes, are at least the following:
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• forgery is hard

• duplication should be either prevented or detected

• preserve customers’ anonymity

• minimize on-line operations on large database

12.5.2 A First-Try Protocol

A Digital Cash scheme consists usually of three protocols. The withdrawal protocol which allows a Userto
obtain a digital coin from the Bank. A payment protocol during which the Userbuys goods from a Vendorin
exchange of the digital coin. And finally a deposit protocol where the Vendorgives back the coin to the Bankto
be credited on his/her account.

In the protocol below we assume that the Bankhas a secret key SKB to sign messages and that the corresponding
public key PKB is known to everybody else. With the notation {M}SK we denote the message M together
with its signature under key SK.

Let’s look at this possible digital cash protocol.

Withdrawal Protocol:

1. Usertells Bankshe would like to withdraw $100.

2. Bankreturns a $100 bill which looks like this:

{I am a $100 bill, #4527)}SKB

and withdraws $100 from Useraccount

3. Userchecks the signature and if it is valid accepts the bill

Payment Protocol:

1. The Userpays the Vendorwith the bill.

2. The Vendorchecks the signature and if it’s valid accepts the bill.

Deposit Protocol:

1. The Vendorgives the bill to the Bank

2. The Bankchecks the signature and if it’s valid, credits the Vendor’s account.

Given some suitable assumption on the security of the signature scheme, it is clear that it is impossible to forge
digital coins. However it is very easy to duplicate and double-spend the same digital coin several times. It
is also cleat that anonymity is not preserved as the Bankcan link the name of the Userwith the serial number
appearing on the bill and know where the Userspent the coin.

12.5.3 Blind signatures

Let’s try to solve the anonymity problem first. This approach involves —em blind signatures. The user presents
the bank with a bill inside a container. The bank signs the bill without seeing the contents of the bill. This
way, the bank cannot determine the source of a bill when a merchant presents it for deposit.

A useful analogy: The user covers a check with a piece of carbon paper and then seals both of them inside
an envelope. The user gives the envelope to the bank. The bank then signs the outside of the envelope with a
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ball-point pen and returns the envelope to the user (without opening it - acutally the bank is unable to open
the envelope in the digital version). The user then removes the signed check from the envelope and can spend
it. The bank has never seen what it signed, so it cannot associate it with the user when it is returned to be
deposited, but it can verify the signature on the check and thus guarantee the validity of the check.

There is, of course, a problem with this: The bank can be fooled into signing phony bills. For example, a
user could tell the bank he’s making a $1 withdrawal and then present a $100 bill to be signed. The bank will,
unknowingly, sign the $100 bill and allow the user to cheat the bank out of $99. We will deal with this problem
later, for now let us show how to construct blind signatures.

12.5.4 RSA blind signatures

Recall the RSA signature scheme: if M is the message to be signed, then its signature is s = Me−1

mod n where
n and e are publicly known values. The secret information that the bank possesses is the inverse of e mod φ(n),
which we will denote by d. The signature can be verified by calculating se mod n and verifying that it is equal
to M mod n.

In the case of blind signatures, the Userwants the Bankto provide him with s, without revealing M to the bank.
Here is a possible anonymous withdrawal protocol. Let M be a $100 bill.

Withdrawal Protocol:

1. Userchooses some random number, r mod n.

2. Usercalculates M ′ = M · re mod n.

3. Usergives the BankM .

4. The Bankreturns a signature for M ′, say s′ = (M ′)d mod n. Note that

s′ = (M ′)d = Md · (re)d = Md · r

5. The Bankdebits the Useraccount for $100.

6. Since the Userknows r, he can divide s′ by r to obtain

s = Md

The payment and deposit protocol remain the same as above. This solves the problem of preserving the
Useranonymity, as when the coin comes back to the Bankthere is no link between it and the Userit was issued
to.

We still have two problems.

1. The bank can still be fooled into signing something that it shouldn’t (like a $100 bill that it thinks is a
$1 bill)

2. Coins can still be duplicated and double-spent

12.5.5 Fixing the dollar amount

One possible solution to the above problem is to have only one denomination (per public key, for example.)
That is the Bankwould have several public keys PK1B , . . . and the signature using PKiB would be valid only
on bills of i dollars.

Another possibility is to use a “cut and choose” procedure:

1. Usermakes up 100 $20 bills
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2. blinds them all

3. gives them to the Bank

4. The Bankpicks one to sign (at random), and requires that the Userunblind all of the rest (by revealing
the r’s). Before the signature is returned, the Bankensures that all of the bills that were unblinded were
correct.

This way the Userhas only 1
100 probability of cheating. Of course, one could set up the protocol to create an

smaller cheating chance (by requiring that the user provided more blinded messages, for example).

So, now we have a protocol that satisfies the anonymity requirement and can provide sufficiently small possi-
bilities for cheating. We still have to deal with the double-spending problem.

12.5.6 On-line digital cash

In the on-line version of digital cash schemes, one requires the Bankto record all of the bills it receives in a
database. During the payment protocol the Vendorwould transmit the bill to the Bankand ask if the bill was
already received. If this is the first time the bill is being used then the Vendoraccepts it, otherwise he will reject
it.

Although this is a simple solution it incurs in a high communication overhead as now the payment protocol
looks a lot like a credit card transaction, when the Vendorawaits for authorization to finish the trade. Also the
size of the database to be managed by the Bankcould be problematic.

Notice that we are preventing double-spending this way. We are going to show now a way to detect double-
spending which does not require on-line verification.

12.5.7 Off-line digital cash

The idea behind off-line digital cash is the following. During the payment protocol the Useris forced to write a
“random identity string”, or RIS, on the bill.

The RIS must have the following properties:

• must be different for every payment of the coin.

• only the Usercan create a valid RIS.

• two different RIS on the same coin should allow the Bankto retrieve the Username.

If the Bankreceives two identical bills with different RIS values, then the Userhas cheated and the bank can
identify him. If the Bankreceives two identical bills with the same RIS values, then the Vendorhas cheated. The
above idea appeared first in [56].

Here is a possible solution. Let H to be a one-way hash function.

Withdrawal Protocol:

1. The Userprepares 100 bills of $20 which look like this:

Mi = (I’m $20 bill, #4527i,yi,1, y
′
i,1, yi,2, y

′
i,2, . . . , yi,K , y′

i,K)

where yi,j = H(xi,j), y′
i,j = H(x′

i,j), where xi,j and x′
i,j are randomly chosen under the condition that

xi,j ⊕ x′
i,j = Username ∀i, j

2. The Userblinds all the Mi to random messages M ′
i (using the blinding protocol outlined above) and sends

them to the Bank.
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3. The Bankasks the Userto unblind 99 of the 100 blinded bills.

4. When the Userunblinds them, he also reveals the appropriate xi,j and x′
i,j .

5. The Bankchecks not only that the bills are indeed $20 bills, but also that yi,j = H(xi,j), y′
i,j = H(x′

i,j)
and xi,j ⊕ x′

i,j = Username, for the unblinded bills.

6. The Bankreturns a signature on the only blind message (say M ′
17)

7. The Userretrieves the signature s17 on M17.

From now on let us drop the index i = 17 for simplicity. The payment protocol is modified to force the Userto
produce a RIS on the coin. The RIS is going to be one of xj or x′

j for each j = 1, . . . , K. Which one is going
to be depends on a random challenge from the Vendor.

Payment Protocol:

1. The Usergives M, s to the Vendor.

2. The Vendorchecks the Banksignature on the bill and if it is valid, answers with a random bit string of
length K, b1 . . . bK .

3. If bj = 0 Userreveals xj , otherwise he reveals x′
j

4. The Vendorchecks that yj = H(xj) or y′
j = H(x′

j), whichever is the case. If the above equalities hold, he
accepts the bill.

Notice that the above properties or RIS are satisfied. Indeed the probability that in a different payment the
same RIS is produced is 2−K since the Vendorchooses the “challenge” at random. Only the Usercan produce
a valid RIS since the function H is one-way. Finally two different RIS on the same coin leak the name of the
User, as if two RIS are different there must be an index j for which we have both xj and x′

j .

Deposit Protocol:

1. The Vendorbrings the coin M, s, RIS back to the Bank.

2. The Bankverifies the signature and check if the coin M, s has already been returned to the Bank

3. If the coin is already in the database, the Bankcompares the RIS’s of the two coins. If the RIS are different
then the Userdouble-spent the coin, otherwise it is the Vendorwho is trying to deposit the coin twice.
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C h a p t e r A

The birthday problem

A.1 The birthday problem

Some of our estimates in Chapters 6, 9 and 5 require precise bounds on the birthday probabilities, which for
completeness we derive here, following [12].

The setting is that we have q balls. View them as numbered, 1, . . . , q. We also have N bins, where N ≥ q. We
throw the balls at random into the bins, one by one, beginning with ball 1. At random means that each ball is
equally likely to land in any of the N bins, and the probabilities for all the balls are independent. A collision is
said to occur if some bin ends up containing at least two balls. We are interested in C(N, q), the probability of
a collision.

The birthday phenomenon takes its name from the case when N = 365, whence we are asking what is the chance
that, in a group of q people, there are two people with the same birthday, assuming birthdays are randomly and
independently distributed over the 365 days of the year. It turns out that when q hits

√
365 ≈ 19.1 the chance

of a collision is already quite high; for example at q = 20 the chance of a collision is at least 0.328.

The birthday phenomenon can seem surprising when first heard; that’s why it is called a paradox. The reason it
is true is that the collision probability C(N, q) grows roughly proportional to q2/N . This is the fact to remember.
The following gives a more exact rendering, providing both upper and lower bounds on this probability.

Proposition A.1 Let C(N, q) denote the probability of at least one collision when we throw q ≥ 1 balls at
random into N ≥ q buckets. Then

C(N, q) ≤ q(q − 1)

2N
.

Also

C(N, q) ≥ 1 − e−q(q−1)/2N ,

and for 1 ≤ q ≤
√

2N

C(N, q) ≥ 0.3 · q(q − 1)

N
.

In the proof we will find the following inequalities useful to make estimates.
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Proposition A.2 For any real number x ∈ [0, 1]—

(

1 − 1

e

)

· x ≤ 1 − e−x ≤ x .

Proof of Proposition A.1: Let Ci be the event that the i-th ball collides with one of the previous ones.
Then Pr [Ci] is at most (i−1)/N , since when the i-th ball is thrown in, there are at most i−1 different occupied
slots and the i-th ball is equally likely to land in any of them. Now

C(N, q) = Pr [C1 ∨ C2 ∨ · · · ∨ Cq]

≤ Pr [C1] + Pr [C2] + · · · + Pr [Cq]

≤ 0

N
+

1

N
+ · · · + q − 1

N

=
q(q − 1)

2N
.

This proves the upper bound. For the lower bound we let Di be the event that there is no collision after having
thrown in the i-th ball. If there is no collision after throwing in i balls then they must all be occupying different
slots, so the probability of no collision upon throwing in the (i + 1)-st ball is exactly (N − i)/N . That is,

Pr [Di+1 | Di] =
N − i

N
= 1 − i

N
.

Also note Pr [D1] = 1. The probability of no collision at the end of the game can now be computed via

1 − C(N, q) = Pr [Dq]

= Pr [Dq | Dq−1] · Pr [Dq−1]

...
...

=

q−1
∏

i=1

Pr [Di+1 | Di]

=

q−1
∏

i=1

(

1 − i

N

)

.

Note that i/N ≤ 1. So we can use the inequality 1−x ≤ e−x for each term of the above expression. This means
the above is not more than

q−1
∏

i=1

e−i/N = e−1/N−2/N−···−(q−1)/N = e−q(q−1)/2N .

Putting all this together we get
C(N, q) ≥ 1 − e−q(q−1)/2N ,

which is the second inequality in Proposition A.1. To get the last one, we need to make some more estimates.
We know q(q − 1)/2N ≤ 1 because q ≤

√
2N , so we can use the inequality 1 − e−x ≥ (1 − e−1)x to get

C(N, q) ≥
(

1 − 1

e

)

· q(q − 1)

2N
.

A computation of the constant here completes the proof.



C h a p t e r B

Some complexity theory background

As of today, we do not even know how to prove a linear lower bound on the time required to solve an NP-
complete problem. Thus, in our development of a theory of cryptography in the presence of a computationally
bounded adversary we must resort to making assumptions about the existence of hard problems. In fact, an
important current research topic in cryptography (on which much progress has been made in recent years) is to
find the minimal assumptions required to prove the existence of “secure” cryptosystems.

Our assumptions should enable us to quickly generate instances of problems which are hard to solve for anyone
other than the person who generated the instance. For example, it should be easy for the sender of a message
to generate a ciphertext which is hard to decrypt for any adversary (naturally, in this example, it should also be
easy for the intended recipient of the message to decrypt the ciphertext). To formally describe our assumptions
(the existence of one way functions and trapdoor function) we first need to recall some complexity theory
definitions.

B.1 Complexity Classes and Standard Definitions

B.1.1 Complexity Class P

A language L is in P if and only if there exists a Turing machine M(x) and a polynomial function Q(y) such
that on input string x

1. x ∈ L iff M accepts x (denoted by M(x)).

2. M terminates after at most Q(|x|) steps.

The class of languages P is classically considered to be those languages which are ‘easily computable’. We will
use this term to refer to these languages and the term ‘efficient algorithm’ to refer to a polynomial time Turing
machine.

B.1.2 Complexity Class NP

A language L is in NP if and only if there exists a Turing machine M(x, y) and polynomials p and l such that
on input string x

1. x ∈ L ⇒ ∃y with |y| ≤ l(|x|) such that M(x, y) accepts and M terminates after at most p(|x|) steps.
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2. x 6∈ L ⇒ ∀y with |y| ≤ l(|x|), M(x, y) rejects.

Note that this is equivalent to the (perhaps more familiar) definition of L ∈ NP if there exists a non-deterministic
polynomial time Turing machine M which accepts x if and only if x ∈ L. The string y above corresponds to
the guess of the non-determinstic Turing machine.

B.1.3 Complexity Class BPP

A language L is in BPP if and only if there exists a Turing machine M(x, y) and polynomials p and l such that
on input string x

1. x ∈ L ⇒ Pr|y|<l(|x|)[M(x, y)accepts] ≥ 2
3 .

