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Dynamics under the Influence of

Stochastic Forces
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2.1 Newton’s Equation and Langevin’s Equation

In this section we assume that the constituents of matter can be described classically. We are
interested in reaction processes occuring in the bulk, either in physiological liquids, membranes or
proteins. The atomic motion of these materials is described by the Newtonian equation of motion

mi
d2

dt2
ri = − ∂

∂ri
V (r1, . . . , rN ) (2.1)

where ri (i = 1, 2, . . . , N) describes the position of the i-th atom. The number N of atoms is, of
course, so large that solutions of Eq. (2.1) for macroscopic systems are impossible. In microscopic
systems like proteins the number of atoms ranges between 103 to 105, i.e., even in this case the
solution is extremely time consuming.

However, most often only a few of the degrees of freedom are involved in a particular biochemical
reaction and warrant an explicit theoretical description or observation. For example, in the case of
transport one is solely interested in the position of the center of mass of a molecule. It is well known
that molecular transport in condensed media can be described by phenomenological equations much
simpler than Eq. (2.1), e.g., by the Einstein diffusion equation. The same holds true for reaction
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4 Dynamics and Stochastic Forces

processes in condensed media. In this case one likes to focus onto the reaction coordinate, e.g., on
a torsional angle.
In fact, there exist successful descriptions of a small subset of degrees of freedom by means of
Newtonian equations of motion with effective force fields and added frictional as well as (time
dependent) fluctuating forces. Let us assume we like to consider motion along a small subset of the
whole coordinate space defined by the coordinates q1, . . . , qM for M ≪ N . The equations which
model the dynamics in this subspace are then (j = 1, 2, . . . , M)

µj
d2

dt2
qj = − ∂

∂qj
W (q1, . . . , qM ) − γj

d

dt
qj + σj ξj(t). (2.2)

The first term on the r.h.s. of this equation describes the force field derived from an effective
potential W (q1, . . . , qM ), the second term describes the velocity ( d

dtqj) dependent frictional forces,
and the third term the fluctuating forces ξj(t) with coupling constants σj . W (q1, . . . , qM ) includes
the effect of the thermal motion of the remaining n − M degrees of freedom on the motion along
the coordinates q1, . . . , qM .
Equations of type (2.2) will be studied in detail further below. We will not “derive” these equations
from the Newtonian equations (2.1) of the bulk material, but rather show by comparision of the
predictions of Eq. (2.1) and Eq. (2.2) to what extent the suggested phenomenological descriptions
apply. To do so and also to study further the consequences of Eq. (2.2) we need to investigate
systematically the solutions of stochastic differential equations.

2.2 Stochastic Differential Equations

We consider stochastic differential equations in the form of a first order differential equation

∂t x(t) = A[x(t), t] + B[x(t), t] · η(t) (2.3)

subject to the initial condition

x(0) = x0. (2.4)

In this equation A[x(t), t] represents the so-called drift term and B[x(t), t] ·η(t) the noise term
which will be properly characterized further below. Without the noise term, the resulting equation

∂tx(t) = A[x(t), t]. (2.5)

describes a deterministic drift of particles along the field A[x(t), t].
Equations like (2.5) can actually describe a wide variety of phenomena, like chemical kinetics or
the firing of neurons. Since such systems are often subject to random perturbations, noise is
added to the deterministic equations to yield associated stochastic differential equations. In such
cases as well as in the case of classical Brownian particles, the noise term B[x(t), t] ·η(t) needs
to be specified on the basis of the underlying origins of noise. We will introduce further below
several mathematical models of noise and will consider the issue of constructing suitable noise
terms throughout this book. For this purpose, one often adopts a heuristic approach, analysing the
noise from observation or from a numerical simulation and selecting a noise model with matching
characteristics. These characteristics are introduced below.
Before we consider characteristics of the noise term η(t) in (2.3) we like to demonstrate that the
one-dimensional Langevin equation (2.2) of a classical particle, written here in the form

µ q̈ = f(q) − γ q̇ + σ ξ(t) (2.6)

April 23, 2000 Preliminary version



2.3. HOW TO DESCRIBE NOISE 5

is a special case of (2.3). In fact, defining x ∈ R
2 with components x1 = m, and q̇, x2 = m q

reproduces Eq. (2.3) if one defines

A[x(t), t] =

(
f(x2/m) − γ x1/m

x1

)
, B[x(t), t] =

(
σ 0
0 0

)
, and η(t) =

(
ξ(t)
0

)
. (2.7)

The noise term represents a stochastic process. We consider only the factor η(t) which describes
the essential time dependence of the noise source in the different degrees of freedom. The matrix
B[x(t), t] describes the amplitude and the correlation of noise between the different degrees of
freedom.

2.3 How to Describe Noise

We are now embarking on an essential aspect of our description, namely, how stochastic aspects
of noise η(t) are properly accounted for. Obviously, a particular realization of the time-dependent
process η(t) does not provide much information. Rather, one needs to consider the probability of
observing a certain sequence of noise values η1,η2, . . . at times t1, t2, . . . . The essential information
is entailed in the conditional probabilities

p(η1, t1; η2, t2; . . . |η0, t0;η−1, t−1; . . . ) (2.8)

when the process is assumed to generate noise at fixed times ti, ti < tj for i < j. Here p( | ) is
the probability that the random variable η(t) assumes the values η1,η2, . . . at times t1, t2, . . . , if

it had previously assumed the values η0,η−1, . . . at times t0, t−1, . . . .

An important class of random processes are so-called Markov processes for which the conditional
probabilities depend only on η0 and t0 and not on earlier occurrences of noise values. In this case
holds

p(η1, t1;η2, t2; . . . |η0, t0;η−1, t−1; . . . ) = p(η1, t1; η2, t2; . . . |η0, t0) . (2.9)

This property allows one to factorize p( | ) into a sequence of consecutive conditional probabilities.

p(η1, t1;η2, t2; . . . |η0, t0) = p(η2, t2;η3, t3; . . . |η1, t1) p(η1, t1|η0, t0)

= p(η3, t3;η4, t4; . . . |η2, t2) p(η2, t2|η1, t1) p(η1, t1|η0, t0)

... (2.10)

The unconditional probability for the realization of η1,η2, . . . at times t1, t2, . . . is

p(η1, t1;η2, t2; . . . ) =
∑

η0

p(η0, t0) p(η1, t1|η0, t0) p(η2, t2|η1, t1) · · · (2.11)

where p(η0, t0) is the unconditional probability for the appearence of η0 at time t0. One can
conclude from Eq. (2.11) that a knowledge of p(η0, t0) and p(ηi, ti|ηi−1, ti−1) is sufficient for a
complete characterization of a Markov process.

Before we proceed with three important examples of Markov processes we will take a short detour
and give a quick introduction on mathematical tools that will be useful in handling probability
distributions like p(η0, t0) and p(ηi, ti|ηi−1, ti−1).

Preliminary version April 23, 2000



6 Dynamics and Stochastic Forces

Characteristics of Probability Distributions

In case of a one-dimensional random process η, denoted by η(t), p(η, t) dη gives the probability
that η(t) assumes a value in the interval [η, η + dη] at time t.
Let f [η(t)] denote some function of η(t). f [η(t)] could represent some observable of interest, e.g.,
f [η(t)] = η2(t). The average value measured for this observable at time t is then

〈
f [η(t)]

〉
=

∫

Ω
dη f [η] p(η, t) . (2.12)

Here Ω denotes the interval in which random values of η(t) arise. The notation 〈· · ·〉 on the left side
of (2.12) representing the average value is slightly problematic. The notation of the average should
include the probability distribution p(η, t) that is used to obtain the average. Misunderstandings
can occur,

• if f [η(t)] = 1 and hence any reference to η and p(η, t) is lost,

• if dealing with more than one random variable, and if thus it becomes unclear over which
variable the average is taken and,

• if more than one probability distribution p(η, t) are under consideration and have to be
distinguished.

We will circumvent all of these ambiguities by attaching an index to the average 〈· · ·〉 denoting the
corresponding random variable(s) and probability distribution(s), if needed. In general however,
the simple notation adopted poses no danger since in most contexts the random variable and
distribution underlying the average are self-evident.
For simplicity we now deal with a one-dimensional random variable η with values on the complete
real axis, hence Ω = R. In probability theory the Fourier-transform G(s, t) of p(η, t) is referred to
as the characteristic function of p(η, t).

G(s, t) =

∫ +∞

−∞
dη p(η, t) ei s η . (2.13)

Since the Fourier transform can be inverted to yield p(η̃, t)

p(η̃, t) =
1

2π

∫ +∞

−∞
ds G(s, t) e−i s η̃ , (2.14)

G(s, t) contains all information on p(η, t).
The characteristic function can be interpreted as an average of f [η(t)] = ei s η(t), and denoted by

G(s, t) =
〈
ei s η(t)

〉
. (2.15)

Equation (2.15) prompts one to consider the Taylor expansion of (2.15) for (is) around 0:

G(s, t) =
∞∑

n=0

〈
ηn(t)

〉 (i s)n

n!
(2.16)

where
〈
ηn(t)

〉
=

∫
dη ηn p(η, t) (2.17)

April 23, 2000 Preliminary version



2.3:How to Describe Noise 7

are the so-called moments of p(η, t). One can conclude from (2.14, 2.16, 2.17) that the moments
〈ηn(t)〉 completely characterize p(η, t).
The moments 〈ηn(t)〉 can be gathered in a statistical analysis as averages of powers of the stochastic
variable η(t). Obviously, it is of interest to employ averages which characterize a distribution p(η, t)
as succinctly as possible, i.e., through the smallest number of averages. Unfortunately moments
〈ηn(t)〉 of all orders of n contain significant information about p(η, t).
There is another, similar, but more useful scheme to describe probability distributions p(η, t); the
cumulants

〈〈
ηn(t)

〉〉
. As moments are generated by the characteristic function G(s, t), cumulants

are generated by the logarithm of the characteristic function log [G(s, t)]

log[G(s, t)] =
∞∑

n=1

〈〈
ηn(t)

〉〉 (i s)n

n!
. (2.18)

Cumulants can be expressed in terms of 〈ηn(t)〉 by taking the logarithm of equation (2.16) and
comparing the result with (2.18). The first three cumulants are

〈〈
η1(t)

〉〉
=

〈
η1(t)

〉
, (2.19)

〈〈
η2(t)

〉〉
=

〈
η2(t)

〉
−
〈
η1(t)

〉2
, (2.20)

〈〈
η3(t)

〉〉
=

〈
η3(t)

〉
− 3

〈
η2(t)

〉〈
η1(t)

〉
+ 2

〈
η1(t)

〉3
. (2.21)

These expressions reveal that the first cumulant is equal to the average of the stochastic variable
and the second cumulant is equal to the variance1 . The higher orders of cumulants contain less
information about p(η, t) than lower ones. In fact it can be shown, that in the frequently arising case
of probabilities described by Gaussian distributions (the corresponding random processes are called
Gaussian) all, but the first and second-order cumulants vanish. For non-Gaussian distributions,
though, all cumulants are non-zero as stated in the theorem of Marcienkiewicz [24]). Nevertheless,
cumulants give a more succint description of p(η, t) than moments do, dramatically so in case of
Gaussian processes. This is not the only benefit as we will see considering scenarios with more than
one random variable η(t).
We now proceed to probability distributions involving two random variables as they arise in case of
η(t) ∈ R

2 or if one looks at single random process η(t) ∈ R at two different times. Both cases are
treated by the same tools, however, names and notation differ. We will adopt a notation suitable
for a single random process η(t) observed at two different times t0 and t1, and governed by the
unconditional probability distribution p(η0, t0; η1, t1). p(η1, t1; η0, t0) dη1dη0 gives the probability
that η(t) assumes a value in the interval [η0, η0 + dη0] at time t0, and a value [η1, η1 + dη1] at time
t1.
As stated in equation (2.11) p(η0, t0; η1, t1) can be factorized into the unconditional probability
p(η0, t0) and the conditional probability p(η0, t0|η1, t1). Finding η0 and η1 is just as probable as
first obtaining η0 and then finding η1 under the conditition of having found η0 already. The
probability of the later is given by the conditional probability p(η1, t1|η0, t0). Hence one can write,

p(η0, t0; η1, t1) = p(η1, t1|η0, t0) p(η0, t0) . (2.22)

In the case that η1 is statistically independent of η0 the conditional probability p(η1, t1|η0, t0) does
not depend on η0 or t0 and we obtain

p(η1, t1|η0, t0) = p(η1, t1) , (2.23)

1The variance is often written as the average square deviation from the mean
〈

(η(t) − 〈η(t)〉)2
〉

which is equivalent

to
〈

η
2(t)

〉

− 〈η(t)〉2.

Preliminary version April 23, 2000



8 Dynamics and Stochastic Forces

and, hence,

p(η0, t0; η1, t1) = p(η1, t1) p(η0, t0) . (2.24)

In order to characterize p(η0, t0; η1, t1) and p(η0, t0|η1, t1) one can adopt tools similar to those
introduced to characterize p(η0, t0). Again one basic tool is the average, now the average of a
function g[η(t0), η(t1)] with two random variables. Note, that g[η(t0), η(t1)] depends on two random
values η0 and η1 rendered by a single random process η(t) at times t0 and t1.

〈
g[η(t0) η(t1)]

〉
=

∫

Ω
dη1

∫

Ω
dη0 g[η1, η0] p(η0, t0; η1, t1)

=

∫
dη0 p(η0, t0)

∫
dη1 g[η1, η0] p(η1, t1|η0, t0) . (2.25)

The same advise of caution as for the average of one random variable applies here aswell.
The characteristic function is the Fourier-transform of p(η0, t0; η1, t1) in η0 and η1.

G(s0, t0; s1, t1) =

∫
dη0 p(η0, t0)

∫
dη1 p(η1, t1|η0, t0) exp

[
i (s0 η0 + s1 η1)

]

=
〈
ei (s0η(t0)+ s1η(t1))

〉
. (2.26)

This can be written as the average [c.f. Eq. (2.25)]

G(s0, t0; s1, t1) =
〈
ei(s0η(t0)+s1η(t1))

〉
. (2.27)

The coefficients of a Taylor expansion of G(s0, t0; s1, t1) in (is0) and (is1), defined through

G(s0, t0; s1, t1) =
∞∑

n0,n1=0

〈
ηn0(t0) ηn1(t1)

〉 (i s0)
n0

n0!

(i s1)
n1

n1!
(2.28)

〈
ηn0(t0) ηn1(t1)

〉
=

∫
dη0 ηn0

0 p(η0, t0)

∫
dη1 ηn1

1 p(η1, t1|η0, t0) . (2.29)

are called correlations or correlation functions; the later if one is interested in the time dependency.
Cumulants are defined through the expansion

log
[
G(s0, t0; s1, t1)

]
=

∞∑

n0,n1=0

〈〈
ηn0(t0) ηn1(t1)

〉〉 (i s0)
n0

n0!

(i s1)
n1

n1!
. (2.30)

These multi-dimensional cumulants can also be expressed in terms of correlation functions and
moments. For example, one can show

〈〈
η(t0) η(t1)

〉〉
=

〈
η(t0) η(t1)

〉
−
〈
η(t0)

〉〈
η(t1)

〉
. (2.31)

Cumulants are particularly useful if one has to consider the sum of statistically independent random
values, for example the sum

σ = η0 + η1 . (2.32)

The probability p(σ, t0, t1) for a certain value σ to occur is associated with the characteristic function

Gσ(r, t0, t1) =

∫
dσ p(σ, t0, t1) ei rσ . (2.33)
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2.3:How to Describe Noise 9

p(σ, t0, t1) can be expressed as

p(σ, t0, t1) =

∫∫
dη0 dη1 p(η0, t0; η1, t1) δ(η0 + η1 − σ) . (2.34)

Accordingly, one can write

Gσ(r, t0, t1) =

∫
dσ

∫∫
dη0 dη1 p(η0, t0; η1, t1) δ(η0 + η1 − σ) ei rσ . (2.35)

Integrating over σ results in

Gσ(r, t0, t1) =

∫∫
dη0 dη1 p(η0, t0; η1, t1) ei r(η0+η1) . (2.36)

This expression can be equated to the characteristic function Gη0η1(r, t0; r, t1) of the two summands
η0 and η1, where

Gη0η1(s0, t0; s1, t1) =

∫∫
dη0 dη1 p(η0, t0; η1, t1) ei (s0η0+s1η1) . (2.37)

The statistical independence of η0 and η1 in (2.32) is expressed by equation (2.24) as p(η0, t0; η1, t1) =
p(η0, t0) p(η1, t1) and one can write

Gη0η1(s0, t0; s1, t1) =

∫
dη0 p(η0, t0) ei s0η0

∫
dη1 p(η1, t1) ei s1η1 (2.38)

from which follows

Gη0η1(s0, t0; s1, t1) = Gη0(s0, t0) Gη1(s1, t1) , (2.39)

and, hence,

log[Gη0η1(s0, t0; s1, t1)] = log[Gη0(s0, t0)] + log[Gη1(s1, t1)] . (2.40)

Taylor-expansion leads to the cumulant identity
〈〈

ηn0(t0) ηn1(t1)
〉〉

= 0 , ∀ n0, n1 ≥ 1 . (2.41)

One can finally apply Gσ(r, t0, t1) = Gη0η1(r, t0; r, t1), see (2.36) and (2.37) and compare the Taylor
coefficients.

〈〈(
η(t0) + η(t1)

)n〉〉
=

∑

n0,n1

〈〈
ηn0(t0) ηn1(t1)

〉〉 n!

n0!n1!
δ(n0 + n1 − n) . (2.42)

According to equation (2.41) all but the two summands with (n0 = n, n1 = 0) and (n0 = 0, n1 = n)
disappear and we deduce

〈〈(
η(t0) + η(t1)

)n〉〉
=

〈〈
ηn(t0)

〉〉
+
〈〈

ηn(t1)
〉〉

. (2.43)

This result implies that cumulants of any order are simply added if one accumulates the corre-
sponding statistically independent random variables, hence the name cumulant. For an arbitrary
number of statistically independent random variables ηj or even continuously many η(t) one can
write 〈〈(∑

j

ηj

)n
〉〉

=
∑

j

〈〈
ηn

j

〉〉
and (2.44)

〈〈(∫
dt η(t)

)n〉〉
=

∫
dt
〈〈

ηn(t)
〉〉

, (2.45)

properties, which will be utilized below.
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10 Dynamics and Stochastic Forces

Figure 2.1: The probability density distribution (2.47) of a Wiener process for D = 1 in arbi-
trary temporal and spatial units. The distribution (2.47) is shown for ω0 = 0 and (t1 − t0) =
0.1, 0.3, 0.6, 1.0, 1.7, 3.0, and 8.0.

Wiener Process

We will now furnish concrete, analytical expressions for the probabilities characterizing three im-
portant Markov processes. We begin with the so-called Wiener process. This process, described
by ω(t) for t ≥ 0, is characterized by the probability distributions

p(ω0, t0) =
1√

4πDt0
exp

(
− ω2

0

4Dt0

)
, (2.46)

p(ω1, t1|ω0, t0) =
1√

4πD ∆t
exp

(
− (∆ω)2

4D ∆t

)
, (2.47)

with ∆ω = (ω1 − ω0) ,
∆t = t1 − t0 .

The probabilities (see Figure 2.1) are parameterized through the constant D, referred to as the
diffusion constant, since the probability distributions p(ω0, t0) and p(ω1, t1|ω0, t0) are solutions of
the diffusion equation (3.13) discussed extensively below. The Wiener process is homogeneous in
time and space, which implies that the conditional transition probability p(ω1, t1|ω0, t0) depends
only on the relative variables ∆ω and ∆t. Put differently, the probability p(∆ω, ∆t) for an increment
∆ω to occur is independent of the current state of the Wiener process ω(t). The probability is

p(∆ω, ∆t) = p(ω0 + ∆ω, t0 + ∆t|ω0, t0) =
1√

4πD ∆t
exp

(
− (∆ω)2

4D ∆t

)
. (2.48)

Characteristic Functions, Moments, Correlation Functions and Cumulants for the

Wiener Process

In case of the Wiener process simple expressions can be provided for the characteristics introduced
above, i.e., for the characteristic function, moments and cumulants. Combining (2.48) and (2.13)
one obtains for the characteristic function

G(s, t) = e−D t s2
. (2.49)
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2.3:How to Describe Noise 11

A Taylor expansion allows one to identify the moments2

〈
ωn(t)

〉
=

{
0 for odd n,

(n − 1)!! (2D t)n/2 for even n,
(2.50)

The definition (2.18) and (2.49) leads to the expression for the cumulants

〈〈
ωn(t)

〉〉
=

{
2 D t for n = 2,

0 otherwise .
(2.51)

For the two-dimensional characteristic functions one can derive, using (2.47) and (2.26)

G(s0, t0; s1, t1) = exp
[
−D

(
s2
0 t0 + s2

1 t1 + 2 s0 s1 min (t0, t1)
)]

. (2.52)

From this follow the correlation functions

〈
ωn1(t1) ωn0(t0)

〉
=





0 for odd (n0 + n1),

2 D min(t1, t0) for n0 = 1 and n1 = 1,

12 D2 t0 min(t1, t0) for n0 = 1 and n1 = 3,

4 D2
(
t0 t1 + 2 min2(t1, t0)

)
for n0 = 2 and n1 = 2,

· · ·

(2.53)

and, using the definition (2.30), the cumulants

〈〈
ωn1(t1) ωn0(t0)

〉〉
=

{
2 D min(t1, t0) for n0 = n1 = 1,

0 otherwise for n0, n1 6= 0 .
(2.54)

The Wiener Process as the Continuum Limit of a Random Walk on a Lattice

The Wiener process is closely related to a random walk on a one-dimensional lattice with lattice
constant a. A n-step walk on a lattice is performed in discrete times steps tj = jτ , with j =
0, 1, 2, . . . , n. The walk may start at an arbitrary lattice site x0. One can choose this starting
position as the origin of the coordinate system so that one can set x0 = 0. The lattice sites are
then located at xi = ia, i ∈ Z.
At each time step the random walker moves with equal probability to the neighboring right or left
lattice site. Thus, after the first step with t = τ one will find the random walker at x = ±a, i.e. at
site x±1 with probabitlity P (±a, τ) = 1

2 . For a two-step walk the following pathes are possible:

path 1 : two steps to the left,
path 2 : one step to the left and then one step to the right,
path 3 : one step to the right and then one step to the left,
path 4 : two steps to the right.

Each path has a probability of 1
4 , a factor 1

2 for each step. Pathes 2 and 3 both terminate at lattice
site x0. The probability to find a random walker after two step at position x0 = 0 is therefore
P (0, 2τ) = 1

2 . The probabilities for lattice sites x±2 reached via path 1 and 4 respectively are
simply P (±2a, 2τ) = 1

4 .

2The double factorial n!! for positive n ∈ N denotes the product n(n−2)(n−4) . . . 1 for odd n and n(n−2)(n−4) . . . 2
for even n.
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12 Dynamics and Stochastic Forces

For an n-step walk one can proceed like this suming over all possible pathes that terminate at
a given lattice site xi. Such a summation yields the probability P (ia, nτ). However, to do so
effectively a more elegant mathematical description is appropriate. We denote a step to the right
by an operator R, and a step to the left by an operator L. Consequently a single step of a random
walker is given by 1

2(L + R), the factor 1
2 denoting the probabilty for each direction. To obtain a

n-step walk the above operator 1
2(L+R) has to be iterated n times. For a two-step walk one gets

1
4 (L + R) ◦ (L + R). Expanding this expression results in 1

4 (L2 + L ◦ R + R ◦ L + R2). Since a
step to the right and then to the left amounts to the same as a step first to the left and then to
the right, it is safe to assume that R and L commute. Hence one can write 1

4 L2 + 1
2 L ◦R+ 1

4 R2.
As the operator expression Lp ◦ Rq stands for p steps to the left and q steps to the right one
can deduce that Lp ◦ Rq represents the lattice site xq−p. The coefficients are the corresponding
probabilties P

(
(q − p) a, (q + p) τ

)
.

The algebraic approach above proofs useful, since one can utilize the well known binomial formula

(x + y)n =
n∑

k=0

(
n

k

)
xk yn−k . (2.55)

One can write

[
1

2
(L + R)

]n

=

(
1

2

)n n∑

k=0

(
n

k

)
Lk Rn−k
︸ ︷︷ ︸

=x2k−n

, (2.56)

and obtains as coefficients of xi the probabilities

P (i a, n τ) =
1

2n

(
n

n+i
2

)
. (2.57)

One can express (2.57) as

P (x, t) =
1

2t/τ

(
t/τ

t
2τ + x

2a

)
. (2.58)

The moments of the discrete probability distribution P (x, t) are

〈
xn(t)

〉
=

∞∑

x=−∞
xn P (x, t)

=





0 for odd n,

a2 t
τ for n = 2,

a4 t
τ

(
3 t

τ − 2
)

for n = 4,

a6 t
τ

(
15
(

t
τ

)2 − 30 t
τ + 16

)
for n = 6,

· · · .

(2.59)

We now want to demonstrate that in the continuum limit a random walk reproduces a Wiener
process. For this purpose we show that the unconditional probability distributions of both processes
match. We do not consider conditional probabilities p(x1, t1|x0, t0) as they equal unconditional
probabilities p(x1 − x0, t1 − t0) in both cases; in a Wiener process aswell as in a random walk.
To turn the discrete probability distribution (2.58) into a continuous probability density distribution
one considers adjacent bins centered on every lattice site that may be occupied by a random walker.
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2.3:How to Describe Noise 13

Figure 2.2: The probability density distributions (2.60) for the first four steps of a random walk on
a discrete lattice with lattice constant a are shown. In the fourth step the continuous approxima-
tion (2.63) is superimposed.

Note, that only every second lattice site can be reached after a particular number of steps. Thus,
these adjacent bins have a base length of 2a by which we have to divide P (x, t) to obtain the
probability density distribution p(x, t) in these bins (see Figure 2.2).

p(x, t) dx =
1

2a

1

2t/τ

(
t/τ

t
2τ + x

2a

)
dx . (2.60)

We then rescale the lattice constant a and the length τ of the time intervals to obtain a continuous
description in time and space. However, τ and a need to be rescaled differently, since the spatial
extension of the probability distribution p(x, t), characterized by it’s standard deviation

√〈〈
x2(t)

〉〉
=

√〈
x2(t)

〉
−
〈
x(t)

〉2
= a

√
t

τ
, (2.61)

is not proportional to t, but to
√

t. This is a profound fact and a common feature for all processes
accumulating uncorrelated values of random variables in time. Thus, to conserve the temporal-
spatial proportions of the Wiener process one rescales the time step τ by a factor ε and the lattice
constant a by a factor

√
ε:

τ 7−→ ε τ and a 7−→
√

ε a . (2.62)

A continuous description of the binomial density distribution (2.60) is then approached by taking
the limit ε → 0. When ε approaches 0 the number of steps n = t

τε in the random walk goes to
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14 Dynamics and Stochastic Forces

infinity and one observes the following identity derived in appendix 2.7 of this chapter.

p(x, t) dx =
1

2 ε a
2−

t
ετ

( t
ετ

t
2ετ + x

2
√

εa

)
dx

=

√
nτ

4 a2 t
2−n

(
n

n
2 + x

a

√
n τ
4t

)
dx

(2.165)
=

√
τ

2π a2 t
exp

(
− x2 τ

2 a2 t

)
dx

(
1 + O

(
1

n

))
. (2.63)

The fraction τ/a2 is invariant under rescaling (2.62) and, hence, this quantity remains in the
continuous description (2.63) of the probability density distribution p(x, t). Comparing equations
(2.63) and (2.48) one identifies D = a2/2τ . The relation between random step length a and time
unit τ obviously determines the rate of diffusion embodied in the diffusion constant D: the larger
the steps a and the more rapidly these are performed, i.e., the smaller τ , the quicker the diffusion
process and the faster the broadening of the probability density distribution p(x, t). According to
(2.61) this broadening is then

√
2Dt as expected for a diffusion process.

Computer Simulation of a Wiener Process

The random walk on a lattice can be readily simulated on a computer. For this purpose one
considers an ensemble of particles labeled by k, k = 1, 2, . . . N , the positions x(k)(jτ) of which are
generated at time steps j = 1, 2, . . . by means of a random number generator. The latter is a
routine that produces quasi-random numbers r, r ∈ [0, 1] which are homogenously distributed in
the stated interval. The particles are assumed to all start at position x(k)(0) = 0. Before every
displacement one generates a new r. One then executes a displacement to the left in case of r < 1

2
and a displacement to the right in case of r ≥ 1

2 .

In order to characterize the resulting displacements x(k)(t) one can determine the mean, i.e. the
first moment or first cumulant,

〈
x(t)

〉
=

1

N

N∑

k=1

x(k)(t) (2.64)

and the variance, i.e. the second cumulant,

〈〈
x2(t)

〉〉
=

〈
x2(t)

〉
−
〈
x(t)

〉2
=

1

N

N∑

k=1

(
x(k)(t)

)2
−

〈
x(t)

〉2
(2.65)

for t = τ, 2τ, . . . . In case of x(k)(0) = 0 one obtains 〈x(t)〉 ≈ 0. The resulting variance (2.65) is
presented for an actual simulation of 1000 walkers in Figure 6.1.

A Wiener Process can be Integrated, but not Differentiated

We want to demonstrate that the path of a Wiener process cannot be differentiated. For this
purpose we consider the differential defined through the limit

dω(t)

dt
:= lim

∆t→0

ω(t + ∆t) − ω(t)

∆t
= lim

∆t→0

∆ω(t)

∆t
. (2.66)
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Figure 2.3:
〈〈
x2(t)

〉〉
resulting from a simulated random walk of 1000 particles on a lattice for τ = 1

and a = 1. The simulation is represented by dots, the expected [c.f., Eq. (2.61)] result
〈〈
x2(t)

〉〉
= t

is represented by a solid line.

What is the probability for the above limit to render a finite absolute value for the derivative
smaller or equal an arbitrary constant v? For this to be the case |∆ω(t)| has to be smaller or equal
v ∆t. The probability for that is

∫ v ∆t

−v ∆t
d(∆ω) p(∆ω, ∆t) =

1√
4πD ∆t

∫ v ∆t

−v ∆t
d(∆ω) exp

[
− (∆ω)2

4D ∆t

]

= erf

[√
∆t

D

v

2

]
. (2.67)

The above expression vanishes for ∆t → 0. Hence, taking the differential as proposed in equa-
tion (2.66) we would almost never obtain a finite value for the derivative. This implies that the
velocity corresponding to a Wiener process is almost always plus or minus infinity.

It is instructive to consider this calamity for the random walk on a lattice as well. The scaling
(2.62) renders the associated velocities like ±a

τ infinite and the random walker seems to be infinitely
fast as well. Nevertheless, for the random walk on a lattice with non-zero ǫ one can describe
the velocity through a discrete stochastic process ẋ(t) with the two possible values ±a

τ for each
time interval ]j τ, (j + 1) τ ], j ∈ N. Since every random step is completely independent of the
previous one, ẋi = ẋ(ti) with ti ∈]i τ, (i + 1) τ ] is completely uncorrelated to ẋi−1 = ẋ(ti−1) with
ti−1 ∈ [(i − 1) τ, i τ ], and x(t) with t ≤ i τ . Thus, we have

P (ẋi, ti) =

{
1
2 for ẋi = ±a

τ ,

0 otherwise,
(2.68)

P (ẋj , tj |ẋi, ti) =





{
1 for ẋj = ẋi

0 for ẋj 6= ẋi

, for i = j ,

P (ẋj , tj) , for i 6= j .

(2.69)
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16 Dynamics and Stochastic Forces

The velocity of a random walk on a lattice is characterized by the following statistical moments

〈
ẋn(t)

〉
=

{(
a
τ

)n
, for even n ,

0 , for odd n ,
(2.70)

and correlation functions

〈
ẋn(tj) ẋm(ti)

〉
=





{(
a
τ

)m+n
for even (m + n)

0 otherwise
for i = j ,

{(
a
τ

)m+n
for even m and even n

0 otherwise
for i 6= j .

(2.71)

If we proceed to a continuous description with probability density distributions as in equation (2.60),
we obtain

p(ẋi, ti) =
1

2

(
δ
(
ẋi +

a

τ

)
+ δ

(
ẋi −

a

τ

))
, (2.72)

p(ẋj , tj |ẋi, ti) =

{
δ
(
ẋj − ẋi

)
, for i = j ,

p(ẋj , tj) , for i 6= j ,
(2.73)

and we derive the same statistical momtents

〈
ẋn(t)

〉
=

{(
a
τ

)n
, for even n ,

0 , for odd n ,
(2.74)

and correlation functions defined for continuous ẋ range

〈
ẋn(tj) ẋm(ti)

〉
=





{(
a
τ

)m+n
, for even (m + n),

0 , otherwise.
, for i = j,

{(
a
τ

)m+n
, for even m and even n,

0 , otherwise,
, for i 6= j .

(2.75)

One encounters difficulties when trying to rescale the discrete stochastic process ẋ(ti) according
to (2.62). The positions of the delta-functions ±a

τ in the probability density distributions (2.72)
wander to ±∞. Accordingly, the statistical moments and correlation functions of even powers move
to infinity as well. Nevertheless, these correlation functions can still be treated as distributions in
time. If one views the correlation function 〈ẋ(t1) ẋ(t0)〉 as a rectangle distribution in time t1 (see
Figure 2.4), one obtains for the limit ε → 0

〈
ẋ(t1) ẋ(t0)

〉
dt1 = lim

ε→0

(√
ε a

ετ

)2

ε dt1

=
a2

τ
δ(t1 − t0) dt1 . (2.76)

Even though the probability distributions of the stochastic process ẋ(t) exhibit some unusual
features, ẋ(t) is still an admissable Markov process. Thus, one has a paradox. Since

x(tj) =

j∑

i=0

τ ẋ(ti) , (2.77)
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Figure 2.4: Cumulant (2.76) shown as a function of t1. As ε is chosen smaller and smaller (2.76)

approaches a Dirca delta distribution at t0, since the area under the graph remains τ a2

τ2 .

it is fair to claim that for the limit ε → 0 the following integral equation holds.

x(t) =

∫
dt ẋ(t) . (2.78)

The converse, however,

dx(t)

dt
= ẋ(t) (2.79)

is ill-defined as has been shown in equation (2.66).

Two questions come to mind. First, do stochastic equations like (2.3) and (2.79) make any sense?
Second, is ẋ(t) unique or are there other stochastic processes that sum up to x(t)?

The first question is quickly answered. Stochastic differential equations are only well defined by the
integral equations they imply. Even then the integrals in these integral equations have to be handled
carefully as will be shown below. Therefore, equation (2.79) should be read as equation (2.78).

We answer the second question by simply introducing another stochastic processes, the Ornstein-
Uhlenbeck process, the integral over which also yields the Wiener process. Nevertheless, all pro-
cesses that yield the Wiener process by integration over time do exhibit certain common properties
that are used to define one encompassing, idealized Markov processes, the so-called Gaussian white
noise. This process may be viewed as the time-derivative of the Wiener process. Gaussian white
noise will be our third example of a stochastic process.
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18 Dynamics and Stochastic Forces

Figure 2.5: The probability density distribution (2.81) of a Ornstein-Uhlenbeck process for σ =
√

2
and γ = 1 in arbitrary temporal and spatial units. The distribution (2.81) is shown for v0 = 0 and
v0 = 2 for t1 = 0.0, 0.1, 0.3, 0.6, 1.0, 1.7, and ∞.

Ornstein-Uhlenbeck Process

Our second example for a Markov process is the Ornstein-Uhlenbeck process. The Ornstein-

Uhlenbeck process, describing a random variable v(t), is defined through the probabilities

p(v0, t0) =
1√

π γ σ2
exp

(
− v2

0

γ σ2

)
(2.80)

p(v1, t1|v0, t0) =
1√
π S

exp

(
− 1

S

(
v1 − v0 e−γ ∆ t

)2
)

, (2.81)

with ∆t = | t1 − t0 | ,
S = γ σ2

(
1 − e−2 γ ∆ t

)
.

(2.82)

The probabilities (see Figure 2.5) are characterized through two parameters σ and γ. Their signif-
icance will be explained further below. The process is homogeneous in time, since (2.81) depends
solely on ∆t, but is not homogeneous in v. Furthermore, the Ornstein-Uhlenbeck Process is sta-
tionary, i.e., p(v0, t0) does not change in time.
The characteristic function, associated with the unconditional probability distribution p(v0, t0) in
(2.80) is also independent of time and given by

G(s) = e
−γ

(

σ s2

2

)

. (2.83)

The associated moments and cumulants are

〈
vn(t)

〉
=

{
0 for odd n,

(n − 1)!!
(

1
2 γ σ2

)n/2
for even n,

(2.84)

and

〈〈
vn(t)

〉〉
=

{
γ σ2

2 for n = 2,

0 otherwise .
(2.85)

The characteristic function for the conditional probability (2.81) is

Gv(s0, t0; s1, t1) = exp

[
−1

4
γ σ2

(
s2
0 + s2

1 + 2 s0 s1 e−γ |t1−t0|
)]

. (2.86)
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2.3:How to Describe Noise 19

The corresponding correlation functions, defined according to (2.28, 2.29) are

〈
vn1
1 (t1) vn0

0 (t0)
〉

=

∫
dv0 vn0

0 p(v0, t0)

∫
dv1 vn1

1 p(v1, t1|v0, t0) (2.87)

=





0 , for odd (n0 + n1),
1
2 γ σ2 e−γ |t1−t0| , for n0 = 1 and n1 = 1,
3
4 γ2σ4 e−γ |t1−t0| , for n0 = 1 and n1 = 3,
1
4 γ2σ4

(
1 + 2 e−2γ |t1−t0|

)
, for n0 = 2 and n1 = 2,

· · ·

(2.88)

This implies that the correlation of v(t1) and v(t0) decays exponentially. As for the Wiener process,
the most compact description of the unconditional probability is given by the cumulants

〈〈
vn1(t1) vn0(t0)

〉〉
=

{
γ σ2

2 e−γ |t1−t0| for n0 = n1 = 1,

0 otherwise, for n0 and n1 6= 0 .
(2.89)

We want to demonstrate now that integration of the Ornstein-Uhlenbeck process v(t) yields the
Wiener process. One expects the formal relationship

ω̃(t) =

∫ t

0
ds v(s) (2.90)

to hold where ω̃(t) is a Wiener process. In order to test this supposition one needs to relate the
cumulants (2.51, 2.54) and (2.85, 2.89) for these processes according to

〈〈
ω̃(t) ω̃(t′)

〉〉
=

〈〈∫ t

0
ds v(s)

∫ t′

0
ds′ v(s′)

〉〉
=

∫ t

0
ds

∫ t′

0
ds′
〈〈

v(s) v(s′)
〉〉

(2.91)

assuming t ≥ t′. By means of (2.89) and according to the integration depicted in Figure 2.6 follows

〈〈
ω̃(t) ω̃(t′)

〉〉

=
1

2
γ σ2

[ ∫ t′

0
ds′
∫ s′

0
ds e−γ (s′−s)

︸ ︷︷ ︸
©1

+

∫ t′

0
ds

∫ s

0
ds′ e−γ (s−s′)

︸ ︷︷ ︸
©2

+

∫ t

t′
ds

∫ t′

0
ds′ e−γ (s−s′)

︸ ︷︷ ︸
©3

]

= σ2 t′ +
σ2

2 γ

[
−1 + e−γ t′ + e−γ t − e−γ (t−t′)

]
.

(2.92)

For times long compared to the time scale of velocity relaxation γ−1 one reproduces Eq. (2.54)
(we don’t treat explicitly the case t ≤ t′), and for t = t′ Eq. (2.54), where D = σ2/2.
The relationship between the Ornstein-Uhlenbeck and Wiener processes defined through (2.90)
holds for all cumulants, not just for the cumulants of second order. We only had to proof rela-
tion (2.90), since all other cumulants of both processes are simply 0. This allows one to state for
D = σ2/2

ω(t) = lim
γ→∞

∫
dt v(t) . (2.93)

With respect to their probability distributions the Ornstein-Uhlenbeck process v(t) and the velocity
of a random walker ẋ(t) are different stochastic processes. However, in the limit γ → ∞ and ε → 0
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Figure 2.6: The three areas of integration as used in equation 2.92 are shown in the coordinate
plane of the two integration variables s and s′.

the following moment and correlation function turn out to be the same for both processes, if
D = σ2

2 = a2

2τ .

〈
v(t)

〉
=

〈
ẋ(t)

〉
= 0 , (2.94)

lim
γ→∞

〈
v(t1) v(t0)

〉
= lim

ε→0

〈
ẋ(t1) ẋ(t0)

〉
= 2D δ(t1 − t0) . (2.95)

Hence, one uses these later properties to define an idealized Markov process, the so-called Gaussian
white noise.

White Noise Process

An important idealized stochastic process is the so-called ‘Gaussian white noise‘. This process, de-
noted by ξ(t), is not characterized through conditional and unconditional probabilities, but through
the following statistical moment and correlation function

〈
ξ(t)

〉
= 0 , (2.96)

〈
ξ(t1) ξ(t0)

〉
= ζ2 δ(t1 − t0) . (2.97)

The attribute Gaussian implies that all cumulants higher than of second order are 0.

〈〈
ξn1(t1) ξn0(t0)

〉〉
=

{
ζ2 δ(t1 − t0) , for n0, n1 = 1 ,

0 , otherwise .
(2.98)

The reason why this process is termed ’white’ is connected with its correlation function (2.97),
the Fourier transform of which is constant, i.e., entails all frequencies with equal amplitude just as
white radiation. The importance of the process ξ(t) stems from the fact that many other stochastic
processes are described through stochastic differential equations with a (white) noise term ξ(t). We
will show this for the Wiener process below and for the Ornstein-Uhlenbeck processes later in the
script.
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2.4. ITO CALCULUS 21

As hinted by the examples in this section we can show that the integral of Gaussian white noise
happens to be a Wiener process. We prove this in the same fashion as above by deriving the
cumulants for

∫
dt ξ(t). Again the task is simplified by the fact that only one cumulant is non-zero,

namely,

〈〈∫ t1

0
ds1 ξ(s1)

∫ t0

0
ds0 v(s0)

〉〉
=

∫ t1

0
ds1

∫ t0

0
ds0

〈〈
v(s1) v(s0)

〉〉

=

∫ t1

0
ds1

∫ t0

0
ds0 ζ2 δ(s1 − s0)

= ζ2 min (t1, t0) . (2.99)

We demonstrated, thereby, the important relationship between white noise ξ(t) and the Wiener
process ω(t).

ω(t) =

∫ t

0
ds ξ(s) , (2.100)

for 2D = ζ2 = 1.

2.4 Ito calculus

The introduction to Ito’s calculus in this section is based on [13] which we recommend for further
reading as well as [30, 33].
We return to the stochastic differential equation of section 2.2, which we will now express as an
integral equation. We will model the noise term ηηη(t) by a tupel of normalized Gaussian white noise
processes ξξξ(t) with ζ = 1.

x(t) =

∫ t

0
ds A [x(s), s] +

∫ t

0
ds ξ(s)·BT [x(s), s] . (2.101)

Since x(t) is continuous, the first integral on the r.h.s. is well defined, e.g., in the sense of a Riemann
integral. However, the second integral poses problems. Let us consider the simple one-dimensional
case with an arbitrary function or stochastic process G[t].

I(t) =

∫ t

0
ds ξ(s) G[s] . (2.102)

One can rewrite the integral (2.102) in terms of a normalized Wiener process ω(t) with D = 1/2.
One subsitutes dω(s) for dsξ(s), since

∫ t
0 dsξ(s) = ω(t) =

∫ t
0 dω(s) and obtains

I(t) =

∫ t

0
dω(s) G[s] . (2.103)

The kind of Riemann-Stieltjes integral (2.103) can be approximated by the sums I
(α)
n (t) which

evaluate the integral at n discrete times steps tj = j t
n .

I(α) = ms-lim
n→∞

I(α)
n (t) , with (2.104)

I(α)
n (t) =

n∑

j=1

G [(1 − α) tj−1 + α tj ] (ω(tj) − ω(tj−1)) . (2.105)
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Two remarks about equation (2.104) and (2.105) are due. First, one has to specify the meaning
of approximation, since one is dealing with random variables. To approximate the integral I(α)

one takes the so-called mean square limit. Such a limt has to satisfy the following condition of
convergence.

X = ms-lim
n→∞

Xn , if (2.106)

lim
n→∞

〈
(Xn − X)2

〉
= 0 . (2.107)

Second, note that the sum I
(α)
n (t) is parameterized by α. This allows one to choose the position

where to evaluated G[t] within the time step intervals [tj−1, tj ]. In the limit n → ∞ as the
intervals [tj−1, tj ] become infinitely small, non-stochastic integrals become independent of α, not

so I
(α)
n (t)!

We will demonstrate the dependence of I(α) on α in two ways. We first derive a closed form of a
simple stochastic integral and thereby put forward an explicit example of α-dependence. In addition

we will determine an estimates for I
(α)
n (t) on the orders of O

(
1
n

)
and demonstrate the persistence

of the α-dependence as n goes to infinity.

The simple integral we want to solve explicitly is G[t] = ω(t).

∫ t

0
dω(s) ω(s) (2.108)

= ms-lim
n→∞

n∑

j=1

ω(τ)
(
ω(tj) − ω(tj−1)

)
, with τ = (1 − α) tj−1 + α tj

= ms-lim
n→∞

n∑

j=1

[
ω(τ)

(
ω(τ) − ω(tj−1)

)
+ ω(τ)

(
ω(tj) − ω(τ)

)]

= ms-lim
n→∞

n∑

j=1

1

2

[
−
[
ω(τ) −

(
ω(τ) − ω(tj−1)

)]2
+ ω2(τ) +

(
ω(τ) − ω(tj−1)

)2

+
[
ω(τ) +

(
ω(tj) − ω(τ)

)]2
− ω2(τ) −

(
ω(tj) − ω(τ)

)2
]

= ms-lim
n→∞

n∑

j=1

1

2

[
ω2(tj) − ω2(tj−1) +

(
ω(τ) − ω(tj−1)

)2 −
(
ω(tj) − ω(τ)

)2]
.

The first term of the jth summand cancels the second term in the (j + 1)th summand, hence only
ω2(t) and −ω2(0) remain.

∫ t

0
dω(s) ω(s) (2.109)

=
1

2

[
ω2(t) − ω2(0) + ms-lim

n→∞

n∑

j=1

[(
ω(τ) − ω(tj−1)

)2 −
(
ω(tj) − ω(τ)

)2]
]

.

To determine the mean square limit of a sequence one can first calculate the limit of the average
sequence and than verify if the result satisfies the mean square convergence condition (2.107). For
the first step the average of the summands in (2.109) has to be derived. These summands consist
of two squared increments of the normailzed Wiener process. These increments, we refer to both of
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them with ∆ω(∆t), exhibit the same unconditional probability distribution (2.48) as the Wiener
process ω(t) itself und thus have the same statistical moments as displayed in (2.50), namely

〈
∆ωn(∆t)

〉
=

{
0 for odd n,

(n − 1)!! (2D ∆t)n/2 for even n, with D = 1
2 .

(2.110)

These moments applied to the increments ω(τ) − ω(tj−1) and ω(tj) − ω(τ) resolve the limit in
equation (2.109).

lim
n→∞

〈
n∑

j=1

[(
ω(τ) − ω(tj−1)

)2 −
(
ω(tj) − ω(τ)

)2]
〉

= lim
n→∞

n∑

j=1

[〈(
ω(τ) − ω(tj−1)

)2〉−
〈(

ω(tj) − ω(τ)
)2〉]

= lim
n→∞

n∑

j=1

[(
τ − tj−1

)
−
(
tj − τ

)]

= lim
n→∞

n∑

j=1

[(
2 α − 1

) (
tj − tj−1

)]

=
(
2 α − 1

) (
t − 0

)
. (2.111)

Now the mean square convergence of the limit (2.111) has to be checked.

lim
n→∞

〈[ n∑

j=1

[(
ω(τ) − ω(tj−1)

)2
︸ ︷︷ ︸

=: ∆ω2
1−α(tj)

−
(
ω(tj) − ω(τ)

)2
︸ ︷︷ ︸

=: ∆ω2
α(tj)

]
−
(
2 α − 1

)
t

]2
〉

(2.112)

= lim
n→∞

〈
n∑

j=1

[
∆ω4

1−α(tj) − 2 ∆ω2
1−α(tj) ∆ω2

α(tj) + ∆ω4
α(tj)

]

+ 2
n∑

j>k=1

[
∆ω2

1−α(tj) − ∆ω2
α(tj)

] [
∆ω2

1−α(tk) − ∆ω2
α(tk)

]

− 2
(
2 α − 1

)
t

n∑

j=1

[
∆ω2

1−α(tj) − ∆ω2
α(tj)

]
+
(
2 α − 1

)2
t2

〉
.

For a Wiener process one can verify that increments ∆ω(t) of non-over lapping time intervals
[t, t + ∆t] are statistically independent. Hence we can spread the moment brakets 〈. . .〉 as follows

= lim
n→∞

(
n∑

j=1

[〈
∆ω4

1−α(tj)
〉

− 2
〈
∆ω2

1−α(tj)
〉 〈

∆ω2
α(tj)

〉
+
〈
∆ω4

α(tj)
〉]

+ 2

n∑

j>k=1

[〈
∆ω2

1−α(tj)
〉
−
〈
∆ω2

α(tj)
〉] [〈

∆ω2
1−α(tk)

〉
−
〈
∆ω2

α(tk)
〉]

− 2
(
2 α − 1

)
t

n∑

j=1

[〈
∆ω2

1−α(tj)
〉
−
〈
∆ω2

α(tj)
〉]

+
(
2 α − 1

)2
t2

)
.
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Applying equation (2.110) to every moment and then splitting the first sum gives

= lim
n→∞

(
n∑

j=1

[
3
(
τ − tj−1

)2 − 2
(
τ − tj−1

) (
tj − τ

)
+ 3

(
tj − τ

)2]

+ 2

n∑

j>k=1

[(
τ − tj−1

)
−
(
tj − τ

)] [(
τ − tk−1

)
−
(
tk − τ

)]

− 2
(
2 α − 1

)
t

n∑

j=1

[(
τ − tj−1

)
−
(
tj − τ

)]
+
(
2 α − 1

)2
t2

)

= lim
n→∞

(
n∑

j=1

[
2
(
τ − tj−1

)2
+ 2

(
tj − τ

)2]

+
n∑

j=1

[(
τ − tj−1

)
−
(
tj − τ

)] [(
τ − tj−1

)
−
(
tj − τ

)]

+ 2

n∑

j>k=1

[(
τ − tj−1

)
−
(
tj − τ

)] [(
τ − tk−1

)
−
(
tk − τ

)]

− 2
(
2 α − 1

)
t

n∑

j=1

[(
τ − tj−1

)
−
(
tj − τ

)]
+
(
2 α − 1

)2
t2

)
.

