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Preface

Algebraic statistics is concerned with the development of techniques in algebraic
geometry, commutative algebra, and combinatorics, to address problems in statis-
tics and its applications. On the one hand, algebra provides a powerful tool set
for addressing statistical problems. On the other hand, it is rarely the case that
algebraic techniques are ready-made to address statistical challenges, and usually
new algebraic results need to be developed. This way the dialogue between algebra
and statistics benefits both disciplines.

Algebraic statistics is a relatively new field that has developed and changed
rather rapidly over the last fifteen years. One of the first pieces of work in this area
was the paper of Diaconis and the second author [33], which introduced the notion
of a Markov basis for log-linear statistical models and showed its connection to
commutative algebra. From there, the algebra/statistics connection spread to a
number of different areas including the design of experiments (highlighted in the
monograph [74]), graphical models, phylogenetic invariants, parametric inference,
algebraic tools for maximum likelihood estimation, and disclosure limitation, to
name just a few. References to this literature are surveyed in the editorial [47] and
the two review articles [4, 41] in a special issue of the journal Statistica Sinica.
An area where there has been particularly strong activity is in applications to
computational biology, which is highlighted in the book Algebraic Statistics for
Computational Biology of Lior Pachter and the second author [73]. We will some-
times refer to that book as the “ASCB book.”

These lecture notes arose out of a five-day Oberwolfach Seminar, given at the
Mathematisches Forschunginstitut Oberwolfach (MFO), in Germany’s Black For-
est, over the days May 12–16, 2008. The seminar lectures provided an introduction
to some of the fundamental notions in algebraic statistics, as well as a snapshot
of some of the current research directions. Given such a short timeframe, we were
forced to pick and choose topics to present, and many areas of active research
in algebraic statistics have been left out. Still, we hope that these notes give an
overview of some of the main ideas in the area and directions for future research.

The lecture notes are an expanded version of the thirteen lectures we gave
throughout the week, with many more examples and background material than
we could fit into our hour-long lectures. The first five chapters cover the material
in those thirteen lectures and roughly correspond to the five days of the workshop.
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Chapter 1 reviews statistical tests for contingency table analysis and explains the
notion of a Markov basis for a log-linear model. We connect this notion to com-
mutative algebra, and give some of the most important structural theorems about
Markov bases. Chapter 2 is concerned with likelihood inference in algebraic statis-
tical models. We introduce these models for discrete and normal random variables,
explain how to solve the likelihood equations parametrically and implicitly, and
show how model geometry connects to asymptotics of likelihood ratio statistics.
Chapter 3 is an algebraic study of conditional independence structures. We intro-
duce these generally, and then focus in on the special class of graphical models.
Chapter 4 is an introduction to hidden variable models. From the algebraic point
of view, these models often give rise to secant varieties. Finally, Chapter 5 con-
cerns Bayesian integrals, both from an asymptotic large-sample perspective and
from the standpoint of exact evaluation for small samples.

During our week in Oberwolfach, we held several student problem sessions to
complement our lectures. We created eight problems highlighting material from the
different lectures and assigned the students into groups to work on these problems.
The exercises presented a range of computational and theoretical challenges. After
daily and sometimes late-night problem solving sessions, the students wrote up
solutions, which appear in Chapter 6. On the closing day of the workshop, we held
an open problem session, where we and the participants presented open research
problems related to algebraic statistics. These appear in Chapter 7.

There are many people to thank for their help in the preparation of this book.
First, we would like to thank the MFO and its staff for hosting our Oberwolfach
Seminar, which provided a wonderful environment for our research lectures. In par-
ticular, we thank MFO director Gert-Martin Greuel for suggesting that we prepare
these lecture notes. Second, we thank Birkhäuser editor Thomas Hempfling for
his help with our manuscript. Third, we acknowledge support by grants from the
U.S. National Science Foundation (Drton DMS-0746265; Sturmfels DMS-0456960;
Sullivant DMS-0700078 and 0840795). Bernd Sturmfels was also supported by
an Alexander von Humboldt research prize at TU Berlin. Finally, and most im-
portantly, we would like to thank the participants of the seminar. Their great
enthusiasm and energy created a very stimulating environment for teaching this
material. The participants were Florian Block, Dustin Cartwright, Filip Cools,
Jörn Dannemann, Alex Engström, Thomas Friedrich, Hajo Holzmann, Thomas
Kahle, Anna Kedzierska, Martina Kubitzke, Krzysztof Latuszynski, Shaowei Lin,
Hugo Maruri-Aguilar, Sofia Massa, Helene Neufeld, Mounir Nisse, Johannes Rauh,
Christof Söger, Carlos Trenado, Oliver Wienand, Zhiqiang Xu, Or Zuk, and Piotr
Zwiernik.



Chapter 1

Markov Bases

This chapter introduces the fundamental notion of a Markov basis, which repre-
sents one of the first connections between commutative algebra and statistics. This
connection was made in the work of Diaconis and Sturmfels [33] on contingency
table analysis. Statistical hypotheses about contingency tables can be tested in an
exact approach by performing random walks on a constrained set of tables with
non-negative integer entries. Markov bases are of key importance to this statis-
tical methodology because they comprise moves between tables that ensure that
the random walk connects every pair of tables in the considered set.

Section 1.1 reviews the basics of contingency tables and exact tests; for more
background see also the books by Agresti [1], Bishop, Holland, Fienberg [18], or
Christensen [21]. Section 1.2 discusses Markov bases in the context of hierarchical
log-linear models and undirected graphical models. The problem of computing
Markov bases is addressed in Section 1.3, where the problem is placed in the
general context of integer lattices and tied to the algebraic notion of a lattice
ideal.

1.1 Hypothesis Tests for Contingency Tables

A contingency table contains counts obtained by cross-classifying observed cases
according to two or more discrete criteria. Here the word ‘discrete’ refers to cri-
teria with a finite number of possible levels. As an example consider the 2 × 2-
contingency table shown in Table 1.1.1. This table, which is taken from [1, §5.2.2],
presents a classification of 326 homicide indictments in Florida in the 1970s. The
two binary classification criteria are the defendant’s race and whether or not the
defendant received the death penalty. A basic question of interest for this table is
whether at the time death penalty decisions were made independently of the de-
fendant’s race. In this section we will discuss statistical tests of such independence
hypotheses as well as generalizations for larger tables.
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Death Penalty
Defendant’s Race Yes No Total

White 19 141 160
Black 17 149 166
Total 36 290 326

Table 1.1.1: Data on death penalty verdicts.

Classifying a randomly selected case according to two criteria with r and c
levels, respectively, yields two random variables X and Y . We code their possible
outcomes as [r] and [c], where [r] := {1, 2, . . . , r} and [c] := {1, 2, . . . , c}. All
probabilistic information about X and Y is contained in the joint probabilities

pij = P (X = i, Y = j), i ∈ [r], j ∈ [c],

which determine in particular the marginal probabilities

pi+ :=

c
∑

j=1

pij = P (X = i), i ∈ [r],

p+j :=

r
∑

i=1

pij = P (Y = j), j ∈ [c].

Definition 1.1.1. The two random variables X and Y are independent if the joint
probabilities factor as pij = pi+p+j for all i ∈ [r] and j ∈ [c]. We use the symbol
X⊥⊥Y to denote independence of X and Y .

Proposition 1.1.2. The two random variables X and Y are independent if and only
if the r × c-matrix p = (pij) has rank 1.

Proof. (=⇒): The factorization in Definition 1.1.1 writes the matrix p as the prod-
uct of the column vector filled with the marginal probabilities pi+ and the row
vector filled with the probabilities p+j . It follows that p has rank 1.

(⇐=): Since p has rank 1, it can be written as p = abt for a ∈ Rr and b ∈ Rc.
All entries in p being non-negative, a and b can be chosen to have non-negative
entries as well. Let a+ and b+ be the sums of the entries in a and b, respectively.
Then, pi+ = aib+, p+j = a+bj , and a+b+ = 1. Therefore, pij = aibj = aib+a+bj =
pi+p+j for all i, j. �

Suppose now that we randomly select n cases that give rise to n independent
pairs of discrete random variables

(

X(1)

Y (1)

)

,

(

X(2)

Y (2)

)

, . . . ,

(

X(n)

Y (n)

)

(1.1.1)

that are all drawn from the same distribution, that is,

P (X(k) = i, Y (k) = j) = pij for all i ∈ [r], j ∈ [c], k ∈ [n].
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The joint probability matrix p = (pij) for this distribution is considered to be an
unknown element of the rc− 1 dimensional probability simplex

∆rc−1 =

{

q ∈ Rr×c : qij ≥ 0 for all i, j and

r
∑

i=1

c
∑

j=1

qij = 1

}

.

A statistical model M is a subset of ∆rc−1. It represents the set of all candidates
for the unknown distribution p.

Definition 1.1.3. The independence model for X and Y is the set

MX⊥⊥Y = {p ∈ ∆rc−1 : rank(p) = 1} .

The independence model MX⊥⊥Y is the intersection of the probability sim-
plex ∆rc−1 and the set of all matrices p = (pij) such that

pijpkl − pilpkj = 0 (1.1.2)

for all 1 ≤ i < k ≤ r and 1 ≤ j < l ≤ c. The solution set to this system of quadratic
equations is known as the Segre variety in algebraic geometry. If all probabilities
are positive, then the vanishing of the 2× 2-minor in (1.1.2) corresponds to

pij/pil

pkj/pkl
= 1. (1.1.3)

Ratios of probabilities being termed odds, the ratio in (1.1.3) is known as an odds
ratio in the statistical literature.

The order of the observed pairs in (1.1.1) carries no information about p and
we summarize the observations in a table of counts

Uij =

n
∑

k=1

1{X(k)=i, Y (k)=j}, i ∈ [r], j ∈ [c]. (1.1.4)

The table U = (Uij) is a two-way contingency table. We denote the set of all
contingency tables that may arise for fixed sample size n by

T (n) :=

{

u ∈ Nr×c :

r
∑

i=1

c
∑

j=1

uij = n

}

.

Proposition 1.1.4. The random table U = (Uij) has a multinomial distribution,
that is, if u ∈ T (n) and n is fixed, then

P (U = u) =
n!

u11!u12! · · ·urc!

r
∏

i=1

c
∏

j=1

p
uij

ij .
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Proof. We observe U = u if and only if the observations in (1.1.1) include each
pair (i, j) ∈ [r] × [c] exactly uij times. The product

∏

i

∏

j p
uij

ij is the probability
of observing one particular sequence containing each (i, j) exactly uij times. The
pre-multiplied multinomial coefficient counts the possible sequences. �

Consider now the hypothesis testing problem

H0 : p ∈MX⊥⊥Y versus H1 : p 6∈ MX⊥⊥Y . (1.1.5)

In other words, we seek to decide whether or not the contingency table U provides
evidence against the null hypothesis H0, which postulates that the unknown joint
distribution p belongs to the independence modelMX⊥⊥Y . This is the question of
interest in the death penalty example in Table 1.1.1, and we present two common
approaches to this problem.

Chi-square test of independence. If H0 is true, then pij = pi+p+j , and the ex-
pected number of occurrences of the joint event {X = i, Y = j} is npi+p+j . The
two sets of marginal probabilities can be estimated by the corresponding empirical
proportions

p̂i+ =
Ui+

n
and p̂+j =

U+j

n
,

where the row total

Ui+ =

c
∑

j=1

Uij

counts how often the event {X = i} occurred in our data, and the similarly defined
column total U+j counts the occurrences of {Y = j}. We can thus estimate the
expected counts npi+p+j by ûij = np̂i+p̂+j . The chi-square statistic

X2(U) =

r
∑

i=1

c
∑

j=1

(Uij − ûij)
2

ûij
(1.1.6)

compares the expected counts ûij to the observed counts Uij taking into account
how likely we estimate each joint event to be. Intuitively, if the null hypothesis is
true, we expect X2 to be small since U should be close to û. The chi-square test
rejects the hypothesis H0, if the statistic X2 comes out to be “too large.”

What is “too large”? This can be gauged using a probability calculation. Let
u ∈ T (n) be a contingency table containing observed numerical values such as,
for instance, Table 1.1.1. Let X2(u) be the corresponding numerical evaluation
of the chi-square statistic. We would like to compute the probability that the
random variable X2(U) defined in (1.1.6) takes a value greater than or equal to
X2(u) provided that H0 is true. This probability is the p-value of the test. If the
p-value is very small, then it is unlikely to observe a table with chi-square statistic
value as large or larger than X2(u) when drawing data from a distribution in the
independence modelMX⊥⊥Y . A small p-value thus presents evidence against H0.
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Suppose the p-value for our data is indeed very small, say 0.003. Then, as-
suming that the model specified by the null hypothesis H0 is true, the chance of
observing data such as those we were presented with or even more extreme is only
3 in 1000. There are now two possible conclusions. Either we conclude that this
rare event with probability 0.003 did indeed occur, or we conclude that the null
hypothesis was wrong. Which conclusion one is willing to adopt is a subjective
decision. However, it has become common practice to reject the null hypothesis
if the p-value is smaller than a threshold on the order of 0.01 to 0.05. The latter
choice of 0.05 has turned into a default in the scientific literature.

On the other hand, if X2(u) is deemed to be small, so that the p-value is
large, the chi-square test is inconclusive. In this case, we say that the chi-square
test does not provide evidence against the null hypothesis.

The above strategy cannot be implemented as such because the probability
distribution of X2(U) depends on where in the model MX⊥⊥Y the unknown un-
derlying joint distribution p = (pij) lies. However, this problem disappears when
considering limiting distributions for growing sample size n.

Definition 1.1.5. The standard normal distribution N (0, 1) is the probability dis-
tribution on the real line R that has the density function

f(x) =
1√
2π
e−x2/2.

If Z1, . . . , Zm are independent N (0, 1)-random variables, then Z2
1 + · · ·+ Z2

m has
a chi-square distribution with m degrees of freedom, which we denote by χ2

m.

In the following proposition, we denote the chi-square statistic computed
from an n-sample by X2

n(U) in order to emphasize the dependence on the sample
size. A proof of this proposition can be found, for example, in [1, §12.3.3].

Proposition 1.1.6. If the joint distribution of X and Y is determined by an r× c-
matrix p = (pij) in the independence modelMX⊥⊥Y and has positive entries, then

lim
n→∞

P (X2
n(U) ≥ t) = P (χ2

(r−1)(c−1) ≥ t) for all t > 0.

We denote such convergence in distribution by X2
n(U)

D−→ χ2
(r−1)(c−1).

In this proposition, the shorthand P (χ2
(r−1)(c−1) ≥ t) denotes the probability

P (W ≥ t) for a random variable W that follows a chi-square distribution with
(r−1)(c−1) degrees of freedom. We will continue to use this notation in subsequent
statements about chi-square probabilities.

Each matrix p in the independence model MX⊥⊥Y corresponds to a pair of
two marginal distributions for X and Y , which are in the probability simplices
∆r−1 and ∆c−1, respectively. Therefore, the dimension of MX⊥⊥Y is (r − 1) +
(c − 1). The codimension of MX⊥⊥Y is the difference between the dimensions of
the underlying probability simplex ∆rc−1 and the modelMX⊥⊥Y . We see that the
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degrees of freedom for the limiting chi-square distribution are simply equal to the
codimension (rc− 1)− (r − 1)− (c− 1) = (r − 1)(c− 1).

The convergence in distribution in Proposition 1.1.6 suggests to gauge the
size of an observed value X2(u) by computing the probability

P (χ2
(r−1)(c−1) ≥ X2(u)), (1.1.7)

which is referred to as the p-value for the chi-square test of independence.

Example 1.1.7. For the death penalty example in Table 1.1.1, r = c = 2 and the
degrees of freedom are (r− 1)(c− 1) = 1. The p-value in (1.1.7) can be computed
using the following piece of code for the statistical software R [75]:

> u = matrix(c(19,17,141,149),2,2)

> chisq.test(u,correct=FALSE)

Pearson’s Chi-squared test

data: u

X-squared = 0.2214, df = 1, p-value = 0.638

The p-value being large, there is no evidence against the independence model. �

We next present an alternative approach to the testing problem (1.1.5). This
approach is exact in that it avoids asymptotic considerations.

Fisher’s exact test. We now consider 2 × 2-contingency tables. In this case, the
distribution of U loses its dependence on the unknown joint distribution p when
we condition on the row and column totals.

Proposition 1.1.8. Suppose r = c = 2. If p = (pij) ∈ MX⊥⊥Y and u ∈ T (n),
then the conditional distribution of U11 given U1+ = u1+ and U+1 = u+1 is the
hypergeometric distribution HypGeo(n, u1+, u+1), that is, the probability

P (U11 = u11 |U1+ = u1+, U+1 = u+1) =

(

u1+

u11

)(

n−u1+

u+1−u11

)

(

n
u+1

)

for u11 ∈ {max(0, u1+ + u+1 − n), . . . ,min(u1+, u+1)} and zero otherwise.

Proof. Fix u1+ and u+1. Then, as a function of u11, the conditional probability in
question is proportional to the joint probability

P (U11 = u11, U1+ = u1+, U+1 = u+1) = P (U11 = u11, U12 = u1+ − u11,

U21 = u+1 − u11, U22 = n− u1+ − u+1 + u11).

By Proposition 1.1.4 and after some simplification, this probability equals
(

n

u1+

)(

u1+

u11

)(

n− u1+

u+1 − u11

)

p
u1+

1+ p
n−u1+

2+ p
u+1

+1 p
n−u+1

+2 .
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Removing factors that do not depend on u11, we see that this is proportional to

(

u1+

u11

)(

n− u1+

u+1 − u11

)

.

Evaluating the normalizing constant using the binomial identity

∑

u11

(

u1+

u11

)(

n− u1+

u+1 − u11

)

=

(

n

u+1

)

yields the claim. �

Suppose u ∈ T (n) is an observed 2× 2-contingency table. Proposition 1.1.8
suggests to base the rejection of H0 in (1.1.5) on the (conditional) p-value

P (X2(U) ≥ X2(u) |U1+ = u1+, U+1 = u+1). (1.1.8)

This leads to the test known as Fisher’s exact test. The computation of the p-value
in (1.1.8) amounts to summing the hypergeometric probabilities

(

u1+

v11

)(

n−u1+

u+1−v11

)

(

n
u+1

) ,

over all values v11 ∈ {max(0, u1+ +u+1−n), . . . ,min(u1+, u+1)} such that the chi-
square statistic for the table with entries v11 and v12 = u1+−v11, v21 = u+1−v11,
v22 = n−u1+−u+1+v11 is greater than or equal to X2(u), the chi-square statistic
value for the observed table.

Fisher’s exact test can be based on criteria other than the chi-square statistic.
For instance, one could compare a random table U to the observed table u by
calculating which of U11 and u11 is more likely to occur under the hypergeometric
distribution from Proposition 1.1.8. The R command fisher.test(u) in fact
computes the test in this latter form, which can be shown to have optimality
properties that we will not detail here. A discussion of the differences of the two
criteria for comparing the random table U with the data u can be found in [28].

As presented above, Fisher’s exact test applies only to 2 × 2-contingency
tables but the key idea formalized in Proposition 1.1.8 applies more broadly. This
will be the topic of the remainder of this section.

Multi-way tables and log-linear models. LetX1, . . . , Xm be discrete random vari-
ables with Xl taking values in [rl]. Let R =

∏m
i=1[rl], and define the joint proba-

bilities

pi = pi1...im
= P (X1 = i1, . . . , Xm = im), i = (i1, . . . , im) ∈ R.

These form a joint probability table p = (pi | i ∈ R) that lies in the #R − 1
dimensional probability simplex ∆R−1. (Note that, as a shorthand, we will often
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use R to represent #R in superscripts and subscripts.) The interior of ∆R−1,
denoted int(∆R−1), consists of all strictly positive probability distributions. The
following class of models provides a useful generalization of the independence
model from Definition 1.1.3; this is explained in more detail in Example 1.2.1.

Definition 1.1.9. Fix a matrix A ∈ Zd×R whose columns all sum to the same value.
The log-linear model associated with A is the set of positive probability tables

MA =
{

p = (pi) ∈ int(∆R−1) : log p ∈ rowspan(A)
}

,

where rowspan(A) = image(AT ) is the linear space spanned by the rows of A. We
note that the term toric model was used for MA in the ASCB book [73, §1.2].

Consider again a set of counts

Ui =

n
∑

k=1

1{X
(k)
1 =i1,...,X

(k)
m =im}, i = (i1, . . . , im) ∈ R, (1.1.9)

based on a random n-sample of independent and identically distributed vectors









X
(1)
1
...

X
(1)
m









,









X
(2)
1
...

X
(2)
m









, . . . ,









X
(n)
1
...

X
(n)
m









.

The counts Ui now form an m-way table U = (Ui) in NR. Let

T (n) =

{

u ∈ NR :
∑

i∈R
ui = n

}

.

Definition 1.1.10. We call the vector Au the minimal sufficient statistics for the
model MA, and the set of tables

F(u) =
{

v ∈ NR : Av = Au
}

is called the fiber of a contingency table u ∈ T (n) with respect to the modelMA.

Our definition of minimal sufficient statistics is pragmatic. In fact, sufficiency
and minimal sufficiency are general statistical notions. When these are applied to
the log-linear modelMA, however, one finds that the vectorAu is indeed a minimal
sufficient statistic in the general sense.

Note that since the row span of A is assumed to contain the vector of ones, the
tables in the fiber F(u) sum to n. The next proposition highlights the special role
played by the sufficient statistics and provides a generalization of Proposition 1.1.8,
which drove Fisher’s exact test.
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Proposition 1.1.11. If p = eAT α ∈MA and u ∈ T (n), then

P (U = u) =
n!