2. x 6∈ L ⇒ Pr|y|<l(|x|)[M(x, y)accepts] ≤ 1
3 .

3. M(x, y) always terminates after at most p(|x|) steps.

As an exercise, you may try to show that if the constants 2
3 and 1

3 are replaced by 1
2 + 1

p(|x|) and 1
2 − 1

p(|x|) where

p is any fixed polynomial then the class BPP remains the same.

Hint: Simply run the machine M(x, y) on “many” y’s and accept if and only if the majority of the runs accept.
The magnitude of “many” depends on the polynomial p.

We know that P ⊆ NP and P ⊆ BPP. We do not know if these containments are strict although it is often
conjectured to be the case. An example of a language known to be in BPP but not known to be in P is the
language of all prime integers (that is, primality testing). It is not known whether BPP is a subset of NP.

B.2 Probabilistic Algorithms

The class BPP could be alternatively defined using probabilistic Turing machines (probabilistic algorithms).
A probabilistic polynomial time Turing machine M is a Turing machine which can flip coins as an additional
primitive step, and on input string x runs for at most a polynomial in |x| steps. We could have defined BPP by
saying that a language L is in BPP if there exists a probabilistic polynomial time Turing machine M(x) such
that when x ∈ L, the probability (over the coin tosses of the machine) that M(x) accepts is greater than 2

3
and when x /∈ L the probability (over the coin tosses of the machine) that M(x) rejects is greater than 2

3 . The
string y in the previous definition corresponds to the sequence of coin flips made by the machine M on input x.

From now on we will consider probabilistic polynomial time Turing machines as “efficient algorithms” (extending
the term previously used for deterministic polynomial time Turing machines). We also call the class of languages
in BPP “easily computable”. Note the difference between a non-deterministic Turing machine and a probabilistic
Turing machine. A non-deterministic machine is not something we could implement in practice (as there may be
only one good guess y which will make us accept). A probabilistic machine is something we could implement in
practice by flipping coins to yield the string y (assuming of course that there is a source of coin flips in nature).
Some notation is useful when talking about probabilistic Turing machines.

B.2.1 Notation For Probabilistic Turing Machines

Let M denote a probabilistic Turing machine (PTM). M(x) will denote a probability space of the outcome of
M during its run on x. The statement z ∈ M(x) indicates that z was output by M when running on input x.
Pr[M(x) = z] is the probability of z being the output of M on input x (where the probability is taken over the
possible internal coin tosses made by M during its execution). M(x, y) will denote the outcome of M on input
x when internal coin tosses are y.
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B.2.2 Different Types of Probabilistic Algorithms

Monte Carlo algorithms and Las Vegas algorithms are two different types of probabilistic algorithms. The
difference between these two types is that a Monte Carlo algorithm always terminates within a polynomial
number of steps but its output is only correct with high probability whereas a Las Vegas algorithm terminates
within an expected polynomial number of steps and its output is always correct. Formally, we define these
algorithms as follows.

Definition B.1 A Monte Carlo algorithm is a probabilistic algorithm M for which there exists a polynomial
P such that for all x, M terminates within P (|x|) steps on input x. Further,

Pr[M(x) is correct ] >
2

3

(where the probability is taken over the coin tosses of M).

A Las Vegas algorithm is a probabilistic algorithm M for which there exists a polynomial p such that for all x,

E(running time) =

∞∑

t=1

t ·Pr[M(x) takes exactly t steps] < p(|x|). Further, the output of M(x) is always correct.

All Las Vegas algorithms can be converted to Monte Carlo algorithms but it is unknown whether all Monte
Carlo algorithms can be converted to Las Vegas algorithms. Some examples of Monte Carlo algorithms are
primality tests such as Solovay Strassen (see [197]) or Miller-Rabin (see [171]) and testing the equivalence of
multivariate polynomials and some examples of Las Vegas algorithms are computing square roots modulo a
prime p, computing square roots modulo a composite n (if the factors of n are known) and primality tests based
on elliptic curves (see [4] or [100]).

B.2.3 Non-Uniform Polynomial Time

An important concept is that of polynomial time algorithms which can behave differently for inputs of different
size, and may even be polynomial in the size of the input (rather than constant as in the traditional definition
of a Turing machine).

Definition B.2 A non-uniform algorithm A is an infinite sequence of algorithms {Mi} (one for each input size
i) such that on input x, M|x|(x) is run. We say that A(x) accepts if and only if M|x|(x) accepts. We say that
A is a polynomial time non-uniform algorithm if there exist polynomials P and Q such that M|x|(x) terminates
within P (|x|) steps and the size of the description of Mi (according to some standard encoding of all algorithms
) is bounded by Q(|i|).

Definition B.3 We say that a language L is in P/poly if ∃ a polynomial time non-uniform algorithm A = {Mi}
such that x ∈ L iff M|x|(x) accepts.

There are several relationships known about P/poly. It is clear that P ⊂ P/poly and it has been shown by
Adleman that BPP ⊂ P/poly.

We will use the term ‘efficient non-uniform algorithm’ to refer to a non-uniform polynomial time algorithm and
the term ‘efficiently non-uniform computable’ to refer to languages in the class P/poly.

B.3 Adversaries

We will model the computational power of the adversary in two ways. The first is the (uniform) adversary (we
will usually drop the “uniform” when referring to it). A uniform adversary is any polynomial time probabilistic
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algorithm. A non-uniform adversary is any non-uniform polynomial time algorithm. Thus, the adversary can
use different algorithms for different sized inputs. Clearly, the non-uniform adversary is stronger than the
uniform one. Thus to prove that “something” is “secure” even in presence of a non-uniform adversary is a
better result than only proving it is secure in presence of a uniform adversary.

B.3.1 Assumptions To Be Made

The weakest assumption that must be made for cryptography in the presence of a uniform adversary is that P
6= NP. Namely, ∃L ∈ NP such that L 6∈ P. Unfortunately, this is not enough as we assumed that our adversaries
can use probabilistic polynomial time algorithms. So we further assume that BPP 6= NP. Is that sufficient?
Well, we actually need that it would be hard for an adversary to crack our systems most of the time. It is not
sufficient that our adversary can not crack the system once in a while. Assuming that BPP 6= NP only means
that there exists a language in L ∈ NP such that every uniform adversary makes (with high probability) the
wrong decision about infinitely many inputs x when deciding whether x ∈ L. These wrong decisions, although
infinite in number, may occur very infrequently (such as once for each input size).

We thus need yet a stronger assumption which will guarantee the following. There exists a language L ∈ NP
such that for every sufficiently large input size n, every uniform adversary makes (with high probability) the
wrong decision on many inputs x of length n when deciding whether x is in L. Moreover, we want it to be
possible, for every input size n, to generate input x of length n such that with high probability every uniform
adversary will make the wrong decision on x.

The assumption that will guarantee the above is the existence of (uniform) one way functions. The assumption
that would guarantee the above in the presence of non-uniform adversary is the existence non-uniform one way
functions. For definitions, properties, and possible examples of one-way functions see Chapter 2.

B.4 Some Inequalities From Probability Theory

Proposition B.4 [Markov’s Inequality] If Z is a random variable that takes only non-negative values, then for

any value a > 0, Pr[Z ≥ a] ≤ E[Z]
a .

Proposition B.5 [Weak Law of Large Numbers] Let z1, . . . , zn be independent 0-1 random variables (Bernoulli

random variables) with mean µ. Then Pr[|
∑n

i=1
zi

n − µ| < ǫ] > 1 − δ provided that n > 1
4ǫ2δ .



C h a p t e r C

Some number theory background

Many important constructions of cryptographic primitives are based on problems from number theory which
seem to be computationally intractable. The most well-known of these problems is that of factoring composite
integers. In order to work with these problems, we need to develop some basic materiel on number theory and
number theoretic algorithms. Accordingly, we provide here a mini-course on this subject. The materiel here
will be used later when we discuss candidate example one-way and trapdoor functions.

There are many sources for information on number theory in the literatures. For example try Angluin’s notes
[7] and Chapter 33 of Cormen, Leiserson and Rivest [63].

C.1 Groups: Basics

A group is a set G together with some operation, which we denote ∗. It takes pairs of elements to another
element, namely a ∗ b is the result of ∗ applied to a, b. A group has the following properties:

(1) If a, b ∈ G so is a ∗ b

(2) The operation is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c)

(3) There is an identity element I such that I ∗ a = a ∗ I = a for all a ∈ G

(4) Every a ∈ G has an inverse, denoted a−1, such that a ∗ a−1 = a−1 ∗ a = I.

We will encounter this kind of structure a lot. First recall Z,N and R. Now, for example:

Integers under addition: I = 0; a−1 = −a.

Real numbers under multiplication: I = 1; a−1 = 1/a.

What about N under addition? Not a group!

What about Z under multiplication? Not a group!

Notation: am is a multiplied by itself m times. Etc. Namely, notation is what you expect. What is a−m? It
is (a−1)m. Note that it “works” like it should.

These groups are all infinite. We are usually interested in finite ones. In such a case:

Def: We call |G| the order of G.
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Fact C.1 Let m = |G|. Then am = I for any a ∈ G.

We will use this later.

a ≡ b (mod n) means that if we divide a by n then the remainder is b. (In C, this is a%n = b).

An important set is the set of integers modulo an integer n. This is Zn = {0, . . . , n − 1}. We will see it is a
group under addition modulo n. Another related important set is Z∗

n = {m : 1 ≤ m ≤ n and gcd(m,n) = 1 },
the set of integers less than n which are relatively prime to n. We will see this is a group under multiplication
modulo n. We let φ(n) = |Z∗

n|. This is the Euler totient function.

A subset S ⊆ G is called a sub-group if it is a group in its own right, under the operation making G a group.
In particular if x, y ∈ S so is xy and x−1, and 1 ∈ S.

Fact C.2 Suppose S is a subgroup of G. Then |S| divides |G|.

C.2 Arithmatic of numbers: +, *, GCD

Complexity of algorithms operating of a number a is measured in terms of the size (length) of a, which is
|a| ≈ lg(a). How long do basic operations take? In terms of the number of bits k in the number:

Addition is linear time. Ie. two k-bit numbers can be added in O(k) time.

Multiplication of a and b takes O(|a| · |b|) bit operations. Namely it is an O(k2) algorithm.

Division of a by b (integer division: we get back the quotient and remainder) takes time O((1 + |q|)|b|)
where q is the quotient obtained. Thus this too is a quadratic time algorithm.

Euclid’s algorithm can be used to compute GCDs in polynomial time. The way it works is to repeatedly use
the identity gcd(a, b) = gcd(b, a mod b). For examples, see page 10 of [7].

What is the running time? Each division stage takes quadratic time and we have k stages, which would say it
is a O(k3) algorithm. But see Problem 33-2, page 850, of [63]. This yields the following:

Theorem C.3 Euclid’s algorithm can be implemented to use only O(|a|·|b|) bit operations to compute gcd(a, b).
That is, for k-bit numbers we get a O(k2) algorithm.

Fact C.4 gcd(a, b) = 1 if and only if there exist integers u, v such that 1 = au + bv.

The Extended Euclid Algorithm is given a, b and it returns not only d = gcd(a, b) but integers u, v such that
d = au + bv. It is very similar to Euclid’s algorithm. We can keep track of some extra information at each step.
See page 11 of [7].

C.3 Modular operations and groups

C.3.1 Simple operations

Now we go to modular operations, which are the main ones we are interested in

Addition is now the following: Given a, b, n with a, b ∈ Zn compute a + b mod n. This is still linear time.
Ie. two k-bit numbers can be added in O(k) time. Why? You can’t go much over N . If you do, just
subtract n. That too is linear time.

Taking a mod n means divide a by n and take remainder. Thus, it takes quadratic time.

Multiplication of a and b modulo n: First multiply them, which takes O(|a| · |b|) bit operations. Then
divide by n and take the remainder. We saw latter too was quadratic. So the whole thing is quadratic.
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Zn is a group under addition modulo N . This means you can add two elements and get back an element of the
set, and also subtraction is possible. Under addition, things work like you expect.

We now move to Z∗
n. We are interested in the multiplication operation here. We want to see that it is a group,

in the sense that you can multiply and divide. We already saw how to multiply.

Theorem C.5 There is a O(k2) algorithm which given a, n with a ∈ Z∗
n outputs b ∈ Z∗

n satisfying ab ≡ 1
(mod n), where k = |n|.

See page 12 of [7]. The algorithms uses the extended Euclid. We know that 1 = gcd(a, n). Hence it can find
integers u, v such that 1 = au + nv. Take this modulo n and we get au ≡ 1 (mod n). So can set b = u mod n.
Why is this an element of Z∗

n? Claim that gcd(u, n) = 1. Why? By Fact C.4, which says that 1 = au + nv
means gcd(u, n) = 1.

The b found in the theorem can be shown to be unique. Hence:

Notation: The b found in the theorem is denoted a−1.

C.3.2 The main groups: Zn and Z∗
n

Theorem C.6 For any positive integer n, Z∗
n forms a group under multiplication modulo n.

This means that a, b ∈ Z∗
n implies ab mod n is in Z∗

n, something one can verify without too much difficulty. It
also means we can multiply and divide. We have an identity (namely 1) and a cancellation law.

Notation: We typically stop writing modn everywere real quick. It should just be understood.

The way to think about Z∗
n is like the real numbers. You can manipulate things like you are used to. The

following is a corollary of Fact C.1.

Theorem C.7 For any a ∈ Z∗
n it is the case that aφ(n) = 1.

Corollary C.8 (Fermat’s little theorem) If p is prime then ap−1 ≡ 1 (mod p) for any a ∈ {1, . . . , p − 1}.

Why? Because φ(p) = p − 1.

C.3.3 Exponentiation

This is the most basic operation for public key cryptography. The operation is just that given a, n, m where
a ∈ Zn and m is an integer, computes am mod n.

Example C.9 Compute 221 mod 22. Naive way: use 21 multiplications. What’s the problem with this? It is
an exponential time algorithm. Because we want time poly(k) where k = |n|. So we do it by repeated squaring:

21 ≡ 2

22 ≡ 4

24 ≡ 16

28 ≡ 14

216 ≡ 20

Now 221 = 216+4+1 = 216 ∗ 24 ∗ 21 = 20 ∗ 16 ∗ 2 ≡ 10 mod 21.