The first sum is of order O
(

1
n

)
and apporaches 0 for n → ∞, since each summand is proportional

to a time interval length squared and thus is of order O
(

1
n2

)
. The second sum and the following

double sum combine to a single double sum without the limitation j > k. This resulting double
sum can then be written as a product of two sums.

= lim
n→∞

(
n∑

j,k=1

[(
τ − tj−1

)
−
(
tj − τ

)] [(
τ − tk−1

)
−
(
tk − τ

)]

− 2
(
2 α − 1

)
t

n∑

j=1

[(
τ − tj−1

)
−
(
tj − τ

)]
+
(
2 α − 1

)2
t2

)
.

= lim
n→∞

([ n∑

j=1

[(
τ − tj−1

)
−
(
tj − τ

)]] [ n∑

k=1

[(
τ − tk−1

)
−
(
tk − τ

)]]

− 2
(
2 α − 1

)
t

n∑

j=1

[(
τ − tj−1

)
−
(
tj − τ

)]
+
(
2 α − 1

)2
t2

)
.

All sums are now equivalent to the one in equation (2.111) and one finally obtains

= lim
n→∞

((
2 α − 1

)2
t2 − 2

(
2 α − 1

)
t
(
2 α − 1

)
t +

(
2 α − 1

)2
t2
)

= 0 . (2.113)

It is thus proven that the defining mean square limit of the stochastic integral (2.108) renders
∫ t

0
dω(s) ω(s) =

1

2

[
ω2(t) − ω2(0) +

(
2 α − 1

)
t
]

. (2.114)
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The observed dependence on α can be made plausible. Consider a time interval [ti−1, ti] in the

summation I
(α)
n (t) for G(t) = ω(t). The mean absolute difference of the Wiener process ω(t)

at the left and the right side of the interval [ti−1, ti] is given by the standard deviation of the
difference ω(ti) − ω(ti−1)

√〈
(ω(ti) − ω(ti−1))

2
〉

=
√

ti − ti−1 . (2.115)

The difference in summing over all values on the left side of the intervals as opposed to the right
side is then on average given by

n∑

i=1

√
ti − ti−1︸ ︷︷ ︸

O
(√

1/n
)

(ω(ti) − ω(ti−1))︸ ︷︷ ︸
O

(√
1/n

)

. (2.116)

If we sum over all terms we obtain n-times an expression of order O(1/n) and consequently a finite
value; a finite difference!
If we compare this observation with ordinary calculus we see the essential discrepancy. Consider
the integral

∫ t
0 dtf(t). The difference between evaluating the left and right side of interval [ti−1, ti]

is given by f ′(ti−1) (ti − ti−1). Again the difference of summing over all values f(t) on the left side
of the intervals as opposed to the right side is

n∑

i=1

f ′(ti−1) (ti − ti−1)︸ ︷︷ ︸
O(1/n)

(ti − ti−1)︸ ︷︷ ︸
O(1/n)

. (2.117)

This sum is of order O(1/n) and approaches 0 for n → ∞. It is consequently irrelvant which side
of the interval [ti−1, ti] we choose to evaluate f(t).
The underlying cause for the α-dependence of stochastic integrals is evident. It is the

√
1/n-scaling

property of stochastic processes! The α-dependence is here to stay. Before we proceed we return
once more to our random walker example to gain more insight in the derivations given above.

Gambling on a Random Walk

As in section 2.3 we begin with a random walk on a lattice, this time with a = τ2 for simplicity.
The random walker will be joined by a gambler. Due to his nature the gambler will make a bet at
each step trying to forecast the direction the random walker will take. The gambler’s strategy is the
following. At time tj−1 he will take the distance x(tj−1) from the origin x(0) as an indication for the
direction in which the random walker will proceed. He will bet an amount proportional to |x(tj−1)|
and claim that the random walker will further increase the distance from the starting point. The
investment for each bet will be proportional to the step size x(tj) − x(tj−1); the smaller the steps,
the more bets to make, the smaller the amount available for each bet. The pay off or loss dF (tj)
will be proportional to the amount put forward. Hence, dF (tj−1) ∝ (x(tj)− x(tj−1) x(tj−1). Note,
that dF (tj−1) is positive or negative, if the forecast is true or false respectively. To see if this
strategy pays we derive the total loss or gain of the gambler by suming over all bets and taking the
mean square limit of n → ∞. One determines

F (t) ∝ ms-lim
n→∞

n∑

j=1

(
x(tj) − x(tj−1)

)
x(tj−1) (2.118)
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As the random walk x(t) describes a Wiener process ω(t) in the limit n → ∞, we can write the
above as a stochastic integral with α = 0 and obtain

F (t) ∝
∫ t

0
dω(s) ω(s) , with α = 0

∝ 1

2

(
x2(t) − x2(0) − t

)
. (2.119)

Except for the extra term t, Eq. (2.119) resembles the result of ordinary calculus. The term t,
however, is essential. It prevents the gambler to run a winning strategy. The mean for the overall
loss or gain F (t) is

〈
F (t)

〉
∝

〈
1

2

(
x2(t) − x2(0) − t

)〉
=

1

2

(〈
x2(t)

〉
− t

)
= 0 . (2.120)

as one might have expected all along.
To consider a case for which the above integral exhibits α = 1 we turn to a cheating gambler.
Assume that the cheating gambler has a way to tell which direction the random walker will turn
next. Thus, at time tj−1 he will base his bet on the subsequent position x(tj) and not on x(tj−1),
a small, but decisive advantage. If he obeys the same strategy dF̃ (tj−1) ∝ (x(tj) − x(tj−1) x(tj)
as above, however based on x(tj) and not x(tj−1), he will mimic a similar betting behavior as the
honest gambler, especially, when τ goes to 0. Then his insight into the future seems to vanish.
Surprisingly as time goes by he will win a fortune F̃ (t) as the following result shows.

F̃ (t) ∝ ms-lim
n→∞

n∑

j=1

(x(tj) − x(tj−1)) x(tj)

∝
∫ t

0
dω(s) ω(s) , with α = 1

∝ 1

2

(
x2(t) − x2(0) + t

)
. (2.121)

The mean gain is

〈
F̃ (t)

〉
∝

〈
1

2

(
x2(t) − x2(0) + t

)〉
= t . (2.122)

A statistical analysis can detect the cheating gambler. The correlation between a random step
dω(t) = x(tj) − x(tj−1) and the integrand functions G[t] = x(tj−1) and G[t] = x(tj) reveals for the
honest gambler

〈
x(tj−1)

(
x(tj) − x(tj−1)

)〉
=
〈
x(tj−1)

〉 〈
x(tj) − x(tj−1)

〉

= 0 , (2.123)

and for the cheating colleague

〈
x(tj)

(
x(tj) − x(tj−1)

)〉
=
〈(

x(tj−1) + x(tj) − x(tj−1)
) (

x(tj) − x(tj−1)
)〉

=
〈
x(tj−1)

(
x(tj) − x(tj−1)

)〉
+
〈(

x(tj) − x(tj−1)
)2〉

=
(
tj − tj−1

)
. (2.124)
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2.4:Ito calculus 27

The honest gambling scheme is not correlated to the imminent random step, the cheating scheme
however is. One therefore distinguishes between so-called non-anticipating and anticipating func-
tions. It is obvious that correlations between an integrand G(t) and the integration steps dω(t)
accumulate and that they have an overall effect on the integral as seen in this example.

We will no longer pursuit this exciting money making scheme, since it has one unfortunate draw
back; one has to bet infinitely fast!

Ito’s Rules

We have seen that it is not admissable to neglect the α-dependence. Nevertheless it is possible to
develope a consistent calculus by assuming a fixed value for parameter α. There are two popular
approaches, each with distinct benefits and disadvantages:

α = 0 Ito calculus,

α =
1

2
Stratonovich calculus.

The Stratonovich calculus with α = 1/2 exhibits the same integration rules as ordinary calculus. It
also models processes with finite correlation time correctly. However, the rules for the Ito calculus
are easier to derive. In many instances corresponding derivations are impossible in the Stratonovich
case. Hence we begin with an introduction to Ito calculus. Later, in section 2.6 we will compare the
Ito and Stratonovich approach. In any case, we have to keep in mind, that the choice of α = 0 or
α = 1/2 is not arbitrary and has to be justified when modeling physical processes with stochastic
differential and corresponding integral equations. For now we set α = 0.

The foundation of Ito calculus are the four rules

dωi(t) dωj(t) = δij dt , (2.125)

[dω(t)]N = 0 , for N > 2 , (2.126)

dω(t)N dt = 0 , for N ≥ 1 , (2.127)

dtN = 0 , for N > 1 . (2.128)

As with distributions, like the Dirac delta function δ(x), these rules (2.125-2.128) have to be seen
in the context of integration. Furthermore the integration has to be over so-called non-anticipating
functions or processes G(t). This will become clear as we proof rule (2.125) for the one-dimensional
case.

Rules (2.125) and (2.126) have to be read as

∫ t

0
[dω(s)]N G(s) = ms-lim

n→∞

n∑

i=1

G(ti−1) [∆ω(ti)]
N (2.129)

=





∫ t

0
ds G(s) , for N = 2

0 , for N > 2 ,

(2.130)

for a non-anticipating function G(t) that is statistcally independent of (ω(s) − ω(t)) for any s > t.

〈
G[t]

(
ω(s) − ω(t)

)〉
= 0 , for t < s . (2.131)
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28 Dynamics and Stochastic Forces

To prove rule (2.125) we have to show that the following mean square limit vanishes:
〈[∫ t

0
[dω(s)]2 G(s) −

∫ t

0
ds G(s)

]2
〉

(2.132)

= ms-lim
n→∞

〈[
n∑

i=1

(
∆ω2(∆ti) − ∆ti

)
G(ti−1)

]2〉

= ms-lim
n→∞

〈
n∑

i=1

G2(ti−1)︸ ︷︷ ︸
stat. indep.

(
∆ω2(∆ti) − ∆ti

)2
︸ ︷︷ ︸

stat. independent

〉

+ ms-lim
n→∞

〈
n∑

i>j=1

G(ti−1) G(tj−1)
(
∆ω2(∆tj) − ∆tj

)
︸ ︷︷ ︸

stat. independent

(
∆ω2(∆ti) − ∆ti

)
︸ ︷︷ ︸

stat. independent

〉
. (2.133)

Each of the above underbraced terms is statistically independent of the other underbraced factor.
Here the non-anticipation property (2.131) of G(t) comes into play! We obtain

I = ms-lim
n→∞

n∑

i=1

〈
G2(ti−1)

〉 〈(
∆ω2(∆ti) − ∆ti

)2〉

︸ ︷︷ ︸
=2∆t2i , due to (2.110)

+ ms-lim
n→∞

n∑

i>j=1

〈
G(ti−1) G(tj−1)

(
∆ω2(∆tj) − ∆tj

)〉 〈(
∆ω2(∆ti) − ∆ti

)〉
︸ ︷︷ ︸

=0, due to (2.110)

= ms-lim
n→∞

2
n∑

i>j=1

〈
G2(ti−1)

〉
∆t2i . (2.134)

As ∆t2i is of order O(1/n2) and as long as G(s) is a bounded function, the above sum vanishes as
n → ∞. Thus, we have proven Ito’s first rule (2.125). All the other rules are shown in a similar
fashion.

Ito’s Formula

Combining the stochastic differential equation (2.3) and Ito’s rules we can derive another important
equation, the so-called Ito’s formula. Let f [x(t)] be an arbitrary function of a process x(t) that
satisfies the one-dimensional sochastic differential equation

dx(t) =
(
a[x(t), t] + b[x(t), t] ξ(t)

)
dt = a[x(t), t] dt + b[x(t), t] dω(t) . (2.135)

To determine the change of f [x(t)] with respect to dx and dt we perform a Taylor expansion

df [x(t)] = f [x(t) + dx(t)] − f [x(t)]

= f ′[x(t)] dx(t) +
1

2
f ′′[x(t)] dx2(t) + O

(
dx3(t)

)
.

Substituting equation (2.135) for dx we can write

df [x(t)] = f ′[x(t)] a[x(t), t] dt + f ′[x(t)] b[x(t), t] dω(t)

+
1

2
f ′′[x(t)]

(
b[x(t), t] dω(t)

)2
+ O

(
dω3(t)

)
O
(
dt2
)

.
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2.5. FOKKER-PLANCK EQUATIONS 29

We can neglect higher orders of dω(t) and dt due to Ito’s rules (2.126 - 2.128). We can also
substitute dω2(t) by dt due to (2.125) and obatin

df [x(t)] = f ′[x(t)] a[x(t), t] dt + f ′[x(t)] b[x(t), t] dω(t)

+
1

2
f ′′[x(t)]

(
b[x(t), t]

)2
dt . (2.136)

The resulting Ito’s formula, now in more than one-dimension, reads

df [x(t)] =
∑

i

Ai

(
∂i f [x(t)]

)
dt +

∑

i,j

Bij

(
∂i f[x(t)]

)
dωj(t)

+
1

2

∑

i,j,k

Bik Bjk

(
∂i∂j f[x(t)]

)
dt . (2.137)

This formula is most helpful when one has to find a relation between the stochastic differential
equation (2.3) of x(t) and a distribution function f [x(t)]. We will utilize Ito’s formula in the next
section where we will derive the Fokker-Planck equation.

2.5 Fokker-Planck Equations

Again we consider the stochastic differential equation (2.3) with a noise term characterized through
white noise, i.e., Eq. (2.97)

∂t x(t) = A[x(t), t] + B[x(t), t]·η(t) (2.138)

assuming η(t) = ξ(t) with

〈
ξi(t)

〉
= 0 (2.139)

〈
ξi(t1) ξj(t0)

〉
(dt)2 = δij δ(t1 − t0) dt . (2.140)

For the sake of Ito’s calculus one has to assume that coefficient B[x(t), t] is a non-anticipating
function. With this in mind we neglect the arguments x(t) and t of A and B for easier reading in
the rest of this section.
We utilize the result of the section 2.4 and exploit the properties of white noise (2.96, 2.97) by
considering the average of Ito’s formula (2.137).

〈
df [x(t)]

〉
=

∑

i

〈
Ai

(
∂i f [x(t)]

)
dt
〉

+
∑

i,j

〈
Bij

(
∂i f[x(t)]

)
dωj(t)

〉

+
1

2

∑

i,j,k

〈
Bik Bjk

(
∂i∂j f[x(t)]

)
dt
〉

. (2.141)

The second sum on the r.h.s. vanishes, since B[x(t), t] and ∂if [x(t)] are non-anticipating functions
and therefore statistically independent of dωj(t), and because of equation (2.139) considering that
dωj(t) = ξj(t) dt.

〈
Bij

(
∂i f[x(t)]

)
dωj(t)

〉
=

〈
Bij

(
∂i f[x(t)]

)〉 〈
ξj(t)

〉

︸ ︷︷ ︸
= 0

dt = 0 . (2.142)
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One is left with equation
〈

d

dt
f [x(t)]

〉
=

∑

i

〈
Ai

(
∂i f [x(t)]

)〉
+

1

2

∑

i,j

〈
[B·BT]ij

(
∂i∂j f[x(t)]

)〉
. (2.143)

According to definition (2.12) 〈f [x(t)]〉 can be expressed as

〈
f [x(t)]

〉
=

∫
dx f [x] p(x, t|x0, t0) . (2.144)

The reader should note that the initial value of 〈f [x(t)]〉 defined through (2.144) is f [x0] in accor-
dance with the initial condition assumed for Eq. (2.3). Applying the time derivative to the r.h.s.
of (2.144) and comparing with (2.143) yields

∫
dx f [x] ∂t p(x, t|x0, t0) = (2.145)

∫
dx

(
∑

i

Ai

(
∂i f [x]

)
+

1

2

∑

i,j

[B·BT]ij

(
∂i∂j f[x]

))
p(x, t|x0, t0) .

Partial integration assuming a volume Ω with a surface ∂Ω allows one to change the order of the
partial differential operators. For example, the first sum becomes

∫

Ω
dx

∑

i

Ai

(
∂i f [x]

)
p(x, t|x0, t0) = −

∫

Ω
dx f [x]

(∑

i

∂i Ai p(x, t|x0, t0)

)

+

∫

Ω
dx

(∑

i

∂i Ai f [x] p(x, t|x0, t0)

)

= −
∫

Ω
dx f [x]

(∑

i

∂i Ai p(x, t|x0, t0)

)

+

∫

∂Ω
da · A f [x] p(x, t|x0, t0) . (2.146)

Assuming a p(x, t|x0, t0) of finite spatial extent, such that it vanishes on the boundary ∂Ω, we can
neglect the surface term. Applying the same calculation twice to the second term in (2.145) leads
to

∫
dx f [x] ∂t p(x, t|x0, t0) = (2.147)

∫
dx f [x]

(
−
∑

i

∂i Ai p(x, t|x0, t0) +
1

2

∑

i,j

∂i∂j [B·BT]ij p(x, t|x0, t0)

)
.

Since f [x(t)] is arbitrary we can conclude

∂t p(x, t|x0, t0) = −
∑

i

∂i Ai p(x, t|x0, t0) +
1

2

∑

i,j

∂i∂j [B·BT]ij p(x, t|x0, t0) . (2.148)

This is the celebrated Fokker-Planck equation which describes the time evolution of the probability
that the stochastic process determined by (2.3) assumes the value x at time t when it had assumed
the value xo at time t0.
Note, that the above Fokker-Planck equation holds for the stochastic differential equation (2.3)
only within the framework of Ito calculus. The relation between SDE (2.3) and the Fokker-Planck
equation (2.148) is slightly different when Stratonovitch calculus is applied!
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2.6. STRATONOVICH CALCULUS 31

2.6 Stratonovich Calculus

We take a quick look at Stratonovich calculus mentioned in section 2.4. We want to clarify the
α-dependence of our results in sections 2.4 and 2.5. For this purpose it is sufficient to focus on
processes satisfying the stochastic differential equation (2.3).

It is possible to show that a solution x(t) of the stochastic differential equation

Ito α = 0 : ∂t x(t) = A[x(t), t] + B[x(t), t] · ξ(t) (2.149)

solves a stochastic differential equation of the same form with different coefficients, this time however
according to Stratonovich’s calculus.

Stratonovich α =
1

2
: ∂t x(t) =

S
A[x(t), t] +

S
B[x(t), t] · ξ(t) . (2.150)

We give a derivation for
S
A[x(t), t] and

S
B[x(t), t] in the one-dimensional case as the lower case

coefficients
S
a[x(t), t] and

S
b [x(t), t] indicate. As a first step we solve the integral corresponding to

equation (2.150).

x(t) = x(t0) +

∫ t

t0

ds
S
a[x(s), s] + S

∫ t

t0

dω(s)
S
b [x(s), s] . (2.151)

The S on the second integral sign denotes a Stratonovich integral which has to be solved like a
Riemann-Stieltjes integral as in equation (2.105) with α = 1/2. The last term of equation (2.151) is
the only one that differs from Ito’s calculus and thus it is the only term that needs to be investigated.
One can rewrite the last term as an Ito integral. We do so neglecting the mean square limit notation
in the defintion of a Stratonovich integral and write

S
∫ t

t0

dω(s)
S
b [x(s), s] ≃

∑

i

(
ω(ti) − ω(ti−1)

)
S
b [x(τ), τ ] , with τ :=

1

2
(ti + ti−1)

=
∑

i

(
ω(ti) − ω(τ)

)
S
b [x(τ), τ ] +

∑

i

(
ω(τ) − ω(ti−1)

)
S
b [x(τ), τ ] . (2.152)

S
b [x(τ), τ ] can be approximated by extrapolation starting with

S
b [x(ti−1), ti−1] at the left side of

interval [ti−1, ti].

S
b [x(τ), τ ] =

S
b [x(ti−1), ti−1] +

(
∂x

S
b [x(ti−1), ti−1]

) (
x(τ) − x(ti−1)

)

+
(
∂t

S
b [x(ti−1), ti−1]

) (
τ − ti−1

)
(2.153)

+
1

2

(
∂2

x

S
b [x(ti−1), ti−1]

) (
x(τ) − x(ti−1)

)2
+ . . . .

Since x(t) is a solution of Ito’s stochastic equation (2.149) one can apply (2.149) to determine the
infinitesimal displacement x(τ) − x(ti−1).

x(τ) − x(ti−1) = a[x(ti−1), ti−1]
(
τ − ti−1

)
+ b[x(ti−1), ti−1]

(
ω(τ) − ω(ti−1)

)
. (2.154)
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Filling equation (2.154) into (2.153) and applying Ito’s rules (2.128) to the infinitesimal displace-
ments dt = (τ − ti−1) and dω(t) =

(
ω(τ) − ω(ti−1)

)
one obtains

S
b [x(τ), τ ] =

S
b [x(ti−1), ti−1] +

(
∂t

S
b [x(ti−1), ti−1]

) (
τ − ti−1

)

+ a[x(ti−1), ti−1]
(
∂x

S
b [x(ti−1), ti−1]

)
(τ − ti−1)

+ b[x(ti−1), ti−1]
(
∂x

S
b [x(ti−1), ti−1]

) (
ω(τ) − ω(ti−1)

)

+
1

2
b2[x(ti−1), ti−1]

(
∂2

x

S
b [x(ti−1), ti−1]

)
(τ − ti−1) (2.155)

Substituting the above result (2.155) into the second sum of equation (2.152) one derives

S
∫ t

t0

dω(s)
S
b [x(s), s] ≃

∑

i

(
ω(ti) − ω(τ)

) S
b [x(τ), τ ]

+
∑

i

(
ω(τ) − ω(ti−1)

) S
b [x(ti−1), ti−1]

+
∑

i

(
ω(τ) − ω(ti−1)

)
(τ − ti−1)

︸ ︷︷ ︸
= 0, due to (2.127)

(
∂t

S
b [x(ti−1), ti−1]

)

+
∑

i

(
ω(τ) − ω(ti−1)

)
(τ − ti−1)

︸ ︷︷ ︸
= 0, due to (2.127)

a[x(ti−1)]
(
∂x

S
b [x(ti−1), ti−1]

)

+
∑

i

(
ω(τ) − ω(ti−1)

)2

︸ ︷︷ ︸
=(τ−ti−1), due to (2.125)

b[x(ti−1), ti−1]
(
∂x

S
b [x(ti−1), ti−1]

)

+
1

2

∑

i

(
ω(τ) − ω(ti−1)

)
(τ − ti−1)

︸ ︷︷ ︸
= 0, due to (2.127)

b2[x(ti−1), ti−1]
(
∂2

x

S
b [x(ti−1), ti−1]

)
. (2.156)

The first two terms on the r.h.s. of equation (2.156) make up a sum that approximates an Ito integral
with time steps just half the size. In the fifth term one can replace (τ − ti−1) by 1

2(ti − ti−1). The
result, again written for the multi-dimensional case, is

S
∫ t

t0

dω(s)·
S
B

T
[x(s), s] =

∫ t

t0

dω(s)·
S
B

T
[x(s), s] +

1

2

∫ t

t0

ds
∑

i,j

Bij[x(s), s]
(
∂i

S
B

T

jk[x(s), s]
)
. (2.157)

Note, that the above connection (2.157) between Ito and Stratonovich integrals only holds for x(t)
satisfying Ito’s SDE (2.149) or Stratonovich’s SDE (2.150). There is no general connection between
Ito and Stratonovich integrals!

Substituting (2.157) into Stratonovich’s integral equation (2.151) and comparing the coefficients
with the integral solving Ito’s stochastic differential equation (2.149) we obtain the following rela-
tions

Ak =
S
Ak +

1

2

∑

i,j

S
Bij

(
∂i

S
Bkj

)
, (2.158)

Bjk =
S
Bjk , (2.159)
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and conversely

S
Ak = Ak − 1

2

∑

i,j

Bij

(
∂i Bkj

)
, (2.160)

S
Bjk = Bjk . (2.161)

We see that a difference between Ito and Stratonovich calculus only occurs, if B depends on x(t),
that is if ∂i Bkj 6= 0.
To conclude this section we write down the Fokker-Planck equation in Stratonovich’s terms. One
simply substitutes the coefficients A and B according to equations (2.158) and (2.159), and applies
the product rule for differential operations to simplify the expression.

∂t p(x, t|x0, t0) = −
∑

i

∂i

S
Ai p(x, t|x0, t0) +

1

2

∑

i,j,k

∂i

S
Bik

(
∂j

S
Bjk p(x, t|x0, t0)

)
. (2.162)
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2.7 Appendix: Normal Distribution Approximation

2.7.1 Stirling’s Formula

We need Stirling’s formula (2.163, 2.164) to prove Gauß’s asymptotic approximation (2.165) of the
binomial distribution. A derivation of Stirling’s formula is outside the scope of this book. See [43]
for a derivation based on Euler’s summation formula.

n! =
√

2πn
(n

e

)n
(

1 + O
(

1

n

))
(2.163)

lnn! = ln
(√

2πn
(n

e

)n)
+ ln

(
1 + O

(
1

n

))

lnn! =
1

2
ln (2π) + (n +

1

2
) lnn − n + O

(
1

n

)
(2.164)

2.7.2 Binomial Distribution

We set forth to prove Eq. (2.165), i.e.,
√

n

2
2−n

(
n

n
2 + x

√
n
2

)
=

1√
π

exp−x2

(
1 + O

(
1

n

))
. (2.165)

Applying the natural logarithm on both sides of this equation we obtain

ln

[√
n

2
2−n

(
n

n
2 + x

√
n
2

)]
= ln

(
1√
π

exp−x2

)
+ ln

(
1 + O

(
1

n

))

ln

[√
n

2
2−n

(
n

n
2 + x

√
n
2

)]
= −1

2
lnπ − x2 + O

(
1

n

)
. (2.166)

We will prove equation (2.166) by transforming the left hand side step by step. First, we utilize
the formula

(
n
k

)
= n!

k!(n−k)! for binomial coefficients.

ln

(√
n

2
2−n

(
n

n
2 + x

√
n
2

))
(2.167)

=
1

2
(lnn − ln 2) − n ln 2 + ln

(
n!

(n
2 + x

√
n
2 )! (n

2 − x
√

n
2 )!

)

=
1

2
lnn −

(
n +

1

2

)
ln 2 + lnn! − ln

[(
n

2
+ x

√
n

2

)
!

]
− ln

[(
n

2
− x

√
n

2

)
!

]
.

Applying Stirling’s formula (2.164) we derive furthermore

=
1

2
lnn −

(
n +

1

2

)
ln 2 +

1

2
ln (2π) + (n +

1

2
) lnn − n +

− 1

2
ln (2π) −

(
n

2
+ x

√
n

2
+

1

2

)
ln

(
n

2
+ x

√
n

2

)
+

n

2
+ x

√
n

2
+

− 1

2
ln (2π) −

(
n

2
− x

√
n

2
+

1

2

)
ln

(
n

2
− x

√
n

2

)
+

n

2
− x

√
n

2
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=
1

2
lnn −

(
n +

1

2

)
ln 2 − 1

2
ln (2π) + (n +

1

2
) lnn +

−
(
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Performing a Taylor expansion of ln(1 ± z) with respect to z we obtain,
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and expanding the products up to order O(1/n) we acquire the result, the right hand side of
equation (2.166), results in
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Chapter 3

Einstein Diffusion Equation
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In this chapter we want to consider the theory of the Fokker-Planck equation for molecules moving
under the influence of random forces in force-free environments. Examples are molecules involved
in Brownian motion in a fluid. Obviously, this situation applies to many chemical and biochemical
system and, therefore, is of great general interest. Actually, we will assume that the fluids considered
are viscous in the sense that we will neglect the effects of inertia. The resulting description, referred
to as Brownian motion in the limit of strong friction, applies to molecular systems except if one
considers very brief time intervals of a picosecond or less. The general case of Brownian motion for
arbitrary friction will be covered further below.

3.1 Derivation and Boundary Conditions

Particles moving in a liquid without forces acting on the particles, other than forces due to random
collisions with liquid molecules, are governed by the Langevin equation

m r̈ = − γ ṙ + σ ξ(t) (3.1)

In the limit of strong friction holds

|γ ṙ| ≫ |m r̈| (3.2)

and, (3.1) becomes

γ ṙ = σ ξ(t) . (3.3)

37



38 Einstein Diffusion Equations

To this stochastic differential equation corresponds the Fokker-Planck equation [c.f. (2.138) and
(2.148)]

∂t p(r, t|r0, t0) = ∇2 σ2

2γ2
p(r, t|r0, t0) . (3.4)

We assume in this chapter that σ and γ are spatially independent such that we can write

∂t p(r, t|r0, t0) =
σ2

2γ2
∇2 p(r, t|r0, t0) . (3.5)

This is the celebrated Einstein diffusion equation which describes microscopic transport of material
and heat.
In order to show that the Einstein diffusion equation (3.5) reproduces the well-known diffusive
behaviour of particles we consider the mean square displacement of a particle described by this
equation, i.e.,

〈
( r(t) − r(t0) )2

〉
∼ t. We first note that the mean square displacement can be

expressed by means of the solution of (3.5) as follows

〈(
r(t) − r(t0)

)2〉
=

∫

Ω∞

d3r
(
r(t) − r(t0)

)2
p(r, t|r0, t0) . (3.6)

Integration over Eq. (3.5) in a similar manner yields

d

dt

〈(
r(t) − r(t0)

)2〉
=

σ2

2γ2

∫

Ω∞

d3r
(
r(t) − r(t0)

)2 ∇2 p(r, t|r0, t0) . (3.7)

Applying Green’s theorem for two functions u(r) and v(r)

∫

Ω∞

d3r
(
u∇2v − v∇2u

)
=

∫

∂Ω∞

da·
(
u∇v − v∇u

)
(3.8)

for an infinite volume Ω and considering the fact that p(r, t|r0, t0) must vanish at infinity we obtain

d

dt

〈(
r(t) − r(t0)

)2〉
=

σ2

2γ2

∫

Ω∞

d3r p(r, t|r0, t0) ∇2
(
r − r0

)2
. (3.9)

With ∇2 ( r − r0 )2 = 6 this is

d

dt

〈(
r(t) − r(t0)

)2〉
= 6

σ2

2γ2

∫

Ω∞

d3r p(r, t|r0, t0) . (3.10)

We will show below that the integral on the r.h.s. remains constant as long as one does not assume
the existence of chemical reactions. Hence, for a reaction free case we can conclude

〈(
r(t) − r(t0)

)2〉
= 6

σ2

2 γ2
t . (3.11)

For diffusing particles one expects for this quantity a behaviour 6D(t− t0) where D is the diffusion
coefficient. Hence, the calculated dependence describes a diffusion process with diffusion coefficient

D =
σ2

2 γ2
. (3.12)
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3.1: Derivation and Boundary Conditions 39

One can write the Einstein diffusion equation accordingly

∂t p(r, t|r0, t0) = D ∇2 p(r, t|r0, t0) . (3.13)

We have stated before that the Wiener process describes a diffusing particle as well. In fact, the
three-dimensional generalization of (2.47)

p(r, t|r0, t0) =
(
4π D (t − t0)

)− 3
2 exp

[
− (r − r0)

2

4 D (t − t0)

]
(3.14)

is the solution of (3.13) for the initial and boundary conditions

p(r, t → t0|r0, t0) = δ(r − r0) , p(|r| → ∞, t|r0, t0) = 0 . (3.15)

One refers to the solution (3.14) as the Green’s function. The Green’s function is only uniquely
defined if one specifies spatial boundary conditions on the surface ∂Ω surrounding the diffusion
space Ω. Once the Green’s function is available one can obtain the solution p(r, t) for the system
for any initial condition, e.g. for p(r, t → 0) = f(r)

p(r, t) =

∫

Ω∞

d3r0 p(r, t|r0, t0) f(r0) . (3.16)

We will show below that one can also express the observables of the system in terms of the Green’s
function. We will also introduce Green’s functions for different spatial boundary conditions. Once
a Green’s function happens to be known, it is invaluable. However, because the Green’s function
entails complete information about the time evolution of a system it is correspondingly difficult to
obtain and its usefulness is confined often to formal manipulations. In this regard we will make
extensive use of Green’s functions later on.
The system described by the Einstein diffusion equation (3.13) may either be closed at the surface
of the diffusion space Ω or open, i.e., ∂Ω either may be impenetrable for particles or may allow
passage of particles. In the latter case ∂Ω describes a reactive surface. These properties of Ω are
specified through the boundary conditions on ∂Ω. In order to formulate these boundary conditions
we consider the flux of particles through consideration of the total number of particles diffusing in
Ω defined through

NΩ(t|r0, t0) =

∫

Ω
d3r p(r, t|r0, t0) . (3.17)

Since there are no terms in the diffusion equation (3.13) which affect the number of particles (we
will introduce such terms later on) the particle number is conserved and any change of NΩ(t|r0, t0)
must be due to particle flux at the surface of Ω. In fact, taking the time derivative of (3.17) yields,
using (3.13) and ∇2 = ∇·∇,

∂tNΩ(t|r0, t0) =

∫

Ω
d3r D ∇·∇ p(r, t|r0, t0) . (3.18)

Gauss’ theorem
∫

Ω
d3r ∇·v(r) =

∫

∂Ω
da·v(r) (3.19)

for some vector-valued function v(r), allows one to write (3.18)

∂t NΩ(t|r0, t0) =

∫

∂Ω
da·D ∇ p(r, t|r0, t0) . (3.20)
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40 Einstein Diffusion Equations

Here

j(r, t|r0, t0) = D ∇ p(r, t|r0, t0) (3.21)

must be interpreted as the flux of particles which leads to changes of the total number of particles
in case the flux does not vanish at the surface ∂Ω of the diffusion space Ω. Equation (3.21) is also
known as Fick’s law. We will refer to

J0(r) = D(r) ∇ (3.22)

as the flux operator. This operator, when acting on a solution of the Einstein diffusion equation,
yields the local flux of particles (probability) in the system.
The flux operator J0(r) governs the spatial boundary conditions since it allows one to measure
particle (probability) exchange at the surface of the diffusion space Ω. There are three types of
boundary conditions possible. These types can be enforced simultaneously in disconnected areas of
the surface ∂Ω. Let us denote by ∂Ω1, ∂Ω2 two disconnected parts of ∂Ω such that ∂Ω = ∂Ω1∪∂Ω2.
An example is a volume Ω lying between a sphere of radius R1 (∂Ω1) and of radius R2 (∂Ω2). The
separation of the surfaces ∂Ωi with different boundary conditions is necessary in order to assure
that a continuous solution of the diffusion equation exists. Such solution cannot exist if it has to
satisfy in an infinitesimal neighbourhood entailing ∂Ω two different boundary conditions.
The first type of boundary condition is specified by

â(r) · J 0(r) p(r, t|r0, t0) = 0 , r ∈ ∂Ωi , (3.23)

which obviously implies that particles do not cross the boundary, i.e., are reflected. Here â(r)
denotes a unit vector normal to the surface ∂Ωi at r (see Figure 3.1). We will refer to (3.23) as the
reflection boundary condition.
The second type of boundary condition is

p(r, t|r0, t0) = 0 , r ∈ ∂Ωi . (3.24)

This condition implies that all particles arriving at the surface ∂Ωi are taken away such that the
probability on ∂Ωi vanishes. This boundary condition describes a reactive surface with the highest
degree of reactivity possible, i.e., that every particle on ∂Ωi reacts. We will refer to (3.24) as the
reaction boundary condition.
The third type of boundary condition,

â(r) · J0 p(r, t|r0, t0) = w p(r, t|r0, t0) , r on ∂Ωi , (3.25)

describes the case of intermediate reactivity at the boundary. The reactivity is measured by the
parameter w. For w = 0 in (3.25) ∂Ωi corresponds to a non-reactive, i.e., reflective boundary. For
w → ∞ the condition (3.25) can only be satisfied for p(r, t|r0, t0) = 0, i.e., every particle impinging
onto ∂Ωi is consumed in this case. We will refer to (3.25) as the radiation boundary condition.
In the following we want to investigate some exemplary instances of the Einstein diffusion equation
for which analytical solutions are available.

3.2 Free Diffusion in One-dimensional Half-Space

As a first example we consider a particle diffusing freely in a one-dimensional half-space x ≥ 0.
This situation is governed by the Einstein diffusion equation (3.13) in one dimension

∂t p(x, t|x0, t0) = D ∂2
x p(x, t|x0, t0) , (3.26)
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3.2: Diffusion in Half-Space 41

Figure 3.1: depicts the reflection of a partilcle at ∂Ω. After the reflection the particle proceeds
on the trajectory of it’s mirror image. The probability flux j(r, t|r0, t0) of the particle prior to
relfection and the probability flux j̃(r, t|r0, t0) of it’s mirror image amount to a total flux vector
parallel to the surface ∂Ω and normal to the normalized surface vector â(r) which results in the
boundary condition (3.23).

where the solution considered is the Green’s function, i.e., satisfies the initial condition

p(x, t → 0|x0, t0) = δ(x − x0) . (3.27)

One-Dimensional Half-Space with Reflective Wall

The transport space is limited at x = 0 by a reflective wall. This wall is represented by the boundary
condition

∂x p(x, t|x0, t0) = 0 . (3.28)

The other boundary is situated at x → ∞. Assuming that the particle started diffusion at some
finite x0 we can postulate the second boundary condition

p(x → ∞, t|x0, t0) = 0 . (3.29)

Without the wall at x = 0, i.e., if (3.28) would be replaced by p(x → −∞, t|x0, t0) = 0, the solution
would be the one-dimensional equivalent of (3.14), i.e.,

p(x, t|x0, t0) =
1√

4π D (t − t0)
exp

[
− (x − x0)

2

4 D (t − t0)

]
. (3.30)

In order to satisfy the boundary condition one can add a second term to this solution, the Green’s
function of an imaginary particle starting diffusion at position −x0 behind the boundary. One
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42 Einstein Diffusion Equations

obtains

p(x, t|x0, t0) =
1√

4π D (t − t0)
exp

[
− (x − x0)

2

4 D (t − t0)

]
(3.31)

+
1√

4π D (t − t0)
exp

[
− (x + x0)

2

4 D (t − t0)

]
, x ≥ 0 ,

which, as stated, holds only in the available half-space x ≥ 0. Obviously, this function is a solution
of (3.26) since both terms satisfy this equation. This solution also satisfies the boundary condition
(3.29). One can easily convince oneself either on account of the reflection symmetry with respect
to x = 0 of (3.31) or by differentiation, that (3.31) does satisfy the boundary condition at x = 0.

The solution (3.31) bears a simple interpretation. The first term of this solution describes a diffusion
process which is unaware of the presence of the wall at x = 0. In fact, the term extends with non-
vanishing values into the unavailable half-space x ≤ 0. This “loss” of probability is corrected by
the second term which, with its tail for x ≥ 0, balances the missing probability. In fact, the x ≥ 0
tail of the second term is exactly the mirror image of the “missing” x ≤ 0 tail of the first term.
One can envision that the second term reflects at x = 0 that fraction of the first term of (3.31)
which describes a freely diffusing particle without the wall.

One-Dimensional Half-Space with Absorbing Wall

We consider now a one-dimensional particle which diffuses freely in the presence of an absorbing wall
at x = 0. The diffusion equation to solve is again (3.26) with initial condition (3.27) and boundary
condition (3.29) at x → ∞. Assuming that the absorbing wall, i.e., a wall which consumes every
particle impinging on it, is located at x = 0 we have to replace the boundary condition (3.28) of
the previous problem by

p(x = 0, t|x0, t0) = 0 . (3.32)

One can readily convince oneself, on the ground of a symmetry argument similar to the one employed
above, that

p(x, t|x0, t0) =
1√

4π D (t − t0)
exp

[
− (x − x0)

2

4 D (t − t0)

]
(3.33)

− 1√
4π D (t − t0)

exp

[
− (x + x0)

2

4 D (t − t0)

]
, x ≥ 0

is the solution sought. In this case the x ≤ 0 tail of the first term which describes barrierless free
diffusion is not replaced by the second term, but rather the second term describes a further particle
loss. This contribution is not at all obvious and we strongly encourage the reader to consider the
issue. Actually it may seem “natural” that the solution for an absorbing wall would be obtained
if one just left out the x ≤ 0 tail of the first term in (3.33) corresponding to particle removal by
the wall. It appears that (3.33) removes particles also at x ≥ 0 which did not have reached the
absorbing wall yet. This, however, is not true. Some of the probability of a freely diffusing particle
in a barrierless space for t > 0 at x > 0 involves Brownian trajectories of that particle which had
visited the half-space x ≤ 0 at earlier times. These instances of the Brownian processes are removed
by the second term in (3.33) (see Figure 3.2).
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3.2: Diffusion in Half-Space 43

Figure 3.2: Probability density distribution of a freely diffusing particle in half-space with an
absobing boundary at x = 0. The left plot shows the time evolution of equation (3.33) with
x0 = 1 and (t1 − t0) = 0.0, 0.1, 0.3, 0.6, 1.0, 1.7, and 3.0 for D = 1 in arbitrary temporal and spatial
units. The right plot depicts the assembly of solution (3.33) with two Gaussian distributions at
(t1 − t0) = 0.3.

Because of particle removal by the wall at x = 0 the total number of particles is not conserved.
The particle number corresponding to the Greens function p(x, t|x0, t0) is

N(t|x0, t0) =

∫ ∞

0
dx p(x, t|x0, t0) . (3.34)

Introducing the integration variable

y =
x√

4 D (t − t0)
(3.35)

(3.34) can be written

N(t|x0, t0) =
1√
π

∫ ∞

0
dy exp

[
−(y − y0)

2
]
− 1√

π

∫ ∞

0
dy exp

[
−(y − y0)

2
]

=
1√
π

∫ ∞

−y0

dy exp
[
−y2

]
− 1√

π

∫ ∞

y0

dy exp
[
−y2

]

=
1√
π

∫ y0

−y0

dy exp
[
−y2

]
(3.36)

=
2√
π

∫ y0

0
dy exp

[
−y2

]
. (3.37)

Employing the definition of the so-called error function

erf(z) =
2√
π

∫ z

0
dy exp

[
−y2

]
(3.38)

leads to the final expression, using (3.35),

N(t|x0, t0) = erf

[
x0√

4 D (t − t0)

]
. (3.39)

Preliminary version April 23, 2000



44 Einstein Diffusion Equations

The particle number decays to zero asymptotically. In fact, the functional property of erf(z) reveal

N(t|x0, t0) ∼ x0√
πD(t − t0)

for t → ∞ . (3.40)

This decay is actually a consequence of the ergodic theorem which states that one-dimensional
Brownian motion with certainty will visit every point of the space, i.e., also the absorbing wall. We
will see below that for three-dimensional Brownian motion not all particles, even after arbitrary
long time, will encounter a reactive boundary of finite size.

The rate of particle decay, according to (3.39), is

∂t N(t|x0, t0) = − x0√
2π D (t − t0) (t − t0)

exp

[
− x2

0

4 D (t − t0)

]
. (3.41)

An alternative route to determine the decay rate follows from (3.21) which reads for the case
considered here,

∂t N(t|x0, t0) = −D ∂x p(x, t|x0, t0)
∣∣∣
x=0

. (3.42)

Evaluation of this expression yields the same result as Eq. (3.41). This illustrates how useful the
relationship (3.21) can be.

3.3 Fluorescence Microphotolysis

Fluorescence microphotolysis is a method to measure the diffusion of molecular components (lipids
or proteins) in biological membranes. For the purpose of measurement one labels the particular
molecular species to be investigated, a membrane protein for example, with a fluorescent marker.
This marker is a molecular group which exhibits strong fluorescence when irradiated; in the method
the marker is chosen such that there exists a significant probability that the marker is irreversibly
degraded through irradiation into a non-fluorescent form.

The diffusion measurement of the labelled molecular species proceeds then in two steps. In the first
step at time to , a small, circular membrane area of diameter a (some µm) is irradiated by a short,
intensive laser pulse of 1-100 mW, causing the irreversible change (photolysis) of the fluorescent
markers within the illuminated area. For all practical purposes, this implies that no fluorescent
markers are left in that area and a corresponding distribution w(x, y, to) is prepared.

In the second step, the power of the laser beam is reduced to a level of 10-1000 nW at which
photolysis is negligible. The fluorescence signal evoked by the attenuated laser beam,

N(t|to) = co

∫

Ωlaser

dx dy w(x, y, t) (3.43)

is then a measure for the number of labelled molecules in the irradiated area at time t. Here Ωlaser

denotes the irradiated area (assuming an idealized, homogenous irradiation profile) and co is a
suitable normalization constant. N(t|to) is found to increase rapidly in experiments due diffusion
of unphotolysed markers into the area. Accordingly, the fluorescence recovery can be used to
determine the diffusion constant D of the marked molecules.

In the following, we will assume that the irradiated area is a stripe of thickness 2a, rather than a
circular disk. This geometry will simplify the description, but does not affect the behaviour of the
system in principle.
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3.3: Fluorescence Microphotolysis 45

Figure 3.3: Schematic drawing of a fluorescence microphotolysis experiment.

For t < t0 the molecular species under consideration, to be referred to as particles, is homogeneously
distributed as described by w(x, t) = 1. At t = t0 photolysis in the segment −a < x < a eradicates
all particles, resulting in the distribution

w(x, t0) = θ(a − x) + θ(x − a) , (3.44)

where θ is the Heavisides step function

θ(x) =

{
0 for x < 0

1 forx ≥ 0
. (3.45)

The subsequent evolution of w(x, y, t) is determined by the two-dimensional diffusion equation

∂t w(x, y, t) = D
(
∂2

x + ∂2
y

)
w(x, y, t) . (3.46)

For the sake of simplicity, one may assume that the membrane is infinite, i.e., large compared to
the length scale a. Since the initial distribution (3.44) does not depend on y, once can assume
that w(x, y, t) remains independent of y since distribution, in fact, is a solution of (3.46). However,
one can eliminate consideration of y and describe teh ensuing distribution w(x, t) by means of the
one-dimensional diffusion equation

∂t w(x, t) = D ∂2
x w(x, t) . (3.47)

with boundary condition

lim
|x|→∞

w(x, t) = 0 . (3.48)

The Green’s function solution of this equation is [c.f. (3.14)]

p(x, t|x0, t0) =
1√

4πD(t − t0)
exp

[
− (x − x0)

2

4D(t − t0)

]
. (3.49)
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Figure 3.4: Time evolution of the probability distribution w(x, t) for D = 1
a2 in time steps t =

0, 0.1, 0.2, . . . , 1.0.

which satisfies the initial condition p(x, t0|x0, t0) = δ(x−x0). The solution for the initial probability
distribution (3.44), according to (3.16), is then

w(x, t) =

∫ +∞

−∞
dxo p(x, t|xo, to) (θ(a − x) + θ(x − a)) . (3.50)

This can be written, using (3.49) and (3.45),

w(x, t) =

∫ −a

−∞
dx0

1√
4πD(t − t0)

exp

[
− (x − x0)

2

4D(t − t0)

]

+

∫ ∞

a
dx0

1√
4πD(t − t0)

exp

[
− (x − x0)

2

4D(t − t0)

]
. (3.51)

Identifying the integrals with the error function erf(x) one obtains

w(x, t) =
1

2
erf

[
x − x0

2
√

D(t − t0)

]∣∣∣∣∣

−a

−∞
+

1

2
erf

[
x − x0

2
√

D(t − t0)

]∣∣∣∣∣

∞

a

=

(
1

2
erf

[
x + a

2
√

D(t − t0)

]
+

1

2

)
−
(

1

2
erf

[
x − a

2
√

D(t − t0)

]
− 1

2

)

and, finally,

w(x, t) =
1

2

(
erf

[
x + a

2
√

D(t − t0)

]
− erf

[
x − a

2
√

D(t − t0)

])
+ 1 . (3.52)

The time evolution of the probability distribution w(x, t) is displayed in Figure 3.4 for D = 1
a2 in

time steps t = 0, 0.1, 0.2, . . . , 1.0.
The observable N(t, |to), given in (3.43) is presently defined through

N(t|to) = co

∫ +a

−a
dx w(x, t) (3.53)
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Comparision with (3.52) shows that the evaluation requires one to carry out integrals over the error
function which we will, hence, determine first. One obtains by means of conventional techniques

∫
dx erf(x) = x erf(x) −

∫
dx x

d

dx
erf(x)

= x erf(x) − 1√
π

∫
2x dx exp(−x2)

= x erf(x) − 1√
π

∫
dξ exp(−ξ) , for ξ = x2

= x erf(x) +
1√
π

exp(−ξ)

= x erf(x) +
1√
π

exp(−x2) . (3.54)

Equiped with this result one can evaluate (3.53). For this purpose we adopt the normalization
factor co = 1

2a and obtain

N(t|t0) =
1

2a

∫ +a

−a
dx

1

2

(
erf

[
x + a

2
√

D(t − t0)

]
− erf

[
x − a

2
√

D(t − t0)

]
+ 2

)

=
1

4a

(
2
√

D (t − t0)

π
exp

[
(x + a)2

4 D (t − t0)

]
+ (x + a) erf

[
x + a

2
√

D (t − t0)

]

− 2
√

D (t − t0)

π
exp

[
(x − a)2

4 D (t − t0)

]
+ (x − a) erf

[
x − a

2
√

D (t − t0)

]
+ 2x

)∣∣∣∣∣

a

−a

=

√
D(t − t0)

a
√

π

(
exp

[
− a2

D (t − t0)

]
− 1

)
+ erf

[
a√

D (t − t0)

]
+ 1 . (3.55)

The fluorescent recovery signal N(t|to) is displayed in Figure 3.5. The result exhibits the increase
of fluorescence in illuminated stripe [−a, a]: particles with a working fluorescent marker diffuse into
segment [−a, a] and replace the bleached fluorophore over time. Hence, N(t|to) is an increasing
function which approaches asymptotically the value 1, i.e., the signal prior to photolysis at t = t0.
One can determine the diffusion constant D by fitting normalized data of fluorescence measurements
to N(t|to). Values for the diffusion constant D range from 10 µm2 to 0.001 µm2. For this purpose
we simplify expression (3.55) introducing the dimensionless variable

ξ =
a√

D (t − t0)
. (3.56)

One can write then the observable in teh form

N(ξ) =
1

ξ
√

π

(
exp
[
−ξ2

]
− 1

)
+ erf [ξ] + 1 . (3.57)

A characteristic of the fluorescent recovery is the time th, equivalently, ξh, at which half of the
fluorescence is recovered defined through N(ξh) = 0.5. Numerical calculations, using the regula
falsi or secant method yields ξh provide the following equations.