∏

i∈R ui!
eαT (Au),

and the conditional probability P (U = u |AU = Au) does not depend on p.

Proof. In generalization of Proposition 1.1.4, it holds that

P (U = u) =
n!

∏

i∈R ui!

∏

i∈R
pui

i =
n!

∏

i∈R ui!

∏

i∈R
e(A

T α)iui =
n!

∏

i∈R ui!
eαT (Au).

Moreover,

P (U = u |AU = Au) =
P (U = u)

P (AU = Au)
,

where

P (AU = Au) =
∑

v∈F(u)

n!
∏

i∈R vi!
eαT (Av) = n! · eαT (Au)

∑

v∈F(u)

(

∏

i∈R
vi!

)−1

.

It follows that

P (U = u |AU = Au) =
1/
(
∏

i∈R ui!
)

∑

v∈F(u) 1/
(
∏

i∈R vi!
) . (1.1.10)

This expression is independent of α and hence independent of p. �

Consider the hypothesis testing problem

H0 : p ∈MA versus H1 : p 6∈ MA. (1.1.11)

Based on Proposition 1.1.11, we can generalize Fisher’s exact test by computing
the p-value

P (X2(U) ≥ X2(u) |AU = Au). (1.1.12)

Here

X2(U) =
∑

i∈R

(Ui − ûi)
2

ûi
(1.1.13)

is the natural generalization of the chi-square statistic in (1.1.6). Evaluation of
X2(U) requires computing the model-based expected counts ûi = np̂i, where p̂i

are the maximum likelihood estimates discussed in Section 2.1. There, it will also
become clear that the estimates p̂i are identical for all tables in a fiber F(u).
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Exact computation of the p-value in (1.1.12) involves summing over all non-
negative integer solutions to the system of linear equations in (1.1.10). Indeed, the
p-value is equal to

∑

v∈F(u) 1X2(v)≥X2(u)/
(
∏

i∈R ui!
)

∑

v∈F(u) 1/
(
∏

i∈R vi!
) .

In even moderately sized contingency tables, the exact evaluation of that sum can
become prohibitive. However, the p-value can still be approximated using Markov
chain Monte Carlo algorithms for sampling tables from the conditional distribution
of U given AU = Au.

Definition 1.1.12. Let MA be the log-linear model associated with a matrix A
whose integer kernel we denote by kerZ(A). A finite subset B ⊂ kerZ(A) is a
Markov basis for MA if for all u ∈ T (n) and all pairs v, v′ ∈ F(u) there exists a
sequence u1, . . . , uL ∈ B such that

v′ = v +

L
∑

k=1

uk and v +

l
∑

k=1

uk ≥ 0 for all l = 1, . . . , L.

The elements of the Markov basis are called moves.

The existence and computation of Markov bases will be the subject of Sec-
tions 1.2 and 1.3. Once we have found such a Markov basis B for the modelMA,
we can run the following algorithm that performs a random walk on a fiber F(u).

Algorithm 1.1.13 (Metropolis-Hastings).
Input: A contingency table u ∈ T (n) and a Markov basis B for the model MA.
Output: A sequence of chi-square statistic values (X2(vt))

∞
t=1 for tables vt in the

fiber F(u).
Step 1: Initialize v1 = u.
Step 2: For t = 1, 2, . . . repeat the following steps:

(i) Select uniformly at random a move ut ∈ B.
(ii) If min(vt + ut) < 0, then set vt+1 = vt, else set

vt+1 =

{

vt + ut

vt

with probability

{

q

1− q ,

where

q = min

{

1,
P (U = vt + ut |AU = Au)

P (U = vt |AU = Au)

}

.

(iii) Compute X2(vt).

An important feature of the Metropolis-Hasting algorithm is that the proba-
bility q in Step 2(ii) is defined as a ratio of two conditional probabilities. Therefore,
we never need to evaluate the sum in the denominator in (1.1.10).
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Theorem 1.1.14. The output (X2(vt))
∞
t=1 of Algorithm 1.1.13 is an aperiodic, re-

versible and irreducible Markov chain that has stationary distribution equal to the
conditional distribution of X2(U) given AU = Au.

A proof of this theorem can be found, for example, in [33, Lemma 2.1] or [78,
Chapter 6]. It is clear that selecting the proposed moves ut from a Markov basis
ensures the irreducibility (or connectedness) of the Markov chain. The following
corollary clarifies in which sense Algorithm 1.1.13 computes the p-value in (1.1.12).

Corollary 1.1.15. With probability one, the output sequence (X2(vt))
∞
t=1 of Algo-

rithm 1.1.13 satisfies

lim
M→∞

1

M

M
∑

t=1

1{X2(vt)≥X2(u)} = P (X2(U) ≥ X2(u) |AU = Au).

A proof of this law of large numbers can be found in [78, Chapter 6], where
heuristic guidelines for deciding how long to run Algorithm 1.1.13 are also given;
compare [78, Chapter 8]. Algorithm 1.1.13 is only the most basic scheme for sam-
pling tables from a fiber. Instead one could also apply a feasible multiple of a
selected Markov basis move. As discussed in [33], this will generally lead to a
better mixing behavior of the constructed Markov chain. However, few theoreti-
cal results are known about the mixing times of these algorithms in the case of
hypergeometric distributions on fibers of contingency tables considered here.

1.2 Markov Bases of Hierarchical Models

Continuing our discussion in Section 1.1, with each matrix A ∈ Zd×R we associate
a log-linear modelMA. This is the set of probability distributions

MA = {p ∈ ∆R−1 : log p ∈ rowspan(A)}.

We assume throughout that the sum of the entries in each column of the matrix
A is a fixed value.

This section introduces the class of hierarchical log-linear models and de-
scribes known results about their Markov bases. Recall that a Markov basis is a
special spanning set of the lattice kerZ A, the integral kernel of A. The Markov
basis can be used to perform irreducible random walks over the fibers F(u).

By a lattice we mean a subgroup of the additive group ZR. Markov bases,
and other types of bases, for general lattices will be discussed in Section 1.3. Often
we will interchangeably speak of the Markov basis for MA, the Markov basis for
the matrix A, or the Markov basis for the lattice kerZ A := kerA ∩ ZR. These
three expressions mean the same thing, and the particular usage depends on the
context. Before describing these objects for general hierarchical models, we will
first focus on the motivating example from the previous section, namely, the model
of independence. This is a special instance of a hierarchical model.
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Example 1.2.1 (Independence). An r × c probability table p = (pij) is in the
independence modelMX⊥⊥Y if and only if each pij factors into the product of the
marginal probabilities pi+ and p+j . If p has all positive entries, then

log pij = log pi+ + log p+j , i ∈ [r], j ∈ [c]. (1.2.1)

For a concrete example, suppose that r = 2 and c = 3. Then log p is a 2×3 matrix,
but we write this matrix as a vector with six coordinates. Then (1.2.1) states that
the vector log p lies in the row span of the matrix

A =













11 12 13 21 22 23

1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1













.

We see that the positive part of the independence model is equal to the log-linear
model MA. For general table dimensions, A is an (r + c)× rc matrix.

Let u be an r× c table, which we again think of in “vectorized” format. The
matrix A that represents the model of independence is determined by the identity

Au =

(

u·+
u+·

)

,

where u·+ and u+· are the vectors of row and columns sums of the table u. In the
particular instance of r = 2 and c = 3, the above identity reads

Au =













1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1





























u11

u12

u13

u21

u22

u23

















=













u1+

u2+

u+1

u+2

u+3













.

The moves to perform the random walk in Fisher’s exact test of independence are
drawn from the lattice

kerZ A =

{

v ∈ Zr×c :

r
∑

k=1

vkj = 0 for all j, and

c
∑

k=1

vik = 0 for all i

}

,

which consists of all r× c integer tables whose row and column sums are zero. �

For the standard model of independence of two discrete random variables,
the lattice kerZ A contains a collection of obvious small vectors. In the Markov
basis literature, these moves are often known as basic moves. Let eij denote the
standard unit table, which has a 1 in the (i, j) position, and zeroes elsewhere. If

u is a vector or matrix, then ‖u‖1 =
∑R

i=1 |ui| denotes the one-norm of u.
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Proposition 1.2.2. The unique minimal Markov basis for the independence model
MX⊥⊥Y consists of the following 2 ·

(

r
2

)(

c
2

)

moves, each having one-norm 4:

B =
{

±(eij + ekl − eil − ekj) : 1 ≤ i < k ≤ r, 1 ≤ j < l ≤ c
}

.

Proof. Let u 6= v be two non-negative integral tables that have the same row and
column sums. It suffices to show that there is an element b ∈ B, such that u+b ≥ 0
and ‖u − v‖1 > ‖u + b − v‖1, because this implies that we can use elements of
B to bring points in the same fiber closer to one another. Since u and v are not
equal and Au = Av, there is at least one positive entry in u− v. Without loss of
generality, we may suppose u11 − v11 > 0. Since u− v ∈ kerZ A, there is an entry
in the first row of u− v that is negative, say u12− v12 < 0. By a similar argument
u22 − v22 > 0. But this implies that we can take b = e12 + e21 − e11 − e22 which
attains ‖u− v‖1 > ‖u+ b− v‖1 and u+ b ≥ 0 as desired.

The Markov basis B is minimal because if one of the elements of B is omitted
the fiber which contains its positive and negative parts will be disconnected. That
this minimal Markov basis is unique is a consequence of the characterization of
(non)uniqueness of Markov bases in Theorem 1.3.2 below. �

As preparation for more complex log-linear models, we mention that it is
often useful to use various unary representations for the Markov basis elements.
That is, we can write a Markov basis element by recording, with multiplicities,
the indices of the non-zero entries that appear. This notation is called tableau
notation.

Example 1.2.3. The tableau notation for the moves in the Markov basis of the
independence model is:

[

i j
k l

]

−
[

i l
k j

]

which corresponds to exchanging eij + ekl with eil + ekj . For the move e11 + e12−
2e13 − e21 − e22 + 2e23, which arises in Exercise 6.1, the tableau notation is









1 1
1 2
2 3
2 3









−









1 3
1 3
2 1
2 2









.

Note that the indices 13 and 23 are both repeated twice, since e13 and e23 both
appear with multiplicity two in the move. �

Among the most important classes of log-linear models are the hierarchical
log-linear models. In these models, interactions between random variables are en-
coded by a simplicial complex, whose vertices correspond to the random variables,
and whose faces correspond to interaction factors that are also known as potential
functions. The independence model, discussed above, is the most basic instance of
a hierarchical model. We denote the power set of [m] by 2[m].
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Definition 1.2.4. A simplicial complex is a set Γ ⊆ 2[m] such that F ∈ Γ and
S ⊂ F implies that S ∈ Γ. The elements of Γ are called faces of Γ and the
inclusion-maximal faces are the facets of Γ.

To describe a simplicial complex we need only list its facets. We will use
the bracket notation from the theory of hierarchical log-linear models [21]. For
instance Γ = [12][13][23] is the bracket notation for the simplicial complex

Γ = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}} .

As described above, a log-linear model is defined by a non-negative integer
matrix A, and the model MA consists of all probability distributions whose co-
ordinatewise logarithm lies in the row span of A. If log p ∈ rowspan(A), there is
an α ∈ Rd such that log p = ATα. Exponentiating, we have p = exp(ATα). It is
natural to use this expression as a parametrization for the set of all probability
distributions lying in the model, in which case, we must introduce a normalizing
constant Z(α) to guarantee that we get a probability distribution:

p =
1

Z(α)
exp(ATα).

We can make things simpler and more algebraic by avoiding the exponential
notation. Instead, we will often use the equivalent monomial notation when writing
the parametrization of a log-linear model. Indeed, setting θi = exp(αi), we have

pj = P (X = j) =
1

Z(θ)
·

d
∏

i=1

θ
aij

i (1.2.2)

where A = (aij). This monomial expression can be further abbreviated as θaj =
∏d

i=1 θ
aij

i where aj denotes the jth column of A.
The definition of log-linear models depends on first specifying a matrix A =

(aij), and then describing a family of probability distributions via the parametriza-
tion (1.2.2). For many log-linear models, however, it is easiest to give the monomial
parametrization first, and then recover the matrix A and the sufficient statistics.
In particular, this is true for the family of hierarchical log-linear models.

We use the following convention for writing subindices. If i = (i1, . . . , im) ∈ R
and F = {f1, f2, . . .} ⊆ [m] then iF = (if1 , if2 , . . .). For each subset F ⊆ [m], the
random vector XF = (Xf )f∈F has the state space RF =

∏

f∈F [rf ].

Definition 1.2.5. Let Γ ⊆ 2[m] be a simplicial complex and let r1, . . . rm ∈ N. For

each facet F ∈ Γ, we introduce a set of #RF positive parameters θ
(F )
iF

. The hierar-
chical log-linear model associated with Γ is the set of all probability distributions

MΓ =

{

p ∈ ∆R−1 : pi =
1

Z(θ)

∏

F∈facet(Γ)

θ
(F )
iF

for all i ∈ R
}

, (1.2.3)
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where Z(θ) is the normalizing constant (or partition function)

Z(θ) =
∑

i∈R

∏

F∈facet(Γ)

θ
(F )
iF

.

Example 1.2.6 (Independence). Let Γ = [1][2]. Then the hierarchical model con-
sists of all positive probability matrices (pi1i2)

pi1i2 =
1

Z(θ)
θ
(1)
i1
θ
(2)
i2

where θ(j) ∈ (0,∞)rj , j = 1, 2. That is, the model consists of all positive rank
one matrices. It is the positive part of the model of independence MX⊥⊥Y , or in
algebraic geometric language, the positive part of the Segre variety. �

Example 1.2.7 (No 3-way interaction). Let Γ = [12][13][23] be the boundary of a
triangle. The hierarchical modelMΓ consists of all r1×r2×r3 tables (pi1i2i3) with

pi1i2i3 =
1

Z(θ)
θ
(12)
i1i2

θ
(13)
i1i3

θ
(23)
i2i3

for some positive real tables θ(12) ∈ (0,∞)r1×r2 , θ(13) ∈ (0,∞)r1×r3 , and θ(23) ∈
(0,∞)r2×r3 . Unlike the case of the model of independence, this important statis-
tical model does not have a correspondence with any classically studied algebraic
variety. In the case of binary random variables, its implicit representation is the
equation

p111p122p212p221 = p112p121p211p222.

That is, the log-linear model consists of all positive probability distributions that
satisfy this quartic equation. Implicit representations for log-linear models will be
explained in detail in Section 1.3, and a general discussion of implicit representa-
tions will appear in Section 2.2. �

Example 1.2.8 (Something more general). Let Γ = [12][23][345]. The hierarchical
modelMΓ consists of all r1× r2× r3× r4× r5 probability tensors (pi1i2i3i4i5) with

pi1i2i3i4i5 =
1

Z(θ)
θ
(12)
i1i2

θ
(23)
i2i3

θ
(345)
i3i4i5

,

for some positive real tables θ(12) ∈ (0,∞)r1×r2 , θ(23) ∈ (0,∞)r2×r3 , and θ(345) ∈
(0,∞)r3×r4×r5 . These tables of parameters represent the potential functions. �

To begin to understand the Markov bases of hierarchical models, we must
come to terms with the 0/1 matrices AΓ that realize these models in the form
MAΓ . In particular, we must determine what linear transformation the matrix
AΓ represents. Let u ∈ NR be an r1 × · · · × rm contingency table. For any subset
F = {f1, f2, . . .} ⊆ [m], let u|F be the rf1 × rf2 × · · · marginal table such that
(u|F )iF

=
∑

j∈R[m]\F
uiF ,j . The table u|F is called the F -marginal of u.
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Proposition 1.2.9. Let Γ = [F1][F2] · · · . The matrix AΓ represents the linear trans-
formation

u 7→ (u|F1 , u|F2 , . . .),

and the Γ-marginals are minimal sufficient statistics of the hierarchical modelMΓ.

Proof. We can read the matrix AΓ off the parametrization. In the parametrization,
the rows of AΓ correspond to parameters, and the columns correspond to states.
The rows come in blocks that correspond to the facets F of Γ. Each block has
cardinality #RF . Hence, the rows of AΓ are indexed by pairs (F, iF ) where F
is a facet of Γ and iF ∈ RF . The columns of AΓ are indexed by all elements
of R. The entry in AΓ for row index (F, iF ) and column index j ∈ R equals
1 if jF = iF and equals zero otherwise. This description follows by reading the
parametrization from (1.2.3) down the column of AΓ that corresponds to pj . The
description of minimal sufficient statistics as marginals comes from reading this
description across the rows of AΓ, where the block corresponding to F , yields the
F -marginal u|F . See Definition 1.1.10. �

Example 1.2.10. Returning to our examples above, for Γ = [1][2] corresponding
to the model of independence, the minimal sufficient statistics are the row and
column sums of u ∈ Nr1×r2 . That is

A[1][2]u = (u|1, u|2).

Above, we abbreviated these row and column sums by u·+ and u+·, respectively.

For the model of no 3-way interaction, with Γ = [12][13][23], the minimal
sufficient statistics consist of all 2-way margins of the three way table u. That is

A[12][13][23]u = (u|12, u|13, u|23)

and A[12][13][23] is a matrix wifh r1r2 + r1r3 + r2r3 rows and r1r2r3 columns. �

As far as explicitly writing down the matrix AΓ, this can be accomplished in a
uniform way by assuming that the rows and columns are ordered lexicographically.

Example 1.2.11. Let Γ = [12][14][23] and r1 = r2 = r3 = r4 = 2. Then AΓ is the
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matrix









































1111 1112 1121 1122 1211 1212 1221 1222 2111 2112 2121 2122 2211 2212 2221 2222

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1









































where the rows correspond to ordering the facets of Γ in the order listed above
and using the lexicographic ordering 11 > 12 > 21 > 22 within each facet. �

Now that we know how to produce the matrices AΓ, we can begin to compute
examples of Markov bases. The program 4ti2 [57] computes a Markov basis of a
lattice kerZ(A) taking as input either the matrix A or a spanning set for kerZ A.
By entering a spanning set as input, 4ti2 can also be used to compute Markov
bases for general lattices L (see Section 1.3). A repository of Markov bases for a
range of widely used hierarchical models is being maintained by Thomas Kahle
and Johannes Rauh at http://mbdb.mis.mpg.de/.

Example 1.2.12. We use 4ti2 to compute the Markov basis of the no 3-way inter-
action model Γ = [12][13][23], for three binary random variables r1 = r2 = r3 = 2.
The matrix representing this model has format 12×8. First, we create a file no3way
which is the input file consisting of the size of the matrix, and the matrix itself:

12 8

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1
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The Markov basis associated to the kernel of this matrix can be computed using
the command markov no3way, which writes its output to the file no3way.mar.
This file is represented in matrix format as:

1 8

1 -1 -1 1 -1 1 1 -1

The code outputs the Markov basis up to sign. In this case, the Markov basis
consists of 2 elements, the indicated 2 × 2 × 2 table, and its negative. This move
would be represented in tableau notation as









1 1 1
1 2 2
2 1 2
2 2 1









−









1 1 2
1 2 1
2 1 1
2 2 2









.

The move corresponds to the quartic equation at the end of Example 1.2.7. �

One of the big challenges in the study of Markov bases of hierarchical models
is to find descriptions of the Markov bases as the simplicial complex Γ and the
numbers of states of the random variables vary. When it is not possible to give an
explicit description of the Markov basis (that is, a list of all types of moves needed
in the Markov basis), we might still hope to provide structural or asymptotic
information about the types of moves that could arise. In the remainder of this
section, we describe some results of this type.

For a simplicial complex Γ, let G(Γ) = ∪S∈ΓS denote the ground set of Γ.

Definition 1.2.13. A simplicial complex Γ is reducible, with reducible decomposi-
tion (Γ1, S,Γ2) and separator S ⊂ G(Γ), if it satisfies Γ = Γ1∪Γ2 and Γ1∩Γ2 = 2S .
Furthermore, we here assume that neither Γ1 nor Γ2 is 2S . A simplicial complex is
decomposable if it is reducible and Γ1 and Γ2 are decomposable or simplices (that
is, of the form 2R for some R ⊆ [m]).

Of the examples we have seen so far, the simplicial complexes [1][2] and
[12][23][345] are decomposable, whereas the simplicial complex [12][13][23] is not
reducible. On the other hand, the complex Γ = [12][13][23][345] is reducible but
not decomposable, with reducible decomposition ([12][13][23], {3}, [345]).

If a simplicial complex has a reducible decomposition, then there is naturally
a large class of moves with one-norm equal to four that belong to the lattice
kerZ AΓ. Usually, these moves also appear in some minimal Markov basis.

Lemma 1.2.14. If Γ is a reducible simplicial complex with reducible decomposition
(Γ1, S,Γ2), then the following set of moves, represented in tableau notation, belongs
to the lattice kerZ AΓ:

D(Γ1,Γ2) =

{[

i j k
i′ j k′

]

−
[

i j k′

i′ j k

]

: i, i′ ∈ RG(Γ1)\S , j ∈ RS ,

k, k′ ∈ RG(Γ2)\S

}

.
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Theorem 1.2.15 (Markov bases of decomposable models [34, 94]).
If Γ is a decomposable simplicial complex, then the set of moves

B =
⋃

(Γ1,S,Γ2)

D(Γ1,Γ2),

with the union over all reducible decompositions of Γ, is a Markov basis for AΓ.

