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Lecture Notes on Numerical Analysis of

Nonlinear Equations

Eusebius J Doedel

Department of Computer Science, Concordia University, Montreal, Canada

Numerical integrators can provide valuable insight into the transient behavior
of a dynamical system. However, when the interest is in stationary and peri-
odic solutions, their stability, and their transition to more complex behavior,
then numerical continuation and bifurcation techniques are very powerful and
efficient.

The objective of these notes is to make the reader familiar with the ideas
behind some basic numerical continuation and bifurcation techniques. This
will be useful, and is at times necessary, for the effective use of the software
Auto and other packages, such as XppAut [17], Content [24], Matcont

[21], and DDE-Biftool [16], which incorporate the same or closely related
algorithms.

These lecture notes are an edited subset of material from graduate courses
given by the author at the universities of Utah and Minnesota [9] and at
Concordia University, and from short courses given at various institutions,
including the Université Pierre et Marie Curie (Paris VI), the Centre de
Recherches Mathématiques of the Université de Montréal, the Technische
Universität Hamburg-Harburg, and the Benemérita Universidad Autónoma
de Puebla.

1.1 The Implicit Function Theorem

Before starting our discussion of numerical continuation of solutions to nonlin-
ear equations, it is important first to discuss under what conditions a solution
will actually persist when problem parameters are changed. Therefore, we
begin with an overview of the basic theory. The Implicit Function Theorem
(IFT) is central to our analysis and we discuss some examples. The discus-
sion in this section follows the viewpoint of Keller in graduate lectures at the
California Institute of Technology, a subset of which was published in [23].
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1.1.1 Basic Theory

Let B denote a Banach space, that is, a complete, normed vector space. In
the presentation below it will be implicitly assumed that B is R

n, although
the results apply more generally. For x0 ∈ B, we denote by Sρ(x0) the closed
ball of radius ρ centered at x0, that is,

Sρ(x0) = {x ∈ B | ||x − x0 ||≤ ρ}.

Existence and uniqueness of solutions is obtained by using two theorems.

Theorem 1 (Contraction Theorem). Consider a continuous function F :
B → B on a Banach space B and suppose that for some x0 ∈ B, ρ > 0, and
some K0 with 0 ≤ K0 < 1, we have

||F (u) − F (v) || ≤ K0 ||u − v ||, for all u,v ∈ Sρ(x0),

||F (x0) − x0 || ≤ (1 − K0) ρ.

Then the equation
x = F (x), x ∈ B,

has one and only one solution x∗ ∈ Sρ(x0), and x∗ is the limit of the sequence

xk+1 = F (xk), k = 0, 1, 2, . . . .

Proof. Let x1 = F (x0). Then

||x1 − x0 ||=||F (x0) − x0 ||≤ (1 − K0) ρ ≤ ρ.

Thus, x1 ∈ Sρ(x0). Now assume inductively that x0,x1, · · · ,xn ∈ Sρ(x0).
Then for k ≤ n we have

||xk+1 − xk || = ||F (xk) − F (xk−1) || ≤ K0 ||xk − xk−1 ||
= · · · ≤ Kk

0 ||x1 − x0 ||
≤ Kk

0 (1 − K0) ρ.

Thus,

||xn+1 − x0 || ≤ ||xn+1 − xn || + ||xn − xn−1 || + · · ·+ ||x1 − x0 ||
≤ (Kn

0 + Kn−1
0 + · · · + 1) (1 − K0) ρ

= (1 − Kn+1
0 ) ρ

≤ ρ.

Hence xn+1 ∈ Sρ(x0), and by induction xk ∈ Sρ(x0) for all k. We now show
that {xk} is a Cauchy sequence:
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||xk+n − xk || ≤ ||xk+n − xk+n−1 || + · · ·+ ||xk+1 − xk ||
≤ (Kn−1

0 + Kn−2
0 + · · · + 1)Kk

0 (1 − K0) ρ

= (1 − Kn
0 ) Kk

0 ρ

≤ Kk
0 ρ.

For given ε > 0, choose k such that Kk
0 ρ < 1

2 ε. Then

||xk+ℓ − xk+m ||≤||xk+ℓ − xk || + ||xk+m − xk ||≤ 2Kk
0 ρ < ε,

independently of ℓ and m. Hence, {xk} is a Cauchy sequence and, therefore,
converges to a unique limit limxk = x∗, where x∗ ∈ Sρ(x0). Since we assumed
that F is continuous, we have

x∗ = limxk = limF (xk−1) = F (limxk−1) = F (limxk) = F (x∗).

This proves the existence of x∗. We get uniqueness as follows. Suppose there
are two solutions, say, x,y ∈ Sρ(x0) with x = F (x) and y = F (y). Then

||x − y ||=||F (x) − F (y) ||≤ K0 ||x − y || .

Since K0 < 1, this is a contradiction. ⊓⊔

The second theorem ensures the parameter-dependent existence of a solution.

Theorem 2 (Implicit Function Theorem). Let G : B × R
m → B satisfy:

• G(u0,λ0) = 0 for u0 ∈ B and λ0 ∈ R
m;

• Gu(u0,λ0) is nonsingular with bounded inverse,

||Gu(u0,λ0)
−1 ||≤ M

for some M > 0;
• G and Gu are Lipschitz continuous, that is, for all u,v ∈ Sρ(u0), and for

all λ,µ ∈ Sρ(λ0) the following inequalities hold for some KL > 0:

||G(u,λ) − G(v,µ) || ≤ KL (||u − v || + ||λ − µ ||),
||Gu(u,λ) − Gu(v,µ) || ≤ KL (||u − v || + ||λ − µ ||).

Then there exists δ, with 0 < δ ≤ ρ, and a unique function u(λ) that is
continuous on Sδ(λ0), with u(λ0) = u0, such that

G(u(λ),λ) = 0, for all λ ∈ Sδ(λ0).

If G(u,λ0) = 0 and if Gu(u0,λ0) is invertible with bounded inverse, then
u0 is called an isolated solution of G(u,λ0) = 0. Hence, the IFT states that
isolation (plus Lipschitz continuity assumptions) implies the existence of a
locally unique solution family (or solution branch) u = u(λ), with u(λ0) =
u0.
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Proof. We use the notation G0
u

= Gu(u0,λ0). Then we rewrite the problem
as

G(u,λ) = 0 ⇔ G0
u
u = G0

u
u − G(u,λ)

⇔ u =
(
G0

u

)−1
[G0

u
u − G(u,λ)]

︸ ︷︷ ︸

≡F(u,λ)

.

Hence, G(u,λ) = 0 if and only if u is a fixed point of F(·,λ). (Note that the
corresponding fixed point iteration is, in fact, the Chord Method for solving
G(u,λ) = 0.) We must verify the conditions of the Contraction Theorem.
Pick u,v ∈ Sρ1

(u0), and any fixed λ ∈ Sρ1
(λ0), where ρ1 is to be chosen

later. Then

F(u,λ) − F(v,λ) =
(
G0

u

)−1 {
G0

u
[u − v] − [G(u,λ) − G(v,λ)]

}
. (1.1)

By the Fundamental Theorem of Calculus, we have

G(u,λ) − G(v,λ) =

∫ 1

0

d

dt
G(tu + (1 − t)v,λ) dt

=

∫ 1

0

Gu(tu + (1 − t)v,λ) dt [u − v]

= Ĝu(u,v,λ) [u − v],

where in the last step we used the Mean Value Theorem to get Ĝ. Then (1.1)
becomes

||F(u,λ) − F(v,λ) ||
≤ M ||G0

u
− Ĝu(u,v,λ) || ||u − v ||

= M ||
∫ 1

0

Gu(u0,λ0) − Gu(tu + (1 − t)v,λ) dt || ||u − v ||

≤ M

∫ 1

0

||Gu(u0,λ0) − Gu(tu + (1 − t)v,λ) || dt ||u − v ||

≤ M

∫ 1

0

KL (||u0 − (tu + (1 − t)v)
︸ ︷︷ ︸

∈Sρ1
(u0)

|| + ||λ0 − λ ||) dt ||u − v ||

≤ M KL 2ρ1
︸ ︷︷ ︸

≡K0

||u − v || .

Therefore, if we take

ρ1 <
1

2M KL
,

then K0 < 1. The second condition of the Contraction Theorem is also satis-
fied, namely,
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||F(u0,λ) − u0 ||
= ||F(u0,λ) − F(u0,λ0) ||
= ||
(
G0

u

)−1
[G0

u
u0 − G(u0,λ)] −

(
G0

u

)−1
[G0

u
u0 − G(u0,λ0)] ||

= ||
(
G0

u

)−1
[G(u0,λ0) − G(u0,λ)] ||

≤ M KL ||λ − λ0 ||
≤ M KL ρ,

where ρ (with 0 < ρ ≤ ρ1) is to be chosen. We want the above to be less than
or equal to (1 − K0)ρ1, so we choose

ρ ≤ (1 − K0) ρ1

M KL
.