This is the repeated squaring algorithm for exponentiation. It takes cubic time.
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Theorem C.10 There is an algorithm which given a, n,m with a,m ∈ Zn outputs am mod n in time O(k3)
where k = |n|. More precisely, the algorithm uses at most 2k modular multiplications of k-bit numbers.

Algorithm looks at binary expansion of m. In example above we have 21 = 10101. What we did is collect all
the powers of two corresponding to the ones and multiply them.

4 3 2 1 0

a16 a8 a4 a2 a1

1 0 1 0 1

Exponentiate(a, n, m)

Let bk−1...b1b0 be the binary representation of m
Let x0 = a
Let y = 1
For i = 0, . . . , k − 1 do

If bi = 1 let y = y ∗ xi mod n
Let xi+1 = x2

i mod n
Output y

C.4 Chinese remainders

Let m = m1m2. Suppose y ∈ Zm. Consider the numbers

a1 = y mod m1 ∈ Zm1

a2 = y mod m2 ∈ Zm2

The chinese remainder theorem considers the question of recombining a1, a2 back to get y. It says there is a
unique way to do this under some conditions, and under these conditions says how.

Example C.11 m = 6 = 3 ∗ 2

0 → (0, 0)

1 → (1, 1)

2 → (2, 0)

3 → (0, 1)

4 → (1, 0)

5 → (2, 1)

Example C.12 m = 4 = 2 ∗ 2

0 → (0, 0)

1 → (1, 1)

2 → (0, 0)

3 → (1, 1)

The difference here is that in the first example, the association is unique, in the second it is not. It turns out
uniqueness happens when the m1,m2 are relatively prime. Here is a simple form of the theorem.
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Theorem C.13 [Chinese Remainder Theorem] Let m1,m2, . . . ,mk be pairwise relatively prime integers. That
is, gcd(mi,mj) = 1 for 1 ≤ i < j ≤ k. Let ai ∈ Zmi for 1 ≤ i ≤ k and set m = m1m2 · · ·mk. Then there exists
a unique y ∈ Zm such that y ≡ ai mod mi for i = 1 . . . k. Furthermore there is an O(k2) time algorithm to
compute y given a1, a2, m1,m2, where k = max(|m1|, |m2|).

Proof: For each i, let ni =
(

m
mi

)

∈ Z. By hypothesis, gcd(mi, ni) = 1 and hence ∃bi ∈ Zmi such that

nibi ≡ 1 mod mi. Let ci = bini. Then ci =

{

1 mod mi

0 mod mj for j 6= i
.

Set y =

k∑

i=1

ciai mod m. Then y ≡ ai mod mi for each i.

Further, if y′ ≡ ai mod mi for each i then y′ ≡ y mod mi for each i and since the mi’s are pairwise relatively
prime it follows that y ≡ y′ mod m, proving uniqueness.

Remark C.14 The integers ci appearing in the above proof will be referred to as the Chinese Remainder
Theorem coefficients. Note that the proof yields a polynomial time algorithm for finding y because the elements
bi ∈ Zmi can be determined by using the Euclidean algorithm and the only other operations involved are
division, multiplication, and addition.

A more general form of the Chinese Remainder Theorem is the following result.

Theorem C.15 Let ai ∈ Zmi
for 1 ≤ i ≤ k. A necessary and sufficient condition that the system of congruences

x ≡ ai mod mi for 1 ≤ i ≤ k be solvable is that gcd(mi,mj)|(ai − aj) for 1 ≤ i < j ≤ k. If a solution exists
then it is unique modulo lcm(m1,m2, . . . , mk).

Solution Of The Quadratic Congruence a ≡ x2 mod n When a ∈ Zn.

First observe that for p an odd prime and a ∈ Z∗
p
2 so that a ≡ x2 mod p for some x ∈ Z∗

p there are exactly two
solutions to a ≡ x2 mod p because x and −x are two distinct solutions modulo p and if y2 ≡ a ≡ x2 mod p then
p|[(x − y)(x + y)] =⇒ p|(x − y) or p|(x + y) so that y ≡ ±x mod p. (Note that x 6≡ −x mod p for otherwise,
2x ≡ 0 mod p ⇒ p|x as p is odd.) Thus, for a ∈ Z∗

p, a ≡ x2 mod p has either 0 or 2 solutions.

Next consider the congruence a ≡ x2 mod p1p2 where p1 and p2 are distinct odd primes. This has a solution if
and only if both a ≡ x2 mod p1 and a ≡ x2 mod p2 have solutions. Note that for each pair (x1, x2) such that
a ≡ x2

1 mod p1 and a ≡ x2
2 mod p2 we can combine x1 and x2 by using the Chinese Remainder Theorem to

produce a solution y to a ≡ x2 mod p1p2 such that y ≡ x1 mod p1 and y ≡ x2 mod p2. Hence, the congruence
a ≡ x2 mod p1p2 has either 0 or 4 solutions.

More generally, if p1, p2, . . . , pk are distinct odd primes then the congruence a ≡ x2 mod pα1
1 pα2

2 . . . pαk

k has either
0 or 2k solutions. Again, these solutions can be found by applying the Chinese Remainder Theorem to solutions
of a ≡ x2 mod pαi

i . Furthermore, for a prime p a solution to the congruence a ≡ x2 mod pk can be found by first
finding a solution x0 to a ≡ x2 mod p by using algorithm A of Lemma 2.39 and viewing it as an approximation
of the desired square root. Then the approximation is improved by the iteration xj ≡ 1

2 (xj−1 + a
xj−1

) mod p2j

for j ≥ 1.

Claim C.16 For each integer j ≥ 0, a ≡ x2
j mod p2j

. Proof: The claim is certainly true for j = 0. Suppose

that for j > 0, a ≡ x2
j mod p2j

.

Then xj − ax−1
j ≡ 0 mod p2j ⇒ (xj − ax−1

j )2 ≡ 0 mod p2j+1

.
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Expanding and adding 4a to both sides gives x2
j + 2a + a2x−2

j ≡ 4a mod p2j+1

and therefore,
(

1
2 (xj + a

xj
)
)2

≡
a mod p2j+1

or x2
j+1 ≡ a mod p2j+1

.

Hence, the claim follows by induction.

From the claim, it follows that after ⌈log k⌉ iterations we will obtain a solution to a ≡ x2 mod pk.

C.5 Primitive elements and Z∗
p

C.5.1 Definitions

Let G be a group. Let a ∈ G. Look at the powers of a, namely a0, a1, a2, . . . ,. We let

〈a〉 = { ai : i ≥ 0 } .

Let m = |G| be the order of G. We know that a0 is the identity, call it 1, and am = 1 also. So the sequence
repeats after m steps, ie. am+1 = a, etc. But it could repeat before too. Let’s look at an example.

Example C.17 Z∗
9 = {1, 2, 4, 5, 7, 8}. Size φ(9) = 6. Then:

〈1〉 = {1}

〈2〉 = {1, 2, 4, 8, 7, 5}

〈4〉 = {1, 4, 7}

〈5〉 = {1, 5, 7, 8, 4, 2}
What we see is that sometimes we get everything, sometimes we don’t. It might wrap around early.

Fact C.18 〈a〉 is a subgroup of G, called the subgroup generated by a.

Let t = |〈a〉|. Then we know that t divides m. And we know that in fact 〈a〉 = {a0, a1, . . . , at−1}. That is, these
are the distinct elements. All others are repeats.

Definition C.19 The order of an element a is the least positive integer t such that at = 1. That is, order(a) =
|〈a〉|.

Computation in the indices can be done modulo t. That is, ai = ai mod t. This is because at = a0 = 1.

What’s the inverse of ai? Think what it “should” be: a−i. Does this make sense? Well, think of it as (a−1)i.
This is correct. On the other hand, what is it as member of the subgroup? It must be aj for some j. Well
j = t − i. In particular, inverses are pretty easy to compute if you are given the index.

Similarly, like for real numbers, multiplication in the base corresponds to addition in the exponent. Namely
ai+j = ai · aj . Etc.

Definition C.20 An element g ∈ G is said to be a primitive element, or generator, of G if the powers of g
generate G. That is, 〈g〉 = G is the whole group G. A group G is called cyclic if it has a primitive element.

Note this means that for any y ∈ G there is a unique i ∈ {0, . . . , m − 1} such that gi = y, where m = |G|.

Notation: This unique i is denoted logg(y) and called the discrete logarithm of x to base g.

Consider the following problem. Given g, y, figure out logg(y). How could we do it? One way is to go through

all i = 0, . . . , m − 1 and for each i compute gi and check whether gi = y. But this process takes exponential
time.

It turns out that computing discrete logarithms is hard for many groups. Namely, there is no known polynomial
time algorithm. In particular it is true for Z∗

p where p is a prime.
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C.5.2 The group Z∗
p

Fact C.21 [7, Section 9] The group Z∗
p is cyclic.

Remark C.22 What is the order of Z∗
p? It is φ(p), the number of positive integers below p which are relatively

prime to p. Since p is prime this is p − 1. Note the order is not prime! In particular, it is even (for p ≥ 3).

A one-way function: Let p be prime and let g ∈ Z∗
p be a generator. Then the function fp,g: Zp → Z∗

p defined by

x 7→ gx

is conjectured to be one-way as long as some technical conditions hold on p. That is, there is no efficient
algorithm to invert it, for large enough values of the parameters. See Chapter 2.

Homomorphic properties: A useful property of the function fp,g is that ga+b = ga · gb.

Now, how can we use this function? Well, first we have to set it up. This requires two things. First that we can
find primes; second that we can find generators.

C.5.3 Finding generators

We begin with the second. We have to look inside Z∗
p and find a generator. How? Even if we have a candidate,

how do we test it? The condition is that 〈g〉 = G which would take |G| steps to check.

In fact, finding a generator given p is in general a hard problem. In fact even checking that g is a generator
given p, g is a hard problem. But what we can exploit is that p = 2q + 1 with q prime. Note that the order of
the group Z∗

p is p − 1 = 2q.

Fact C.23 Say p = 2q + 1 is prime where q is prime. Then g ∈ Z∗
p is a generator of Z∗

p iff gq 6= 1 and g2 6= 1.

In other words, testing whether g is a generator is easy given q. Now, given p = 2q + 1, how do we find a
generator?

Fact C.24 If g is a generator and i is not divisible by q or 2 then gi is a generator.

Proof: giq = gq+(i−1)q = gq · (g2q)(i−1)/2 = gq · 1 = gq which is not 1 because g is not a generator. Similarly let
i = r + jq and we have g2i = g2r · g2jq = g2r. But 2r < 2q since r < q so g2r 6= 1.

So how many generators are there in Z∗
p? All things of form gi with i not divisible by 2 or q and i = 1, . . . , 2q.

Namely all i in Z∗
2q. So there are φ(2q) = q − 1 of them.

So how do we find a generator? Pick g ∈ Z∗
p at random, and check that gq 6= 1 and g2 6= 1. If it fails, try again,

up to some number of times. What’s the probability of failure? In one try it is (q + 1)/2q so in l tries it is

(
q + 1

2q

)l

which is rougly 2−l because q is very large.

C.6 Quadratic residues

An element x ∈ Z∗
N is a square, or quadratic residue, if it has a square root, namely there is a y ∈ Z∗

N such
that y2 ≡ x mod N . If not, it is a non-square or non-quadratic-residue. Note a number may have lots of square
roots.
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It is easy to compute square roots modulo a prime. It is also easy modulo a composite whose prime factorization
you know, via Chinese remainders. (In both cases, you can compute all the roots.) But it is hard modulo a
composite of unknown factorization. In fact computing square roots is equivalent to factoring.

Also, it is hard to decide quadratic residuosity modulo a composite.

Fact C.25 If N is the product of two primes, every square w ∈ Z∗
N has exactly four square roots, x,−x and

y,−y for some x, y ∈ Z∗
N . If you have two square roots x, y such that x 6= ±y, then you can easily factor N .

The first fact is basic number theory. The second is seen like this. Say x > y are the roots. Consider
x2 − y2 = (x − y)(x + y) ≡ 0 mod N . Let a = x − y and b = x + y mod N . So N divides ab. So p divides ab.
Since p is prime, this means either p divides a or p divides b. Since 1 ≤ a, b < N this means either gcd(a, N) = p
or gcd(b,N) = p. We can compute the gcds and check whether we get a divisor of N .

C.7 Jacobi Symbol

We previously defined the Legendre symbol to indicate the quadratic character of a ∈ Z∗
p where p is a prime.

Specifically, for a prime p and a ∈ Zp

Jp(a) =







1 if a is a square in Z∗
p

0 if a = 0

−1 if a is not a square in Z∗
p

For composite integers, this definition is extended, as follows, giving the Jacobi Symbol. Let n =
∏k

i=1 pi
αi be

the prime factorization of n. For a ∈ Zn define

Jn(a) =

k∏

i=1

Jpi(a)
αi .

However, the Jacobi Symbol does not generalize the Legendre Symbol in the respect of indicating the quadratic
character of a ∈ Z∗

n when n is composite. For example, J9(2) = J3(2)J3(2) = 1, although the equation
x2 ≡ 2 mod 9 has no solution.

The Jacobi Symbol also satisfies identities similar to those satisfied by the Legendre Symbol. We list these here.
For proofs of these refer to [156].

1. If a ≡ b mod n then Jn(a) = Jn(b).

2. Jn(1) = 1.

3. Jn(−1) = (−1)
n−1

2 .

4. Jn(ab) = Jn(a)Jn(b).

5. Jn(2) = (−1)
n2−1

8 .