Example 1.2.16. Consider the four-chain Γ = [12][23][34]. This graph has two dis-
tinct reducible decompositions with minimal separators, namely ([12], {2}, [23][34])
and ([12][23], {3}, [34]). Therefore, the Markov basis consists of moves of two types
D([12], [23][34]) and D([12][23], [34]), which in tableau notation look like:

[

i1 j i3 i4
i′1 j i′3 i′4

]

−
[

i1 j i′3 i′4
i′1 j i3 i4

]

and

[

i1 i2 j i4
i′1 i′2 j i′4

]

−
[

i1 i2 j i′4
i′1 i′2 j i4

]

.

Note that the decomposition ([12][23], {2, 3}, [23][34]) is also a valid reducible de-
composition of Γ, but it does not produce any new Markov basis elements. �

Theorem 1.2.15 is a special case of a more general result which determines
the Markov bases for reducible complexes Γ from the Markov bases of the pieces
Γ1 and Γ2. For details see the articles [35, 59].

One of the remarkable consequences of Theorem 1.2.15 is that the structure
of the Markov basis of a decomposable hierarchical log-linear model does not
depend on the number of states of the underlying random variables. In particular,
regardless of the sizes r1, r2, . . . , rm, the Markov basis for a decomposable model
always consists of moves with one-norm equal to four, with a precise and global
combinatorial description. The following theorem of De Loera and Onn [29] says
that this nice behavior fails, in the worst possible way, already for the simplest
non-decomposable model. We fix Γ = [12][13][23] and consider 3× r2 × r3 tables,
where r2, r3 can be arbitrary. De Loera and Onn refer to these as slim tables.

Theorem 1.2.17 (Slim tables). Let Γ = [12][13][23] be the 3-cycle and let v ∈ Zk

be any integer vector. Then there exist r2, r3 ∈ N and a coordinate projection
π : Z3×r2×r3 → Zk such that every minimal Markov basis for Γ on 3 × r2 × r3
tables contains a vector u such that π(u) = v.

In particular, Theorem 1.2.17 shows that there is no hope for a general bound
on the one-norms of Markov basis elements for non-decomposable models, even for
a fixed simplicial complex Γ. On the other hand, if only one of the table dimensions
is allowed to vary, then there is a bounded finite structure to the Markov bases.
This theorem was first proven in [62] and generalizes a result in [81].

Theorem 1.2.18 (Long tables). Let Γ be a simplicial complex and fix r2, . . . , rm.
There exists a number b(Γ, r2, . . . , rm) < ∞ such that the one-norms of the ele-
ments of any minimal Markov basis for Γ on s× r2× · · · × rm tables are less than
or equal to b(Γ, r2, . . . , rm). This bound is independent of s, which can grow large.
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From Theorem 1.2.15, we saw that if Γ is decomposable and not a sim-
plex, then b(Γ, r2, . . . , rm) = 4. One of the first discovered results in the non-
decomposable case was b([12][13][23], 3, 3) = 20, a result obtained by Aoki and
Takemura [10]. In general, it seems a difficult problem to actually compute the
values b(Γ, r2, . . . , rm), although some recent progress was reported by Hemmecke
and Nairn [58]. The proof of Theorem 1.2.18 only gives a theoretical upper bound
on this quantity, involving other numbers that are also difficult to compute.

1.3 The Many Bases of an Integer Lattice

The goal of this section is to study the notion of a Markov basis in more combina-
torial and algebraic detail. In particular, we will explain the relationships between
Markov bases and other classical notions of a basis of an integral lattice. In the
setting of log-linear models and hierarchical models, this integral lattice would be
kerZ(A) as in Definition 1.1.12. One of the highlights of this section is Theorem
1.3.6 which makes a connection between Markov bases and commutative algebra.

We fix any sublattice L of Zk with the property that the only non-negative
vector in L is the origin. In other words, L is a subgroup of (Zk,+) that satisfies

L ∩ Nk = { 0 }.

This hypothesis holds for a lattice kerZ(A) given by a non-negative integer matrix
A, as encountered in the previous sections, and it ensures that the fiber of any point
u ∈ Nk is a finite set. Here, by the fiber of u we mean the set of all non-negative
vectors in the same residue class modulo L. This set is denoted

F(u) := (u+ L) ∩ Nk =
{

v ∈ Nk : u− v ∈ L
}

.

There are four fundamental problems concerning the fibers: counting F(u), enu-
merating F(u), optimizing over F(u) and sampling from F(u).

The optimization problem is the integer programming problem in lattice form:

minimize w · v subject to v ∈ F(u). (1.3.1)

The sampling problem asks for a random point from F(u), drawn according to
some distribution on F(u). As seen in Section 1.1, the ability to sample from the
hypergeometric distribution is needed for hypothesis testing, but sometimes the
uniform distribution is also used [32].

These four problems can be solved if we are able to perform (random) walks
that connect the fibers F(u) using simple steps from the lattice L. To this end,
we shall introduce a hierarchy of finite bases in L. The hierarchy looks like this:

lattice basis ⊂ Markov basis ⊂ Gröbner basis

⊂ universal Gröbner basis ⊂ Graver basis.
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The purpose of this section is to introduce these five concepts. The formal defi-
nitions will be given after the next example. Example 1.3.1 serves as a warm-up,
and it shows that all four inclusions among the five different bases can be strict.

Example 1.3.1. Let k = 4 and consider the three-dimensional lattice

L =
{

(u1, u2, u3, u4) ∈ Z4 : 3u1 + 3u2 + 4u3 + 5u4 = 0
}

.

The following three vectors form a lattice basis of L:

(1,−1, 0, 0), (0, 1,−2, 1), (0, 3,−1,−1). (1.3.2)

The choice of a lattice basis is not unique, but its cardinality 3 is an invariant of
the lattice. Augmenting (1.3.2) by the next vector gives a Markov basis of L:

(0, 2, 1,−2). (1.3.3)

The Markov basis of L is not unique but it is “more unique” than a lattice basis.
The cardinality four of the minimal Markov basis is an invariant of the lattice.
Augmenting (1.3.2) and (1.3.3) by the following two vectors leads to a Gröbner
basis of L:

(0, 1, 3,−3), (0, 0, 5,−4). (1.3.4)

This Gröbner basis is reduced. The reduced Gröbner basis of a lattice is not unique,
but there are only finitely many distinct reduced Gröbner bases. They depend on
the choice of a cost vector. Here we took w = (100, 10, 1, 0). This choice ensures
that the leftmost non-zero entry in each of our vectors is positive. We note that
the cardinality of a reduced Gröbner basis is not an invariant of the lattice L.

The universal Gröbner basis of a lattice is unique (if we identify each vector
with its negative). The universal Gröbner basis of L consists of 14 vectors. In
addition to the six above, it comprises the eight vectors

(1, 0,−2, 1), (3, 0,−1,−1), (2, 0, 1,−2), (1, 0, 3,−3),

(0, 4,−3, 0), (4, 0,−3, 0), (0, 5, 0,−3), (5, 0, 0,−3).

Besides the 14 vectors in the universal Gröbner basis, the Graver basis of L con-
tains the following additional ten vectors:

(1, 1, 1,−2) , (1, 2,−1,−1) , (2, 1,−1,−1) ,

(1, 3,−3, 0) , (2, 2,−3, 0) , (3, 1,−3, 0) ,

(1, 4, 0,−3) , (2, 3, 0,−3) , (3, 2, 0,−3) , (4, 1, 0,−3).

The Graver basis of a lattice is unique (up to negating vectors). �

We shall now define the five notions in our hierarchy of bases for an integer
lattice L ⊂ Zk. A lattice basis is a subset B = {b1, b2, . . . , br} of L such that every
vector v in L has a unique representation

v = λ1b1 + λ2b2 + · · · + λrbr, with λi ∈ Z.
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All lattice bases of L have the same cardinality r. Each of them specifies a partic-
ular isomorphism L ≃ Zr. The number r is the rank of the lattice L.

Consider an arbitrary finite subset B of L. This subset specifies an undirected
graph F(u)B whose nodes are the elements in the fiber F(u). Two nodes v and v′

are connected by an undirected edge in F(u)B if either v− v′ or v′− v is in B. We
say that B is a Markov basis for L if the graphs F(u)B are connected for all u ∈ Nk.
(Note that this definition slightly differs from the one used in Sections 1.1 and 1.2,
where it was more convenient to include both a vector and its negative in the
Markov basis.) We will usually require Markov bases to be minimal with respect
to inclusion. With this minimality assumption, the Markov basis B is essentially
unique, in the sense made precise in Theorem 1.3.2 below.

Every vector b ∈ L can be written uniquely as the difference b = b+ − b−
of two non-negative vectors with disjoint support. The fiber of b is the congruence
class of Nk modulo L which contains both b+ and b−. In symbols,

fiber(b) := F(b+) = F(b−).

Theorem 1.3.2. For a minimal Markov basis B of a lattice L, the multiset
{

fiber(b) : b ∈ B
}

(1.3.5)

is an invariant of the lattice L ⊂ Zk and hence so is the cardinality of B.
Proof. We shall give an invariant characterization of the multiset (1.3.5). For any
fiber f ∈ Nk/L we define a graph Gf as follows. The nodes are the non-negative
vectors in Nk which lie in the congruence class f , and two nodes u and v are
connected by an edge if there exists an index i such that ui 6= 0 and vi 6= 0.
Equivalently, {u, v} is an edge of Gf if and only if fiber(u− v) 6= f .

We introduce the following multiset of fibers:
{

f ∈ Nk/L : the graph Gf is disconnected
}

. (1.3.6)

The multiset structure on the underlying set is as follows. The multiplicity of f in
(1.3.6) is one less than the number of connected components of the graph Gf .

We claim that the multisets (1.3.5) and (1.3.6) are equal. In proving this
claim, we shall use induction on the partially ordered set (poset) Nk/L. This set
inherits its poset structure from the partial order on Nk. Namely, two fibers f and
f ′ satisfy f ′ ≤ f if and only if there exist u, u′ ∈ Nk such that

f = F(u) and f ′ = F(u′) and u′ ≤ u (coordinatewise).

Consider any fiber f = F(u) and let C1, . . . , Cs be the connected components
of Gf . Suppose that B is any minimal Markov basis and consider Bf = { b ∈ B :
fiber(b) = f }. We will reconstruct all possible choices for Bf . In order to prove
the theorem, we must show that each of them has cardinality s− 1.

By induction, we may assume that Bf ′ has already been constructed for all
fibers f ′ which are below f in the poset Nk/L. Let B<f be the union of these
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sets Bf ′ where f ′ < f . The connected components of the graph F(u)B<f
are

precisely the components C1, . . . , Cs. The reason is that any two points in the
same component Ci can be connected by a sequence of moves from a smaller fiber
f ′, but no point in Ci can be connected to a point in a different component Cj

by such moves. Therefore, all the possible choices for Bf are obtained as follows.
First we fix a spanning tree on the components C1, . . . , Cs. Second, for any edge
{Ci, Cj} in that spanning tree, we pick a pair of points u ∈ Ci and v ∈ Cj . Finally,
the desired set Bf consists of the resulting s−1 difference vectors u−v. This proves
#Bf = s− 1, as desired. �

The previous proof gives a purely combinatorial algorithm which constructs
the minimal Markov basis of a lattice L. We fix a total order on the set of fibers
Nk/L which refines the natural partial order. Starting with the first fiber f =
F(0) = {0} and the empty partial Markov basis B<0 = ∅, we consider an arbitrary
fiber f and the already computed partial Markov basis B<f . The steps of the
algorithm are now exactly as in the proof:

1. Identify the connected components C1, . . . , Cs of the graph Gf .

2. Pick a spanning tree on C1, . . . , Cs.

3. For any edge {Ci, Cj} of the tree, pick points u ∈ Ci and v ∈ Cj .

4. Define Bf as the set of those s− 1 difference vectors u− v.
5. Move on to the next fiber (unless you are sure to be done).

Example 1.3.3. We demonstrate how this method works for the lattice in Example
1.3.1. Recall that L is the kernel of the linear map

π : Z4 → Z , (u1, u2, u3, u4) 7→ 3u1 + 3u2 + 4u3 + 5u4.

The poset of fibers is a subposet of the poset of non-negative integers:

N4/L = π(N4) = {0, 3, 4, 5, 6, . . .} ⊂ N.

The fiber 0 is trivial, so our algorithm starts with f = 3 and B<3 = ∅. The graph
G3 has two connected components

C1 =
{

(1, 0, 0, 0)
}

and C2 =
{

(0, 1, 0, 0)
}

,

so we have no choice but to take B3 = { (1,−1, 0, 0) }. The next steps are:

• G4 has only one node (0, 0, 1, 0) hence B4 = ∅.
• G5 has only one node (0, 0, 0, 1) hence B5 = ∅.
• G6 = {(2, 0, 0, 0), (1, 1, 0, 0), (0, 2, 0, 0)} is connected hence B6 = ∅.
• G7 = {(1, 0, 1, 0), (0, 1, 1, 0)} is connected hence B7 = ∅.
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• G8 has two connected components, C1 = {(1, 0, 0, 1), (0, 1, 0, 1)} and C2 =
{(0, 0, 2, 0)}, and we decide to take B8 = {(0, 1,−2, 1)}.

• G9 has two connected components, namely C1 = {(3,0,0,0), (2,1,0,0), (1,2,0,0),
(0, 3, 0, 0)} and C2 = {(0, 0, 1, 1)}. We take B9 = {(0, 3,−1,−1)}.
• G10 has two connected components, C1 = {(2,0,1,0), (1,1,1,0), (0,2,1,0)} and
C2 = {(0, 0, 0, 2)}, and we take B10 = {(0, 2, 1,−2)}.

At this stage, divine inspiration tells us that the Markov basis for L is already
complete. So, we decide to stop and we output B = B≤10. The multiset of Markov
fibers (1.3.5) is the set {3, 8, 9, 10}, where each element has multiplicity one. �

There are two obvious problems with this algorithm. The first is that we
need a termination criterion, and the second concerns the combinatorial explosion
(which becomes serious for n− rank(L) ≥ 3) of having to look at many fibers until
a termination criterion kicks in. The first problem can be addressed by deriving a
general bound on the sizes of the coordinates of any element in the Graver basis of
L. Such a bound is given in [87, Theorem 4.7, p. 33]. However, a more conceptual
solution for both problems can be given by recasting the Markov basis property in
terms of commutative algebra [25, 87]. This will be done in Theorem 1.3.6 below.

First, however, we shall define the other three bases of L. Fix a generic cost
vector w ∈ Rk. Here generic means that each integer program (1.3.1) has only
one optimal solution. Suppose that b · w < 0 for all b ∈ B. We regard F(u)B as
a directed graph by introducing a directed edge v → v′ whenever v′ − v is in B.
In this manner, F(u)B becomes an acyclic directed graph. We say that B is a
Gröbner basis of L if the directed graph F(u)B has a unique sink, for all u ∈ Nk.

Remark 1.3.4. If B is a Gröbner basis then the sink of the directed graph F(u)B is
the optimal solution of the integer programming problem (1.3.1). For more back-
ground on the use of Gröbner bases in integer programming we refer to [87, §5].

Among all Gröbner bases for L there is a distinguished reduced Gröbner basis
which is unique when w is fixed. It consists of all vectors b ∈ L such that b− is a
sink (in its own fiber), b+ is not a sink, but b+ − ei is a sink for all i with bi > 0.

It is known that there are only finitely many distinct reduced Gröbner bases,
as w ranges over generic vectors in Rk. The union of all reduced Gröbner bases is
the universal Gröbner basis of L.

All of the bases of L discussed so far are contained in the Graver basis. The
Graver basis G of our lattice L is defined as follows. Fix a sign vector σ ∈ {−1,+1}k
and consider the semigroup

Lσ :=
{

v ∈ L : vi · σi ≥ 0
}

.

This semigroup has a unique minimal finite generating set Gσ called the Hilbert
basis of Lσ. The Graver basis G of L is the union of these Hilbert bases:

G :=
⋃

σ∈{−1,+1}k

Gσ,
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and thus is finite as well.

Proposition 1.3.5. The Graver basis G is the unique minimal subset of the lattice
L such that every vector v ∈ L has a sign-consistent representation in terms of G:

v =
∑

g∈G
λg · g with λg ∈ N and |vi| =

∑

g∈G
λg · |gi| for all i ∈ [k].

Markov bases, Gröbner bases, Hilbert bases, and Graver bases of integer lat-
tices can be computed using the software 4ti2, which was developed by Raymond
Hemmecke and his collaborators [57]. Further computations with 4ti2 will be
shown in the exercises in Chapter 6.

We now come to the interpretation of our bases in terms of algebraic geom-
etry. The given lattice L ⊂ Zk is represented by the corresponding lattice ideal

IL := 〈 pu − pv : u, v ∈ Nk and u− v ∈ L 〉 ⊂ R[p1, p2, . . . , pk].

Here p1, . . . , pk are indeterminates, and pu = pu1
1 pu2

2 · · · puk

k denotes monomials
in these indeterminates. In our applications, pi will represent the probability of
observing the ith state of a random variable with k states. Hilbert’s Basis Theorem
states that every ideal in the polynomial ring R[p1, p2, . . . , pk] is finitely generated.
The finiteness of Markov bases is thus implied by the following result of Diaconis
and Sturmfels [33], which was one of the starting points for algebraic statistics.

Theorem 1.3.6 (Fundamental theorem of Markov bases). A subset B of the lattice

L is a Markov basis if and only if the corresponding set of binomials { pb+ − pb− :
b ∈ B } generates the lattice ideal IL.

The notions of Gröbner bases and Graver bases are also derived from their
algebraic analogues. For a detailed account see [87]. In that book, as well as in
most statistical applications, the lattice L arises as the kernel of an integer matrix
A. The algebraic theory for arbitrary lattices L is found in Chapter 7 of [70].
The multiset in Theorem 1.3.2 corresponds to the multidegrees of the minimal
generators of the lattice ideal IL.

Let A = (aij) ∈ Nd×k be a non-negative integer matrix. We assume that
all the column sums of A are equal. The columns aj = (a1j , a2j , . . . , adj)

T of
A represent monomials θaj = θ

a1j

1 θ
a2j

2 · · · θadj

d in auxiliary unknowns θi that
correspond to model parameters. The monomials θaj all have the same degree.

The matrix A determines a monomial map

φA : Cd → Ck, θ 7→ (θa1 , θa2 , . . . , θak).

The closure of the image of this map is the affine toric variety VA associated to the
matrix A. The connection to tori arises from the fact that VA is the closure of the
image of the algebraic torus φA((C∗)d). If we restrict the map φA to the positive
reals Rd

>0, and consider the image in the probability simplex ∆k−1 = Rk
≥0/scaling,
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we get the log-linear modelMA. For this reason, log-linear models are sometimes
known as toric models. See Section 1.2 in [73] for more on toric models.

More generally, a variety is the solution set to a simultaneous system of
polynomial equations. If I is an ideal, then V (I) is the variety defined by the
vanishing of all polynomials in I. Often, we might need to be more explicit about
where the solutions to this system of equations lie, in which case we use the
notation V∗(I) to denote the solutions constrained by condition ∗. The different
types of solution spaces will be illustrated in Example 1.3.8.

Proposition 1.3.7. The lattice ideal IL for L = kerZ(A) is a prime ideal. It consists
of all homogeneous polynomials in R[p1, . . . , pk] that vanish on probability distri-
butions in the log-linear model specified by the matrix A. In other words, the toric
variety VA = V (IL) is the Zariski closure of the log-linear model MA.

The binomials corresponding to the Markov basis generate the ideal IL and
hence they cut out the toric variety VA = V (IL). However, often one does not
need the full Markov basis to define the toric variety set-theoretically. Finding
good choices of such partial bases is a delicate matter, as the following example
demonstrates.

Example 1.3.8. Let d = 3, k = 9 and consider the matrix

A =





p1 p2 p3 p4 p5 p6 p7 p8 p9

3 0 0 2 1 2 1 0 0
0 3 0 1 2 0 0 2 1
0 0 3 0 0 1 2 1 2



 (1.3.7)

and the associated monomial parametrization

φA : (θ1, θ2, θ3) 7→ (θ31, θ
3
2, θ

3
3, θ

2
1θ2, θ1θ

2
2, θ

2
1θ3, θ1θ

2
3, θ

2
2θ3, θ2θ

2
3). (1.3.8)

The minimal Markov basis of the lattice L = kerZ(A) consists of 17 vectors. These
vectors correspond to the set of all 17 quadratic binomials listed in (1.3.9), (1.3.10),
(1.3.11) and (1.3.12) below. We start out with the following six binomials:

{

p1p5 − p2
4, p2p4 − p2

5, p1p7 − p2
6, p3p6 − p2

7, p2p9 − p2
8, p3p8 − p2

9

}

. (1.3.9)

The vectors corresponding to (1.3.9) form a basis for the kernel of A as a vector
space over the rational numbers Q but they do not span L as a lattice over Z.
Nevertheless, a positive vector p = (p1, . . . , p9) is a common zero of these six
binomials if and only if p lies the image of a positive vector (θ1, θ2, θ3) under
the map φA. The same statement fails badly for non-negative vectors. Namely, in
addition to V≥0(IL), which is the closure of the log-linear model, the non-negative
variety of (1.3.9) has seven extraneous components, which are not in the closure of
the log-linear modelMA. One such component is the three-dimensional orthant

{

(p1, p2, p3, 0, 0, 0, 0, 0, 0) : p1, p2, p3 ∈ R≥0

}

⊂ V≥0

(

(1.3.9)
)

.
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We invite the reader to find the six others. These seven extraneous components
disappear again if we augment (1.3.9) by the following three binomials:

{

p1p2 − p4p5, p1p3 − p6p7, p2p3 − p8p9

}

. (1.3.10)

Hence the non-negative variety defined by the nine binomials in (1.3.9) and (1.3.10)
is the closure of the log-linear model. The same holds over the reals:

V≥0(IL) = V≥0

(

(1.3.9), (1.3.10)
)

and VR(IL) = VR

(

(1.3.9), (1.3.10)
)

.