ξh = 0.961787 . (3.58)
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Figure 3.5: Fluorescence recovery after photobleaching as described by N(t|to). The inset shows
the probability distribution w(x, t) for t = 1 and the segment [−a, a]. (D = 1

a2 )

the definition (3.56) allows one to determine teh relationship between th and D

D = 0.925034
a2

th − t0
. (3.59)

Since a is known through the experimental set up, measurement of th− to provides the value of D.

3.4 Free Diffusion around a Spherical Object

Likely the most useful example of a diffusion process stems from a situation encountered in a
chemical reaction when a molecule diffuses around a target and either reacts with it or vanishes
out of its vicinity. We consider the idealized situation that the target is stationary (the case that
both the molecule and the target diffuse is treated in Chapter ??. Also we assume that the target
is spherical (radius a) and reactions can arise anywwhere on its surface with equal likelyhood.
Furthermore, we assume that the diffusing particles are distributed initially at a distance r0 from
the center of the target with all directions being equally likely. In effect we describe an ensemble
of reacting molecules and targets which undergo their reaction diffusion processes independently of
each other.

The probability of finding the molecule at a distance r at time t is then described by a spherically
symmetric distribution p(r, t|r0, t0) since neither the initial condition nor the reaction-diffusion
condition show any orientational preference. The ensemble of reacting molecules is then described
by the diffusion equation

∂t p(r, t|r0, t0) = D ∇2 p(r, t|r0, t0) (3.60)

and the initial condition

p(r, t0|r0, t0) =
1

4π r2
0

δ(r − r0) . (3.61)
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The prefactor on the r.h.s. normalizes the initial probability to unity since
∫

Ω∞

d3r p(r, t0|r0, t0) =

∫ ∞

0
4π r2dr p(r, t0|r0, t0) . (3.62)

We can assume that the distribution vanishes at distances from the target which are much larger
than r0 and, accordingly, impose the boundary condition

lim
r→∞

p(r, t|r0, t0) = 0 . (3.63)

The reaction at the target will be described by the boundary condition (3.25), which in the present
case of a spherical boundary, can be written

D ∂r p(r, t|r0, t0) = w p(r, t|r0, t0) , for r = a . (3.64)

As pointed out above, w controls the likelyhood of encounters with the target to be reactive: w = 0
corresponds to an unreactive surface, w → ∞ to a surface for which every collision leads to reaction
and, hence, to a diminishing of p(r, t|r0, t0). The boundary condition for arbitrary w values adds
significantly to the complexity of the solution, i.e., the following derivation would be simpler if the
limits w = 0 or w → ∞ would be considered. However, a closed expression for the general case
can be provided and, in view of the frequent applicability of the example we prefer the general
solution.
We first notice that the Laplace operator ∇2, expressed in spherical coordinates (r, θ, φ), reads

∇2 =
1

r2

[
∂r

(
r2 ∂r

)
+

1

sin2 θ
∂2

φ +
1

sin θ
∂θ

(
sin θ ∂θ

)]
. (3.65)

Since the distribution function p(r, t0|r0, t0) is spherically symmetric, i.e., depends solely on r and
not on θ and φ, one can drop, for all practical purposes, the respective derivatives. Employing
furthermore the identity

1

r2
∂r

(
r2 ∂r f(r)

)
=

1

r
∂2

r

(
r f(r)

)
. (3.66)

one can restate the diffusion equation (3.60)

∂t r p(r, t|r0, t0) = D ∂2
r r p(r, t|r0, t0) . (3.67)

For the solution of (3.61, 3.63, 3.64, 3.67) we partition

p(r, t|r0, t0) = u(r, t|r0, t0) + v(r, t|r0, t0), (3.68)

with u(r, t → t0|r0, t0) =
1

4π r2
0

δ(r − r0) (3.69)

v(r, t → t0|r0, t0) = 0 . (3.70)

The functions u(r, t|r0, t0) and v(r, t|r0, t0) are chosen to obey individually the radial diffusion
equation (3.67) and, together, the boundary conditions (3.63, 3.64). We first construct u(r, t|r0, t0)
without regard to the boundary condition at r = a and construct then v(r, t|r0, t0) such that the
proper boundary condition is obeyed.
The function u(r, t|r0, t0) has to satisfy

∂t

(
r u(r, t|r0, t0)

)
= D ∂2

r

(
r u(r, t|r0, t0)

)
(3.71)

r u(r, t → t0|r0, t0) =
1

4π r0
δ(r − r0) . (3.72)
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An admissable solution r u(r, t|r0, t0) can be determined readily through Fourier transformation

Ũ(k, t|r0, t0) =

∫ +∞

−∞
dr r u(r, t|r0, t0) e−i k r , (3.73)

r u(r, t|r0, t0) =
1

2π

∫ +∞

−∞
dk Ũ(k, t|r0, t0) ei k r . (3.74)

Inserting (3.74) into (3.67) yields

1

2π

∫ ∞

−∞
dk
[
∂t Ũ(k, t|r0, t0) + D k2 Ũ(k, t|r0, t0)

]
eikr = 0 . (3.75)

The uniqueness of the Fourier transform allows one to conclude that the coefficients [ · · · ] must
vanish. Hence, one can conclude

Ũ(k, t|r0, t0) = Cu(k|r0) exp
[
−D (t − t0) k2

]
. (3.76)

The time-independent coefficients Cu(k|r0) can be deduced from the initial condition (3.72). The
identity

δ(r − r0) =
1

2π

∫ +∞

−∞
dk ei k (r−r0) (3.77)

leads to

1

4π r0
δ(r − r0) =

1

8π2 r0

∫ +∞

−∞
dk ei k (r−r0) =

1

2π

∫ +∞

−∞
dk Cu(k|r0) ei k r (3.78)

and, hence,

Cu(k|r0) =
1

4π r0
e−i k r0 . (3.79)

This results in the expression

r u(r, t|r0, t0) =
1

8 π2 r0

∫ ∞

−∞
dk exp

[
−D (t − t0) k2

]
ei (r−r0) k (3.80)

The Fourier integral

∫ ∞

−∞
dk e−a k2

ei x k =

√
π

a
exp

[−x2

4 a

]
(3.81)

yields

r u(r, t|r0, t0) =
1

4 π r0

1√
4π D (t − t0)

exp

[
− (r − r0)

2

4 D (t − t0)

]
. (3.82)

We want to determine now the solution v(r, t|r0, t0) in (3.68, 3.70) which must satisfy

∂t

(
r v(r, t|r0, t0)

)
= D ∂2

r

(
r v(r, t|r0, t0)

)
(3.83)

r v(r, t → t0|r0, t0) = 0 . (3.84)
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Any solution of these homogeneous linear equations can be multiplied by an arbitrary constant C.
This freedom allows one to modify v(r, t|r0, t0) such that u(r, t|r0, t0) + C v(r, t|r0, t0) obeys the
desired boundary condition (3.64) at r = a.
To construct a solution of (3.83, 3.84) we consider the Laplace transformation

V̌ (r, s|r0, t0) =

∫ ∞

0
dτ e−s τ v(r, t0 + τ |r0, t0) . (3.85)

Applying the Lapace transform to (3.83) and integrating by parts yields for the left hand side

− r v(r, t0|r0, t0) + s r V̌ (r, s|r0, t0) . (3.86)

The first term vanishes, according to (3.84), and one obtains

s

D

(
r V̌ (r, s|r0, t0)

)
= ∂2

r

(
r V̌ (r, s|r0, t0)

)
. (3.87)

The solution with respect to boundary condition (3.63) is

r V̌ (r, s|r0, t0) = C(s|r0) exp

[
−
√

s

D
r

]
. (3.88)

where C(s|r0) is an arbitrary constant which will be utilized to satisfy the boundary condition(3.64).
Rather than applying the inverse Laplace transform to determine v(r, t|r0, t0) we consider the
Laplace transform P̌ (r, s|r0, t0) of the complete solution p(r, t|r0, t0). The reason is that boundary
condition (3.64) applies in an analogue form to P̌ (r, s|r0, t0) as one sees readily applying the Laplace
transform to (3.64). In case of the function r P̌ (r, s|r0, t0) the extra factor r modifies the boundary
condition. One can readily verify, using

D ∂r

(
r P̌ (r, s|r0, t0)

)
= D P̌ (r, s|r0, t0) + r D ∂r P̌ (r, s|r0, t0)

)
(3.89)

and replacing at r = a the last term by the r.h.s. of (3.64),

∂r r P̌ (r, s|r0, t0)

∣∣∣∣
r=a

=
w a + D

D a
a P̌ (a, s|r0, t0) . (3.90)

One can derive the Laplace transform of u(r, t|r0, t0) using the identity

∫ ∞

0
dt e−s τ 1

4 π r0

1√
4π D τ

exp

[
−(r − r0)

2

4 D τ

]
=

1

4 π r0

1√
4 D s

exp

[
−
√

s

D

∣∣r − r0

∣∣
]

(3.91)

and obtains for r P̌ (r, s|r0, t0)

r P̌ (r, s|r0, t0) =
1

4 π r0

1√
4 D s

exp

[
−
√

s

D

∣∣r − r0

∣∣
]

+ C(s|r0) exp

[
−
√

s

D
r

]
. (3.92)

Boundary condition (3.90) for r = a < r0 is

√
s

D

(
1

4 π r0

1√
4 D s

exp

[
−
√

s

D
(r0 − a)

]
− C(s|r0) exp

[
−
√

s

D
a

])
(3.93)

=
w a + D

D a

(
1

4 π r0

1√
4 D s

exp

[
−
√

s

D
(r0 − a)

]
+ C(s|r0) exp

[
−
√

s

D
a

])

Preliminary version April 23, 2000



52 Einstein Diffusion Equations

or
(√

s

D
− w a + D

D a

)
1

4 π r0

1√
4 D s

exp

[
−
√

s

D
(r0 − a)

]
(3.94)

=

(
w a + D

D a
+

√
s

D

)
C(s|r0) exp

[
−
√

s

D
a

]
.

This condition determines the appropriate factor C(s|r0), namely,

C(s|r0) =

√
s/D − (w a + D)/(D a)√
s/D + (w a + D)/(D a)

1

4 π r0

1√
4 D s

exp

[
−
√

s

D
(r0 − 2 a)

]
. (3.95)

Combining (3.88, 3.91, 3.95) results in the expression

r P̌ (r, s|r0, t0)

=
1

4 π r0

1√
4 D s

exp

[
−
√

s

D

∣∣r − r0

∣∣
]

+

√
s/D − (w a + D)/(D a)√
s/D + (w a + D)/(D a)

1

4 π r0

1√
4 D s

exp

[
−
√

s

D
(r + r0 − 2 a)

]

=
1

4 π r0

1√
4 D s

(
exp

[
−
√

s

D

∣∣r − r0

∣∣
]

+ exp

[
−
√

s

D
(r + r0 − 2 a)

])
(3.96)

− (w a + D)/(D a)√
s/D + (w a + D)/(D a)

1

4 π r0

1√
D s

exp

[
−
√

s

D
(r + r0 − 2 a)

]

Application of the inverse Laplace transformation leads to the final result

r p(r, t|r0, t0)

=
1

4 π r0

1√
4π D (t − t0)

(
exp

[
− (r − r0)

2

4 D (t − t0)

]
+ exp

[
−(r + r0 − 2 a)2

4 D (t − t0)

])

− 1

4 π r0

w a + D

D a
exp

[(
w a + D

D a

)2

D (t − t0) +
w a + D

D a
(r + r0 − 2 a)

]

× erfc

[
w a + D

D a

√
D (t − t0) +

r + r0 − 2 a√
4 D (t − t0)

]
. (3.97)

The substituion

α =
w a + D

D a
(3.98)

simplifies the solution slightly

p(r, t|r0, t0) =
1

4 π r r0

1√
4π D (t − t0)

(
exp

[
− (r − r0)

2

4 D (t − t0)

]
+ exp

[
−(r + r0 − 2 a)2

4 D (t − t0)

])

− 1

4 π r r0
α exp

[
α2 D (t − t0) + α (r + r0 − 2 a)

]

× erfc

[
α
√

D (t − t0) +
r + r0 − 2 a√
4 D (t − t0)

]
. (3.99)
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Figure 3.6: Radial probability density distribution of freely diffusing particles around a spherical
object according to equation (3.99). The left plot shows the time evolution with w = 0 and
(t1 − t0) = 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2. The right plot depicts the time evolution of equation

(eq:fdso27) with w = ∞ and (t1 − t0) = 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2. The time units are a2

D .

Reflective Boundary at r = a We like to consider now the solution (3.99) in case of a reflective
boundary at r = a, i.e., for w = 0 or α = 1/a. The solution is

p(r, t|r0, t0) =
1

4 π r r0

1√
4π D (t − t0)

(
exp

[
− (r − r0)

2

4 D (t − t0)

]
+ exp

[
−(r + r0 − 2 a)2

4 D (t − t0)

])

− 1

4 π a r r0
exp

[
D

a2
(t − t0) +

r + r0 − 2 a

a

]

× erfc

[√
D (t − t0)

a
+

r + r0 − 2 a√
4 D (t − t0)

]
. (3.100)

Absorptive Boundary at r = a In case of an absorbing boundary at r = a, one has to set
w → ∞ and, hence, α → ∞. To supply a solution for this limiting case we note the asymptotic
behaviour1

√
π z exp

[
z2
]

erfc[z] ∼ 1 + O
(

1

z2

)
. (3.101)

1Handbook of Mathematical Functions, Eq. 7.1.14
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This implies for the last summand of equation (3.99) the asymptotic behaviour

α exp
[
α2 D (t − t0) + α (r + r0 − 2 a)

]
erfc

[
α
√

D (t − t0) +
r + r0 − 2 a√
4 D (t − t0)

]

= α exp
[
z2
]

exp
[
−z2

2

]
erfc[z] , with z = α z1 + z2 ,

z1 =
√

D (t − t0) , and

z2 = (r + r0 − 2 a)/
√

4 D (t − t0) .

∼ α√
π z

exp
[
−z2

2

] (
1 + O

(
1

α2

))
(3.102)

=
1√
π

α
√

4 D (t − t0)

2 α D (t − t0) + r + r0 − 2a
exp

[
−(r + r0 − 2 a)2

4 D (t − t0)

] (
1 + O

(
1

α2

))

=

(
1√

π D (t − t0)
− r + r0 − 2 a

√
4π α

(
D (t − t0)

)3/2
+ O

(
1

α2

))
exp

[
−(r + r0 − 2 a)2

4 D (t − t0)

]
.

One can conclude to leading order

α exp
[
α2 D (t − t0) + α (r + r0 − 2 a)

]
erfc

[
α
√

D (t − t0) +
r + r0 − 2 a√
4 D (t − t0)

]

∼
(

2√
4π D (t − t0)

+ O
(

1

α2

))
exp

[
−(r + r0 − 2 a)2

4 D (t − t0)

]
. (3.103)

Accordingly, solution (3.99) becomes in the limit w → ∞

p(r, t|r0, t0) =
1

4 π r r0

1√
4π D (t − t0)

(
exp

[
− (r − r0)

2

4 D (t − t0)

]
− exp

[
−(r + r0 − 2 a)2

4 D (t − t0)

])
.

(3.104)

Reaction Rate for Arbitrary w We return to the general solution (3.99) and seek to determine
the rate of reaction at r = a. This rate is given by

K(t|r0, t0) = 4π a2 D ∂r p(r, t|r0, t0)
∣∣∣
r=a

(3.105)

where the factor 4πa2 takes the surface area of the spherical boundary into account. According to
the boundary condition (3.64) this is

K(t|r0, t0) = 4π a2w p(a, t|r0, t0) . (3.106)

One obtains from (3.99)

K(t|r0, t0) =
aw

r0

(
1√

π D (t − t0)
exp

[
− (r0 − a)2

4 D (t − t0)

]
(3.107)

− α exp
[
α (r0 − a) + α2 D (t − t0)

]
erfc

[
r0 − a√

4 D (t − t0)
+ α

√
D (t − t0)

])
.
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Reaction Rate for w → ∞ In case of an absorptive boundary (w,α → ∞) one can conclude
from the asymptotic behaviour (3.102) with r = a

K(t|r0, t0) =
aw

r0

(
r0 − a

√
4π α

(
D (t − t0)

)3/2
+ O

(
1

α2

))
exp

[
− (r0 − a)2

4 D (t − t0)

]
.

Employing for the limit w,α → ∞ equation (3.98) as w/α ∼ D one obtains the reaction rate for
a completely absorptive boundary

K(t|r0, t0) =
a

r0

1√
4π D (t − t0)

r0 − a

t − t0
exp

[
− (r0 − a)2

4 D (t − t0)

]
. (3.108)

This expression can also be obtained directly from (3.104) using the definition (3.105) of the reaction
rate.

Fraction of Particles Reacted for Arbitrary w One can evaluate the fraction of particles
which react at the boundary r = a according to

Nreact(t|r0, t0) =

∫ t

t0

dt′K(t′|r0, t0) . (3.109)

For the general case with the rate (3.107) one obtains

Nreact(t|r0, t0) =
aw

r0

∫ t

t0

dt′
(

1√
π D (t′ − t0)

exp

[
− (r0 − a)2

4 D (t′ − t0)

]
(3.110)

− α exp
[
α(r0 − a) + α2D (t′ − t0)

]
erfc

[
r0 − a√

4D(t′ − t0)
+ α

√
D (t′ − t0)

])

To evaluate the integral we expand the first summand of the integrand in (3.110). For the exponent
one can write

− (r0 − a)2

4 D (t′ − t0)︸ ︷︷ ︸
= x2(t′)

= (r0 − a) α + D (t′ − t0)α2

︸ ︷︷ ︸
= y(t′)

− (r0 − a + 2D (t′ − t0) α)2

4 D (t′ − t0)︸ ︷︷ ︸
= z2(t′)

. (3.111)

We introduce the functions x(t′), y(t′), and z(t′) for notational convenience. For the factor in front
of the exponential function we consider the expansion

1√
π D (t′ − t0)

(3.112)

=
2√

π D α

(
D (r0 − a)

4
(
D (t′ − t0)

)3/2
− D (r0 − a)

4
(
D (t′ − t0)

)3/2
+

D2 (t′ − t0)α

2
(
D (t′ − t0)

)3/2

)

=
2√

π D α

(
D (r0 − a)

4
(
D (t′ − t0)

)3/2

︸ ︷︷ ︸
= dx(t′)/dt′

− (r0 − a)

2 (t′ − t0)
√

4 D (t′ − t0)
+

D α√
4 D (t′ − t0)︸ ︷︷ ︸

= dz(t′)/dt′

)
.
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56 Einstein Diffusion Equations

Figure 3.7: The left plot shows the fraction of particles that react at boundary r = a. The two
cases w = 1 and w = ∞ of equation (3.114) are displayed. The dotted lines indicate the asymptotic
values for t → ∞. The right plot depicts the time evolution of equation (3.114) for small (t − t0).

Note, that the substitutions in (3.112) define the signs of x(t′) and z(t′). With the above expansions
and substitutions one obtains

Nreact(t|r0, t0) =
aw

D α r0

∫ t

t0

dt′
(

2√
π

dx(t′)
dt′

e−x2(t′)

+
2√
π

dz(t′)
dt′

ey(t′) e−z2(t′) − dy(t′)
dt′

ey(t′) erfc[z(t′)]

)

=
aw

D α r0

(
2√
π

∫ x(t)

x(t0)
dx e−x2 −

∫ t

t0

dt′
d

dt′

(
ey(t′) erfc[z(t′)]

))

=
aw

D α r0

(
erf[ x(t′) ] − ey(t′) erfc[z(t′)]

)∣∣∣∣∣

t

t0

. (3.113)

Filling in the integration boundaries and taking w a = D (aα − 1) into account one derives

Nreact(t|r0, t0) =
aα − 1

r0 α

(
1 + erf

[
a − r0√

4 D (t − t0)

]
(3.114)

− e(r0−a) α + D (t−t0) α2
erfc

[
r0 − a + 2D (t − t0) α√

4 D (t − t0)

])
.

Fraction of Particles Reacted for w → ∞ One derives the limit α → ∞ for a completely
absorptive boundary at x = a with the help of equation (3.102).

lim
α→∞

Nreact(t|r0, t0) =
a

r0

(
1 + erf

[
a − r0√

4 D (t − t0)

]
(3.115)

− 1

α

(
2√

4π D (t − t0)
+ O

(
1

α2

))
exp

[
− (r0 − a)2

4 D (t − t0)

])
.
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The second line of equation (3.115) approaches 0 and one is left with

lim
α→∞

Nreact(t|r0, t0) =
a

r0
erfc

[
r0 − a√

4 D (t − t0)

]
. (3.116)

Fraction of Particles Reacted for (t − t0) → ∞ We investigate another limiting case of
Nreact(t|r0, t0); the long time behavior for (t− t0) → ∞. For the second line of equation (3.114) we
again refer to (3.102), which renders for r = a and with respect to orders of t instead of α

exp
[
α2 D (t − t0) + α (r0 − a)

]
erfc

[
α
√

D (t − t0) +
r0 − a√

4 D (t − t0)

]

=

(
1√

π D (t − t0)
+ O

(
1

t − t0

))
exp

[
− (r0 − a)2

4 D (t − t0)

]
. (3.117)

Equation (3.117) approaches 0 for (t−t0) → ∞, and since erf[−∞] = 0, one obtains for Nreact(t|r0, t0)
of equation (3.114)

lim
(t−t0)→∞

Nreact(t|r0, t0) =
a

r0
− 1

r0 α
. (3.118)

Even for w,α → ∞ this fraction is less than one in accordance with the ergodic behaviour of
particles diffusing in three-dimensional space. In order to overcome the a/r0 limit on the overall
reaction yield one can introduce long range interactions which effectively increase the reaction
radius a.
We note that the fraction of particles N(t|r0) not reacted at time t is 1 − Nreact(t|r0) such that

N(t|r0, t0) = 1 − aα − 1

r0 α

(
1 + erf

[
a − r0√

4 D (t − t0)

]
(3.119)

− e(r0−a) α + D (t−t0) α2
erfc

[
r0 − a + 2D (t − t0) α√

4 D (t − t0)

])
.

We will demonstrate in a later chapter that this quantity can be evaluated directly without de-
termining the distribution p(r, t|r0, t0) first. Naturally, the cumbersome derivation provided here
makes such procedure desirable.

3.5 Free Diffusion in a Finite Domain

We consider now a particle diffusing freely in a finite, one-dimensional interval

Ω = [0, a] . (3.120)

The boundaries of Ω at x = 0, a are assumed to be reflective. The diffusion coefficient D is assumed
to be constant. The conditional distribution function p(x, t|x0, t0) obeys the diffusion equation

∂t p(x, t|x0, t0) = D ∂2
x p(x, t|x0, t0) (3.121)

subject to the initial condition

p(x, t0|x0, t0) = δ(x − x0) (3.122)
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and to the boundary conditions

D ∂x p(x, t|x0, t0) = 0 , for x = 0, and x = a . (3.123)

In order to solve (3.121–3.123) we expand p(x, t|x0, t0) in terms of eigenfunctions of the diffusion
operator

L0 = D ∂2
x . (3.124)

where we restrict the function space to those functions which obey (3.123). The corresponding
functions are

vn(x) = An cos
[
n π

x

a

]
, n = 0, 1, 2, . . . . (3.125)

In fact, for these functions holds for n = 0, 1, 2, . . .

L0 vn(x) = λn vn(x) (3.126)

λn = −D
(n π

a

)2
. (3.127)

From

∂x vn(x) = −n π

a
An sin

[
n π

x

a

]
, n = 0, 1 2, . . . (3.128)

follows readily that these functions indeed obey (3.123).
We can define, in the present case, the scalar product for functions f, g in the function space
considered

〈 g | f 〉Ω =

∫ a

0
dx g(x) f(x) . (3.129)

For the eigenfunctions (3.125) we choose the normalization

〈 vn | vn 〉Ω = 1 . (3.130)

This implies for n = 0
∫ a

0
dx A2

0 = A2
0 a = 1 (3.131)

and for n 6= 0, using cos2 α = 1
2(1 + cos 2α),

∫ a

0
dx v2

n(x) = A2
n

a

2
+

1

2
A2

n

∫ a

0
dx cos

[
2 n π

x

a

]
= A2

n

a

2
. (3.132)

It follows

An =

{ √
1/a for n = 0 ,√
2/a for n = 1, 2, . . . .

(3.133)

The functions vn are orthogonal with respect to the scalar product (3.129), i.e.,

〈vm|vn〉Ω = δmn . (3.134)
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To prove this property we note, using

cos α cos β =
1

2

(
cos(α + β) + cos(α − β)

)
, (3.135)

for m 6= n

〈 vm | vn 〉Ω =
Am An

2

( ∫ a

0
dx cos

[
(m + n) π

x

a

]
+

∫ a

0
dx cos

[
(m − n) π

x

a

])

=
Am An

2 π

(
a

(m + n)
sin
[
(m + n) π

x

a

]
+

a

(m − n)
sin
[
(m − n)π

x

a

])∣∣∣∣∣

a

0

= 0 .

Without proof we note that the functions vn, defined in (3.125), form a complete basis for the
function space considered. Together with the scalar product (3.129) this basis is orthonormal. We
can, hence, readily expand p(x, t|x0, t0) in terms of vn

p(x, t|x0, t0) =
∞∑

n=0

αn(t|x0, t0) vn(x) . (3.136)

Inserting this expansion into (3.121) and using (3.126) yields

∞∑

n=0

∂t αn(t|x0, t0) vn(x) =

∞∑

n=0

λn αn(t|x0, t0) vn(x) . (3.137)

Taking the scalar product 〈 vm | leads to

∂t αm(t|x0, t0) = λm αm(t|x0, t0) (3.138)

from which we conclude

αm(t|x0, t0) = eλm (t−t0) βm(x0, t0) . (3.139)

Here, βm(x0, t0) are time-independent constants which are determined by the initial condition
(3.122)

∞∑

n=0

βn(x0, t0) vn(x) = δ(x − x0) . (3.140)

Taking again the scalar product 〈 vm | results in

βm(x0, t0) = vm(x0) . (3.141)

Altogether holds then

p(x, t|x0, t0) =

∞∑

n=0

eλn (t−t0) vn(x0) vn(x) . (3.142)
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Let us assume now that the system considered is actually distributed initially according to a
distribution f(x) for which we assume 〈 1 | f 〉Ω = 1. The distribution p(x, t), at later times, is then

p(x, t) =

∫ a

0
dx0 p(x, t|x0, t0) f(x0) . (3.143)

Employing the expansion (3.142) this can be written

p(x, t) =
∞∑

n=0

eλn (t−t0) vn(x)

∫ a

0
dx0 vn(x0) f(x0) . (3.144)

We consider now the behaviour of p(x, t) at long times. One expects that the system ultimately
assumes a homogeneous distribution in Ω, i.e., that p(x, t) relaxes as follows

p(x, t) ≍
t→∞

1

a
. (3.145)

This asymptotic behaviour, indeed, follows from (3.144). We note from (3.127)

eλn (t−t0) ≍
t→∞

{
1 for n = 0

0 for n = 1, 2, . . .
. (3.146)

From (3.125, 3.133) follows v0(x) = 1/
√

a and, hence,

p(x, t) ≍
t→∞

1

a

∫ a

0
dx v(x0) . (3.147)

The property 〈 1 | f 〉Ω = 1 implies then (3.145).
The solution presented here [cf. (3.120–3.147)] provides in a nutshel the typical properties of
solutions of the more general Smoluchowski diffusion equation accounting for the presence of a
force field which will be provided in Chapter 4.

3.6 Rotational Diffusion

Dielectric Relaxation

The electric polarization of liquids originates from the dipole moments of the individual liquid
molecules. The contribution of an individual molecule to the polarization in the z-direction is

P3 = P0 cos θ (3.148)

We consider the relaxation of the dipole moment assuming that the rotational diffusion of the dipole
moments can be described as diffusion on the unit sphere.
The diffusion on a unit sphere is described by the three-dimensional diffusion equation

∂t p(r, t|r0, t0) = D∇2 p(r, t|r0, t0) (3.149)

for the condition |r| = |r0| = 1. In order to obey this condition one employs the Laplace operator
∇2 in terms of spherical coordinates (r, θ, φ) as given in (3.65) and sets r = 1, dropping also
derivatives with respect to r. This yields the rotational diffusion equation

∂t p(Ω, t|Ω0, t0) = τ−1
r

[
1

sin θ
∂θ

(
sin θ ∂θ

)
+

1

sin2 θ
∂2

φ

]
p(Ω, t|Ω0, t0) . (3.150)
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We have defined here Ω = (θ, φ). We have also introduced, instead of the diffusion constant, the
rate constant τ−1

r since the replacement r → 1 altered the units in the diffusion equation; τr has
the unit of time. In the present case the diffusion space has no boundary; however, we need to
postulate that the distribution and its derivatives are continuous on the sphere.
One way of ascertaining the continuity property is to expand the distribution in terms of spherical
harmonics Yℓm(Ω) which obey the proper continuity, i.e.,

p(Ω, t|Ω0, t0) =
∞∑

ℓ=0

+ℓ∑

m=−ℓ

Aℓm(t|Ω0, t0) Yℓm(Ω) . (3.151)

In addition, one can exploit the eigenfunction property

[
1

sin θ
∂θ

(
sin θ ∂θ

)
+

1

sin2 θ
∂2

φ

]
Yℓm(Ω) = −ℓ (ℓ + 1)Yℓm(Ω) . (3.152)

Inserting (3.151) into (3.150) and using (3.152) results in

∞∑

ℓ=0

+ℓ∑

m=−ℓ

∂t Aℓm(t|Ω0, t0) Yℓm(Ω) = −
∞∑

ℓ=0

+ℓ∑

m=−ℓ

ℓ (ℓ + 1) τ−1
r Aℓm(t|Ω0, t0) Yℓm(Ω) (3.153)

The orthonormality property

∫
dΩ Y ∗

ℓ′m′(Ω) Yℓm(Ω) = δℓ′ℓ δm′m (3.154)

leads one to conclude

∂t Aℓm(t|Ω0, t0) = −ℓ (ℓ + 1) τ−1
r Aℓm(t|Ω0, t0) (3.155)

and, accordingly,

Aℓm(t|Ω0, t0) = e−ℓ (ℓ+1) (t−t0)/τr aℓm(Ω0) (3.156)

or

p(Ω, t|Ω0, t0) =
∞∑

ℓ=0

+ℓ∑

m=−ℓ

e−ℓ (ℓ+1) (t−t0)/τr aℓm(Ω0) Yℓm(Ω) . (3.157)

The coefficients aℓm(Ω0) are determined through the condition

p(Ω, t0|Ω0, t0) = δ(Ω − Ω0) . (3.158)

The completeness relationship of spherical harmonics states

δ(Ω − Ω0) =

∞∑

ℓ=0

+ℓ∑

m=−ℓ

Y ∗
ℓm(Ω0) Yℓm(Ω) . (3.159)

Equating this with (3.157) for t = t0 yields

aℓm(Ω0) = Y ∗
ℓm(Ω0) (3.160)
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and, hence,

p(Ω, t|Ω0, t0) =
∞∑

ℓ=0

+ℓ∑

m=−ℓ

e−ℓ (ℓ+1) (t−t0)/τr Y ∗
ℓm(Ω0) Yℓm(Ω) . (3.161)

It is interesting to consider the asymptotic, i.e., the t → ∞, behaviour of this solution. All
exponential terms will vanish, except the term with ℓ = 0. Hence, the distribution approaches
asymptotically the limit

lim
t→∞

p(Ω, t|Ω0, t0) =
1

4π
, (3.162)

where we used Y00(Ω) = 1/
√

4π. This result corresponds to the homogenous, normalized distribu-
tion on the sphere, a result which one may have expected all along. One refers to this distribution
as the equilibrium distribution denoted by

p0(Ω) =
1

4π
. (3.163)

The equilibrium average of the polarization expressed in (3.148) is

〈
P3

〉
=

∫
dΩP0 cos θ p0(Ω) . (3.164)

One can readily show
〈
P3

〉
= 0 . (3.165)

Another quantity of interest is the so-called equilibrium correlation function
〈
P3(t) P ∗

3 (t0)
〉

= P 2
0

∫
dΩ

∫
dΩ0 cos θ cos θ0 p(Ω, t|Ω0, t0) p0(Ω0) . (3.166)

Using

Y10(Ω) =

√
3

4π
cos θ (3.167)

and expansion (3.161) one obtains

〈
P3(t) P ∗

3 (t0)
〉

=
4π

3
P 2

0

+ℓ∑

m=−ℓ

e−ℓ (ℓ+1) (t−t0)/τr |C10,ℓm|2 , (3.168)

where

C10,ℓm =

∫
dΩ Y ∗

10(Ω) Yℓm(Ω) . (3.169)

The orthonormality condition of the spherical harmonics yields immediately

C10,ℓm = δℓ1 δm0 (3.170)

and, therefore,
〈
P3(t) P ∗

3 (t0)
〉

=
4π

3
P 2

0 e−2 (t−t0)/τr . (3.171)

Other examples in which rotational diffusion plays a role are fluorescence depolarization as observed
in optical experiments and dipolar relaxation as observed in NMR spectra.
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Chapter 4

Smoluchowski Diffusion Equation

Contents

4.1 Derivation of the Smoluchoswki Diffusion Equation for Potential Fields 64

4.2 One-Dimensional Diffuson in a Linear Potential . . . . . . . . . . . . . . 67

4.2.1 Diffusion in an infinite space Ω∞ = ] −∞,∞[ . . . . . . . . . . . . . . . . . 67

4.2.2 Diffusion in a Half-Space Ω∞ = [0,∞[ . . . . . . . . . . . . . . . . . . . . 70

4.3 Diffusion in a One-Dimensional Harmonic Potential . . . . . . . . . . . 74

We want to apply now our derivation to the case of a Brownian particle in a force field F (r). The
corresponding Langevin equation is

mr̈ = − γ ṙ + F (r) + σ ξ(t) (4.1)

for scalar friction constant γ and amplitude σ of the fluctuating force. We will assume in this
section the limit of strong friction. In this limit the magnitude of the frictional force γṙ is much
larger than the magnitude of the force of inertia mr̈, i.e.,

|γ ṙ| ≫ |m r̈| (4.2)

and, therefore, (4.1) becomes

γ ṙ = F (r) + σ ξ(t) (4.3)

To (4.1) corresponds the Fokker-Planck equation (cf. Eqs. (2.138) and (2.148)

∂t p(r, t|r0, t0) =

(
∇

2 σ2

2γ2
− ∇ · F (r)

γ

)
p(r, t|r0, t0) (4.4)

In case that the force field can be related to a scalar potential, i.e., in case F (r) = −∇U(r), one
expects that the Boltzmann distribution exp[−U(r)/kBT ] is a stationary, i.e., time-independent,
solution and that, in fact, the system asymptotically approaches this solution. This expectation
should be confined to force fields of the stated kind, i.e., to force fields for which holds ∇×F = 0.
Fokker-Planck equations with more general force fields will be considered further below.
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4.1 Derivation of the Smoluchoswki Diffusion Equation for Poten-

tial Fields

It turns out that the expectation that the Boltzmann distribution is a stationary solution of the
Smoluchowski equation has to be introduced as a postulate rather than a consequence of (4.4).
Defining the parameters D = σ2/2γ2 [cf. (3.12)] and β = 1/kBT the postulate of the stationary
behaviour of the Boltzmann equation is

(
∇ · ∇ D(r) − ∇ · F (r)

γ(r)

)
e−β U(r) = 0 . (4.5)

We have included here the possibility that the coefficients σ and γ defining the fluctuating and dis-
sipative forces are spatially dependent. In the following we will not explicitly state the dependence
on the spatial coordinates r anymore.

Actually, the postulate (4.5) of the stationarity of the Boltzmann distribution is not sufficient to
obtain an equation with the appropriate behaviour at thermal equilibrium. Actually, one needs to
require the more stringent postulate that at equilibrium there does not exist a net flux of particles
(or of probability) in the system. This should hold true when the system asymptotically comes
to rest as long as there are no particles generated or destroyed, e.g., through chemical reactions.
We need to establish the expression for the flux before we can investigate the ramifications of the
indicated postulate.

An expression for the flux can be obtained in a vein similar to that adopted in the case of free
diffusion [cf. (3.17–3.21)]. We note that (4.4) can be written

∂t p(r, t|r0, t0) = ∇ ·
(

∇ D − F (r)

γ

)
p(r, t|r0, t0) . (4.6)

Integrating this equation over some arbitrary volume Ω, with the definition of the particle number
in this volume

NΩ(t|r0, t0) =

∫

Ω
dr p(r, t|r0, t0) (4.7)

and using (4.6), yields

∂t NΩ(t|r0, t0) =

∫

Ω
dr ∇ ·

(
∇ D − F (r)

γ

)
p(r, t|r0, t0) (4.8)

and, after applying Gauss’ theorem (3.19),

∂t NΩ(t|r0, t0) =

∫

∂Ω
da ·

(
∇ D − F (r)

γ

)
p(r, t|r0, t0) . (4.9)

The l.h.s. of this equation describes the rate of change of the particle number, the r.h.s. contains a
surface integral summing up scalar products between the vector quantity

j(r, t|r0, t0) =

(
∇ D − F (r)

γ

)
p(r, t|r0, t0) (4.10)

and the surface elements da of ∂Ω. Since particles are neither generated nor destroyed inside the
volume Ω, we must interpret j(r, t|r0, t0) as a particle flux at the boundary ∂Ω. Since the volume
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4.1: Derivation for Potential Fields 65

and its boundary are arbitrary, the interpretation of j(r, t|r0, t0) as given by (4.10) as a flux should
hold everywhere in Ω.
We can now consider the ramifications of the postulate that at equilibrium the flux vanishes.
Applying (4.10) to the Boltzmann distribution po(r) = N exp[−β U(r)], for some appropriate
normalization factor N , yields the equilibrium flux

jo(r) =

(
∇ D − F (r)

γ

)
N e−β U(r) . (4.11)

With this definition the postulate discussed above is
(

∇ D − F (r)

γ

)
N e−β U(r) ≡ 0 . (4.12)

The derivative ∇D exp[−β U(r)] = exp[−β U(r)]
(
∇ D + β F (r)

)
allows us to write this

e−β U(r)

(
D β F (r) + ∇ D − F (r)

γ

)
≡ 0 . (4.13)

From this follows

∇D = F (r)
(
γ−1 − D β

)
. (4.14)

an identity which is known as the so-called fluctuation - dissipation theorem.
The fluctuation - dissipation theorem is better known for the case of spatially independent D in
which case follows D β γ = 1, i.e., with the definitions above

σ2 = 2 kB T γ . (4.15)

This equation implies a relationship between the amplitude σ of the fluctuating forces and the
amplitude γ of the dissipative (frictional) forces in the Langevin equation (4.1), hence, the name
fluctuation - dissipation theorem. The theorem states that the amplitudes of fluctuating and
dissipative forces need to obey a temperature-dependent relationship in order for a system to
attain thermodynamic equilibrium. There exist more general formulations of this theorem which
we will discuss further below in connection with response and correlation functions.
In its form (4.14) the fluctuation - dissipation theorem allows us to reformulate the Fokker-Planck
equation above. For any function f(r) holds with (4.14)

∇·∇ D f = ∇ · D ∇ f + ∇ · f ∇ D = ∇ · D ∇ f + ∇ · F
(

1

γ
− D β

)
f (4.16)

From this follows finally for the Fokker-Planck equation (4.4)

∂t p(r, t|r0, t0) = ∇ · D
(
∇ − βF (r)

)
p(r, t|r0, t0) . (4.17)

One refers to Eq. (4.17) as the Smoluchowski equation.
The Smoluchowski equation (4.17), in the case F (r) = −∇U(r), can be written in the convenient
form

∂t p(r, t|r0, t0) = ∇ · D e−β U(r)
∇ eβ U(r) p(r, t|r0, t0) . (4.18)

This form shows immediately that p ∝ exp[−β U(r)] is a stationary solution. The form also provides
a new expression for the flux j, namely,

j(r, t|r0, t0) = D e−β U(r)
∇ eβ U(r) p(r, t|r0, t0) . (4.19)
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Boundary Conditions for Smoluchowski Equation

The system described by the Smoluchoswki (4.17) or Einstein (3.13) diffusion equation may either
be closed at the surface of the diffusion space Ω or open, i.e., ∂Ω either may be impenetrable for
particles or may allow passage of particles. In the latter case, ∂Ω describes a reactive surface. These
properties of Ω are specified through the boundary conditions for the Smoluchoswki or Einstein
equation at ∂Ω. In order to formulate these boundary conditions we consider the flux of particles
through consideration of NΩ(t|r0, t0) as defined in (4.7). Since there are no terms in (4.17) which
affect the number of particles the particle number is conserved and any change of NΩ(t|r0, t0) must
be due to particle flux at the surface of Ω, i.e.,

∂t NΩ(t|r0, t0) =

∫

∂Ω
da · j(r, t|r0, t0) (4.20)

where j(r, t|r0, t0) denotes the particle flux defined in (4.10). The fluctuation - dissipation theorem,
as stated in (4.14), yields

∇ D f = D ∇ f + f F (r)
(
γ−1 − D β

)
(4.21)

and with (4.10) and (3.12) follows

j(r, t|r0, t0) = D
(
∇ − β F (r)

)
p(r, t|r0, t0) (4.22)

We will refer to

J (r) = D
(
∇ − β F (r)

)
(4.23)

as the flux operator. This operator, when acting on a solution of the Smoluchowski equation, yields
the local flux of particles (probability) in the system.
The flux operator J (r) governs the spatial boundary conditions since it allows to measure particle
(probability) exchange at the surface of the diffusion space Ω. There are three types of boundary
conditions possible. These types can be enforced simultaneously in disconnected areas of the
surface ∂Ω. Let us denote by ∂Ω1, ∂Ω2 two disconnected parts of ∂Ω such that ∂Ω = ∂Ω1 ∪ ∂Ω2.
An example is a volume Ω lying between a sphere of radius R1 (∂Ω1) and of radius R2 (∂Ω2). The
separation of the surfaces ∂Ωi with different boundary conditions is necessary in order to assure
that a continuous solution of the Smoluchowski equation exists. Such solution cannot exist if it has
to satisfy in an infinitesimal neighborhood entailing ∂Ω two different boundary conditions.
The first type of boundary condition is specified by

â(r) · J (r) p(r, t|r0, t0) = 0 , r ∈ ∂Ωi (4.24)

which, obviously, implies that particles do not cross the boundary, i.e., that particles are reflected
there. Here â(r) denotes a unit vector normal to the surface ∂Ωi at r. We will refer to (4.24) as
the reflection boundary condition.
The second type of boundary condition is

p(r, t|r0, t0) = 0 , r ∈ ∂Ωi . (4.25)

This condition implies that all particles arriving at the surface ∂Ωi are taken away such that the
probability on ∂Ωi vanishes. This boundary condition describes a reactive surface with the highest
degree of reactivity possible, i.e., that every particle on ∂Ωi reacts. We will refer to (4.25) as the
reaction boundary condition.
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4.2. ONE-DIMENSIONAL DIFFUSON IN A LINEAR POTENTIAL 67

The third type of boundary condition,

â(r) · J (r) p(r, t|r0, t0) = w p(r, t|r0, t0) , r on ∂Ωi , (4.26)

describes the case of intermediate reactivity at the boundary. The reactivity is measured by the
parameter w. For w = 0 in (4.26) ∂Ωi corresponds to a non-reactive, i.e., reflective boundary. For
w → ∞ the condition (4.26) can only be satisfied for p(r, t|r0, t0) = 0, i.e., every particle impinging
onto ∂Ωi is consumed in this case. We will refer to (4.26) as the radiation boundary condition.

4.2 One-Dimensional Diffuson in a Linear Potential

We consider now diffusion in a linear potential

U(x) = c x (4.27)

with a position-independent diffusion coefficient D. This system is described by the Smoluchowski
equation

∂t p(x, t|x0, t0) =
(
D ∂2

x + D β c ∂x

)
p(x, t|x0, t0) . (4.28)

This will be the first instance of a system in which diffusing particles are acted on by a non-vanishing
force. The techniques to solve the Smoluchowski equation in the present case will be particular for
the simple force field, i.e., the solution techniques adopted cannot be generalized to other potentials.

4.2.1 Diffusion in an infinite space Ω∞ = ] −∞,∞[

We consider first the situation that the particles diffusing under the influence of the potential (4.27)
have available the infinite space

Ω∞ = ] −∞,∞[ . (4.29)

In this case hold the boundary conditions

lim
x→±∞

p(x, t|x0, t0) = 0 . (4.30)

The initial condition is as usual

p(x, t0|x0, t0) = δ(x − x0) . (4.31)

In order to solve (4.28, 4.30, 4.31) we introduce

τ = D t , b = β c . (4.32)

The Smoluchowski equation (4.28) can be written

∂τ p(x, τ |x0, τ0) =
(
∂2

x + b ∂x

)
p(x, τ |x0, τ0) . (4.33)

We introduce the time-dependent spatial coordinates

y = x + b τ , y0 = x0 + b τ0 (4.34)
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and express the solution

p(x, τ |x0, τ0) = q(y, τ |y0, τ0) . (4.35)

Introducing this into (4.33) yields

∂τ q(y, τ |y0, τ0) + b ∂y q(y, τ |y0, τ0) =
(
∂2

y + b ∂y

)
q(y, τ |y0, τ0) (4.36)

or

∂τ q(y, τ |y0, τ0) = ∂2
y q(y, τ |y0, τ0) . (4.37)

This equation has the same form as the Einstein equation for freely diffusing particles for which
the solution in case of the diffusion space Ω∞ is

q(y, τ |y0, τ0) =
1√

4π (τ − τ0)
exp

[
− (y − y0)

2

4 (τ − τ0)

]
. (4.38)

Expressing the solution in terms of the original coordinates and constants yields

p(x, t|x0, t0) =
1√

4π D (t − t0)
exp

[
−
(
x − x0 + D β c (t − t0)

)2

4 D (t − t0)

]
. (4.39)

This solution is identical to the distribution of freely diffusing particles, except that the center of
the distribution drifts down the potential gradient with a velocity −D β c.

Exercise 4.1:

Apply this to the case (i) of an ion moving between two electrodes at a distance of 1cm in water
with a potential of 1 Volt. Estimate how long the ion needs to drift from one electrode to the other.
(ii) an ion moving through a channel in a biological membrane of 40Å at which is applied a typical
potential of 0.1eV. Assume the ion experiences a diffusion coefficient of D = 10−5cm2/s. Estimate
how long the ion needs to cross the membrane.
Answer i) Let’s assume that at the moment t0 = 0 the ion is at x0 = 0 with

p(x0, t0) = δ(x0) . (4.40)

Then, according to (4.39) we have

p(x, t) = p(x, t|0, 0) =
1√

4π D t
exp

[
−
(
x + D β c t

)2

4 D t

]
. (4.41)

Calculate now the mean value of x:

〈
x(t)

〉
=

∫ ∞

−∞
dx x p(x, t) =

1√
4π D t

∫ ∞

−∞
dx x exp

[
−(x + β cD t)2/4 D t

]
. (4.42)

In order to solve this integral add and substract a β cD t term to x and make the change of variable
z = x + β D c t. This yields

〈
x(t)

〉
= −D β c t = vd t (4.43)
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4.2: Linear Potential 69

where vd = −D β c is the drift velocity of the ion. Taking into consideration that the electrical
force that acts on the ion is c = q E, E = U/d, β = 1/kbT and 〈x(τ)〉 = d we obtain for the time τ
needed by the ion to drift from one electrod to another

τ =
kb T d2

D q U
. (4.44)

For d = 1 cm, kB = 1.31 × 10−23 J/K, T = 300 K, D = 1.545 × 10−5 cm2/sec, q = 1.6 × 10−19 C,
U = 1V we obtain τ = 1674 sec.

ii) Applying the same reasoning to the ion moving through a membrane one gets τ = 4.14×10−9 sec.

Diffusion and exponential growth

The above result (4.39) can be used for a stochastic processes with exponential growth by performing
a simple substitution.

Comparing the Fokker-Planck equation (2.148) with the Smoluchowski equation (4.28) of the pre-
vious example one can easily derive within Ito calculus the corresponding stochastic differential
equation

∂t x(t) = −D β c +
√

D ξ(t) , (4.45)

or equivalently

dx = −D β c dt +
√

D dω . (4.46)

Equation (4.46) displays the mechanism that generates the stochastic trajectories within a linear
potential (4.27) . The increment dx of a trajectory x(t) is given by the drift term −D β c dt, which
is determined by the force c of the lineare potential and the friction γ = D β. Furthermore the
increment dx is subject to Gaussian noise dω scaled by

√
D.

We now consider a transformation of the spatial variable x. Let x 7→ y = expx. This substitution
and the resulting differential dy/y = dx render the stochastic differential equation

dy = −D β c y dt +
√

D y dω . (4.47)

Equation (4.47) describes a different stochastic process y(t). Just considering the first term on the
r.h.s. of (4.47), one sees that y(t) is subject to exponential growth or decay depending on the sign
of c. Neglecting the second term on the r.h.s of (??) one obtains the deterministic trajectory

y(t) = y(0) exp [−D β c t] . (4.48)

This dynamic is typical for growth or decay processes in physics, biology or economics. Furthermore,
y(t) is subject to Gaussian noise dω scaled by y

√
D. The random fluctuation are consequently

proportional to y, which is the case when the growth rate and not just the increment are subject
to stochastic fluctuations.