Hence, for each λ ∈ Sρ(λ0) we have a unique solution u(λ). We now show that
u(λ) is continuous in λ. Let λ1,λ2 ∈ Sρ(λ0), with corresponding solutions
u(λ1) and u(λ2). Then

||u(λ1) − u(λ2) ||
= ||F(u(λ1),λ1) − F(u(λ2),λ2) ||
≤ ||F(u(λ1),λ1) − F(u(λ2),λ1) || + ||F(u(λ2),λ1) − F(u(λ1),λ2) ||
≤ K0 ||u(λ1) − u(λ2) || +

||
(
G0

u

)−1
[G0

u
u(λ2) − G(u(λ2),λ1)] −

(
G0

u

)−1
[G0

u
u(λ2) − G(u(λ2),λ2)] ||

≤ K0
︸︷︷︸

<1

||u(λ1) − u(λ2) || +M KL ||λ1 − λ2 || .

Hence,

||u(λ1) − u(λ2) ||≤ M KL

1 − K0
||λ1 − λ2 ||,

which concludes the proof of the IFT. ⊓⊔
So far, under mild assumptions, we have shown that there exists a locally

unique solution family u(λ). If we impose the condition that F(u,λ) is con-
tinuously differentiable in λ, then we can show that u(λ) is also continuously
differentiable. To this end, the Banach Lemma is very useful.

Lemma 1 (Banach Lemma). Let L : B → B be a linear operator with
||L ||< 1. Then (I + L)−1 exists and

||(I + L)−1 ||≤ 1

1− ||L || .

Proof. Suppose I + L is not invertible. Then there exists y ∈ B, y 6= 0, such
that

(I + L)y = 0.
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Thus, y = −Ly and
||y ||=||Ly ||≤||L || ||y ||<||y ||,

which is a contradiction. Therefore, (I+L)−1 exists. We can bound the inverse
as follows:

(I + L)(I + L)−1 = I

⇔ (I + L)−1 = I − L(I + L)−1

⇔||(I + L)−1 || ≤ 1+ ||L || ||(I + L)−1 ||

⇔||(I + L)−1 || ≤ 1

1− ||L || .

This proves the Banach Lemma. ⊓⊔
The Banach Lemma can be used to show the following.

Lemma 2. Under the conditions of the IFT, there exists M1 > 0 and δ > 0
such that Gu(u,λ)−1 exists and ||Gu(u,λ)−1 ||≤ M1 in Sδ(u0) × Sδ(λ0).

Proof. Using again the notation G0
u

= Gu(u0,λ0), we have

Gu(u,λ) = G0
u

+ Gu(u,λ) − G0
u

= G0
u

[I + (G0
u
)−1 (Gu(u,λ) − G0

u
)

︸ ︷︷ ︸

≡L

].

Similar to how we verified the second condition of the Contraction Theorem
in the proof of the IFT, we can show that

||L ||≤ M KL (||u − u0 || + ||λ − λ0 ||) ≤ M KL 2δ.

As for the IFT, we choose

δ <
1

2M KL
,

and conclude that, therefore, (I + L)−1 exists and

||(I + L)−1 ||≤ 1

1 − M KL 2δ
.

Hence, Gu(u,λ)−1 exists and

||Gu(u,λ)−1 ||=||(G0
u
)−1 (I + L)−1 ||≤ M

1 − M KL 2δ
≡ M1,

as required. ⊓⊔
We are now ready to prove differentiability of the solution branch.

Theorem 3. In addition to the assumptions of the IFT, assume that the
derivative Gλ(u,λ) is continuous in Sρ(u0) × Sρ(λ0). Then the solution
branch u(λ) has a continuous derivative uλ(λ) on Sδ(u0) × Sδ(λ0).
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Proof. Using the definition of (Fréchet) derivative, we are given that there
exists Gu(u,λ) such that G(u,λ)−G(v,λ) = Gu(u,λ) (u−v)+R1(u,v,λ),
where R1(u,v,λ) is such that

||R1(u,v,λ) ||
||u − v || → 0 as ||u − v ||→ 0. (1.2)

Similarly, there exists Gλ(u,λ) such that G(u,λ)−G(u,µ) = Gλ(u,λ) (λ−
µ) + R2(u,λ,µ), where R2(u,λ,µ) satisfies

||R2(u,λ,µ) ||
||λ − µ || → 0 as ||λ − µ ||→ 0. (1.3)

We must show that there exists uλ(λ) such that

u(λ) − u(µ) = uλ(λ) (λ − µ) + r(λ,µ),

with
||r(λ,µ) ||
||λ − µ || → 0 as ||λ − µ ||→ 0.

Now

0 = G(u(λ),λ) − G(u(µ),µ)

= G(u(λ),λ) − G(u(µ),λ) + G(u(µ),λ) − G(u(µ),µ)

= Gu(u(λ),λ) (u(λ) − u(µ)) + R1(u(λ),u(µ),λ)

+Gλ(u(µ),λ) (λ − µ) + R2(u(µ),λ,µ).

Lemma 2 guarantees the existence of Gu(u(λ),λ)−1, and we find

u(λ) − u(µ) = −Gu(u(λ),λ)−1 [Gλ(u(µ),λ) (λ − µ) − (R1 + R2)]

= −Gu(u(λ),λ)−1 [Gλ(u(λ),λ) (λ − µ) − r],

where
r = [Gλ(u(λ),λ) − Gλ(u(µ),λ)] (λ − µ) + R1 + R2.

Let us, for the moment, ignore the harmless factor Gu(u(λ),λ)−1 and consider
each term of r. Since u and Gλ are continuous, we have

|| [Gλ(u(λ),λ) − Gλ(u(µ),λ)] (λ − µ) ||
||λ − µ || → 0 as ||λ − µ ||→ 0.

Also, the existence of Gλ implies (1.3)

||R2(u(λ),λ,µ) ||
||λ − µ || → 0 as ||λ − µ ||→ 0.

Using (1.2), we have
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||R1(u(λ),u(µ),λ) ||
||λ − µ || =

||R1(u(λ),u(µ),λ) ||
||u(λ) − u(µ) ||

||u(λ) − u(µ) ||
||λ − µ || → 0,

as || λ − µ || → 0 because the second factor is bounded due to continuity of
u(λ) (see the end of the proof of the IFT). Thus,

uλ(λ) = −Gu(u(λ),λ)−1 Gλ(u(λ),λ).

To prove that uλ is continuous it suffices to show that Gu(u(λ),λ)−1 is
continuous. Indeed,

||Gu(u(λ),λ)−1 − Gu(u(µ),µ)−1 ||
= ||Gu(u(λ),λ)−1 [Gu(u(µ),µ) − Gu(u(λ),λ)]Gu(u(µ),µ)−1 ||
≤ M2

1 KL(||u(µ) − u(λ) || + ||µ − λ ||),

which concludes the proof of Theorem 3 ⊓⊔

Remark 1. In fact, if Gλ is Lipschitz continuous then uλ is Lipschitz contin-
uous (we already assume that Gu is Lipschitz continuous). More generally,
it can be shown that uλ is Ck if G is Ck, that is, u inherits the degree of
continuity of G.

We now give some examples where the IFT is used to show that a given
solution persists, at least locally, when a problem parameter is changed. We
also identify some cases where the conditions of the IFT are not satisfied.

1.1.2 A Predator-Prey Model

Our first example is that of a predator-prey model defined as

{
u′

1 = 3u1(1 − u1) − u1u2 − λ(1 − e−5u1),
u′

2 = −u2 + 3u1u2.
(1.4)

We can think of u1 as ‘fish’ and u2 as ‘sharks’, while the term λ(1−e−5u1) rep-
resents ‘fishing’, with ‘fishing-quota’ λ. When λ = 0 the stationary solutions
are

3u1(1 − u1) − u1u2 = 0
−u2 + 3u1u2 = 0

}

⇒ (u1, u2) = (0, 0), (1, 0), ( 1
3 , 2).

The Jacobian matrix is

J =

(
3 − 6u1 − u2 − 5λe−5u1 −u1

u2 −1 + 3u1

)

= J(u1, u2;λ).

Hence, we have
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Fig. 1.1. Stationary solution branches of the predator-prey model (1.4). Solution 2
and solution 4 are branch points, while solution 8 is a Hopf bifurcation point.

J(0, 0; 0) =

(
3 0
0 −1

)

, eigenvalues 3, −1 (unstable);

J(1, 0; 0) =

(
3 −1
0 2

)

, eigenvalues − 3, 2 (unstable);

J( 1
3 , 2; 0) =

(
−1 − 1

3
6 0

)

, eigenvalues







(−1 − µ)(−µ) + 2 = 0 ⇔
µ2 + µ + 2 = 0 ⇔
µ± = −1±

√
−7

2 ;
Re(µ±) < 0 (stable).

All three Jacobians at λ = 0 are nonsingular. Thus, by the IFT, all three
stationary points persist for (small) λ 6= 0. In this problem we can explicitly
find all solutions (see Fig. 1.1):

I: (u1, u2) = (0, 0).

II: u2 = 0 and λ =
3u1(1 − u1)

1 − e−5u1

. (Note that lim
u1→0

λ = lim
u1→0

3(1 − 2u1)

5e−5u1

= 3
5 .)

III: u1 = 1
3 and 2

3 − 1
3u2 − λ(1 − e−5/3) = 0 ⇒ u2 = 2 − 3λ(1 − e−5/3).

These solution families intersect at two branch points, one of which is (u1, u2, λ) =
(0, 0, 3/5).

The stability of Branch I follows from:

J(0, 0;λ) =

(
3 − 5λ 0

0 −1

)

, eigenvalues 3 − 5λ, −1.
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Fig. 1.2. Bifurcation diagram of the predator-prey model (1.4). The periodic solu-
tion branch is also shown. For stationary solutions the vertical axis is simply u1, while
for periodic solutions max(u1) is plotted. Solid/dashed lines denote stable/unstable
solutions. Open squares are branch points; the solid square is a Hopf bifurcation.