On the other hand, the varieties over the complex numbers are still different:

VC(IL) 6= VC

(

(1.3.9), (1.3.10)
)

.

The complex variety of the binomials in (1.3.9) and (1.3.10) breaks into three
irreducible components, each of which is a multiplicative translate of the toric
variety VC(IL). Namely, if we start with any point p in VC(IL) and we replace p4

by ηp4 and p5 by η2p5, where η = − 1
2 +

√
3

2 i is a primitive cube root of unity,
then the new vector is no longer in VC(IL) but still satisfies the nine binomials in
(1.3.9) and (1.3.10). This is detected algebraically as follows. The binomial

p3
1p

3
8 − p3

5p
3
6 = (p1p8 − p5p6)(p1p8 − ηp5p6)(p1p8 − η2p5p6)

lies in the ideal of (1.3.9) and (1.3.10) but none of its factors does. To remove the
two extraneous complex components, we add six more binomials:

{

p1p8 − p5p6, p1p9 − p4p7, p2p6 − p4p8, p2p7 − p5p9,

p3p4 − p6p9, p3p5 − p7p8

}

. (1.3.11)

Let J denote the ideal generated by the 15 binomials in (1.3.9), (1.3.10) and
(1.3.11). The radical of the ideal J equals IL. This means that the complex variety
of J coincides with VC(IL). However, the ideal J is still strictly contained in IL.
To get the Markov basis, we still need to add the following two binomials:

{

p6p8 − p4p9 , p5p7 − p4p9

}

. (1.3.12)

The lattice L in this example has the following special property. Its Markov basis
consists of quadratic binomials, but no Gröbner basis of IL has only quadratic
elements. Using the software Gfan [63], one can easily check that L has precisely
54, 828 distinct reduced Gröbner bases. Each of them contains at least one bi-
nomial of degree three. For instance, the reduced Gröbner basis with respect to
the reverse lexicographic order consists of our 17 quadrics and the two cubics
p1p7p8 − p4p6p9 and p2

7p8 − p6p
2
9. �

We remark that we will see quadratic binomials of the form pipj − pkpl

again in Chapter 3, where they naturally correspond to conditional independence
relations. The ideal of such relations will make its first appearance in Definition
3.1.5. We close the current chapter by describing a simple log-linear model in which
the algebraic structure from Example 1.3.8 arises.



34 Chapter 1. Markov Bases

Example 1.3.9. Bobby and Sally play Rock-Paper-Scissors according to the fol-
lowing rules. One round consists of three games, and it is not permissible to make
three different choices in one round. Should this happen then the round of three
games is repeated until a valid outcome occurs. After n = 1000 rounds of playing,
Sally decides to analyze Bobby’s choices that can be summarized in the vector

u =
(

urrr, uppp, usss, urrp, urpp, urrs, urss, upps, upss

)

,

where urrr is the number of rounds in which Bobby picks rock three times, Urrp

is the number of rounds in which he picks rock twice and paper once, and so
on. Sally suspects that Bobby makes independent random choices picking rock
with probability θ1, paper with probability θ2, and scissors with probability θ3 =
1− θ1 − θ2. Let prrr, pppp, etc. be the probabilities of Bobby’s choices. Under the
hypothesis of random choices, the vector of rescaled probabilities

(3prrr, 3pppp, 3psss, prrp, prpp, prrs, prss, ppps, ppss)

is a point in the toric variety discussed in Example 1.3.8. Sally can thus use the
Markov basis given there to test her hypothesis that Bobby makes random choices.
All she needs to do is to run the Metropolis-Hastings Algorithm 1.1.13, and then
apply the hypothesis testing framework that was outlined in Section 1.1. Note,
however, that the rescaling of the probabilities leads to an adjustment of the hy-
pergeometric distribution in (1.1.10). In this adjustment we divide the numerator
of (1.1.10) by 3urrr+uppp+usss (or multiply by 3urrp+urpp+urrs+urss+upps+upss) and
apply the corresponding division (or multiplication) to each term in the sum in
the denominator. �



Chapter 2

Likelihood Inference

This chapter is devoted to algebraic aspects of maximum likelihood estimation and
likelihood ratio tests. Both of these statistical techniques rely on maximization
of the likelihood function, which maps the parameters indexing the probability
distributions in a statistical model to the likelihood of observing the data at hand.
Algebra enters the playing field in two ways. First, computing maximum likelihood
(ML) estimates often requires solving algebraic critical equations. Second, many
models can be described as semi-algebraic subsets of the parameter space of a nice
ambient model. In that setting algebraic techniques are helpful for determining
the behavior of statistical procedures such as the likelihood ratio test.

Section 2.1 begins with a discussion of the computation of maximum likeli-
hood estimates in discrete models, including the log-linear models encountered in
Chapter 1. The second half of Section 2.1 introduces Gaussian models. Section 2.2
presents algebraic techniques for the computation of maximum likelihood esti-
mates for discrete models that are defined implicitly, by polynomial equations in
the probabilities. In Section 2.3, we turn to likelihood ratio tests, which constitute
a general approach to solving hypothesis testing problems. A crucial ingredient to
this methodology is asymptotic distribution theory for large sample size, and we
discuss how the geometry of the parameter space affects the asymptotics.

2.1 Discrete and Gaussian Models

Let PΘ = {Pθ : θ ∈ Θ} be a statistical model with finite dimensional open pa-
rameter space Θ ⊆ Rd. We assume throughout that each distribution Pθ has
a density function pθ(x) with respect to some fixed measure ν. In other words,
Pθ(A) =

∫

A
pθ(x)dν(x) for all measurable sets A.

Let X(1), X(2), . . . , X(n) ∼ Pθ be independent random vectors that are iden-
tically distributed according to some unknown probability distribution Pθ ∈ PΘ.



36 Chapter 2. Likelihood Inference

The likelihood function is the function

Ln(θ) =

n
∏

i=1

pθ(X
(i)),

and the log-likelihood function is ℓn(θ) = logLn(θ). Often, we will write L(θ) and
ℓ(θ) when the dependence on the sample size n is not important.

Definition 2.1.1. The maximum likelihood estimator (ML estimator) of the un-
known parameter θ is the random variable

θ̂ = argmaxθ∈Θℓn(θ).

The maximum likelihood estimate of θ for the data x(1), . . . , x(n) is the realization
of θ̂ obtained by the substitution X(1) = x(1), . . . , X(n) = x(n).

The ML estimator θ̂ is the parameter value such that under the corre-
sponding distribution the likelihood of observing X(1), . . . , X(n) is maximal. When
X(1), . . . , X(n) are discrete random vectors, the density pθ(x) determines proba-

bilities, and θ̂ simply maximizes the probability of observing the data.
Classical results of probability theory guarantee that if the statistical model

PΘ satisfies suitable regularity conditions, then θ̂ is an asymptotically unbiased
estimator of the true parameter θ and has an asymptotic normal distribution as
n→∞; compare [95]. This asymptotic distribution theory of maximum likelihood
estimators parallels the theory of likelihood ratio tests that we will discuss in
Section 2.3. In that section, we will see how the asymptotics are related to the
geometry of parameter spaces.

The first place where algebra enters into likelihood theory is that in many
circumstances, the computation of maximum likelihood estimates is an algebraic
optimization problem. Indeed, if it happens that

log pθ(x) = log q1(θ) + q2(θ) (2.1.1)

where qi ∈ Q(θ) are rational functions of θ, then the maximum likelihood estimate

θ̂, if it exists, is the solution to a simultaneous system of algebraic equations in θ
called the likelihood equations or score equations.

Discrete Models. One ubiquitous situation where the condition of (2.1.1) is satis-
fied is for parametric discrete statistical models. In this setting, Θ is an open subset
of Rd (usually the interior of a polyhedron) and we have a rational parametriza-
tion map g : Θ → ∆k−1, the probability simplex. That is, each coordinate gi is
a rational function in θ, with rational coefficients. Thus, in the discrete case, the
maximum likelihood estimation problem amounts to maximizing the function

ℓ(θ) =

k
∑

i=1

ui log gi(θ),
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where ui = #
{

j : X(j) = i
}

are the coordinates in a vector or table of counts.
The likelihood equations in this discrete setting are the following d equations

k
∑

i=1

ui

gi
· ∂gi

∂θj
= 0 for j = 1, . . . , d. (2.1.2)

Note that the left hand side of each equation is a rational function in d unknowns.

Example 2.1.2 (Independence model). The parametrization of the independence
model MX⊥⊥Y is the map

g : ∆r−1 ×∆c−1 → ∆rc−1

gij(α, β) = αiβj ,

where αr = 1−∑r−1
i=1 αi and βc = 1−∑c−1

j=1 βj . (Recall Definition 1.1.3.) The data

is summarized in a table of counts u ∈ Nr×c. The log-likelihood function is

ℓ(α, β) =
∑

i,j

uij log(αiβj) =
∑

i

ui+ logαi +
∑

j

u+j log βj ,

where ui+ =
∑r

j=1 uij and u+j =
∑c

i=1 uij . The likelihood equations are

ui+

αi
− ur+

1−∑r−1
k=1 αk

= 0,

u+j

βj
− u+c

1−∑c−1
k=1 βk

= 0.

Clearing denominators and solving the resulting linear systems for α and β yields

α̂i =
ui+

u++
and β̂j =

u+j

u++
.

These then determine the table of expected counts with entries ûij = nα̂iβ̂j that
appeared in the chi-square statistic discussed in Section 1.1. �

The process of “clearing denominators”, which we cavalierly used in the pre-
vious example, can lead to serious difficulties when dealing with models more
complicated than the independence model. For a general parametric statistical
model for discrete random variables, the likelihood equations have the form of
(2.1.2). Here, clearing denominators gives the system of equations

k
∑

i=1

ui · g1 · · · ĝi · · · gk ·
∂gi

∂θj
= 0, j = 1, . . . , d, (2.1.3)

where ĝi denotes that the i-th element of the product is omitted. Suppose that θ
is a parameter vector such that gi(θ) = gj(θ) = 0. Then θ is a solution to (2.1.3)
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that is not a solution to the original likelihood equations. In particular, if the gi

are generic polynomials, then the solutions to the system (2.1.3) contain a variety
of codimension two which consists of extraneous solutions to the likelihood equa-
tions. While the rational functions that arise in statistics are rarely generic, the
introduction of extraneous solutions remains a considerable problem. To illustrate
this point, consider the following family of censored exponential distributions.

Example 2.1.3 (Random censoring). We consider families of discrete random vari-
ables that arise from randomly censoring exponential random variables. This ex-
ample describes a special case of a censored continuous time conjunctive Bayesian
network; see [15] for more details and derivations.

A random variable T is exponentially distributed with rate parameter λ > 0
if it has the (Lebesgue) density function

f(t) = λ exp(−λt) · 1{t≥0}, t ∈ R.

Let T1, T2, Ts be independent exponentially distributed random variables with rate
parameters λ1, λ2, λs, respectively. Suppose that instead of observing the times
T1, T2, Ts directly, we can only observe for i ∈ {1, 2}, whether Ti occurs before or
after Ts. In other words, we observe a discrete random variable with the four states
∅, {1}, {2} and {1, 2}, which are the elements i ∈ {1, 2} such that Ti ≤ Ts. This
induces a rational map g from the parameter space (0,∞)3 into the probability
simplex ∆3. The coordinates of g are the functions

g∅(λ1, λ2, λs) =
λs

λ1 + λ2 + λs

g{1}(λ1, λ2, λs) =
λ1

λ1 + λ2 + λs
· λs

λ2 + λs

g{2}(λ1, λ2, λs) =
λ2

λ1 + λ2 + λs
· λs

λ1 + λs

g{1,2}(λ1, λ2, λs) =
λ1

λ1 + λs
· λ2

λ2 + λs
· λ1 + λ2 + 2λs

λ1 + λ2 + λs
,

where g∅(λ) is the probability that T1 > Ts and T2 > Ts, and so on. Given counts
u0, u1, u2, and u12, the log-likelihood function is

ℓ(λ) = (u1 + u12) log λ1 + (u2 + u12) log λ2 + (u0 + u1 + u2) log λs

+ u12 log(λ1 + λ2 + 2λs)

− (u2 + u12) log(λ1 + λs)− (u1 + u12) log(λ2 + λs)

− (u0 + u1 + u2 + u12) log(λ1 + λ2 + λs).

Since the parametrization involves rational functions of degree zero, we can set
λs = 1, and then solve the likelihood equations in λ1 and λ2. These likelihood
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equations are

u1 + u12

λ1
+

u12

λ1 + λ2 + 2
− u2 + u12

λ1 + 1
− u0 + u1 + u2 + u12

λ1 + λ2 + 1
= 0

u2 + u12

λ2
+

u12

λ1 + λ2 + 2
− u1 + u12

λ2 + 1
− u0 + u1 + u2 + u12

λ1 + λ2 + 1
= 0.

In this case, clearing denominators always introduces three extraneous solutions
(λ1, λ2) = (−1,−1), (0,−1), (−1, 0). The following code for the software Singular
exemplifies how to compute all solutions to the equations with the denominators
cleared, and how to remove the extraneous solutions via the command sat. The
particular counts used for illustration are specified in the third line.

LIB "solve.lib";

ring R = 0,(l1,l2),dp;

int u0 = 3; int u1 = 5; int u2 = 7; int u12 = 11;

ideal I = (u1+u12)*(l1+l2+2)*(l1+1)*(l1+l2+1) +

(u12)*l1*(l1+1)*(l1+l2+1) -

(u2+u12)*l1*(l1+l2+2)*(l1+l2+1) -

(u0+u1+u2+u12)*l1*(l1+l2+2)*(l1+1),

(u2+u12)*(l1+l2+2)*(l2+1)*(l1+l2+1) +

(u12)*l2*(l2+1)*(l1+l2+1) -

(u1+u12)*l2*(l1+l2+2)*(l1+l2+1) -

(u0+u1+u2+u12)*l2*(l1+l2+2)*(l2+1);

ideal K = l1*l2*(l1+1)*(l2+1)*(l1+l2+1)*(l1+l2+2);

ideal J = sat(I,K)[1];

solve(J);

In particular, there are three solutions to the likelihood equations, and the max-
imum likelihood estimate is a degree 3 algebraic function of the data. In general,
the maximum likelihood estimate of λ2 is a root of the cubic polynomial

f(λ2) = (u0 + 2u1)(u1 − u2)λ
3
2

+ (u0u1 + u2
1 − 3u0u2 − 6u1u2 + u2

2 − 2u0u12 − 5u1u12 + u2u12)λ
2
2

+ (2u0 + 3u1 − 3u2 − 3u12)(u2 + u12)λ2

+ 2(u2 + u12)
2.

This polynomial was computed using a variation of the above code, working over
the field Q(u0, u1, u2, u12) that can be defined in Singular by

ring R = (0,u0,u1,u2,u12),(l1,l2),dp;

The leading coefficient reveals that the degree of f(λ2) is three for all non-zero
vectors of counts u away from the hyperplane defined by u1 = u2. �

An important step in the above calculation in Singular is the removal of ex-
traneous solutions via the command sat, which computes a saturation ideal. Sup-
pose that I is the ideal generated by the d likelihood equations, with denominators
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cleared. Let h be the product of all polynomials appearing in the denominators in
the rational equations (2.1.2). The solution set of the saturation

(I : h∞) :=
{

f ∈ R[θ] : fhi ∈ I for some i ∈ N
}

is precisely the closure of those points that are actual complex critical points of the
likelihood equations. In the typical situation that the number of complex critical
points is finite, saturation eliminates all extraneous solutions. Naive clearing of
denominators almost never works in algebraic statistics. The correct way to clear
denominators is to pass from I to (I : h∞).

A basic principle of algebraic geometry is that the number of solutions of a
system of polynomial or rational equations that depends rationally on parameters
is constant except on an algebraic subset of parameter space. In our case, the ra-
tional equations under investigation are the likelihood equations and the “varying
parameters” are the data. This leads to the following definition.

Definition 2.1.4. The maximum likelihood degree (ML degree) of a statistical model
satisfying condition (2.1.1) is the number of complex solutions to the likelihood
equations for generic data. For discrete random variables, this is the number of
complex solutions to the likelihood equations (2.1.2) for generic data u.

The notion of generic data means that the number of complex solutions to
the equations (2.1.2) is a constant for all data, except possibly for a subset that
lies on a lower-dimensional algebraic subset of the data space. We encountered
this in Example 2.1.3, where the ML degree is three but examining the final cubic
equation revealed that the number of critical points will drop to two in the event
that u1 = u2. Such symmetric data is not generic for that problem. As another
example, the ML degree of the model of independence is one.

Having maximum likelihood degree one can be expressed equivalently by
saying that the ML estimate is a rational function of the data. As we saw in Sec-
tion 1.2, the independence model is a special case of a more general family of mod-
els with especially nice properties, namely, the decomposable hierarchical models.
As explained next, the property of having ML degree one also holds for decom-
posable models. Results on maximum likelihood estimates for log-linear models
are usually simplest to state in terms of the ML probabilities p̂i or corresponding
frequencies (or expected counts) ûi = np̂i rather than log-linear parameters.

Proposition 2.1.5. Let A ∈ Nd×k and u ∈ Nk be a vector of positive counts. The
maximum likelihood estimate of the frequencies û in the log-linear model MA is
the unique non-negative solution to the simultaneous system of equations

Aû = Au and û ∈ V (IA).

This result was referred to as Birch’s Theorem in [73, §1.2]. The toric ideal
IA is the lattice ideal IL in Theorem 1.3.6, and V (IA) is its affine variety in Rk.
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Proof. Let b1, . . . , bl be a basis for kerA. The optimization problem we wish to
solve is the constrained optimization problem:

Maximize uT log v

subject to bTj log v = 0 for all j = 1, . . . , l, and

k
∑

i=1

vi = n.

Introducing l + 1 Lagrange multipliers λ1, . . . , λl, γ, the critical points are the
solutions to the k + l + 1 equations

ui

vi
+

l
∑

j=1

λj
bij
vi

+ γ = 0, bTj · log v = 0,

k
∑

i=1

vi = n.

The last two sets of conditions say that v belongs to the toric variety V (IA), and
that v is a vector of frequencies with sum n. In other words, v belongs to the
(rescaled) log-linear modelMA. Upon clearing denominators, the first conditions
say that u + λB = −γv. Applying A to both sides of this equation implies that
Au = Aû. The fact that there is a unique positive solution is a consequence of
the strict convexity of the likelihood function for positive u, which is a general
property of the class of exponential families that encompasses the discrete case
discussed here. See Definition 2.3.11 and [13, 19]. �

In order to describe the maximum likelihood estimate for a decomposable
model, we need the notion of a junction tree.

Definition 2.1.6. Let Γ be a decomposable simplicial complex. A junction tree is
a tree whose vertices are the facets of Γ, whose edges are labeled by separators in
Γ, and such that each edge splits the set of facets of Γ into the two subcomplexes
Γ1,Γ2 in the decomposition (Γ1, S,Γ2).

A junction tree can be obtained by successively using reducible decomposi-
tions to break a decomposable complex down to its constituent simplices. However,
the junction tree of a decomposable complex is not uniquely determined. For in-
stance, if Γ = [14][24][34], two junction trees are [14]−[24]−[34] and [14]−[34]−[24].
In both cases all edges correspond to the separator {4}.
Proposition 2.1.7. Let Γ be a decomposable simplicial complex. Let u be data such
that all marginals along cliques are positive. Let J(Γ) be a junction tree for Γ. Then
the maximum likelihood estimates of the i-th component of the table of frequencies
is given by the formula

ûi =

∏

F∈V (J(Γ))(u|F )iF
∏

S∈E(J(Γ))(u|S)iS

.

In particular, decomposable models have ML degree one.



42 Chapter 2. Likelihood Inference

Proof. By Proposition 2.1.5, it suffices to show that the indicated formula for
û satisfies that constraints AΓû = AΓu, and that (the normalized version of) û
belongs to the modelMΓ. Showing that AΓû = AΓu is equivalent to showing that
û and u have the same Γ-marginals. Each marginal can be checked by summing
up along the junction tree. The normalized version of û belongs to the model
because, by grouping each separator with a Γ-marginal that contains it, we deduce
the parametrized form for a distribution inMΓ. �

As an example in which Proposition 2.1.7 applies, consider the 4-chain Γ =
[12][23][34], which has a unique junction tree. The formula for the maximum like-
lihood estimates states that

ûijkl =
uij++ · u+jk+ · u++kl

u+j++ · u++k+
.

For the complex Γ = [14][24][34] mentioned above, we get

ûijkl =
ui++l · u+j+l · u++kl

(u+++l)2

regardless of which junction tree is used.
In non-decomposable hierarchical log-linear models, however, the ML degree

is no longer equal to one.

Example 2.1.8 (No 3-way interaction). Let Γ = [12][13][23] be the simplicial com-
plex for the model of no 3-way interaction, and let r1 = r2 = r3 = 2. Using
Proposition 2.1.5 and the fact that this model is the degree four hypersurface

p111p122p212p221 − p112p121p211p222 = 0,

we see that the maximum likelihood estimate of the frequencies û can be obtained
by solving the following equation in one unknown δ:

(u111+δ)(u122+δ)(u212+δ)(u221+δ)−(u112−δ)(u121−δ)(u211−δ)(u222−δ) = 0,

in which case, û = u+ δ · (1,−1,−1, 1,−1, 1, 1,−1). In particular, this shows that
the model of no 3-way interaction has ML degree 3 for binary random variables. �

For more general hierarchical log-linear models there are no closed form ex-
pressions in terms of radicals for the maximum likelihood estimates. Equivalently,
the maximum likelihood degree is usually more than five, and the Galois group is
usually the full symmetric group (see e.g. [51, Proposition 3]).