6. If m and n are relatively prime odd integers then Jn(m) = (−1)
n−1

2
m−1

2 Jm(n).

Using these identities, the Jacobi Symbol Jn(a) where a ∈ Zn can be calculated in polynomial time even without
knowing the factorization of n. Recall that to calculate the Legendre Symbol in polynomial time we can call

upon Euler’s Theorem; namely, for a ∈ Z∗
p, where p is prime, we have Jp(a) ≡ a

p−1
2 mod p. However, for a

composite integer n it is not necessarily true that Jn(a) ≡ a
n−1

2 mod n for a ∈ Z∗
n. In fact, this statement is

true for at most half of the elements in Z∗
n. From this result, we can derive a Monte Carlo primality test as we

shall see later.
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C.8 RSA

Here we have a composite modulus N = pq product of two distinct primes p and q of roughly equal length. Let
k = |N |; this is about 1024, say. It is generally believed that such a number is hard to factor.

Recall that φ(N) = |Z∗
N | is the Euler Phi function. Note that φ(N) = (p− 1)(q − 1). (To be relatively prime to

N , a number must be divisible neither by p nor by q. Eliminating multiples of either yields this. Note we use
here that p 6= q.)

Now let e be such that gcd(e, φ(N)) = 1. That is, e ∈ Z∗
φ(N). The RSA function is defined by

f : Z∗
N → Z∗

N

x 7→ xe mod N .

We know that Z∗
φ(N) is a group. So e has an inverse d ∈ Z∗

φ(N). Since d is an inverse of e it satisfies

ed ≡ 1 (mod φ(N))

Now let x ∈ Z∗
N be arbitrary and look at the following computation:

(xe)d mod N = xed mod φ(N) mod N = x1 mod N = x .

In other words, the function y 7→ yd is an inverse of f . That is, f−1(y) = yd mod N .

Can we find d? Easy: computing inverses can be done in quadratic time, as we already say, using the extended
GCD algorithm! But note a crucial thing. We are working modulo φ(N). So finding d this way requires that
we know φ(N). But the latter involves knowing p, q.

It seems to be the case that given only N and e it is hard to find d. Certainly we agreed it is hard to find
p, q; but even more, it seems hard to find d. This yields the conjecture that RSA defines a trapdoor one-way
permutation. Namely given N, e defining f , x 7→ f(x) is easy; y 7→ f−1(y) is hard; but f−1 is easy given p, q
(or d). Note that this trapdoorness is a property the discrete logarithm problem did not have.

Computation of f is called encryption, and computation of f−1 is called decryption.

Both encryption and decryption are exponentiations, which a priori are cubic in k time operations. However,
one often chooses e to be small, so encryption is faster. In hardware, RSA is about 1000 times slower than DES;
in software it is about 100 times slower, this with small encryption exponent.

Formally, RSA defines a family of trapdoor permutations. The family is indexed by a security parameter k
which is the size of the modulus. The RSA generator is an algorithm G which on input 1k picks two distinct,
random (k/2)-bit primes p, q, multiplies them to produce N = pq, and also computes e, d. It outputs N, e as
the description of f and N, d as the description of f−1. See Chapter 2.

RSA provides the ability to do public key cryptography.

C.9 Primality Testing

For many cryptographic purposes, We need to find primes. There is no known polynomial time algorithm to
test primality of a given integer n. What we use are probabilistic, polynomial time (PPT) algorithms.

We will first show that the problem of deciding whether an integer is prime is in NP. Then we will discuss the
Solovay-Strassen and Miller-Rabin probabilistic primality tests which efficiently find proofs of compositeness.
Finally, we will give a primality test due to Goldwasser and Kilian which uses elliptic curves and which efficiently
finds a proof of primality.

C.9.1 PRIMES ∈ NP

We will first present two algorithms for testing primality, both of which are inefficient because they require
factoring as a subroutine. However, either algorithm can be used to show that the problem of deciding whether
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an integer is prime is in NP. In fact, the second algorithm that is presented further demonstrates that de-
ciding primality is in UP∩coUP. Here UP denotes the class of languages L accepted by a polynomial time
nondeterministic Turing machine having a unique accepting path for each x ∈ L.

Definition C.26 Let PRIMES = {p : p is a prime integer}.

C.9.2 Pratt’s Primality Test

Pratt’s primality testing algorithm is based on the following result.

Proposition C.27 For an integer n > 1, the following statements are equivalent.

1. |Z∗
n| = n − 1.

2. The integer n is prime.

3. There is an element g ∈ Z∗
n such that gn−1 ≡ 1 mod n and for every prime divisor q of n − 1, g

n−1
q 6≡

1 mod n.

Pratt’s algorithm runs as follows on input a prime p and outputs a proof (or certificate) that p is indeed prime.

1. Find an element g ∈ Z∗
p whose order is p − 1.

2. Determine the prime factorization

k∏

i=1

qαi
i of p − 1.

3. Prove that p is prime by proving that g is a generator of Z∗
p. Specifically, check that gp−1 ≡ 1 mod p and

for each prime qi check that g
p−1
qi 6≡ 1 mod p.

4. Recursively show that qi is prime for 1 ≤ i ≤ k.

Note that if p is a prime, then Z∗
p has ϕ(p − 1) = Ω( p

log log p ) generators (see [178]). Thus, in order to find a

generator g by simply choosing elements of Z∗
p at random, we expect to have to choose O(log log p) candidates

for g. If we find a generator g of Z∗
p and if we can factor p − 1 and recursively prove that the prime factors of

p − 1 are indeed primes then we have obtained a proof of the primality of p. Unfortunately, it is not known
how to efficiently factor p − 1 for general p. Pratt’s primality testing algorithm does demonstrate, however,
that PRIMES ∈ NP because both the generator g in step 1 and the required factorization in step 2 can be
guessed. Moreover, the fact that the factorization is correct can be verified in polynomial time and the primality
of each qi can be verified recursively by the algorithm. Note also, as Pratt showed in [167] by a simple inductive
argument, that the total number of primes involved is O(log p). Thus, verifying a Pratt certificate requires
O(log2 p) modular multiplications with moduli at most p.

C.9.3 Probabilistic Primality Tests

C.9.4 Solovay-Strassen Primality Test

We can derive a Monte Carlo primality test. This algorithm, which we state next, is due to Solovay and Strassen
(see [197]).

The Solovay-Strassen primality test runs as follows on input an odd integer n and an integer k, indicating the
desired reliability.
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1. Test if n = be for integers b, e > 1; if so, output composite and terminate.

2. Randomly choose a1, a2, . . . , ak ∈ {1, 2, . . . , n − 1}.

3. If gcd(ai, n) 6= 1 for any 1 ≤ i ≤ k then output composite and terminate.

4. Calculate αi = a
n−1

2
i mod n and βi = Jn(ai).

5. If for any 1 ≤ i ≤ k, αi 6= βi mod n then output composite. If for all 1 ≤ i ≤ k, αi = βi mod n then
output probably prime.

Since the calculations involved in the Solovay-Strassen primality test are all polynomial time computable (verify
that this statement is indeed true for step 1), it is clear that the algorithm runs in time polynomial in log n and
k. The following result guarantees that if n is composite then in step 5 of the algorithm, Pr[αi = βi mod n] ≤ 1

2

and thus, Pr[αi = βi mod n for 1 ≤ i ≤ k] ≤
(

1
2

)k
.

Proposition C.28 Let n be an odd composite integer which is not a perfect square and let

G = {a ∈ Z∗
n such that Jn(a) ≡ a

n−1
2 mod n}. Then |G| ≤ 1

2 |Z∗
n|.

Proof: Since G is a subgroup of Z∗
n it suffices to show that G 6= Z∗

n.

Since n is composite and not a perfect square, it has a nontrivial factorization n = rpα where p is prime, α is
odd, and gcd(r, p) = 1.

Suppose that a
n−1

2 ≡ Jn(a) mod n for all a ∈ Z∗
n. Then

a
n−1

2 ≡ ±1 mod n for all a ∈ Z∗
n. (C.1)

We first show that in fact a
n−1

2 ≡ 1 mod n for all such a. If not, then there is an a ∈ Z∗
n with a

n−1
2 ≡ −1 mod n.

By the Chinese Remainder Theorem there is a unique element b ∈ Zn such that b ≡ 1 mod r and b ≡ a mod pα.

Then b ∈ Z∗
n and b

n−1
2 ≡ 1 mod r and b

n−1
2 ≡ −1 mod pα contradicting equation (C.1). Therefore, Jn(a) = 1

for all a ∈ Z∗
n.

However, by the Chinese Remainder Theorem, there is a unique element a ∈ Zrp such that a ≡ 1 mod r and
a ≡ z mod p where z is one of the p−1

2 quadratic nonresidues modulo p. Then a ∈ Z∗
n and thus, Jn(a) =

Jr(1)Jp(z)α = −1 because α is odd. This is a contradiction.

Note that if we reach step 5 of the Solovay-Strassen algorithm then n is not a perfect square and each ai ∈ Z∗
n

because the algorithm checks for perfect powers in step 1 and computes gcd(ai, n) in step 3. Thus, the hypotheses
of Proposition C.28 are satisfied and for each 1 ≤ i ≤ k, Pr[αi = βi mod n] ≤ 1

2 .

Remark The assertion in Proposition C.28 is in fact true even if n is a perfect square. The proof of the more
general statement is very similar to the proof of Proposition C.28. For details refer to [7].

Finally, it follows from Proposition C.28 that the Solovay-Strassen algorithm runs correctly with high probability.
Specifically,

Pr[Solovay-Strassen outputs probably prime | n is composite] ≤ (
1

2
)k

and

Pr[Solovay-Strassen outputs probably prime | n is prime] = 1.
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C.9.5 Miller-Rabin Primality Test

Fermat’s Little Theorem states that for a prime p and a ∈ Z∗
p, ap−1 ≡ 1 mod p. This suggests that perhaps a

possible way to test if n is prime might be to check, for instance, if 2n−1 ≡ 1 mod n. Unfortunately, there are
composite integers n (called base-2 pseudoprimes) for which 2n−1 ≡ 1 mod n. For example, 2340 ≡ 1 mod 341
and yet 341 = 11 · 31. In fact, replacing 2 in the above exponentiation by a random a ∈ Z∗

n would not help for
some values of n because there are composite integers n (called Carmichael numbers) for which an−1 ≡ 1 mod n
for all a ∈ Z∗

n. 561, 1105, and 1729 are the first three Carmichael numbers.

The Miller-Rabin primality test overcomes the problems of the simple suggestions just mentioned by choosing
several random a ∈ Z∗

n for which an−1 mod n will be calculated by repeated squaring. While computing each
modular exponentiation, it checks whether some power of a is a nontrivial square root of 1 modulo n (that
is, a root of 1 not congruent to ±1 modulo n). If so, the algorithm has determined n to be composite. The
quality of this test relies on Proposition C.30 which Rabin proved in [171]. For a simpler proof which only yields
|{b : Wn(b) holds }| ≥ 1

2 (n − 1) (but is nevertheless sufficient for the purposes of the Miller-Rabin algorithm)
see Chapter 33, pages 842-843 of [63].

Definition C.29 Let n be an odd positive integer. Denote the following condition on an integer b by Wn(b):

1. 1 ≤ b < n and

2. (i) bn−1 6≡ 1 mod n or

(ii) there is an integer i such that 2i | (n − 1) and b(n−1)/2i 6≡ ±1 mod n but
(

b(n−1)/2i
)2

≡ 1 mod n.

An integer b for which Wn(b) holds will be called a witness to the compositeness of n.

Remark Rabin originally defined the condition Wn(b) to hold if 1 ≤ b < n and either bn−1 6≡ 1 mod n or for

some integer i such that 2i | (n−1), 1 < gcd(b(n−1)/2i −1, n) < n. In [171] Rabin proves that the two definitions
for Wn(b) are equivalent. This condition was in fact first considered by Miller (see [149]), who used it to give
a nonprobabilistic test for primality assuming the correctness of the extended Riemann hypothesis. Rabin’s
results, however, do not require any unproven assumptions.

Proposition C.30 If n is an odd composite integer then |{b : Wn(b) holds}| ≥ 3
4 (n − 1).

The Miller-Rabin algorithm runs as follows on input an odd integer n and an integer k, indicating the desired
reliability.

1. Randomly choose b1, b2, . . . , bk ∈ {1, 2, . . . , n − 1}.
2. Let n − 1 = 2lm where m is odd.

3. For 1 ≤ i ≤ k compute bm
i mod n by repeated squaring.

4. Compute b2jm
i mod n for j = 1, 2, . . . , l. If for some j, b2j−1m

i 6≡ ±1 mod n but b2jm
i ≡ 1 mod n then

Wn(bi) holds.

5. If bn−1
i 6≡ 1 mod n then Wn(bi) holds.

6. If for any 1 ≤ i ≤ k, Wn(bi) holds then output composite. If for all 1 ≤ i ≤ k, Wn(bi) does not hold then
output probably prime.

Proposition C.30 shows that the Miller-Rabin algorithm runs correctly with high probability. Specifically,

Pr[Miller-Rabin outputs probably prime | n is composite] ≤ (
1

4
)k

and
Pr[Miller-Rabin outputs probably prime | n is prime] = 1.

Furthermore, Miller-Rabin runs in time polynomial in log n and k as all the computations involved can be
performed in polynomial time.
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C.9.6 Polynomial Time Proofs Of Primality

Each of the two algorithms discussed in the previous section suffers from the deficiency that whenever the
algorithm indicates that the input n is prime, then it is prime with high probability, but no certainty is
provided. (In other words, the algorithms are Monte Carlo algorithms for testing primality.) However, when
either algorithm outputs that the input n is composite then it has determined that n is indeed composite.
Thus, the Solovay-Strassen and Miller-Rabin algorithms can be viewed as compositeness provers. In this section
we will discuss a primality test which yields in expected polynomial time a short (verifiable in deterministic
polynomial time) proof that a prime input is indeed prime. Therefore, for a general integral input we can run
such a primality prover in parallel with a compositeness prover and one of the two will eventually terminate
either yielding a proof that the input is prime or a proof that the input is composite. This will provide us with
a Las Vegas algorithm for determining whether an integer is prime or composite.

C.9.7 An Algorithm Which Works For Some Primes

Suppose that we could find a prime divisor q of p − 1 such that q >
√

p. Then the following algorithm can be
used to prove the primality of p.

1. Determine a prime divisor q of p − 1 for which q >
√

p.

2. Randomly choose a ∈ Z∗
p − {1}.

3. If 1 < gcd(a − 1, p) < p then output that p is composite.

4. Check that aq ≡ 1 mod p.

5. Recursively prove that q is prime.

The correctness of this algorithm follows from the next result.