Hence, the trivial solution is unstable if λ < 3/5, and stable if λ > 3/5, as
indicated in Fig. 1.2. Branch II has no stable positive solutions. At λH ≈
0.67 on Branch III (Solution 8 in Fig. 1.2) the complex eigenvalues cross
the imaginary axis. This crossing is a Hopf bifurcation. Beyond λH there are
periodic solutions whose period T increases as λ increases; see Fig. 1.3 for some
representative periodic orbits. The period becomes infinite at λ = λ∞ ≈ 0.7.
This final orbit is called a heteroclinic cycle.

From Fig. 1.2 we can deduce the solution behavior for increasing λ: Branch
III is followed until λH ; then the behavior becomes oscillatory due to the
periodic solutions of increasing period until λ = λ∞; finally, the dynamics
collapses to the trivial solution (Branch I).

1.1.3 The Gelfand-Bratu Problem

The IFT is not only useful in the context of solution branches of equilibria.
The periodic orbits in Sect. 1.1.2 are also computed using the IFT principle.
This section gives an example of a solution branch of a two-point boundary
value problem. The Gelfand-Bratu problem [12] is defined as

{
u′′(x) + λeu(x) = 0, ∀x ∈ [0, 1],
u(0) = u(1) = 0.

(1.5)
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Fig. 1.3. Some periodic solutions of the predator-prey model (1.4). The final orbits
are very close to a heteroclinic cycle.
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Fig. 1.4. Bifurcation diagram of the Gelfand-Bratu equation (1.5). Note that there
are two solutions for 0 < λ < λC , where λC ≈ 3.51. There is one solution for λ = λC

and for λ ≤ 0, and are no solutions for λ > λC .
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Fig. 1.5. Some solutions to the Gelfand-Bratu equation (1.5).

If λ = 0 then u(x) ≡ 0 is a solution. We show here that this solution is
isolated, so that there is a continuation u = ũ(λ), for |λ| small. Consider

u′′(x) − λeu(x) = 0,
u(0) = 0, u′(0) = q,

}

⇒ u = u(x; q, λ).

We want to solve u(1; q, λ)
︸ ︷︷ ︸

≡F(q,λ)

= 0, for |λ| small. Here F(0, 0) = 0.

We must show (IFT) that Fq(0, 0) ≡ uq(1; 0, 0) 6= 0:

u′′
q (x) − λ0e

u0(x) uq = 0,
uq(0) = 0, u′

q(0) = 1,

}

where u0 ≡ 0.

Now uq(x; 0, 0) satisfies

{
u′′

q = 0,
uq(0) = 0, u′

q(0) = 1.

Hence, uq(x; 0, 0) = x, so that uq(1; 0, 0) = 1 6= 0.

1.1.4 A Nonlinear Eigenvalue Problem

The equations for column buckling (from nonlinear elasticity theory) [31] are
given by
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{
u′′

1(x) + µu1(x) = 0,
u′

3(x) + 1
2u′

1(x)2 + µβ = 0,

for x ∈ [0, 1], with

{
u1(0) = u1(1) = 0,
u3(0) = −u3(1) = λ (λ > 0),

where µ is a stress (to be determined) and β is another physical constant; take
β = 1. Note that the boundary conditions are ‘overspecified’ (to determine
µ). We rewrite the equations as the first order system







u′
1 = u2, u1(0) = u1(1) = 0,

u′
2 = −µu1,

u′
3 = − 1

2u2
2 − µ, u3(0) = −u3(1) = λ.

(1.6)

Note that u1 ≡ u2 ≡ 0 implies u′
3 = −µ, so that u3(x) = λ − µx, with

u3(0) = λ and u3(1) = λ − µ = −λ. Thus, we must have µ = 2λ, so that
u3(x) = λ − 2λx = λ(1 − 2x). Hence,

u1 ≡ u2 ≡ 0, u3(x) = λ(1 − 2x), µ = 2λ,

is a solution for all λ. Are these solutions isolated? In the formal set-up,
consider

u′
1 = u2, u1(0) = 0,

u′
2 = −µu1, u2(0) = p,

u′
3 = − 1

2u2
2 − µ, u3(0) = λ.






⇒ u = u(x, p, µ;λ).

We must have

u1(1, p, µ;λ) = 0,
u3(1, p, µ;λ) + λ = 0,

}

∼ F(p, µ;λ) = 0,

with F : R
2 × R → R

2. So the question is: Is (Fp | Fµ)(λ) nonsingular along
the basic solution branch?

To answer the above question quickly, we omit explicit construction of F.
We linearize (1.6) about u1,u2, u3, µ, and λ, with respect to u1, u2, u3, and
µ, acting on v1, v2, v3, and µ, to obtain the linearized homogeneous equations







v′
1 = v2, v1(0) = v1(1) = 0,

v′
2 = −µv1 − µu1,

v′
3 = −u2v2 − µ, v3(0) = −v3(1) = 0.

In particular, the linearized homogeneous equations about u1 ≡ u2 ≡ 0,
u3(x) = λ(1 − 2x), and µ = 2λ are

v′
1 = v2, v1(0) = v1(1) = 0,

v′
2 = −2λv1,

v′
3 = −µ, v3(0) = −v3(1) = 0.






⇒ µ = 0, v3 ≡ 0.
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Now, if 2λ 6= k2π2, k = 1, 2, 3, . . . , then

{
v′′
1 + 2λv1 = 0,

v1(0) = v1(1) = 0,

has the unique solution v1 ≡ 0 and, hence, also v2 ≡ 0. Thus, if λ 6= 1
2k2π2

then the basic solution branch is locally unique. However, if λ = 1
2k2π2 then

the linearization is singular, and there may be bifurcations. (In fact, there are
buckled states.)

1.1.5 The Pendulum Equation

The equation of a damped pendulum subject to a constant torque is given by

m R φ′′(t) + ε m φ′(t)
︸ ︷︷ ︸

damping

+m g sin φ(t) = I
︸︷︷︸

torque

,

that is,

φ′′(t) +
ε

R
φ′(t) +

g

R
sin φ(t) =

I

m R
.

Scaling time as s = c t we have φ′ = dφ
dt = dφ

ds
ds
dt = c φ̇ and, similarly, φ′′ = c2 φ̈,

we obtain

c2 φ̈(s) +
ε c

R
φ̇(s) +

g

R
sin φ(s) =

I

m R
,

φ̈ +
ε

R c
φ̇ +

g

R c2
sin φ =

I

m R c2
.

Choose c such that g
R c2 = 1, that is, c =

√

g/R, and set ε̃ = ε/(R c) and

Ĩ = I/(m R c2). Then the equation becomes φ̈ + ε̃ φ̇ + sin φ = Ĩ, or, dropping
the ,̃ and using ′,

φ′′ + ε φ′ + sinφ = I. (1.7)

We shall consider special solutions, called rotations, that satisfy φ(t + T ) =
φ(t) + 2π, for all t or, equivalently,

φ(T ) =

≡0
︷︸︸︷

φ(0) +2π (= 2π),

φ′(T ) = φ′(0),

where T is the period.
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The Undamped Pendulum

First consider the undamped unforced pendulum

φ′′ + sinφ = 0,

that is, (1.7) with ε = I = 0. Suppose the initial data for a rotation are
φ(0) = 0, and φ′(0) = p > 0. We have φ(T ) = 2π, and φ′(T ) = φ′(0) = p.
Integration gives

∫ t

0
φ′ φ′′ dt +

∫ t

0
φ′ sin φ dt = 0

⇔ 1
2φ′2∣∣t

0
− cos φ

∣
∣
∣

t

0
= 0

⇔ 1
2φ′(t)2 − cos φ(t) =

1

2
p2 − 1

⇔ 1

2
φ′(t)2

︸ ︷︷ ︸

kinetic energy

+ 1 − cos φ(t)
︸ ︷︷ ︸

potential energy

=
1

2
p2.

Thus,

φ′(t) = dφ
dt =

√

p2 − 2 + 2 cos φ(t)

⇔ dt
dφ =

1
√

p2 − 2 + 2 cos φ

⇔
∫ 2π

0
dt
dφ dφ =

∫ 2π

0

1
√

p2 − 2 + 2 cos φ
dφ

⇔ T =

∫ 2π

0

1
√

p2 − 2 + 2 cos φ
dφ.

We see that
T → 0 as p → ∞,

and

T →
∫ 2π

0

1√
2 + 2 cos φ

dφ = ∞ as p → 2.

In fact, rotations exists for all p > 2.

The Forced Damped Pendulum

We now consider the forced damped pendulum (1.7),

φ′′ + ε φ′ + sinφ = I,

with φ(0) = 0 (which sets the phase) and φ′(0) = p. We write the solution
as φ = φ(t; p, I, ε). Do there exist rotations, i.e., does there exist T such that
φ(T ; p, I, ε) = 2π and φ′(T ; p, I, ε) = p?
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Theorem 4. Let φ0 be a rotation of the undamped unforced pendulum:

φ′′
0 + sinφ0 = 0,

φ0(0) = 0, φ′
0(0) = p0,

φ0(T0) = 2π, φ′
0(T0) = p0.