Since (4.46) and (4.47) are connected via the simple mapping y = expx we can readily state the
solution of equation (4.47) by substituting log y for x in (4.39) .
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p(y, t|y0, t0) = p(x(y), t|x(y0), t0)
dx

dy

=
1√

4π D (t − t0) y
exp


−
(
log
(

y
y0

)
+ D β c (t − t0)

)2

4 D (t − t0)


 . (4.49)

4.2.2 Diffusion in a Half-Space Ω∞ = [0,∞[

We consider now diffusion in a half-space Ω∞ = [0,∞[ under the influence of a linear potential
with a reflective boundary at x = 0. To describe this system by a distribution function p(x, t|x0, t0)
we need to solve the Smoluchowski equation (4.28) subject to the boundary conditions

D (∂x + β c) p(x, t|x0, t0) = 0 , at x = 0 (4.50)

p(x, t|x0, t0) ≍
x→∞

0 . (4.51)

The solution has been determined by Smoluchowski ([47], see also [22]) and can be stated in the
form

p(x, t|x0, 0) =
3∑

j=1

pj(x, t|x0, 0) (4.52)

p1(x, t|x0, 0) =
1√

4π D t
exp
[
−(x − x0 + β c D t)2/4 D t

]
(4.53)

p2(x, t|x0, 0) =
1√

4π D t
exp
[
β c x0 − (x + x0 + β c D t)2/4 D t

]
(4.54)

p3(x, t|x0, 0) =
β c

2
exp[−β c x] erfc

[
(x + x0 − β c D t)/

√
4 D t

]
. (4.55)

In this expression erfc(z) is the complementary error function

erfc(z) =
2√
π

∫ ∞

z
dx e−x2

(4.56)

for which holds

erfc(0) = 1 (4.57)

erfc(z) ≍
z→∞

1√
π z

e−z2
(4.58)

∂z erfc(z) = − 2√
π

e−z2
. (4.59)

Plots of the distributions p1, p2 and p3 as functions of x for different t’s are shown in Figure 4.1.
In Figure 4.2 the total distribution function p(x, t) = p1(x, t)+p2(x, t)+p3(x, t) is ploted as a func-
tion of x for three consecutive instants of time, namely for t = 0.0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8,∞.
The contribution (4.53) to the solution is identical to the solution derived above for diffusion in
]−∞,∞[, i.e., in the absence of a boundary at a finite distance. The contribution (4.54) is analogous
to the second term of the distribution (3.31) describing free diffusion in a half-space with reflective
boundary; the term describes particles which have impinged on the boundary and have been carried
away from the boundary back into the half-space Ω. However, some particles which impinged on
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4.2: Linear Potential 71

Figure 4.1: These three plots show p1, p2 and p3 as a function of x for consecutive times t =
0.0, 0.1, . . . , 1.0 and x0 = 0.5; the length unit is L = 4

β c , the time unit is T = 4
D β2 c2

while pi

(i = 1, 2, 3) is measured in 1
L .
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72 Smoluchowski Diffusion Equation

Figure 4.2: Plot of p(x, t|0.5, 0) = p1(x, t|0.5, 0) + p2(x, t|0.5, 0) + p3(x, t|0.5, 0) vs. x for t =
0.0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8,∞. Same units as in Figure 4.1.

the boundary equilibrate into a Boltzmann distribution exp(−β c x). These particles are collected
in the term (4.55). One can intuitively think of the latter term as accounting for particles which
impinged onto the surface at x = 0 more than once.
In order to prove that (4.52–4.55) provides a solution of (4.28, 4.31, 4.50, 4.51) we note

lim
t→0

p1(x, t|x0, 0) = δ(x − x0) (4.60)

lim
t→0

p2(x, t|x0, 0) = eβ c x0 δ(x + x0) (4.61)

lim
t→0

p3(x, t|x0, 0) = 0 (4.62)

where (4.60, 4.61) follow from the analogy with the solution of the free diffusion equation, and
where (4.62) follows from (4.59). Since δ(x + x0) vanishes in [0,∞[ for x0 > 0 we conclude that
(4.31) holds.
The analogy of p1(x, t|x0, 0) and p2(x, t|x0, 0) with the solution (4.39) reveals that these two distri-
butions obey the Smoluchowski equation and the boundary condition (4.51), but individually not
the boundary condition (4.50). To demonstrate that p3 also obeys the Smoluchowski equation we
introduce again τ = D t, b = β c and the function

f =
1√
4πτ

exp

[
− b x − (x + x0 − b τ)2

4 τ

]
. (4.63)

For p3(x, τ/D|x0, 0), as given in (4.55), holds then

∂τ p3(x, τ |x0, 0) = f b
x + x0 + b τ

2 τ
(4.64)

∂x p3(x, τ |x0, 0) = −1

2
b2 e−b x erfc

[
x + x0 − b τ√

4 τ

]
− f b (4.65)

∂2
x p3(x, τ |x0, 0) =

1

2
b3 e−b x erfc

[
x + x0 − b τ√

4 τ

]
+ f b

x + x0 − b τ

2 τ
+ f b2 . (4.66)

It follows for the r.h.s. of the Smoluchowski equation

(
∂2

x + b ∂x

)
p3(x, τ |x0, 0) = f b

x + x0 + b τ

2 τ
. (4.67)
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Since this is identical to (4.64), i.e., to the l.h.s. of the Smoluchowski equation, p3(x, t|, x0, 0) is a
solution of this equation.
We want to demonstrate now that p(x, t|, x0, 0) defined through (4.52–4.55) obey the boundary
condition at x = 0, namely, (4.50). We define for this purpose the function

g =
1√
4π τ

exp

[
−(x0 − b τ)2

4 τ

]
. (4.68)

It holds then at x = 0

b p1(0, τ |, x0, 0) = g b (4.69)

b p2(0, τ |, x0, 0) = g b (4.70)

b p3(0, τ |, x0, 0) =
1

2
b2 erfc

[
x0 − b τ√

4 τ

]
(4.71)

∂x p1(x, τ |, x0, 0)
∣∣∣
x=0

= g b
x0 − b τ

2 τ
(4.72)

∂x p2(x, τ |, x0, 0)
∣∣∣
x=0

= g b
−x0 − b τ

2 τ
(4.73)

∂x p3(x, τ |, x0, 0)
∣∣∣
x=0

= − g b − 1

2
b3 erfc

[
x0 − b τ√

4 τ

]
(4.74)

where we used for (4.70, 4.73) the identity

b x0 − (x0 + b τ)2

4 τ
= −(x0 − b τ)2

4 τ
. (4.75)

From (4.69–4.74) one can readily derive the boundary condition (4.50).
We have demonstrated that (4.52–4.55) is a proper solution of the Smoluchowski equation in a
half-space and in a linear potential. It is of interest to evaluate the fraction of particles which are
accounted for by the three terms in (4.52). For this purpose we define

Nj(t|x0) =

∫ ∞

0
dx pj(x, t|x0, 0) . (4.76)

One obtains then

N1(t|x0) =
1√
4π τ

∫ ∞

0
dx exp

[
−(x − x0 + b τ)2

4 τ

]

=
1√
4π τ

∫ ∞

−x0+bτ
dx exp

[
− x2

4 τ

]

=
1

2

2√
π

∫ ∞

−x0+bτ√
4τ

dx exp
[
−x2

]
=

1

2
erfc

[−x0 + b τ√
4 τ

]
(4.77)

Similarly one obtains

N2(t|x0) =
1

2
exp[b x0] erfc

[
x0 + b τ√

4 τ

]
. (4.78)

For N3(t|x0) one derives, employing (4.56),

N3(t|x0) =
1

2
b

∫ ∞

0
dx exp[−b x]

2√
π

∫ ∞

x+x0−bτ√
4τ

dy exp
[
−y2

]
(4.79)
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Figure 4.3: Plots of N1, N2 and N3 vs. t, for x0 = 0. The length and time units are the same as in
Figure 4.1. For all t > 0 holds N1 + N2 + N3 = 1.

Changing the order of integration yields

N3(t|x0) =
b√
π

∫ ∞

x0−bτ√
4τ

dy exp
[
−y2

] ∫
√

4τy−x0+bτ

0
dx exp[−b x]

=
1√
π

∫ ∞

x0−bτ√
4τ

dy exp
[
−y2

]
− 1√

π

∫ ∞

x0−bτ√
4τ

dy exp
[
−(y + b

√
τ)2 + b x0

]

=
1

2
erfc

[
x0 − b τ√

4τ

]
− 1

2
exp[b x0] erfc

[
x0 + b τ√

4 τ

]
.

Employing the identity

1

2
erfc(z) = 1 − 1

2
erfc(−z) (4.80)

one can write finally

N3(t|x0) = 1 − 1

2
erfc

[−x0 + b τ√
4 τ

]
− 1

2
exp[b x0] erfc

[
x0 + bτ√

4τ

]

= 1 − N1(t|x0) − N2(t|x0) . (4.81)

This result demonstrates that the solution (4.52–4.55) is properly normalized. The time dependence
of N1, N2 and N3 are shown in Figure 4.3.

4.3 Diffusion in a One-Dimensional Harmonic Potential

We consider now diffusion in a harmonic potential

U(x) =
1

2
f x2 (4.82)

which is simple enough to yield an analytical solution of the corresponding Smoluchowski equation

∂tp(x, t|x0, t0) = D(∂2
x + βf ∂xx) p(x, t|x0, t0) . (4.83)
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We assume presently a constant diffusion coefficient D. The particle can diffuse in the infinite
space Ω∞. However, the potential confines the motion to a finite area such that the probability
distribution vanishes exponentially for x → ±∞ as expressed through the boundary condition

lim
x→±∞

xn p(x, t|x0, t0) = 0, ∀n ∈ IN . (4.84)

We seek the solution of (4.83, 4.84) for the initial condition

p(x, t0|x0, t0) = δ(x − x0) . (4.85)

In thermal equilibrium, particles will be distributed according to the Boltzmann distribution

p0(x) =
√

f/2πkBT exp
(
−fx2/2kBT

)
(4.86)

which is, in fact, a stationary solution of (4.83, 4.84). We expect that the solution for the initial
condition (4.85) will asymptotically decay towards (4.86).
The mean square deviation from the average position of the particle at equilibrium, i.e., from
〈x〉 = 0, is

δ2 =

∫ +∞

−∞
dx (x − 〈x〉)2 p0(x)

=
√

f/2πkBT

∫ +∞

−∞
dx x2 exp

(
−fx2/2kBT

)
. (4.87)

This quantity can be evaluated considering first the integral

In(α) = (−1)n

∫ +∞

−∞
dx x2n e−αx2

.

One can easily verify

I1(α) = − ∂αI0(α) =

√
π

2α3/2
. (4.88)

and, through recursion,

In(α) =
Γ
(
n + 1

2

)

αn+ 1
2

, n = 0, 1, . . . (4.89)

One can express δ2 in terms of the integral I1. Defining

κ =

√
f

2kBT
(4.90)

and changing the integration variable x → y = κx yields

δ2 =
1

κ2

1√
π

∫ +∞

−∞
dy y2 e−y2

=
1

κ2

1√
π

I1(1) . (4.91)

According to (4.88) holds I1(1) =
√

π/2 and, hence,

δ2 =
1

2κ2
, (4.92)
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or

δ =
√

kBT/f . (4.93)

For a solution of (4.83, 4.84, 4.85) we introduce dimensionless variables. We replace x by

ξ = x/
√

2δ (4.94)

We can also employ δ to define a natural time constant

τ̃ = 2δ2/D (4.95)

and, hence, replace t by

τ = t/τ̃ . (4.96)

The Smoluchowski equation for

q(ξ, τ |ξ0, τ0) =
√

2 δ p(x, t|x0, t0) (4.97)

reads then

∂τq(ξ, τ |ξ0, τ0) = (∂2
ξ + 2 ∂ξ ξ) q(ξ, τ |ξ0, τ0) , (4.98)

The corresponding initial condition is

q(ξ, τ0|ξ0, τ0) = δ(ξ − ξ0) , (4.99)

and the boundary condition

lim
ξ→±∞

ξn q(ξ, τ |ξ0, τ0) = 0, ∀n ∈ IN . (4.100)

The prefactor of p(x, t|x0, t0) in the definition (4.97) is dictated by the condition that q(ξ, τ |ξ0, τ0)
should be normalized, i.e.,

∫ +∞

−∞
dx p(x, t|x0, t0) =

∫ +∞

−∞
dξ q(ξ, τ |ξ0, τ0) = 1 (4.101)

In the following we choose

τ0 = 0 . (4.102)

In order to solve (4.98, 4.99, 4.100) we seek to transform the Smoluchowski equation to the free
diffusion equation through the choice of the time-dependent position variable

y = ξ e2τ , y0 = ξ0 , (4.103)

replacing

q(ξ, τ |ξ0, 0) = v(y, τ |y0, 0) . (4.104)

We note that this definition results in a time-dependent normalization of v(y, τ |y0, 0), namely,

1 =

∫ +∞

−∞
dξ q(ξ, τ |ξ0, 0) = e−2τ

∫ +∞

−∞
dy v(y, τ |y0, 0) . (4.105)
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The spatial derivative ∂y, according to the chain rule, is determined by

∂ξ =
∂y

∂ξ
∂y = e2τ ∂y (4.106)

and, hence,

∂2
ξ = e4τ ∂2

y (4.107)

The l.h.s. of (4.98) reads

∂τq(ξ, τ |ξ0, 0) = ∂τv(y, τ |y0, 0) +
∂y

∂τ︸︷︷︸
2y

∂yv(y, τ |y0, 0) . (4.108)

The r.h.s. of (4.98) becomes

e4τ ∂2
yv(y, τ |y0, 0) + 2 v(y, τ |y0, 0) + 2 ξe2τ

︸︷︷︸
y

∂yv(y, τ |y0, 0) , (4.109)

such that the Smoluchowski equation for v(y, τ |y0, 0) is

∂τv(y, τ |y0, 0) = e4τ ∂2
yv(y, τ |y0, 0) + 2 v(y, τ |y0, 0) . (4.110)

To deal with a properly normalized distribution we define

v(y, τ |y0, 0) = e2τ w(y, τ |y0, 0) (4.111)

which yields, in fact,
∫ ∞

−∞
dξ q(ξ, τ |ξ0, 0) = e−2τ

∫ ∞

−∞
dy v(y, τ |y0, 0) =

∫ ∞

−∞
dy w(y, τ |y0, 0) = 1 . (4.112)

The Smoluchowski equation for w(y, τ |y0, 0) is

∂τw(y, τ |y0, 0) = e4τ ∂2
y w(y, τ |y0, 0) (4.113)

which, indeed, has the form of a free diffusion equation, albeit with a time-dependent diffusion
coefficient. The initial condition which corresponds to (4.99) is

w(y, 0|y0, 0) = δ(y − y0) . (4.114)

It turns out that the solution of a diffusion equation with time-dependent diffusion coefficient D̃(τ)

∂τw(y, τ |y0, τ0) = D̃(τ) ∂2
y w(y, τ |y0, τ0) (4.115)

in Ω∞ with

w(y, τ0|y0, τ0) = δ(y − y0) (4.116)

is a straightforward generalization of the corresponding solution of the free diffusion equation (3.30),
namely,

w(y, τ |y0, τ0) =

(
4π

∫ τ

0
dτ ′ D̃(τ ′)

)− 1
2

exp

[
− (y − ξ0)

2

4
∫ τ
0 dτ ′ D̃(τ ′)

]
. (4.117)
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This can be readily verified. Accordingly, the solution of (4.113, 4.114) is

w(y, τ |y0, 0) =

(
4π

∫ τ

0
dτ ′ e4τ ′

)− 1
2

exp

[
− (y − y0)

2

4
∫ τ
0 dτ ′ e4τ ′

]
. (4.118)

The corresponding distribution q(ξ, τ |ξ0, 0) is, using (4.103, 4.104, 4.111),

q(ξ, τ |ξ0, 0) =
1√

π(1 − e−4τ )
exp

[
−(ξ − ξ0e

−2τ )2

1 − e−4τ

]
. (4.119)

and, hence, using (4.94, 4.95, 4.96, 4.97), we arrive at

p(x, t|x0, t0) =
1√

2πkBT S(t, t0)/f
exp

[
−
(
x − x0 e−2(t−t0)/τ̃

)2

2kBTS(t, t0)/f

]
(4.120)

S(t, t0) = 1 − e−4(t−t0)/τ̃ (4.121)

τ̃ = 2kBT / fD . (4.122)

One notices that this distribution asymptotically, i.e., for t → ∞, approaches the Boltzmann
distribution (4.86). We also note that (4.120, 4.121, 4.122) is identical to the conditional probability
of the Ornstein-Uhlenbeck process (2.81, 2.82) for γ = 2/τ̃ and σ2 = 2kBT .
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Chapter 5

Random Numbers
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In this chapter we introduce numerical methods suited to model stochastic systems. Starting point
is the Fokker-Planck equation (2.148) within the frame-work of Ito calculus

∂t p(x, t|x0, t0) = −
∑

i

∂i Ai p(x, t|x0, t0) +
1

2

∑

i,j

∂i∂j [B·BT]ij p(x, t|x0, t0) . (5.1)

which proved useful in analytical descriptions of Brownian dynamics. There exist two approaches
to solve this equation by numerical means.
On the one hand one can treat the Fokker-Planck equation as an ordinary parabolic partial differ-
ential equation and apply numerical tools like finite differencing, spectral or variational methods
that are applicable to partial differential equations in general. These methods will be described in
a yet unwritten chapter of these notes.
On the other hand one can resort to the stochastic processes that underlie the Fokker-Planck
equation. We have shown in chapter 2.5 that the Fokker-Planck equation (2.148, 5.1) corresponds
to a stochastic differential equation [c.f., (2.135)]

dx(t) =
(
A[x(t), t] + B[x(t), t] · ξ(t)

)
dt

= A[x(t), t] dt + B[x(t), t] · dω(t) . (5.2)

Instead of solving (5.1) one may simulate, therefore, stochastic processes that obey the stochastic
differential equation (5.2). The probability distribution p(x, t|x0, t0) resulting from an ensemble
of simulated stochastic processes starting at x(t0) = x0 can then be taken as a solution of the
Fokker-Planck equation (5.1). This approach is called the Brownian dynamics method.
We will address the Brownian dynamics method first. Two ingredients are needed to generate
sample trajectories x(t) of stochastic processes as displayed in Figure 5.4.First, one has to generate
random numbers to simulate the random variables ξ(t) and dω(t). Second, one needs rules to
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80 Random Numbers

Figure 5.1: Two dimensional random walk generated by adding up 1000 random number tuples
with a standard Gaussion distribution.

translate the stochastic differential equation (5.2) into a dicretized numerical form with which one
can generate discretized stochastic trajectories. The generation of random numbers is the subject of
the current chapter. In chapter 6 we derive rules for generating numerically stochastic trajectories.
In chapter 7 we consider typical applications.

We begin the current chapter about random numbers with a definition of randomness in mathe-
matical terms. We then address the problem of generating random numbers on a digital computer.
The chapter closes with a short introduction to the Monte Carlo integration method, one of the
most prominent random number applications and part in the derivation of the Brownian dynamics
method introduced in chapter 6.

5.1 Randomness

Microscopic systems down to the level of small molecules exhibit strong random characteristics when
one views selected degrees of freedom or non-conserved physical properties. The laws of statistical
mechanics, even though strictly applicable only to very large systems, are realized at the molecular
level, exceptions being rare. Underlying this behaviour are seemingly random events connected
with transfer of momentum and energy between degress of freedom of strongly coupled classical
and quantum mechanical systems. One can describe these events through random processes. We
have stated above that solutions to the Fokker-Planck equations which govern the approach to
statistical mechanical equilibrium can also be cast in terms of random processes. This leaves one
to consider the problem how random events themselves can be mathematically modelled. This is
achieved through so-called random numbers.

The concept of randomness and random numbers is intuitive and easily explained. The best known
example of randomness is the throw of a dice. With each throw, a dice reveals a random number r
between 1 and 6. A dice is thus a random number generator with a random number domain equal
to the set {1, 2, 3, 4, 5, 6}. Other random number generators and domains are of course possible;
take a dime, a roulet game, and so on.

Once a random number is obtained it is no longer random. The randomness refers to the process
generating the numbers, not to a single number as such. Nevertheless a sequence of random
numbers exhibits properties that reflect the generating process. In this section we will introduce
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5.1: Randomness 81

and investigate these properties. In the section thereafter we will address the problem of generating
random numbers on a digital computer.

What makes a sequence of numbers {ri} random? Certainly, it is not just the overall probability
distribution p(r). A sorted and, hence, non-random list of numbers could easily satisfy this cri-
terium. Instead, we approach randomness via the related notion of unpredictability. A sequence
{ri} is unpredictable if it is impossible to foretell the value of a subsequent element rm+1 based on
the occurence of preceding elements rl, . . . , rm. This criterium translates into

p(rm+1|rl, . . . , rm) = p(rm+1) ∀ 0 ≤ l ≤ m < n. (5.3)

The elements rl, . . . , rm must not condition rm+1 and, hence, conditional probabilities p(rm+1|rl, . . . , rm)
must equal the unconditional probabilities p(rm+1). Furthermore, p(rm+1) should be the same as
the probability distribution p(r) which applies to all elements of {ri}.
Since unconditional probabilities can be factorized by conditional probabilties one obtains

p(rl, . . . , rm, rm+1) = p(rm+1|rl, . . . , rm) p(rl, . . . , rm)

= p(rm+1) p(rl, . . . , rm) , (5.4)

and, since (5.4) holds true for any l ≤ m, one can write

p(rl, . . . , rm) =

m∏

j=ℓ

p(rj) . (5.5)

Equation (5.5) provides a criterium for randomness. However, to verify criterium (5.5) for a given
number sequence one has to derive a measurable quantity. Note, that the probability distribu-
tions p(rl, . . . , rm) are unkown. We begin this endeavor by considering the generating functions
Grl...rm(sl . . . sm) of the unconditional probabilties p(rl, . . . , rm) and by applying these to equation
(5.5).

Grl...rm(sl . . . sm) =

∫
· · ·
∫ (

m∏

k=l

drk

)
p(rl, . . . , rm) exp

[
i

m∑

k=l

skrk

]

=
m∏

k=l

∫
drk p(rk) eiskrk

=
(
Gr(s)

)m−l+1
. (5.6)

Taking the logarithm of equation (5.6) and comparing the coefficients of the Taylor expansion

log[Grl...rm(sl . . . sm)] =

n∑

nl,...,nm=0

〈〈
rnl

l . . . rnm

k

〉〉 (i sl)
nl

nl!
. . .

(i sm)nm

nm!
(5.7)

one finds for the cumulants [c.f. Eq. (2.18) and Eq.(2.30)]

〈〈
rnl

l . . . rnm
m

〉〉
= 0 , if 1 ≤ n(l≤i≤m) and l < m . (5.8)

One can verify the criteria (5.8) of unpredictability and thus randomness by utilizing the relation
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between cumulants and moments

〈〈
rk rl

〉〉
=

〈
rk rl

〉
−
〈
rk

〉 〈
rl

〉
, (5.9)

〈〈
rk r2

l

〉〉
=

〈
rk r2

l

〉
−
〈
rk

〉 〈
r2
l

〉
− 2

〈
rl

〉 〈
rkrl

〉
+ 2

〈
rk

〉 〈
rl

〉2
, (5.10)

〈〈
rk rl rm

〉〉
=

〈
rk rl rm

〉
−
〈
rk

〉 〈
rlrm

〉
−
〈
rl

〉 〈
rkrm

〉
−
〈
rm

〉 〈
rkrl

〉

+ 2
〈
rk

〉 〈
rl

〉 〈
rm

〉
, (5.11)

...

Each moment on the r.h.s. of (5.12) can be determined by taking the arithmetic average of the
expression within the brackets 〈. . .〉.
However, to take the arithmetic average one needs an ensemble of values. What, if only a single
random number sequence is given? In such a case it is often permissable to create an ensemble by
shifting the elements of the number sequence in a cyclic fashion. We denote a shift Sk of a sequence
{ri} by k numbers by

Sk

(
{r0, r1, . . . , rn}

)
= {rk, rk+1, . . . , rn, r0, . . . , rk−1} . (5.12)

The notation for a corresponding shift of a single numbers ri is

Sk

(
ri

)
= ri+k . (5.13)

It is permissable to create an ensembles of random number sequences through operation Sk if one
investigates a sequence that stems from an iterative generating process. This is usually the case
when working with random number generators on digital computers. Such routines start with an
initial number, a seed, and then generate a list of numbers by iteratively applying a mapping over
and over again. The resulting number sequence starts to repeat as soon as the routine returns
to the initial seed, thus forming a number cylce. This is inevitable for mappings that operate
in a discrete and finite number domain. To avoid short repetitious number cycles, good number
generators exhibit just one long number cycle that completely covers the available number domain.
No matter which seed one chooses, the routine produces the same cycle of numbers simply shifted
by a certain number of elements. Hence, applying the shift operation Sk j times with j different k’s
is equivalent to generating an ensemble of j sequences with j different seeds. One can thus write
for a statisitcal moment in (5.12)

〈
rnl

l . . . rnm
m

〉
=

1

j

j−1∑

k=0

(
Sk (rl)

)nl . . .
(
Sk (rm)

)nm . (5.14)

To verify if a number sequence is truely random, one has to check all cumulants
〈〈
rnl

l . . . rnm
m

〉〉
of

all orders (nl, . . . , nk) in (5.8). These correlations should be approximately zero. Of course, due to
statistical error, a variance around zero of the order of (1/

√
n)
〈〈
r2
l

〉〉
. . .
〈〈
r2
m

〉〉
is to be expected.

In practice cumulants of higher order are laborious to caluculate. One therefore performs the
verification of randomness (5.8) for low orders only. We will see that a correlation check of low
order is sometimes insufficient. We will give an example by applying criteria (5.8) to a linear
congruential random generator, the kind of generator that we are going to introduce next.
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5.2. RANDOM NUMBER GENERATORS 83

5.2 Random Number Generators

At the begining of this chapter we already encountered a random number generator; the dice. Obvi-
ously it is not feasible to role a dice to generate a large sequence of random numbers. To automate
the generation process one uses digital computers instead. A computer, however, is a deterministic
machine and, thus, cannot provide truely random numbers. Nevertheless, deterministic programs,
so-called random number generators, provide a good substitute.
Any program that creates a sequence of numbers {ri}, i = 0, 1, 2, . . . , n which appear to be ran-
dom with respect to the test (5.8) derived in the previous section can serve as a random number
generator. In this section we introduce some of the standard random number generating programs.
We begin with a mechanism that creates random number sequences with a uniform distribution
in a given interval. In the paragraph thereafter we outline techniques to generate sequences with
different probability distributions, in particular the Gaussian distribution. For further reading in
this matter we refer the reader to chapter 3.5 of [20] and to [37].

5.2.1 Homogeneous Distribution

The best known random number generators are so-called linear congruential generators. They
produce random numbers with a homogeneous probability distribution. Random number generators
which emulate other probability distributions are, in general, based on the method introduced here.
Linear congruential generators produce integer number sequences {rj} with a homogeneous prob-
ability distribution between 0 and some maximum number m using the recurrence relation

ri+1 = (a ri + c) mod m . (5.15)

a and c are positive integers called multiplier and increment. A sequence {ri} starts with an
arbitrarily chosen seed r0. The linear congruential generators exhibit features common to most
random number generators:

1. The sequence of random numbers is deterministic and depends on an intial value (or list of
values), the seed r0. Hence, the random number sequence is reproducible.

2. The random number generator is a mapping within a finite number range (or finite region of
number tuples). Such a generator can only produce a finite sequence of random numbers and
will eventually repeat that sequence all over again, thus, forming a number cycle.

3. The random number sequence tends to exhibit some sequential correlations.

Hence, before employing a random number generator one should check the following criteria.
To avoid a repitition of random numbers one should make sure that the random number cycle
produced by the generator contains more elements than the random number sequence that one
intends to use. A large value for m and carefully chosen parameters a and c can produce a
nonrepetitious sequence of up to m random numbers. A feasible set of constants is for example
m = 231 − 1, a = 75 and c = 0 [44].
One should verify, if sequential correlations in a random number sequence influence the result of
the calculation. One can do so by monitoring the cumulants

〈〈
rnl

l . . . rnm
m

〉〉
of (5.8) or by apply-

ing different random number generators and comparing the results. If needed, one can suppress
sequential correlations by reshuffling a random number sequence, by merging two sequences or by
similar techniques [37].
So far we can generate homogeneously distributed positive random integers on an interval [0,m].
One can transform these integers r into fractions or floating point numbers with a homogenous
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Figure 5.2: Random number sequence with a homogenous distribution in [0, 1] generated using
(5.15) with m = 231, a = 65539, c = 0, and r0 = 1.

distribution on an arbitrary interval [l, u] by applying the linear mapping f(r) = u−l
m r + l. Thus,

we can assume from now on to have available a basic random number generator with real-valued
(or rather floating point) numbers homogeneously distributed in the interval [0, 1].
Before one employs any random number generator needs to be concerned about its quality. Are
the numbers generated truely random? To demonstrate typical problems we will consider a patho-
logical example which arises if one chooses in (5.15) m = 231, a = 65539 and c = 0. Figure 5.2
demonstrates that the linear congruential generator (5.15) produces actually for the present pa-
rameters a homogeneous distribution in the interval [0, 1]. This figure displays a random number
sequence of 1000 elements starting in the front and proceeding in 1000 steps to the rear. To verify
the probability distribution a bin count with a bin width of 0.1 is displayed in the background. The
bar hights represent the normalized probability density in each bin. The line superimposed on the
bar chart depicts the ideal theoretical distribution.
The scattered plot in Fig. 5.3 showing the distribution of adjacent random number pairs in R × R

allows one to detect statistical correlations
〈〈
ri ri+1

〉〉
of second order. The homogeneous distribution

of points in the square [0, 1]× [0, 1] indicates that such correlations do not exist in the present case.
We can support the graphical correlation check in Fig. 5.3 numerically by calculating the correlation
coefficients of order k.

C
(k)
(n1,n2,...,nk)

(
{ri}

)
=

〈〈
rn1 . . . rnk

〉〉
√〈〈

r2
n1

〉〉
. . .
〈〈
r2
nk

〉〉 . (5.16)

The correlation coefficients may be viewed as normalized correlations. We have seen in (5.8) that
one can detect correlations or rather the lack thereof by verifying if the cumulants

〈〈
rn1 . . . rnk

〉〉
are

zero. However, these verifications are subject to statistical errors that not only depend on the size
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r
1

r
2

Figure 5.3: Scattered plot of 10000 adjacent random number pairs generated as in Fig. 5.2.

C
(2)
(0,0)

(
{ri}

)
= 1.00000 = 1 , C

(4)
(0,0,0,0)

(
{ri}

)
= -1.19844 ∼ −6

5 ,

C
(2)
(0,1)

(
{ri}

)
= 0.01352 ∼ 0 , C

(4)
(0,0,0,1)

(
{ri}

)
= -0.02488 ∼ 0 ,

C
(3)
(0,0,0,)

(
{ri}

)
= -0.00099 ∼ 0 , C

(4)
(0,0,1,1)

(
{ri}

)
= 0.00658 ∼ 0 ,

C
(3)
(0,0,1)

(
{ri}

)
= -0.01335 ∼ 0 , C

(4)
(0,0,1,2)

(
{ri}

)
= 0.00695 ∼ 0 ,

C
(3)
(0,1,2)

(
{ri}

)
= -0.00670 ∼ 0 , C

(4)
(0,1,2,3)

(
{ri}

)
= -0.00674 ∼ 0 .

Table 5.1: The table lists the correlation coefficients of adjacent random numbers in a sequence {ri}
of 10000 elements generated by a linear congruential generator of equation (5.15) with m = 231,
a = 65539, c = 0, and r0 = 1.

of the ensemble of random number sequences, but are also influenced by the range of the random
number domain. A scaling of the random numbers by a factor s would result in a scaling of the
above cumulant by a factor sk. Hence, to achieve comparable results one divides the cumulant
by the square root of the variance of each random number. One normalizes the random number
domain according to the definition (5.16).

Table 5.2.1 lists all correlation coefficients up to fourth order for adjacent random numbers of a
sequence of 10000 elements. The results are compared with the ideal values of an ideal random
number sequence.

All simulated correlations coefficients of two or more different sequences are roughly zero, thus
satisfying the criterium in equation (5.8). To prove true randomness one would have to proceed
this way and determine all correlation coefficients of all orders. Since this is an impossible endeavor
one truncates the test at some low order. This, however, can be dangerous.

Figure 5.4 presents random number triplets as Figure 5.3 presented pairs of random numbers. At
first sight the left scatter plot displays a perfectly homogeneous distribution indicating perfect
randomness. However, rotating the coordinate system slightly reveals a different picture as shown
on the right side of Fig. 5.4. We can discern that the random number triplets gather on 15 planes.
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Figure 5.4: The left and right scatter plots display the same three-dimensional distribution of 10000
adjacent random number triplets as generated by the linear congruential generator used in Fig. 5.2.
The right results from the left plot through rotation around the ri+2-axis.

Hence, the numbers in these triplets are not completely independent of each other and, therefore,
not truely random.
The lack of randomness may or may not have influenced the result of a calculation. Imagine
sampling a three-dimenional density function using the pseudo random sampling points as displayed
in Figure 5.4. All features of the density function that lie inbetween those 15 planes would go
undetected. However, sampling a two-dimensional function with the same random numbers as
displayed in Figure 5.3 would be sufficient.
Unfortunately, it is impossible to give general guidelines for the quality and feasibility of random
number generators.

5.2.2 Gaussian Distribution

Random numbers with a homogeneous distribution are fairly easy to create, but for our purposes,
the simulation of random processes, random numbers with a Gaussian distribution are more im-
portant. Remember that the source of randomness in the stochastic equation (5.2) is the random
variable dω which exhibits a Gaussian and not a homogeneous distribution. Hence, we have to
introduce techniques to convert a random number sequence with homogeneous distribution into a
sequence with a different probability distribution, e.g., a Gaussian distribution.
Given a real valued random number sequence {ri} with a normalized, uniform probability distri-
bution in the interval [0, 1]

p(r) dr =

{
dr for 0 ≤ r ≤ 1

0 otherwise
(5.17)

one can create a new random number sequence {si} by mapping a strictly monotonous function
f(r) onto the sequence {ri}. The probability distribution of the new sequence {si} = {f(ri)} is
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Figure 5.5: The transformation f of homogeneous random numbers ri into random numbers si

with a probability distribution p(s).

then given by

p(s) ds = p(r)

∣∣∣∣
∂r

∂s

∣∣∣∣ ds . (5.18)

To find the function f(r) for a desired probability distribution p(s) one integrates both sides of
equation (5.18) over the interval s ∈ [f(0), f(1)] or s ∈ [f(1), f(0)] depending on f(r) being a

montonously increasing (i.e., ∂f(r)
∂r > 0) or decreasing (i.e., ∂f(r)

∂r < 0) function. We assume here

for simplicity ∂f(r)
∂r > 0. One obtains

∫ s

f(0)
ds̃ p(s̃) =

∫ s

f(0)
ds̃ p(r)

∂r

∂s̃

=

∫ s

f(0)
ds̃

∂f (−1)(s̃)

∂s̃

= f (−1)(s̃)
∣∣∣
s

f(0)

and, consequently,

f (−1)(s) =

∫ s

f(0)
ds̃ p(s̃) . (5.19)

The inverse of equation (5.19) renders f(r). The above calculation is depicted in Fig. 5.5. The
homogeneous distribution of r on the interval [0, 1] is placed on the vertial axes on the left. Each
(infinitesimal) bin dr is mapped by the function f(r) defined in (5.19) onto the horizontal s-axes.
Depending on the slope of f(r) the width of the bins on the s-axes increases or decreases. However,
the probability for each bin depicted by the area of the rectangles is conserved resulting in a new
probability density distribution p(s).
The method described here fails if one cannot find a closed or at least numerically feasable form
for f(r). Unfortunately, this is the case for the Gaussian distribution. Fortunately one can resort
to a similar, two-dimensional approach.
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Equation (5.18) reads in a multi-dimensional case

p(s1, s2, . . . ) ds1 ds2 . . . = p(r1, r2, . . . )

∣∣∣∣
∂(r1, r2, . . . )

∂(s1, s2, . . . )

∣∣∣∣ ds1 ds2 . . . , (5.20)

where |∂( )/∂( )| is the Jacobian determinant. One obtains Gaussian-distributed random numbers
through the following algorithm. One first generates two random numbers r1 and r2 uniformly
distributed in the interval [0, 1]. The functions

s1 =
√

−2 ln r1 sin[2π r2]

s2 =
√
−2 ln r1 cos[2π r2] (5.21)

render then two Gaussian-distributed numbers s1 and s2. To verify this claim, one notes that the
inverse of (5.21) is

r1 = exp

[
−1

2

(
s2
1 + s2

2

)]
,

r2 =
1

2π
arctan

s1

s2
. (5.22)

Applying (6.57) one obtains

p(s1, s2) ds1 ds2 = p(r1, r2)

∣∣∣∣∣
∂r1/∂s1 ∂r1/∂s2

∂r2/∂s1 ∂r2/∂s2

∣∣∣∣∣ ds1 ds2

= p(r1, r2)

∣∣∣∣∣
−s1 e−

1
2
(s2

1+s2
2) −s2 e−

1
2
(s2

1+s2
2)

1
2π

s2

s2
1+s2

2
− 1

2π
s1

s2
1+s2

2

∣∣∣∣∣ ds1 ds2

=
1

2π

(
s2
1

s2
1 + s2

2

+
s2
2

s2
1 + s2

2

)
e−

1
2
(s2

1+s2
2) ds1 ds2

=

(
1√
2π

e−s2
1/2 ds1

)(
1√
2π

e−s2
2/2 ds2

)
. (5.23)

This shows that s1 and s2 are independent Gaussian distributed numbers. Hence, one can employ
(5.21) to produce Gaussian random numbers, actually, two at a time.
Figure 5.6 displays a sequence of 1000 Gaussian random numbers generated with the algorithm
outlined above. The Gaussian random numbers around 0 with a standard deviation of 1 are
displayed by points starting in the front and proceeding to the rear. To verify the distribution, a
bin count with a bin width of 0.3 is displayed in the background. The bar hights represent the
normalized probability density in each bin. The line depicts the ideal theoretical distribution as in
(5.23).

5.3 Monte Carlo integration

The most prominent application of random numbers is the Monto Carlo integration method. The
concept is very simple. To evaluate an integral

∫

Ω
dx f(x) (5.24)
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Figure 5.6: Gaussian random number sequence around 0 with a standard deviation of 1.

with the Monto Carlo method one samples the function f(x) at M homogeneously distributed
random points rk in the integration domain Ω. The average of the function values at these random
points times the volume |Ω| of the integration domain Ω can be taken as an estimate for the integral
(5.24), as shown in Figure 5.7

∫

Ω
dx f(x) =

|Ω|
M

M∑

k=1

f(rk) + O
(

1√
M

)
. (5.25)

The more function values f(rk) are taken into account the more accurate the Monte Carlo method
becomes. The average 〈f(x)〉 exhibits a statistical errors proportional to 1/

√
M . Thus the error of

the numerical integration result is of the order of O(1/
√

M).
The integration by random sampling seems rather inaccurate at first. Systematic integration meth-
ods like the trapezoidal rule (see right Figure 5.7) appear more precise and faster. This is true in
many, but not all cases.
The trapezoidal rule approximates a function f(x) linearly. An approximation over intervals of
length h between sampling points is thus correct up to the order of f

′′
(x) h2. In one dimension

the length of the integration step h is given by the number of sampling points M and the length
of the integration domain Ω according to h = |Ω|/(M + 1). Hence, the trapezoidal rule is an
approximation up to the order of O(1/M2). Other systematic integration methods exhibit errors
of similar polynomial order. Obviously, systematic numerical integration techniques are superior to
the Monte Carlo method introduced above. However, the rating is different for integrals on higher
dimensional domains.
Consider an integration domain of n-dimensions. A systematic sampling would be done over an
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f(x)

xh 2h 3h

Figure 5.7: Examples for the numerical integration of f(x) according to the Monte Carlo method
(left) and the trapezoidal rule (right).

n-dimensional grid. A total of M sampling points would result in n
√

M sampling points in each grid
dimension. The trapezoidal rule would, thus, be correct up to the order of O(M−2/n). A random
sampling, however, is not affected by dimensional properties of the sampling domain. The Monte
Carlo precision remains in the order of O(M−1/2). Hence, we see that the Monte Carlo method
becomes feasible for (n = 4)-dimensions and that it is superior for high-dimensional integration
domains Ω.
One can modify the straight forward Monte Carlo integration method (5.25). Suppose one uses
random points r̃k with a normalized probability distribution p(x) in Ω. Instead of evaluating
integral (5.25) with a homogeneous distribution of 1/|Ω| one would approximate

∫

Ω
dx f(x) p(x) ∼ 1

M

M∑

k=1

f(r̃k) . (5.26)

Modification (5.26) is appropriate if a factor of the integrand happens to be a probability density
distribution, for which one can generate random numbers r̃k. This will be the case in the next
chapter where we will show how the Monte Carlo integration method (5.26) is incorporated in the
simulation of stochastic processes.
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Brownian Dynamics
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In 1827 the botanist Robert Brown examined under his microspcope pollen of plants suspended in
water. He observed that the pollen, about 10−6m in diameter, performed stochastic motions of the
order of 10−5m. Even though Brown could not explain the cause of this motion any continuous
stochastic process like that of a pollen is now referred to as Brownian dynamics.

In this chapter we introduce a numerical technique that generates a solution of the Fokker-Planck
equation (5.1) by simulating an ensemble of stochastic processes. Due to these stochastic processes
one calls this numerical method Brownian dynamics as well.

We provide two derivations of the numerical method of Brownian dynamics. In the first section we
transform the Fokker-Planck equation (5.1) into a multi-dimensional integral. We then explain in
the second section how to evaluate this multi-dimensional integral using the Monte Carlo integration
method introduced in the previous chapter. We show in the third section that this Monte Carlo
integration is equivalent to simulating an ensemble of stochastic processes. The equivalence is shown
by deriving the Brownian dynamics method a second time starting with the stochastic differential
equation (5.2). We examplify the idea of Brownian dynamics by applying it to a free diffusion model
in the fourth section and conclude this chapter in the fifth section by showing how to incorporate
boundary conditions in Brownian dynamics.

6.1 Discretization of Time

Discretization is the basis of many numerical procedures. This also holds true for Brownian dy-
namics. The object of discretization is the continuous time axis. A computer can not represent a
continuous line or function. The infinitely many points would simply not fit into a finite digital
computer nor could they be processed in a finite amount of time. Hence, one needs to approximate
a continuous dimension with a finite set of points. This approximation is called discretization.
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We solve the Fokker-Planck equation numerically by breaking the time axes paramerized by t into
discrete points labeled by t0, t1, t2, . . . . These time points do not need to be equally spaced, but
they usually are to simplfy the calculations.
One now has to adapt the Fokker-Planck equation (2.148) to the discretized time axis. For the
sake of simplicity we consider the one-dimensional version

∂t p(x, t|x0, t0) = −∂x A(x, t) p(x, t|x0, t0) +
1

2
∂2

x B2(x, t) p(x, t|x0, t0) . (6.1)

Let p(x, t|x0, t0) be the, yet unknown, solution of (6.1) for the initial condition x(t0) = x0. One finds
a solution p(x, t|x0, t0) on a discrete sequence of times {t0, t1, t2, . . . } by constructiong transition
probabilities p(xi+1, ti+1|xi, ti) from one discrete time point ti to the next. With these transition
probabilities one can reassemble the complete solution p(x, t|x0, t0).
We need to first disassemble the time evolution of p(x, t|x0, t0) into many small time increments.
For this purpose we proceed as follows. To obtain a solution p(x2, t2|x0, t0) with an initial starting
position at x(t0) = x0 one can first solve for p(x1, t1|x0, t0) which describes the solution for an
intermediate state at some time t1 prior to t2 and after t0. The probability distribution at time t1
may then be taken as the initial condition for a second solution of (6.1) reaching from time t1 to
time t2. This second solution can be assembled due to the linearity of (6.1) using p(x2, t2|x1, t1)
for the initial condition x(t1) = x1. Summing p(x2, t2|x1, t1) over all possible initial positions x1 in
the domain Ω weighted with the initial probability determined through p(x1, t1|x0, t0) one obtains
p(x2, t2|x0, t0) and the Chapman Kolmogorow equation

p(x2, t2|x0, t0) =

∫

Ω
dx1 p(x2, t2|x1, t1) p(x1, t1|x0, t0) . (6.2)

This is the Chapman-Kolmogorov equation encountered already above [c.f. (9.17)]. The process of
dividing the evolution in the interval [t0, t2] into consecutive evolution in the intervals [t0, t1] and
[t1, t2] can be repeated. For this purpose one starts from (6.2), replaces variables x2 and t2 with
x3 and t3, and applies (6.2) to p(x3, t3|x1, t1) while naming the intermediate state x2 and t2. One
derives

p(x3, t3|x0, t0) =

∫

Ω
dx1 p(x3, t3|x1, t1) p(x1, t1|x0, t0)

=

∫∫

Ω
dx2 dx1 p(x3, t3|x2, t2) p(x2, t2|x1, t1) p(x1, t1|x0, t0) . (6.3)

These steps may be repeated again. Doing so (N − 1)-times one obtains

p(xN , tN |x0, t0) =

∫
· · ·
∫

Ω︸ ︷︷ ︸
(N−1) times

(
N−1∏

i=1

dxi p(xi+1, ti+1|xi, ti)

)
p(x1, t1|x0, t0) . (6.4)

The procedure above has divided now the time evolution of p(xN , tN |x0, t0) into N steps over time
intervals [ti+1, ti] where ti, i = 1, 2, . . . , N−1 denotes the intermediate times. We will identify below
t and tN . In order to evaluate p(xN , tN |x0, t0) we need to determine the transition probabilities
p(xi+1, ti+1|xi, ti). The respective algorithm can exploit the possibility that one can choose the time
intervals [ti+1, ti] very short such that certain approximations can be envoked without undue errors.
In fact, for equally spaced time points ti the length of each time segment is ∆t = (ti − ti−1) =
(t − t0)/N . One can choose N always large enough that the time period ∆t is short enough to
justify the approximations introduced below.
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Let ∆x be the typical distance that a particle governed by the probability distribution p(x, t0 +
∆t|x0, t0) may cover due to drift and diffusion within a time period ∆t, i.e.

∆x =
∣∣∣
〈〈
x
〉〉∣∣∣ +

√〈〈
x2
〉〉

∼
∣∣A(x0, t0)

∣∣∆t + B(x0, t0)
√

∆t . (6.5)

The approximation introduced assumes that A(x, t) and B(x, t) are constant for each time period
[ti, ti+1] and spatially independent in each range [xi − ∆x, xi + ∆x],

A
(
t ∈ [ti, ti+1], x ∈ [xi − ∆x, xi + ∆x]

)
∼ A(ti, xi) (6.6)

B
(
t ∈ [ti, ti+1], x ∈ [xi − ∆x, xi + ∆x]

)
∼ B(ti, xi) , (6.7)

One replaces than the functions p(xi+1, ti+1|xi, ti) in (6.4) by solutions of the Fokker-Planck equa-
tion (6.1) with constant coefficients A(x, t) and B(x, t). In case of boundary conditions at x → ±∞
the resulting expression is, according to (4.28, 4.39)

p(xi+1,ti+1|xi, ti) =

1√
2π B2(xi, ti) (ti+1 − ti)

exp

(
−
(
xi+1 − xi − A(xi, ti) (ti+1 − ti)

)2

2 B2(xi, ti) (ti+1 − ti)

)
. (6.8)

We will consider solutions for other boundary conditions on page 100 further below.

Employing (6.8) in the iterated form of the Chapman-Kolmogorow equation (6.4), one derives

p(x,t|x0, t0) = (6.9)
∫

· · ·
∫

Ω︸ ︷︷ ︸
(N−1) times

(
N−1∏

i=1

dxi

)
N−1∏

i=0

1√
2π B2(xi, ti) ∆t

exp

(
−
(
xi+1 − xi − A(xi, ti) ∆t

)2

2 B2(xi, ti) ∆t

)
.

Thus, we have solved the Fokker-Planck equation (6.1) up to an N -dimensional integral. This
integral needs to be evaluated numerically for which purpose one applies the Monte Carlo integration
method.

6.2 Monte Carlo Integration of Stochastic Processes

The integral on the r.h.s. of (6.4) and (6.9) is a truely high-dimensional integral. The Monte Carlo
method is therefore the appropriate integration method.

Before we apply the Monte Carlo method we modify equation (6.4) slightly. The probability
distribution p(x, t|x0, t0) is not always what one wants to determine. A more feasible construct is
the average q̄(t|x0, t0) of an arbitrary observable Q with a sensitivity function q(x) in state space Ω
given by the integral

q̄(t|x0, t0) =

∫

Ω
dx q(x) p(x, t|x0, t0) . (6.10)

Equation (6.10) is very comprehensive. Even the probability distribution p(x̃, t|x0, t0) can be viewed
as an observable Q, namely, for the sensitivity function qx̃(x) = δ(x − x̃).
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We now apply the Monte Carlo integration method as stated in equation (5.26) to the expanded
form of (6.10)

q̄(t|x0, t0) =

∫

Ω
dx q(x) × (6.11)

∫
· · ·
∫

Ω︸ ︷︷ ︸
(N−1) times

(
N−1∏

i=1

dxi p(xi+1, ti+1|xi, ti)

)
p(x1, t1|x0, t0) .

One can associate q(x) with f(x) and the product of p(xi+1, ti+1|xi, ti) with p(x). The only problem
now is finding a random number generator that produces random numbers r̃ with a distribution
equivalent to the product of all p(xi+1, ti+1|xi, ti). This seems to be an impossible endeavor unless
one recalls how the product of all the p(xi+1, ti+1|xi, ti) came about.

Let us start with the case N = 0. Given a random number generator that produces numbers
r̃(x0, t0) with a distribution p(x, t|x0, t0) the solution is

q̄(t|x0, t0) =

∫

Ω
dx q(x) p(x, t|x0, t0)

∼ 1

M

M∑

k=1

q(r̃k(x0, t0)) . (6.12)

We denote the x0 and t0-dependence of the random numbers r̃k(x0, t0) explicitly for later use. The
reader should note that r̃k(x0, t0) exhibits a distribution p(x, t|x0, t0) around x0.