Although there is no closed-form formula for maximum likelihood estimates
for non-decomposable log-linear models, the log-likelihood function is convex for
these models, and any hill-climbing algorithm can be used to compute the ML
estimates. One widely-used method is the iterative proportional scaling algorithm.
We now describe this algorithm for a general log-linear model with matrix A that
has all column sums equal to a. Recall that φA : Rd → Rk is the monomial
parametrization whose image is the log-linear modelMA.
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Algorithm 2.1.9 (Iterative proportional scaling).
Input: A ∈ Nd×k, a table of counts u ∈ Nk, tolerance ǫ > 0.
Output: Expected counts û.
Step 1: Initialize vi = ‖u‖1 · 1

k for i = 1, . . . , k.
Step 2: While ‖Av −Au‖1 > ǫ do:

For all i ∈ [k], set vi := vi ·
(

φi(Au)
φi(Av)

)1/a

.

Step 3: Output û = v.

The proof of convergence of iterative proportional scaling is due to Darroch
and Ratcliff [27]. For specialized log-linear models, like hierarchical models, it is
easy to derive, and show convergence of, variants of the algorithm. These variants
depend on rescaling the joint distribution “one marginal at a time.”

Gaussian models. Aside from statistical models for discrete random variables,
another situation where the algebraic structure of the log-likelihood function arises
is in the case of a multivariate normal random vector. An m-dimensional random
vector X ∈ Rm is distributed according to the multivariate normal distribution
N (µ,Σ) if it has the (Lebesgue) density function

pµ,Σ(x) =
1

(2π)m/2(detΣ)1/2
exp

{

−1

2
(x− µ)T Σ−1(x− µ)

}

, x ∈ Rm,

where the parameters are a real vector µ ∈ Rm and a symmetric and positive
definite matrix Σ. The multivariate normal distribution is sometimes also called
the Gaussian distribution. The parameter space for the model of all m-dimensional
multivariate normal distributions is the set Rm × PDm, where PDm is the cone
of m×m real symmetric positive definite matrices.

The one-dimensional normal distribution is the familiar “bell curve” from
Definition 1.1.5, and the m-dimensional normal random vectors are higher dimen-
sional generalizations of this familiar example. The mean vector µ determines the
center of the distribution and the covariance matrix Σ, which defines the elliptical
contours of the density function, gives information about the distribution’s spread.

A Gaussian model is a statistical model comprising multivariate normal dis-
tributions. We will typically consider models in the form

PΘ = {N (µ,Σ) : θ = (µ,Σ) ∈ Θ},

where Θ ⊆ Rm×PDm. The saturated Gaussian model has Θ = Rm×PDm. Ignor-
ing the normalizing constant, the log-likelihood function for a Gaussian model is

ℓn(µ,Σ) = −n
2

log det Σ− 1

2
tr

(

Σ−1 ·
n
∑

i=1

(X(i) − µ)(X(i) − µ)T

)

. (2.1.4)
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The maximum likelihood estimators in the saturated Gaussian model are

µ̂ = X̄ =
1

n

n
∑

i=1

X(i) and Σ̂ = S =
1

n

n
∑

i=1

(X(i) − X̄)(X(i) − X̄)T .

Here X̄ and S are the sample mean and sample covariance matrix, respectively.
The ML estimators can be derived by rewriting the log-likelihood function in
(2.1.4) as

ℓn(µ,Σ) = −n
2

log det Σ− n

2
tr (SΣ−1)− n

2
(X̄ − µ)T Σ−1(X̄ − µ), (2.1.5)

which can be achieved by writing X(i) − µ = (X(i) − X̄) − (X̄ − µ), multiplying
out the products and observing that the n differences X(i) − X̄ sum to zero.

We are interested in the algebraic solution of the maximum likelihood estima-
tion problem for submodels Θ ⊆ Rm ×PDm. For general subsets of this type, the
optimization problem is complicated. However, in the following special situation,
the problem reduces to a familiar one. Let Idm denote the m×m identity matrix.

Proposition 2.1.10. Suppose that Θ = Θ1 × {Idm} is the parameter space of a
Gaussian model. Then the maximum likelihood estimate of the mean parameter µ̂
is the point in Θ1 that is closest to the sample mean X̄ in the L2-norm.

Proof. When Σ is the identity matrix Idm, the log-likelihood function reduces to

ℓn(µ) = −n
2

trS − n

2
(X̄ − µ)T (X̄ − µ)

= −n
2

trS − n

2
‖µ− X̄‖22.

Hence, maximizing ℓn(µ) over Θ1 is equivalent to minimizing ‖µ−X̄‖2 over Θ1. �

Example 2.1.11. Consider the setup of Proposition 2.1.10 and suppose that Θ1 is
a parametric rational curve given by a polynomial parameterization g : R→ Rm,
where the maximal degree of any of the polynomial coordinate functions gi is d.
Then the likelihood equation obtained from the partial derivatives of ℓn(µ) is a
polynomial equation of degree 2d− 1:

∂ℓn(g(γ)

∂γ
=

n
∑

i=1

(

X̄i − gi(γ)
)∂gi

∂γ
(µ).

In particular, for a generic such map, the model will have ML degree equal to
2d− 1, and thus is always guaranteed to have a real critical point. �

A situation that occurs frequently is that the Gaussian parameter space has
the form Rm ×Θ2. In this case, the optimization problem also simplifies:
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Proposition 2.1.12. Suppose that Θ = Rm ×Θ2. Then µ̂ = X̄ and Σ̂ is the maxi-
mizer of

ℓn(Σ) = −n
2

log det Σ− n

2
tr(SΣ−1)

in the set Θ2.

Proof. The inverse Σ−1 of the positive definite matrix Σ is also positive definite.
Hence (X̄ − µ)T Σ−1(X̄ − µ) ≥ 0 and equality holds if and only if µ = X̄. �

The inverse K = Σ−1 of the covariance matrix Σ is known as the concentra-
tion matrix or precision matrix. Often it is more convenient to use K instead of
Σ when parametrizing a Gaussian model. Observing that log det Σ = − log detK
we see that the likelihood function ℓn(Σ) becomes the strictly convex function

PDm → R, K 7→ n

2
log detK − n

2
tr (SK). (2.1.6)

It is thus easier to formulate the algebraic solution to the likelihood equations
in K = Σ−1. We illustrate this in a simple example from the class of undirected
Gaussian graphical models, which will be introduced in Chapter 3.

Example 2.1.13. Let Θ2 =
{

Σ ∈ PD4 : (Σ−1)13 = (Σ−1)24 = 0
}

. Then the set
Θ = Rm×Θ2 defines an undirected Gaussian graphical model, namely, the model
associated to the cyclic graph with vertex set V = [4] and edges 12, 23, 34, 14.
When parametrizing the model in terms of the concentration matrix K = Σ−1,
the likelihood equations obtained from the partial derivatives of the function in
(2.1.6) have the form

1

detK
· ∂

∂kij
detK − (2− δij)sij = 0,

where δij is the Kronecker delta. The following code in Singular computes all the
complex critical solutions to these likelihood equations for some randomly chosen
sample covariance matrix.

LIB "solve.lib";

ring R = 0,(k11,k12,k14,k22,k23,k33,k34,k44), dp;

matrix K[4][4] = k11,k12,0,k14,

k12,k22,k23,0,

0,k23,k33,k34,

k14,0,k34,k44;

intmat X = random(31,4,4);

intmat S = X*transpose(X);

ideal I = jacob(det(K))-det(K)*jacob(trace(K*S));

ideal J = sat(I,det(K))[1];

solve(J);



46 Chapter 2. Likelihood Inference

In particular, there are five solutions to the likelihood equations, exactly one of
which lies in the positive definite cone. This Singular calculation shows that the
Gaussian 4-cycle has maximum likelihood degree five. A conjectured formula for
the maximum likelihood degree of the Gaussian m-cycle appears in Problem 7.4.

Note that when defining the ideal I, we cleared the denominator detK from
the likelihood equations. Running the command dim(std(I)) shows that the space
of extraneous solutions introduced is a five-dimensional variety in this case. �

The Gaussian model associated with a more general undirected graph pre-
scribes zero entries in the concentration matrix at the non-edges of the graph, and
the likelihood equations are of the following form.

Theorem 2.1.14. Let G = (V,E) be an undirected graph with edge set E. Let

Θ2 = {Σ ∈ PDm : (Σ−1)ij = 0 if ij /∈ E}.

The maximum likelihood estimate of Σ given a positive definite sample covariance
matrix S, is the unique positive definite matrix Σ̂ such that

Σ̂ij = Sij for all ij ∈ E and
(

Σ̂−1
)

ij
= 0 for all ij /∈ E.

Proof. In terms of the concentration matrix K, the critical equations are

1

detK
· ∂

∂kij
detK = (2− δij)sij for ij ∈ E or i = j.

The left hand side is the cofactor expansion for (K−1)ij = Σ̂ij . �

The above theorem clarifies that maximum likelihood estimation in Gaussian
undirected graphical models corresponds to a positive definite matrix completion
problem, and the ML degree of the model is the algebraic complexity of this
completion problem. Problem 7.4 states a concrete question about this degree.

2.2 Likelihood Equations for Implicit Models

In this section we consider the problem of computing maximum likelihood esti-
mates in an algebraic statistical model for discrete data that is given implicitly by
a system of homogeneous polynomial equations. Our exposition assumes some fa-
miliarity with projective varieties and their singularities. Some of the background
material for this section can be found in the undergraduate textbook by Cox,
Little and O’Shea [25].

Let P be a homogeneous prime ideal in the polynomial ring R[p1, . . . , pk] and
V (P ) its variety in the complex projective space Pk−1. The set of points in Pk−1

that have positive real coordinates is identified with the open probability simplex

int(∆k−1) =
{

(p1, . . . , pk) ∈ Rk : p1, . . . , pk > 0 and p1 + · · ·+ pk = 1
}

.
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Our statistical model is the intersection Vint(∆)(P ) of the projective variety V (P )
with the simplex int(∆k−1). To avoid degenerate situations, we shall further as-
sume that V (P ) is the Zariski closure of Vint(∆)(P ). This hypothesis is easy to
satisfy; for instance, it holds when Vint(∆)(P ) contains a regular point of V (P ).

The data are given by a non-negative integer vector u = (u1, . . . , uk) ∈ Nk,
and we seek to find a model point p ∈ Vint(∆)(P ) that maximizes the likelihood
of observing these data. Ignoring the multinomial coefficient, this amounts to
maximizing the likelihood function

L(p) =
pu1
1 · · · puk

k

(p1 + · · ·+ pk)n
, (2.2.1)

where n = ‖u‖1 = u1 + · · · + uk is the sample size. The denominator in (2.2.1)
equals one on the simplex ∆k−1, so it appears to be redundant. However, we prefer
to write L(p) as a ratio of two homogeneous polynomials of the same degree as in
(2.2.1). In this form, the likelihood function L(p) becomes a rational function of
degree zero, and so is a function on projective space Pk−1. This allows us to use
projective algebraic geometry [25, §8] to study its restriction to the variety V (P ).

Let Vreg(P ) denote the set of regular points on the projective variety V (P ).
This is the complement of the singular locus of V (P ). Recall that the singular
locus is the set of points such that the Jacobian matrix of a minimal generating
set of P fails to have the maximal rank. For a discussion of singularities, with
emphasis on the statistical relevance of their tangent cones and their resolutions,
we refer the reader to Sections 2.3 and 5.1.

We consider the following open subset of our projective variety V (P ) ⊂ Pk−1:

U = Vreg(P ) \ V
(

p1 · · · pk(p1 + · · ·+ pk)
)

,

Definition 2.2.1. The likelihood locus Zu is the set of all points p ∈ U such that
the gradient dL(p) lies in the tangent space of V (P ) at p.

Note that the tangent space is the row space of the Jacobian matrix modulo
the span of the vector (1, 1, . . . , 1). Thus the likelihood locus Zu consists of all
critical points of the likelihood function (2.2.1). We will show how to compute
the ideal of Zu, using Gröbner bases methods, with the aim of finding the global
maximum of L(p) over the model Vint(∆)(P ).

While most statistical models are parametric in nature, the usefulness of a
constrained optimization approach to the likelihood equations comes from the fact
that algebraic parametrizations can be implicitized. We will show in two examples
how the prime ideal P of a model can be derived from a given parametrization.

Example 2.2.2 (Random censoring revisited). In this example, we explain how to
obtain the implicit equation of the random censoring model from Example 2.1.3.



48 Chapter 2. Likelihood Inference

Recall that this model was given by the rational parametrization

p0 =
λs

λ1 + λ2 + λs

p1 =
λ1

λ1 + λ2 + λs
· λs

λ2 + λs

p2 =
λ2

λ1 + λ2 + λs
· λs

λ1 + λs

p12 =
λ1

λ1 + λs
· λ2

λ2 + λs
· λ1 + λ2 + 2λs

λ1 + λ2 + λs
.

The model is a parametrized surface in the probability tetrahedron ∆3. We com-
pute the implicit equation of this surface using the following piece of code for the
computer algebra system Macaulay2:

S = frac(QQ[t,l1,l2,ls]);

R = QQ[p0,p1,p2,p12];

f = map(S,R,matrix{{

t*ls/(l1+l2+ls),

t*l1*ls/((l1+l2+ls)*(l2+ls)),

t*l2*ls/((l1+l2+ls)*(l1+ls)),

t*l1*l2*(l1+l2+2*ls)/((l1+ls)*(l2+ls)*(l1+l2+ls))}});

P = kernel f

The ideal P is a principal ideal. It is generated by one cubic polynomial:

P =
〈

2p0p1p2 + p2
1p2 + p1p

2
2 − p2

0p12 + p1p2p12

〉

.

Note that the extra parameter t is used in the parametrization to produce a homo-
geneous polynomial in the output. Without the parameter t, the extra polynomial
p0 + p1 + p2 + p12 − 1 appears as a generator of P .

In Example 2.1.3 we showed, using the parametrization, that the ML degree
of this model is equal to three. This degree could have been computed, alterna-
tively, using the implicit equation just found and Algorithm 2.2.9 below. �

Example 2.2.3 (The cheating coin flipper). Here we illustrate the implicit approach
to maximum likelihood estimation for a simple mixture model with k = 5. In a
game of chance, a gambler tosses the same coin four times in a row, and the
number of times heads come up are recorded. The possible outcomes are thus 0,
1, 2, 3, or 4. We observe 242 rounds of this game, and we record the outcomes
in the data vector u = (u0, u1, u2, u3, u4) ∈ N5, where ui is the number of trials
with i heads. The sample size is n = u0 + u1 + u2 + u3 + u4 = 242.

Suppose we suspect that the gambler uses two biased coins, one in each of
his sleeves, and he picks one of his two coins with the same probability before
each round. We are led to consider the model that is the mixture of a pair of
four-times repeated Bernoulli trials. The mixing parameter π is the probability
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that the gambler picks the coin in his left sleeve. Let α and β be the probability
of head with the left and right coin, respectively. Then the model stipulates that
the probabilities of the five outcomes are

p0 = π(1− α)4 + (1− π)(1− β)4,

p1 = 4πα(1− α)3 + 4(1− π)β(1− β)3,

p2 = 6πα2(1− α)2 + 6(1− π)β2(1− β)2,

p3 = 4πα3(1− α) + 4(1− π)β3(1− β),

p4 = πα4 + (1− π)β4.

The polynomial pi represents the probability of seeing i heads in a round. The
likelihood of observing the data u in 242 trials equals

242!

u0!u1!u2!u3!u4!
· pu0

0 pu1
1 pu2

2 pu3
3 pu4

4 . (2.2.2)

Maximum likelihood estimation means maximizing (2.2.2) subject to 0 < π,α, β <
1. The likelihood equations for this unconstrained optimization problem have in-
finitely many solutions: there is a line of critical points in the α = β plane.

In order to avoid such non-identifiability issues, we replace the given para-
metric model by its implicit representation. In order to derive this, we introduce
the Hankel matrix

Q =





12p0 3p1 2p2

3p1 2p2 3p3

2p2 3p3 12p4



 ,

and we parametrize Q in matrix form as

Q = 12π





(1− α)2

α(1−α)
α2









(1− α)2

α(1−α)
α2





T

+ 12(1− π)





(1− β)2

β(1−β)
β2









(1− β)2

β(1−β)
β2





T

.

This is a sum of two rank one matrices, so we have det(Q) = 0, for all distributions
in the model. Since the model is three-dimensional, and det(Q) is an irreducible
polynomial, it follows that the homogeneous prime ideal P is generated by det(Q).

This analysis shows that we can compute maximum likelihood estimates for
this mixture model by solving the following constrained optimization problem:

Maximize pu0
0 pu1

1 pu2
2 pu3

3 pu4
4

subject to det(Q) = 0 and p0 + · · ·+ p4 = 1.
(2.2.3)

For an explicit numerical example, suppose that the data vector equals

u = (51, 18, 73, 25, 75).

We compute the maximum likelihood estimates by applying Algorithm 2.2.9 below
to the principal ideal P = 〈det(Q)〉. The result shows that the ML degree of this
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model is 12, that is, the exact solution of problem (2.2.3) leads to an algebraic
equation of degree 12.

The likelihood locus Zu consists of 12 points over the complex numbers.
Six of these critical points are real and have positive coordinates, so they lie in
Vint(∆)(P ). Among the six points, three are local maxima. The global optimum is
the point

p̂ = (p̂0, p̂1, p̂2, p̂3, p̂4) =
(

0.1210412, 0.2566238, 0.2055576, 0.1075761, 0.309201
)

.

Using a numerical optimizer in the parameter space (π, α, β) we can check that p̂
is indeed in the image of the model parametrization and thus statistically relevant.
Note that each coordinate of p̂ is an algebraic number of degree 12 over Q. For
instance, the first coordinate 0.1210412... is a root of the irreducible polynomial

8638005114701922596850958487028498432 p̂12
0

−4546027854418874444505674152780234752 p̂11
0

−11647998233194091831445882951165542400 p̂10
0

+4436190742596132515699254438021849088 p̂9
0

+1502357076410733895538643771710150656 p̂8
0

−709119707855374420748705486616351616 p̂7
0

−3010034765409286729565099406988032 p̂6
0

+30532552890157402334003506591771152 p̂5
0

−3827418898307918709555185551156944 p̂4
0

−11775113598233305143172316826936 p̂3
0

+29483926989826361209370175125988 p̂2
0

−1856378195949407077223944515045 p̂0

+35469872083524480811866147816 = 0.

Exact computation of maximum likelihood estimates involves the analysis of such
equations. �

Returning to our general discussion, suppose that the given prime ideal P is
generated by s homogeneous polynomials in the k unknown probabilities:

P = 〈g1, g2, . . . , gs〉 ⊆ R[p1, . . . , pk].

This homogeneous ideal represents the statistical model M = Vint(∆)(P ). We
define the augmented Jacobian matrix of format (s+ 1)× k as follows:

J(p) =

















p1 p2 · · · pk

p1
∂g1

∂p1
p2

∂g1

∂p2
· · · pk

∂g1

∂pk

p1
∂g2

∂p1
p2

∂g2

∂p2
· · · pk

∂g2

∂pk

...
...

. . .
...

p1
∂gs

∂p1
p2

∂gs

∂p2
· · · pk

∂gs

∂pk

















.
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Using Lagrange multipliers for our constrained optimization problem, we find:

Proposition 2.2.4. A point p ∈ U is in the likelihood locus Zu if and only if the
data vector u lies in the row span of the augmented Jacobian matrix J(p).

Proof. Let Vaff be the affine subvariety of Ck defined by the ideal P + 〈∑ pi− 1〉.
The Jacobian of Vaff is the Jacobian matrix of P augmented by a row of ones. The
likelihood function L has no poles or zeros on U , so the critical points of L are
the same as the critical points of log(L) =

∑

i ui log pi on Vaff . A point p ∈ U is
a critical point of log(L) if and only if dlog(L)(p) = (u1/p1, . . . , uk/pk) is in the
row span of the Jacobian of P + 〈∑ pi − 1〉. As pi 6= 0 on the open set U , this
condition is equivalent to u being in the row span of J(p). �

The following corollary can be derived from Proposition 2.2.4.

Corollary 2.2.5. There is a dense (Zariski) open subset V ⊂ Rk, such that for
every data vector u ∈ V, the likelihood locus Zu consists of finitely many points
and the number of these critical points is independent of u. It is called the (implicit)
maximum likelihood degree (ML degree) of the model, or of the ideal P .

The adjective “Zariski” in the corollary implies that V must contain almost
all u ∈ Nk. The geometric idea behind this corollary is to consider the incidence
variety consisting of pairs (p, u) where p ∈ Zu. This incidence variety is k − 1-
dimensional, and it is the projectivization of a vector bundle over U . From this it
follows that Zu is either empty or finite for generic u. See Proposition 3 in [61].

Note that the implicit ML degree in Corollary 2.2.5 can differ from the value
of the parametric ML degree from Definition 2.1.4 even for the same model. The
implicit ML degree is usually smaller than the parametric ML degree. This dis-
crepancy arises because the implicit ML degree is insensitive to singularities and
because the parameterization might not be one-to-one.