Then there exist (smooth) functions T = T (p, ε) and I = I(p, ε), with
T (p0, 0) = T0 and I(p0, 0) = 0, such that φ(t; p, I(p, ε), ε) is a rotation of
period T (p, ε) of the damped forced pendulum

φ′′
0 + ε φ′ + sinφ0 = I,

φ(0; p, I(p, ε), ε) = 0, φ′(0; p, I(p, ε), ε) = p,
φ(T (p, ε); p, I(p, ε), ε) = 2π, φ′(T (p, ε); p, I(p, ε), ε) = p.

for all (p, ε) sufficiently close to (p0, 0).

Proof. The Jacobian matrix with respect to T and I, of the algebraic system

{
φ(T ; p, I, ε) − 2π = 0,
φ′(T ; p, I, ε) − p = 0,

evaluated at p = p0, T = T0, and I = ε = 0, is

J0 =

(
φ′

0 φ0
I

φ′′
0 φ0′

I

)

(T0).

We must show that detJ0 6= 0. We have

φ′′
0 + sinφ0 = 0 ⇒ φ′′

0(T0) = − sin (φ0(T0)) = − sin (2π) = 0,

φ′
0(T0) = p0 6= 0.

Thus, detJ0 6= 0 if φ0′

I (T0) 6= 0. Here, φI satisfies

φ′′
I + ε φ′

I + φI cos φ = 1, φI(0) = φ′
I(0) = 0.

In particular,

φ0′′

I + φ0
I cos φ0 = 1, φ0

I(0) = φ0′

I (0) = 0.

From
φ0′′

I φ′
0 + φ0

I cos φ0 φ′
0 = φ′

0,

and
φ′′

0 + sinφ0 = 0 ⇒ φ′′′
0 + cos φ0 φ′

0 = 0,

we have
φ0′′

I φ′
0 − φ0

I φ′′′
0 = φ′

0.

Using integration, we find
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∫ T0

0

φ0′′

I φ′
0 −

∫ T0

0

φ0
I φ′′′

0 =

∫ T0

0

φ′
0 = 2π,

φ0′

I φ′
0

∣
∣
∣

T0

0
−
∫ T0

0

φ0′

I φ′′
0 − φ0

I φ′′
0

︸︷︷︸

− sin φ0

∣
∣
∣
∣
∣
∣
∣

T0

0

+

∫ T0

0

φ0′

I φ′′
0 = 2π,

φ0′

I (T0) φ′
0(T0)
︸ ︷︷ ︸

p0

−φ0′

I (0)
︸ ︷︷ ︸

0

φ′
0(0) = 2π.

Hence,

φ0′

I (T0) =
2π

p0
6= 0.

⊓⊔

A more general analysis of this type for coupled pendula can be found in [1]
(see also Chap. 5).

1.2 Continuation of Solutions

As mentioned, the IFT plays an important role in the design of algorithms
for computing families of solutions to nonlinear equations. Such continuation
methods are applied in a parameter-dependent setting. Hence, we consider
the equation

G(u, λ) = 0, u, G(·, ·) ∈ R
n, λ ∈ R.

Let x ≡ (u, λ). Then the equation can be written as

G(x) = 0, G : R
n+1 → R

n.

1.2.1 Regular Solutions

A solution x0 of G(x) = 0 is regular [22] if the n (rows) by n + 1 (columns)
matrix G0

x
≡ Gx(x0) has maximal rank, i.e., if Rank(G0

x
) = n.

In the parameter formulation G(u, λ) = 0, we have

Rank(G0
x
) = Rank(G0

u
| G0

λ) = n ⇔







(i) G0
u

is nonsingular,
or

(ii)







dimN (G0
u
) = 1,

and
G0

λ 6∈ R(G0
u
).

Here, N (G0
u
) denotes the null space of G0

u
, and R(G0

u
) denotes the range of

G0
u
, i.e., the linear space spanned by the n columns of G0

u
.
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λ

0

λ
0

0
x

u

u

Fig. 1.6. A solution branch of G(u, λ) = 0; note the two folds.

Theorem 5. Let x0 ≡ (u0, λ0) be a regular solution of G(x) = 0. Then, near
x0, there exists a unique one-dimensional continuum of solutions x(s), called
a solution family or a solution branch, with x(0) = x0.

Proof. Since Rank(G0
x
) = Rank(G0

u
| G0

λ) = n, either G0
u

is nonsingular and
by the IFT we have u = u(λ) near x0, or else we can interchange columns
in the Jacobian G0

x
to see that the solution can locally be parametrized by

one of the components of u. Thus, a unique solution family passes through a
regular solution. ⊓⊔

Remark 2. We remark here that the second case in the above proof is that of
a simple fold ; see also Fig. 1.6.

1.2.2 Parameter Continuation

In the parameter-dependent setting we assume that the continuation param-
eter is λ. Suppose we have a solution (u0, λ0) of

G(u, λ) = 0,

as well as the direction vector u̇0 = du/dλ, and we want to compute the
solution u1 at λ1 = λ0 + ∆λ; this is illustrated in Fig. 1.7.

To compute the solution u1 we use Newton’s method
{

Gu(u
(ν)
1 , λ1) ∆u

(ν)
1 = −G(u

(ν)
1 , λ1),

u
(ν+1)
1 = u

(ν)
1 + ∆u

(ν)
1 , ν = 0, 1, 2, . . . .

(1.8)

As initial approximation, we use

u
(0)
1 = u0 + ∆λu̇0.

If Gu(u1, λ1) is nonsingular and ∆λ is sufficiently small, then the convergence
theory for Newton’s method guarantees that this iteration will converge.
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u

u

λ λ

λ

u
1
(0)

du

d λ
at λ0 )

u

10

1

0

∆λ

(= 

Fig. 1.7. Graphical interpretation of parameter continuation.

After convergence, the new direction vector u̇1 can be computed by solving

Gu(u1, λ1) u̇1 = −Gλ(u1, λ1).

This equation follows from differentiating G(u(λ), λ) = 0 with respect to λ
at λ = λ1. Note that, in practice, the calculation of u̇1 can be done without
another LU -factorization of Gu(u1, λ1). Thus, the extra work to find u̇1 is
negligible.

As an example, consider again the Gelfand-Bratu problem of Sect. 1.1.3
given by

{
u′′(x) + λeu(x) = 0, ∀x ∈ [0, 1],

u(0) = u(1) = 0.

If λ = 0 then u(x) ≡ 0 is an isolated solution; see Sect. 1.1.3. We discretize
this problem by introducing a mesh,

0 = x0 < x1 < · · · < xN = 1,

xj − xj−1 = h, 1 ≤ j ≤ N, h = 1/N.

The discrete equations are:

uj+1 − 2uj + uj−1

h2
+ λeuj = 0, j = 1, . . . , N − 1,

with u0 = uN = 0. (More accurate discretization is discussed in Sect. 1.3.1.)
Let

u ≡







u1

u2

·
uN−1







.

Then we can write the above as G(u, λ) = 0, where G : R
n × R → R

n, with
n = N − 1.
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Fig. 1.8. Graphical interpretation of pseudo-arclength continuation.

For the parameter continuation we suppose that we know λ0, u0, and u̇0.

Then we set λ1 = λ0 + ∆λ and apply Newton’s method (1.8) with u
(0)
1 =

u0 + ∆λ u̇0. After convergence find u̇1 from

Gu(u1, λ1) u̇1 = −Gλ(u1, λ1),

and repeat the above procedure to find u2, u3, and so on. Here,

Gu(u, λ) =









− 2
h2 + λeu1 1

h2

1
h2 − 2

h2 + λeu2 1
h2

. . .
. . .

1
h2 − 2

h2 + λeuN−1









.

Hence, we must solve a tridiagonal system for each Newton iteration. The
solution branch has a fold where the parameter-continuation method fails; see
Figs. 1.4 and 1.5.

1.2.3 Keller’s Pseudo-Arclength Continuation

In order to allow for continuation of a solution branch past a fold, Auto

[8, 11, 12] uses Keller’s Pseudo-Arclength Continuation [22]. Suppose we have
a solution (u0, λ0) of G(u, λ) = 0, as well as the direction vector (u̇0, λ̇0) of the
solution branch. Pseudo-arclength continuation solves the following equations
for (u1, λ1): {

G(u1, λ1) = 0,

(u1 − u0)
∗ u̇0 + (λ1 − λ0) λ̇0 − ∆s = 0.

(1.9)

Figure 1.8 shows a graphical interpretation of this continuation method. New-
ton’s method for pseudo-arclength continuation becomes
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Fig. 1.9. Parameter-independent pseudo-arclength continuation.

(

(G1
u
)(ν) (G1

λ)(ν)

u̇∗
0 λ̇0

) (

∆u
(ν)
1

∆λ
(ν)
1

)

= −
(

G(u
(ν)
1 , λ

(ν)
1 )

(u
(ν)
1 − u0)

∗ u̇0 + (λ
(ν)
1 − λ0) λ̇0 − ∆s

)

,

with the new direction vector defined as
(

G1
u

G1
λ

u̇∗
0 λ̇0

) (

u̇1

λ̇1

)

=

(

0

1

)

,

Note that

• In practice (u̇1, λ̇1) can be computed with one extra back-substitution;
• The orientation of the branch is preserved if ∆s is sufficiently small;
• The direction vector must be rescaled, so that indeed || u̇1 ||2 +λ̇2

1 = 1.