Implementing the Chapman-Kolmogorov equation (6.2) for p(x, t|x0, t0) once we obtain the case
N = 1 and two nested integrals.

q̄(t|x0, t0) =

∫

Ω
dx q(x)

∫

Ω
dx1 p(x, t|x1, t1) p(x1, t1|x0, t0) . (6.13)

To approximate (6.13) numerically one determines first the inner integral with the integration
variable x1. The Monte Carlo method yields

q̄(t|x0, t0) ∼
∫

Ω
dx q(x)

1

M

M∑

k0=1

p(x, t|rk0(x0, t0), t1) . (6.14)

In a second step one applies applies the Monte Carlo method to the outer integral, now however
with a probability distribution p(x, t|r̃k0(x0, t0), t1) exhibiting the inital starting point r̃k1(x0, t0).
We therefore use the random numbers r̃k1(r̃k0(x0, t0), t1).

q̄(t|x0, t0) ∼ 1

M2

M∑

k1=1

M∑

k0=1

q(r̃k1(r̃k0(x0, t0), t1)) . (6.15)

Note the nesting of random numbers r̃k1(r̃k0(x0, t0), t1). The Gaussian random number r̃k1(. . . ) is
distributed around the previous random number r̃k0(. . . ) which itself is distributed around x0.

Performing the above steps N times, thus iterating the Chapman-Kolmogorov equation (6.9), one
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obtains

q̄(t|x0, t0) =

∫

Ω
dx q(x)

∫
· · ·
∫

Ω︸ ︷︷ ︸
(N−1) times

(
N−1∏

i=1

dxi p(xi+1, ti+1|xi, ti)

)
p(x1, t1|x0, t0)

∼ 1

MN

M∑

k0=1

M∑

k1=1

· · ·
M∑

kN=1

q(r̃kN
(. . . r̃k1(r̃k0(x0, t0), t1) . . . , tN )) , (6.16)

where the random numbers r̃kj
(xj , tj) should exhibit the probability distributions

p
(
r̃kj

(xj , tj)
)

= p(xj+1tj+1|xj , tj) . (6.17)

The iteration above simplifies the problem of finding an appropriate random number generator. We
now need random numbers that simply obey (6.17). In the specific case (6.8) one can generate the
appropriate random numbers r̃k(x0, t0) utilizing a Gaussian number generator as described in the
previous chapter. If rk is a random number with the normalized Gaussian probability distribution
exp(−r2/2)/

√
2π dr one obtains r̃k(x0, t0) with the mapping

r̃k(x0, t0) = B(x0, t0)
√

t − t0 rk + A(x0, t0) (t − t0) + x0 . (6.18)

With the help of (5.18) one can verify

p(r̃(x0, t0)) =
1√

2π B2(x0, t0) (t − t0)
exp

(
−
(
r̃(x0, t0) − x0 − A(x0, t0) (t − t0)

)2

2 B2(x0, t0) (t − t0)

)
. (6.19)

Thus, we finally have all the ingredients to perform the Monte Carlo integration (6.16). However,
before putting (6.16) to use we can simplify the summations. The nesting of random numbers
r̃kN

(. . . r̃k1(r̃k0(x0, t0), t1) . . . , tN ) is in effect a random walk starting at x0 and proceeding with
Gaussian random steps r̃ki

. With the summations in (6.16) one takes the average over all random
walks that can be formed with a given set of M random steps r̃ki

for i = 1, . . . , N . One can simplify
this equation by summing over MN independent random pathes r̃lN (. . . r̃l1(r̃l0(x0, t0), t1) . . . , tN )
instead. Equation (6.16) becomes

q̄(t|x0, t0) ∼ 1

MN

MN∑

l=1

q(r̃lN (. . . r̃l1(r̃l0(x0, t0), t1) . . . , tN )) . (6.20)

6.3 Ito Calculus and Brownian Dynamics

Before applying Brownian dynamics in the form of equation (6.20) we want to shed light on the
close relation between the Monte Carlo integration introduced above and the concept of stochastic
processes as described in chapter 2.
Equation (6.20) describes the algorithm of Brownian dynamics. In essence one simulates the random
walk of a given number of Brownian particles and samples their final position in state space Ω. To
demonstrate this we return to chapter 2. Within the framework of Ito calculus we consider the
stochastic differential equation (2.138) that corresponds to the Fokker-Planck equation (6.1)

∂t x(t) = A(x(t), t) + B(x(t), t) η(t) . (6.21)
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The corresponding Ito-formula (2.137) is

df [x(t)] = A(x(t), t)
(
∂x f [x(t)]

)
dt + B(x(t), t)

(
∂x f [x(t)]

)
dω(t)

+
1

2
B2(x(t), t)

(
∂2

x f [x(t)]
)

dt . (6.22)

Assume f [x(t)] = x(t). We thus derive for x(t)

dx(t) = A(x(t), t) dt + B(x(t), t) dω(t) . (6.23)

Integrating (6.23) over small time periods ∆t for which we can assume A(x(t), t) and B(x(t), t) to
be constant we obtain the finite difference equation

x(t + ∆t) − x(t) = A(x(t), t) ∆t + B(x(t), t) ∆ω , (6.24)

with ∆ω being a random variable with the Gaussian probability distribution (2.48) for D = 1/2.
Such a random variable can be generated with a normalized Gaussian random number r and the
mapping ∆ω =

√
∆t r

x(t + ∆t) − x(t) = A(x(t), t) ∆t + B(x(t), t)
√

∆t r . (6.25)

Note, that x(t+∆t)−x(t) in (6.25) is the same as r̃(x0, t)−x0 defined in (6.18). Iterating equation
(6.25) and thus numerically integrating the stochastic differential equation (6.21) according to Ito
calculus, we generate a sample path x(t) starting at any given x(t0) = x0. Such a sample path can
then be used in the Monte Carlo procedure (6.20).

6.4 Free Diffusion

We now test the numerical Brownian dynamics procedure outlined above. For this purpose we
resort to examples that can be solved analytically.
We begin with free diffusion in an infinite domain. The Fokker Planck equation, i.e., the respectively
Einstein diffusion equation, is

∂t p(x, t|x0, t0) = D ∂2
x p(x, t|x0, t0) . (6.26)

Comparing (6.26) and (6.1) one finds the drift coefficient A(x, t) to be zero and the noise coupling
coefficient B(x, t) =

√
2 D to be constant in time and space. Thus, assumptions (6.6) and (6.7)

are met for any time step size ∆t = ti+1 − ti. Due to this fact one could choose ∆t = t −
t0 and obtain with (6.8) the final result right away, thereby, rendering the following numerical
simulation, employing a division into many short time intervals, unneccessary. Since we intend to
verify the numerical approach we choose a division into N intermediate time steps nevertheless.
These intermediate steps will become necessary when considering a potential and consequently a
spatially dependent A(x, t) further below.
One can proceed in a straight forward manner. Starting with Gaussian random numbers rk as
generated in (5.23) one derives the required random numbers r̃k(x, t) according to (6.18).

r̃k(x, t) =
√

2 D ∆t rk + x. (6.27)

These random numbers r̃k(x, t) exhibit the probability distribution

p(r̃(x, t)) =
1√

4π D ∆t
exp

(
−
(
r̃(x, t) − x

)2

4 D ∆t

)
. (6.28)
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Figure 6.1: 1000 random trajectories generated by a Brownian dynamics simulation defined by
(6.29).

as shown in (6.19). To determine the endpoint x(t) of a sample path of free diffusion one creates a
chain of random numbers, i.e., a random walk,

x(t = tN ) = r̃N (. . . r̃1(r̃0(x0, t0), t1) . . . , tN )

=
√

2 D ∆t
N∑

k=1

rk . (6.29)

Figure 6.1 displays an ensemble of 1000 such paths, each path being N = 100 steps long. The
trajectories start at x = 0 and proceed towards the rear, as indicated by the time axis. D = 1 defines
the relation between temporal and spatial units. Ten paths are displayed in black to examplify the
behavior of single random walks. The other 990 paths are shown as a grey background. Note
the parabolic shape of the trajectory distribution in time. This property, the broadening of the
standard deviation of the trajectory distribution proportional to

√
t was derived in (2.51). In the

rear of the figure is a bin count of all trajectory locations at t = 1. The solid line imposed on the
bar chart represents the theoretical solution according to equation (6.28) with ∆t = t − t0.
The paths of (6.29) can be used to determine the expectation value q̄(t|x0, t0) of an observable Q
at time t = tN as described in (6.10) and (6.20). Obviously such a sampling of an observable value
can only be done with a finite ensemble of trajectories. A statistical error in the result is inevitable.
Hence the question: how large is the statistical error?
Assume we know the probability p(x, t|x0, t0). The exact expectation value 〈q(t|x0, t0)〉 is then
given by

〈
q(t|x0, t0)

〉
=

∫

Ω
dx q(x) p(x, t|x0, t0) . (6.30)
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One can rewrite (6.30) in terms of a probabilty distribution p̃(q, t|x0, t0) that does not depend on
x but on the observable value q.

〈
q(t|x0, t0)

〉
=

∫

Ω
dq q

∂x(q)

∂q
p(x(q), t|x0, t0)

︸ ︷︷ ︸
p̃(q,t|x0,t0)

. (6.31)

With respect to p̃(q, t|x0, t0) we can then express the exact average (6.31) and the variance of the
observable value q(t|x0, t0) in terms of cumulants.

〈
q(t|x0, t0)

〉
=

〈〈
q(t|x0, t0)

〉〉
, (6.32)

〈(
q(t|x0, t0) −

〈
q(t|x0, t0)

〉)2
〉

=
〈〈

q2(t|x0, t0)
〉〉

. (6.33)

The variance (6.33) is the variance of single sample readings of an observable Q. Equation (6.33)
does not apply to an expectation value q̄(t|x0, t0), which is the average of an ensemble of sam-
ples. Nevertheless, denoting the outcome of an i-th reading by q(i)(t|x0, t0) one can express the
expectation value according to (6.20)

q̄(t|x0, t0) =
1

M

M∑

i=1

q(i)(t|x0, t0) . (6.34)

The second order cumulant of (6.34) renders

〈〈
q̄2(t|x0, t0)

〉〉
=

〈〈(
1

M

M∑

i=1

q(i)(t|x0, t0)

)2〉〉

=
1

M2

〈〈(
M∑

i=1

q(i)(t|x0, t0)

)2〉〉
. (6.35)

Since every q(i)(t|x0, t0) stems from an independent trajectory sample one can apply (2.44) and we
can write

〈〈
q̄2(t|x0, t0)

〉〉
=

1

M2

M∑

i=1

〈〈(
q(i)(t|x0, t0)

)2
〉〉

. (6.36)

Every sample q(i)(t|x0, t0) should also exhibit the same variance (6.33) so that we finally obtain

〈〈
q̄2(t|x0, t0)

〉〉
=

1

M2

M∑

i=1

〈〈
q2(t|x0, t0)

〉〉

=
1

M

〈〈
q2(t|x0, t0)

〉〉
. (6.37)

Hence, the variance of the average of M samples is about 1/M times smaller than the variance
of a single sample. Consequently the standard deviation of the expectation value decreases with
1/
√

M .
To finally determine the statistical error of an expectation value q̄(t|x0, t0) given by the standard

deviation
√〈〈

q̄2(t|x0, t0)
〉〉

one has to provide a value for the cumulant
〈〈
q2(t|x0, t0)

〉〉
in (6.37). An
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estimate for the upper limit of this variance is sufficient in most cases. One can provide an estimate
either with the help of some analytical approximation or by simply determining the variance of an
ensemble of M̃ samples q(i)(t|x0, t0) according to

〈〈
q2(t|x0, t0)

〉〉
≈ 1

M̃ − 1

M̃∑

i=1

(
q(i)(t|x0, t0) − q̄(t|x0, t0)

)2
. (6.38)

To examplify the tools just introduced we will consider a bin count. For a bin count one measures
the probability q[a,b] to find a trajectory end point within a given interval [a, b], called bin. The
sensitivity function q(x) for a single bin reaching from a to b is q[a,b](x) = Θ(x − a) − Θ(x − b)1.
One can determine the expectation value q̄[a,b](t|x0, t0) with the help of (6.15), (6.20) and (6.29)

q̄[a,b](t|x0, t0) =

∫

Ω
dx q[a,b](x) p(x, t|x0, t0)

≈ 1

M

M∑

l=1

q[a,b]


√

2 D ∆t
N∑

kl=1

rkl


 . (6.39)

Performing calculation (6.39) for an array of adjacent bins one can approximate a probability
density distribution p(x, t|x0, t0) as shown in the rear of Figure 6.1. For that purpose one takes the
expectation value q̄[a,b](t|x0, t0) of each bin and divides it by the base length |b − a| . One thereby
obtains an estimate for the probability density between a and b

p(x ∈ [a, b], t|x0, t0) ≈ p̄[a,b](t|x0, t0)

=
q̄[a,b](t|x0, t0)

|b − a| . (6.40)

How much confidence can we have in a probability density distribution determined through (6.40)?
There are two precision objectives to consider. First, one would like to have a sufficient spatial
resolution. The bin size should be smaller than the spatial features of the probability distribu-
tion p(x, t|x0, t0). This can be achieved by implementing a grid with many tiny bins; the smaller
the bin, the better. This however is counteracting the second objective. The statistical error of a
probability density within a bin increases as the bin size decreases. Thus, one has to balance these
two objectives as we will do in the following calculation.
We will focus our attention on a bin [a, b]. The spatial resolution ress of a bin count based on bins
like [a, b] is given by the bin size in relation to the relevant diffusion domain Ω

ress =
|a − b|
|Ω| . (6.41)

One can define a resolution of the probability density resp in a similar fashion. Let ∆p̄[a,b](t|x0, t0)
be the standard deviation of the probability density in bin [a, b]. One can view this standard
deviation ∆p̄[a,b](t|x0, t0) as the analog to the bin size |a − b|. The relation between the standard
deviation ∆p̄[a,b](t|x0, t0) and the size |p(Ω)| of the overall range of probabilty density values in a
distribution would then define the resolution resp. Hence

resp =
∆p̄[a,b](t|x0, t0)

|p(Ω)| . (6.42)

1Θ(x) represents Heaviside’s step function: Θ(x) = 0 for x < 0, and Θ(x) = 1 for x > 0.
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100 Brownian Dynamics

To optimize a bin count one has to balance the resolutions ress and resp. We thus assume

ress ≈ resp . (6.43)

Out of this equation we can derive the sample number M needed to achieve the desired precision
goal.
The sample number M enters equation (6.43) via (6.42) and ∆p̄[a,b](t|x0, t0). Starting with (6.40)
one can derive

∆p̄[a,b](t|x0, t0) =

√〈〈
p̄2
[a,b](t|x0, t0)

〉〉

=

√〈〈
p2
[a,b](t|x0, t0)

〉〉

M

=

√〈〈
q2
[a,b](t|x0, t0)

〉〉

M |a − b|2 . (6.44)

〈〈
q2
[a,b](t|x0, t0)

〉〉
can be approximated assuming

〈
q[a,b](t|x0, t0)

〉
to be equal q̄[a,b](t|x0, t0).

〈〈
q2
[a,b](t|x0, t0)

〉〉
=

〈(
q[a,b](t|x0, t0) −

〈
q[a,b](t|x0, t0)

〉)2〉
(6.45)

≈
〈(

q[a,b](t|x0, t0) − q̄[a,b](t|x0, t0)
)2〉

(6.46)

=
(
1 − q̄[a,b](t|x0, t0)

)2
q̄[a,b](t|x0, t0) +

(
0 − q̄[a,b](t|x0, t0)

)2 (
1 − q̄[a,b](t|x0, t0)

)
(6.47)

= q̄[a,b](t|x0, t0)
(
1 − q̄[a,b](t|x0, t0)

)
(6.48)

Inserting (6.48) back into (6.44) one obtains

∆p̄[a,b](t|x0, t0) =

√
q̄[a,b](t|x0, t0)

(
1 − q̄[a,b](t|x0, t0)

)

M |a − b|2 (6.49)

Implementing (6.49) in (6.42) and (6.43) and solving for M we derive

M = q̄[a,b](t|x0, t0)
(
1 − q̄[a,b](t|x0, t0)

) ( |Ω|
|a − b|2 |p(Ω)|

)2

. (6.50)

One can use equation (6.50) to estimate the number of particles needed in a Brownian dynamics
simulation when creating probability distributions via a bin count. In Figure 6.1 we had to con-
sider the parameters |Ω| = 6, ∆x = 0.3, |p(Ω)| = 0.4 and q̄[a,b] = ∆x p̄[a,b] ≈ 0.04. With these
numbers equation (6.50) renders M = 1067 which is roughly the number of trajectories used in our
example. Unfortunately many interesting simulations require much larger M and thus tremendous
computational resources.

6.5 Reflective Boundary Conditions

So far in this chapter we have considered solely Brownian dynamics with boundaries at x →
±∞. We now seek to account for the existence of refelctive boundaries at finite positions in
the diffusion domain. For the purspose of a numerical Brownian dynamics description we divide
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6.5: Reflective Boundary Conditions 101

again teh evolution of teh probability function into many small time intervals, assuming that
the corresponding ∆x and ∆t values are small such that conditions (6.6) and(6.7) are satisfied.
Furthermore we now assume, that the average spatial increment ∆x of a simulated trajectory is
minute compared to the spatial geometry of the diffusion domain and its reflective boundary. In
this case a stochastic trajectory will most likely encounter not more than a single boundary segment
in each time interval. It will be permissible, therefore, to consider only one boundary segment at
a time. Furthermore, we approximate these boundary segments by planes, which is appropriate as
long as the curvature of the boundary is small in comparison to ∆x.
Under all these conditions one can again provide an approximate analytical solution p(x, t0 +
∆t|x0, t0) for a single simulation step. One can then use this solution to construct an adequate
numerical simulation over longer time intervals.
As stated, we assume refelective boundaries governed by the boundary condition (4.24)

â(x) · J p(x, t|x0, t0) = 0 , x on ∂Ωi , (6.51)

where â(x) denotes the normalized surface vector of the planar boundary segment. One derives an
analytical solution for p(x, t|x0, t0) in the present case by emulating a mirror image of a diffusing
particle behind the planar boundary segment so that the flow of particles and the flow of mirror
particles through the boundary segment cancel each other to satisfy (6.51). This is established
through the probability

p(x, t0 + ∆t|x0, t0) =

(
1√

2π [B·BT] (x0, t0) ∆t

)n

exp

[
−(x − x0 − A(x0, t0) ∆t)2

2 [B·BT] (x0, t0) ∆t

]
(6.52)

+

(
1√

2π [B·BT] (x0, t0) ∆t

)n

exp

[
−(x −R∂Ω[x0 + A(x0, t0) ∆t])2

2 [B·BT] (x0, t0) ∆t

]
.

R∂Ω denotes the operation of reflection at the boundary plane ∂Ω. To perform the reflection
operation R∂Ω explicitly one splits every position vector x into two components, one parallel x‖
and one orthogonal x⊥ to the planar boundary ∂Ω. If b ∈ ∂Ω one can express the operation of
reflection as

x‖
R∂Ω7−→ x‖ (6.53)

x⊥
R∂Ω7−→ 2 b⊥ − x⊥ . (6.54)

With this notation one can write boundary condition (6.51) as

([
B·BT

]
(x, t)

2
∂x⊥ − A(x, t)

)
p(x, t0 + ∆t|x0, t0)

∣∣∣∣∣
x∈∂Ω

= 0 . (6.55)

and one can easily verify that equation (6.52)

p(x, t|x0, t0) =

(
1√

2π [B·BT] (x0, t0) ∆t

)n (
exp

[
−(x − x0)

2

4 D ∆t

]
(6.56)

+ exp

[
−
(
x‖ − x0‖

)2
+ (x⊥ + x0⊥ − 2 b⊥)2

2 [B·BT] (x0, t0) ∆t

] )

is a solution of the diffusion equation which obeys (6.55).
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The function on the r.h.s. of (6.56) describes a Wiener process which is modified, in that the
endpoint of the Gaussian distribution which reaches across the boundary ∂Ω is ‘reflected’ back into
the domain Ω. The modified Wiener process is therefore defined as follows

x(t + ∆t) =





x(t) +
√

2 D ∆t r(t) , if x(t) +
√

2 D ∆t r(t) ∈ Ω

R∂Ω

[
x(t) +

√
2 D ∆t r(t)

]
, if x(t) +

√
2 D ∆t r(t) 6∈ Ω

(6.57)

Whenever x(t + ∆t) reaches outside the domain Ω the actual value of the coordinate x(t + ∆t) is
readjusted according to the rules set by Eq. (6.57).

April 23, 2000 Preliminary version



Chapter 7

The Brownian Dynamics Method

Applied

Contents

7.1 Diffusion in a Linear Potential . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Diffusion in a Harmonic Potential . . . . . . . . . . . . . . . . . . . . . . 104

7.3 Harmonic Potential with a Reactive Center . . . . . . . . . . . . . . . . 107

7.4 Free Diffusion in a Finite Domain . . . . . . . . . . . . . . . . . . . . . . 107

7.5 Hysteresis in a Harmonic Potential . . . . . . . . . . . . . . . . . . . . . . 108

7.6 Hysteresis in a Bistable Potential . . . . . . . . . . . . . . . . . . . . . . . 112

In this chapter we apply the Brownian dynamics method to motion in prototypical force fields. We
consider first the cases of constant and linear forrce fields for which analytical solutions exist which
allow one to test the accuracy of teh Brownian dynamics method. We consider, in particular,
statistical uncertainties inherent in Brownian dynamic simulations. Estimates for the statistical
error of observables are derived. We consider also examples with reflecting and absorbing bound-
aries. Finally we describe hysteresis in a harmonic and in a bistable potential. The later case is
not amenable to analytical solutions and, thus, the aproach described constitutes a truely useful
application of the Brownian dynamics method.

7.1 Diffusion in a Linear Potential

As a first example we consider the simple scenario of diffusion in a linear potential V (x) = a x with
boundaries at infinity. In this model the diffusive particles are subject to a constant force F (x) =
−a. One obatins with (4.17) the Fokker Planck respectively Smoluchowski diffusion equation

∂t p(x, t|x0, t0) = D
(
∂2

x + β a ∂x

)
p(x, t|x0, t0) . (7.1)

By comparing (7.1) with (6.1) one identifies the drift coefficient A(x, t) = −D β a and the noise
coupling coefficient B(x, t) =

√
2 D. Both coefficients are constant and again as in the free diffusion

model assumptions (6.6) and (6.7) are met for any step size ∆t = ti+1 − ti.
The random numbers needed in the Brownian dynamics procedure (6.20) are generated according
to (6.18) with the mapping

r̃k(x, t) =
√

2 D ∆t rk − D β a∆t + x (7.2)
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104 Brownian Dynamics Applications

The random number probability density distribution is

p(r̃(x, t)) =
1√

4π D ∆t
exp

(
−
(
r̃(x, t) + D β a∆t − x

)2

4 D ∆t

)
. (7.3)

The end points x(t) of a sample path in (6.20) result from chains of random numbers given in (7.2).
This chain of random numbers r̃k(xk, tk) can be rewritten as a sum

x(t = tN ) = r̃N (. . . r̃1(r̃0(x0, t0), t1) . . . , tN )

= −D β a (t − t0) +
√

2 D ∆t
N∑

k=1

rk . (7.4)

The only difference between equation (7.4) and equation (6.29) of the free diffusion model is the
term −D β a t. One apparently generates the same sample trajectories as in the case of free diffusion
except for a displacement. The endpoints x(t) of a trajectory are shifted by −D β a t.

Due to this similarity we are not going to repeat a bin count as done in section 6.4. Instead we
investigate a new observable. We consider a measurement Qxm that renders the probability of
finding a particle beyond a certain point xm on the x-axes. The sensitifity function of such an
observable is qxm(x) = Θ(x − xm). We will now estimate the number M of sample trajectories
needed to determine

qxm(t|x0, t0) =

∫

Ω
dx Θ(x − xm) p(x, t|x0, t0) . (7.5)

The value range of observable Qxm is the interval [0, 1]. Hence, the variance
〈〈
q2
xm

(t|x0, t0)
〉〉

can not
exceed 1. One can therefore assume, according to (6.37), that the standard deviation of q̄xm(t|x0, t0)
is less than 1/

√
M . To push the statistical error of q̄xm(t|x0, t0) below a margin of ±2% one has to

simulate and sample (M = 2500) trajectries. The result of such a simulation is displayed in Figure
7.1. The plot describes the time dependent increase in probability for finding a particle beyond
xm. The units are chosen so that D = 1. The force constant a is set equal −2/β and xm is located
at +1.

7.2 Diffusion in a Harmonic Potential

We alter the previous Brownian dynamics simulation by implementing a harmonic potential V (x) =
k
2 x2. This harmonic potential introduces a decisive difference to the previously used examples. It
requires the introduction of intermediate times ti in the simulation of stochastic trajectories (6.20)
since in this case A(x, t) is not constant. The more intermediate times ti and the smaller the time
steps ∆t the better the simluation. We will examine the impact of the time step length ∆t on the
numerical results and derive guidelines for the right choice of ∆t.

Inserting the harmonic force F (x) = −k x into the Smoluchowski diffusion equation (4.17) one
derives

∂t p(x, t|x0, t0) = D
(
∂2

x + β k ∂x x
)

p(x, t|x0, t0) . (7.6)

Again comparing (7.1) with (6.1) one identifies the drift coefficient A(x, t) = −D β k x and the
noise coupling coefficient B(x, t) =

√
2 D. Note that A(x, t) is no longer a spatial constant. One,

thus, has to pay special attention to assumptions (6.6) and (6.7).
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7.2: Diffusion in a Harmonic Potential 105

Figure 7.1: The plot displays the readings of observable Qxm according to (7.5) in a Brownian
dynamics calulation (7.4) with 2500 trajectories.

Each trajectory step in a Brownian Dynamics simulation is exact for a linear potential V (x) = a x.
During a time step ∆t a simulated particle diffuses as if the potential V (x) extrapolates linearly.
One has to asure that this linear extrapolation is a good approximation for the average spatial
simulation step ∆x given in (6.5). The difference ∆V (x) between the exact and the linearly
extrapolated potential is given by

∆V (x + ∆x) = V (x + ∆x) −
[
V (x) + V ′(x) ∆x

]
. (7.7)

Conversely one can determine the approximation radius ±∆x for a given potential deviation ∆V (x+
∆x).

∆x =
V (x + ∆x) − V (x) − ∆V (x + ∆x)

V ′(x)
. (7.8)

Hence, if we intend to keep the approximation of V (x) within the interval [V (x) − ∆V (x), V (x) +
∆V (x)] we can derive the necessary upper limit for the spatial step size ∆x according to (7.8) and
determine the corresponding upper limit for the temporal step size

∆t =
B(x, t) + 2 |A(x, t)|∆x −

√
B2(x, t) + 4 |A(x, t)|B(x, t) ∆x

2 A2(x, t)
. (7.9)

We consider a specific example. We set D and β equal 1, thus measuring the potential in units of
the average thermal energy 1/β and relating the units of space and time via D. Within these units
we simulate trajectories with the initial position x0 = 1 in a potential with k = 6. If one intends
to keep the approximation of V (x) within 10% of the thermal energy 1/β, one can determine the
upper limit for the spatial step size with (7.8) and derive ∆x ≈ 0.2.
To obtain the corresponding upper limit for the temporal step size ∆t with (7.9), one has to estimate
maximum values for |A(x, t)| and B(x, t). Assuming an effective diffusion domain of [−2, 2] one
finds |A(x, t)| ≤ 2 k D β and B(x, t) =

√
2D and consequently ∆t ≈ 0.01. Simulation results with

these parameters are shown in Figures 7.2. The three bar charts display the time evolution of a bin
count at times t = 0.02, 0.08, and 0.40 The bin count, based on 1000 trajectories, exhibits 20 bins
with a width of 0.2 each. The bin count approximates probability distribution p(x, t|1, 0) with the
analytical solution (3.142), which is superimposed for comparison.
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Figure 7.2: The bar charts depict bin counts of a Brownian Dynamics simulation with the harmonic
potential V (x) = k

2 x2. The three figures display the probability distribution p(x, t|1, 0) of the sim-
ulated trajetories at times t = 0.02, 0.08, and 0.40. The analytical results (3.142) are superimposed
for comparison.
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7.3. HARMONIC POTENTIAL WITH A REACTIVE CENTER 107

Figure 7.3: The number of particles absorbed by boundary x = 0 per time step ∆t (left). The
number N(t) of particles remaining in the system (right).

7.3 Harmonic Potential with a Reactive Center

We refine the harmonic potential example by introducing a reactive center at x = 0. We thereby
address the issue of reactive boundary conditions in Brownian dynamics.

In a one-dimensional model a reactive site within a potential is equivalent to a reactive boundary.
The particles cannot cross the reactive site without being absorbed or reflected. Thus, for particles,
never being able to reach the other side, a reactive site appears as wall or boundary.

There is a simple and intuative way to incorporate reactive boundaries in a Brownian dynamic
calculation. At each time step ∆t one determines the number of trajectories crossing the reactive
wall. One then removes a certain percentage of trajectories from the ensemble depending on reaction
rate of the boundary. The remaining percentage is reflected according to the rules developed in
section 6.5.

To verify the drain of particles one can calculate the particle number N(t) and determine the
time-dependence by counting the remaining particles at different times t.

We quickly consider a particular example. Assume a sink at the center of the harmonic potential.
This sink is in effect a completely absorbing wall. Thus, in a simulation we simply remove all
particles crossing this boundary. With the same paramters as in the calcualtion of the previous
section we compute the particle flux −∆N(t)/∆t absorbed by the sink at x = 0 and we determine
the number N(t) of particles still present in the system. The results of a simulation with N(0) =
10000 initial particles are plotted with respect to time t in Figure 7.3.

7.4 Free Diffusion in a Finite Domain

We revisit the model of free diffusion in a finite domain Ω = [0, a] with reflective boundaries. We
solved this model analytically in section 3.5.

Under the condition D dt ≪ a2 one can use the solutions (6.56) for the conditional probability
distribution p(x, t0 + dt|x0, t0) at the left and right boundary. These solutions in the half-spaces
[0,∞[ and ] −∞, a] can be patched together at x = a/2.

p(x, t0 + dt|x0, t0) ≈ 1√
4π D dt





exp
[
− (x−x0)2

4 D dt

]
+ exp

[
− (x+x0)2

4 D dt

]
x ≤ a

2

exp
[
− (x−x0−a)2

4 D dt

]
+ exp

[
− (x+x0−a)2

4 D dt

]
x > a

2

. (7.10)
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108 Brownian Dynamics Applications

A distribution of this form results from a Wiener process which is modified, in that the pathes with
x < 0 and x > a are ‘reflected’ back into the domain Ω = [0, a]. Hence, the Wiener process in
the interval [0, a] is defined as in (6.57) and one can write

x(t + ∆t) =





x(t) +
√

2 D ∆t r(t) , if x(t) +
√

2 D ∆t r(t) ∈ Ω

−x(t) −
√

2 D ∆t r(t) , if x(t) +
√

2 D ∆t r(t) < 0

2 a − x(t) −
√

2 D ∆t r(t) , if x(t) +
√

2 D ∆t r(t) > a

. (7.11)

The function p(x, t|x0, t0) is the probability density of the stochastic trajectories x(t), subject to
the initial condition x(t0) = x0. By simulating on a computer a fairly large number of random
walks according to (7.11), one can determine, within the limits of statistical and numerical errors,
the probability distribution p(x, t|x0, t0). For this purpose one performs a bin count as in section
6.4.

To perform a simulation of an ensemble of stochastic trajectories x(t) we choose specific parameters.
We set the unit of length to be a and the unit of time to be D/a2; hence a = 1 and D = 1. We
choose an arbitrary value for x0 and deterimine a ∆t satisfying D ∆t ≪ a2.

According to the scheme described above, one starts the actual Brownian Dynamics simulation of
(N = 1000) trajectories at x0 = a/4. To approximate p(x, t|x0, t0) one can perform a bin count
after (t− t0)/∆t number of time steps ∆t by counting and recording the numbers of trajectories in
each bin. One can then estimate p(x, t|x0, t0) in each bin with equation (6.40). Results of an actual
simulation at t = 0.01, 0.03, 0.1, 0.3 are presented in Figures 7.4. The bin counts exhibit 20 bins
with a base length of 0.05a each. The analytical solution (3.142) for p(x, t|x0, 0) are superimposed
for comparison.

7.5 Hysteresis in a Harmonic Potential

For an application of the Brownian Dynamics method we consider now particles moving in a
one-dimensional potential V (x) subject to a driving force Fd(t) with a sinusodial time-dependence
sin(ω t). This example allows us to investigate the properties of hysteresis, which arises, for example,
when proteins are subjected to time-dpendent electric fields.

Before providing numerical answers we have to identify the right questions and the important as-
pects of hysteresis. Since we consider systems governed by the Smoluchowski equation (4.17) which
arises from a Langevin equation with frictional forces the external forces lead to teh dissipation of
energy leading to a net energy consumption of the system in the case of periodic forces. The energy
dE delivered through an external force field to a single particle during an infinitesimal time step
dt is given by the scalar product of the particles path segment dx and the excerted force Fd. The
average energy 〈dE〉 delivered to the particle ensembel is therefore

〈dE〉 =
〈
Fd ·dx

〉

= Fd ·〈dx〉 . (7.12)

The system compensates the energy uptake with an energy loss via the stochastic interactions. The
aim of our numerical calculations will be to quantify and to investigate this energy consumption.

We will base the subsequent calculations on the following premises. For times t much larger then
the relaxation times of the system the particle ensemble will assume a so-called asymptotic state
in which it will exhibit the same temporal cyclic variation as the driving force Fd(t). In such an
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7.5: Hysteresis in a harmonic Potential 109

Figure 7.4: These bin counts present a Brownian dynamics simulation with 1000 particles diffusing
according to (7.11) in an interval [0, a] with reflective boundaries.

asymptotic state the energy gain and loss will compensate each other over each cycle and one can,
thus, measure the energy dissipation by observing the energy uptake dE.
For a periodic asymptotic state it is sufficient to consider the time evolution during just one variation
cylce. We therefore focus on the energy uptake Ec during a single cycle. We parameterize the cylce
by φ = ω t ranging from 0 to 2π and obtain with (7.12) for the energy Ec provided by linear force
field Fd(t) = a sin(ω t)

〈Ec〉 = a

∮
d sin(φ) 〈x(φ)〉 . (7.13)

It is customary to express equation (7.13) in terms of hysteresis H which is defined as

H = −
∮

d sin(φ) x(φ) . (7.14)

To proceed we have to choose a particular potential V (x). In this section we first consider the
simplest form of a potential, the harmonic potential in conjunction with a linear force field

V (x) =
k

2
x2 + Fd(t) x , (7.15)

Fd(t) = a sin(ωt) . (7.16)

The Fokker-Planck equation determining the time evolution of the probability distribution p(x, t|x0, t0)
can then be written as

∂t p(x, t|x0, t0) = D
(
∂2

x + β (a sin(ω t) + k ∂x x)
)

p(x, t|x0, t0) . (7.17)
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To determine the hysteresis H as in (7.17) it is beneficial to substitute t by φ. We derive

∂φ p(x, φ|x0, φ0) =
D

ω

(
∂2

x + β (a sin(φ) + k ∂x x)
)

p(x, φ|x0, φ0) . (7.18)

Before solving equation (7.18) numerically we will quickly outline the analytical solution. For
the solution of the Smoluchowski equation for the harmonic potential without a driving force one
assumes the functional form

p(x, φ) =

√
β k

2π
exp

[
−1

2
β k
(
x − 〈x(φ)〉

)2
]

. (7.19)

Substituting (7.19) into (7.18) one obtains an ordinary differential equation for the mean path
〈x(φ)〉.

∂φ 〈x(φ)〉 = −β
D

ω

(
k 〈x(φ)〉 + a sin φ

)
. (7.20)

The solution of (7.20) is

〈x(φ)〉 = − a βD/ω

k2 (βD/ω)2 + 1
e−k (βD/ω) φ + a

(βD/ω) cos φ − k (βD/ω)2 sin φ

k2 (βD/ω)2 + 1
. (7.21)

In determining the hysteresis we consider only the asymptotic state with ωt = φ → ∞. In this
limit the first term of (7.21) vanishes and one obtains

〈x(φ)〉 = a
(βD/ω) cos φ − k (βD/ω)2 sin φ

k2 (βD/ω)2 + 1
. (7.22)

This expression is all one needs to evaluate (7.14) and to determine the mean hysteresis

〈H〉 = −
∮

d sin φ 〈x(φ)〉

=

∮
d sin φ a

(βD/ω) cos φ − k (βD/ω)2 sin φ

k2 (βD/ω)2 + 1

=
π aβD/ω

k2 (βD/ω)2 + 1
. (7.23)

Having derived an analytical description we turn now to the application of the Brownian Dynam-
ics method which should reproduce the result (7.23). We determine first the mean path 〈x(φ)〉
numerically and evaluate then (7.14). For the evaluation of the mean path we proceed in the
same way as in the previous sections. Comparing (7.18) and (6.1) we identify the drift coeffi-
cient A(x, φ) = −D β(k x + a sin(φ))/ω and the noise coupling coefficient B(x, φ) =

√
2 D/ω The

resulting equation for the numerical integration of a particle trajectory is

x(φ + ∆φ) = x(φ) − D β

ω

(
a sin(φ) + k x

)
∆φ +

√
2 D

ω
∆φ . (7.24)

We start the Brownian Dynamics simulation with reasonably small phase steps ∆φ and hope that
assumptions (6.6) and (6.7) are met. We, thus, obtain rough results which we will refine later. The
results of a simulation with 10000 particles initially distributed according to the thermal equilibrium
distribution of the harmonic potential (see (4.86) or (7.19))

p0(x, φ = 0) =

√
k β

2π
exp

(
−k β x2

2

)
(7.25)
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7.5: Hysteresis in a harmonic Potential 111

Figure 7.5: Mean trajectories of 10000 Brownian particles simulated according to (7.24) with
∆φ = 0.002π, a = 6/β, k = 6/β and 2π D/ω = 0.5, 1.0, 4.0 ( arbitrary spatial unit).

are presented in Figure 7.5. These graphs display the mean trajectory 〈x(φ)〉 with respect to sin (φ)
varying φ from 0 to 6π for different values of D/ω.
The mean trajectory 〈x(φ)〉 starts at the origin of the coordinate system of 〈x〉 and φ and converges
after the first one or two cylces on an ellipse. The area encircled by the ellipse is the integral (7.14)
and, hence represents the hysteresis H and energy consumption Ec. One can determine the encircled
area numerically by applying standard numerical integration methods like the closed Newton-Cotes
Formula [37] to (7.14).
Before we proceed we have to investigate the influence of the step size ∆φ on our numerical results.
For this purpose we calculate 〈H〉 for different step size values ∆φ. The results of 〈H〉 with
2π D/ω = 1 for ∆φ = 0.002π, 0.004π, 0.01π, 0.02π, and 0.04π are shown in Figure 7.6. One can
observe a linear dependence between 〈H〉 and ∆φ. Hence, we can extrapolate to the limit ∆φ → 0
by performing a lineare regression. The value of the linear regression at ∆φ = 0 can be taken as the
true value of H, which in this case lies within one per mille of the analytical result 3/((3/π)2 +1) =
1.56913 of (7.23).
One can observe in equation (7.23) and in Figures 7.7 that the mean hysteresis 〈H〉 varies with
respect to D/ω. To elucidate this D/ω-dependence we determine 〈H〉 for a sequence of different
D/ω values ranging from 0.1 to 5.0. The resulting plot is displayed in Figure 7.7. The numerical
and analytical solutions are identical with respect to the resolution in Figure 7.7. The hysteresis
〈H〉 reaches a maximum for

D

ω
=

1

β k
. (7.26)

For higher D
ω -values or equivalently for lower frequencies ω the ensemble has sufficient time to follow

the external force Fd(t) almost instantly. The time delayed response is shorter and the hysteresis
〈H〉 is reduced. For lower D

ω -values or equivalently for higher frequencies ω the system cannot
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Figure 7.6: ∆φ-dependence of the numerical results of the mean hysteresis 〈H〉 based on 100000
trajectories. The points mark the results for ∆φ = 0.002π, 0.004π, 0.01π, 0.02π, and 0.04π. The
other parameters are a = 6/β, k = 6/β and 2π D/ω = 1 with respect to some arbitrary spatial unit.
The line represents the linear regression of the five numerical results. It allows one to extrapolate
the linear dependence between 〈H〉 and ∆φ, and to approximate the hysteresis for the limit ∆φ → 0.

follow the driving force in time. The effect of the driving force thereby cancels itself with each cylce
and the amplitude of the mean path 〈x(φ)〉 approaches zero. The smaller the amplited the smaller
the hysteresis 〈H〉.

7.6 Hysteresis in a Bistable Potential

In our last application of the Brownian Dynamics method we leave the domain of analytically
solvable problems and simulate a system accessible only by numerical means. We consider again a
system exhibiting hysteresis, but in cases that the observed hysteresis cannot be reconciled with a
harmonic potential model. For example, the deflection x(t) of a system does usually not increase
linearly with the strenght of the external force field Fd(t). A non-linear saturation effect can only
be modeled with a potential of fourth or higher order in x. Furthmore one usually observes a
remaining deflection in x after switching off the external force Fd(t). The remaining magnitization
of an iron core in a transformer is a typical example. Such an effect cannot be modeled with a
one-minimum-potential. With no external force the systems would always decay to the thermal
equilibrium of its one minimum without sustaining a remaining deflection in time. Hence, to create
a model with a remaining deflection one needs to consider a bistable potential.

To investigate the above effects we employ the bistable potential

V (x) =
k1

4
x4 − k2

2
x2 + x Fd(t) , (7.27)

Fd(t) = a sin(ωt) .

For the following simulations we assume the parameters k1 = 1/β, k2 = 1/β and a = 1/2β. We,
thus, obtain with (7.27) a potential V (x) that has two minima, one at x = −1 and one at x = 1
with a barrier of height 1/(4β) inbetween. During a cycle of the external driving force Fd(t) the
minima of the potential vary. The locations of the minima are depicted in Figure 7.8.
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7.6: Hysteresis in a Double Potential 113

Figure 7.7: D/ω-dependence of the mean hysteresis 〈H〉. The calculations were performed with
10000 trajectories simulated according to (7.24). The mean hystersis 〈H〉 was determine after 3
cycles, with a = 6/β, k = 6/β and 2π D/ω = 0.0, 0.1, . . . , 5.0 with respect to some arbitrary spatial
unit. The limit for ∆φ → 0 was performed as outlined in Figure 7.6

Figure 7.8: The two minima of the potential (7.27) for k1 = 1/β, k2 = 1/β and a = 1/2β are
inidicated by the solid lines. If one takes the harmonic approximations of both minima and neglects
any transfer rate between them, one obtains the dashed curve through the origin of the coordinate
system describing the average of the two potential minima.
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The trace of the potential minima, as shown in Figure 7.8, indicate the special features of this
hysteresis model. For example, for a phase φ = π/2 of the external driving force Fd(t) and for a
very low temperature 1/β, i.e., negligible thermal diffusion, a particle in the potential V (x) would
be located only in the minimum on the right side. This location corresponds to the right corner
of the top solid line in Figure 7.8. Increasing the phase φ adiabatically the particle would follow
the local minimum. The particle, hence, follows the top solid line from right to left. For φ defined
through sinφ = −4/

√
27 the right minimum disappears. The particle would consequently fall

into the minimum on the left depicted by the bottom solid line in Figure 7.8. The particle would
follow then the left minimum until this minimum disappears for a φ defined through sinφ = 4/

√
27

returning to the initial position in the right minimum.
In a simulation with a thermal energy 1/β comparable to the characteristics of the potential V (x)
and with a frequency ω of the driving force Fd(t) comparable to the rate of diffusional crossing
of the barrier between minima, the above behaviour gets siginificantly modified. Due to diffusion
we will observe a transition from one local minimum to the other previous to the moment that φ
assumes teh value specified through sinφ = ±4/

√
27.

In the case of high frequencies ω the transition from left to right and back might not occur all
together. For high frequencies particles would not have the time to propagate from one minimum
to the other and the hysteresis model would seem to consist of simply two disjunct harmonic
potentials at x = ±1. In this case the adiabatic approximation of a particle ensemble is given by
the dashed trajectory in Figure 7.8.
We will now verify these predictions numerically. The equation analog to (7.24), needed for the
calculation of Brownian Dynamic trajectories, is

x(φ + ∆φ) = x(φ) − D β

ω

(
a sin(φ) + k1 x3 − k2 x

)
∆φ +

√
2 D

ω
∆φ . (7.28)

A simulation of 10000 trajectories in the potential given by (7.27) with different driving frequencies
ω and for a temperature of β = 0.1 is displayed in Figure 7.12.
In the first case, D/ω = 1, the frequency ω is so high that a substantial transition of the ensemble
from the left to the right minimum and vice versa does not occur. This can be discerned in
Figure 7.10 which displays the distribution of the ensemble for different phases φ in the first
column. Consequently the first case resembles the hysteresis of a harmonic potential.
In the second case, D/ω = 10, the frequency ω is low enough for an almost complete shift of the
ensemble from the right to teh left side and back. The hysteresis, therefore, resembles the adiabatic
hysteresis in Figure 7.8. A complete cycle of this case is shown in Figure 7.11.
In the third case, D/ω = 100, the frequency ω is so low that the system has sufficient time for
a diffusive transition across the barrier from one local minimum to the other, thus, reducing the
hysteresis substantially.
With the trajectories 〈x(t)〉 as displayed in Figure 7.12 and equation (7.14) one can finally determine
the mean hysteresis 〈H〉. In contrast to the hysteresis in a harmonic potential, the bistable potential
exhibits a strong temperature dependence. To illustrate this one can determine the hysteresis H for
different frequencies ω and temperatures 1/β. The results are displayed in Figure 7.12. One notes
that higher temperatures reduce the hysteresis 〈H〉. At high temperatures the hysteresis enforcing
barrier inbetween the two local minima becomes less significant since the crossing rate over the
barrier increases relative to the driving frequency of teh external force.
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Figure 7.9: Mean trajectory of 10000 particles simulated according to (7.28) with ∆φ = 0.002 π,
a = 1/2β, k1 = 1/β , k2 = 1/βand D/ω = 1, 10, 100 (arbitrary spatial unit).
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Figure 7.10: These plots display bin counts that approximate the probability distributions of an
ensembel in a double potential (7.27) for different driving frequencies ω. The first column depicts
the distribution for D

ω = 1 at φ = 0, π/4, π/2, 3π/4, and π. The second column displays the same
dynamics for D

ω = 10 and the third column represents the time evolution for D
ω = 100.

April 23, 2000 Preliminary version



7.6: Hysteresis in a Double Potential 117

Figure 7.11: These plots display bin counts that approximate the probability distributions of an
ensembel in a double potential (7.27) for D/ω = 1. The cirlce of plots follows the cylce for φ from
0 to 2π.
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Figure 7.12: D/ω-dependence of the mean hysteresis 〈H〉 at different temperatures 1/β = 0.1, 0.2,
and 1.
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Chapter 8

Noise-Induced Limit Cycles

Contents

8.1 The Bonhoeffer–van der Pol Equations . . . . . . . . . . . . . . . . . . . 119

8.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.2.1 Derivation of Canonical Model . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.2.2 Linear Analysis of Canonical Model . . . . . . . . . . . . . . . . . . . . . . 122

8.2.3 Hopf Bifurcation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.2.4 Systems of Coupled Bonhoeffer–van der Pol Neurons . . . . . . . . . . . . . 126

8.3 Alternative Neuron Models . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3.1 Standard Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3.2 Active Rotators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3.3 Integrate-and-Fire Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

In this chapter, we discuss models describing the nonlinear dynamics of neuronal systems. First,
we analyze the Bonhoeffer–van der Pol (BvP) equations, a system of coupled nonlinear differential
equations which describe the dynamics of a single neuron cell in terms of physiological quantities.
Then we discuss other neuronal models which are based on a description of the state of a neuron
in terms of a “phase” variable and investigate, in how far they are useful in approximating the
dynamics of the BvP system.

8.1 The Bonhoeffer–van der Pol Equations

The initial breakthrough in describing the dynamics of neuronal systems in terms of physiological
quantities like ionic concentrations and trans-membrane voltage was achieved by Hodgkin and
Huxley[16]. They provided a quantitative description of the changes of concentrations and trans-
membrane voltages as a function of the current state for the case of the squid axon.

Fitzhugh [?] wanted to study more qualitative features of the neuronal dynamics and, therefore,
proposed a simplified model for neuronal dynamics which he called the Bonhoeffer–van der Pol
equations. He derived them in actually two different ways: first, by reducing the number of coupled
nonlinear differential equations of the Hodgkin–Huxley model from four to two by what essentially
amounts to a projection onto the center manifold of the system. Although the BvP system is quite
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Figure 8.1: (left side) Some typical phase space trajectories for z=−0.4: All trajectories eventually
lead into a stable limit cycle. Represented is a stroboscopic view of trajectories for 9 different initial
states.

Figure 8.2: (right side) Some typical phase space trajectories for z = 0: All trajectories lead to
the stable stationary point at about (1.1,-0.5). Note that a trajectory which passes very near by
the stationary point may lead the phase point back to its stationary state only after a long path
through phase space.

abstract, its variables can still be interpreted in terms of physiological variables, since they have
been derived from the physiological variables of the Hodgkin–Huxley model.

The other way in which Fitzhugh derived these equations was by introducing one additional pa-
rameter in the original van der Pol oscillator equations which modifies them so that they have
the qualitative features which Bonhoeffer had postulated, namely showing excitable and oscillatory
behavior. The original van der Pol oscillator equations are symmetric in the sense that they are
unaffected by a reversal of the sign of the variables. Since this symmetry is broken in the BvP
model by the introduction of an additional parameter, the BvP model represents an important
generalization of the van der Pol oscillator for the description of oscillatory phenomena.

By studying the BvP system, we can thus learn something about physiological neuronal systems,
and study a very important modification and generalization of the van der Pol oscillator dynamics.

In the Bonhoeffer–van der Pol model, the dynamics of a single neuron is described by a system of
two coupled differential equations

ẋ1 = F1(x1, x2) = c · (x1 − x3
1/3 + x2 + z)

ẋ2 = F2(x1, x2) = −1
c · (x1 + bx2 − a).

(8.1)

According to Fitzhugh’s derivation of the BvP equations [?], x1 represents the negative transmem-
brane voltage and x2 is closely related to the potassium conductivity. The dynamical character of
the solutions of this system of equations is determined by the parameter z, which represents the
excitation of a neuron. In the absence of noise, z determines whether the system is an oscillator
which periodically changes its voltage, or an excitable element which rests at a fixed voltage. The
phase portrait for these two dynamical modes is shown in Figs. 8.1 and 8.2.