We next give a general bound on the ML degree of a model in terms of the
degrees of the generators of P = 〈g1, g2, . . . , gs〉. We set di = degree(gi) and

D :=
∑

i1+···+is≤k−s−1

di1
1 d

i2
2 · · · dis

s .

Here the sum is over all non-negative integer vectors (i1, . . . , is) whose coordinate
sum is at most k − s − 1. It is tacitly assumed that s < k. If P has k or more
generators then we can obtain a bound by replacing P by a suitable subideal. The
following result appeared as Theorem 5 in [61].

Theorem 2.2.6. The ML degree of the model P is bounded above by Dd1d2 · · · ds.
Equality holds when the generators g1, g2, . . . , gs of P have generic coefficients.

Example 2.2.7. Suppose that k = 5, s = 1 and d1 = 3. Then we have D = 1+3+
32+33 = 40 and the bound in Theorem 2.2.6 equals Dd1 = 120. Any model that is
a cubic hypersurface in ∆4 has ML degree at most 120. This bound is attained by
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generic hypersurfaces. However, cubic threefolds arising in statistical applications
are very special varieties, and their ML degree are usually much smaller. For
instance, for the coin model in Example 2.2.3 it is 12. �

Example 2.2.8. Suppose that s = k − 1 and the variety V (P ) is finite. Theorem
2.2.6 reduces to Bézout’s Theorem since D = 1 and the bound is d1 · · · dk−1. �

Proposition 2.2.4 translates into an algorithm for computing the radical ideal
Iu of the likelihood locus Zu. Once the ideal Iu has been constructed, subsequent
numerical methods can be used to compute all zeros of Iu and to identify the
global maximum of the likelihood function L(p). The following algorithm can be
implemented in any computer algebra system that incorporates Gröbner bases.

Algorithm 2.2.9 (Computing the likelihood ideal).
Input: A homogeneous ideal P ⊂ R[p1, . . . , pk] and a data vector u ∈ Nk.
Output: The likelihood ideal Iu for the model Vint(∆)(P ) and the data u.
Step 1: Compute c = codim(P ) and let Q be the ideal of (c+ 1)× (c+ 1)-minors
of the Jacobian matrix (∂gi/∂pj). (The ideal Q defines the singular locus of P )
Step 2: Compute the kernel of the augmented Jacobian matrix J(p) over the quo-
tient ring R[V ] = R[p1, . . . , pk]/P . This kernel is a submodule M of R[V ]k.

Step 3: Let I ′u be the ideal in R[V ] which is generated by the polynomials
∑k

i=1 uiφi,
where (φ1, . . . , φr) runs over a set of generators for the module M .
Step 4: Compute the likelihood ideal from I ′u by saturation as follows:

Iu :=
(

Iu : (p1 · · · pn(p1 + · · ·+ pn)Q)∞
)

.

We refer to [61] for details on the practical implementation of the algo-
rithm, including the delicate work of computing in the quotient ring R[V ] =
R[p1 . . . , pk]/P . A small test implementation is shown at the very end of this
section.

We note that the ML degree of the model Vint(∆)(P ) is computed by running
Algorithm 2.2.9 on randomly chosen data u. The ML degree then equals the degree
of the zero-dimensional ideal Iu after Step 4. Here is an example to show this.

Example 2.2.10. We present a small instance of the context-specific independence
(CSI) model introduced by Georgi and Schliep in [52]. Let n = 7 and consider the
following parametrized mixture model for three binary random variables:

p111 = π1 α1β1γ2 + π2 α1β2γ1 + π3 α2β1γ1

p112 = π1 α1β1(1− γ2) + π2 α1β2(1− γ1) + π3 α2β1(1− γ1)
p121 = π1 α1(1− β1)γ2 + π2 α1(1− β2)γ1 + π3 α2(1− β1)γ1

p122 = π1 α1(1− β1)(1− γ2) + π2 α1(1− β2)(1− γ1) + π3 α2(1− β1)(1− γ1)
p211 = π1 (1− α1)β1γ2 + π2 (1− α1)β2γ1 + π3 (1− α2)β1γ1

p212 = π1 (1− α1)β1(1− γ2) + π2 (1− α1)β2(1− γ1) + π3 (1− α2)β1(1− γ1)
p221 = π1 (1− α1)(1− β1)γ2 + π2 (1− α1)(1− β2)γ1 + π3 (1− α2)(1− β1)γ1

p222 = π1 (1−α1)(1−β1)(1−γ2) + π2 (1−α1)(1−β2)(1−γ1) + π3 (1−α2)(1−β1)(1−γ1)
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where π3 = (1 −π1−π2). This parametrization is non-identifiable because it has
eight parameters but the model is only six-dimensional. It is a hypersurface of
degree four in the simplex ∆7. Its defining polynomial is the hyperdeterminant

p2
111p

2
222 + p2

121p
2
212 + p2

122p
2
211 + p2

112p
2
221

−2p121p122p211p212 − 2p112p122p211p221 − 2p112p121p212p221 − 2p111p122p211p222

−2p111p121p212p222 − 2p111p112p221p222 + 4p111p122p212p221 + 4p112p121p211p222.

Applying Algorithm 2.2.9 to the principal ideal generated by this polynomial, we
find that the hyperdeterminantal model of format 2×2×2 has ML degree 13. �

A key feature of Algorithm 2.2.9 is that Step 1 and Step 2 are independent of
the data u, so they need to be run only once per model. Moreover, these prepro-
cessing steps can be enhanced by applying the saturation of Step 4 already once
at the level of the module M , i.e., after Step 2 one can replace M by

M̃ :=
(

M : (p1 · · · pk(
∑

pi) ·Q)∞
)

= R[V ]g·p1···pk(
P

pi) ·M ∩ R[V ]k,

for suitable g ∈ Q. Given any particular data vector u ∈ Nk, one can then use
either M or M̃ in Step 3 to define I ′u. The saturation in Step 4 requires some
tricks in order to run efficiently. In the numerical experiments in [61], for many
models and most data, it sufficed to saturate only once with respect to a single
polynomial, as follows:

Step 4’: Pick a random (c + 1) × (c + 1)-submatrix of J(P ) and let h be its
determinant. With some luck, the likelihood ideal Iu will be equal to (I ′u : h).

Recall that our objective is to compute maximum likelihood estimates.

Algorithm 2.2.11 (Computing the local maxima of the likelihood function).
Input: The likelihood ideal Iu for the model Vint(∆)(P ) and the data u.
Output: The list of all local maxima of the likelihood function L(p) on Vint(∆)(P ).

Step 1: Assuming that dim(Iu) = 0, compute the solution set Zu of Iu numerically.
For each positive solution p∗ ∈ Zu ∩ Vint(∆)(P ) perform the following steps:

Step 2: Solve the linear system J(p∗)T · λ = u to get Lagrange multipliers λ∗i . The

Lagrangian L := log(L(p))−∑k
i=1 λ

∗
i gi(p) is a function of p.

Step 3: Compute the Hessian H(p) of the Lagrangian L(p). Compute the restriction
of H(p∗) to the tangent space kernel(J(p∗)) of V (P ) at the point p∗.
Step 4: If the restricted H(p∗) in Step 3 is negative definite, then output p∗ with
its log-likelihood log(L(p∗)) and the eigenvalues of the restricted H(p∗).

We close this section by presenting a piece of Singular code which imple-
ments Algorithm 2.2.9 in its most basic version. This code is not optimized but it
can be used to experiment with small models. The model is specified by its ideal
P, and the data are specified by an 1× k-matrix u. We here chose the hyperdeter-
minantal model in Example 2.2.10:
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LIB "solve.lib";

ring R = 0, (p111,p112,p121,p122,p211,p212,p221,p222), dp;

ideal P = p111^2*p222^2+p121^2*p212^2+p122^2*p211^2+p112^2*p221^2

-2*p121*p122*p211*p212-2*p112*p122*p211*p221-2*p112*p121*p212*p221

-2*p111*p122*p211*p222-2*p111*p121*p212*p222-2*p111*p112*p221*p222

+4*p111*p122*p212*p221+4*p112*p121*p211*p222 ; // = the model

matrix u[1][8] = 2,3,5,7,11,13,17,19; // = the data

matrix J = jacob(sum(maxideal(1))+P) * diag(maxideal(1));

matrix I = diag(P, nrows(J));

module M = modulo(J, I);

ideal Iprime = u * M;

int c = nvars(R) - dim(groebner(P));

ideal Isat = sat(Iprime, minor(J, c+1))[1];

ideal IP = Isat, sum(maxideal(1))-1;

solve(IP);

The program outputs all 13 critical points of the likelihood function for the data
vector u = (u111, u112, . . . , u222) = (2, 3, 5, 7, 11, 13, 17, 19).

2.3 Likelihood Ratio Tests

Let X(1), . . . , X(n) be independent random vectors that all have the same distri-
bution, which is assumed to be unknown but in the statistical model

PΘ = {Pθ : θ ∈ Θ}. (2.3.1)

The parameter space Θ is assumed to be a subset of Rk. Suppose that using
the information provided by the random sample X(1), . . . , X(n), we wish to test
whether or not the true distribution Pθ belongs to some submodel of PΘ that is
given by a subset Θ0 ⊂ Θ. Expressed in terms of the parameter θ, we wish to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ \Θ0. (2.3.2)

In this section we explain the connection between the geometry of Θ0 and the
behavior of a particular approach to testing (2.3.2), namely, the likelihood ratio
test from Definition 2.3.1. We assume that the distributions in PΘ all have densities
pθ(x) with respect to some fixed measure. This ensures that we can define the log-
likelihood function of the model PΘ in the familiar form

ℓn(θ) =

n
∑

i=1

log pθ(X
(i)). (2.3.3)
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Definition 2.3.1. The likelihood ratio statistic for the testing problem in (2.3.2) is

λn = 2

(

sup
θ∈Θ

ℓn(θ)− sup
θ∈Θ0

ℓn(θ)

)

.

The likelihood ratio test rejects the null hypothesis H0 if λn is “too large.”

Since Θ0 ⊂ Θ, the likelihood ratio statistic λn is always non-negative. The
rationale behind the likelihood ratio test is that large values of λn present evidence
against H0 because they indicate that the observed values are much more likely
to occur if the true parameter θ is in Θ as opposed to Θ0.

We remark that exact evaluation of the likelihood ratio statistic λn requires
the solution of maximum likelihood estimation problems, as discussed in Sec-
tions 2.1 and 2.2.

Example 2.3.2. Suppose the model PΘ is the normal distribution family

{N (θ, Idk) : θ ∈ Rk},

where Idk is the k × k-identity matrix. The parameter space is Θ = Rk. The
density of N (θ, Idk) is

pθ(x) =
1

√

(2π)k
exp

{

−1

2
‖x− θ‖22

}

,

and, ignoring the normalizing constant, the log-likelihood function of the model is

ℓn(θ) = −1

2

n
∑

i=1

‖X(i) − θ‖22.

Let

X̄n =
1

n

n
∑

i=1

X(i)

be the sample mean. Then

ℓn(θ) = −n
2
‖X̄n − θ‖22 −

1

2

n
∑

i=1

‖X(i) − X̄n‖22. (2.3.4)

Since we take Θ = Rk, the likelihood ratio statistic for (2.3.2) is

λn = n · inf
θ∈Θ0

‖X̄n − θ‖22. (2.3.5)

In other words, λn equals the squared Euclidean distance between X̄n and Θ0

rescaled by the sample size n. Recall Proposition 2.1.10 and note that n · tr(S) =
∑n

i=1 ‖X(i) − X̄n‖22 when comparing to the expressions for ℓn(θ) given there. �
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In order to turn the likelihood ratio test from Definition 2.3.1 into a practical
procedure we need to be able to judge which values of λn are too large to be
reconcilable with the null hypothesis H0. As for the chi-square test and Fisher’s
exact test discussed in Section 1.1, we perform a probability calculation in which
we assume that

X(1), X(2), . . . , X(n) ∼ Pθ0 (2.3.6)

are independent and identically distributed according to the distribution indexed
by a true parameter θ0 ∈ Θ0. In this probability calculation we calculate the
probability that the (random) likelihood ratio statistic λn is as large or larger
than the numerical value of the likelihood ratio statistic calculated from some
given data set. This probability is referred to as the p-value for the likelihood
ratio test.

Example 2.3.3. We continue Example 2.3.2 and rewrite the likelihood ratio statistic
in (2.3.5) as

λn = inf
θ∈Θ0

‖√n(X̄n − θ0)−
√
n(θ − θ0)‖22. (2.3.7)

This is convenient because if (2.3.6) holds, then
√
n(X̄n − θ0) is distributed ac-

cording to N (0, Idk). It follows that λn has the same distribution as the squared
Euclidean distance

inf
h∈√

n(Θ0−θ0)
‖Z − h‖22 (2.3.8)

between the translated and rescaled set
√
n(Θ0 − θ0) and a random vector Z ∼

N (0, Idk). Now if Θ0 is a d-dimensional affine subspace of Rk, then
√
n(Θ0−θ0) is

a d-dimensional linear space. It follows from Lemma 2.3.4 below that λn has a χ2-
distribution with codim(Θ0) = k − d degrees of freedom (recall Definition 1.1.5).
Let λobs be the numerical value of the likelihood ratio statistic calculated from
some given data set. Then, in the affine case, we can compute a p-value for the
likelihood ratio test as

Pθ0(λn ≥ λobs) = P
(

χ2
codim(Θ0)

≥ λobs

)

. (2.3.9)

Lemma 2.3.4. If Θ0 is a d-dimensional linear subspace of Rk and X ∼ N (0,Σ)
with positive definite covariance matrix Σ, then

inf
θ∈Θ0

(X − θ)T Σ−1(X − θ)

has a χ2
k−d-distribution.

Proof. Using the Cholesky decomposition method, we can find an invertible matrix
C such that CTC = Σ−1. The affinely transformed random vector Y = CX has a
N (0, Idk)-distribution, and

inf
θ∈Θ0

(X − θ)T Σ−1(X − θ) = inf
γ∈CΘ0

‖Y − γ‖22.
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The linear space CΘ0 being d-dimensional, there is an orthogonal matrix Q such
that QCΘ0 = Rd × {0}k−d. Let Z = QY . Then

inf
γ∈CΘ0

‖Y − γ‖22 = inf
γ∈CΘ0

‖Z −Qγ‖22 = Z2
k−d+1 + · · ·+ Z2

k . (2.3.10)

Since Z is distributed according to N (0, QQT ) = N (0, Idk), the sum of squares
on the far right in (2.3.10) has a χ2

k−d-distribution. �

When deriving the chi-square distribution as the distribution of the likelihood
ratio statistic in Example 2.3.3, a key argument was that if Θ0 is an affine space
then

√
n(Θ0 − θ0) is a fixed linear space for all θ0 ∈ Θ0 and sample sizes n.

Unfortunately, this is no longer true if Θ0 is not an affine space. However, if the
sample size n is large and Θ0 a smooth manifold, then the distribution of the
likelihood ratio statistic can still be approximated by a chi-square distribution.

Example 2.3.5 (Testing a parabola). Consider the normal distribution situtation
from Examples 2.3.2 and 2.3.3 in the plane, that is, with k = 2. Let

Θ0 = {θ = (θ1, θ2)
T ∈ R2 : θ2 = θ21}

be a parabola as in Figure 2.3.1. If the true parameter θ0 = (θ01, θ02)
T lies on this

parabola, that is, if θ02 = θ201, then by (2.3.8), the likelihood ratio statistic λn is
distributed like the squared Euclidean distance between Z ∼ N (0, Id2) and the
translated and rescaled parabola

√
n(Θ0 − θ0) =

{

θ ∈ R2 : θ2 =
θ21√
n

+ 2θ01θ1

}

. (2.3.11)

The shape of
√
n(Θ0− θ0) depends on both n and θ0, and thus, so does the distri-

bution of λn. This dependence complicates the computation of an analogue of the
p-value in (2.3.9). This problem disappears, however, in asymptotic approxima-
tions for large sample size n. As n tends to infinity, the set

√
n(Θ0−θ0) in (2.3.11)

converges to
TC θ0(Θ0) = {θ ∈ R2 : θ2 = 2θ01θ1}. (2.3.12)

This is the tangent line of the parabola Θ0 at θ0. Convergence of sets means that
TC θ0(Θ0) is the set of accumulation points of sequences (hn) with hn ∈

√
n(Θ0−

θ0) for all n. It can be shown that this entails the convergence in distribution

λn
D−→ inf

h∈TCθ0
(Θ0)
‖Z − h‖22, (2.3.13)

where Z ∼ N (0, Id2); see [95, Lemma 7.13]. Since TC θ0(Θ0) is a line, the right
hand side in (2.3.13) has a χ2-distribution with codim(Θ0) = 1 degree of freedom.
This provides an asymptotic justification for computing the approximate p-value

p = lim
n→∞

Pθ0(λn ≥ λobs) = P
(

χ2
codim(Θ0)

≥ λobs

)

(2.3.14)

when testing the parabola based on a large sample. �



58 Chapter 2. Likelihood Inference

(a) (b)

Figure 2.3.1: (a) Parabola and (b) cuspidal cubic.

The asymptotics in (2.3.14) are valid more generally when Θ0 is a smooth
manifold in Rk, k ≥ 2, because only the local geometry of Θ0, which is captured by
linear tangent spaces of fixed dimension, matters for these asymptotics. Moreover,
central limit theorems ensure that (2.3.14) remains valid when the underlying
model PΘ is not a family of normal distributions with the identity matrix as
covariance matrix but some other well-behaved family of distributions.

There are many interesting statistical models whose parameter spaces have
singularities. We shall see some explicit examples in Chapter 4 and in Exercise 6.4.
See Definition 2.3.15 for the formal definition. It is very important to note that
at singularities the limiting distributions of the likelihood ratio statistic need no
longer be χ2-distributions.

Example 2.3.6 (Testing a cuspidal cubic). As in Example 2.3.5, we consider the
bivariate normal distributions N (θ, Id2). Suppose that, based on a sample of n
observations, we wish to test whether θ lies on the cuspidal cubic

Θ0 = {θ ∈ R2 : θ22 = θ31}

shown on the right hand side in Figure 2.3.1. At points θ0 in Θ0\{0}, the curve Θ0

has a well-defined tangent line. Therefore, one can show, in exactly the same fash-
ion as for the parabola in Example 2.3.5, that λn converges to the χ2

1-distribution
for all true parameters θ0 ∈ Θ0 \ {0}.

On the other hand, if the true parameter θ0 is zero, that is, equal to the sole
singularity of Θ0, then the limiting behavior of λn is different. As n→∞, the sets

√
nΘ0 = {θ ∈ R2 : θ22 = θ31/

√
n} (2.3.15)

converge to the tangent cone

TC 0(Θ0) = {θ ∈ R2 : θ2 = 0, θ1 ≥ 0}. (2.3.16)
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From this it is possible to deduce, in analogy to (2.3.13), that λn converges
in distribution to the squared Euclidean distance between Z ∼ N (0, Id2) and
TC 0(Θ0). This squared distance is equal to Z2

2 if Z1 > 0 and equal to Z2
1 + Z2

2

if Z1 ≤ 0. Since the sign of Z1 is independent of both Z2
2 and Z2

1 + Z2
2 , and

P (Z1 > 0) = P (Z1 ≤ 0) = 1/2, it follows that

λn
D−→ 1

2
χ2

1 +
1

2
χ2

2, (2.3.17)

or in other words,

lim
n→∞

P (λn ≥ λobs) =
1

2
P (χ2

1 ≥ λobs) +
1

2
P (χ2

2 ≥ λobs) (2.3.18)

for all λobs > 0. Consequently, an asymptotic p-value calculated by the chi-square
formula (2.3.14) is too small when testing the cuspidal cubic and the true param-
eter is zero, because P (χ2

1 ≥ t) < P (χ2
2 ≥ t) for all t. We remark that singularities

can also lead to the chi-square p-value from (2.3.14) being too large. This becomes
clear when plotting the curve given by the equation θ22 = θ21 + θ31 and considering
θ0 = 0. �

In the examples we discussed above the possible asymptotic distributions
for the likelihood ratio statistic were given by distances between a normally dis-
tributed random point and tangent lines, or more generally, tangent cones.

Definition 2.3.7. The tangent cone TC θ0(Θ0) of the set Θ0 ⊆ Rk at a point θ0 ∈ Θ0

is the set of limits of sequences αn(θn−θ0), where αn are positive reals and θn ∈ Θ
converge to θ0. We refer to the elements of a tangent cone as tangent vectors.

A tangent cone is a closed set, and it is indeed a cone, that is, multiplying
a tangent vector with a non-negative real number yields another tangent vector.
Moreover, if θ0 ∈ Θ1 ∩Θ2, then the tangent cone of the union Θ1 ∪Θ2 at θ0 is the
union of the two tangent cones for Θ1 and Θ2, respectively.

As we will see in Theorem 2.3.12, distances to tangent cones describe the
asymptotic behavior for the likelihood ratio statistic when testing hypotheses de-
scribed by polynomial equations and inequalities. This leads us to a definition.

Definition 2.3.8. Let R[t1, . . . , tk] be the ring of polynomials in the indeterminates
t1, . . . , tk with real coefficients. A semi-algebraic set is a finite union of the form

Θ0 =

m
⋃

i=1

{θ ∈ Rk | f(θ) = 0 for f ∈ Fi and h(θ) > 0 for h ∈ Hi},

where Fi,Hi ⊂ R[t1, . . . , tk] are collections of polynomials and all Hi are finite.