Theorem 6. The Jacobian of the pseudo-arclength system is nonsingular at
a regular solution point.

Proof. Let x = (u, λ) ∈ R
n+1. Then pseudo-arclength continuation can be

written as

G(x1) = 0,

(x1 − x0)
∗ ẋ0 − ∆s = 0, (|| ẋ0 ||= 1).

Figure 1.9 shows a graphical interpretation. The matrix in Newton’s method

at ∆s = 0 is

(
G0

x

ẋ∗
0

)

. At a regular solution we have N (G0
x
) = Span{ẋ0}. We

must show that

(
G0

x

ẋ∗
0

)

is nonsingular at a regular solution. Suppose, on the

contrary, that

(
G0

x

ẋ∗
0

)

is singular. Then there exists some vector z 6= 0 with

G0
x
z = 0 and ẋ∗

0 z = 0.

Thus, z = cẋ0, for some constant c. But then

0 = ẋ∗
0 z = cẋ∗

0 ẋ0 = c || ẋ0 ||2= c,

so that z = 0, which is a contradiction. ⊓⊔



22 Eusebius J Doedel

Consider pseudo-arclength continuation for the discretized Gelfand-Bratu
problem of Sect. 1.1.3. Then the matrix

(

Gx

ẋ∗

)

=

(

Gu Gλ

u̇∗ λ̇

)

in Newton’s method is a ‘bordered tridiagonal’ matrix of the form

















• • •
• • • •

• • • •
• • • •

• • • •
• • • •

• • • •
• • •

• • • • • • • • •

















.

We now show how to solve such linear systems efficiently.

1.2.4 The Bordering Algorithm

The linear systems in Newton’s method for pseudo-arclength continuation are
of the form (

A c
b∗ d

)(
x
y

)

=

(
f
h

)

.

The special structure of this extended system can be exploited; a general
presentation of the numerical linear algebra aspects of extended systems can
be found in [20, 24]. If A is a sparse matrix whose LU -decomposition can be
found relatively cheaply (e.g., if A is tridiagonal), then the following bordered
LU -decomposition [22] will be efficient:

(
A c
b∗ d

)

=

(
L 0
β∗ 1

)(
U γ

0∗ δ

)

.

After decomposing A = LU (which may require pivoting) we compute γ, β,
and δ from

Lγ = c,

U∗β = b,

δ = d − β∗γ.

The linear system can then be written as
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(
L 0
β∗ 1

)(
U γ

0∗ δ

)(
x
y

)

︸ ︷︷ ︸

≡





f̂

ĥ





=

(
f
h

)

,

and we can compute the solution (x, y) through the following steps:

Lf̂ = f ,

ĥ = h − β∗f̂ ,

y = ĥ/δ,

Ux = f̂ − yγ.

Theorem 7. The bordering algorithm outlined above works if A and the full

matrix A ≡
(

A c
b∗ d

)

are nonsingular.

In the proof of Theorem 7 we make use of the Bordering Lemma [22]

Lemma 3 (Bordering Lemma). Let A ≡
(

A c
b∗ d

)

. Then

(a) A nonsingular ⇒ A nonsingular if and only if d 6= b∗A−1c;

(b) dimN (A) = dimN (A∗) = 1 ⇒ A nonsingular if

{
c 6∈ R(A),
b 6∈ R(A∗);

(c) If dimN (A) ≥ 2 then A is singular.

Proof. (a) (A nonsingular)

In this case A =

(
A 0
b∗ 1

)(
I A−1c
0∗ e

)

, where e = d − b∗A−1c. Clearly,

A is nonsingular if and only if e 6= 0.

(b) (dimN (A) = 1)

Suppose A is singular in this case. Then there exist z ∈ R
n and ξ ∈ R,

not both zero, such that

A =

(
A c
b∗ d

)(
z
ξ

)

=

(
Az + ξc
b∗z + ξd

)

=

(
0
0

)

.

We see that c ∈ R(A) if ξ 6= 0, which contradicts the assumptions. On
the other hand, if ξ = 0 and z 6= 0 then

N (A) = Span{z} and b ∈ N (A)⊥.
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Since, in general, N (A)⊥ = R(A∗), it follows that b ∈ R(A∗), which also
contradicts the assumptions.

(c) (dimN (A) ≥ 2)

This case follows from a rank argument. ⊓⊔
Proof (Theorem 7). The crucial step in the bordering algorithm is the com-

putation of z = ĥ/δ. Namely, we must have δ 6= 0. Since δ is determined in
the bordered LU -decomposition, we have

δ = d − β∗γ = d − (U∗−1b)∗(L−1c)
= d − b∗U−1L−1c = d − b∗(LU)−1c
= d − b∗A−1c,

which is nonzero by Conclusion (a) of the Bordering Lemma. ⊓⊔
Remark 3. In pseudo-arclength continuation we have

A =

(

A c

b∗ d

)

=

(

Gu Gλ

u̇∗
0 λ̇0,

)

that is, A = Gu, which is singular at a fold. Therefore, the bordering algorithm
will fail when it is used exactly at a fold. In practice, the method may still work.
We consider another approach, used in Auto, when discussing collocation
methods in Sect. 1.3.1.

1.3 Boundary Value Problems

Consider the first-order system of ordinary differential equations

u′(t) − f(u(t),µ, λ) = 0, t ∈ [0, 1],

where
u(·), f(·) ∈ R

n, λ ∈ R, µ ∈ R
nµ ,

subject to boundary conditions

b(u(0),u(1),µ, λ) = 0, b(·) ∈ R
nb ,

and integral constraints
∫ 1

0

q(u(s),µ, λ) ds = 0, q(·) ∈ R
nq .

We want to solve this boundary value problem (BVP) for u(·) and µ. In order
for this problem to be formally well posed we require that

nµ = nb + nq − n ≥ 0.

We can think of λ as the continuation parameter in which the solution (u,µ)
may be continued. A simple case is nq = 0, nb = n, for which nµ = 0.
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1.3.1 Orthogonal Collocation

Auto solves boundary value problems using the method of orthogonal collo-
cation with piecewise polynomials [2, 7]. This method is very accurate, and
allows adaptive mesh-selection. The set-up is as follows.

First, we introduce a mesh

{0 = t0 < t1 < · · · < tN = 1},

with
hj = tj − tj−1, (1 ≤ j ≤ N).

Define the space of (vector-valued) piecewise polynomials Pm
h as

Pm
h =

{

ph ∈ C[0, 1] | ph|[tj−1,tj ]
∈ Pm

}

,

where Pm is the space of (vector-valued) polynomials of degree ≤ m. The
orthogonal collocation method with piecewise polynomials [3] consists of find-
ing ph ∈ Pm

h and µ ∈ R
nµ , such that the following collocation equations are

satisfied:

p′
h(zj,i) = f(ph(zj,i),µ, λ), j = 1, . . . , N, i = 1, . . . , m,

and such that ph satisfies the boundary and integral conditions. The collo-
cation points zj,i in each subinterval [tj−1, tj ] are the (scaled) roots of the
mth-degree orthogonal polynomial (Gauss points); see Fig. 1.10 for a graph-
ical interpretation. Since each local polynomial is determined by (m + 1)n,
coefficients, the total number of degrees of freedom (considering λ as fixed) is
(m + 1)nN + nµ. This is matched by the total number of equations:

collocation: mnN,
continuity: (N − 1)n,
constraints: nb + nq (= n + nµ).

If the solution u(t) of the BVP is sufficiently smooth then the order of accuracy
of the orthogonal collocation method is m, i.e.,

||ph − u ||∞= O(hm).

At the main meshpoints tj we have superconvergence:

maxj |ph(tj) − u(tj) |= O(h2m).

The scalar variables µ are also superconvergent [7].
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Fig. 1.10. The mesh {0 = t0 < t1 < · · · < tN = 1}. Collocation points and
‘extended-mesh points’ are shown for the case m = 3, in the jth mesh interval. Also
shown are two of the four local Lagrange basis polynomials.

1.3.2 Implementation in Auto

The implementation in Auto [12] is done via the introduction of Lagrange
basis polynomials for each subinterval [tj−1, tj ]. Define

{ℓj,i(t)}, j = 1, . . . , N, i = 0, 1, . . . , m,

by

ℓj,i(t) =
m∏

k=0,k 6=i

t − tj− k
m

tj− i
m

− tj− k
m

,

where

tj− i
m

= tj − i

m
hj .

The local polynomials can then be written as

pj(t) =

m∑

i=0

ℓj,i(t)uj− i
m

.