For an analysis of the BvP system, we first want to determine the stationary point of the system. It
can be obtained as the intersection point of the nullclines. The nullclines for the dynamical system
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Figure 8.3: Nullclines for the BvP model for two different z–values. The parameter z indicates
the x2 coordinate of the symmetry point (indicated by a dot) of the first nullcline. The second
nullcline, a straight line, is not affected by changes of z.

Eq. (8.1) are obtained by setting ẋ1 = 0 and ẋ2 = 0 as

x2 =
1

3
x3

1 − x1 − z (8.2)

x2 =
1

b
(a − x1) (8.3)

They are shown for two different z values in Figure 8.3. Previous analysis of the BvP model [51] has
shown that the system undergoes a Hopf bifurcation around z = −0.34, when the linear nullcline
intersects the other nullcline near its local minimum.
When we analyze the properties of the BvP system, we have to concern ourselves mainly with the
vicinity of the stationary point. The location of the stationary point depends in a quite complicated
way on the parameter z. Before we analyze the dynamics of the BvP system in more depth, we
therefore first want to derive a simpler canonical description of the BvP system in which the
nullclines always intersect in the origin.

8.2 Analysis

8.2.1 Derivation of Canonical Model

We can obtain a canonical version of the BvP system by linearly transforming the coordinates
(x1, x2) into new coordinates (y1, y2). In the new coordinates, both nullclines will have to go
through the point (0, 0). Using

x1 = y1 + p
x2 = y2 − z + (1

3p3 − p),
(8.4)

we transform Eq. (8.2) and (8.3) into

y2 =
1

3
(y1 + p)3 − (y1 + p) − 1

3
p3 + p (8.5)
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and

y2 = −y1/b − p/b + a/b + z − (
1

3
p3 − p) (8.6)

which will both go through the point (0, 0) if

z = (
1

3
p3 − p) + (p − a)/b (8.7)

As long as 0 < b < 1, this equation indicates a unique relation between z and p. If b > 1, the
nullclines can intersect three times. Accordingly, there will then also be three different values of p
which fulfill Eq. (8.7). Which of the three p’s one should choose will then depend on which of the
three stationary points one wants to shift into the origin. In this paper, we will however mainly
be concerned with the case 0 < b < 1 and only occasionally comment on b > 1. As long as b > 0,
there will always be either a stable stationary point or a stable limit cycle to which all solutions
converge. The case b < 0 is physiologically uninteresting since it yields solutions with only diverging
trajectories, which is not the concern of this thesis.
We thus obtain the canonical BvP model

ẏ1 = c(y1 + y2 − 1
3(y1 + p)3 + 1

3p3)
ẏ2 = −1

c · (y1 + by2).
(8.8)

This set of equation is connected with the original BvP Eqs. (8.1) via Eq. (8.4) and Eq. (8.7). In
the original BvP model (8.1) the parameter z indicated the x2 coordinate of the symmetry point
of the first nullcline; in the canonical BvP model (8.8), the parameter p indicates the y1 distance
between the symmetry point of the first nullcline and the stationary point. In the original BvP
model (8.1), the properties of the stationary point depend indirectly on the parameter z, while in
the canonical BvP model (8.8), properties of the stationary point depend directly on the parameter
p. Using the canonical BvP model will thus often lead to a simpler analytical description of the
properties of the system.
The nullclines for the canonical BvP model are shown in Figure 8.4. Figure 8.5 shows how the
parameters p and z in the two versions of the BvP model are related.
Due to the symmetry of the nullclines, the qualitative behavior of the solutions of Eq. (8.8) does
not depend on the sign of p. We will therefore restrict our analysis to the case p > 0. The first
nullcline can be divided into three parts with positive slope on the left branch, negative slope an
the central branch and positive slope again on the right branch. For p > 1 the nullclines intersect
on the right branch, otherwise on the central branch.

8.2.2 Linear Analysis of Canonical Model

First we want to determine the properties of the stationary point, i.e., whether the stationary point
is a stable or unstable node or focus, or whether it is a saddle point. These questions can be
answered by considering the Jacobian at the stationary point (0, 0)

J =

(
∂F1/∂y1 ∂F1/∂y2

∂F2/∂y1 ∂F2/∂y2

)
=

(
c(1 − p2) c

−1
c − b

c

)
. (8.9)

The qualitative properties of the fix point actually depend only on two combinations of the elements
of this matrix, namely on the trace β and the determinant γ:

β = J11 + J22 = c(1 − p2) − b

c
(8.10)
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Figure 8.4: Nullclines for the canonical BvP model for two different p–values. The parameter p
indicates the x1 coordinate of the symmetry point (indicated by a dot) of the first nullcline. The
second nullcline, a straight line, is not affected by changes of p.
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Figure 8.5: This plot shows what parameter p in the canonical BvP model has to be chosen in
order to reproduce the dynamics given by z in the original BvP model, using the standard values
a = 0.7, b = 0.8, c = 3. The dot indicates the values (z, p) = (−0.346478, 0.954521) at which a Hopf
bifurcation occurs.

Preliminary version April 23, 2000



124 Noise-Induced Limit Cycles

0 1 2 3 4 5
c

0.5

1

1.5

2

p

stable node

stable focus

unstable focus

unstable node

s
t
a
b
l
e
 
n
o
d
e

=

Figure 8.6: Diagram showing the properties of the fix point as function of p and c for 0 < b < 1
(b = 0.8). The thick line indicates the values of p and c for which a Hopf bifurcation occurs.

γ = J11J22 − J12J21 = 1 − b(1 − p2) (8.11)

The eigenvalues which reveal the quality of the stationary point can be obtained from Eq. (??).
Since 0 < b < 1, γ will always be positive, i.e., the stationary point will be either a node or a focus.
It will be a focus if 4γ > β2, or

√
1 +

b

c2
− 2

c
< p <

√
1 +

b

c2
+

2

c
. (8.12)

A focus or node will be unstable if β < 0, i.e.,

p <

√
1 − b

c2
, (8.13)

otherwise it will be stable. Finally, we obtain a saddle point when γ < 0, i.e.,

p <

√
1 − 1

b
. (8.14)

From the last formula it is clear that we can only obtain a saddle point if b > 1, and even then the
saddle point can only be found at |p| < 1. Thus, if the slope of the second nullcline is so small that
it intersects the first nullcline in three points, then the middle intersection point will be a saddle
point. The above phase boundaries are visualized in the Figures 8.6 and 8.7, which indicate the
nature of the fix point as a function of p and c for the two cases 0 < b < 1 and b > 1.

8.2.3 Hopf Bifurcation Analysis

We now want to examine whether the transition is a subcritical or supercritical Hopf bifurcation.
Here, we follow the recipe outlined in Segel [?]:

First, we start with the BvP equations for p =
√

1 − b
c2

(the value of p at which the transition

occurs). Then we transform the coordinates into a rotated system of coordinates in which the
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Figure 8.7: Diagram showing the properties of the fix point as function of p and c for b > 1 (b = 1.2).
The thick line indicates the values of p and c for which a Hopf bifurcation occurs.

Jacobi matrix has only non-diagonal elements

J =

(
0 |ω|

−|ω| 0

)
(8.15)

which are given by its imaginary eigenvalues. Third we determine certain derivatives of the rotated
BvP equations (derivatives up to third order) and combine them into an expression D. The sign of
D will then tell whether we have a subcritical (D > 0) or supercritical (D < 0) Hopf bifurcation.
Calculations to determine D are notoriously involved; rather than overwhelming the reader with a
derivation that will be nearly impossible to check, we present in the appendix the Mathematica [58]
code which can be used to derive D as a function of the parameters b and c. We obtain

D = −2 c2
(
b4 + b2 c2 + b2 c4 + c6

)

(b2 − c2)4
(8.16)

+
4 b c2

(
−1 + c2

) (
−b5 − b3 c2 + b4 c2 + b2 c4 − b3 c4 − b c6 + b2 c6 + c8

)

(−b2 + c2)6

We now want to determine for which values of the parameters b and c we obtain a sub- or super-
critical Hopf bifurcation. We obtained eight roots of the equation D(b, c) = 0, giving values of b
which solve the equation for a given c. For 0 < c < 1 all roots are imaginary. For c > 1 two of
the roots are real; while the analytical expressions for these roots are very involved, they can be
approximated within one percent accuracy by the functions

b1(c) =
1.25

1 + 0.25c−3/2
c4/3 ∼

c → ∞ 1.25 c4/3 (8.17)

b2(c) =
1

2

2 − 1.25c + 1.25c2

1 − 1.25c + 1.25c2

∼
c → ∞ 0.5 (8.18)

Actually, for the range of parameters b and c where a Hopf bifurcation occurs, only the second
relation needs to be considered (the first relation relates values of b and c for which no Hopf bifur-
cation occurs). Figure 8.8 shows the combinations of b and c for which a subcritical, supercritical,
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Figure 8.8: Phase diagram denoting the kind of bifurcation to expect for a certain combination of
b and c. For pairs (b, c) to the left of the broken curve, no Hopf transition occurs. On the right
of the broken curve, the Hopf bifurcation will subcritical if (b, c) lies above the continuous curve,
otherwise supercritical. The single dot shows the values of b and c usually chosen for the BvP
model.

or no Hopf bifurcation at all occurs. Specifically, it shows that a Hopf bifurcation will always be
supercritical for b < 0.5, always subcritical for b > 1, and sub- or supercritical for 0.5 < b < 1
depending on the value of c.

8.2.4 Systems of Coupled Bonhoeffer–van der Pol Neurons

We now want to consider systems of coupled BvP neurons. In this section we first investigate
systems of two coupled BvP neurons in order to determine how coupling can lead to synchronization
of neuronal firing.

We therefore integrated numerically the equations of motion for two interacting neurons. The
interaction was assumed to be mediated by the voltage difference of the neurons, represented by
the x1-values of the model neurons. It was assumed that the interaction is only effective when one
neuron is “firing” a pulse of negative x–values:

ẋ1,i = c(x1 − x3
1/3 + x2 + z) +

∑
j 6=i wij(x1,j − x1,i) θ(−x1,j)

ẋ2,i = 1
c (a − x1 − bx2)

(8.19)

Initially, two neurons were placed with a phase difference of π on the limit cycle. During the numer-
ical integration, we calculated the relative phase shift of the neurons as a function of the momentary
phase difference, thus obtaining phase response curves. The phase shifts were averaged over one
limit cycle revolution. Figure 8.9 shows the phase response curve for z = −0.875,−0.4, and− 0.36.
As z is shifted further in the direction of the critical value zcr = −0.34, the height of the phase

response curves changes considerably, which leads to an increase of the synchronization speed. It
is important to note that the phase response curves are approximately sinusoidal.

In Figure 8.10, we plotted the time needed to shift the two neurons from a phase difference of
0.45 ∗ 2π to a phase difference of 0.01 ∗ 2π. We see that the same interaction strength leads to
different synchronization speeds as the parameter z is varied. Actually, the synchronization speed,
defined as the inverse of the synchronization time, diverges at z = zcr.
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Figure 8.9: Phase response curves of a system of two coupled BvP oscillators (see Eq. 8.1) with
different values of the input parameter z. The horizontal axis denotes the phase difference between
the two oscillators and the vertical axis displays the amount by which these phase differences have
changed due to the interaction during one limit cycle revolution. wij = 0.005.
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Figure 8.10: Time required for synchronization of two coupled BvP neurons (see Eq. 8.19) as a
function of the input parameter z.
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Figure 8.11: Oscillation frequency ω of a BvP oscillator as a function of the parameter z.

Variations of the parameter z actually also change the oscillation frequency of the BvP oscillator,
as shown in Figure 8.11. The oscillation frequency drops discontinuously to zero at z = zcr.

8.3 Alternative Neuron Models

We have so far discussed the nonlinear dynamics of BvP neurons. We next want to discuss possi-
bilities of describing the essential dynamical features by a simpler model.

8.3.1 Standard Oscillators

If the parameter z or p is chosen such that the BvP neuron behaves as a limit cycle oscillator, we
can parametrize the position of the system along the limit cycle by a phase variable φ and describe
the dynamical system by a standard oscillator [?]

φ̇ = ω. (8.20)

From the fact that the phase response curves in Figure 8.9 are approximately sinusoidal, one sees
that the synchronization behaviour of BvP neurons is very similar to that of standard oscillators i
and j coupled via their phase differences

φ̇i = ω + wji sin(φj − φi) (8.21)

φ̇j = ω + wij sin(φi − φj). (8.22)

This is all fine as long as one deals with oscillators with fixed z. However, if we allow the excitation
z of the neurons to vary, one sees that both the effective coupling strength (Figure 8.9) and the
frequency of the oscillator (Figure 8.11) vary considerably.
All these effects could in principle be incorporated into a model described by

φ̇i = ω(z) + wji(z) sin(φj − φi). (8.23)
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However, such parametrization of ω and wji would result in a system that is as complex as the
original BvP neuron. Furthermore, the standard oscillator model largely fails to describe the
dynamical properties for z > −0.34, if we just set ω(z) = 0 for z > −0.34. In this range of
parameters, the neuron behaves as an excitable system, a fact which can not be described in terms
of Eq. (8.23).

8.3.2 Active Rotators

If an oscillator system is subjected to small noise, the state will not be confined to the limit cycle,
but will still be found in the immediate vicinity of the limit cycle. Without further perturbations
the system would ultimately return to the limit cycle. Therefore, one can assign the systems in the
vicinity of the limit cycle the same phase as another system on the limit cycle if the trajectories of
the systems in the vicinity of the limit cycle converge towards the trajectory of the system on the
limit cycle [?].
If the system does not have a limit cycle but rather a stationary point, as depicted in Figure 8.2,
and if this system is subjected to noise, then the system can occasionally leave the immediate
vicinity of the stationary point and follow one trajectory through the phase space that very much
resembles the limit cycle in Figure 8.1. In that case, we can speak of a stochastic limit cycle [51]
and parametrize it by starting from the stationary point along the most likely escape trajectory [?]
and connecting back to the stationary point along the most likely return path.
In the case of small noise, it can thus be useful to approximate the BvP dynamics by parametrizing
the phase velocity

φ̇ = F (φ) (8.24)

along the real or stochastic limit cycle. As long as F (φ) is always positive, we obtain oscillator
behaviour. If F (φ) is negative at some point, we obtain excitable element behaviour. If F (φ)
is positive but close to zero for some phases, then the oscillator will spend a lot of time in that
phase range. Small variations of the phase velocity in that region will cause a significant change
in the oscillation period, while changes of F (φ) in phase regions were F (φ) is large will not change
the oscillation period significantly. Like every other periodic function, F (φ) can be expanded in a
Fourier series

F (φ) = a0 +
∑

n

an sin(nφ − nφ0) +
∑

n

bn cos(nφ − nφ0). (8.25)

In the active rotator model [?], the phase velocity is approximated by

F (φ) = 1 − a sin(φ) (8.26)

where the time scale has been chosen such that a0 = 1. This simple caricature of the BvP system
actually provides a good description of the BvP dynamics both for the oscillator (|a| < 1) and for
the excitable system case (|a| > 1). In particular, it reproduces the frequency dependence on the
excitation parameter and approximates well the properties of the excitable system.

8.3.3 Integrate-and-Fire Neurons

If we concentrate mainly on excitable neurons, there is yet another way to parameterize the BvP
dynamics, namely in terms of so-called integrate-and-fire neurons [?]. There, the phase dynamics
near the stationary point φs is described by

F (φ) = −k(φ − φs). (8.27)
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When the phase reaches a certain threshold value φt > φs, a firing event is recorded and the phase
is reset to zero, sometimes with a time lag corresponding to the refractory time of the neuron, i.e.,
the time needed by the neuron to return along the limit cycle back to the stationary point.
This integrate and fire neuron is obtained from the active rotator model by setting

φs = arcsin

(
1

a

)
(8.28)

and

k = a cos(φs) = a

√

1 −
(

1

a

)2

=
√

a2 − 1. (8.29)

These formulas indicate how the parameters k and φs have to be adjusted to reflect changes in the
parameter a of the active rotator model. However, this parametrization is only possible for a > 1
and fails for a < 1 where the system behaves as a limit cycle oscillator.

8.3.4 Conclusions

While oscillator models and integrate-and-fire models both describe some aspect of the BvP dynam-
ics fairly well, namely, the oscillator and excitable systems mode, respectively, the active rotator
model allows a unified description of both modes without added complexity. If we want to study
only the properties of limit cycle oscillators, or only the properties of excitable neurons, then the
oscillator or integrate and fire description may be appropriate. However, if we want to investigate
transitions between these two dynamical modes, it becomes imperative to use a description which
describes both modes. In chapter ??, we will discuss on the example of the stochastic BvP system
why the stochastic active rotator is an appropriate parametrization of the stochastic dynamics of
the neuron along its real or stochastic limit cycle.
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Chapter 9

Adjoint Smoluchowski Equation
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9.1 The Adjoint Smoluchowski Equation

The adjoint or backward Smoluchowski equation governs the r0-dependence of the solution p(r, t|r0, t0)
of the Smoluchowski equation also referred to as the forward equation. The backward equation
complements the forward equation and it often useful to determine observables connected with the
solution of the Smoluchowski equation.

Forward and Backward Smoluchowski Equation

The Smoluchowski equation in a diffusion domain Ω can be written

∂t p(r, t|r0, t0) = L(r) p(r, t|r0, t0) (9.1)

where

L(r) = ∇ · D
(
∇ − β F (r)

)
. (9.2)

For F (r) = −∇U(r) one can express

L(r) = ∇ · D e−β U(r)
∇ eβ U(r) . (9.3)

With the Smoluchowski equation (9.1) are associated three possible spatial boundary conditions
for h(r) = p(r, t|r0, t0) on the surface ∂Ω of the diffusion domain Ω with local normal â(r):

(i) â(r) · D
(
∇ − β F (r)

)
h(r) = 0 , r ∈ ∂Ω (9.4)

(ii) h(r) = 0 , r ∈ ∂Ω (9.5)

(iii) â(r) · D
(
∇ − β F (r)

)
h(r) = w(r) h(r) , r ∈ ∂Ω (9.6)
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where, in the latter equation, w(r) is a continuous function which describes the effectivity of the
surface ∂Ω to react locally. In case of F (r) = −∇U(r) one can express (9.4)

(i) â(r) · D e−β U(r)
∇ eβ U(r) h(r) = 0 , r ∈ ∂Ω . (9.7)

Similarly, one can write (9.6) in the form

(iii) â(r) · D e−β U(r)
∇ eβ U(r) h(r) = w(r) h(r) , r ∈ ∂Ω . (9.8)

The equations (9.1–9.6) allow one to determine the probability p(r, t|r0, t0) to find a particle at
position r at time t, given that the particle started diffusion at position r0 at time t0. It holds

p(r, t0|r0, t0) = δ(r − r0) . (9.9)

For the Smoluchowski equation (9.1) exists an alternative form

∂tp(r, t|r0, t0) = L†(r0) p(r, t|r0, t0) , (9.10)

the so-called adjoint or backward equation, which involves a differential operator that acts on
the r0-dependence of p(r, t|r0, t0). The latter operator L†(r0) is the adjoint of the operator L(r)
defined in (9.2) above.
Below we will determine the operator L†(r0) as well as the boundary conditions which the solution
p(r, t|r0, t0) of (9.10) must obey when p(r, t|r0, t0) obeys the boundary conditions (9.4–9.6) in the
original, so-called forward Smoluchowski equation (9.1).
Before proceeding with the derivation of the backward Smoluchowski equation we need to provide
two key properties of the solution p(r, t|r0, t0) of the forward Smoluchowski equation (9.1) connected
with the time translation invariance of the equation and with the Markov property of the underlying
stochastic process.

Homogeneous Time

In case that the Smoluchowski operator L(r) governing (9.1) and given by (9.3) is time-independent,
one can make the substitution t → τ = t − t0 in (9.1). This corresponds to the substitution
t0 → τ0 = 0. The Smoluchowski equation (9.1) reads then

∂τ p(r, τ |r0, 0) = L(r) p(r, τ |r0, 0) (9.11)

the solution of which is p(r, t − t0|r0, 0), i.e., the solution of (9.1) for p(r, 0|r0, 0) = δ(r − r0). It
follows

p(r, t|r0, t0) = p(r, t − t0|r0, 0) . (9.12)

Chapman-Kolmogorov Equation

The solution p(r, t|r0, t0) of the Smoluchowski equation corresponds to the initial condition (9.9).
The solution p(r, t) for an initial condition

p(r, t0) = f(r) (9.13)

can be expressed

p(r, t) =

∫

Ω
dr0 p(r, t|r0, t0) f(r0) (9.14)
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as can be readily verified. In fact, taking the time derivative yields

∂t p(r, t) =

∫

Ω
dr0 ∂t p(r, t|r0, t0) f(r0)

= L(r)

∫

Ω
dr0 p(r, t|r0, t0) f(r0) = L(r) p(r, t) . (9.15)

Furthermore, we note using (9.9)

p(r, t0) =

∫

Ω
dr0 δ(r − r0) f(r0) = f(r) . (9.16)

One can apply identity (9.14) to express p(r, t|r0, t0) in terms of the probalities p(r, t|r1, t1) and
p(r1, t1|r0, t0)

p(r, t|r0, t0) =

∫

Ω
dr1 p(r, t|r1, t1) p(r1, t1|r0, t0) . (9.17)

This latter identity is referred to as the Chapman-Kolmogorov equation. Both (9.14) and (9.17)
state that knowledge of the distribution at a single instance t, i.e., t = t0 or t = t1, allows one to
predict the distributions at all later times. The Chapman-Kolmogorov equation reflects the Markov
property of the stochastic process assumed in the derivation of the Smoluchowski equation.
We like to state finally the Chapman-Kolmogorov equation (9.17) for the special case t1 = t − τ .
Employing identity (9.12) one obtains

p(r, t|r0, t0) =

∫

Ω
dr1 p(r, τ |r1, 0) p(r1, t − τ |r0, t0) . (9.18)

Taking the time derivative yields, using (9.1),

∂t p(r, t|r0, t0) =

∫

Ω
dr1 p(r, τ |r1, 0) L(r1) p(r1, t − τ |r0, t0) . (9.19)

The Adjoint Smoluchowski Operator

We want to determine now the operator L† in (9.10). For this purpose we prove the following
identity [48]:

∫

Ω
dr g(r) L(r) h(r) =

∫

Ω
dr h(r) L†(r) g(r) +

∫

∂Ω
da · P (g, h) (9.20)

L(r) = ∇ · D ∇ − β ∇ · D F (r) (9.21)

L†(r) = ∇ · D ∇ + β D F (r) · ∇ (9.22)

P (g, h) = g(r) D ∇ h(r) − h(r) D ∇ g(r)

− β D F (r) g(r) h(r) . (9.23)

The operator L†(r) is called the adjoint to the operator L(r), and P (g, h) is called the concomitant

of L(r).
To prove (9.20–9.23) we note, using ∇·w(r) q(r) = q(r)·∇ w(r) + w(r) ∇·q(r)

∇ ·
(
g D ∇ h − h D ∇ g

)
= ((∇g)) D ((∇h)) + g ∇ · D ∇ h

− ((∇h)) D ((∇g)) − h ∇ · D ∇ g

= g ∇ · D ∇ h − h ∇ · D ∇ g (9.24)
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or

g ∇ · D ∇h = h ∇ · D ∇g + ∇ · ( g D ∇h − h D ∇g ) . (9.25)

The double brackets ((. . . )) limit the scope of the differential operators.
Furthermore, one can show

∇ · D F g h = g ∇ · D F h + h D F · ∇ g (9.26)

or

−g ∇ · βD F h = h β D F · ∇ g − ∇ · β D F g h . (9.27)

Equations (9.26, 9.27) can be combined, using (9.21–9.23),

g L h = h L† g + ∇ · P (g, h) (9.28)

from which follows (9.20).
In case

P (g, h) = 0 , for r ∈ ∂Ω , (9.29)

which implies a condition on the functions g(r) and h(r), (9.20) corresponds to the identity

〈g|L(r)h〉Ω = 〈L†(r) g|h〉Ω , (9.30)

a property which is the conventional definition of a pair of adjoint operators. We like to determine
now which conditions g(r) and h(r) must obey for (9.30) to be true.
We assume that h(r) obeys one of the three conditions (9.4–9.6) and try to determine if conditions
for g(r) on ∂Ω can be found such that (9.29) and, hence, (9.30) hold. For this purpose we write
(9.29) using (9.23)

g(r) D
[
∇ f(r) − β F (r) f(r)

]
− h(r) D ∇ g(r) = 0 , r ∈ ∂Ω . (9.31)

In case that h(r) obeys (9.4) follows

(i’) â(r) · D ∇ g(r) = 0 , r ∈ ∂Ω . (9.32)

In case that h(r) obeys (9.5), follows

(ii’) g(r) = 0 , r ∈ ∂Ω (9.33)

and, in case that h(r) obeys (9.6), follows

(iii’) w g(r) − â(r) · D ∇ g(r) = 0 , r ∈ ∂Ω . (9.34)

From this we can conclude:

1. 〈g|L(r) h〉Ω = 〈L†(r) g|h〉Ω holds if h obeys (i), i.e., (9.4), and g obeys (i′), i.e., (9.32);

2. 〈g|L(r) h〉Ω = 〈L†(r) g|h〉Ω holds if h obeys (ii), i.e., (9.5), and g obeys (ii′), i.e., (9.33);

3. 〈g|L(r) h〉Ω = 〈L†(r) g|h〉Ω holds if h obeys (iii), i.e., (9.6), and g obeys (iii′), i.e., (9.34).
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Derivation of the Adjoint Smoluchowski Equation

The Chapman-Kolmogorov equation in the form (9.19) allows one to derive the adjoint Smolu-
chowski equation (9.10). For this purpose we replace L(r0) in (9.19) by the adjoint operator using
(9.30)

∂tp(r, t|r0, t0) =

∫

Ω
dr1 p(r, τ |r1, 0) L(r1) p(r1, t − τ |r0, t0) (9.35)

=

∫

Ω
dr1 p(r1, t − τ |r0, t0) L†(r1) p(r, τ |r1, 0) . (9.36)

Note that L(r1) in (9.35) acts on the first spatial variable of p(r1, t − τ |r0, t0) whereas L†(r1) in
(9.36) acts on the second spatial variable of p(r, τ |r1, 0). Taking the limit τ → (t− t0) yields, with
p(r1, t − τ |r0, t0) → δ(r1 − r0),

∂t p(r, t|r0, t0) = L†(r0) p(r, t − t0|r0, 0) , (9.37)

i.e., the backward Smoluchowski equation (9.10).
We need to specify now the boundary conditions which the solution of the adjoint Smoluchowski
equation (9.37) must obey. It should be noted here that the adjoint Smoluchowski equation (9.37)
considers p(r, t|r0, t0) a function of r0, i.e., we need to specify boundary conditions for r0 ∈ Ω.
The boundary conditions arise in the step (9.35) → (9.36) above. This step requires:

1. In case that p(r, t|r0, t0) obeys (i) for its r-dependence, i.e., (9.4) for r ∈ ∂Ω, then p(r, t|r0, t0)
must obey (i′) for its r0-dependence, i.e., (9.32) for r0 ∈ ∂Ω;

2. In case that p(r, t|r0, t0) obeys (ii) for its r-dependence, i.e., (9.5) for r ∈ ∂Ω, then p(r, t|r0, t0)
must obey (ii′) for its r0-dependence, i.e., (9.33) for r0 ∈ ∂Ω;

3. In case that p(r, t|r0, t0) obeys (iii) for its r-dependence, i.e., (9.6) for r ∈ ∂Ω, then
p(r, t|r0, t0) must obey (iii′) for its r0-dependence, i.e., (9.34) for r0 ∈ ∂Ω.

We note finally that L†(r), given by (9.22), in case that the force F (r) is related to a potential,
i.e., F (r) = −∇ U(r), can be written

L†(r) = eβ U(r)
∇ · D e−β U(r)

∇ . (9.38)

This corresponds to expression (9.3) for L.

9.2 Correlation Functions

Often an experimentalist prepares a system in an initial distribution B(r) po(r) at a time t0 and
probes the spatial distribution of the system with sensitivity A(r) at any time t > t0. The
observable is then the socalled correlation function

CA(r) B(r) (t) =

∫

Ω
dr

∫

Ω
dr A(r) p(r, t|r, t0) B(r) , (9.39)

where p(r, t|r, t0) obeys the backward Smoluchowski equation (9.37) with the initial condition

p(r, t0|r0, t0) = δ(r − r0) . (9.40)

Preliminary version April 23, 2000



136 Adjoint Smoluchoswki Equations

and the adjoint boundary conditions (9.32, 9.33, 9.34).
We like to provide a three examples of correlation functions. A trivial example arises in the case
of A(r) = δ(r − r ′) and B(r) = δ(r − r ′′)/po(r) ′) which yields

CA B (t) = p(r ′, t|r ′′, t0) . (9.41)

In the case one can only observe the total number of particles, i.e. A(r) = 1, and for the special
case B(r) = δ(r − r ′)/po(r) ′), the correlation function is equal to the total particle number ,
customarily written

N(t, r ′) = C1 δ(r−r′)/po(r) ′) (t) =

∫

Ω
dr p(r, t|r ′, t0) . (9.42)

The third correlation function, the so-called Mößbauer Lineshape Function, describes the absorption
and re-emissions of γ-quants by 57Fe. This isotope of iron can be enriched in the heme group of
myoglobin. The excited state of 57Fe has a lifetime Γ−1 ≈ 100 ns before te isotope reemits the γ-
quant. The re-emitted γ-quants interfere with the incident, affecting the lineshape of the spectrum.
In the limit of small motion of the iron the following function holds for the spectral intensity

I(ω) =
σ0Γ

4

∫ ∞

−∞
dt e−iωt− 1

2
Γ|t| G(k, t) , (9.43)

where

G(k, t) =

∫
dr

∫
dr eik·(r−r0) p(r, t|r, 0) p0(r0) = Ceik·r e−ik·ro . (9.44)

The term −1
2Γ|t| in the exponent of (9.43) reflects the Lorentzian broadening of the spectral line

due to the limited lifetime of the quants.
In order to evaluate a correlation function CA(r) B(r) (t) one can determine first the quantity

CA(r)(t|ro) =

∫

Ω
dr A(r) p(r, t|ro, to) (9.45)

and evaluate then

CA(r)B(r)(t|ro) =

∫
dro B(ro)p(r, t|ro, to) . (9.46)

CA(r)(t|ro) can be obtained by carrying out the integral in (9.45) over the backward Smoluchowski
equation (??9.37)). One obtains

∂tCA(r)(t|ro) = L†(r) CA(r)(t|ro) (9.47)

with the initial condition

CA(r)(t0|ro) = A(r0) (9.48)

and the appropriate boundary condition selected from (9.32, 9.33, 9.34).
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The metabolism of the biological cell, the control of its development and its communication with
other cells in the organism or with its environment involves a complex web of biochemical reactions.
The efficient functioning of this web relies on the availability of suitable reaction rates. Biological
functions are often controlled through inhibition of these reaction rates, so the base rates must be
as fast as possible to allow for a wide range of control. The maximal rates have been increased
throughout the long evolution of life, often surpassing by a wide margin rates of comparable test
tube reactions. In this respect it is important to realize that the rates of biochemical reactions
involving two molecular partners, e.g., an enzyme and its substrate, at their optimal values are
actually determined by the diffusive process which leads to the necessary encounter of the reactants.
Since many biochemical reactions are proceeding close to their optimal speed, i.e., each encounter
of the two reactants leads to a chemical transformation, it is essential for an understanding of
biochemical reactions to characterize the diffusive encounters of biomolecules.
In this section we want to describe first the relative motion of two diffusing biomolecules subject
to an interaction between the partners. We then determine the rates of reactions as determined by
the diffusion process. We finally discuss examples of reactions for various interactions.

10.1 Relative Diffusion of two Free Particles

We consider first the relative motion in the case that two particles are diffusing freely. One can
assume that the motion of one particle is independent of that of the other particle. In this case
the diffusion is described by a distribution function p(r1, r2, t|r10, r20, t0) which is governed by the
diffusion equation

∂t p(r1, r2, t|r10, r20, t0) =
(
D1∇2

1 + D2∇2
2

)
p(r1, r2, t|r10, r20, t0) (10.1)

where ∇j = ∂/∂rj , j = 1, 2. The additive diffusion operators Dj∇2
j in (10.1) are a signature of

the statistical independence of the Brownian motions of each of the particles.
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138 Rates of Diffusion-Controlled Reactions

Our goal is to obtain from (10.1) an equation which governs the distribution p(r, t|r0, t0) for the
relative position

r = r2 − r1 (10.2)

of the particles. For this purpose we express (10.1) in terms of the coordinates r and

R = a r1 + b r2 (10.3)

which, for suitable constants a, b, are linearly independent. One can express

∇1 = a∇R − ∇ , ∇2 = b∇R + ∇ (10.4)

where ∇ = ∂/∂r. One obtains, furthermore,

∇2
1 = a2∇2

R + ∇2 − 2a∇R∇ (10.5)

∇2
2 = b2∇2

R + ∇2 + 2b∇R∇ (10.6)

The diffusion operator

D̂ = D1∇2
1 + D2∇2

2 (10.7)

can then be written

D̂ = (D1a
2 + D2b

2)∇2
R + (D1 + D2) ∇2 + 2 (D2b − D1a)∇R∇ (10.8)

If one defines

a =
√

D2/D1 , b =
√

D1/D2 (10.9)

one obtains

D̂ = (D1 + D2)∇2
R + (D1 + D2) ∇2 . (10.10)

The operator (10.10) can be considered as describing two independent diffusion processes, one
in the coordinate R and one in the coordinate r. Thus, the distribution function may be writ-
ten p(R, t|R0, t0)p(r, t|r0, t0). If one disregards the diffusion along the coordinate R the relevant
remaining relative motion is governed by

∂tp(r, t|r0, t0) = (D1 + D2) ∇2p(r, t|r0, t0) . (10.11)

This equation implies that the relative motion of the two particles is also governed by a diffusion
equation, albeit for a diffusion coefficient

D = D1 + D2 . (10.12)
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Relative Motion of two Diffusing Particles with Interaction

We seek to describe now the relative motion of two molecules which diffuse while interacting ac-
cording to a potential U(r) where r = r2 − r1. The force acting on particle 2 is −∇2U(r) = F ;
the force acting on particle 1 is −F . The distribution function p(r1, r2, t|r10, r20, t0) obeys the
Smoluchowski equation

∂t p =
[ (

D1∇2
1 + D2∇2

2

)
(10.13)

− D2β ∇2 · F (r) + D1β ∇1 · F ] p .

The first two terms on the r.h.s. can be expressed in terms of the coordinates R and r according
to (10.10). For the remaining terms holds, using (10.4, 10.9),

D2∇2 − D1∇1 = ( D1 + D2)∇ (10.14)

Hence, one can write the Smoluchowski equation (10.13)

∂t p =
[
( D1 + D2) ∇2

R + (D1 + D2) ∇ · (∇ − β F )
]

p . (10.15)

This equation describes two independent random processes, free diffusion in the R coordinate and
a diffusion with drift in the r coordinate. Since we are only interested in the relative motion of
the two molecules, i.e., the motion which governs their reactive encounters, we describe the relative
motion by the Smoluchowski equation

∂t p(r, t|r0, t0) = D∇ · (∇ − β F ) p(r, t|r0, t0) . (10.16)

10.2 Diffusion-Controlled Reactions under Stationary Conditions

We want to consider now a reaction vessel which contains a solvent with two types of particles ,
particle 1 and particle 2, which engage in a reaction

particle 1 + particle 2 → products . (10.17)

We assume that particle 1 and particle 2 are maintained at concentrations c1 and c2, respectively,
i.e., the particles are replenished as soon as they are consumed by reaction (10.17). We also consider
that the reaction products are removed from the system as soon as they are formed.

One can view the reaction vessel as containing pairs of particles 1 and 2 at various stages of the
relative diffusion and reaction. This view maintains that the concentration of particles is so small
that only rarely triple encounters, e.g., of two particles 1 and one particle 2, occur, so that these
occurences can be neglected. The system considered contains then many particle 1 and particle 2
pairs described by the Smoluchowski equation (10.16). Since the concentration of the particles is
maintained at a steady level one can expect that the system adopts a stationary distribution of
inter-pair distances p(r) which obeys (10.16), i.e.,

∇D(r) · (∇ − β F ) p(r) = 0 , (10.18)

subject to the condition

p(r) ≍ |r| → ∞ c1 c2 . (10.19)
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Reaction (10.17) is described by the boundary condition

n̂ · D(r) (∇ − βF ) p(r) = w p(r) at |r| = Ro. (10.20)

for some constant w.
The occurence of reaction (10.17) implies that a stationary current develops which describes the
continuous diffusive approach and reaction of the particles. We consider in the following the case
that the particles are governed by an interaction potential which depends solely on the distance
|r| of the particles and that the diffusion coefficient D also depends solely on |r| . The stationary
Smoluchowski equation (10.18) reads then

( ∂rD(r) )( ( ∂r − β F (r) ) p(r)) = 0 (10.21)

to which is associated the radial current

Jtot(r) = 4πr2D(r)( ∂r − β F (r) ) p(r)) (10.22)

where we have summed over all angles θ, φ obtaining the total current at radius r. For F (r) =
− ∂rU(r) one can express this

Jtot(r) = 4πr2D(r) exp[−βU(r)] ( ∂r exp[βU(r)] p ) . (10.23)

However, Jtot(r) must be the same at all r since otherwise p(r) would change in time, in contrast
to the assumption that the distribution is stationary. It must hold, in particular,

Jtot(Ro) = Jtot(r) . (10.24)

The boundary condition (10.20), together with (10.23), yields

4πR2
o w p(Ro) = 4πr2 D(r) exp[−βU(r)] ( ∂r exp[βU(r)] p(r) ) . (10.25)

This relationship, a first order differential equation, allows one to determine p(r).
For the evaluation of p(r) we write (10.25)

∂r

(
eβU(r) p(r)

)
=

R2
ow

r2D(r)
p(Ro) eβU(r) . (10.26)

Integration
∫∞
r dr · · · yields

p(∞) eβU(∞) − p(r) eβU(r) = R2
ow p(Ro)

∫ ∞

r
dr′

eβU(r′)

r′2 D(r′)
(10.27)

or, using (10.19) and U(∞) = 0

p(r) eβU(r) = c1c2 − R2
ow p(Ro)

∫ ∞

r
dr′

eβU(r′)

r′2 D(r′)
(10.28)

Evaluating this at r = Ro and solving for p(Ro) yields

p(Ro) =
c1c2 e−βU(Ro)

1 + R2
ow e−βU(Ro)

∫∞
Ro

dr eβU(r)/r2D(r)
. (10.29)

Using this in (10.28) leads to an expression of p(r).
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We are presently interested in the rate at which reaction (10.17) proceeds. This rate is given by
Jtot(Ro) = 4πR2

ow p(Ro). Hence, we can state

Rate =
4πR2

ow c1c2 e−βU(Ro)

1 + R2
ow e−βU(Ro)

∫∞
Ro

dr eβU(r)/r2D(r)
. (10.30)

This expression is proportional to c1c2, a dependence expected for a bimolecular reaction of the
type (10.17). Conventionally, one defines a bimolecular rate constant k as follows

Rate = k c1c2 . (10.31)

This constant is then, in the present case,

k =
4π

eβU(Ro)/R2
ow +

∫∞
Ro

drR(r)
. (10.32)

Here, we defined

R(r) = eβU(r)/r2D(r) (10.33)

a property which is called the resistance of the diffusing particle, a name suggested by the fact that
R(r) describes the Ohmic resistance of the system as shown further below.

10.2.1 Examples

We consider first the case of very ineffective reactions described by small w values. In this case the
time required for the diffusive encounter of the reaction partners can become significantly shorter
than the time for the local reaction to proceed, if it proceeds at all. In this case it may hold

eβU(Ro)

R2
ow

>>

∫ ∞

Ro

drR(r) (10.34)

and the reaction rate (10.32) becomes

k = 4πR2
o w e−βU(Ro) . (10.35)

This expression conforms to the well-known Arrhenius law.
We want to apply (10.32, 10.33) to two cases, free diffusion (U(r) ≡ 0) and diffusion in a
Coulomb potential (U(r) = q1q2/ǫr, ǫ = dielectric constant). We assume in both cases a distance-
independent diffusion constant. In case of free diffusion holds R(r) = D−1r−2 and, hence,

∫ ∞

Ro

drR(r) = 1/DRo . (10.36)

From this results

k =
4πDRo

1 + D/Row
. (10.37)

In case of very effective reactions, i.e., for very large w, this becomes

k = 4πDRo (10.38)
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which is the well-known rate for diffusion-controlled reaction processes. No bi-molecular rate con-
stant involving a diffusive encounter in a three-dimensional space without attracting forces between
the reactants can exceed (10.38). For instance, in a diffusion-controlled reaction in a solvent with
relative diffusion constant D = 10−5 cm2 s−1 and with reactants such that Ro = 1nm, the
maximum possible reaction rate is 7.56 × 109 Lmol−1 s−1.
In case of a Coulomb interaction between the reactants one obtains

∫ ∞

Ro

drR(r) =
1

D

∫ ∞

Ro

dr
1

r2
exp

[
βq1q2

ǫr

]

=
1

D

∫ 1/Ro

0
dy exp

[
βq1q2y

ǫ

]

=
1

RLD

(
eRL/Ro − 1

)
(10.39)

where

RL = βq1q2 / ǫ (10.40)

defines the so-called Onsager radius. Note that RL can be positive or negative, depending on the
sign of q1q2, but that the integral over the resistance (10.39) is always positive. The rate constant
(10.32) can then be written

k =
4πDRL

RLD
R2

ow
eRL/Ro + eRL/Ro − 1

. (10.41)

For instance, suppose we wish to find the maximum reaction rate for a reaction between pyrene-N
and N-dimethylaniline in acetoneitrile. The reaction consists of an electron exchange from pyrene
to dimethylaniline, and the reactants have charges of ±e. The relative diffusion constant of both
reactants in acetonitrile at 25◦ C is 4.53 × 10−5 cm2 s−1, the dielectric constant of acetonitrile at
that temperature is 37.5, and the effective reaction radius Ro of the reactants is 0.7 nm. Using
these values, and assuming w → ∞ in (10.41) we obtain an Onsager radius of −10.8 nm, and a
maximum reaction rate of k = 6.44 × 1011 Lmol−1 s−1.
In a different solvent, C3H7OH, with relative diffusion constant D = 0.77 × 10−5 cm2 s−1 at
25◦ C and a dielectric constant of 19.7, the Onsager radius is −35.7 nm and the maximum reaction
rate is k = 2.08 × 1011 Lmol−1 s−1.
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In this section we will consider the general properties of the solution p(r, t) of the Smoluchowski
equation in the case that the force field is derived from a potential, i.e., F (r) = −∇U(r) and that
the potential is finite everywhere in the diffusion doamain Ω. We will demonstrate first that the
solutions, in case of reaction-free boundary conditions, obey an extremum principle, namely, that
during the time evolution of p(r, t) the total free energy decreases until it reaches a minimum value
corresponding to the Boltzmann distribution.
We will then characterize the time-evolution through a so-called spectral expansion, i.e., an ex-
pansion in terms of eigenfunctions of the Smoluchowski operator L(r). Since this operator is not
self-adjoint, expressed through the fact that, except for free diffusion, the adjoint operator L†(r) as
given by (9.22) or (9.38) is not equal to L(r), the existence of appropriate eigenvalues and eigen-
functions is not evident. However, in the present case [F (r) = −∇U(r)] the operators L(r) and
L†(r) are similar to a self-adjoint operator for which a complete set of orthonormal eigenfunctions
exist. These functions and their associated eigenvalues can be transferred to L(r) and L†(r) and
a spectral expansion can be constructed. The expansion will be formulated in terms of projection
operators and the so-called propagator, which corresponds to the solutions p(r, t|r0, t0), will be
stated in a general form.
A pointed out, we consider in this chapter specifically solutions of the Smoluchowski equation

∂tp(r, t) = L(r) p(r, t) (12.1)

in case of diffusion in a potential U(r), i.e., for a Smoluchowski operator of the form (9.3)

L(r) = ∇ · D(r) e−βU(r) ∇ eβU(r) . (12.2)
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We assume the general initial condition

p(r, to) = f(r) (12.3)

and appropriate boundary conditions as specified by equations (9.4–9.6). It is understood that the
initial distribution is properly normalized

∫

Ω
dr f(r) = 1 . (12.4)

The results of the present section are fundamental for many direct applications as well as for a formal
approach to the evaluation of observables, e.g., correlation functions, which serves to formulate
useful approximations. We have employed already, in Chapter 2, spectral expansions for free
diffusion, a casew in which the Smoluchowski operator L(r) = D∇2 is self-adjoint (L(r) = L†(r)).
In the present chapter we consider spectral expansion for diffusion in arbitrary potentials U(x) and
demonstrate the expansion for a harmonic potential.

12.1 Minimum Principle for the Smoluchowski Equation

In case of diffusion in a domain Ω with a ‘non-reactive’ boundary ∂Ω the total free energy of the
system develops toward a minimum value characterized through the Boltzmann distribution. This
property will be demonstrated now. The stated boundary condition is according to (9.4)

n̂(r) · (r, t) = 0 (12.5)

where the flux (r, t) is [c.f. (4.19)]

(r, t) = D(r) e−βU(r) ∇ eβU(r) p(r, t) . (12.6)

The total free energy for a given distribution p(r, t), i.e., the quantity which develops towards a
minimum during the diffusion process, is a functional defined through

G[p(r, t)] =

∫

Ω
dr g(r, t) (12.7)

where g(r, t) is the free energy density connected with p(r, t)

g(r, t) = U(r) p(r, t) + kBT p(r, t) ln
p(r, t)

ρo
. (12.8)

Here ρo is a constant which serves to make the argument of ln(· · · ) unitless. ρo adds effectively
only a constant to G[p(r, t)] since, for the present boundary condition (12.5) [use (12.1, 12.2)],

∂t

∫

Ω
dr p(r, t) =

∫

Ω
dr ∂tp(r, t) =

∫

Ω
dr∇ · D(r) e−βU(r)∇ eβU(r) p(r, t)

=

∫

∂Ω
da · D(r) e−βU(r)∇ eβU(r) p(r, t) = 0 . (12.9)

From this follows that
∫
Ω dr p(r, t) is constant and, hence, the contribution stemming from ρo, i.e.,

−kBT p(r, t) lnρo contributes only a constant to G[p(r, t)] in (12.7). The first term on the r.h.s. of
(12.7) describes the local energy density

u(r, t) = U(r) p(r, t) (12.10)
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and the second term, written as −T s(r, t), the local entropy density1

s(r, t) = −k p(r, t) ln
p(r, t)

ρo
. (12.11)

We want to assume for some t

p(r, t) > 0 ∀r, r ∈ Ω . (12.12)

This assumption can be made for the initial condition, i.e., at t = to, since a negative initial
distribution could not be reconciled with the interpretation of p(r, t) as a probability. We will see
below that if, at any moment, (12.12) does apply, p(r, t) cannot vanish anywhere in Ω at later
times.
For the time derivative of G[p(r, t)] can be stated

∂tG[p(r, t)] =

∫

Ω
dr ∂tg(r, t) (12.13)

where, according to the definition (12.8),

∂tg(r, t) =

[
U(r) + kBT ln

p(r, t)

ρo
+ kBT

]
∂tp(r, t) . (12.14)

Using the definition of the local flux density one can write (12.14)

∂tg(r, t) =

[
U(r) + kBT ln

p(r, t)

ρo
+ kT

]
∇ · (r, t) (12.15)

or, employing ∇ · w(r)v(r) = w(r)∇ · v(r) + v(r) · ∇w(r),

∂tg(r, t) = ∇ ·
{[

U(r) + kBT ln
p(r, t)

ρo
+ kBT

]
(r, t)

}

− (r, t) · ∇
[

U(r) + kBT ln
p(r, t)

ρo
+ kBT

]
. (12.16)

Using

∇
[

U(r) + kBT ln
p(r, t)

ρo
+ kBT

]
= −F (r) +

kBT

p(r, t)
∇p(r, t)

= +
kBT

p(r, t)
[∇p(r, t) − β F (r) p(r, t) ]

=
kBT

p(r, t)
(r, t) (12.17)

one can write (12.16)

∂tg(r, t) = − kBT

p(r, t)
 2(r, t) + ∇ ·

{[
U(r) + kBT ln

p(r, t)

ρo
+ kBT

]
(r, t)

}
. (12.18)

1For a definition and explanation of the entropy term, often referred to as mixing entropy, see a textbook on
Statistical Mechanics, e.g., “Course in Theoretical Physics, Vol. 5, Statistical Physics, Part 1, 3rd Edition”, L.D.
Landau and E.M. Lifshitz, Pergamon Press, Oxford)

Preliminary version April 23, 2000



148 Spectral Expansion

For the total free energy holds then, according to (12.13),

∂tG[p(r, t)] = −
∫

Ω
dr

kBT

p(r, t)
 2(r, t)

+

∫

∂Ω
da ·

{[
U(r) + kBT ln

p(r, t)

ρo
+ kBT

]
(r, t)

}
.