Note that all the (sub-)models discussed in this book are given by semi-
algebraic sets. Semi-algebraic sets are the basic objects of real algebraic geometry.
Introductions to real algebraic geometry can be found in the text books [14, 16].
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In Examples 2.3.2-2.3.6, we considered the statistical model comprising the
normal distributionsN (θ, Idk), θ ∈ Rk. In this model the behavior of the likelihood
ratio statistic is directly connected to the geometry of the null hypothesis defined
by a subset Θ0 ⊂ Rk. In more general and possibly non-normal statistical models
PΘ, the geometry of Θ0 matters in very similar fashion but in addition we need
to take into account how the distributions Pθ (locally) change with θ.

Definition 2.3.9. The Fisher-information matrix for the model PΘ, Θ ⊆ Rk, at
θ ∈ Θ is the positive semi-definite k × k-matrix I(θ) with entries

I(θ)ij = E

[(

∂

∂θi
log pθ(X)

)(

∂

∂θj
log pθ(X)

)]

, i, j ∈ [k].

The expectation is taken assuming that X ∼ Pθ.

In Exercise 6.5 we compute the Fisher-information when θ is the covariance
matrix of a centered multivariate normal distribution, and the next example treats
the model consisting of all probability distributions on a fixed finite set.

Example 2.3.10 (Discrete Fisher-information). Suppose the sample (2.3.6) consists
of discrete random variables taking values in the set [k+1]. Let Pθ be the joint dis-
tribution of these random variables that is associated with θ = (θ1, . . . , θk), where
θi is the probability of observing the value i. Assuming positive distributions, the
parameter space is the open probability simplex

Θ =
{

θ ∈ (0, 1)k :

k
∑

i=1

θi < 1
}

.

The log-density of the distribution Pθ can be expressed as

log pθ(x) =

( k
∑

i=1

1{x=i} log θi

)

+ 1{x=k+1} log

(

1−
k
∑

i=1

θi

)

.

Let θk+1 = 1−∑k
i=1 θi. If X ∼ Pθ, then E[1{X=i}] = θi. We deduce that the k×k

Fisher-information matrix I(θ) has i-th diagonal entry equal to 1/θi +1/θk+1 and
all off-diagonal entries equal to 1/θk+1. Its inverse I(θ)−1 is the covariance matrix
of the random vector with components 1{X=i}, i ∈ [k]. To check this, we note that
I(θ)−1 has diagonal entries θi(1− θi) and off-diagonal entries −θiθj . �

When discussing the behavior of the likelihood ratio statistic some assump-
tions need to be made about the probabilistic properties of the underlying model
PΘ. We will assume that PΘ is a regular exponential family, as defined next.

Definition 2.3.11. Let PΘ = {Pθ : θ ∈ Θ} be a family of probability distributions
on X ⊆ Rm that have densities with respect to a measure ν. We call PΘ an
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exponential family if there is a statistic T : X → Rk and functions h : Θ → Rk

and Z : Θ→ R such that each distribution Pθ has ν-density

pθ(x) =
1

Z(θ)
exp{h(θ)T · T (x)}, x ∈ X .

Let

Ω =

{

ω ∈ Rk :

∫

X
exp{ωTT (x)} dν(x) <∞

}

.

If Ω and Θ are open subsets of Rk and h is a diffeomorphism between Θ and Ω,
then we say that PΘ is a regular exponential family of order k.

Besides having an open set Θ as parameter space, a regular exponential
family enjoys the property that the Fisher-information I(θ) is well-defined and
invertible at all θ ∈ Θ. For this and other facts about regular exponential fam-
ilies, we refer the reader to [13, 19]. In this section, regular exponential families
simply serve as a device to state a unified result for both multivariate normal and
discrete distributions. Indeed the family of all multivariate normal distributions
as well as the positive distributions for a discrete random variable discussed in
Example 2.3.10 define regular exponential families. How these two examples fall
into the framework of Definition 2.3.11 is also explained in detail in [41].

We are now ready to state the main theorem about the asymptotic behavior
of the likelihood ratio statistic.

Theorem 2.3.12 (Chernoff). Suppose the model PΘ is a regular exponential family
with parameter space Θ ⊆ Rk, and let Θ0 be a semi-algebraic subset of Θ. If
the true parameter θ0 is in Θ0 and n → ∞, then the likelihood ratio statistic λn

converges to the distribution of the squared Euclidean distance

min
τ∈TCθ0

(Θ0)
‖Z − I(θ0)1/2τ‖22

between the random vector Z ∼ N (0, Idk) and the linearly transformed tangent
cone I(θ0)

1/2TC θ0(Θ0). Here I(θ0)
1/2 can be any matrix square root of I(θ0).

This theorem has its origins in work by Chernoff [20]. A textbook proof can
be found in [95, Theorem 16.7]. The semi-algebraic special case is discussed in [37].

As stated Chernoff’s Theorem covers likelihood ratio tests of a semi-algebraic
submodel of a regular exponential family. In the Gaussian case, this amounts to
testing a submodel against the saturated model of all multivariate normal distri-
butions, and in the discrete case we test against the model corresponding to the
entire probability simplex. However, we may instead be interested in testing

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 \Θ0 (2.3.19)

for two semi-algebraic subsets Θ0 ⊂ Θ1 ⊆ Θ, using the likelihood ratio statistic

λn = 2

(

sup
θ∈Θ1

ℓn(θ)− sup
θ∈Θ0

ℓn(θ)

)

. (2.3.20)
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Now the model given by Θ1 need not be a regular exponential family, and Cher-
noff’s Theorem 2.3.12 does not apply directly. Nevertheless, there is a simple way
to determine limiting distributions of the likelihood ratio statistic (2.3.20) when
Θ0 ⊂ Θ1 ⊆ Θ and the ambient model PΘ is a regular exponential family. We can
write the likelihood ratio statistic as the difference of the likelihood ratio statistics
for testing (i) Θ0 versus Θ and (ii) Θ1 versus Θ. Chernoff’s Theorem 2.3.12 now
applies to each of the problems (i) and (ii), and we obtain the following corollary.

Corollary 2.3.13 (Testing in a submodel). Suppose the model PΘ is a regular ex-
ponential family with parameter space Θ ⊆ Rk. Let Θ0 and Θ1 be semi-algebraic
subsets of Θ. If the true parameter θ0 is in Θ0 and n → ∞, then the likelihood
ratio statistic λn from (2.3.20) converges to the distribution of

min
τ∈TCθ0

(Θ0)
‖Z − I(θ0)1/2τ‖22 − min

τ∈TCθ0
(Θ1)
‖Z − I(θ0)1/2τ‖22,

where Z ∼ N (0, Idk) is a standard normal random vector.

Many statistical models of interest are presented in terms of a parametriza-
tion such that Θ0 = g(Γ) for a map g : Rd → Rk and Γ ⊆ Rd. If g is a polynomial
map and Γ is an open semi-algebraic set, then the Tarski-Seidenberg theorem [14,
§2.5.2] ensures that Θ0 is a semi-algebraic set. In particular, Theorem 2.3.12 ap-
plies to such models. Moreover, it is straightforward to compute tangent vectors in
TC θ0(Θ0) directly from the parametrization, by considering the Jacobian matrix

Jg(γ) =

(

∂gi(γ)

∂γj

)

∈ Rk×d. (2.3.21)

Proposition 2.3.14. If θ0 = g(γ0) for some γ0 ∈ Γ, then the tangent cone of
Θ0 = g(Γ) at θ0 contains the linear space spanned by the columns of Jg(γ0).

Proof. Each vector in the column span of Jg(γ0) is a directional derivative along
a curve in Θ0 = g(Γ), and thus in the tangent cone. �

When computing the tangent cone TC θ0(Θ0), it is often useful to complement
the given parametrization g with information contained in the implicit representa-
tion promised by the Tarski-Seidenberg theorem. In theory, this implicit represen-
tation can be computed using algorithms from real algebraic geometry [14], but
this tends to be difficult in practice. A subproblem is to find the vanishing ideal

I(Θ0) = {f ∈ R[t1, . . . , tk] : f(θ) = 0 for all θ ∈ Θ0}. (2.3.22)

Using elimination theory, specifically Gröbner bases and resultants, we can com-
pute a finite generating set {f1, . . . , fs} ⊂ R[t1, . . . , tk] for the prime ideal I(Θ0);
see [25, §3] or [73, §3.2]. From this generating set we can form the Jacobian

Jf (θ) =

(

∂fi

∂tj

)

t=θ

∈ Rm×k. (2.3.23)



2.3. Likelihood Ratio Tests 63

Definition 2.3.15. A point θ0 in Θ0 = g(Γ) is a singularity if the rank of the
Jacobian matrix Jf (θ0) is smaller than k − dim Θ0, the codimension of Θ0. We
note that, in the present setup, dim Θ0 equals the rank of Jg(γ) for γ ∈ Γ generic.

The following lemma describes the simplest case of a tangent cone.

Lemma 2.3.16. If θ0 = g(γ0) is not a singularity of the semi-algebraic set Θ0 and
the rank of the parametric Jacobian Jg(γ0) is equal to dim Θ0, then the tangent
cone TC θ0(Θ0) is the linear space spanned by the columns of Jg(γ0).

At points θ0 at which Lemma 2.3.16 applies, the limiting distribution of the
likelihood ratio statistic in Chernoff’s Theorem 2.3.12 is a χ2-distribution with
codim(Θ0) many degrees of freedom; recall Lemma 2.3.4. Therefore, the asymp-
totic p-value in (2.3.14) is valid. When considering the setup of Corollary 2.3.13, a
χ2-distribution with dim(Θ1)−dim(Θ0) degrees of freedom arises as a limit when
the tangent cones of both Θ0 and Θ1 are linear spaces at the true parameter θ0.

The tangent cone at a singularity can be very complicated. Here, the vanish-
ing ideal I(Θ0) and known polynomial inequalities can be used to find a superset
of the tangent cone. Let θ0 be a root of the polynomial f ∈ R[t1, . . . , tk]. Write

f(t) =

L
∑

h=l

fh(t− θ0)

as a sum of homogeneous polynomials fh in t− θ0 = (t1− θ01, . . . , tk− θ0k), where
fh(t) has degree h and fl 6= 0. Since f(θ0) = 0, the minimal degree l is at least
one, and we define fθ0,min = fl.

Lemma 2.3.17. Suppose θ0 is a point in the semi-algebraic set Θ0 and consider
a polynomial f ∈ R[t1, . . . , tk] such that f(θ0) = 0 and f(θ) ≥ 0 for all θ ∈ Θ0.
Then every tangent vector τ ∈ TC θ0(Θ0) satisfies that fθ0,min(τ) ≥ 0.

Proof. Let τ ∈ TC θ0(Θ0) be the limit of the sequence αn(θn − θ0) with αn > 0
and θn ∈ Θ converging to θ0. Let fθ0,min be of degree l. Then the non-negative
numbers αl

nf(θn) are equal to fθ0,min(αn(θn − θ0)) plus a term that converges to
zero as n→∞. Thus, fθ0,min(τ) = limn→∞ fθ0,min(αn(θn − θ0)) ≥ 0. �

Lemma 2.3.17 applies in particular to every polynomial in the ideal

{fθ0,min : f ∈ I(Θ0)} ⊂ R[t1, . . . , tk]. (2.3.24)

The algebraic variety defined by this tangent cone ideal is the algebraic tangent
cone of Θ0, which we denote by AC θ0(Θ0). Lemma 2.3.17 implies that TC θ0(Θ0) ⊆
AC θ0(Θ0). The inclusion is in general strict as can be seen for the cuspidal cubic
from Example 2.3.6, where the tangent cone ideal equals 〈θ22〉 and the algebraic
tangent cone comprises the entire horizontal axis.

Suppose {f (1), . . . , f (s)} ⊂ R[t1, . . . , tk] is a generating set for the vanishing

ideal I(Θ0). Then it is generally not the case that {f (1)
θ0,min, . . . , f

(s)
θ0,min} generates
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the tangent cone ideal (2.3.24). However, a finite generating set of the ideal in
(2.3.24) can be computed using Gröbner basis methods [25, §9.7]. These methods
are implemented in Singular, which has the command tangentcone.

The algebraic techniques just discussed are illustrated in Exercise 6.4, which
applies Theorem 2.3.12 to testing a hypothesis about the covariance matrix of a
multivariate normal distribution. Other examples can be found in [37]. Many of
the models discussed in this book are described by determinantal constraints, and
it is an interesting research problem to study their singularities and tangent cones.

Example 2.3.18. Let Θ0 be the set of positive 3 × 3-matrices that have rank ≤ 2
and whose entries sum to one. This semi-algebraic set represents mixtures of two
independent ternary random variables; compare Example 4.1.2. The vanishing
ideal of Θ0 equals

I(Θ0) =
〈

t11+t12+t13+t21+t22+t23+t31+t32+t33 − 1, det





t11 t12 t13
t21 t22 t23
t31 t32 t33





〉

.

The singularities of Θ0 are precisely those matrices that have rank 1, that is, ma-
trices for which the two ternary random variables are independent (recall Propo-
sition 1.1.2). An example of a singularity is the matrix

θ0 =





1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9



 ,

which determines the uniform distribution. The tangent cone ideal at θ0 is gener-
ated by the sum of the indeterminates

t11+t12+t13+t21+t22+t23+t31+t32+t33

and the quadric

t11t22−t12t21+t11t33−t13t31+t22t33−t23t32−t13t22+t12t23−t11t23−t13t21
−t11t32+t12t31−t22t31+t21t32−t21t33+t23t31−t12t33+t13t32.

We see that the algebraic tangent cone AC θ0(Θ0) consists of all 3×3-matrices with
the property that both the matrix and its adjoint have their respective nine entries
sum to zero. Since θ0 lies in the relative interior of Θ0, there are no additional
inequalities for the tangent cone at θ0. Thus here we have

AC θ0(Θ0) = TC θ0(Θ0).

This equality also holds at any other singularity given by a positive rank 1 matrix
θ. However, now the tangent cone comprises all 3× 3-matrices whose nine entries
sum to zero and whose adjoint A = (aij) satisfies that

3
∑

i=1

3
∑

j=1

aijθji = 0.
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This assertion can be verified by running the following piece of Singular code:

LIB "sing.lib";

ring R = (0,a1,a2,b1,b2),

(t11,t12,t13, t21,t22,t23, t31,t32,t33),dp;

matrix T[3][3] = t11,t12,t13, t21,t22,t23, t31,t32,t33;

ideal I = det(T),t11+t12+t13+t21+t22+t23+t31+t32+t33-1;

matrix a[3][1] = a1,a2,1-a1-a2;

matrix b[3][1] = b1,b2,1-b1-b2;

matrix t0[3][3] = a*transpose(b);

I = subst(I,t11,t11+t0[1,1],t12,t12+t0[1,2],t13,t13+t0[1,3],

t21,t21+t0[2,1],t22,t22+t0[2,2],t23,t23+t0[2,3],

t31,t31+t0[3,1],t32,t32+t0[3,2],t33,t33+t0[3,3]);

// shift singularity to origin

tangentcone(I);

We invite the reader to extend this analysis to 3× 4-matrices and beyond. �
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Chapter 3

Conditional Independence

Conditional independence constraints are simple and intuitive restrictions on prob-
ability distributions that express the notion that two sets of random variables are
unrelated, typically given knowledge of the values of a third set of random vari-
ables. A conditional independence model is a family of probability distributions
that satisfy a collection of conditional independence constraints. In this chapter
we explore the algebraic structure of conditional independence models in the case
of discrete or jointly Gaussian random variables. Conditional independence mod-
els defined by graphs, known as graphical models, are given particular emphasis.
Undirected graphical models are also known as Markov random fields, whereas
directed graphical models are often termed Bayesian networks.

This chapter begins with an introduction to general conditional independence
models in Section 3.1. We show that in the discrete case and in the Gaussian case
conditional independence corresponds to rank constraints on matrices of prob-
abilities and on covariance matrices, respectively. The second and third section
both focus graphical models. Section 3.2 explains the details of how conditional
independence constraints are associated with different types of graphs. Section 3.3
describes parametrizations of discrete and Gaussian graphical models. The main
results are the Hammersley-Clifford Theorem and the recursive factorization the-
orem, whose algebraic aspects we explore.

3.1 Conditional Independence Models

Let X = (X1, . . . , Xm) be an m-dimensional random vector that takes its values in
the Cartesian product X =

∏m
j=1 Xj . We assume throughout that the joint prob-

ability distribution of X has a density function f(x) = f(x1, . . . , xm) with respect
to a product measure ν on X , and that f is continuous on X . In particular, the
continuity assumption becomes ordinary continuity if X = Rm and presents no
restriction on f if the state space X is finite. We shall focus on the algebraic struc-
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ture of conditional independence in these two settings. For a general introduction
to conditional independence (CI) we refer to Milan Studený’s monograph [86].

For each subset A ⊆ [m], let XA = (Xa)a∈A be the subvector of X indexed
by A. The marginal density fA(xA) of XA is obtained by integrating out x[m]\A:

fA(xA) :=

∫

X[m]\A

f(xA, x[m]\A)dν(x[m]\A), x ∈ XA.

Let A,B ⊆ [m] be two disjoint subsets and xB ∈ XB . If fB(xB) > 0, then the
conditional density of XA given XB = xB is defined as

fA|B(xA|xB) :=
fA∪B(xA, xB)

fB(xB)
.

The conditional density fA|B(xA|xB) is undefined when fB(xB) = 0.

Definition 3.1.1. Let A,B,C ⊆ [m] be pairwise disjoint. The random vector XA

is conditionally independent of XB given XC if and only if

fA∪B|C(xA, xB |xC) = fA|C(xA|xC)fB|C(xB |xC)

for all xA, xB and xC such that fC(xC) > 0. The notation XA⊥⊥XB |XC is used
to denote the relationship that XA is conditionally independent of XB given XC .
Often, this is abbreviated to A⊥⊥B |C.

There are a number of immediate consequences of the definition of conditional
independence. These are often called the conditional independence axioms.

Proposition 3.1.2. Let A,B,C,D ⊆ [m] be pairwise disjoint subsets. Then

(i) (symmetry) XA⊥⊥XB |XC =⇒ XB⊥⊥XA |XC

(ii) (decomposition) XA⊥⊥XB∪D |XC =⇒ XA⊥⊥XB |XC

(iii) (weak union) XA⊥⊥XB∪D |XC =⇒ XA⊥⊥XB |XC∪D

(iv) (contraction) XA⊥⊥XB |XC∪D and XA⊥⊥XD |XC =⇒ XA⊥⊥XB∪D |XC

Proof. The proofs of the first three conditional independence axioms (symmetry,
decomposition, and weak union) follow directly from the commutativity of multi-
plication, marginalization, and conditioning.

For the proof of the contraction axiom, let xC be such that fC(xC) > 0. By
XA⊥⊥XB |XC∪D, we have that

fA∪B|C∪D(xA, xB |xC , xD) = fA|C∪D(xA |xC , xD) · fB|C∪D(xB |xC , xD).

Multiplying by fC∪D(xC , xD) we deduce that

fA∪B∪C∪D(xA, xB , xC , xD) = fA∪C∪D(xA, xC , xD) · fB|C∪D(xB |xC , xD).
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Dividing by fC(xC) > 0 we obtain

fA∪B∪D|C(xA, xB , xD |xC) = fA∪D|C(xA, xD |xC) · fB|C∪D(xB |xC , xD).

Applying the conditional independence statement XA⊥⊥XD |XC , we deduce

fA∪B∪D|C(xA, xB , xD |xC) = fA|C(xA|xC)fD|C(xD|xC)fB|C∪D(xB |xC , xD)

= fA|C(xA |xC) · fB∪D|C(xB , xD |xC),

which means that XA⊥⊥XB∪D |XC . �

Unlike the first four conditional independence axioms, the fifth axiom (inter-
section) does not hold for every probability density, but only in special cases.

Proposition 3.1.3 (Intersection axiom). Suppose that f(x) > 0 for all x. Then

XA⊥⊥XB |XC∪D and XA⊥⊥XC |XB∪D =⇒ XA⊥⊥XB∪C |XD.

Proof. The first and second conditional independence statements imply

fA∪B|C∪D(xA, xB |xC , xD) = fA|C∪D(xA|xC , xD)fB|C∪D(xB |xC , xD), (3.1.1)

fA∪C|B∪D(xA, xC |xB , xD) = fA|B∪D(xA|xB , xD)fC|B∪D(xC |xB , xD). (3.1.2)

Multiplying (3.1.1) by fC∪D(xC , xD) and (3.1.2) by fB∪D(xB , xD), we obtain that

fA∪B∪C∪D(xA, xB , xC , xD) = fA|C∪D(xA|xC , xD)fB∪C∪D(xB , xC , xD), (3.1.3)

fA∪B∪B∪D(xA, xB , xC , xD) = fA|B∪D(xA|xB , xD)fB∪C∪D(xB , xC , xD). (3.1.4)

Equating (3.1.3) and (3.1.4) and dividing by fB∪C∪D(xB , xC , xD) (which is allow-
able since f(x) > 0) we deduce that

fA|C∪D(xA|xC , xD) = fA|B∪D(xA|xB , xD).

Since the right hand side of this expression does not depend on xC , we conclude

fA|C∪D(xA|xC , xD) = fA|D(xA|xD).

Plugging this into (3.1.3) and conditioning on XD gives

fA∪B∪C|D(xA, xB , xC |xD) = fA|D(xA|xD)fB∪C|D(xB , xC |xD)

and implies that XA⊥⊥XB∪C |XD. �

The condition that f(x) > 0 for all x is much stronger than necessary
for the intersection property to hold. At worst, we only needed to assume that
fB∪C∪D(xB , xC , xD) > 0. However, it is possible to weaken this condition consid-
erably. In the discrete case, it is possible to give a precise characterization of the
conditions on the density which guarantee that the intersection property holds.
This is described in Exercise 6.6.
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Discrete conditional independence models. Let X = (X1, . . . , Xm) be a vector of
discrete random variables. Returning to the notation used in previous chapters, we
let [rj ] be the set of values taken by Xj . Then X takes its values in R =

∏m
j=1[rj ].