With the above choice of basis

uj approximates u(tj) and uj− i
m

approximates u(tj− i
m

),

where u(t) is the solution of the continuous problem.
Then the collocation equations are

p′
j(zj,i) = f(pj(zj,i),µ, λ), i = 1, . . . , m, j = 1, . . . , N,
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u0 u 1

3

u 2

3

u1 u2 uN T λ

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • •

• • • • • •

• • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • •

Fig. 1.11. Structure of the Jacobian for the case of n = 2 differential equations
with the number of mesh intervals N = 3, the number of collocation points per
mesh interval m = 3, the number of boundary conditions nb = 2, and the number
of integral constraints nq = 1. The last row corresponds to the pseudo-arclength
equation, which is not included in the nq = 1 count. From E.J. Doedel, H.B. Keller,
J.P. Kernévez, Numerical analysis and control of bifurcation problems (II): Bifurca-
tion in infinite dimensions, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 1(4) (1991)
745–772 c©1991 World Scientific Publishing; reproduced with permission.

the discrete boundary conditions are

bi(u0,uN ,µ, λ) = 0, i = 1, . . . , nb,

and the integrals constraints can be discretized as

N∑

j=1

m∑

i=0

ωj,iqk(uj− i
m

,µ, λ) = 0, k = 1, . . . , nq,

where the ωj,i are the Lagrange quadrature coefficients.
The pseudo-arclength equation is

∫ 1

0

(u(t) − u0(t))
∗ u̇0(t) dt + (µ − µ0)

∗ µ̇0 + (λ − λ0) λ̇0 − ∆s = 0,

where (u0,µ0, λ0), is the previously computed point on the solution branch,
and (u̇0, µ̇0, λ̇0), is the normalized direction of the branch at that point. The
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u0 u 1

3

u 2

3

u1 u2 uN T λ

• • • • • • • • • •

• • ◦ • • • • • • •

• • ◦ ◦ • • • • • •

• • ◦ ◦ ◦ • • • • •

• • ◦ ◦ ◦ ◦ • • • •

• • ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •

• • ◦ • • • • • • •

• • ◦ ◦ • • • • • •

• • ◦ ◦ ◦ • • • • •

• • ◦ ◦ ◦ ◦ • • • •

• • ◦ ◦ ◦ ◦ • • • •

• • • • • • • • • •

• • ◦ • • • • • • •

• • ◦ ◦ • • • • • •

• • ◦ ◦ ◦ • • • • •

• • ◦ ◦ ◦ ◦ • • • •

• • ◦ ◦ ◦ ◦ • • • •

• • • • • •

• • • • • •

• • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • •

• • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • •

Fig. 1.12. The system after condensation of parameters. The entries ◦ have been
eliminated by Gauss elimination.

discretized pseudo-arclength equation is

N∑

j=1

m∑

i=0

ωj,i [uj− i
m

− (u0)j− i
m

]∗ (u̇0)j− i
m

+(µ − µ0)
∗ µ̇0 + (λ − λ0) λ̇0 − ∆s = 0.

The implementation in Auto includes an efficient method to solve these
linear systems [12]; this is illustrated in Figs. 1.12–1.15. Note that the figures
only illustrate the matrix structure; the indicated operations are also carried
out on the right-hand side, which is not shown in the figures. Figure 1.12
shows the system after condensation of parameters. The entries marked with
◦ have been eliminated by Gauss elimination. These operations can be done
in parallel [34]. The condensation of parameters leads to a system with a
fully decoupled sub-system that can be solved separately. The decoupled sub-
system is marked by ∗ in Fig. 1.13

1.3.3 Numerical Linear Algebra

The complete discretization consists of

mnN + nb + nq + 1,
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u0 u 1

3

u 2

3

u1 u2 uN T λ

• • • • • • • • • •

• • ◦ • • • • • • •

• • ◦ ◦ • • • • • •

• • ◦ ◦ ◦ • • • • •

⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

• • • • • • • • • •

• • ◦ • • • • • • •

• • ◦ ◦ • • • • • •

• • ◦ ◦ ◦ • • • • •

⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

• • • • • • • • • •

• • ◦ • • • • • • •

• • ◦ ◦ • • • • • •

• • ◦ ◦ ◦ • • • • •

⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

Fig. 1.13. This is the same matrix as in Fig. 1.12, except that some entries are now
marked by a ⋆. The ⋆ sub-system is fully decoupled from the remaining equations and
can, therefore, be solved separately. From E.J. Doedel, H.B. Keller, J.P. Kernévez,
Numerical analysis and control of bifurcation problems (II): Bifurcation in infinite
dimensions, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 1(4) (1991) 745–772 c©1991
World Scientific Publishing; reproduced with permission.

nonlinear equations, in the unknowns

{uj− i
m

} ∈ R
mnN+n, µ ∈ R

nµ , λ ∈ R.

These equations can be solved by a Newton-Chord iteration. The structure
of the associated Jacobian is illustrated in Fig. 1.11 for a system of n = 2
differential equations, with N = 3 mesh intervals, m = 3 collocation points
per mesh interval, nb = 2 boundary conditions, and nq = 1 integral constraint.
In a typical problem N will be larger, say, N = 5 for ‘very easy’ problems, and
N = 200 for ‘very difficult’ problems. The ‘standard’ choice of the number of
collocation points per mesh interval is m = 4.

The decoupled ⋆ sub-system can be solved by nested dissection. This pro-
cedure eliminates some of the ⋆-entries, but also introduces some new nonzero
entries due to fill-in; see Fig. 1.14. However, the structure reveals a new decou-
pled sub-system that can be solved completely; this subsystem is highlighted
in Fig. 1.15 with +. The + sub-system consists of two sub-matrices A0 and
A1, as in Fig. 1.15. For periodic solutions, the Floquet multipliers are the
eigenvalues of the matrix −A−1

1 A0 [18].
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u0 u 1

3

u 2

3

u1 u2 uN T λ

• • • • • • • • • •

• • ◦ • • • • • • •

• • ◦ ◦ • • • • • •

• • ◦ ◦ ◦ • • • • •

⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆

• • • • • • • • • •

• • ◦ • • • • • • •

• • ◦ ◦ • • • • • •

• • ◦ ◦ ◦ • • • • •

⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆

• • • • • • • • • •

• • ◦ • • • • • • •

• • ◦ ◦ • • • • • •

• • ◦ ◦ ◦ • • • • •

⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ⋆ ⋆ ⋆ ⋆

Fig. 1.14. The decoupled ⋆ sub-system solved by nested dissection. This procedure
eliminates some of the ⋆-entries, but also introduces some new nonzero entries due
to fill-in.

1.4 Computing Periodic Solutions

Periodic solutions can be computed very effectively by using a boundary value
approach. This method also determines the period very accurately. Moreover,
the technique allows asymptotically unstable periodic orbits to be computed
as easily as asymptotically stable ones.

1.4.1 The BVP Approach.

Consider the first-order system

u′(t) = f(u(t), λ), u(·), f(·) ∈ R
n, λ ∈ R.

Fix the interval of periodicity by the transformation t 7→ t
T . Then the equation

becomes

u′(t) = T f(u(t), λ), u(·), f(·) ∈ R
n, T, λ ∈ R, (1.10)

and we seek solutions of period 1, i.e.,

u(0) = u(1). (1.11)
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u0 u 1

3

u 2

3

u1 u2 uN T λ

• • • • • • • • • •

• • ◦ • • • • • • •

• • ◦ ◦ • • • • • •

• • ◦ ◦ ◦ • • • • •

⋆ ⋆ ◦ ◦ ◦ ◦ ⋆ ⋆ · · ⋆ ⋆

⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ⋆ · · ⋆ ⋆

• • • • • • • • • •

• • ◦ • • • • • • •

• • ◦ ◦ • • • • • •

• • ◦ ◦ ◦ • • • • •

⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ⋆ ⋆ · · ⋆ ⋆

⋆ ⋆ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ⋆ · · ⋆ ⋆

• • • • • • • • • •

• • ◦ • • • • • • •

• • ◦ ◦ • • • • • •

A0 • • ◦ ◦ ◦ • • • • •

+ + ◦ ◦ ◦ ◦ ◦ ◦ + + + +

+ + ◦ ◦ ◦ ◦ ◦ ◦ + + + +

+ + A1 + + + +

+ + + + + +

+ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + + + +

+ + ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ + + + +

Fig. 1.15. The same matrix as in Fig. 1.14, except with some entries now marked
by +. Note that the + sub-system is decoupled from the other equations, and can,
therefore, be solved separately.

Note that the period T is one of the unknowns.
Equations (1.10)–(1.11) do not uniquely specify u and T . Assume that

we have computed (uk−1(·), Tk−1, λk−1) and we want to compute the next
solution (uk(·), Tk, λk). Then uk(t) can be translated freely in time: if uk(t)
is a periodic solution then so is uk(t + σ) for any σ. Thus, a phase condition
is needed. An example is the Poincaré orthogonality condition

(uk(0) − uk−1(0))∗ u′
k−1(0) = 0,

where the phase of the next condition is fixed such that the difference at
time t = 0 is perpendicular to the tangent vector of the current solution; this
is illustrated in Fig. 1.16. In the next section we derive a numerically more
suitable phase condition.

1.4.2 Integral Phase Condition

If ũk(t) is a solution then so is ũk(t + σ), for any σ. We want the solution
that minimizes

D(σ) =

∫ 1

0

|| ũk(t + σ) − uk−1(t) ||22 dt.
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u
k-1 (0)

u
k-1 (0)

u (0)
k

Fig. 1.16. Graphical interpretation of the Poincaré phase condition.

The optimal solution ũk(t+σ̂), must satisfy the necessary condition D′(σ̂) = 0.
Differentiation gives the necessary condition

∫ 1

0

(ũk(t + σ̂) − uk−1(t))
∗ ũ′

k(t + σ̂) dt = 0.

Writing uk(t) ≡ ũk(t + σ̂), gives

∫ 1

0

(uk(t) − uk−1(t))
∗ u′

k(t) dt = 0.

Integration by parts, using periodicity, gives

∫ 1

0

uk(t)∗ u′
k−1(t) dt = 0. (1.12)

This is the integral phase condition [8].