(12.19)

Due to the boundary condition (12.5) the second term on the r.h.s. vanishes and one can conclude

∂tG[p(r, t)] = −
∫

Ω
dr

kBT

p(r, t)
 2(r, t) ≤ 0 . (12.20)

According to (12.20) the free energy, during the time course of Smoluchowski dynamics, develops
towards a state po(r) which minimizes the total free energy G. This state is characterized through
the condition ∂tG = 0, i.e., through

o(r) = D(r) e−βU(r) ∇ eβU(r) po(r) = 0 . (12.21)

The Boltzmann distribution

po(r) = N e−βU(r) , N−1 =

∫

Ω
dr po(r) (12.22)

obeys this condition which we, in fact, enforced onto the Smoluchowski equation as outlined in
Chapter 3 [cf. (4.5–4.19)]. Hence, the solution of (12.1–12.3, 12.5) will develop asymptotically , i.e.,
for t → ∞, towards the Boltzmann distribution.
We want to determine now the difference between the free energy density g(r, t) and the equilibrium
free energy density. For this purpose we note

U(r) p(r, t) = −kBT p(r, t) ln
[
e−βU(r)

]
(12.23)

and, hence, according to (12.8)

g(r, t) = kBT p(r, t) ln
p(r, t)

ρoe−βU(r)
. (12.24)

Choosing ρ−1
o =

∫
Ω dr exp[−βU(r)] one obtains, from (12.22)

g(r, t) = kBT p(r, t) ln
p(r, t)

po(r)
. (12.25)

For p(r, t) → po(r) this expression vanishes, i.e., g(r, t) is the difference between the free energy
density g(r, t) and the equilibrium free energy density.
We can demonstrate now that the solution p(r, t) of (12.1–12.3, 12.5) remains positive, as long
as the initial distribution (12.3) is positive. This follows from the observation that for positive
distributions the expression (12.25) is properly defined. In case that p(r, t) would then become
very small in some region of Ω, the free energy would become −∞, except if balanced by a large
positive potential energy U(r). However, since we assumed that U(r) is finite everywhere in Ω, the
distribution cannot vanish anywhere, lest the total free energy would fall below the zero equilibrium
value of (12.25). We conclude that p(r, t) cannot vanish anywhere, hence, once positive everywhere
the distribution p(r, t) can nowhere vanish or, as a result, become negative.
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12.2 Similarity to Self-Adjoint Operator

In case of diffusion in a potential U(r) the respective Smoluchowski operator (12.2) is related,
through a similarity transformation, to a self-adjoint or Hermitean operator Lh. This has important
ramifications for its eigenvalues and its eigenfunctions as we will demonstrate now.
The Smoluchowski operator L acts in a function space with elements f, g, . . . . We consider the
following transformation in this space

f(r), g(r) → f̃(r) = e
1
2
βU(r) f(r), g̃(r) = e

1
2
βU(r) g(r) .

Note that such transformation is accompanied by a change of boundary conditions.
A relationship

g = L(r) f(r) (12.26)

implies

g̃ = Lh(r) f̃(r) (12.27)

where Lh,

Lh(r) = e
1
2
βU(r) L(r) e−

1
2
βU(r) (12.28)

is connected with L through a similarity transformation. Using (12.2) one can write

Lh(r) = e
1
2
βU(r) ∇ · D(r) e−βU(r) ∇ e

1
2
βU(r) . (12.29)

We want to prove now that Lh(r), as given by (12.29), is a self-adjoint operator for suitable
boundary conditions restricting the elements of the function space considered. Using, for some
scalar test function f , the property ∇ exp[12βU(r)] f = exp[12βU(r)]∇f − 1

2βF f yields

Lh(r) = e
1
2
βU(r) ∇ · D(r) e−

1
2
βU(r)

[
∇ − 1

2
F

]
. (12.30)

Employing the property ∇ · exp[−1
2βU(r)]v = exp[−1

2βU(r)] (∇ · v + 1
2βF · v), which holds for

some vector-valued function v, leads to

Lh(r) = ∇ · D∇ − 1

2
β∇ · D F +

1

2
βF · ( D∇ − 1

2
βF ) . (12.31)

The identity ∇DF f = DF · ∇f + f ∇ · DF allows one to express finally

Lh(r) = ∇ · D∇ +
1

2
β((∇ · F )) − 1

4
β2F 2 (12.32)

where ((· · · )) indicates a multiplicative operator, i.e., indicates that the operator inside the double
brackets acts solely on functions within the bracket. One can write the operator (12.32) also in the
form

Lh(r) = Loh(r) + U(r) (12.33)

Loh(r) = ∇ · D∇ (12.34)

U(r) =
1

2
β((∇ · F )) − 1

4
β2F 2 (12.35)
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where it should be noted that U(r) is a multiplicative operator.
One can show now, using (9.20–9.23), that Eqs. (12.33–12.35) define a self-adjoint operator. For
this purpose we note that the term (12.35) of Lh is self-adjoint for any pair of functions f̃ , g̃, i.e.,

∫

Ω
dr g̃(r) U(r) f̃(r) =

∫

Ω
dr f̃(r) U(r) g̃(r) . (12.36)

Applying (9.20–9.23) for the operator Loh(r), i.e., using (9.20–9.23) in the case F ≡ 0, implies

∫

Ω
dr g̃(r)Loh(r) f̃(r) =

∫

Ω
dr f̃(r)L†

oh(r) g̃(r) +

∫

∂Ω
da · P (g̃, f̃) (12.37)

L†
oh(r) = ∇ · D(r)∇ (12.38)

P (g̃, f̃) = g̃(r)D(r)∇f̃(r) − f̃(r)D(r)∇g̃(r) . (12.39)

In the present case holds Loh(r) = L†
oh(r), i.e., in the space of functions which obey

n̂(r) · P (g̃, f̃) = 0 for r ∈ ∂Ω (12.40)

the operator Loh is self-adjoint. The boundary condition (12.40) implies

(̃ı) n̂(r) · D(r)∇ f̃(r) = 0, r ∈ ∂Ω (12.41)

(ı̃ı) f̃(r) = 0, r ∈ ∂Ω (12.42)

(ı̃ıı) n̂(r) · D(r)∇ f̃(r) = w(r) f̃(r), r ∈ ∂Ω (12.43)

and the same for g̃(r), i.e., (̃ı) must hold for both f̃ and g̃, or (ı̃ı) must hold for both f̃ and g̃, or
(ı̃ıı) must hold for both f̃ and g̃.
In the function space characterized through the boundary conditions (12.41–12.43) the operator
Lh is then also self-adjoint. This property implies that eigenfunctions ũn(r) with real eigenvalues
exists, i.e.,

Lh(r) ũn(r) = λnũn(r) , n = 0, 1, 2, . . . , λn ∈ R (12.44)

a property, which is discussed at length in textbooks of quantum mechanics regrading the eigen-
functions and eigenvalues of the Hamiltonian operator2. The eigenfunctions and eigenvalues in
(12.44) can form a discrete set, as indicated here, but may also form a continuous set or a mixture
of both; continuous eigenvalues arise for diffusion in a space Ω, an infinite subspace of which is
accessible. We want to assume in the following a discrete set of eigenfunctions.
The volume integral defines a scalar product in the function space

〈f |g〉Ω =

∫

Ω
dr f(r) g(r) . (12.45)

With respect to this scalar product the eigenfunctions for different eigenvalues are orthogonal, i.e.,

〈ũn|ũm〉Ω = 0 for λn 6= λm. (12.46)

This property follows from the identity

〈ũn|Lh ũm〉Ω = 〈Lh ũn|ũm〉Ω (12.47)

2See also textbooks on Linear Alegebra, e.g., “Introduction to Linear Algebra”, G. Strang (Wellesley-Cambridge
Press, Wellesley, MA, 1993)
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which can be written, using (12.44),

(λn − λm) 〈ũn|ũm〉Ω = 0 . (12.48)

For λn 6= λm follows 〈ũn|ũm〉Ω = 0. A normalization condition 〈ũn|ũn〉Ω = 1 can be satisfied
for the present case of a finite diffusion domain Ω or a confining potential in which case discrete
spectra arise. The eigenfunctions for identical eigenvalues can also be chosen orthogonal, possibly
requiring a linear transformation3, and the functions can be normalized such that the following
orthonormality property holds

〈ũn|ũm〉Ω = δnm . (12.49)

Finally, the eigenfunctions form a complete basis, i.e., any function f in the respective function
space, observing boundary conditions (12.41–12.43), can be expanded in terms of the eigenfunctions

f̃(r) =

∞∑

n=0

αnũn(r) (12.50)

αn = 〈ũn|f̃〉Ω . (12.51)

The mathematical theory of such eigenfunctions is not trivial and has been carried out in connection
with quantum mechanics for which the operator of the type Lh, in case of constant D, plays the
role of the extensively studied Hamiltonian operator. We will assume, without further comments,
that the operator Lh gives rise to a set of eigenfunctions with properties (12.44, 12.49–12.51)4.

12.3 Eigenfunctions and Eigenvalues of the Smoluchowski Opera-

tor

The eigenfunctions ũn(r) allow one to obtain the eigenfunctions vn(r) of the Smoluchowski operator
L. It holds, inverting the transformation (12.2),

vn(r) = e−βU/2 ũn(r) (12.52)

For this function follows from (12.2, 12.28, 12.44)

L vn = e−βU/2 eβU/2∇ · D(r) e−βU(r) ∇ eβU(r)/2 ũn

= e−βU/2 Lhũn = e−βU/2 λn ũn , (12.53)

i.e.,

L(r) vn(r) = λnvn(r) . (12.54)

The eigenfunctions wn of the adjoint Smoluchowski operator L† (9.38) are given by

wn(r) = eβU(r)/2 ũn(r) (12.55)

and can be expressed equivalently, comparing (12.55) and (12.52),

wn(r) = eβU(r) vn(r) . (12.56)

3A method to obtain orthogonal eigenfunctions is the Schmitt orthogonalization.
4see also ”Advanced Calculus for Applications, 2nd Ed.” F.B.. Hildebrand, Prentice Hall 1976, ISBN 0-13-011189-

9, which contains e.g., the proof of the orthogonality of eigenfunctions of the Smoluchowski operator.
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In fact, using (9.38, 12.2, 12.54), one obtains

L†wn = eβU∇ · D e−βU ∇ eβU vn = eβU L vn = eβU λn vn (12.57)

or

L†(r)wn(r) = λn wn(r) (12.58)

which proves the eigenfunction property.

The orthonormality conditions (12.49) can be written

δnm = 〈ũn|ũm〉Ω =

∫

Ω
dr ũn(r) ũm(r)

=

∫

Ω
dr e−βU(r)/2 ũn(r) eβU(r)/2 ũm(r) . (12.59)

or, using (12.52, 12.55),

〈wn|vm〉Ω = δnm . (12.60)

Accordingly, the set of eigenfunctions {wn, n = 0, 1, . . . } and {vn, n = 0, 1, . . . }, defined in (12.55)
and (12.52), form a so-called bi-orthonormal system, i.e., the elements of the sets {wn, n = 0, 1, . . . }
and {vn, n = 0, 1, . . . } are mutually orthonormal.

We want to investigate now the boundary conditions obeyed by the functions eβU/2 f̃ and e−βU/2 g̃
when f̃ , g̃ obey conditions (12.41–12.43). According to (12.2) holds, in case of eβU/2 f̃ ,

eβU/2 f̃ = eβU f . (12.61)

According to (12.41–12.43), the function f obeys then

(i) n̂(r) · D(r)∇ eβU f(r) = 0, r ∈ ∂Ω (12.62)

(ii) eβU f(r) = 0, r ∈ ∂Ω (12.63)

(iii) n̂(r) · D(r)∇ eβU f(r) = w(r) eβU f(r), r ∈ ∂Ω (12.64)

which is equivalent to the conditions (9.7, 9.5, 9.8) for the solutions of the Smoluchowski equation.
We have established, therefore, that the boundary conditions assumed for the function space con-
nected with the self-adjoint Smoluchowski operator Lh are consistent with the boundary conditions
assumed previously for the Smoluchowski equation. One can veryfy similarly that the functions
e−βU/2 g̃ imply the boundary conditions (9.7, 9.5, 9.8) for the adjoint Smoluchowski equation.

Projection Operators

We consider now the following operators defined through the pairs of eigenfunctions vn, wn of the
Smoluchowski operators L,L†

Ĵn f = vn 〈wn|f〉Ω (12.65)

where f is some test function. For these operators holds

ĴnĴm f = Ĵnvm 〈wm|f〉Ω = vn 〈wn|vm〉Ω 〈wm|f〉Ω . (12.66)
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Using (12.60) one can write this

ĴnĴm f = vn δnm〈wm|f〉Ω (12.67)

and, hence, using the definition (12.65)

ĴnĴm = δnmĴm . (12.68)

This property identifies the operators Ĵn, n = 0, 1, 2, . . . as mutually complementary projection
operators, i.e., each Ĵn is a projection operator (Ĵ2

n = Ĵn) and two different Ĵn and Ĵm project
onto orthogonal subspaces of the function space.
The completeness property (12.50, 12.51) of the set of eigenfunctions ũn can be expressed in terms
of the operators Ĵn. For this purpose we consider

αn = 〈ũn|f̃〉Ω =

∫

Ω
dr ũn f̃ (12.69)

Using ũn = exp(βU/2) vn and f̃ = exp(βU/2) f [see (12.52, 12.2)] as well as (12.56) one can
express this

αn =

∫

Ω
dr exp(βU/2) vn exp(βU/2) f =

∫

Ω
dr exp(βU) vn f = 〈wn|f〉Ω

Equations (12.50, 12.51) read then for f̃ = exp(βU/2) f

f =

∞∑

n=0

eβU/2 un 〈wn|f〉Ω (12.70)

and, using again (12.52) and (12.65)

f =
∞∑

n=0

Ĵn f (12.71)

Since this holds for any f in the function space with proper boundary conditions we can conclude
that within the function space considered holds

∞∑

n=0

Ĵn = 1I . (12.72)

The projection operators Ĵn obey, furthermore, the property

L(r) Ĵn = λm Ĵn . (12.73)

This follows from the definition (12.65) together with (12.54).

The Propagator

The solution of (12.1–12.3) can be written formally

p(r, t) =
[
eL(r)(t−to)

]

bc
f(r) . (12.74)
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The brackets [· · · ]bc indicate that the operator is defined in the space of functons which obey the
chosen spatial boundary conditions. The exponential operator exp[L(r)(t−to)] in (12.74) is defined
through the Taylor expansion

[
eA
]
bc

=

∞∑

ν=0

1

ν!
[A]νbc . (12.75)

The operator [exp[L(r)(t− to)] ]bc plays a central role for the Smoluchowski equation; it is referred
to as the propagator. One can write, dropping the argument r,

[
eL(t−to)

]

bc
= eL(t−to)

∞∑

n=0

Ĵn (12.76)

since the projection operators project out the functions with proper boundary conditions. For any
function Q(z), which has a convergent Taylor series for all z = λn, n = 0, 1, . . . , holds

Q(L) vn = Q(λn) vn (12.77)

and, hence, according to (12.73)

Q(L) Ĵn = Q(λn) Ĵn (12.78)

This property, which can be proven by Taylor expansion of Q(L), states that if a function of L
”sees” an eigenfunction vn, the operator L turns itself into the scalar λn. Since the Taylor expansion
of the exponential operator converges everywhere on the real axis, it holds

eL(t−to) vn = eλn(t−to) vn . (12.79)

The expansion can then be written

[
eL(t−to)

]

bc
=

∞∑

n=0

eλn(t−to) Ĵn . (12.80)

We assume here and in the following the ordering of eigenvalues

λ0 ≥ λ1 ≥ λ2 · · · (12.81)

which can be achieved by choosing the labels n, n = 0, 1, . . . in the appropriate manner.

The Spectrum of the Smoluchowski Operator

We want to comment finally on the eigenvalues λn appearing in series (12.81). The minimum
principle for the free energy G[p(r, t)] derived in the beginning of this section requires that for
reflective boundary conditions (9.4, 9.32) any solution p(r, t) of the Smoluchowski equation (12.1–
12.3), at long times, decays towards the equilibrium distribution (12.22) for which holds [cf. (12.21)]

L po(r) = ∇ · D(r) e−βU(r) ∇ eβU(r) po(r) = 0 . (12.82)

This identifies the equilibrium (Botzmann) distribution as the eigenfunction of L with vanishing
eigenvalue. One can argue that this eigenvalue is, in fact, the largest eigenvalue of L, i.e., for the
“reflective” boundary condition (9.4)

λ0 = 0 > λ1 ≥ λ2 · · · (12.83)
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The reason is that the minimum principle (12.20) for the free energy G[p(r, t)] implies that any
solution of the Smoluchowski equation with reflective boundary condition must asymptotically, i.e.,
for t → ∞, decay towards po(r) [cf. (12.21, 12.22)].
One can identify po(r) with an eigenfunction vno(r) of L since Lvo = 0 implies that po(r) is an
eigenfunction with vanishing eigenvalue. According to (12.22) and (12.57) holds that wno(r), the
respective eigenfunction of L†, is a constant which one may choose

wno ≡ 1 . (12.84)

Adopting the normalization 〈wno |vno〉Ω = 1 implies

vno(r) = po(r) . (12.85)

One can expand then any solution of the Smoluchowski equation, using (12.74, 12.80) and λno = 0,

p(r, t) =
∞∑

n=0

eλn(t−to)Ĵn f(r)

= Ĵno f(r) +
∑

n6=no

eλn(t−to)Ĵn f(r) . (12.86)

The definition of Ĵno yields with (12.84, 12.85) and (12.4),

p(r, t) = po(r) +
∑

n6=no

eλn(t−to)vn(r)〈w)n|f〉Ω . (12.87)

The decay of p(r, t) towards po(r) for t → ∞ implies then

lim
t→∞

eλn(t−to) = 0 (12.88)

from which follows λn < 0 for n 6= no. One can conclude for the spectrum of the Smuluchowski
operator

λ0 = 0 > λ1 ≥ λ2 ≥ · · · (12.89)

12.4 Brownian Oscillator

We want to demonstrate the spectral expansion method, introduced in this chapter, to the case of
a Brownian oscillator governed by the Smoluchowski equation for a harmonic potential

U(x) =
1

2
f x2 , (12.90)

namely, by∂tp(x, t|x0, t0) = D(∂2
x + βf ∂xx) p(x, t|x0, t0) (12.91)

with the boundary condition

lim
x→±∞

xn p(x, t|x0, t0) = 0, ∀n ∈ IN (12.92)

and the initial condition

p(x, t0|x0, t0) = δ(x − x0) . (12.93)
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In order to simplify the analysis we follow the treatment of the Brownian oscillator in Chapter 3
and introduce dimensionless variables

ξ = x/
√

2δ , τ = t/τ̃ , (12.94)

where

δ =
√

kBT/f , τ̃ = 2δ2/D . (12.95)

The Smoluchowski equation for the normalized distribution in ξ, given by

q(ξ, τ |ξ0, τ0) =
√

2 δ p(x, t|x0, t0) , (12.96)

is then again [c.f. (4.98)]

∂τq(ξ, τ |ξ0, τ0) = (∂2
ξ + 2 ∂ξ ξ) q(ξ, τ |ξ0, τ0) (12.97)

with the initial condition

q(ξ, τ0|ξ0, τ0) = δ(ξ − ξ0) (12.98)

and the boundary condition

lim
ξ→±∞

ξn q(ξ, τ |ξ0, τ0) = 0, ∀n ∈ IN . (12.99)

This equation describes diffusion in thepotential Ũ(ξ) = ξ2. Using (13.9, 13.9, 12.90) one can show
Ũ(ξ) = βU(x).
We seek to expand q(ξ, τ0|ξ0, τ0) in terms of the eigenfunctions of the operator

L(ξ) = ∂2
ξ + 2∂ξξ , (12.100)

restricting the functions to the space

{h(ξ) | lim
ξ→±∞

ξn h(ξ) = 0} . (12.101)

The eigenfunctions fn(ξ) of L(ξ) are defined through

L(ξ)fn(ξ) = λnfn(ξ) (12.102)

Corresponding functions, which also obey (13.14), are

fn(ξ) = cn e−ξ2
Hn(ξ) . (12.103)

where Hn(x) is the n-th Hermite polynomials and where cn is a normalization constant chosen
below. The eigenvalues are

λn = − 2n, (12.104)

As demonstrated above, the eigenfunctions of the Smoluchowski operator do not form an orthonor-
mal basis with the scalar product (3.129) and neither do the functions fn(ξ) in (13.18). Instead,
they obey the orthogonality property

∫ +∞

−∞
dξ e−ξ2

Hn(ξ)Hm(ξ) = 2nn!
√

πδnm . (12.105)
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which allows one to identify a bi-orthonormal system of functions. For this purpose we choose for
fn(ξ) the normalization

fn(ξ) =
1

2nn!
√

π
e−ξ2

Hn(ξ) (12.106)

and define

gn(ξ) = Hn(ξ) . (12.107)

One can readily recognize then from (13.20) the biorthonormality property

〈gn|fn〉 = δnm . (12.108)

The functions gn(ξ) can be identified with the eigenfunctions of the adjoint operator

L+(ξ) = ∂2
ξ − 2ξ∂ξ , (12.109)

obeying

L+(ξ)gn(ξ) = λngn(ξ) . (12.110)

Comparing (13.18) and (13.22) one can, in fact, discern

gn(ξ) ∼ eξ2
gn(ξ). (12.111)

and, since ξ2 = fx2/2kBT [c.f. (13.9, 13.11)], the functions gn(ξ), according to (12.56), are the
eigenfunctions of L+(ξ).
The eigenfunctions fn(ξ) form a complete basis for all functions with the property (13.14). Hence,
we can expand q(ξ, τ |ξ0, τ0)

q(ξ, τ |ξ0, τ0) =
∞∑

n=0

αn(t)fn(ξ) . (12.112)

Inserting this into the Smoluchowski equation (13.12, 13.15) results in

∞∑

n=0

α̇n(τ)fn(ξ) =
∞∑

n=0

λn αn(τ) fn(ξ) . (12.113)

Exploiting the bi-orthogonality property (13.23) one derives

α̇m(τ) = λm αm(τ) . (12.114)

The general solution of of this differential equation is

αm(τ) = βm eλmτ . (12.115)

Upon substitution into (13.27), the initial condition (13.13) reads

∞∑

n=0

βn eλnτ0 fn(ξ) = δ(ξ − ξ0) . (12.116)
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Taking again the scalar product with gm(ξ) and using (13.23) results in

βm eλmτ0 = gm(ξ0) , (12.117)

or

βm = e−λmτ0 gm(ξ0) . (12.118)

Hence, we obtain finally

q(ξ, τ |ξ0, τ0) =
∞∑

n=0

eλn(τ−τ0) gn(ξ0) fn(ξ) , (12.119)

or, explicitly,

q(ξ, τ |ξ0, τ0) =
∞∑

n=0

1

2nn!
√

π
e−2n(τ−τ0) Hn(ξ0) e−ξ2

Hn(ξ) . (12.120)

Expression (13.35) can be simplified using the generating function of a product of two Hermit
polynomials

1√
π(1−s2)

exp
[
−1

2(y2 + y2
0)

1+s2

1−s2 + 2yy0
s

1−s2

]

=

∞∑

n=0

sn

2nn!
√

π
Hn(y) e−y2/2 Hn(y0) e−y2

0/2 . (12.121)

Using

s = e−2(τ−τ0) , (12.122)

one can show

q(ξ, τ |ξ0, τ0)

=
1√

π(1 − s2)
exp

[
−1

2
(ξ2 + ξ2

0)
1 + s2

1 − s2
+ 2ξξ0

s

1 − s2
− 1

2
ξ2 +

1

2
ξ2
0

]
. (12.123)

We denote the exponent on the r.h.s. by E and evaluate

E = −ξ2 1

1 − s2
− ξ2

0

s2

1 − s2
+ 2ξξ0

1

1 − s2

= − 1

1 − s2
(ξ2 − 2ξξ0s + ξ2

0s
2)

= −(ξ − ξ0s)
2

1 − s2
(12.124)

We obtain then

q(ξ, τ |ξ0, τ0) =
1√

π(1 − s2)
exp

[
−(ξ − ξ0s)

2

1 − s2

]
, (12.125)
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where s is given by (13.37). One can readily recognize that this result agrees with the solution
(4.119) derived in Chapter 3 using transformation to time-dependent coordinates.
Let us now consider the solution for an initial distribution f(ξ0). The corresponding distribution
q̃(ξ, τ) is (τ0 = 0)

q̃(ξ, τ) =

∫
dξ0

1√
π(1 − e−4τ )

exp

[
−(ξ − ξ0e

−2τ )2

1 − e−4τ

]
f(ξ0) . (12.126)

It is interesting to consider the asymptotic behaviour of this solution. For τ → ∞ the distribution
q̃(ξ, τ) relaxes to

q̃(ξ) =
1√
π

e−ξ2

∫
dξ0 f(ξ0) . (12.127)

If one carries out a corresponding analysis using (13.34) one obtains

q̃(ξ, τ) =

∞∑

n=0

eλnτ fn(ξ)

∫
dξ0 gn(ξ0) f(ξ0) (12.128)

∼ f0(ξ)

∫
dξ0 gn(ξ0) f(ξ0) as τ → ∞ . (12.129)

Using (13.21) and (13.22), this becomes

q̃(ξ, τ) ∼ 1√
π

e−ξ2
H0(ξ)︸ ︷︷ ︸

=1

∫
dξ0 H0(ξ0)︸ ︷︷ ︸

=1

f(ξ0) (12.130)

in agreement with (13.42) as well as with (12.87). One can recognize from this result that the
expansion (13.43), despite its appearance, conserves total probability

∫
dξ0 f(ξ0). One can also

recoginze that, in general, the relaxation of an initial distribution f(ξ0) to the Boltzmann distri-
bution involves numerous relaxation times τn = −1/λn, even though the original Smoluchowski
equation (13.1) contains only a single rate constant, the friction coefficient γ.
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Chapter 13

The Brownian Oscillator

Contents

13.1 One-Dimensional Diffusion in a Harmonic Potential . . . . . . . . . . . 162

The one-dimensional Smoluchowski equation , in case that a stationary flux-free equilibrium state
po(x) exists, can be written in the form

∂tp(x, t) =
kBT

γ
∂x po(x) ∂x [po(x)]−1 p(x, t) . (13.1)

where we employed D = σ2/2γ2 [c.f. (3.12)], the fluctuation-dissipation theorem in the form σ2 =
2kBTγ [c.f. (4.15)], the Onsager form of the Smoluchowski equation (4.18) applied to one dimension,
and po(x) = N exp[−βU(x)]. The form (13.1) of the Smoluchowski equation demonstrates most
clearly that it describes a stochastic system characterized through an equlibrium state po(x) and a
single constant γ governing the relaxation, the friction constant. The equation also assumes that
the underlying stochastic process

γẋ = kBTpo(x)∂xln[po(x)] +
√

2kBTγξ(t) (13.2)

alters the variable x continuously and not in discrete jumps.
One is inclined to envoke the Smoluchowski equation for the description of stochastic processes for
which the equlibrium distribution is known. Underlying such description is the assumption that
the process is governed by a single effective friction constant γ. For the sake of simplicity and in
view of the typical situation that detailed informatiin regarding the relaxation process is lacking,
the Smoluchowski equation serves on well with an approximate descsription.
The most prevalent distribution encountered is the Gaussian distribution

po(x) =
1√
2πΣ

exp

[
−(x − 〈x〉)2

Σ

]
. (13.3)

The reason is the fact that many properties x are actually based on contributions from many
constituents. An example is the overall dipole moment of a biopolymer which results from stochastic
motions of the polymer segments, each contributing a small fraction of the total dipole moment.
In such case the central limit theorem states that for most cases the resulting distribution of x is
Gaussian. This leads one to consider then in most cases the Smoluchowski equation for an effective
quadratic potential

Ueff(x) =
kBT

Σ
(x − 〈x〉)2 . (13.4)
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Due to the central limit theorem the Smoluchowski equation for a Brownian oscillator has a special
significance. Accordingly, we will study the behaviour of the Brownian oscillator in detail.

13.1 One-Dimensional Diffusion in a Harmonic Potential

We consider again the diffusion in the harmonic potential

U(x) =
1

2
f x2 (13.5)

applying in the present case spectral expansion for the solution of the associated Smoluchowski
equation

∂tp(x, t|x0, t0) = D(∂2
x + βf ∂xx) p(x, t|x0, t0) (13.6)

with the boundary condition

lim
x→±∞

xn p(x, t|x0, t0) = 0, ∀n ∈ IN (13.7)

and the initial condition

p(x, t0|x0, t0) = δ(x − x0) . (13.8)

Following the treatment in Chapter 3 we introduce dimensionless variables

ξ = x/
√

2δ , τ = t/τ̃ , (13.9)

where

δ =
√

kBT/f , τ̃ = 2δ2/D . (13.10)

The Smoluchowski equation for the normalized distribution in ξ given by

q(ξ, τ |ξ0, τ0) =
√

2 δ p(x, t|x0, t0) (13.11)

is then again

∂τq(ξ, τ |ξ0, τ0) = (∂2
ξ + 2 ∂ξ ξ) q(ξ, τ |ξ0, τ0) (13.12)

with the initial condition

q(ξ, τ0|ξ0, τ0) = δ(ξ − ξ0) (13.13)

and the boundary condition

lim
ξ→±∞

ξn q(ξ, τ |ξ0, τ0) = 0, ∀n ∈ IN . (13.14)

We seek to expand q(ξ, τ0|ξ0, τ0) in terms of the eigenfunctions of the operator

O = ∂2
ξ + 2∂ξξ , (13.15)
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restricting the functions to the space

{h(ξ) | lim
ξ→±∞

ξn h(ξ) = 0} . (13.16)

We define the eigenfunctions fn(ξ) through

Ofn(ξ) = −λnfn(ξ) (13.17)

The solution of this equation, which obeys (13.14), is well known

fn(ξ) = cn e−ξ2
Hn(ξ) . (13.18)

Here, Hn(x) are the Hermite polynomials and cn is a normalization constant. The negative eigen-
values are

λn = 2n, (13.19)

The functions fn(ξ) do not form the orthonormal basis with the scalar product (3.129) introduced
earlier. Instead, it holds

∫ +∞

−∞
dξ e−ξ2

Hn(ξ)Hm(ξ) = 2nn!
√

πδnm . (13.20)

However, following Chapter 5 one can introduce a bi-orthogonal system. For this purpose we choose
for fn(ξ) the normalization

fn(ξ) =
1

2nn!
√

π
e−ξ2

Hn(ξ) (13.21)

and define

gn(ξ) = Hn(ξ) . (13.22)

One can readily recognize from (13.20) the biorthogonality property

〈gn|fn〉 = δnm . (13.23)

The functions gn(ξ) are the eigenfunctions of the adjoint operator

O+ = ∂2
ξ − 2ξ∂ξ , (13.24)

i.e., it holds

O+gn(ξ) = −λngn(ξ) . (13.25)

The eigenfunction property (13.25) of gn(ξ) can be demonstrated using

〈g|Of〉 = 〈O+g|f〉 . (13.26)

or through explicit evaluation.
The eigenfunctions fn(ξ) form a complete basis for all functions with the property (13.14). Hence,
we can expand q(ξ, τ |ξ0, τ0)

q(ξ, τ |ξ0, τ0) =
∞∑

n=0

αn(t)fn(ξ) . (13.27)
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Inserting this into the Smoluchowski equation (13.12, 13.15) results in

∞∑

n=0

α̇n(τ)fn(ξ) = −
∞∑

n=0

λn αn(τ) fn(ξ) . (13.28)

Exploiting the bi-orthogonality property (13.23) one derives

α̇m(τ) = −λm αm(τ) . (13.29)

The general solution of of this differential equation is

αm(τ) = βm e−λmτ . (13.30)

Upon substitution into (13.27), the initial condition (13.13) reads

∞∑

n=0

βn e−λnτ0 fn(ξ) = δ(ξ − ξ0) . (13.31)

Taking again the scalar product with gm(ξ) and using (13.23) results in

βm e−λmτ0 = gm(ξ0) , (13.32)

or

βm = eλmτ0 gm(ξ0) . (13.33)

Hence, we obtain finally

q(ξ, τ |ξ0, τ0) =
∞∑

n=0

e−λn(τ−τ0) gn(ξ0) fn(ξ) , (13.34)

or, explicitly,

q(ξ, τ |ξ0, τ0) =
∞∑

n=0

1

2nn!
√

π
e−2n(τ−τ0) Hn(ξ0) e−ξ2

Hn(ξ) . (13.35)

Expression (13.35) can be simplified using the generating function of a product of two Hermit
polynomials

1√
π(1−s2)

exp
[
−1

2(y2 + y2
0)

1+s2

1−s2 + 2yy0
s

1−s2

]

=
∞∑

n=0

sn

2nn!
√

π
Hn(y) e−y2/2 Hn(y0) e−y2

0/2 . (13.36)

Using

s = e−2(τ−τ0) , (13.37)

one can show

q(ξ, τ |ξ0, τ0)
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=
1√

π(1 − s2)
exp

[
−1

2
(ξ2 + ξ2

0)
1 + s2

1 − s2
+ 2ξξ0

s

1 − s2
− 1

2
ξ2 +

1

2
ξ2
0

]
. (13.38)

We denote the exponent on the r.h.s. by E and evaluate

E = −ξ2 1

1 − s2
− ξ2

0

s2

1 − s2
+ 2ξξ0

1

1 − s2

= − 1

1 − s2
(ξ2 − 2ξξ0s + ξ2

0s
2)

= −(ξ − ξ0s)
2

1 − s2
(13.39)

We obtain then

q(ξ, τ |ξ0, τ0) =
1√

π(1 − s2)
exp

[
−(ξ − ξ0s)

2

1 − s2

]
, (13.40)

where s is given by (13.37). One can readily recognize that this result agrees with the solution
(4.119) derived in Chapter 3 using transformation to time-dependent coordinates.
Let us now consider the solution for an initial distribution h(ξ0). The corresponding distribution
q̃(ξ, τ) is (τ0 = 0)

q̃(ξ, τ) =

∫
dξ0

1√
π(1 − e−4τ )

exp

[
−(ξ − ξ0e

−2τ )2

1 − e−4τ

]
h(ξ0) . (13.41)

It is interesting to consider the asymptotic behaviour of this solution. For τ → ∞ the distribution
q̃(ξ, τ) relaxes to

q̃(ξ) =
1√
π

e−ξ2

∫
dξ0 h(ξ0) . (13.42)

If one carries out a corresponding analysis using (13.34) one obtains

q̃(ξ, τ) =
∞∑

n=0

e−λnτ fn(ξ)

∫
dξ0 gn(ξ0) h(ξ0) (13.43)

∼ f0(ξ)

∫
dξ0 gn(ξ0) h(ξ0) as τ → ∞ . (13.44)

Using (13.21) and (13.22), this becomes

q̃(ξ, τ) ∼ 1√
π

e−ξ2
H0(ξ)︸ ︷︷ ︸

=1

∫
dξ0 h(ξ0) (13.45)

in agreement with (13.42). One can recognize from this result that the expansion (13.43), despite
its appearance, conserves total probability

∫
dξ0 h(ξ0). One can also recoginze that, in general,

the relaxation of an initial distribution h(ξ0) to the Boltzmann distribution involves numerous
relaxation times, given by the eigenvalues λn, even though the original Smoluchowski equation
(13.1) contains only a single rate constant, the friction coefficient γ.
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18.1 Introduction

The quintessential quantum process in biology and chemistry involves electrons switching between
two states. Two examples are electron transfer reactions in proteins when an electron moves from
an orbital on the donor moiety D to an orbital on the acceptor moiety A and bond formation or
bond breaking in an enzyme when electrons shift from a non-bonding state to a bonding state or
vice versa. The energy expectation values of the two states E1(t) and E2(t) vary in time due to
motions along a reaction coordinate, but also due to thermal fluctuations of the remaining degrees
of freedom of the combined reaction–protein system. Often the interaction energies which couple
the two electronic states involved in the reaction are weak, i.e., are small compared to the temporal
variations of E1(t) and E2(t). In this rather typical case the actual reaction process is confined to
moments when the two electronic states become energetically degenerate [E1(t) = E2(t)] or, to
use a widely accepted phrase, when the curves E1 and E2 cross.
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In this chapter we will discuss curve crossing specifically in a protein environment. We will study
how interactions between a two-dimensional quantum system and a protein matrix affect the curve
crossing process. In particular, we will demonstrate how the influence of the protein on the process
can be captured succinctly through stochastic quantum mechanics. Such description allows one
to separate protein dynamics and the evolution of the quantum system: a molecular dynamics
simulation is carried out to characterize the motion of the protein; the results of the simulations
are then employed in a stochastic quantum mechanical calculation involving only the quantum
mechanical degrees of freedom. The best known and most widely studied curve crossing process,
electron transfer, will serve as an example.
Three advantages arise from the suggested description. First, and most obvious, the procedure is
computationally and conceptually simpler than combining a quantum mechanical and a molecular
dynamics description into a single calculation. Second, and equally important, such description
focusses on the essential contribution of the protein environment to the quantum system and,
thereby, yields a better understanding of the reaction studied. Lastly, one can consider the molecular
dynamics simulations, carried out classically, as the high temperature limit of a quantum mechanical
description and use the results for a fully quantum mechanical description in which the protein
matrix is represented as a bath of quantum mechanical oscillators, suitably chosen to match the
results of molecular dynamics simulations.
The description provided here does not account for forces which the quantum system exerts back
onto the classical system. This deficiency is insignificant in those cases in which many degress of
freedom of the protein matrix are weakly coupled to the quantum process. This situation arises,
for example, in electron transfer, in which case long-range Coulomb forces couple essentially the
whole protein matrix to the quantum process; in this case the effect of the protein motion on
the electron transfer involves many small, additive contributions such that a back-reaction of the
quantum system becomes actually immaterial. However, in case that some degrees of freedom of
the protein matrix are strongly affected by the quantum system such that the curve crossing event
induces forces which correlate the protein motion with the evolution of the quantum system, one
must resort to a description combining quantum mechanics and classical molecular dynamics. But
even if such behaviour arises, which is expected to be the case only for a small number of degrees of
freedom, one is left with a need to account for contributions of the remaining degrees of freedom,
for which purpose one may want to resort to a description as outlined below.
First we consider the case in which the force generated by the quantum system and influencing the
protein is not neglected. Representing the protein as an ensemble of harmonic oscillators permits
one to solve the response of the protein. This renders a closed evolution equation for the density
matrix of the quantum system which exhibits a non-linear term accounting for the effect of the
quantum system onto the protein and back onto the quantum system. The latter term is neglected
in the following sections and two approaches are considered. In a first approach the protein matrix is
represented as a classical system which contributes time-dependent secular terms to the Hamiltonian
of the quantum system [46]. We demonstrate how these terms affect the curve crossing process,
resorting to the well-known Kubo theory of line shapes [21]. We show how the stochastic process
which represents the time dependence of the stated secular terms can be characterized through an
independent molecular dynamics simulation. We focus, in particular, on the case that the stochastic
process is of the Ornstein-Uhlenbeck type, i.e., corresponds to a Gaussian equilibrium distribution
of diagonal energies; in this case a simple analytical description for the quantum system can be
given. In a second approach [61, 60], often referred to as the spin-boson model, we consider the case
that the protein matrix is represented through a bath of quantum mechanical oscillators linearly
coupled to the quantum system, but not subject to energy redistribution. We show that the overall
effect of such bath depends on average quantities which, at physiological temperatures, can be
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rather readily obtained from classical molecular dynamics simulations. The second approach can
be shown to become equivalent to the first approach in certain limits, e.g., at high (physiological)
temperatures and for line shape functions which are wide compared to the frequencies involved
in energy redistribution among protein vibrational modes, limits which prevail in case of electron
transfer in proteins.

18.2 The Generic Model: Two-State Quantum System Coupled

to an Oscillator

The model we consider first is extremely simple, yet it encapsulates the essence of a reaction
process in a protein governed by a quantum mechanical curve crossing process. The reaction
process connects a state |1〉 and a state |2〉, e.g., two electronic states of a substrate. Examples
are (i) an electron transfer process from a donor D to an acceptor A, where |1〉 and |2〉 represent
the states before electron transfer, i.e., AD, and after electron transfer, i.e., A−D+, and (ii) bond
breaking in which case |1〉 describes the electronic state corresponding to a covalent bond and |2〉
describes the electronic state corresponding to the broken bond.
In the following we adopt the representation

|1〉 =

(
1
0

)
, |2〉 =

(
0
1

)
(18.1)

such that the Hamiltonian of the quantum system is

Ĥ =

(
E1 v
v E2

)
(18.2)

where v denotes the coupling between the states |1〉 and |2〉 and where E1,2 are the associated
energy expectation values of these states. The essential aspect of the quantum system is that it
is coupled to the protein matrix through a dependence of the elements of Ĥ on the state of the
protein matrix. For the sake of simplicity we assume here that only the energies E1,2 depend on
the protein environment and that v is constant. Also, we represent presently the protein through
a single harmonic oscillator. This oscillator exhibits its coupling to the quantum system through a
shift of its equilibrium position in going from state |1〉 to state |2〉. Such behaviour is captured by
the energy functions

E1 =
p2

2m
+

1

2
mω2q2 (18.3)

E2 =
p2

2m
+

1

2
mω2(q − qo)

2 (18.4)

Replacing the diagonal elements of the Hamiltonian in (18.2) by these expressions evidently leads
to a dependence of the quantum system on the momentum and position of the Hamiltonian repre-
senting the protein environment.
Following the procedure for quantum/classical molecular dynamics simulations described, e.g., in
[4] one can state the equation of motion for both the density matrix ̺(t) of the two state quantum
system and of the oscillator. It holds

˙̺ =
i

h̄
[̺, Ĥ] (18.5)

mq̈ = − tr

(
̺

∂

∂q
Ĥ

)
(18.6)
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where (18.5) is the Pauli equation and (18.6) the Newtonian equation of motion where the force
of the classical particle is evaluated according to the Hellman-Feynman theorem; trA denotes the
trace of the operator A. In the following we wish to describe the situation that the quantum system
is initially, i.e., at t = 0, in state |1〉 such that the Pauli equation (18.5) is solved subject to the
initial condition

̺(0) =

(
1 0
0 0

)
. (18.7)

This initial condition implies, in particular,

[̺(t)]22 = 0 , t ≤ 0 . (18.8)

Evaluation of the force exerted onto the oscillator, i.e., the r.h.s. of (18.6), yields

− tr

(
̺

∂

∂q
Ĥ

)
= −mω2q + ̺22(t) c (18.9)

where we introduced the expression

qo = c / m ω2 (18.10)

and used ̺11(t) + ̺22(t) = 1. Inserting this into (18.6) leads to

q̈ + ω2q =
c

m
̺22(t) . (18.11)

Equation (18.11) describes a forced oscillator. Defining

ξ = q̇ + i ωq (18.12)

and

F (t) =
c

m
̺22(t) (18.13)

one can write (18.11) as a first order differential equation

ξ̇ − i ωξ = F (t) . (18.14)

We note that, according to (18.8), holds F (t) = 0, t ≤ 0.
We want to solve now Eqs. (18.12–18.14) in case that the harmonic oscillator, at t ≤ 0, has not
been coupled yet to the quantum system and exhibits a time-dependence

q(t) = Ao sin(ωt + δ) , t ≤ 0 . (18.15)

The corresponding form of ξ(t), defined in (18.12), is

ξo(t) = ξ(0) eiωt , t ≤ 0 , ξ(0) = ωA0e
iδ . (18.16)

The solution of (18.14) which matches this functional behaviour is for t ≥ 0

ξ(t) = ξo(t) + δξ(t) . (18.17)

δξ(t) =

∫ t

0
dt′

c

m
̺22(t

′) eiω(t−t′) (18.18)
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where δξ(t) describes the effect of the force (18.13) on the oscillator. This expression can be inserted
into the Pauli equation (18.5). Noting

E1 =
1

2
m |ξ(t)|2 (18.19)

E2 =
1

2
m |ξ(t) − iωqo|2 (18.20)

we obtain the non-linear evolution equation

˙̺ =
i

h̄


̺,




1
2m

∣∣∣ξo(t) +
∫ t
0 dt′ c

m ̺22(t
′) eiω(t−t′)

∣∣∣
2

v

v 1
2m

∣∣∣ξo(t) +
∫ t
0 dt′ c

m ̺22(t
′) eiω(t−t′) − iωqo

∣∣∣
2





 .

The evolution equation (18.2) accounts for the effect of the quantum system on the protein (oscil-
lator) and its back-reaction onto the quantum system. The description provided can be generalized
to a situation in which the protein is represented by an ensemble of harmonic oscillators. In this
case the interaction between the quantum process and the protein matrix spreads over many de-
grees of freedom. For some of these degrees of freedom the coupling might be strong such that it
cannot be neglected. For most degrees of freedom the coupling should be so weak that it’s effect,
in particular, in the concert of the overall motion of the protein, can be neglected. In the following
sections we will disregard the perturbation δξ(t) [cf. (18.18)] on the quantum system and replace
the non-linear evolution equation (18.2) by the linear evolution equation

˙̺ =
i

h̄

[
̺,

(
1
2m |ξo(t)|2 v

v 1
2m |ξo(t) − iωqo|2

)]
. (18.21)

This equation accounts for an effect of the harmonic oscillator on the quantum system. The sim-
plification introduced will allow us to generalize our treatment in several ways. We can replace the
single oscillator by an ensemble of oscillators, in fact, even by an ensemble of quantum mechanical
oscillators. We can also represent the ensemble of classical oscillators by a random process govern-
ing the time-dependent matrix elements in the Hamiltonian in (18.21). We will demonstrate further
that the essential characteristics of the ensemble of oscillators representing the protein marix can be
obtained from classical molecular dynamics simulations. These generalizations and the connection
to molecular dynamics simulations are a most welcome feature of the theory presented below. Nev-
ertheless, it appears desirable to include in these generalizations the back-reaction of the quantum
system on the environmental dynamics as described by (18.2).

18.3 Two-State System Coupled to a Classical Medium

In this section we assume a two-state quantum system with energies (secular terms) E1 and E2

which depend on the conformation of the whole protein described through the vector R(t) ∈ R
3N

for the case of a protein with N atoms. The Hamiltonian reads then

H̃I =

(
E1[R(t)] v

v E2[R(t)]

)
. (18.22)

We assume that the protein motion captured by R(t) leads to curve crossing events, i.e., to situa-
tions t = t′ in which E1[R(t′)] = E2[R(t′)] holds. The matrix element v induces transitions be-
tween the two states of the quantum system. We assume in the following that v is time-independent,
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180 Curve Crossing in a Protein

an assumption made for the sake of simplicity, but which ought to be relaxed in a more complete
theory. We want to assume also that the system has a finite life time τo in state |2〉. This property
will be accounted for by an operator

KI =

(
0 0
0 τ−1

o

)
(18.23)

which, save for a factor h̄, represents an optical potential.
The goal of the theory is to determine the 2 × 2 density matrix ˜̺(t) which obeys

∂t ˜̺(t) =
i

h̄

[
˜̺(t), H̃I(t)

]

−
− [ ˜̺(t),KI ]+ . (18.24)

where [ , ]− presents the commutator and [ , ]+ presents the anti-commutator. For an evaluation
of ˜̺(t) it is helpful to adopt a new basis. Let (α(t) β(t) )T denote the state of the quantum system
at time t. One introduces the new basis through the scalar transformation

(
α′(t)
β′(t)

)
= uo(t)

(
α(t)
β(t)

)
(18.25)

where uo(t) is a scalar function which obeys the differential equation

∂tuo(t) =
i

h̄
E1[R(t)]uo(t) , uo(0) = 1 . (18.26)

One can demonstrate that the density matrix in the new representation obeys a Pauli equation
with Hamiltonian

HI =

(
0 v
v ∆E[R(t)]

)
(18.27)

and

∆E[R(t)] = E2[R(t)] − E1[R(t)] (18.28)

leaving (18.23) unmodified. The new representation yields the same values for the diagonal ele-
ments of the new density matrix ̺(t) as the density matrix ˜̺(t) in the old representation, i.e., the
probabilities to find the system in state |1〉 or state |2〉 are identical in the old and new represen-
tation.
The density matrix ̺(t) obeys the Liouville equation

∂t̺(t) =
i

h̄
[HI(t), ̺(t)]− − [K, ̺(t)]+ . (18.29)

This equation shows that a description of the coupling between the protein matrix and the two-
state quantum system can be reduced to an evaluation of the so-called energy gap function ǫ(t) =
∆E[R(t)] from a molecular dynamics simulation.
To link a molecular dynamics simulation to the quantum system, one monitors in the molecular
dynamics simulation the function ǫ(t) at time instances t = t1, t2, . . . and employs the resulting
values for an evaluation of ̺(t). Such evaluation is based on a solution of Eq. (18.29) for a piecewise
time-independent Hamiltonian H̃I

̺(t + ∆t) = P ̺(t) P† , P = exp

[
∆t(

i

h̄
H̃I − K̃I)

]
. (18.30)
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Evaluating the exponential operator P through Taylor expansion and grouping terms of odd and
even powers yields [46]

̺(t + ∆t) =

(
cos ∆tγ 1 + i

sin∆tγ

γ
A

)
̺(t)

(
cos ∆tγ̄ 1 − i

sin∆tγ̄

γ̄
Ā

)
e−∆t/τo (18.31)

where 1 stands for the identity matrix, γ̄, Ā denote the complex conjugate of γ, A, and the
abbreviations

γ =
√

Ω2 + ω2 , ω = V/h̄ , Ω =
1

2h̄
(∆EMD − ih̄

τo
) , A =

(
Ω ω
ω −Ω

)
(18.32)

are used. Corresponding calculations have been carried out in [46]. The fluctuations of the energy
gap ǫ(t) as a controlling factor for the rate of electron transfer in the photosynthetic reaction center
had been studied by means of molecular dynamics simulations as soon as the structure of this
protein had been discovered [53, 54]. A further molecular dynamics analysis in terms of the Marcus
theory of electron transfer [26, 25] (see also below) has been provided in [52].

In case of electron transfer reactions in proteins the interaction matrix element v in (18.1, 18.22,
18.27) accounts for the electronic tunneling between electron donor and electron acceptor moieties.

To evaluate the density matrix ̺(t) one carries out a classical molecular dynamics simulation which
provides one with the vector R(t) describing the momentaneous protein conformation. One deter-
mines then the corresponding energy gap ∆E[R(t)] for which purpose one obviously needs to know
the expressions for the energies E1[R(t)] and E2[R(t)]. For example, in case of an electron transfer
reaction state |1〉 describes an electron configuration AD and state |2〉 an electron configuration
A−D+ where A and D are electron acceptor and donor moieties in the protein. Knowing the atomic
partial charges corresponding to AD and to A−D+ one can evaluate E1[R(t)] and E2[R(t)] as the
Coulomb energies of the acceptor and donor moieties with the protein matrix, to which one adds
the redox energies of the states AD and A−D+. Unfortunately, a particular molecular dynamics
simulation leading to a particular history of R(t)–values is not necessarily representative and one
needs to average either over the dynamics started with many different initial conditions (ensemble
average) or carry out a suitable time average.