Claim C.31 If q >
√

p is a prime and for some a ∈ Z∗
p gcd(a − 1, p) = 1 and aq ≡ 1 mod p then p is a prime.

Proof: Suppose p is not prime. Then there is a prime d ≤ √
p such that d | p and therefore, by the hypothesis,

a 6≡ 1 mod d and aq ≡ 1 mod d. Thus, in Z∗
d, ord(a) | q. But q is prime and a does not have order 1. Hence,

q = ord(a) ≤ |Z∗
d| = d − 1 <

√
p and this contradicts the assumption that q >

√
p.

Note that if p is prime then in step 4, the condition aq ≡ 1 mod p will be verified with probability at least
q−1
p−2 > 1√

p (since q >
√

p). However, in order for the algorithm to succeed, there must exist a prime divisor q of

p − 1 such that q >
√

p, and this must occur at every level of the recursion. Namely, there must be a sequence
of primes q = q0, q1, . . . , qk, where qk is small enough to identify as a known prime, such that qi | (qi−1 − 1) and
qi >

√
qi−1 for i = 1, . . . , k and this is very unlikely.

This obstacle can be overcome by working with elliptic curves modulo primes p instead of Z∗
p. This will allow

us to randomly generate for any prime modulus, elliptic groups of varying orders. In the following sections, we
will exploit this additional freedom in a manner similar to Lenstra’s elliptic curve factoring algorithm.

C.9.8 Goldwasser-Kilian Primality Test

The Goldwasser-Kilian primality test is based on properties of elliptic curves. The idea of the algorithm is similar
to the primality test presented in Section C.9.7, except that we work with elliptic curves Ea,b(Zp) instead of
Z∗

p. By varying a and b we will be able to find an elliptic curve which exhibits certain desired properties.

The Goldwasser-Kilian algorithm runs as follows on input a prime integer p 6= 2, 3 of length l and outputs a
proof that p is prime.
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1. Randomly choose a, b ∈ Zp, rejecting choices for which gcd(4a3 + 27b2, p) 6= 1.

2. Compute |Ea,b(Zp)| using the polynomial time algorithm due to Schoof (see [185]).

3. Use a probabilistic pseudo-primality test (such as Solovay-Strassen or Miller-Rabin) to determine if
|Ea,b(Zp)| is of the form cq where 1 < c ≤ O(log2 p) and q is a probable prime. If |Ea,b(Zp)| is not
of this form then repeat from step 1.

4. Select a point M = (x, y) on Ea,b(Zp) by choosing x ∈ Zp at random and taking y to be the square root
of x3 + ax + b, if one exists. If x3 + ax + b is a quadratic nonresidue modulo p then repeat the selection
process.

5. Compute q · M .

(i) If q · M = O output (a, b, q,M). Then, if q > 2l
( 1
log logl

)

, [5]), recursively prove that q is prime
(specifically, repeat from step 1 with p replaced by q). Otherwise, use the deterministic test due to
Adleman, Pomerance, and Rumely (see [5]) to show that q is prime and terminate.

(ii) If q · M 6= O then repeat from step 4.

Remark The test mentioned in step 5i is currently the best deterministic algorithm for deciding whether an
input is prime or composite. It terminates within (log n)O(log log log n) steps on input n.

C.9.9 Correctness Of The Goldwasser-Kilian Algorithm

Note first that as we saw in Section C.9.3, the probability of making a mistake at step 3 can be made exponentially
small. The correctness of the Goldwasser-Kilian algorithm follows from Theorem C.32. This result is analogous
to Claim C.31.

Theorem C.32 Let n > 1 be an integer with gcd(n, 6) = 1. Let Ea,b(Zn) be an elliptic curve modulo n and
let M 6= O be a point on Ea,b(Zn). If there is a prime integer q such that q > (n1/4 + 1)2 and q · M = O then
n is prime.

Proof: Suppose that n were composite. Then there is a prime divisor p of n such that p <
√

n.

Let ordE(M) denote the order of the point M on the elliptic curve E. If q · M = O then q · Mp = Op. Thus,
ordEp(Mp) | q.

However, ordEp(Mp) ≤ |Ea,b(Zp)| ≤ p + 1 + 2
√

p (by Hasse’s Inequality)
< n1/2 + 1 + 2n1/4

< q

and since q is prime, we have that ordEp(Mp) = 1. Therefore, Mp = Op which implies that M = O, a
contradiction.

Theorem C.33 By using the sequence of quadruples output by the Goldwasser-Kilian algorithm, we can verify
in time O(log4 p) that p is indeed prime.

Proof: Let p0 = p. The sequence of quadruples output by the algorithm will be of the form (a1, b1, p1, M1), (a2, b2, p2,M2), . . . , (a

where gcd(4a3
i + 27b2

i , pi−1) 6= 1, Mi 6= O is a point on Eai,bi(Zpi−1), pi > p
1/2
i−1 + 1 + 2p

1/4
i−1, and pi · Mi = O

for 1 ≤ i ≤ k. These facts can all be verified in O(log3 p) time for each value of i. By Theorem C.32 it follows
that pi prime ⇒ pi−1 prime for 1 ≤ i ≤ k. Further, note that in step 3 of the algorithm, c ≥ 2 and hence,

pi ≤ pi−1+2
√

pi−1

2 . Therefore, the size of k will be O(log p) giving a total of O(log4 p) steps. Finally, pk can be
verified to be prime in O(log p) time due to its small size.
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C.9.10 Expected Running Time Of Goldwasser-Kilian

The algorithm due to Schoof computes |Ea,b(Zp)| in O(log9 p) time. Then to check that |Ea,b(Zp)| = cq where
1 < c ≤ O(log2 p) and q is prime requires a total of O(log6 p) steps if we use Solovay-Strassen or Miller-Rabin
with enough iterations to make the probability of making a mistake exponentially small (the algorithm may
have to be run for each possible value of c and each run of the algorithm requires O(log4 p) steps).

Next, selecting the point M = (x, y) requires choosing an expected number of at most 2p
|Ea,b(Zp)|−1 ≈ 2 values

for x before finding one for which x3 + ax + b is a quadratic residue modulo p. Note that the computation of
square roots modulo a prime p (to find y) can be done in O(log4 p) expected time. Since |Ea,b(Zp)| = cq where
q is prime, Ea,b(Zp) is isomorphic to Zc1q ×Zc2 where c = c1c2 and c2|c1. Therefore, Ea,b(Zp) has at least q− 1
points of order q and hence with probability at least q−1

cq ≈ 1
c , the point M selected in step 4 will have order

q. Thus, the expected number of points that must be examined before finding a point M of order q will be
c = O(log2 p). Further, the computation of q · M requires O(log p) additions, using repeated doubling and so
can be done in O(log3 p) time. Therefore, dealing with steps 4 and 5 requires O(log5 p) expected time.

As remarked previously, the recursion depth is O(log p). Therefore, the only remaining consideration is to
determine how often an elliptic curve Ea,b(Zp) has to be selected before |Ea,b(Zp)| = cq where c = O(log2 p)
and q is prime. By the result of Lenstra concerning the distribution of |Ea,b(Zp)| in (p+1−√

p, p+1+
√

p) (see

[131]) this is O(
√

p log p

|S|−2 ) where S is the set of integers in (p + 1 −√
p, p + 1 +

√
p) of the desired form cq. Note

that |S| ≥ π(
p+1+

√
p

2 )−π(
p+1−√

p

2 ) because S contains those integers in (p+1−√
p, p+1+

√
p) which are twice

a prime. Therefore, if one assumes that the asymptotic distribution of primes holds in small intervals, then
the expected number of elliptic curves that must be considered is O(log2 p). However, there is only evidence to
assume the following conjecture concerning the number of primes in small intervals.

Conjecture C.34 There is a positive constant s such that for all x ∈ R≥2, the number of primes between x

and x +
√

2x is Ω
( √

x
logs x

)

.

Under this assumption, the Goldwasser-Kilian algorithm proves the primality of p in O((log p)11+s) expected
time.

C.9.11 Expected Running Time On Nearly All Primes

Although the analysis presented in Section C.9.10 relies on the unproven result stated in Conjecture C.34, a
theorem due to Heath-Brown concerning the density of primes in small intervals can be used to show that the
fraction of primes of length l for which the Goldwasser-Kilian algorithm runs in expected time polynomial in l

is at least 1 − O(2−l
1

log log l
). The Heath-Brown result is the following.

Theorem C.35 Let #p[a, b] denote the number of primes x satisfying a ≤ x ≤ b.

Let i(a, b) =

{

1 if #p[a, b] ≤ b−a
2⌊log a⌋

0 otherwise
. Then there exists a positive constant α such that

∑

x≤a≤2x

i(a, a +
√

a) ≤ x
5
6 logα x.

Using this theorem, Goldwasser and Kilian were able to prove in [100] that their algorithm terminates in expected

time O(l12) on at least a 1−O(2l
1

log log l
) fraction of those primes of length l. In [4] Adleman and Huang showed,

by a more careful analysis of the Goldwasser-Kilian algorithm, that in fact the fraction of primes of length l
for which Goldwasser-Kilian may not terminate in expected polynomial time is strictly exponentially vanishing.
Further, they proposed a new algorithm for proving primality based on hyperelliptic curves which they showed
will terminate in exponential polynomial time on all prime inputs. Thus, the goal of obtaining a Las Vegas
algorithm has been finally achieved.
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C.10 Factoring Algorithms

In this lecture we discuss some general properties of elliptic curves and present Lenstra’s elliptic curve factoring
algorithm which uses elliptic curves over Zn to factor integers.

Pollard’s p − 1 Method

We begin by introducing a predecessor of the elliptic curve factoring algorithm which uses ideas analogous to
those used in the elliptic curve factoring algorithm. This algorithm, known as Pollard’s p − 1 method, appears
in [166]. Let n be the composite number that we wish to split. Pollard’s algorithm uses the idea that if we can
find integers e and a such that ae ≡ 1 mod p and ae 6≡ 1 mod q for some prime factors p and q of n then, since
p | (ae − 1) and q 6 | (ae − 1), gcd(ae − 1, n) will be a nontrivial factor of n divisible by p but not by q.

The algorithm proceeds as follows on input n.

1. Choose an integer e that is a multiple of all integers less than some bound B. For example, e might be

the least common multiple of all integers ≤ B. To simplify this, we might even let e =
∏π(B)

i=1 pαi
i where

p1, p2, . . . , pπ(B) are the primes ≤ B and αi is chosen minimally so that pαi
i ≥ √

n > min
p|n

{p − 1}.

2. Choose a random integer a between 2 and n − 2.

3. Compute ae mod n by repeated squaring.

4. Compute d = gcd(ae − 1, n) by the Euclidean algorithm. If 1 < d < n output the nontrivial factor d.
Otherwise, repeat from step 2 with a new choice for a.

To explain when this algorithm works, assume that the integer e is divisible by every integer ≤ B and that p is
a prime divisor of n such that p− 1 is the product of prime powers ≤ B. Then e = m(p− 1) for some integer m
and hence ae =

(
a(p−1)

)m ≡ 1m = 1 mod p. Therefore, p | gcd(ae − 1, n) and the only way that we could fail to
obtain a nontrivial factor of n in step 4 is if ae ≡ 1 mod n. In other words, we could only fail here if for every
prime factor q of n the order of a mod q divides e and this is unlikely.

Unfortunately, it is not true that for general n there is a prime divisor p of n for which p − 1 is divisible by
no prime power larger than B for a bound B of small size. If p − 1 has a large prime power divisor for each
prime divisor p of n, then Pollard’s p−1 method will work only for a large choice of the bound B and so will be
inefficient because the algorithm runs in essentially O(B) time. For example, if n is the product of two different
primes p and q where |p| ≈ |q| are primes and p − 1 and q − 1 are O(

√
n)-smooth then the method will likely

require a bound B of size O(
√

n).

Reiterating, the problem is that given input n =
∏

pi
αi where the pi’s are the distinct prime factors of n, we are

restricted by the possibility that none of the integers pi −1 are sufficiently smooth. However, we can ameliorate
this restriction by working with the group of points defined over elliptic curves. For each prime p we will obtain
a large collection of groups whose orders essentially vary “uniformly” over the interval (p + 1−√

p, p + 1 +
√

p).
By varying the groups involved we can hope to always find one whose order is smooth. We will then show how
to take advantage of such a collection of groups to obtain a factorization of n.

C.11 Elliptic Curves

Definition C.36 An elliptic curve over a field F is the set of points (x, y) with x, y ∈ F satisfying the
Weierstrass equation y2 = x3 + ax + b where a, b ∈ F and 4a3 + 27b2 6= 0 together with a special point O called
the point at infinity. We shall denote this set of points by Ea,b(F ).
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Remark The condition 4a3 + 27b2 6= 0 ensures that the curve is nonsingular. That is, when the field F is R,
the tangent at every point on the curve is uniquely defined.

Let P , Q be two points on an elliptic curve Ea,b(F ). We can define the negative of P and the sum P + Q on
the elliptic curve Ea,b(F ) according to the following rules.

1. If P is the point at infinity O then we define −P to be O.
Otherwise, if P = (x, y) then −P = (x,−y).

2. O + P = P + O = P .

3. Let P, Q 6= O and suppose that P = (x1, y1), Q = (x2, y2).

(i) If P = −Q (that is, x1 = x2 and y1 = −y2) then we define P + Q = O

(ii) Otherwise, let

α =
y1 − y2

x1 − x2
if P 6= Q (C.2)

or

α =
3x2

1 + a

y1 + y2
if P = Q (C.3)

That is, if the field F = R, α is the slope of the line defined by P and Q,
if P 6= Q, or the slope of the tangent at P , if P = Q.

Then P + Q = R where R = (x3, y3) with x3 = α2 − (x1 + x2) and
y3 = α(x1 − x3) − y1.

It can be shown that this definition of addition on the elliptic curve is associative and always defined, and
thus it imposes an additive abelian group structure on the set Ea,b(F ) with O serving as the additive identity
of the group. We will be interested in F = Zp where p 6= 2, 3 is a prime. In this case, addition in Ea,b(Zp)
can be computed in time polynomial in |p| as equations (C.2) and (C.3) involve only additions, subtractions,
and divisions modulo p. Note that to compute z−1 mod p where z ∈ Z∗

p we can use the extended Euclidean
algorithm to compute an integer t such that tz ≡ 1 mod p and then set z−1 = t mod p.