1.4.3 Pseudo-Arclength Continuation

In practice, we use pseudo-arclength continuation to follow a family of periodic
solutions; see Sect. 1.2.3. In particular, this allows calculation past folds along
a family of periodic solutions. It also allows calculation of a ‘vertical family’
of periodic solutions, which has important applications to the computation
of periodic solutions to conservative systems [14, 30] (see also Chap. 9). For
periodic solutions the pseudo-arclength equation is

∫ 1

0

(uk(t) − uk−1(t))
∗ u̇k−1(t) dt

+ (Tk − Tk−1)
∗ Ṫk−1 + (λk − λk−1) λ̇k−1 = ∆s.

(1.13)

Equations (1.10)–(1.13) are the equations used in Auto for the continuation
of periodic solutions. In summary, given uk−1, Tk−1, and λk−1, we solve the
system
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LAMBDA

MAX U1

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

Fig. 1.17. Bifurcation diagram of the stationary solution u(t) ≡ 0 of (1.14).

u′
k(t) = T f(uk(t), λk),

uk(0) = uk(1),
∫ 1

0

uk(t)∗ u′
k−1(t) dt = 0,

∫ 1

0

(uk(t) − uk−1(t))
∗ u̇k−1(t) dt + (Tk − Tk−1) Ṫk−1 + (λk − λk−1) λ̇k−1 = ∆s,

where
u(·), f(·) ∈ R

n, λ, T ∈ R.

1.4.4 A Vertical Family of Periodic Orbits

Consider the system of equations
{

u′
1 = λu1 − u2,

u′
2 = u1(1 − u1).

(1.14)

Note that u(t) ≡ 0 is a stationary solution for all λ. Another stationary

solution is u(t) ≡
(

1
−λ

)

.

The bifurcation diagram for u(t) ≡ 0 is shown in Fig. 1.17, but we can
also analyze the behavior analytically. The Jacobian along the solution family
u(t) ≡ 0 is

(
−λ −1

1 0

)

,
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U1

U2

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

Fig. 1.18. A phase plot of some periodic solutions of (1.14).

SCALED TIME

U1

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Fig. 1.19. Solution component u1 of (1.14) as a function of the scaled time vari-
able t.

with eigenvalues
−λ ±

√
λ2 − 4

2
.
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SCALED TIME

U2

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

Fig. 1.20. Solution component u2 of (1.14) as a function of the scaled time vari-
able t.

Hence, the eigenvalues are complex for λ ∈ (−2, 2). The eigenvalues cross the
imaginary axis when λ passes through zero. Thus, there is a Hopf bifurcation
along u(t) ≡ 0 at λ = 0, and a family of periodic solutions bifurcates from
u(t) ≡ 0 at λ = 0. As shown in Fig. 1.17, the emanating family of periodic
solutions is ‘vertical’. Some periodic solutions are shown in Fig. 1.18 in the
(u1, u2)-plane. These solutions are plotted versus time in Figs. 1.19 and 1.20.

Along this family the period tends to infinity. The final infinite-period
orbit is homoclinic to (u1, u2) = (1, 0). The time diagrams in Figs. 1.19 and
1.20 illustrate how the ‘peak’ in the solution remains in the same location.
This is a result of the integral phase condition (1.12) and very advantageous
for discretization methods.

1.4.5 FitzHugh-Nagumo Equations

The Fitzhugh-Nagumo equations of nerve-conduction are
{

v′ = c
(
v − 1

3v3 + w
)
,

w′ = −(v − a + bw)/c.
(1.15)

Let b = 0.8 and c = 3. Note that there is a stationary solution (v(t), w(t)) =
(0, 0) for a = 0.

We compute the solution family, starting at (v(t), w(t)) = (0, 0) for a = 0,
with Auto. The bifurcation diagram is shown in Fig. 1.21. Note that the
solution is unstable for a small and becomes stable after a Hopf bifurcation at
a ≈ 0.4228. Figure 1.21 also shows the emanating family of periodic solutions,
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Parameter a

MAX V

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

0.0

0.5

1.0

1.5

2.0

2.5

Fig. 1.21. Bifurcation diagram of the Fitzhugh-Nagumo equations (1.15).

Scaled Time

V

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Fig. 1.22. The periodic solution of (1.15) at a = 0.

which turns back toward a = 0; the periodic solution at a = 0 is shown in
Fig. 1.22.
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Forcing Amplitude r

MAX V

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fig. 1.23. Continuation of (1.16) from r = 0 to r = 20.

1.4.6 Periodically Forced and Non-Autonomous Systems

In this section we illustrate computing periodic solutions to non-autonomous
systems. The classical example of a non-autonomous system is a periodically
forced system. In Auto periodic orbits of a periodically forced system can be
computed by adding a nonlinear oscillator with the desired periodic forcing
as one of its solution components. An example of such an oscillator is

{
x′ = x + βy − x(x2 + y2),
y′ = −βx + y − y(x2 + y2),

which has the asymptotically stable solution

x(t) = sin (βt), y(t) = cos (βt).

As an example, consider again the FitzHugh-Nagumo equations of Sect. 1.4.5,
where we assume that the first component of the equations is periodically
forced by −r cos βt. Coupling the oscillator to the Fitzhugh-Nagumo equa-
tions gives: 





x′ = x + βy − x(x2 + y2),
y′ = −βx + y − y(x2 + y2),
v′ = c(v − 1

3v3 + w − ry),
w′ = −(v − a + bw)/c,

(1.16)

where we take b = 0.8, c = 3, and β = 10. For a = 0 and r = 0 there exists
the solution
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Scaled Time

MAX V

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-4.

-3.

-2.

-1.

0.

1.

2.

3.

4.

Fig. 1.24. Solutions along the continuation path of (1.16) from r = 0 to r = 20.

x(t) = sin (βt), y(t) = cos (βt), v(t) ≡ 0, w(t) ≡ 0.

We continue this solution in the forcing amplitude r, from r = 0 to, say,
r = 20. The result is shown in Fig. 1.23, with some of the solutions along this
family plotted versus time in Fig. 1.24.

If the forcing is not periodic, or difficult to model by an autonomous os-
cillator, then the equations can be rewritten in autonomous form as follows.
The non-autonomous system

{
u′(t) = f(t,u(t)), u(·), f(·) ∈ R

n, t ∈ [0, 1],
b(u(0),u(1)) = 0, b(·) ∈ R

n ,

can be transformed into






u′(t) = f(v(t),u(t)), u(·), f(·) ∈ R
n, t ∈ [0, 1],

v′(t) = 1, v(·) ∈ R,
b(u(0),u(1)) = 0, b(·) ∈ R

n ,
v(0) = 0,

which is autonomous, with n + 1 ODEs and n + 1 boundary conditions.

1.5 Computing Connecting Orbits

Orbits that connect fixed points of a vector field are important in many
applications. A basic algorithm, which can be represented in various forms
[25, 6, 19] consists of continuation of solutions to the equations
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u′(t) = T f(u(t),λ), u(·), f(·, ·) ∈ R
n, λ ∈ R

nλ , (1.17)
{

f(w0,λ) = 0,
f(w1,λ) = 0,

(1.18)

{
fu(w0,λ)v0i = µ0iv0i, i = 1, . . . , n0,
fu(w1,λ)v1i = µ1iv1i, i = 1, . . . , n1,

(1.19)

{
v∗

0i v0i = 1, i = 1, . . . , n0,
v∗

1i v1i = 1, i = 1, . . . , n1,
(1.20)

∫ 1

0

(f(u,λ) − f(û, λ̂))∗ fu(û, λ̂) f(û, λ̂) dt = 0, (1.21)

{
u(0) = w0 + ε0

∑n0

i=1 c0iv0i,
∑n0

i=1 c2
0i = 1,

u(1) = w1 + ε1

∑n1

i=1 c1iv1i,
∑n1

i=1 c2
1i = 1.

(1.22)

Equation (1.17) is the ODE with independent variable t scaled to [0, 1]. Equa-
tion (1.18) defines two fixed points w0 and w1. We assume in (1.19) that
fu(w0,λ) has n0 distinct real positive eigenvalues µ0i with eigenvectors v0i,
and fu(w1,λ) has n1 distinct real negative eigenvalues µ1i with eigenvectors
v1i. Equation (1.20) normalizes the eigenvectors. Equation (1.21) gives the
phase condition, with reference orbit û(t), which is a necessary condition for

D(σ) =

∫ 1

0

||u′(t + σ) − û′(t) ||2 dt

to be minimized over σ; here we use u′′(t) = fu(u,λ)u′(t) = fu(u,λ) f(u,λ).
Finally, (1.22) requires u(0) to lie in the tangent manifold U0 at ‘distance’ ε0

from w0; similarly, u(1) must lie in S1 at distance ε1 from w1.
Using (1.22) we can eliminate w0 and w1, to be left with n coupled dif-

ferential equations subject to

nc = 2n + (n + 1)(n0 + n1) + 3

constraints. In addition to u(t) ∈ R
n we have scalar variables

λ ∈ R
nλ , ε0, ε1 ∈ R,

µ0i, c0i ∈ R, v0i ∈ R
n, i = 1, . . . , n0,

µ1i, c1i ∈ R, v1i ∈ R
n, i = 1, . . . , n1.

The total number of scalar variables equals

nv = nλ + (n + 2)(n0 + n1) + 2.