The situation, which we wish to describe, starts from the quantum system in state |1〉, i.e., from
[c.f. (18.7)]

̺(0) =

(
1 0
0 0

)
(18.33)

The system will transfer to state |2〉 in which state it decays with life time τo/2 such that, ultimately,
state |1〉 will be completely depleated. In case that τ is sufficiently short and ∆E[R(t)] is random
one expects that the population of state |1〉 exhibits an approximate exponential decay

̺11(t) ≈ exp(−kcl t) . (18.34)

The decay constant kcl may be evaluated through

[ kcl ]
−1 ≈

∫ ∞

0
dt ̺11(t) . (18.35)
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182 Curve Crossing in a Protein

18.4 Two State System Coupled to a Stochastic Medium

A difficulty of the description outlined in Sect. 18.3 is the need to average the density matrix ̺(t)
over many histories of the energy gap function ∆E[R(t)]. In this section we link the molecular
dynamics simulations to the quantum system through an interpretation of ∆E[R(t)] as a stochastic
process. In this case one can describe the evolution of the quantum system to second order in v, as
defined in (18.22, 18.27), averaged over all possible histories of the protein. Beside being eminently
useful in applications the description provided in this section makes it also transparent which
characteristics of the fluctuations of ∆E[R(t)] are essential for the control of the quantum system
by the protein.
We consider here the simplest case that the properties of ǫ(t) = ∆E[R(t)] can be captured by
a so-called Ornstein-Uhlenbeck process [55, 10]. This stochastic process is characterized through
three properties. The first characteristic property is the average value

〈ǫ〉 =
1

Nt

Nt∑

j=1

ǫ(tj) . (18.36)

The second characteristic property implies that the distribution of values ǫ(t1), ǫ(t2) . . . is Gaussian
such that the distribution is completely characterized through the root mean square deviation σ
defined through

σ2 =
1

Nt

Nt∑

j=1

ǫ2(tj) − 〈ǫ〉2 . (18.37)

The third characteristic property is related to the normalized correlation function of the energy
gap

Cǫǫ(t) =
1

σ2

(
〈ǫ(t)ǫ(0)〉 − 〈ǫ〉2

)
. (18.38)

This function is conventionally evaluated through

Cǫǫ(t) =
1

σ2

1

M

M∑

α=1

(
〈ǫ(t + tα)ǫ(tα)〉 − 〈ǫ〉2

)
(18.39)

for, e.g., M = 100, where tj denotes time instances along the simulations which are spaced far
apart, e.g., 10 ps. Obviously, Cǫǫ(t) captures the dynamic properties of ǫ(t). The present descrip-
tion in terms of an Ornstein-Uhlenbeck process assumes that Cǫǫ(t) is well described by a single
exponential decay, i.e., by

Cǫǫ(t) ≈ exp(−t/τ) (18.40)

such that the dynamics is presented sufficiently through a single decay time τ .
A quantity which conforms to the three characteristics of the Ornstein-Uhlenbeck process is dis-
tributed according to a probablity distribution p(ǫ, t) which obeys the Fokker-Planck equation

∂t p(ǫ, t) = L p(ǫ, t) , L =
σ2

2τ
∂ǫp0(ǫ)∂ǫ [p0(ǫ)]

−1 . (18.41)

where

po(ǫ) =
1√
2πσ

exp
[
−(ǫ − 〈ǫ〉)2/2σ2

]
. (18.42)
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18.4. TWO STATE SYSTEM COUPLED TO A STOCHASTIC MEDIUM 183

The assumption that ǫ(t), as monitored in a simulation, obeys an Ornstein-Uhlenbeck process is
made here mainly for the sake of simplicity. The general framework of the theory presented allows
other stochastic processes to represent the coupling of the protein matrix to the quantum system.
We note that the Ornstein-Uhlenbeck process actually describes a Brownian harmonic oscillator
[10].
By employing the theory in [5, 34] one can express the density matrix

̺(t) =

∫
d∆E′ I(∆E′)̺o(∆E′|t) (18.43)

where

̺o(∆E′|t) = exp

[
− it

h̄

(
0 v
v ∆E′ − ih̄/τ

)](
1 0
0 0

)
exp

[
it

h̄

(
0 v
v ∆E′ + ih̄/τ

)]

Here ̺o(∆E′|t) represents the density matrix for a Hamiltonian (18.24) with a time-independent
energy term ∆E′, i.e., it can be evaluated by means of (18.31, 18.32), applying these formulas for
arbitrary dt. I(∆E′) is the Kubo line shape function [21]

I(∆E′) =
1

π
Re

〈
0

∣∣∣∣∣
1

i
h̄(u − ∆E′) − L

∣∣∣∣∣ 0
〉

. (18.44)

Expressions (18.43-18.44) yield an approximation, accurate to third order in v, for the diagonal
elements of ̺(t). However, the approximation includes all orders of v in order to conserve the
trace of the density matrix and to ascertain convergence to the exact ̺(t) in the limits of slow or
fast stochastic motion measured on a time scale h̄/v [21]. A method for the evaluation of the line
shape function (18.44) is described in the appendix. Other computational strategies are decribed
in [45, 5, 6, 38, 39]. A systematic approximation to matrix elements of the inverse of Fokker-
Planck operators is provided by the generalized moment expansion. This approach is described
systematically in [31] where it is considered, however, for real operators; a generalization to complex
operators, as they occur in (18.44), is straightforward.
The aim of the present theory is to determine the time-dependence of the occupancy of state |1〉
which is initially populated, i.e., to determine [̺(∆E′|t)]11. As in the description in Sect. 18.3 this
state eventually should become completely unpopulated and we assume a behaviour described by
a mono-exponential decay

[̺(∆E′|t)]11 ≈ exp[−kST
cl (∆E′) t )] . (18.45)

We assume the same approximation for the (1,1) element of ̺o(∆E′|t), i.e.,

[̺o(∆E′|t)]11 ≈ exp[−ko(∆E′) t ] (18.46)

and can establish then ko(∆E′) through

[ko(∆E′)]−1 ≈
∫ ∞

0
dt[̺o(∆E′|t)]11 (18.47)

which applies if (18.46) holds exactly. Note that we do not define the rates through the time
derivative of the density matrix element itself since, of course, this derivative vanishes at t = 0.
One can conclude then from Eq. (18.43)

exp[−kST
cl t ] ≈

∫
d∆E′ I(∆E′) exp[−ko(∆E′) t ] . (18.48)
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Differentiating both sides at t = 0 yields

kST
cl ≈

∫
d∆E′ I(∆E′) ko(∆E′) . (18.49)

In the present case three parameters determine the operator L in (18.44, 18.41) and, hence, the
functional form of I(∆E′), namely, 〈ǫ〉, σ2, and τ defined in (18.36), (18.37) and in (18.40, 18.41),
respectively. 〈ǫ〉 determines the center of I(∆E′) on the ∆E′ axis. The parameter σ2 can be
absorbed into the scale of the ∆E′–axis. The corresponding line shape function is then, using
u′ = u/σ, ∆ǫ = ∆E′/σ,

I(∆ǫ) ∼ Re

〈
0

∣∣∣∣
1

i(u′ − ∆ǫ) − ρ ∂u′po(u′)∂u′ [po(u′)]−1

∣∣∣∣ 0
〉

(18.50)

which expresses the line shape function in dimensionless variables. Here,

ρ =
h̄

2τσ
(18.51)

is the single dimensionless parameter which describes the dynamic effect of fluctuations in ∆E(t),
large ρ values corresponding to rapid fluctuations. Since the effect of < ǫ > and σ can be absorbed
through shift and scaling of the ∆E–axis, the parameter ρ constitutes the only parameter which
determines the shape of I(∆E) and, hence, the effect of the protein matrix on the quantum system.
In case of the photosynthetic reaction center of Rhodopseudomonas viridis studied in [46] a value
ρ = 0.03 was determined which is so small that a motional narrowing of the distribution I(∆E′)
relative to the wide equilibrium distribution of ∆E can be neglected, i.e., I(∆E′) is described well
assuming that the protein matrix is characterized solely through an equilibrium distribution of all
of its degrees of freedom. We will study a respective model for the protein matrix in the next
two sections. However, in case of a narrow equilibrium distribution of ∆E, i.e., with a width of
the order of h̄/τ or smaller, one would expect that the fluctuations of ∆E(t) will modify I(∆E)
significantly.
Applications The theory outlined in this and in the previous Section has been applied in the
framework of molecular dynamics studies of the photosynthetic reaction center of Rh. viridis [34, 46].
Figure 18.1 compares the resulting electron transfer rates. The theory in the present Section has also
been applied to describe the dynamics of radical pairs connected through a polymer chain which
mediates a time-dependent exchange interaction [45, 5]. In the latter case the polymer folding
motions, analyzed through molecular dynamics simulations, induces a stochastic variation of the
exchange interaction. The theory has been applied also to magnetic resonance imaging microscopy
[38, 39, 3]. In this case the spins of water protons, diffusing in a magnetic field gradient, experience
a stochastic separation of their spin-up and spin-down states. This leads to an NMR spectrum
which depends on the diffusion space and on the Brownian motion of water; the spectrum, in a
proper analysis, reveals the geometry of the diffusion space. In [45, 5, 38, 39] the Kubo line shape
function had been evaluated numerically through a discretization of the operator L in (18.44). The
algorithm presented there, e.g., in [39], can be applied to a class of stochastic processes governed by
a so-called Smoluchowski equation. These processes cover Gaussian and non-Gaussian equilibrium
distributions po(ǫ).

18.5 Two State System Coupled to a Single Quantum Mechanical

Oscillator

The goal in the following is to describe a two state quantum system coupled to a bath of quantum
mechanical harmonic oscillators. We begin with the case that the bath contains only a single

April 23, 2000 Preliminary version



18.5. TWO STATE SYSTEM COUPLED TO A SINGLE QUANTUM MECHANICAL OSCILLATOR185

5 10 15 20 25 30

0.1

0.2

0.3

0.4

0.5

ε [kcal/mol]

k 
[1

/p
s]

LS_80 OU_80

LS_300

OU_300

MD_300

MD_80

Figure 18.1: Electron transfer rates kcl(ǫ) evaluated by means of molecular dynamics simulation
and the theory in Sect. 18.3 at 300 and at 80 K. In the calculations the redox energy E = ǫ
was varied as shown on the horizontal axis. The corresponding rate constants are labelled MD 300
and MD 80. The figure shows also rate constants evaluated according to the theory in Sect. 18.3,
except that the data for the energy gap ∆E were generated by means of an Ornstein-Uhlenbeck
process employing random numbers. The corresponding rates are labelled OU 300 and OU 80. A
third set of rate constants kST

cl , labelled ST 300 and ST 80, has been calculated according to the
theory in Sect. 18.4, i.e., according to Eq. (18.49) (dashed lines).

oscillator. Such situation is decribed by the Hamiltonian

Ĥ(s)
qo =

(
Ĥ

(s)
r v

v Ĥ
(s)
p + E

)
(18.52)

where

Ĥ(s)
r =

p̂2

2m
+

1

2
mω2q2 (18.53)

Ĥ(s)
p =

p̂2

2m
+

1

2
mω2

(
q − c

mω2

)2
(18.54)

denote harmonic oscillator Hamiltonians of the reactant and product states. The additive energy
term E denotes here a shift of the zero energy of the product state relative to the reactant state,
e.g., denotes the redox energy difference between states AD and A−D+; E will be considered a

variable in the following. If one wishes to describe a process going from the product (A−D+)
state to the reactant (AD) state the sign of E in (18.52), representing the redox energy difference,
needs to be reversed. This property will be envoked below when we consider both processes, i.e.,
AD → A−D+ and A−D+ → AD.

The eigenstates and eigenvalues of the Hamiltonians (18.53, 18.54) are well-known from elementary
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quantum mechanics; they are

〈q|n〉(r) = φ(r)
n (q) =

(
λ

π

) 1
4

(2nn!)−
1
2 Hn(

√
λq) e−

1
2
λq2

(18.55)

ǫ(r)n = h̄ω(n +
1

2
) (18.56)

〈q|n〉(p) = φ(p)
n (q) =

(
λ

π

) 1
4

(2nn!)−
1
2 Hn(

√
λ(q − c

mω2
)) e−

1
2
λ(q−c/mω2)2 (18.57)

ǫ(p)
n = h̄ω(n +

1

2
) (18.58)

where

λ = mω/h̄ (18.59)

and where Hn(y), n = 0, 1, 2 . . . denote the Hermite polynomials. The reactant states describe an
oscillator centered around q = 0, the product state an oscillator centered around [c.f. (18.10)]

qo = c/mω2 . (18.60)

The propagator for the harmonic oscillator is well known. In case of the reactant state the propa-
gator is

〈q′|e−iH
(s)
r (t−to)/h̄|q〉 =

[
mω

2iπh̄ sinω(t − t0)

] 1
2

× (18.61)

exp

{
imω

2h̄ sinω(t − t0)

[
(q′2 + q2) cosω(t − t0) − 2 q′ q

]}
.

This is equivalent to

〈q′|e−iH
(s)
r (t−to)/h̄|q〉 =

[
λ

2π sinhξ

] 1
2

× (18.62)

exp

{
− λ

4

[
(q′ + q)2 tanh

ξ

2
+ (q′ − q)2 coth

ξ

2

]}
.

ξ = i ω(t − to) . (18.63)

In case of the product state, the same expression applies after replacing q → q − qo and q′ → q′ − qo.
The reactant states (18.55) are occupied in thermal equilibrium with probability

p(r)
n = xn(1 − x) , x = e−h̄ω/kT , (18.64)

a result which is well-known from elementary statistical mechanics. The corresponding equilibrium

state density matrix of the reactant state oscillator ρ
(r)
o has the matrix elements

[
ρ̂(r)

o

]

mn
= p(r)

n δnm . (18.65)

The density matrix can also be written

ρ̂(r)
o = 2 sinh (h̄ω/2kT ) e−H(r)/kT . (18.66)
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The transitions from reactant to product states are induced through the matrix elements v in
(18.52). In case of electron transfer in proteins, the coupling is induced through electron tunneling
between prosthetic groups in the protein. The corresponding energy values v are very small, usually
of the order of 10−4 eV. As a result, reactant states |n〉(r) and product states |m〉(p) couple only
when they are essentially degenerate. The overall rate of transfer from reactant states R to product
states P is then

kqo(R → P ) =
2π

h̄2 v2Sqo(E) (18.67)

where

Sqo(E) =
∞∑

n,m=0

p(r)
n |(r)〈n|m〉(p)|2 δ

(
E + ǫ

(p)
m − ǫ

(r)
n

h̄

)
(18.68)

is the so-called spectral line shape function.
We seek to express the line shape function (18.68) in a more compact form. For this purpose we
use the identity

δ

(
E + ǫ

(p)
m − ǫ

(r)
n

h̄

)
=

1

2π

∫ +∞

−∞
dt eitE/h̄ e−itǫ

(r)
n /h̄ eitǫ

(p)
m /h̄ . (18.69)

Employing the definition of the density matrix (18.65) one can write (18.68)

Sqo(E) =
1

2π

∫ +∞

−∞
dt eitE/h̄

∞∑

n,m=0

(r)〈n| ρ̂(r)
o e−itĤ

(s)
r /h̄ |m〉(p)(p)〈m| eitĤ

(s)
p /h̄ |n〉(r) (18.70)

or, equivalently, using (18.66)

Sqo(E) =
1

2π

∫ +∞

−∞
dt eitE/h̄ 2 sinh

h̄ω

2kT
tr
(
e−Ĥ

(s)
r /kT e−itĤ

(s)
r /h̄ eitĤ

(s)
p /h̄

)
. (18.71)

Expressing the trace as an integral over q′ we conclude that the spectral line shape function is

Sqo(E) = (18.72)

1

2π

∫ +∞

−∞
dt eitE/h̄ 2 sinh

h̄ω

2kT

∫ +∞

−∞
dq

∫ +∞

−∞
dq′ 〈q′| e−i(t− h̄/kT )Ĥ

(s)
r /h̄|q〉〈q eitĤ

(s)
p /h̄|q′〉 .

The propagator (18.62) allows one to evaluate the line shape function (18.72). One employs

〈q| eitĤ
(s)
p /h̄|q′〉 =

[
λ

2π sinhη1

] 1
2

× (18.73)

× exp

{
− λ

4

[
(q′ + q − 2qo)

2 tanh
η1

2
+ (q′ − q)2 coth

η1

2

]}
.

η1 = − iωt . (18.74)

and, displacing time into the complex plane to account for the equilibrium (temperature T ) density
matrix,

〈q′| e−i(t− h̄/kT )Ĥ
(s)
r /h̄|q〉 =

[
λ

2π sinhη2

] 1
2

× (18.75)

× exp

{
− λ

4

[
(q′ + q)2 tanh

η2

2
+ (q′ − q)2 coth

η2

2

]}
.

η2 = iωt − h̄ω/kT . (18.76)
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Inserting (18.73–18.76) into (18.72) results in the expression

Sqo(E) =
1

2π

∫ +∞

−∞
dt eitE/h̄ λ sinh

(
h̄ω
2kT

)

π
√

sinhη1 sinhη2
I(t) . (18.77)

where

I(t) =

∫ +∞

−∞
dq

∫ +∞

−∞
dq′exp

[
−α (t)(q + q′)2 − β (q + q′ − 2qo)

2 − γ (q − q′)2
]

(18.78)

α =
λ

4
tanh

η2

2
(18.79)

β =
λ

4
tanh

η1

2
(18.80)

γ =
λ

4

(
tanh

eta1

2
+ tanh

η2

2

)
(18.81)

Expression (18.77–18.81) for the spectral line shape function played an important role in the theory
of spectral transitions of so-called F-centers in solids as reviewed in [28]. The expression can be
further simplified [28]. For this purpose one transforms to new integration variables u = q + q′

and u′ = q − q′. Noting that for the Jacobian holds ∂(u, u′)/∂(q, q′) = 2, the integral (18.78)
reads

I(t) =
1

2

∫ +∞

−∞
du

∫ +∞

−∞
du′ exp

[
−α (t)u2 − β (u − 2qo)

2
]

exp
[
− γ u′2] . (18.82)

Completion of the square in the first exponent results in the expression

I(t) =
1

2
exp

[
−4q2

o

(
β − β2

α + β

)]
×

×
∫ +∞

−∞
du′ exp

[
− γ u′2]

∫ +∞

−∞
du exp

[
−(α + β) (u − s)2

]
. (18.83)

where

s = 2βqo / (α + β) . (18.84)

Since Re(γ) > 0 and Re(α + β) > 0 the Gaussian integrals can be evaluated in a straightforward
way and one obtains

I(t) =
π

2
√

γ(α + β)
exp

[
−4q2

o

(
β − β2

α + β

)]
. (18.85)

We note here that this expression and, hence, Sqo(E) do not depend on the sign of qo. This is to
be expected due to the reflection symmetry of the harmonic oscillator potential. This behaviour
implies, however, that a description of a process going from product states to reactant states does
not require a change in the sign of qo, even though that such change appears to be intuitively
necessary.
Using definitions (18.79–18.81) and the properties of hyperbolic functions one can show

λ sinh
(

h̄ω
2kT

)

2
√

sinh(η1) sinh(η2) γ(α + β)
= 1 (18.86)
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One can also simplify the exponent in (18.85). One obtains

β − β2

α + β
=

λ

4

(
tanh

η1

2
− tanh2 η1

2

tanhη1

2 + tanhη2

2

)
=

λ

4

tanhη1

2 tanhη2

2

tanhη1

2 + tanhη2

2

. (18.87)

Using tanhα + tanhβ = sinh(α + β)/coshα coshβ the latter expression can be further rewritten

β − β2

α + β
=

λ

4

sinhη1

2 sinhη2

2

sinh(η1

2 + η2

2 )
=

λ

4

−sinh
(

iωt
2

)
sinh

(
iωt
2 + h̄ω

2kT

)

sinh
(

h̄ω
2kT

)

=
λ

4

− sinh
(

iωt
2

) [
sinh

(
iωt
2

)
cosh

(
h̄ω
2kT

)
+ sinh

(
h̄ω
2kT

)
cosh

(
iωt
2

)]

sinh
(

h̄ω
2kT

)

=
λ

4

[
sin2 ωt

2
coth

h̄ω

2kT
− icos

ωt

2
sin

ωt

2

]
(18.88)

which yields

β − β2

α + β
=

λ

8

[
(1 − cosωt) coth

h̄ω

2kT
− i sinωt

]
(18.89)

Combining Eqs. (18.60, 18.77, 18.85, 18.86, 18.89) results in the final expression

Sqo(E) =
1

2π

∫ +∞

−∞
dt exp

[
itE/h̄ − c2

2mh̄ω3
coth

h̄ω

2kT
(1 − cosωt) + i

c2

2mh̄ω3
sinωt

]

We note here that the rate for the reverse process, i.e., for going from the product state P to the
reactant state R, is given by

kqo(P → R) =
2π

h̄2 v2Sqo(−E) (18.90)

which differs from (18.67) solely through the sign of E.
The integral in (18.5) can be carried out and the line shape function expressed as a series of regular,
modified Bessel functions Ik(x) [28]. The result is

Sqo(E) =
e−Λ(1+2no)

ω

(
no + 1

no

)sj/2 ∞∑

k=−∞
δ (k − s(E)) Ik

(
2Λ
√

no(no + 1)
)

(18.91)

where Λ = 1
2mω2q2

o/h̄ω = c2/2mh̄ω3 is the so-called reorganization energy in units of vibrational

quanta h̄ω, no = e−h̄ω/kT /(1− e−h̄ωj/kT ) is the average number of quanta thermally excited in the
oscillator, and s(E) = (E − 1

2 h̄ω)/h̄ω counts the number of oscillator levels up to energy E. The
summation in (18.90) is over integers k such that one and only one term in the sum contributes
anytime that s(E) assumes an integer value. As mentioned above, expression (18.90) was originally
developed to describe optical transitions in solids [28]; it was introduced for the description of
thermal electron transfer by Jortner [18, 11].

18.6 Two State System Coupled to a Multi-Modal Bath of Quan-

tum Mechanical Oscillators

In case of a two state quantum system coupled to a bath of harmonic oscillators the Hamiltonian
(18.52–18.54) above is replaced by

Ĥqb =

(
Ĥr v

v Ĥp + E

)
(18.92)
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where

Ĥr =
∑

j

(
p̂2

j

2Mj
+

1

2
Mjω

2
j q

2
j

)
(18.93)

Ĥp =
∑

j


 p̂2

j

2Mj
+

1

2
Mjω

2
j

(
qj − cj

Mjω2
j

)2

 (18.94)

The Hamiltonians Ĥr and Ĥp describe here the same situation as in case of the Hamiltonian (18.52–
18.54), except that the coupling is to an ensemble of oscillators which represent the protein matrix.
One can absorb the masses Mj in the definition of the positions qj of the oscillators such that we
assume in the following

Mj = 1 ∀ j . (18.95)

The eigenstates of the Hamiltonians (18.93, 18.94) are denoted by 〈q|n〉(r) and 〈q|m〉(p), respec-
tively, where q = (q1, q2, . . . )

T collects the coordinates describing the protein matrix and where
n = (n1, n2, . . . ) denotes the set of quantum numbers nj of the individual oscillators. We assume
that all degrees of freedom of the protein matrix are harmonic. The eigenstates and eigenvalues
are explicitly

〈q|n〉(r) =
∏

j

〈qj |nj〉(r,j) =
∏

j

(
λj

π

) 1
4

(2n
j nj !)

− 1
2 Hmj

(
√

λjqj) e−
1
2
λq2

j (18.96)

ǫ
(r,j)
n =

∑

j

h̄ωj(nj +
1

2
) (18.97)

〈q|m〉(p) =
∏

j

〈qj |mj〉(p,j)

=
∏

j

(
λj

π

) 1
4

(2m
j mj !)

− 1
2 Hmj

(
√

λj(qj −
cj

ω2
j

)) e−
1
2
λj(qj−cj/ω2

j )2 (18.98)

ǫ(p,j)
n =

∑

j

h̄ωj(mj +
1

2
) (18.99)

where

λj = ωj/h̄ (18.100)

The overall rate of transfer from reactant states to product states can be written again in the form

kqb(R → P ) =
2π

h̄2 v2Sqo(E) (18.101)

where, according to (18.68, 18.69), the line shape function is

Sqb(E) =
1

2π

∫ +∞

−∞
dt eitE/h̄

∏

j




∞∑

nj ,mj=0

p(r,j)
nj

e
−itǫ

(r,j)
nj

/h̄|(r,j)〈n|m〉(p,j)|2 e
itǫ

(p,j)
mj

/h̄


 . (18.102)
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with

p(r,j)
n = xn

j (1 − xj) , xj = e−h̄ωj/kT , (18.103)

Each of the factors on the r.h.s. of (18.102) corresponds to the single respective term in (18.70),
i.e., to a term which has been evaluated above [c.f. (18.5)]. Comparision with (18.5) allows one
then to evaluate (18.102) as well. This leads to the expression [9, 8, 23]

kqb(R → P ) =
v2

h̄2

∫ +∞

−∞
dt eitE/h̄ eiQ1(t)/πh̄ e−Q2(t)/πh̄ (18.104)

where

Q1(t) =
π

2

∑

j

c2
j

h̄ω3
j

sinωjt (18.105)

Q2(t) =
π

2

∑

j

c2
j

h̄ω3
j

coth
h̄ωj

2kT
[1 − cos(ωjt)] . (18.106)

One can express the rate for the backward reaction by reversing the sign of E in this expression
[23]

kqb(P → R) =
v2

h̄2

∫ +∞

−∞
dt e−itE/h̄ eiQ1(t)/πh̄ e−Q2(t)/πh̄ . (18.107)

A kinetic system with two states R and P is described by the vector p(t) = (pR(t), pP (t))T where
the components pR(t) and pP (t) account for the probability to observe, at time t, the states R and
P , respectively. p(t) obeys the rate equation

d

dt

(
pR(t)
pP (t)

)
=

(
−kqb(R → P ) kqb(P → R)
kqb(R → P ) −kqb(P → R)

)(
pR(t)
pP (t)

)
(18.108)

which needs to be solved for some initial condition. In the present case we consider a system
starting in state R, i.e., the initial condition is p(0) = (1, 0)T . The corresponding solution of
(18.108) is

(
pR(t)
pP (t)

)
=

1

kqb(R → P ) + kqb(P → R)

[(
kqb(P → R)
kqb(R → P )

)
+ (18.109)

+

(
kqb(R → P )

−kqb(R → P )

)
exp {− [kqb(R → P ) + kqb(P → R)]}

]
.

Accordingly, the state R decays with a rate kqb(R → P ) + kqb(P → R) to an equilibrium mixture
of the states R and P , i.e., the relaxation rate krel of the initial state R, according to (18.104,
18.107) is

krel = 2
v2

h̄2

∫ +∞

−∞
dt cos(−itE/h̄) eiQ1(t)/πh̄ e−Q2(t)/πh̄ . (18.110)

Since Q1(t), according to (18.105), is an odd function of t we note that in

eiQ1(t)/πh̄ = cos(Q1(t)/πh̄) + i sin(Q1(t)/πh̄) (18.111)
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the real part is an even function of t and the imaginary part is an odd function of t. Since,
according to (18.106) Q2(t) and, hence, also exp(−Q2(t)/πh̄) is an even function of t, the time
integral involving sin(Q1(t)/πh̄) vanishes and one is left with the expression [23]

krel =
2v2

h̄2

∫ +∞

0
dt cos(−itE/h̄) cos(Q1(t)/πh̄) e−Q2(t)/πh̄ . (18.112)

The result obtained, at first sight, appears to be of little value since evaluation of the functions
Q1(t) and Q2(t), according to (18.105, 18.106), requires knowledge of the quantities c2

j/h̄ω3
j for the

ensemble of oscillators. Fortunately, it is possible to achieve the evaluation in case that the spectral
density

J(ω) =
π

2

∑

j

c2
j

ωj
δ(ω − ωj) (18.113)

is known. In fact, one can express

Q1(t) =

∫ ∞

0
dω ω−2J(ω) sinωt (18.114)

Q2(t) =
π

2

∫ ∞

0
dω ω−2J(ω) coth

h̄ω

2kT
(1 − cosωt) . (18.115)

We want to demonstrate in the next section that the density J(ω) can be determined from molecular
dynamics simulations in which the function ǫ(t) = ∆E[R(t)], as defined in (18.28), is monitored.
In fact, J(ω) is the spectral density of ∆E[R(t)].

18.7 From the Energy Gap Correlation Function ∆E[R(t)] to the

Spectral Density J(ω)

In this section we will derive a relationship which connects, in the limit of high temperature, J(ω)
and the auto-correlation function Cǫǫ(t) of the energy gap function[61], introduced in Section 18.4.
We start from definition (18.38) of Cǫǫ(t) and express, according to (18.94),

ǫ(t) = Ĥp − Ĥr + E (18.116)

where the Hamiltonian operators will be interpreted as Hamiltonian functions of classical bath
oscillators, an identification which holds at high temperatures. One obtains

ǫ(t) = −
∑

j

cjqj(t) +
∑

j

1

2
ω−2

j c2
j . (18.117)

The time average of ǫ(t) in the reactant state, i.e., for 〈qj〉R = 0, is

〈ǫ〉R =
∑

j

1

2
ω−2

j c2
j . (18.118)

In the product state holds 〈qj〉P = cj/ωj and, hence, the corresponding average of ǫ(t) is

〈ǫ〉P = −
∑

j

1

2
ω−2

j c2
j + E . (18.119)
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We want to evaluate now the equilibrium correlation function Cǫǫ(t) for the protein in the reactant
state R. For this purpose we start from the expression

Cǫǫ(t) =
〈 (ǫ(t) − 〈ǫ〉) (〈ǫ(0) − 〈ǫ〉) 〉

〈ǫ(0) − 〈ǫ〉 〉2 (18.120)

The quantity δǫ(t) = ǫ(t) − 〈ǫ〉 which enters here is, using (18.118),

δE(t) = −
∑

j

cjqj(t) . (18.121)

In the high temperature limit the motion of the bath oscillators is described by

qj(t) = Aj cos(ωjt + ϕj) . (18.122)

The numerator C1(t) of the r.h.s. of (18.120) can then be written

C1(t) = 〈δǫ(t) δǫ(o)〉

=

〈

∑

j

cj Ajcos(ωjt + ϕj)






′∑

j

cj′ Aj′cosϕj′



〉

=
1

4
〈
∑

j,j′

cj cj′ Aj Aj′
[
exp

(
i (ωjt + ϕj + ϕj′)

)
+

+ exp
(
−i (ωjt + ϕj + ϕj′)

)
+ exp

(
i (ωjt + ϕj − ϕj′)

)
+

+ exp
(
−i (ωjt + ϕj − ϕj′)

) ]
〉 (18.123)

where the initial phases ϕj and ϕj′ are uniformly distributed in the interval [0, 2π).
In carrying out the averages in (18.123) we follow Rayleigh [40, 41] and note that for the averages
over the phases holds

〈 exp
(
i (ϕj + ϕj′)

)
〉 = 0 ; 〈 exp

(
i (ϕj − ϕj′)

)
〉 = δjj′ . (18.124)

This yields

C1(t) =
1

2

∑

j

c2
j 〈A2

j 〉 cos ωjt . (18.125)

Using the well-known fact that the average energy of a harmonic oscillator is kBT , i.e.,

1

2
ω2

j 〈A2
j 〉 = kB T , (18.126)

one concludes

C1(t) =
N∑

j=1

c2
j

kBT

ω2
j

cos ωjt . (18.127)

This can be expressed, employing the definition (18.113) of J(ω),

C1(t) =
2kBT

π

∫ ∞

0
dω

J(ω)

ω
cos ωt . (18.128)
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Noting C(t) = C1(t)/C1(0) one obtains finally

Cǫǫ(t) =

∫∞
0 dω J(ω)/ω cos ωt∫∞

0 dω J(ω)/ω
, (18.129)

a relationship which has been stated before [42, 2].
We want to express J(ω) through Cǫǫ(t). Fourier’s theorem yields

2

π

∫ ∞

0
dt cos ωt

[ ∫ ∞

0
dω′ J(ω′)

ω′ cos ω′t

]
=

J(ω)

ω
(18.130)

and, hence, one can state

J(ω)

ω
=

2

π

[ ∫ ∞

0
dω

J(ω)

ω

] ∫ ∞

0
dt Cǫǫ(t) cos ωt . (18.131)

The integral
∫∞
o dωJ(ω)/ω can be expressed in terms of the variance σ2 = 〈ǫ2〉 − 〈ǫ〉2. For this

purpose we consider first a subset of Nj bath oscillators with identical frequencies ωj . We designate
these oscillators by a second (beside j) index α. δE(t), according to (18.121), is

δE(t) = −
∑

j

∑

α

cjα Ajα cos (ωjt + ϕjα) . (18.132)

In this expression appear the quantities

Ujα = cjα Ajαcos (ωjt + ϕjα) (18.133)

Uj =
∑

α

Ujα (18.134)

which will be characterized further; specifically, we seek to determine the distribution of Uj .
The distribution of the quantity (18.134) for oscillators in thermal equilibrium has been provided
by Rayleigh [40, 41]. Following his procedure one notes

Uj =
∑

α

cjα Ajα cos (ωjt + ϕjα)

= cos (ωjt)
∑

α

cjα Ajα cos ϕjα − sin (ωjt)
∑

α

cjα Ajα sinϕjα

= γj cos ( ωjt + ϑj ) (18.135)

where

γj =

√√√√
(
∑

α

cjα Ajα cos ϕjα

)2

+

(
∑

α

cjαAjα sinϕjα

)2

(18.136)

tanϑj =

(
∑

α

cjαAjα sinϕjα

) / (
∑

α

cjαAjα cos ϕjα

)
. (18.137)

Rayleigh has shown [41] that γj and ϑj are randomly distributed for large Nj . The distribution
pj(γj) of γj is

pj(γj) =
2

δ2
j

γj exp

(
−

γ2
j

δ2
j

)
, δj =

∑

α

c2
jα A2

jα . (18.138)
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The distribution of the phase angles ϑj is immaterial as the derivation below will show. According
to the above calculations Uj behaves like a single oscillator with randomly distributed amplitudes
γj and randomly distributed phases ϑj .
Let us consider now a particular oscillator of this ensemble, described by fixed γj and ϑj ,

Uj(t) = γj cos (ωjt + ϑj) . (18.139)

Sampling such Uj(t) at many time points t = t1, t2, . . . leads to a distribution [50]

p̂j(Uj) =

{ 1

π
√

γ2
j −U2

j

for Uj ≤ γj

0 for Uj > γj .
(18.140)

For a large ensemble of oscillators with a distribution of γj and ϑj values as described above the
distribution of Uj can be determined now in a straightforward way. For the oscillator (18.139) all
ensemble elements with γj ≥ Uj contribute. The distribution p̃(Uj) for the whole ensemble of bath
oscillators is, therefore,

p̃(Uj) =

∫ ∞

Uj

dγj pj(γj) p̂j(Uj)

=

∫ ∞

Uj

dγj
2

δ2
j

γj exp

(
−

γ2
j

δ2
j

)
1

π
√

γ2
j − U2

j

. (18.141)

The integral can be evaluated analytically. For this purpose we introduce the variable y = γ2
j − U2

j .
Using

∫ ∞

0
dy

1√
y

e−λy =

√
π

λ
(18.142)

one obtains

p̃(Uj) =
1√
πσ̃2

exp

(
−

U2
j

σ̃2
j

)
, (18.143)

i.e., a Gaussian distribution.
According to (18.132–18.134) holds δE =

∑
j Uj . Since each of the terms in this sum is Gaussian–

distributed, the distribution of δE is Gaussian as well, namely,

p(δE) =
1

2πσ2
exp

(
−(δE)2

2σ2

)
(18.144)

σ2 =
1

2

∑

j

σ2
j =

1

2

∑

j,α

c2
jα A2

jα . (18.145)

In the classical, i.e., high temperature, limit holds at equilibrium

σ2 =
1

2

∑

j,α

c2
jα 〈A2

jα〉 =
1

2

∑

j,α

2 kB T

ωj

2

c2
jα (18.146)

where we have used (18.126). One can then express the sum over the coefficients c2
jα through J(ω)

using the definition of the latter, i.e., (18.113), and, hence, one can conclude

σ2 =
2kBT

π

∫ ∞

0
dω

J(ω)

ω
. (18.147)
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We can finally provide the desired expression of J(ω). Employing (18.147) in (18.131) yields

J(ω)

ω
=

σ2

kB T

∫ ∞

0
dt C(t) cos ωt . (18.148)

Accordingly, J(ω) can be determined from a molecular dynamics simulation which records the
fluctuations of ǫ(t) = ∆E[R(t)] and determines then the energy gap correlation function (18.120).
In case that the gap correlation function obeys a simple exponential decay (18.40) one can evaluate
(18.148) further and obtains

J(ω)

ω
=

η ω

1 + ω2τ2
, η =

σ2τ

kBT
, (18.149)

a form of J(ω) known as the Debey function.

18.8 Evaluating the Transfer Rate

We want to discuss now the evaluation of the relaxation rate krel. The evaluation is based on
Eqs. (18.112, 18.114, 18.115) and requires knowledge of the spectral density J(ω) given by (18.149).
For this purpose the material properties σ, τ and 〈ǫ〉 are required as determined through a molecular
dynamics simulation. Typical values of σ and τ are 3.9kcal/mol and 94 fs, determined for electron
transfer at T = 300 K in the photosynthetic reaction center in Rhodopseudomonas viridis [46].
The value of 〈ǫ〉 is difficult to determine precisely and one may rather determine the rate krel

as a function of E and shift krel(E) along the energy axis according to available experimental
information. krel(E), at physiological temperatures, assumes a maximum value for a given E–value
and one may argue that in a given protein the rate process has been optimized through adapting
the additive contributions 〈ǫ〉 and redox energy difference E.

In case of J(ω), given by the Debye function (18.149), one can determine Q1(t) defined in (18.114)

Q1(t) =

∫ ∞

0
dω

η sinωt

ω ( 1 + ω2τ2 )
=

ηπ

2

[
1 − exp

(
− t

τ

)]
(18.150)

Using 1 − cosωt = 2 sin2(ωt/2) one can write (18.112)

krel(E, T ) =

(
2v

h̄

)2 ∫ ∞

0
dt cos

(
Et

h̄

)
cos
[ η

2h̄

(
1 − e−t/τ

) ]
×

× exp

[
− 2η

πh̄

∫ ∞

0
dω

sin2
(

ωt
2

)

ω ( 1 + ω2τ2 )
coth

(
βh̄ω

2

)]
. (18.151)

To simplify this expression we define x = t/τ , y = ωτ , and γ = η/h which yields

krel(E, T ) =

(
2V

h̄

)2

τ

∫ ∞

0
dx cos

(
Eτ

h̄
x

)
cos
[
γπ
(
1 − e−x

) ]
×

× exp

[
−4γ

∫ ∞

0
dy

sin2
(xy

2

)

y ( 1 + y2 )
coth

(
h̄

2kBτ
· y

T

)]
. (18.152)

A typical numerical value for V/h̄ is 5 ps−1 [46].
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A straightforward numerical evaluation of (18.152) is time consuming since it involves a double
integral. One can use a more convenient, albeit approximate, expression for the exp[· · · ] factor in
the integrand of (18.152). We define for this purpose

q2(x) =

∫ ∞

0
dy

sin2
(xy

2

)

y (1 + y2)
coth (αy) , α =

h̄

2kBτT
. (18.153)

As demonstrated in [61], q2(x) is a monotonously increasing function of x. The main contribution
to (18.153) stems from the region of small x. One may employ an expansion of q2(x) which holds
for small x

q2(x) ≈ x2

4
[ f(α) − lnx ] (18.154)

where

f(α) =

∫ ∞

0

y dy

1 + y2
[coth(αy) − 1] . (18.155)

Since q2(x) is E–independent one can use the same numerical approximation for all E–values
considered. Hence, for a given temperature obtaining k(E, T ) at all different E values requires one
to evaluate q2(x) only once. Then (18.152) is evaluated using

kappr(E, T ) =

(
2V

h̄

)2

τ

∫ ∞

0
dx cos

(
Eτ

h̄
x

)
cos
[
γπ
(
1 − e−x

) ]
e−4γq2(x) (18.156)

with q2(x) given by (18.154, 18.154).

High Temperature Limit In the limit of high temperature the expression (18.112) of the electron
transfer rate can be evaluated by the method of steepest descent. This approximation is based on
a quadratic expansion of Q2(t) around its minimum at t = 0. The procedure requires one to
determine the quantity

µ =
d2

dt2
Q2(t)

∣∣∣∣
t=0

(18.157)

The expression for Q2(t) in (18.151) yields

µ =

∫ ∞

0
dωJ(ω) coth

(
βh̄ω

2

)
. (18.158)

Unfortunately, for many choices of J(ω) this expression diverges and the steepest descent method
cannot be applied. However, we note that the divergence of (18.158) is due to ω → ∞ contributions
to the integral over J(ω). Since the number of modes in a protein are finite, the divergence in
(18.158) is due to an artificial analytical form of J(ω). If one would assume a cut-off frequency ωc,
i.e., replace J(ω) by J(ω) θ(ω − ωc), a divergence would not arise in (18.158). One may, hence,
assume that the second derivative (18.157) actually exists, approximate

Q2(t) ≈ 1

2
µ t2 , (18.159)

and employ this in a steepest descent method.
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At a sufficiently high temperature, contributions to the integral in (18.112) arise only in a vicinity
of t = 0 where (18.159) is small. In this case, one can approximate Q1(t) in (18.151) linearly
around t = 0

Q1(t) ≈ ν t ; ν =
d

dt
Q1(t)

∣∣∣∣
t=0

(18.160)

where

ν =

∫ ∞

0
dω

J(ω)

ω
. (18.161)

By using the approximations (18.159) and (18.160) in (18.112), if E is not close to 0, one obtains
[14, 35, 61]

krel(E, T ) ≈ 2πV 2

h̄

1√
2πδ2

exp

[
−(E − Em)2

2δ2

]
. (18.162)

where

δ2 =
h̄µ

π
=

h̄

π

∫ ∞

0
dω J(ω) coth

(
βh̄ω

2

)
(18.163)

Em =
ν

π
=

1

π

∫ ∞

0
dω

J(ω)

ω
. (18.164)

At a high enough temperature, i.e., for T > 100 K, according to our numerical calculations, one
can show further [61]

δ = σ ; Em =
σ2

2kBT
. (18.165)

According to (18.164), Em is actually temperature independent. Hence, one can rewrite (18.162)
into a form which agrees with the rate as given by the classical Marcus theory

kM (ǫ, T ) =
2 π V 2

h̄

1√
2πfkBTq2

o

exp

[
−(ǫ − 1

2fq2
o)

2

2kBTfq2
o

]
(18.166)

where

f q2
o = 2 ǫm =

σ2

kBT

∣∣∣∣
T=300K

. (18.167)

Low Temperature Limit At low temperatures, one can employ (18.155) for α = h̄/2τkBT →
∞, to approximate q2(x) further. It can be verified

lim
α→∞

f(α) =
π2

12α2
. (18.168)

The value of the integral in (18.156) results mainly from contributions at small x. Accordingly, at
low temperatures one can assume the overall integrand to be dominated by the interval in which
γπ2x2 /12α2 is small. Therefore, one can apply (18.154) to expand the exponential part of (18.156),

e−4γq2(x) = exp

(
γx2 lnx − γπ2x2

12α2

)
(18.169)

= exp ( γx2 lnx )

[
1 −

(
γπ2x2

12

) (
2kBτT

h̄

)2
]

.
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Then the electron transfer rate at T → 0 can be expressed

k(E, T ) ≈ k(E, 0) − k1(E)

(
2kBτT

h̄

)2

, (18.170)

where

k1(E) =

(
2V

h̄

)2

τ

∫ ∞

0
dx cos

(
Eτ

h̄
x

)
cos
[
γπ
(
1 − e−x

) ] (
−γπ2x2

12

)
exp ( γx2 lnx ) .

(18.171)

From (18.170), one concludes that at low temperatures, the electron transfer rate is actually chang-
ing very slowly with temperature. This behavior has been found in many observations [12, 32].
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Figure 18.2: Comparison of electron transfer rates k(ǫ, T ) shown as a function of ǫ evaluated
in the framework of the spin–boson model (solid lines) and by Marcus theory (dashed lines) at
temperatures 10 K and 300 K. The functions are centered approximately around ǫm. From [60].

Results In Fig. 18.2 we present calculated electron transfer rates krel(E, T ) as a function of the
redox energy difference E for temperatures T = 10 K and T = 300 K, and compare the results to
transfer rates predicted by the Marcus theory, e.g., by Eq. (18.166, 18.167). One can observe that at
physiological temperatures, the rate evaluated from the Marcus theory in a wide range of E–values,
agrees well with the rate evaluated from the spin–boson model at T = 300 K, a behavior which
is expected from the high temperature limit derived above. However the Marcus theory and the
spin–boson model differ significantly at T = 10 K. At such low temperature the rate as a function
of E for the spin–boson model is asymmetrical. This result agrees with observations reported in
[15] which show a distinct asymmetry with respect to Em at low temperatures. Such asymmetry
is not predicted by the models of Marcus and Hopfield [27, 49, 17].
If one makes the assumption that biological electron transfer systems evolved their E-values such
that rates are optimized, one should expect that electron transfer rates in the photosynthetic
reaction center are formed through a choice of E → Emax, such that k(Emax) is a maximum.
In Fig. 18.3 we present corresponding maximum transfer rates, k(Emax) as well as k(E, T ) for
non-optimal values of E = Em ± δ, where δ = 2.5 kcal/mol. Experimental data of electron
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200 Curve Crossing in a Protein

transfer processes in the photosynthetic reaction center show increases similarly to those presented
in Fig. 18.3 [7, 29, 19, 32]. However, Fig. 18.3 demonstrates also that electron transfer at E-
values slightly off the maximum position can yield a different temperature dependence than that
of k(Em, T ), namely temperature independence or a slight decrease of the rate with decreasing
temperature. Such temperature dependence has also been observed for biological electron transfer
[32]. As Nagarajan et al. reported in [32] the temperature dependence of the transfer rate resembles
that of k(Em, T ) in photosynthetic reaction centers of native bacteria and in (M)Y210F-mutants
with tyrosine at the 210 position of the M–unit replaced by phenylalanine. However, a replacement
of this tyrosine by isoleucine [(M)Y210I-mutant] yields a transfer rate which decreases like k(Em −
δ, T ) shown in Fig. 18.3. This altered temperature dependence should be attributed to a shift of
the redox potentials, i.e., Em → Em − δ.
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Figure 18.3: Comparison of the temperature dependence of the maximum transfer rate of k(ǫm)
and off-maximum value k(ǫmax ± δ), where δ = 2.5 kcal/mol. k(ǫmax, T ) represents the fastest
transfer rate of the system, the rates k(ǫmax ± δ, T ) are slower since their E–values deviate from
the optimal value ǫmax. From [60].

The combination of simulation methods and analytical theory outlined in this lecture has proven
to be a promising approach to describe redox processes in proteins. Neither approach by itself
can be successful since, on the one hand, proteins are too heterogeneous and ill understood to
be molded into simple models, on the other hand, simulation methods are blind, leaving one
with too much information and as a result, with none. The present example, connecting a single
simulated observable, the medium redox energy contribution ∆E(t), with a model of the quantum
system, avoids superfluous or undetermined parameters and can be extended readily to other curve
crossing processes in proteins. We like to mention, finally, that there have been numerous similar
investigations of biological electron transfer [57, 56, 59, 62].

18.9 Appendix: Numerical Evaluation of the Line Shape Function

We want to provide here an algorithm for the evaluation of the line shape function (18.44). The
algorithm suggested is based on an expansion in terms of the right [(u|m〉] and left [〈ñ|u)] eigen-
functions of the operator L = D ∂u p0(u) ∂u [p0(u)]−1 given in the Fokker-Planck Eq. (18.41).
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These eigenfunctions are in the present case

(u|n〉 =
1√
π

2−n

n!
e−u2

Hn(u) , 〈m̃|u) = Hm(u) (18.172)

where Hm denotes the Hermite polynomial. We assume in the following σ = 1, i.e. measure u in
units of σ and D in units of σ−2. In general, the eigenfucjtions and eigenvalues of the stochastic
operator are not available in analytical form and an evaluation of the line shape function is based on
discretization of the coordinate u and of the operator L. The eigenfunctions form a bi-orthogonal
system [1] , i.e., defining 〈m̃|n〉 =

∫ +∞
−∞ du 6 m|u) (u|n〉, the following property applies

〈m̃|n〉 =
1√
π

2−n

n!

∫ +∞

−∞
du Hm(u)e−u2

Hn(u) = δmn . (18.173)

One can show that the function spaced spanned by the eigenfunctions is complete, i.e., any element
of {f(u), u ∈ ] − ∞,∞[, f continuous} can be expanded. The eigenvalues of L follow from the
property [1]

L|n〉 = −2mD|n〉 , 〈m̃|L† = −2mD〈m̃| . (18.174)

According to [1] holds

(u|n + 1〉 = 2u(u|n〉 − 2n (u|n − 1〉 , 〈m̃|u|n〉 =
1

2
δmn+1 + nδmn−1 . (18.175)

From this and Eq. 18.174 we obtain

〈m̃|i(u − u′) − L|n〉 = (2nD − iu′)δmn +
i

2
δmn+1 + i nδmn−1 ≡ Bmn(u′) (18.176)

where B is an infinite-dimensional, tri-diagonal matrix. Obviously

(u|0〉 = po(u), 〈0̃|u) = 1 (18.177)

Equation (18.44) yields then

I =
1

π
Re
[
B−1(u′)

]
00

. (18.178)

In order to evaluate
[
B−1(u′)

]
00

we start from

(
1 0 . . .

)
B−1(u′)




1
0
...


 =

[
B−1(u′)

]
00

(18.179)

which can be written as




1
0
...


 = B(u′)




y0

y1
...


 , y0 =

[
B−1(u′)

]
00

. (18.180)
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The latter equation together with Eq. (18.176) can be written in matrix notation




−iu′ i
2 0 . . .

i 2D − iu′ i
2 0 . . .

0 2i 4D − iu′ i
2 0 . . .

...
. . .

. . .
. . .

. . .
. . . . . .

0 . . . 0 2ni 2nD − iu′ i
2 . . .

...
... . . .

. . .
. . .

. . .
. . .







y0

y1

y2
...

yn
...




=




1
0
0
...
0
...




(18.181)

For the numerical solution a finite dimension N = 2000 is assumed for the matrix B.
The ensuing problem has been discussed in [36], albeit for a real matrix B. The use of a finite-
dimensional matrix B can only be justified for u′ ≪ N .
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