To illustrate negation and addition, consider the elliptic curve y2 = x3 − x over R as shown in Figure C.1.

Figure C.1: Addition on the elliptic curve y2 = x3 − x.

The graph is symmetric about the x-axis so that the point P is on the curve if and only if −P is on the curve.
Also, if the line l through two points P, Q 6= O on the curve E(R) is not vertical then there is exactly one more
point where this line intersects the curve. To see this, let P = (x1, y1), Q = (x2, y2) and let y = αx + β be the

equation of the line through P and Q where α = y1−y2

x1−x2
if P 6= Q or α =

3x2
1+a

y1+y2
if P = Q and β = y1−αx1. Note

that in the case where P = Q, we take l to be the tangent at P in accordance with the rules of addition on the
curve E(R). A point (x, αx + β) on the line l lies on the elliptic curve if and only if (αx + β)2 = x3 + ax + b.
Thus, there is one intersection point for each root of the cubic equation x3 − (αx + β)2 + ax + b = 0. The
numbers x1 and x2 are roots of this equation because (x1, αx1 + β) and (x2, αx2 + β) are, respectively, the
points P and Q on the curve. Hence, the equation must have a third root x3 where x1 + x2 + x3 = α2. This
leads to the expression for x3 mentioned in the rules of addition for the curve E(R). Thus, geometrically, the
operation of addition on E(R) corresponds to drawing the line through P and Q, letting the third intercept of
the line with the curve be −R = (x, y) and taking R = (x,−y) to be the sum P + Q.

C.11.1 Elliptic Curves Over Zn

Lenstra’s elliptic curve factoring algorithm works with elliptic curves Ea,b(Zn) defined over the ring Zn where n
is an odd, composite integer. The nonsingularity condition 4a3 +27b2 6= 0 is replaced by gcd(4a3 +27b2, n) = 1.
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The negation and addition rules are given as was done for elliptic curves over fields. However, the addition of
two points involves a division (refer to equations (C.2) and (C.3) in the rules for arithmetic on elliptic curves
given at the beginning of this section) which is not always defined over the ring Zn. For addition to be defined
the denominators in these equations must be prime to n. Consequently, Ea,b(Zn) is not necessarily a group.
Nevertheless, we may define a method for computing multiples e · P of a point P ∈ Ea,b(Zn) as follows.

1. Let a0 + a12 + · · · + am−12
m−1 be the binary expansion of e. Let j = 0, S = 0.

2. If aj = 1 then S ← S +2jP . If this sum is not defined (namely, the division in equation (C.2) or equation
(C.3) has failed) then output undefined and terminate.

3. j ← j + 1. If j = m then output S as the defined value for e · P and terminate.

4. Calculate 2jP := 2j−1P + 2j−1P . If this sum is not defined then output that e · P cannot be calculated
and terminate. Otherwise, repeat from step 2.

The elliptic curve algorithm will use1 this method which will be referred to as repeated doubling. Note that if
the repeated doubling method is unable to calculate a given multiple e ·P and outputs undefined then we have
encountered points Q1 = (x1, y1) and Q2 = (x2, y2) on Ea,b(Zn) such that Q1 + Q2 is not defined modulo n
(the division in equation (C.2) or equation (C.3) has failed) and hence, either gcd(x1 − x2, n) or gcd(y1 + y2, n)
is a nontrivial factor of n.

Next, we state some facts concerning the relationship between elliptic curves defined over Zn and elliptic curves
defined over Zp when p is a prime divisor of n. Let a, b ∈ Zn be such that gcd(4a3 + 27b2, n) = 1. Let p be a
prime divisor of n and let ap = a mod p, bp = b mod p.

Fact C.37 Eap,bp(Zp) is an additive abelian group.

Further, given P = (x, y) ∈ Ea,b(Zn), define Pp = (x mod p, y mod p). Pp is a point on the elliptic curve
Eap,bp(Zp).

Fact C.38 Let P and Q be two points on Ea,b(Zn) and let p be a prime divisor of n. If P + Q is defined
modulo n then Pp + Qp is defined on Ea,b(Zp) and Pp + Qp = (P + Q)p. Moreover, if P 6= −Q then the sum
P + Q is undefined modulo n if and only if there is some prime divisor q of n such that the points Pq and Qq

add up to the point at infinity O on Eaq,bq (Zq) (equivalently, Pq = −Qq on Eaq,bq (Zq)).

C.11.2 Factoring Using Elliptic Curves

The main idea in Lenstra’s elliptic curve factoring algorithm is to find points P and Q in Ea,b(Zn) such that
P + Q is not defined in Ea,b(Zn). We will assume throughout that n has no factors of 2 or 3 because these can
be divided out before the algorithm commences.

The algorithm runs as follows on input n.

1. Generate an elliptic curve Ea,b(Zn) and a point P = (x, y) on Ea,b(Zn) by randomly selecting x, y and a
in Zn and setting b = y2 − x3 − ax mod n.

2. Compute gcd(4a3 +27b2, n). If 1 < gcd(4a3 +27b2, n) < n then we have found a divisor of n and we stop.
If gcd(4a3 + 27b2, n) = 1 then 4a3 + 27b2 6≡ 0 mod p for every prime divisor p of n and hence Ea,b is an
elliptic curve over Zp for each prime divisor p of n and we may proceed. But if gcd(4a3 + 27b2, n) = n
then we must generate another elliptic curve Ea,b.

1This statement is incorrect and will soon be corrected in these notes. For the method used in the algorithm, see section 2.3 of
[134]
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3. Set e =
∏π(B)

i=1 pαi
i where p1, p2, . . . , pπ(B) are the primes ≤ B and αi is chosen maximally so that pαi

i ≤ C.
B and C are bounds that will be determined later so as to optimize the running time and ensure that the
algorithm will most likely succeed.

4. Compute e · P in Ea,b(Zn) by repeated doubling. Every time before adding two intermediate points
P1 = (x1, y1) and P2 = (x2, y2) check if gcd(x1 − x2, n) or gcd(y1 + y2, n) is a nontrivial factor of n. If so,
output the factor and stop. Otherwise, repeat from step 1.

An elliptic curve Ea,b(Zn) will lead to a nontrivial factorization of n if for some prime factors p and q of n,
e ·Pp = O on Eap,bp(Zp) but Pq does not have order dividing e on Eaq,bq (Zq). Notice the analogy here between
Lenstra’s elliptic curve algorithm and Pollard’s p− 1 algorithm. In Pollard’s algorithm we seek prime divisors p
and q of n such that e is a multiple of the order of a ∈ Z∗

p but not a multiple of the order of a ∈ Z∗
q . Similarly, in

Lenstra’s algorithm we seek prime divisors p and q of n such that e is a multiple of the order of Pp ∈ Eap,bp(Zp)
but not a multiple of the order of Pq ∈ Eaq,bq (Zq). However, there is a key difference in versatility between the
two algorithms. In Pollard’s algorithm, the groups Z∗

p where p ranges over the prime divisors of n are fixed so
that if none of these groups have order dividing e then the method fails. In Lenstra’s elliptic curve algorithm
the groups Eap,bp(Zp) can be varied by varying a and b. Hence, if for every prime divisor p of n, |Eap,bp(Zp)| 6 | e,
then we may still proceed by simply working over another elliptic curve; that is, choosing new values for a and
b.

C.11.3 Correctness of Lenstra’s Algorithm

Suppose that there are prime divisors p and q of n such that e is a multiple of |Eap,bp(Zp)| but in Eaq,bq (Zq),
Pq does not have order dividing e. Then e · Pp = O in Eap,bp(Zp) but e · Pq 6= O in Eaq,bq (Zq) and thus there
exists an intermediate addition of two points P1 = (x1, y1) and P2 = (x2, y2) in the calculation of e ·P such that

x1 ≡ x2 mod p but x1 6≡ x2 mod q if P1 6= P2

or

y1 ≡ −y2 mod p but y1 6≡ −y2 mod q if P1 = P2.

Hence, either gcd(x1 − x2, n) or gcd(y1 + y2, n) is a nontrivial factor of n. The points P1, and P2 will be
encountered when (P1)p + (P2)p = O in Eap,bp(Zp) but (P1)q + (P2)q 6= O in Eaq,bq (Zq).

C.11.4 Running Time Analysis

The time needed to perform a single addition on an elliptic curve can be taken to be M(n) = O(log2 n) if one
uses the Euclidean algorithm. Consequently, since the computation of e · P uses repeated doubling, the time

required to process a given elliptic curve is O((log e)(M(n)). Recall that e =
∏π(B)

i=1 pαi
i where pαi

i ≤ C. Then
e ≤ Cπ(B) and therefore, log e ≤ π(B) log C. Now, let p be the smallest prime divisor of n and consider the
choice B = Lβ(p) = exp[β(log p)1/2(log log p)1/2] where β will be optimized. Then

log B = β(log p)1/2(log log p)1/2 = e[log β+ 1
2 (log log p)+ 1

2 (log log log p)]

and thus

π(B) ≈ B

log B
≈ O

(

e[β(log p)1/2(log log p)1/2− 1
2 (log log p)]

)

≈ O(Lβ(p)).

Hence, the time required for each iteration of the algorithm is O(Lβ(p)M(n)(log C)). In choosing C, note that
we would like e to be a multiple of |Eap,bp

(Zp)| for some prime divisor p of n and thus it is sufficient to take
C = |Eap,bp(Zp)| where p is some prime divisor of n, provided that |Eap,bp(Zp)| is B-smooth. The value of p is
unknown, but if p is the smallest prime divisor of n then p <

√
n. We also know by Hasse’s Inequality (see, for

example, page 131 of [196]) that p+1−2
√

p < |Eap,bp(Zp)| < p+1+2
√

p and thus |Eap,bp(Zp)| <
√

n+1+2 4
√

n.
Hence, it is safe to take C =

√
n + 1 + 2 4

√
n.
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The only remaining consideration is to determine the expected number of elliptic curves that must be examined
before we obtain a factorization of n and this part of the analysis relies on the following result due to Lenstra
which appears as Proposition 2.7 in [134].

Proposition C.39 Let S = {s ∈ Z : |s − (p + 1)| <
√

p and s is L(p)β-smooth}. Let n be a composite integer
that has at least two distincet prime divisors exceeding 3. Then

Pr[Lenstra’s algorithm factors n] ≥ Ω

( |S| − 2

2
√

p

)(
1

log p

)

(where the probability is taken over x, y, and a in Zn).

In other words, the proposition asserts that the probability that a random triple (x, y, a) leads to a factorization
of n is essentially the probability that a random integer in the interval (p+1−√

p, p+1+
√

p) is L(p)β-smooth;

the latter probability being |S|
2⌊√p⌋+1 .

Recall that we dealt earlier with the smoothness of integers less than some bound and saw that a theorem due
to Canfield, Erdös and Pomerance (see [52]) implies that

Pr[m ≤ x is L(x)α-smooth] = L− 1
2α (x).

However, as we have just seen, we require here the unproven conjecture that the same result is valid if m is a
random integer in the small interval (p + 1 −√

p, p + 1 +
√

p); specifically, that

Pr[m ∈ (p + 1 −√
p, p + 1 +

√
p) is L(p)β-smooth] = L− 1

2β (p).

Consequently, the lower bound on the probability of success in Proposition C.39 can be made explicit. Hence,
we have

Pr[Lenstra’s algorithm factors n] ≥ Ω
(

L− 1
2β (p)

) 1

log p
.

Therefore, we expect to have to try L
1
2β (p)(log p) elliptic curves before encountering one of Lβ(p)-smooth order.

Thus, the total running time required is expected to be O(L
1
2β (p)(log p)Lβ(p)M(n)(log C)) = O(Lβ+ 1

2β (p)(log4 n)).

This achieves a minimum of O(L
√

2(p)(log4 n)) when β = 1√
2
.

Remark In step 3 of Lenstra’s algorithm a minor practical problem arises with the choice of B = Lβ(p) because
the smallest prime divisor p of n is not known before the algorithm begins. This problem can be resolved by
taking B = Lβ(v) and performing the algorithm for a gradually increasing sequence of values for v while
factorization continues to be unsuccessful and declaring failure if v eventually exceeds

√
n because the smallest

prime divisor of n is less than
√

n.



C h a p t e r D

About PGP

PGP is a free software package that performs cryptographic tasks in association with email systems. In this
short appendix we will review some of its features. For a complete description of its functioning readers are
referred to Chapter 9 in [198].

D.1 Authentication

PGP performs authentication of messages using a hash-and-sign paradigm. That is given a message M , the
process is as following:

• The message is timestamped, i.e. date and time are appended to it;

• it is then hashed using MD5 (see [175]);

• the resulting 128-bit digest is signed with the sender private key using RSA [176];

• The signature is prepended to the message.

D.2 Privacy

PGP uses a hybrid system to ensure privacy. That is each message is encrypted using a fast symmetric encryption
scheme under a one-time key. Such key is encrypted with the receiver public-key and sent together with the
encrypted message.

In detail, assume A wants to send an encrypted message to B.

• A compresses the message using the ZIP compression package; let M be the resulting compressed message.

• A generates a 128-bit random key k;

• The message M is encrypted under k using the symmetric encryption scheme IDEA (see [129] or Chapter
7 of [198]); let C be the corresponding ciphertext;

• k is encrypted under B’s public key using RSA; let c be the corresponding ciphertext.

• The pair (c, C) is sent to B.

If both authentication and privacy are required, the message is first signed, then compressed and then encrypted.

275
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D.3 Key Size

PGP allows for three key sizes for RSA

• Casual 384 bits

• Commercial 512 bits

• Military 1024 bits

D.4 E-mail compatibility

Since e-mail systems allow only the transmission of ASCII characters, PGP needs to recovert eventual encrypted
parts of the message (a signature or the whole ciphertext) back to ASCII.

In order to do that PGP applies the radix-64 conversion to bring back a binary stream into the ASCII character
set. This conversion expands the message by 33%. However because of the original ZIP compression, the
resulting ciphertext is still one-third smaller than the original message.