Formally, we need nv = nc − n for a single heteroclinic connection; this gives
nλ = n − (n0 + n1) + 1. For a family of connecting orbits, we must use
n − (n0 + n1) + 2 free parameters. Note that T is large and fixed in this
continuation.
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Fig. 1.25. Geometric interpretation of the equations for computing heteroclinic
orbits in the special case n = 2, n0 = n1 = 1.

First consider the special case of a heteroclinic connection between two
saddle points in R

2, that is, n = 2, n0 = n1 = 1; a graphical illustration of
this case is shown in Fig. 1.25. Then nλ + 1 = 2, i.e., a branch of heteroclinic
orbits requires two free problem parameters λ = (λ1, λ2). Consider λ2 as fixed
here.

For λ1 = λ∗
1 we assume the existence of the heteroclinic connection in

Fig. 1.25(b). Generically, perturbation of λ1 will produce either Fig. 1.25(a)
or Fig. 1.25(c), depending on the sign of the perturbation. If ε0 and ε1 are
sufficiently small, then there exists a λ1 close to λ∗

1 for which (1.17)–(1.20)
(and (1.22)) can be satisfied; here, this is satisfied for λ1 as in Fig. 1.25(a).
Furthermore, the radii ε0 and ε1 can be chosen such that the period of the
orbit equals a given large value T , and such that the phase condition (1.21)
is satisfied.

Some more particular cases are:

1. The connection of a saddle to a node in R
2.

Here n = 2, n0 = 1, n1 = 2, so nλ = 0. A branch of connections requires
one problem parameter;

2. If n = 3, n0 = 3, n1 = 2,
then nλ = −1, which means that a two-dimensional manifold of connecting
orbits is already possible for fixed problem parameters;
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Fig. 1.26. Bifurcation diagram of the singularly-perturbed BVP (1.23).

3. The homoclinic orbit .
In this case w0 = w1 and n0 + n1 = n, so that nλ = 1. Such orbits can
also be computed as the limit of periodic orbits as the period T → ∞.

1.6 Other Applications of BVP Continuation

We end this chapter with two examples where the boundary value continuation
of Auto is applied in special contexts.

Singularly Perturbed BVP

Auto is well suited for computing solutions in systems with multiple timescales.
The numerical sensitivity caused by the difference in timescales is dealt with
by the orthogonal collocation solution technique with adaptive meshes. The
pseudo-arclength continuation ensures detection of changes along the solution
family. Consider the singularly perturbed system [26]

εu′′(x) = u(x) u′(x) (u(x)2 − 1) + u(x),

with boundary conditions

u(0) =
3

2
, u(1) = γ.

The computational formulation is in the form
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Fig. 1.27. Some solutions along the solution branch of (1.23).

{
u′

1 = u2

u′
2 =

λ

ε

(
u1u2(u

2
1 − 1) + u1

)
,

(1.23)

with boundary conditions

u1(0) =
3

2
, u1(1) = γ.

The parameter λ is a homotopy parameter to locate a starting solution. In
the first run λ varies from 0 to 1 and ε = 1 is fixed. In the second run ε is
decreased by continuation to the desired value. We use ε = 10−3.

Once a starting solution is obtained, we continue the solution for ε = 10−3

in the parameter γ. This third run takes many continuation steps. Figure 1.26
shows the bifurcation diagram with the solution family obtained by continu-
ation in γ. A selection of the solutions along the branch is shown in Fig. 1.27.

1.6.1 Orbit Continuation in IVP

One can also use continuation to compute solution families of initial value
problems (IVP). Using continuation instead of integration of a large number
of initial conditions has the advantage that the manifold described by the
orbits is well covered, even in problems with very sensitive dependence on
initial conditions. As an example, we consider the Lorenz equations given by







x′ = σ(y − x),
y′ = ρx − y − xz,
z′ = xy − βz,

(1.24)
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Fig. 1.28. Bifurcation diagram of the Lorenz equations (1.24).

with σ = 10 and β = 8/3.
Let us first analyze the stationary solutions of (1.24) as a function of ρ.

A bifurcation diagram is shown in Fig. 1.28. The zero solution is unstable for
ρ > 1. Two nonzero (symmetric) stationary solutions bifurcate at ρ = 1. These
nonzero stationary solutions become unstable for ρ > ρH ≈ 24.7. At ρH there
are Hopf bifurcations, and a family of unstable periodic solutions emanates
from each of the Hopf bifurcation points; only the maximal x-coordinate is
shown in Fig. 1.28, and Fig. 1.29 shows some of these periodic orbits in the
(x, y)-plane. The families of periodic solutions end in homoclinic orbits (infi-
nite period) at ρ ≈ 13.9.

Now let ρ = 28. For this parameter value the Lorenz equations have a
strange attractor . Let

u =





x
y
z



 ,

and write the Lorenz equations as

u′(t) = f(u(t)).

The origin 0 is a saddle point, with eigenvalues µ1 ≈ −2.66, µ2 ≈ −22.8, µ3 ≈
11.82, and corresponding normalized eigenvectors v1, v2, and v3, respectively.
We want to compute the stable manifold of the origin.

We compute an initial orbit u(t), for t from 0 to T (where T < 0), with
u(0) close to 0 in the eigenspace spanned by v1 and v2, that is,
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Fig. 1.29. Periodic orbits of the Lorenz equations (1.24).

u(0) = 0 + ε

(
cos(θ)

|µ1|
v1 − sin(θ)

|µ2|
v2

)

,

for, say, θ = 0.
The IVP can be solved with Auto as follows. Scale time t 7→ t

T . Then the
initial orbit satisfies

u′(t) = T f(u(t)), 0 ≤ t ≤ 1,

and
u(0) =

ε

|µ1|
v1.

The initial orbit has length

L = T

∫ 1

0

|| f(u(s)) || ds.

Thus the initial orbit is a solution of the equation F(X) = 0, where X =
(u(·), θ, T ) (for given L and ε) and

F(X) =







u′(t) − T f(u(t)),

u(0) − ε

(
cos(θ)

|µ1|
v1 − sin(θ)

|µ2|
v2

)

,

T
∫ 1

0
|| f(u(s)) || ds − L .

Once the initial orbit has been integrated up to a sufficiently long arclength L,
we can use pseudo-arclength continuation to find a family of solution segments
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(a)

(b)

Fig. 1.30. The stable manifold of the origin in the Lorenz equations (1.24). Panel
(a) shows the family of orbits that represent part of the manifold. Panel (b) shows
another section of the Lorenz manifold.

that forms an approximation of the Lorenz manifold , the stable manifold of
the origin. The set-up for pseudo-arclength continuation is now:
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F(X1) = 0,

(X1 − X0)
∗ Ẋ0 − ∆s = 0, (||Ẋ0 ||= 1),

with X = (u(·), θ, T ) and L and ε fixed. It is important to note here that we
do not just change the initial point (i.e., the value of θ). The continuation
stepsize ∆s measures the change in X. An impression of part of the computed
Lorenz manifold is shown in Fig. 1.30. For more detailed results see [13].

1.7 Outlook

We discussed the set-up in Auto for the numerical continuation of families of
solutions to first-order systems of ordinary differential equations. Auto uses
Keller’s pseudo-arclength continuation [22], which can equally well be applied
to solution families of algebraic problems, e.g., families of stationary solutions.
When applied to families of orbits, each continuation step involves solving a
boundary value problem. Auto uses piecewise polynomial collocation with
Gauss-Legendre collocation points (orthogonal collocation) [7, 3], similar to
Colsys [2] and Coldae [4], with adaptive mesh selection [32].

The basic objective behind the continuation methods of Auto is the ability
to perform a numerical bifurcation analysis. Such computational results give a
deeper understanding of the solution behavior, stability, multiplicity, and bi-
furcations, and they often provide direct links to the underlying mathematical
theories. We highlighted only the basic set-up in Auto. For multi-parameter
bifurcation analysis the system that implicitly defines the solution branch
is extended to contain bifurcation conditions; see, for example, [11, 12]. By
monitoring the appropriate bifurcation condition Auto detects, say, a Hopf
bifurcation when continuing a family of stationary solutions in one parame-
ter. This bifurcation point can subsequently be continued by extending the
set-up for pseudo-arclength continuation with extra equations (the bifurcation
condition), and freeing a second parameter. For so-called minimally extended
systems see [20, 24].

There is a need for further refinement of existing continuation algorithms
and software for bifurcation analysis, and there is a need for their extension to
new classes of problems. Probably the greatest challenges lie in the develop-
ment of numerical continuation and bifurcation software for partial differential
equations. There is such a package for scalar nonlinear elliptic PDEs on gen-
eral domains in R

2 [5], which is based on multigrid solution techniques; see
also [27, 28, 29]. Good results have also been obtained with stabilized simple
iteration schemes for computing stationary PDE solutions ‘with mostly stable
modes’; see, for example, [33]. There remains a need for general bifurcation
software for systems of elliptic PDEs, subject to general boundary conditions
and integral constraints. For the case of such systems on simple domains in
R

2, the generalization of the collocation method of Sect. 1.2.3 carries some
promise. To become comparable in performance to current ODE bifurcation
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software it is necessary to use adaptive meshes. In this case the direct solution
of the linear systems arising in Newton’s method remains feasible, so that a
high degree of robustness is possible. For developments in this directions, see
[10, 15].

The chapters in this book also provide a wide range of examples of exten-
sions and refinements of the continuation algorithms.
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