In case the resulting ciphertext is still longer than the limit on some e-mail systems, PGP breaks into pieces
and send the messages separately.

D.5 One-time IDEA keys generation

Notice that PGP does not have session keys, indeed each message is encrypted under a key k generated ad hoc
for that message.

The generation of such key is done using a pseudo-random number generator that uses IDEA as a building
block. The seed is derived from the keystrokes of the user. That is, form the actual keys being typed and the
time intervals between them.

D.6 Public-Key Management

Suppose you think that PK is the public key of user B, while instead it is C who knows the corresponding
secret key SK.

This can create two major problems:

1. C can read encrypted messages that A thinks she is sending to B

2. C can have A accept messages as coming from B.

The problem of establishing trust in the connection between a public-key and its owner is at the heart of
public-key systems, no just of PGP.

There are various ways of solving this problem:

• Physical exchange B could give the key to A in person, stored in a floppy disk.

• Verification A could call B on the phone and verify the key with him

• Certification Authorithy There could be a trusted center AUTH that signs public keys for the users,
establishing the connection between the key and the ID of the user (such a signature is usually referred
to as a certificate.)
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Only the last one seems reasonable and it appears to be the way people are actually implementing public key
systems in real life.

PGP does not use any of the above systems, but it rather uses a decentralized trust system. Users reciprocally
certify each other’s keys and one trusts a key to the extent that he/she trusts the user who certify it for it.
Details can be found in [198]



C h a p t e r E

Problems

This chapter contains some problems for you to look at.

E.1 Secret Key Encryption

E.1.1 DES

Let m̄ be the bitwise complement of the string m. Let DESK(m) denote the encryption of m under DES using
key K. It is not hard to see that if

c = DESK(m)

then
c̄ = DESK̄(m̄)

We know that a brute–force attack on DES requires searching a space of 256 keys. This means that we have to
perform that many DES encryptions in order to find the key, in the worst case.

1. Under known plaintext attack (i.e., you are given a single pair (m, c) where c = DESK(m)) do the equations
above change the number of DES encryption you perform in a brute–force attack to recover K?

2. What is the answer to the above question in the case of chosen plaintext attack (i.e., when you are allowed
to choose many m’s for which you get the pair (m, c) with c = DESK(m))?

E.1.2 Error Correction in DES ciphertexts

Suppose that n plaintext blocks x1,. . .,xn are encrypted using DES producing ciphertexts y1, . . . , yn. Suppose
that one ciphertext block, say yi, is transmitted incorrectly (i.e. some 1’s are changed into 0’s and viceversa.)
How many plaintext blocks will be decrypted incorrectly if the ECB mode was used for encryption? What if
CBC is used?

E.1.3 Brute force search in CBC mode

A brute-force key search for a known-plaintext attack for DES in the ECB mode is straightforward: given the
64-bit plaintext and the 64 bit ciphertext, try all of the possible 256 keys until one is found that generates the
known ciphertext from the known plaintext. The situation is more complex for the CBC mode, which includes
the use of a 64-bit IV. This seems to introduce an additional 64 bits of uncerntainty.

278
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1. Suggest strategies for known-plaintext attack on the CBC mode that are of the same order of magnitude
of effort as the ECB attack.

2. Now consider a ciphertext only attack. For ECB mode the strategy is to try to decrypt the given ciphertext
with all possible 256 keys and test each result to see if it appears to be a syntactically correct plaintext.
Will this strategy work for the CBC mode? If so, explain. If not, describe an attack strategy for the CBC
mode and estimate its level of effort.

E.1.4 E-mail

Electronic mail systems differ in the way in which multiple recipients are handled. In some systems the originat-
ing mail handler makes all the necessary copies, and these are sent out independently. An alterantive approach
is to determine the route for each destination first. Then a single message is sent out on a common portion of
the route and copies are made when the routes diverge (this system is known as mail-bagging.)

1. Leaving aside security considerations, discuss the relative advantages and disadvantages of the two meth-
ods.

2. Discuss the security requirements and implications of the two methods

E.2 Passwords

The framework of (a simplified version of) the Unix password scheme is this. We fix some function h: {0, 1}k →
{0, 1}L. The user chooses a k-bit password, and the system stores the value y = h(K) in the password file.
When the user logs in he must supply K. The system then computes h(K) and declares you authentic if this
value equals y.

We assume the attacker has access to the password file and hence to y. The intuition is that it is computationally
infeasible to recover K from y. Thus h must be chosen to make this true.

The specific choice of h made by Unix is h(K) = DESK(0) where “0” represents the 64 bit string of all zeros.
Thus k = 56 and L = 64.

In this problem you will analyze the generic scheme and the particular DES based instantiation. The goal is to
see how, given a scheme like this, to use the models we have developed in class, in particular to think of DES
as a pseudorandom function family.

To model the scheme, let F : {0, 1}k × {0, 1}l → {0, 1}L be a pseudorandom function family, having some given

insecurity function Advprf
F (·, ·), and with L > k. We let TF denote the time to compute F . (Namely the time,

given K,x, to compute FK(x).) See below for the definition of a one-way function, which we will refer to now.

(a) Define h: {0, 1}k → {0, 1}L by h(K) = FK(0), where “0” represents the l-bit string of all zeros. Prove that
h is a one-way function with

Advowf
( h, t) ≤ 2 · Advprf

F (t′, 1) ,

where t′ = t + O(l + L + k + TF ).

Hints: Assume you are given an inverter I for h, and construct a distinguisher D such that

Advprf
F (()D) ≥ 1

2
· Advowf

h,I .

Use this to derive the claimed result.

(b) Can you think of possible threats or weaknesses that might arise in a real world usage of such a scheme,
but are not covered by our model? Can you think of how to protect against them? Do you think this is a
good password scheme “in practice”?
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We now provide the definition of security for a one-way function to be used above.

Let h: {0, 1}k → {0, 1}L be a function. It is one-way, if, intuitively speaking, it is hard, given y, to compute a
point x′ such that h(x′) = y, when y was chosen by drawing x at random from {0, 1}k and setting y = h(x).

In formalizing this, we say an inverter for h is an algorithm I that given a point y ∈ {0, 1}L tries to compute
this x′. We let

Advowf
h,I = Pr

[

h(x′) = y : x
$← {0, 1}k ; y ← h(x) ; x′ ← I(y)

]

be the probability that the inverter is successful, taken over a random choice of x and any coins the inverter
might toss. We let

Advowf
h (t′) = max

I
{Advowf

h,I } ,

where the maximum is over all inverters I that run in time at most t′.

E.3 Number Theory

E.3.1 Number Theory Facts

Prove the following facts:

1. If k is the number of distinct prime factors of n then the equation x2 = 1 mod n has 2k distinct solutions
in Z∗

n. Hint: use Chinese Remainder Theorem

2. If p is prime and x ∈ Z∗
p then (x

p ) = x
p−1
2

3. g is a generator of Z∗
p for a prime p, iff gp−1 = 1 mod p and gq 6= 1 mod p for all q prime divisors of p− 1

E.3.2 Relationship between problems

Let n be the product of two primes n = pq. Describe reducibilities between the following problems (e.g. if we
can factor we can invert RSA.) Don’t prove anything formally, just state the result.

• computing φ(n)

• factoring n

• computing QRn(a) for some a ∈ Z∗
n

• computing square roots modulo n

• computing k-th roots modulo n, where gcd(k, φ(n)) = 1

E.3.3 Probabilistic Primality Test

Let SQRT (p, a) denote an expected polynomial time algorithm that on input p, a outputs x such that x2 =
a mod p if a is a quadratic residue modulo p. Consider the following probabilistic primality test, which takes as
an input an odd integer p > 1 and outputs “composite” or “prime”.

1. Test if there exist b, c > 1 such that p = bc. If so output “composite”

2. Choose i ∈ Z∗
p at random and set y = i2

3. Compute x = SQRT (p, y)

4. If x = i mod p or x = −i mod p output “prime”, otherwise output “composite”
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(A) Does the above primality test always terminate in expected polynomial time? Prove your answer.

(B) What is the probability that the above algorithm makes an error if p is prime?

(C) What is the probability that the above algorithm makes an error if p is composite?

E.4 Public Key Encryption

E.4.1 Simple RSA question

Suppose that we have a set of block encoded with the RSA algorithm and we don’t have the private key. Assume
n = pq, e is the public key. Suppose also someone tells us they know one of the plaintext blocks has a common
factor with n. Does this help us in any way?

E.4.2 Another simple RSA question

In the RSA public-key encyption scheme each user has a public key n, e and a private key d. Suppose Bob leaks
his private key. Rather than generating a new modulus, he decides to generate a new pair e′, d′. Is this a good
idea?

E.4.3 Protocol Failure involving RSA

Remember that an RSA public–key is a pair (n, e) where n is the product of two primes.

RSA(n,e)(m) = me mod n

Assume that three users in a network Alice, Bob and Carl use RSA public–keys (nA, 3), (nB , 3) and (nC , 3)
respectively. Suppose David wants to send the same message m to the three of them. So David computes

yA = m3 mod nA , yB = m3 mod nB , yC = m3 mod nC

and sends the ciphertext to the relative user.

Show how an eavesdropper Eve can now compute the message m even without knowing any of the secret keys
of Alice, Bob and Carl.

E.4.4 RSA for paranoids

The best factoring algorithm known to date (the number field sieve) runs in

eO(log1/3 n log log2/3 n)

That is, the running time does not depend on the size of the smallest factor, but rather in the size of the whole
composite number.

The above observation seem to suggest that in order to preserve the security of RSA, it may not be necessary
to increase the size of both prime factors, but only of one of them.

Shamir suggested the follwong version of RSA that he called unbalanced RSA (also known as RSA for paranoids).
Choose the RSA modulus n to be 5,000 bits long, the product of a 500-bits prime p and a 4,500-bit prime q.
Since usually RSA is usually used just to exchange DES keys we can assume that the messages being encrypted
are smaller than p.

(A) How would you choose the public exponent e? Is 3 a good choice?

Once the public exponent e is chosen, one computes d = e−1 mod φ(n) and keep it secret. The problem with
such a big modulus n, is that decrypting a ciphertext c = me mod n may take a long time (since one has to
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compute cd mod n.) But since we know that m < p we can just use the Chinese Remainder Theorem and
compute m1 = cd mod p = m. Shamir claimed that this variant of RSA achieves better security against the
advances of factoring, without losing in efficiency.

(B) Show how with a single chosen message attack (i.e. obtaining the decryption of a message of your choice)
you can completely break the unbalanced RSA scheme, by factoring n.

E.4.5 Hardness of Diffie-Hellman

Recall the Diffie-Hellman key exchange protocol. p is a prime and g a generator of Z∗
p . Alice’s secret key is a

random a < p and her public key is ga mod p. Similarly Bob’s secret key is a random b < p and his public key
is gb mod p. Their common key is gab.

In this problem we will prove that if the Diffie-Hellman key exchange protocol is secure for a small fraction of
the values (a, b), then it is secure for almost all values (a, b).

Assume that there is a ppt algorithm A that

Prob[A(ga, gb) = gab] >
1

2
+ ǫ

(where the probability is taken over the choices of (a, b) and the internal coin tosses of A)

Your task is to prove that for any δ < 1 there exists a ppt algorithm B such that for all (a, b)

Prob[B(ga, gb) = gab] > 1 − δ

(where the probability is now taken only over the coin tosses of B)

E.4.6 Bit commitment

Consider the following “real life” situation. Alice and Bob are playing “Guess the bit I am thinking”. Alice
thinks a bit b = 0, 1 and Bob tries to guess it. Bob declares his guess and Alice tells him if the guess is right or
not.

However Bob is losing all the time so he suspects that Alice is cheating. She hears Bob’s guess and she declares
she was thinking the opposite bit. So Bob requires Alice to write down the bit in a piece of paper, seal it in an
envelope and place the envelope on the table. At this point Alice is committed to the bit. However Bob has no
information about what the bit is.

Our goal is to achieve this bit commitment without envelopes. Consider the following method. Alice and Bob
together choose a prime p and a generator g of Z∗

p . When Alice wants to commit to a bit b she choose a random
x ∈ Z∗

p such that lsb(x) = b and she publishes y = gx mod p. Is this a good bit commitment? Do you have a
better suggestion?

E.4.7 Perfect Forward Secrecy

Suppose two parties, Alice and Bob, want to communicate privately. They both hold public keys in the
traditional Diffie-Hellman model.

An eavesdropper Eve stores all the encrypted messages between them and one day she manages to break into
Alice and Bob’s computer and find their secret keys, correspondent to their public keys.

Show how using only public–key cryptography we can achieve perfect forward secrecy, i.e., Eve will not be able
to gain any knowledge about the messages Alice and Bob exchanged before the disclosure of the secret keys.

E.4.8 Plaintext-awareness and non-malleability

We say that an encryption scheme is plaintext–aware if it is impossible to produce a valid ciphertext without
knowing the corresponding plaintext.
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Usually plaintext-aware encryption schemes are implemented by adding some redundancy to the plaintext.
Decryption of a ciphertext results either in a valid message or in a flag indicating non–validity (if the redundancy
is not of the correct form.) Correct decryption convinces the receiver that the sender knows the plaintext that
was encrypted.

The concept of plaintext–awareness is related to the concept of malleability. We say that an encryption scheme
E is non–malleable if it given a ciphertext c = E(m) it is impossible to produce a valid ciphertext c′ of a related
message m′.

Compare the two definitions and tell us if one implies the other.

E.4.9 Probabilistic Encryption

Assume that you have a message m that you want to encrypt in a probabilistic way. For each of the following
methods, tell us if you think it is a good or a bad method.

1. Fix p a large prime and let g be a generator. For each bit bi in m, choose at random xi ∈ Zp−1 such that
lsb(xi) = bi (lsb(x) = least significant bit of x.) The ciphertext is the concatenation of the yi = gxi mod p.
What about if you use x such that msb(xi) = bi?

2. Choose an RSA public key n, e such that |n| > 2|m|. Pad m with random bits to get it to the same length
of n. Let m′ be the padded plaintext. Encrypt c = me mod n.

3. Choose an RSA public key n, e. Assume that |m| is smaller than log log n (you can always break the
message in blocks of that size.) Pad m with random bits to get it to the same length of n. Let m′ be the
padded plaintext. Encrypt c = me mod n.

4. Choose two large primes p, q = 3 mod 4. Let n = pq. For each bit bi in m, choose at random xi ∈ Z∗
n and

set yi = x2
i mod n if bi = 0 or yi = −x2

i mod n if bi = 1. The ciphertext is the concatenation of the yi’s.

E.5 Secret Key Systems

E.5.1 Simultaneous encryption and authentication

Let (E ,D) be a symmetric encryption scheme (cf. Chapter 6and MAC a message authentication code (cf. Chapter 9).
Suppose Alice and Bob share two keys K1 and K2 for privacy and authentication respectively. They want to
exchange messages M in a private and authenticated way. Consider sending each of the following as a means
to this end:

1. M, MACK2(EK1(M))

2. EK1(M, MACK2(M))

3. EK1(M), MACK2(M)

4. EK1(M), EK1(MACK2(M))

5. EK1(M), MACK2(EK1(M))

6. EK1(M, A) where A encodes the identity of Alice. Bob decrypts the ciphertext and checks that the second
half of the plaintext is A

For each say if it secure or not and briefly justify your answer.
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E.6 Hash Functions

E.6.1 Birthday Paradox

Let H be a hash function that outputs m-bit values. Assume that H behaves as a random oracle, i.e. for each
string s, H(s) is uniformly and independently distributed between 0 and 2m − 1.

Consider the following brute–force search for a collision: try all possible s1, s2, . . . until a collision is found.
(That is, keep hashing until some string yields the same hash value as a previously hashed string.)

Prove that the expected number of hashing performed is approximately 2
m
2 .

E.6.2 Hash functions from DES

In this problem we will consider two proposals to construct hash functions from symmetric block encryption
schemes as DES.

Let E denote a symmetric block encryption scheme. Let Ek(M) denote the encryption of the 1–block message
M under key k. Let M = M0 ◦ M1 ◦ M2 ◦ . . . ◦ Mn denote a message of n + 1 blocks.

The first proposed hash function h1 works as follows: let H0 = M0 and then define

Hi = EMi(Hi−1) ⊕ Hi−1 for i = 1, . . . , n.

The value of the hash function is defined as

h1(M) = Hn

The second proposed hash function h2 is similar. Again H0 = M0 and then

Hi = EHi−1(Mi) ⊕ Mi for i = 1, . . . , n.

The value of the hash function is defined as

h2(M) = Hn

For both proposals, show how to find collisions if the encryption scheme E is chosen to be DES.

E.6.3 Hash functions from RSA

Consider the followng hash function H. Fix an RSA key n, e and denote with RSAn,e(m) = me mod n. Let
the message to be hashed be m = m1 . . . mk. Denote with h1 = m1 and for i > 1,

hi = RSAn,e(hi−1) ⊕ mi

Then H(m) = hn. Show how to find a collision.

E.7 Pseudo-randomness

E.7.1 Extending PRGs

Suppose you are given a PRG G which stretches a k bit seed into a 2k bit pseudorandom sequence. We would
like to construct a PRG G′ which stretches a k bit seed into a 3k bit pseudorandom sequence.

Let G1(s) denote the first k bits of the string G(s) and let G2(s) the last k bits (that is G(s) = G1(s).G2(s)
where a.b denotes the concatenation of strings a and b.)

Consider the two constructions
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1. G′(s) = G1(s).G(G1(s))

2. G′′(s) = G1(s).G(G2(s))

For each construction say whether it works or not and justify your answer. That is, if the answer is no provide
a simple statistical test that distinguishes the output of, say, G′ from a random 3k string. If the answer is yes
prove it.

E.7.2 From PRG to PRF

Let us recall the construction of PRFs from PRGs we saw in class. Let G be a length-doubling PRG, from seed
of length k to sequences of length 2k.

Let G0(x) denote the first k bits of G(x) and G1(x) the last k bits. In other words G0(x) ◦ G1(x) = G(x) and
|G0(x)| = |G1(x)|.
For any bit string z recursively define G0◦z(x) ◦ G1◦z(x) = G(Gz(x)) with |G0◦z(x)| = |G1◦z|.
The PRF family we constructed in class was defined as F = {fi}. fi(x) = Gx(i). Suppose instead that we
defined fi(x) = Gi(x). Would that be a PRF family?

E.8 Digital Signatures

E.8.1 Table of Forgery

For both RSA and ElGamal say if the scheme is

1. universally forgeable

2. selectively forgeable

3. existentially forgeable

and if it is under which kind of attack.

E.8.2 ElGamal

Suppose Bob is using the ElGamal signature scheme. Bob signs two messages m1 and m2 with signatures (r, s1)
and (r, s2) (the same value of r occurs in both signatures.) Suppose also that gcd(s1 − s2, p − 1) = 1.

1. Show how k can be computed efficiently given this information

2. Show how the signature scheme can subsequently be broken

E.8.3 Suggested signature scheme

Consider the following discrete log based signature scheme. Let p be a large prime and g a generator. The
private key is x < p. The public key is y = gx mod p.

To sign a message M , calculate the hash h = H(M). If gcd(h, p − 1) is different than 1 then append h to M
and hash again. Repeat this until gcd(h, p − 1) = 1. Then solve for Z in

Zh = X mod (p − 1)

The signature of the message is s = gZ mod p. To verify the signature, a user checks that sh = Y mod p.

1. Show that valid signatures are always accepted

2. Is the scheme secure?
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E.8.4 Ong-Schnorr-Shamir

Ong, Schnorr and Shamir suggested the following signature scheme.

Let n be a large integer (it is not necessary to know the factorization of n.) Then choose k ∈ Z∗
n. Let

h = −k−2 mod n = −(k−1)2 mod n

The public key is (n, h), the secret key is k.

To sign a message M , generate a random number r, such that r and n are relatively prime. Then calculate

S1 =
M/r + r

2
mod n

S2 =
k

2
(M/r − r)

The pair (S1, S2) is the signature.

To verify the signature, check that

M = S2
1 + hS2

2 mod

1. Prove that reconstructing the private key, from the public key is equivalent to factor n.

2. Is that enough to say that the scheme is secure?

E.9 Protocols

E.9.1 Unconditionally Secure Secret Sharing

Consider a generic Secret Sharing scheme. A dealer D wants to share a secret s between n trustees so that no
t of them have any information about s, but t + 1 can reconstruct the secret. Let si be the share of trustee
Ti. Let v denote the number of possible values that s might have, and let w denote the number of different
possible share values that a given trustee might receive, as s is varied. (Let’s assume that w is the same for
each trustee.)

Argue that w ≥ v for any Secret Sharing Scheme. (It then follows that the number of bits needed to represent
a share can not be smaller than the number of bits needed to represent the secret itself.)

Hint: Use the fact that t players have NO information about the secret—no matter what t values they have
received, any value of s is possible.

E.9.2 Secret Sharing with cheaters

Dishonest trustees can prevent the reconstruction of the secret by contributing bad shares ŝi 6= si. Using the
cryptographic tools you have seen so far in the class show how to prevent this denial of service attack.

E.9.3 Zero–Knowledge proof for discrete logarithms

Let p be a prime and g a generator modulo p. Given y = gx Alice claims she knows the discrete logarithm x
of y. She wants to convince Bob of this fact but she does not want to reveal x to him. How can she do that?
(Give a zero-knowledge protocol for this problem.)
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E.9.4 Oblivious Transfer

An oblivious transfer protocol is a communication protocol between Alice and Bob. Alice runs it on input a
value s. At the end of the protocol either Bob learns s or he has no information about it. Alice has no idea
which event occurred.

An 1-2 oblivious transfer protocol is a communication protocol between Alice and Bob. Alice runs it on inout
two values s0 and s1. Bob runs it on input a bit b. At the end of the protocol, Bob learns sb but has no
information about s1−b. Alice has no information about b.

Show that given an oblivious transfer protocol as a black box, one can design a 1-2 oblivious transfer protocol.

E.9.5 Electronic Cash

Real-life cash has two main properties:

• It is anonymous: meaning when you use cash to buy something your identity is not revealed, compare
with credit cards where your identity and spending habits are disclosed

• It is transferable: that is the vendor who receives cash from you can in turn use it to buy something else.
He would not have this possibility if you had payed with a non-transferable check.

The electronic cash proposals we saw in class are all “non–transferable”. that is the user gets a coin from the
bank, spends it, and the vendor must return the coin to the bank in order to get credit. As such they really
behave as anonymous non-transferable checks. In this problem we are going to modify such proposals in order
to achieve transferability.

The proposal we saw in class can be abstracted as follows: we have three agents: the Bank, the Userand the
Vendor.

The Bankhas a pair of keys (S, P ). A signature with S is a coin worth a fixed amount (say $1.). It is possible to
make blind signatures, meaning the Usergets a signature S(m) on a message m, but the Bankgets no information
about m.

Withdrawal protocol

1. The Userchooses a message m

2. The Bankblindly signs m and withdraws $1 from User’s account.

3. The Userrecovers S(m). The coin is the pair (m,S(m)).

Payment Protocol

1. The Usergives the coin (m,S(m)) to the Vendor.

2. The Vendorverifies the Banksignature and sends a random challenge c to the User.

3. The Userreplies with an answer r

4. the Vendorverifies that the answer is correct.

The challenge–response protocol is needed in order to detect double–spending. Indeed the system is constructed
in such a way that if the Useranswers two different challenges on the same coin (meaning he’s trying to spend
the coin twice) his identity will be revealed to the Bankwhen the two coins return to the bank. This is why the
whole history of the payment protocol must be presented to the Bankwhen the Vendordeposits the coin.

Deposit protocol

1. The Vendorsends m,S(m), c, r to the Bank



288 Goldwasser and Bellare

2. The Bankverifies it and add $1 to the Vendor’s account.

3. The Banksearches its database to see if the coin was deposited already and if it was reconstruct the identity
of the double–spender User.

In order to make the whole scheme transferrable we give the bank a different pair of keys (S,P). It is still
possible to make blind signatures with S. However messages signed with S have no value. We will call them
pseudo-coins. When people open an account with the Bank, they get a lot of these anonymous pseudo–coins by
running the withdrawal protocol with S as the signature key.

Suppose now the Vendorreceived a payed coin m,S(m), c, r and instead of depositing it wants to use it to buy
something from OtherVendor. What she could do is the following:

Transfer protocol

1. The Vendorsends m,S(m), c, r and a pseudo–coin m′,S(m′) to OtherVendor

2. OtherVendorverifies all signatures and the pair (c, r). Then sends a random challenge c′ for the pseudo–coin.

3. Vendorreplies with r′

4. OtherVendorchecks the answer.

Notice however that Vendorcan still double–spend the coin m, S(m), c, r if she uses two different pseudo–coins
to transfer it to two differnt people. Indeed since she will never answer two different challenges on the same
pseudo–coin, her identity will never be revealed. The problem is that there is no link between the real coin and
the pseudo-coin used during the transfer protocol. If we could force Vendorto use only one pseudo–coin for each
real coin she wants to transfer then the problem would be solved.

Show how to achieve the above goal. You will need to modify both the payment and the transfer protocol.

Hint: If Vendorwants to transfer the true coin she is receiving during the payment protocol, she must be forced
then to create a link between the true coin and the pseudo–coin she will use for the transfer later. Notice that
Vendorchooses c at random, maybe c can be chosen in some different way?

E.9.6 Atomicity of withdrawal protocol

Recall the protocol that allows a Userto withdraw a coin of $1 from the Bank. Let (n, 3) be the RSA public key
of the Bank.

1. The Userprepares 100 messages m1, . . . , m100 which are all $1 coins. The Userblinds them, that is she
chooses at random r1, . . . , r100 and computes wi = r3

i mi. The Usersends w1, . . . , w100 to the Bank.

2. The Bankchooses at random 99 of the blindings and asks the Userto open them. That the Bankchooses
i1, . . . , i99 and sends it to the User.

3. The Useropens the required blindings by revealing ri1 , . . . , ri99 .

4. The Bankchecks that the blindings are constructed correctly and then finally signs the unopened blinding.

W.l.o.g. assume this to be the first one. So the Banksigns w1 by sending to the Userw
1
3
1 = r1m

1
3
1

5. The Userdivides this signature by r1 and gets a signature on m1 which is a valid coin.

Notice that the Userhas a probability of 1/100 to succesfully cheat.

Suppose now that the protocol is not atomic. That is the communication line may go down at the end of each
step between the Bankand the User. What protocol should be followed for each step if the line goes down at the
end of that step in order to prevent abuse or fraud by either party?
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E.9.7 Blinding with ElGamal/DSS

In class we saw a way to blind messages for signatures using RSA. In this problem we ask you to construct blind
signatures for a variation of the ElGamal signature scheme.

The ElGamal-like signature we will consider is as follows. Let p be a large prime, q a large prime dividing p−1,
g an element of order q in Z∗

p , x the secret key of the Bankand y = gx the corresponding public key. Let H be
a collision-free hash function.

When the Bankwants to sign a message m she computes

a = gk mod p

for a random k and
c = H(m,a)

and finally
b = kc + xa mod q

The signature of the message m is sig(m) = (a, b). Given the triple (m,a, b) the verification is performed by
computing c = H(m,a) and checking that

gb = acya

So the withdrawal protocol could be as following:

1. The Usertells the bank she wants a $1 coin.

2. The Bankreplies with 100 values ai = gki for random ki.

3. The Usersends back ci = H(mi, ai) where mi are all $1 coins.

4. The Bankasks the user to open 99 of those.

5. The Userreveals 99 of the mi’s.

6. The Bankreplies with bi = kici + xai mod (p − 1) for the unopened index i

However this is not anonymous since the Bankcan recognize the Userwhen the coin comes back. In order to
make the protocol really anonymous, the Userhas to change the value of “challenge” ci computed at step 3. This
modification will allow him to compute a different signature on mi on her own which will not be recognizable
to the Bankwhen the coin comes back. During the protocol the Bankwill check as usual that this modification
has been performed correctly by asking the Userto open 99 random blindings.