In this discrete setting, a conditional independence constraint translates into a
system of quadratic polynomial equations in the joint probability distribution.

Proposition 3.1.4. If X is a discrete random vector, then the conditional indepen-
dence statement XA⊥⊥XB |XC holds if and only if

piA,iB ,iC ,+ · pjA,jB ,iC ,+ − piA,jB ,iC ,+ · pjA,iB ,iC ,+ = 0 (3.1.5)

for all iA, jA ∈ RA, iB , jB ∈ RB, and iC ∈ RC .

Definition 3.1.5. The conditional independence ideal IA⊥⊥B |C is generated by all
quadratic polynomials in (3.1.5).

Equivalently, conditional independence in the discrete case requires each ma-
trix in a certain collection of #RC matrices of size #RA × #RB to have rank
at most one. The conditional independence ideal IA⊥⊥B |C is generated by all the
2× 2-minors of these matrices. It can be shown that IA⊥⊥B |C is a prime ideal.

Example 3.1.6 (Marginal independence). The (marginal) independence statement
X1⊥⊥X2, or equivalently, X1⊥⊥X2 |X∅, amounts to saying that the matrix











p11 p12 · · · p1r2

p21 p22 · · · p2r2

...
...

. . .
...

pr11 pr12 · · · pr1r2











has rank one. The independence ideal I1⊥⊥2 is generated by the 2× 2-minors:

I1⊥⊥2 =
〈

pi1i2pj1j2 − pi1j2pi2j1 | i1, j1 ∈ [r1], i2, j2 ∈ [r2]
〉

.

For marginal independence, we already saw these quadratic binomial constraints
in Chapter 1. �

A conditional independence model is the family of distributions that satisfy a
set of conditional independence statements C = {A1⊥⊥B1 |C1, A2⊥⊥B2 |C2, . . .}.
Here Ak, Bk, Ck are pairwise disjoint sets for each k. This defines a statistical
model in ∆R−1. The conditional independence ideal of the collection C is the ideal

IC = IA1⊥⊥B1 |C1
+ IA2⊥⊥B2 |C2

+ · · · .

The conditional independence ideals IC can be used to investigate implications
between conditional independence statements. In particular, one approach to this
problem is provided by the primary decomposition of IC .

A primary decomposition of an ideal I is a decomposition I = ∩Qi, where
each Qi is a primary ideal and the intersection is irredundant. For the associated
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algebraic varieties it holds that V (I) = ∪V (Qi), that is, the variety V (I) is decom-
posed into its irreducible components V (Qi). The minimal primes of the ideal I are
the radicals of the primary ideals Qi. The minimal primes are the vanishing ideals
of the irreducible components. More background on primary decomposition can
be found in [25, 43]. In the setting of CI models, one hopes that the components
of IC are easy to understand in terms of conditional independence constraints.

Example 3.1.7 (Conditional and marginal independence). Consider three binary
random variables X1, X2, and X3. Consider the collection C = {1⊥⊥3 | 2, 1⊥⊥3}.
The conditional independence ideal is generated by 3 quadratic polynomials

IC = I1⊥⊥3 | 2 + I1⊥⊥3

= 〈p111p212 − p112p211, p121p222 − p122p221,

(p111 + p121)(p212 + p222)− (p112 + p122)(p211 + p221)〉 .
For binary random variables, these two conditional independence statements are
equivalent to saying that the three matrices:

M1 =

(

p111 p112

p211 p212

)

, M2 =

(

p121 p122

p221 p222

)

, and M1 +M2 =

(

p1+1 p1+2

p2+1 p2+2

)

all have rank at most one. We compute the primary decomposition of IC in
Singular with the following code:

LIB "primdec.lib";

ring R = 0, (p111,p112,p121,p122,p211,p212,p221,p222), dp;

matrix M1[2][2] = p111,p112,p211,p212;

matrix M2[2][2] = p121,p122,p221,p222;

ideal I = det(M1), det(M2), det(M1 + M2);

primdecGTZ(I);

The resulting primary decomposition of IC can be interpreted in terms of condi-
tional independence constraints:

IC = I1⊥⊥{2,3} ∩ I{1,2}⊥⊥3.

This equation says that, for binary random variables, 1⊥⊥3 | 2 and 1⊥⊥3 imply
that 1⊥⊥{2, 3} or {1, 2}⊥⊥3. A complete exploration of the CI model associated to
C = {1⊥⊥3 | 2, 1⊥⊥3} for possibly non-binary variables appears in Excercise 6.7. �

Example 3.1.8 (Failure of the intersection axiom). As alluded to following Propo-
sition 3.1.3, the intersection axiom can fail if the density function is not positive.
Here we explore this failure in the case of three binary random variables.

Let X1, X2, X3 be binary random variables, and let C = {1⊥⊥2 | 3, 1⊥⊥3 | 2}.
The conditional independence ideal is generated by four quadratic binomials,
which are four of the 2× 2-minors of the 2× 4 matrix

M =

(

p111 p112 p121 p122

p211 p212 p221 p222

)

.
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The conditional independence ideal IC has the primary decomposition:

IC = I1⊥⊥{2,3} ∩ 〈p111, p211, p122, p222〉 ∩ 〈p112, p212, p121, p221〉 .
The first component, I1⊥⊥{2,3}, amounts to saying that M is a rank one matrix. It
is the component which corresponds to the conclusion of the intersection axiom.
The other components correspond to families of probability distributions that
might not satisfy the conclusion of the intersection axiom. For instance, the second
component corresponds to all probability distributions of the form

(

0 p112 p121 0
0 p212 p221 0

)

that is, all probability distributions such that p+11 = p+22 = 0. �

A special class of conditional independence models are the graphical models,
described in the next section. These are obtained from a particular collection of
conditional independence statements that are derived from combinatorial separa-
tion properties in an underlying graph. One reason for preferring these graphical
representations is that they often have natural and useful parametrizations, to
be discussed in Section 3.3. It is too much to ask that every discrete conditional
independence model have a parametrization: independence models need not be
irreducible subsets of the probability simplex. However, we might hope that the
next best thing holds, as formulated in the following question.

Question 3.1.9. Is it true that every irreducible component of a conditional inde-
pendence model has a rational parametrization? In other words, is every irreducible
component of a conditional independence model a unirational variety?

Example 3.1.10. Let X1, X2, X3, X4 be binary random variables, and consider the
conditional independence model

C = {1⊥⊥3 | {2, 4}, 2⊥⊥4 | {1, 3}}.
These are the conditional independence statements that hold for the graphical
model associated to the four cycle graph with edges {12, 23, 34, 14}; see Section
3.2. The conditional independence ideal is generated by eight quadratic binomials:

IC = I1⊥⊥3 | {2,4} + I2⊥⊥4 | {1,3}
= 〈p1111p2121 − p1121p2111, p1112p2122 − p1122p2112,

p1211p2221 − p1221p2211, p1212p2222 − p1222p2212,

p1111p1212 − p1112p1211, p1121p1222 − p1122p1221,

p2111p2212 − p2112p2211, p2121p2222 − p2122p2221〉 .
The ideal IC is radical and has nine minimal primes. One of these is a toric ideal IΓ,
namely the vanishing ideal of the hierarchical (and graphical) model associated
to the simplicial complex Γ = [12][23][34][14]. The other eight components are
linear ideals whose varieties all lie on the boundary of the probability simplex. In
particular, all the irreducible components of the variety V (IC) are unirational. �
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It seems to be a difficult problem in general to address the unirationality of
conditional independence varieties. One case where an affirmative answer is known
is when the CI ideal is a binomial ideal (that is, generated by binomials pu−αpv).
Here rationality holds because of the following result of commutative algebra [44].

Theorem 3.1.11 (Binomial primary decomposition). Every primary component and
associated prime of a binomial ideal is a binomial ideal. In particular, every irre-
ducible component of a binomial variety is a toric variety, and is unirational.

In particular, one can generalize the rationality result of Example 3.1.10 to
any model where the given conditional independence statements are all saturated :

Corollary 3.1.12. If C consists of CI statements of the form A⊥⊥B |C such that
A ∪B ∪ C = [m], then every irreducible component of IC is a unirational variety.

Proof. If A ∪B ∪ C = [m] for all A⊥⊥B |C ∈ C then IC is a binomial ideal. �

Gaussian conditional independence models. It is also natural to ask about con-
ditional independence implications in the case of multivariate normal random vec-
tors. In this case, as well, conditional independence is an algebraic condition.

Proposition 3.1.13. The conditional independence statement XA⊥⊥XB |XC holds
for a multivariate normal random vector X ∼ N (µ,Σ) if and only if the submatrix
ΣA∪C,B∪C of the covariance matrix Σ has rank #C.

Proof. If X ∼ N (µ,Σ) follows a multivariate normal distribution, then the condi-
tional distribution of XA∪B given XC = xc is the multivariate normal distribution

N
(

µA∪B + ΣA∪B,CΣ−1
C,C(xC − µC),ΣA∪B,A∪B − ΣA∪B,CΣ−1

C,CΣC,A∪B

)

,

see, for example, [17, §B.6]. The statement XA⊥⊥XB |XC holds if and only if

(ΣA∪B,A∪B − ΣA∪B,CΣ−1
C,CΣC,A∪B)A,B = ΣA,B − ΣA,CΣ−1

C,CΣC,B = 0.

The matrix ΣA,B − ΣA,CΣ−1
C,CΣC,B is the Schur complement of the matrix

ΣA∪C,B∪C =

(

ΣA,B ΣA,C

ΣC,B ΣC,C

)

.

Since ΣC,C is always invertible (it is positive definite), the Schur complement is
zero if and only if the matrix ΣA∪C,B∪C has rank equal to #C. �

The set of matrices of fixed format with rank ≤ k is an irreducible variety,
defined by the vanishing of all (k + 1) × (k + 1) subdeterminants. In the context
of symmetric matrices, the ideal generated by these subdeterminants is a prime
ideal [23]. Hence, we obtain nice families of conditional independence ideals.
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Definition 3.1.14. Fix pairwise disjoint subsets A,B,C of [m]. The Gaussian con-
ditional independence ideal JA⊥⊥B |C is the following ideal in R[σij , 1≤ i≤j≤m]:

JA⊥⊥B |C = 〈 (#C + 1)× (#C + 1) minors of ΣA∪C,B∪C 〉
Let C be a collection of conditional independence constraints. The Gaussian

conditional independence model consists of all jointly normal random variables
that satisfy all the conditional independence constraints in C. Each Gaussian con-
ditional independence model corresponds to a semi-algebraic subset of the cone
of positive definite matrices PDm. As in the discrete case, we can explore conse-
quences of conditional independence constraints among Gaussian random variables
by looking at the primary decomposition of the conditional independence ideal

JC = JA1⊥⊥B1 |C1
+ JA2⊥⊥B2 |C2

+ · · ·
associated to the collection C.
Example 3.1.15 (Gaussian conditional and marginal independence). Let C = {1⊥⊥3,
1⊥⊥3 | 2}. The conditional independence ideal JC is generated by two minors:

JC = J1⊥⊥3 | 2 + J1⊥⊥3 = 〈σ13, σ13σ22 − σ12σ23 〉 .
This ideal has the primary decomposition

JC = 〈σ13, σ12σ23〉 = 〈σ12, σ13〉 ∩ 〈σ13, σ23〉 = J1⊥⊥{2,3} ∩ J{1,2}⊥⊥3.

It follows that the implication

X1⊥⊥X3 |X2 and X1⊥⊥X3 =⇒ X1⊥⊥(X2, X3) or (X1, X2)⊥⊥X3,

holds for multivariate normal random vectors. �

Example 3.1.16 (Gaussian intersection axiom). Since a multivariate normal ran-
dom vector has a strictly positive density, the intersection axiom from Proposi-
tion 3.1.3 is automatically satisfied. However, the associated CI ideal can have
interesting primary components. For example, if C = {1⊥⊥2 | 3 , 1⊥⊥3 | 2} then

JC = 〈σ12σ33 − σ13σ23, σ13σ22 − σ12σ23〉
= 〈σ12, σ13〉 ∩

(

JC +
〈

σ22σ33 − σ2
23

〉)

.

Note that the extra equation σ22σ33−σ2
23 = det(Σ23,23) implies that the set of real

symmetric matrices satisfying the equations in the second primary component has
empty intersection with the cone of positive definite matrices. It is the first compo-
nent that corresponds to the conditional independence statement X1⊥⊥(X2, X3),
which is the conclusion of the intersection axiom.

On the other hand, if we were to allow singular covariance matrices, then
the intersection axiom no longer holds. The second component in the intersection
provides examples of singular covariance matrices that satisfy X1⊥⊥X2 |X3 and
X1⊥⊥X3 |X3 but not X1⊥⊥(X2, X3). We remark that singular covariance matrices
correspond to singular multivariate normal distributions. These are concentrated
on lower-dimensional affine subspaces of Rm. �
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Question 3.1.9 about the unirationality of conditional independence models
extends also to the Gaussian case. However, aside from binomial ideals, which cor-
respond to conditional independence models where every conditional independence
statement A⊥⊥B |C satisfies #C ≤ 1, not much is known about this problem.

3.2 Graphical Models

Consider a random vector X = (Xv | v ∈ V ) together with a simple graph G =
(V,E) whose nodes index the components of the random vector. We can then
interpret an edge (v, w) ∈ E as indicating some form of dependence between the
random variables Xv and Xw. More precisely, the non-edges of G correspond to
conditional independence constraints. These constraints are known as the Markov
properties of the graph G. The graphical model associated with G is a family of
multivariate probability distributions for which these Markov properties hold.

This section gives an overview of three model classes: undirected graphical
models also known as Markov random fields, directed graphical models also known
as Bayesian networks, and chain graph models. In each case the graphG is assumed
to have no loops, that is, (v, v) /∈ E for all v ∈ V , and the differences among
models arise from different interpretations given to directed versus undirected
edges. Here, an edge (v, w) ∈ E is undirected if (w, v) ∈ E, and it is directed if
(w, v) /∈ E. The focus of our discussion will be entirely on conditional independence
constraints, and we will make no particular distributional assumption on X but
rather refer to the ‘axioms’ discussed in Section 3.1. The factorization properties of
the distributions in graphical models, which also lead to model parametrizations,
are the topic of Section 3.3. More background on graphical models can be found
in Steffen Lauritzen’s book [67] as well as in [24, 26, 42, 100].

Undirected graphs. Suppose all edges in the graph G = (V,E) are undirected.
The undirected pairwise Markov property associates the following conditional in-
dependence constraints with the non-edges of G:

Xv⊥⊥Xw |XV \{v,w}, (v, w) /∈ E. (3.2.1)

In a multivariate normal distribution N (µ,Σ) these constraints hold if and only if

det(Σ(V \{w})×(V \{v})) = 0 ⇐⇒ (Σ−1)vw = 0. (3.2.2)

This equivalence is a special case of Proposition 3.1.13.
The undirected Gaussian graphical model associated with G comprises the

distributionsN (µ,Σ) satisfying (3.2.2). For the case when G is a cycle see Example
2.1.13. As we shall see in Proposition 3.3.3, the set of positive joint distributions of
discrete random variables that satisfy (3.2.1) coincides with the hierarchical model
associated with the simplicial complex whose facets are the maximal cliques of G.
Here, a clique is any subset of nodes that induces a complete subgraph.



76 Chapter 3. Conditional Independence

X1
X2

X3

X4

Figure 3.2.1: Undirected graph.

Example 3.2.1. If G is the graph in Figure 3.2.1, then the undirected pairwise
Markov property yields the constraints

X1⊥⊥X4 | (X2, X3) and X1⊥⊥X3 | (X2, X4).

The multivariate normal distributions in the undirected Gaussian graphical model
associated with this graph have concentration matrices K = Σ−1 with zeros at
the (1, 4), (4, 1) and (1, 3), (3, 1) entries. The discrete graphical model is the hier-
archical model MΓ associated with the simplicial complex Γ = [12][234]. �

The pairwise constraints in (3.2.1) generally entail other conditional inde-
pendence constraints. These can be determined using the undirected global Markov
property. This associates with the graph G the constraints XA⊥⊥XB |XC for all
triples of pairwise disjoint subsets A,B,C ⊂ V , A and B non-empty, such that C
separates A and B in G. In Example 3.2.1, the global Markov property includes,
for instance, the constraint X1⊥⊥(X3, X4) |X2.

A joint distribution obeys a Markov property if it exhibits the conditional
independence constraints that the Markov property associates with the graph.

Theorem 3.2.2 (Undirected global Markov property). If the random vector X has a
joint distribution PX that satisfies the intersection axiom from Proposition 3.1.3,
then PX obeys the pairwise Markov property for an undirected graph G if and only
if it obeys the global Markov property for G.

The proof of Theorem 3.2.2 given next illustrates the induction arguments
that drive many of the results in graphical modelling theory.

Proof. (⇐=): Any pair of non-adjacent nodes v and w is separated by the com-
plement V \ {v, w}. Hence, the pairwise conditional independence constraints in
(3.2.1) are among those listed by the undirected global Markov property.

(=⇒): Suppose C separates two non-empty sets A and B. Then the cardi-
nality of V \C is at least two. If it is equal to two, then A and B are singletons
and XA⊥⊥XB |XC is one of the pairwise constraints in (3.2.1). This observation
provides us with the induction base for an induction on c = #(V \ C). In the
induction step (c − 1) → c we may assume that c ≥ 3. We distinguish two cases.
The high-level structure of the graph in these two cases is depicted in Figure 3.2.2.
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(a)

A
C

B1

B2

(b)

A
C

B

v

Figure 3.2.2: Illustration of the two cases in the proof of Theorem 3.2.2.

Induction step (a): If A ∪ B ∪ C = V , then c ≥ 3 implies that A or B has
at least two elements. Without loss of generality, assume that this is the case for
B, which can then be partitioned into two non-empty sets as B = B1 ∪B2. Then
C ∪B1 separates A and B2. Since the cardinality of V \ (C ∪B1) is smaller than
c, the induction assumption implies that

XA⊥⊥XB2 | (XC , XB1). (3.2.3)

Swapping the role of B1 and B2 we find that

XA⊥⊥XB1 | (XC , XB2). (3.2.4)

An application of the intersection axiom to (3.2.3) and (3.2.4) yields the desired
constraint XA⊥⊥XB |XC .

Induction step (b): If A ∪B ∪C ( V , then we can choose v /∈ A ∪B ∪C. In
this case C ∪ {v} separates A and B. By the induction assumption,

XA⊥⊥XB | (XC , Xv). (3.2.5)

Any path from A to B intersects C. It follows that A ∪ C separates v and B, or
B ∪ C separates v and A. Without loss of generality, we assume the latter is the
case such that the induction assumption implies that

XA⊥⊥Xv | (XB , XC). (3.2.6)

The intersection axiom allows us to combine (3.2.5) and (3.2.6) to obtain the con-
straint XA⊥⊥(XB , Xv) |XC , which implies the desired constraint XA⊥⊥XB |XC .

�

We conclude our discussion of undirected graphical models by showing that
for distributions satisfying the intersection axiom, graphical separation indeed
determines all general consequences of the pairwise constraints in (3.2.1).

Proposition 3.2.3 (Completeness of the undirected global Markov property). Sup-
pose A,B,C ⊂ V are pairwise disjoint subset with A and B non-empty. If C does
not separate A and B in the undirected graph G, then there exists a joint distri-
bution for the random vector X that obeys the undirected global Markov property
for G but for which XA⊥⊥XB |XC does not hold.
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(a)
X1 X2 X3

(b)
X1 X3 X2

Figure 3.2.3: Directed graphs representing (a) X1⊥⊥X3 |X2 and (b) X1⊥⊥X2.

Proof. We shall prove this statement in the Gaussian case. Consider a path π =
(v1, . . . , vn) with endpoints v1 ∈ A and vn ∈ B that does not intersect C. Define a
positive definite matrix K by setting all diagonal entries equal to one, the entries
{(vi, vi+1), (vi+1, vi)} for i ∈ [n − 1] equal to a small non-zero number ρ, and all
other entries equal to zero. In other words, the nodes can be ordered such that

K =























1 ρ

ρ 1
. . .

ρ
. . . ρ
. . . 1 ρ

ρ 1
IdV \π























where IdV \π is the identity matrix of size #V − n.
Let X be a random vector distributed according to N (0,Σ) with Σ = K−1.

By (3.2.2), the distribution of X obeys the pairwise Markov property and thus, by
Theorem 3.2.2, also the global Markov property for the graph G. For a contradic-
tion assume that XA⊥⊥XB |XC . In particular, Xv1⊥⊥Xvn

|XC . Since Xv1⊥⊥XC ,
the contraction axiom implies that Xv1⊥⊥(Xvn

, XC). However, this is a contradic-
tion since the absolute value of the cofactor for σv1vn

is equal to |ρ|n−1 6= 0. �

Directed acyclic graphs (DAG). Let G = (V,E) be a directed acyclic graph,
often abbreviated as ‘DAG’. The edges are now all directed. The condition of
being acyclic means that there may not exist a sequence of nodes v1, . . . , vn such
that (v1, v2), (v2, v3), . . . , (vn, v1) are edges in E. The set pa(v) of parents of a node
v ∈ V comprises all nodes w such that (w, v) ∈ E. The set de(v) of descendants is
the set of nodes w such that there is a directed path (v, u1), (u1, u2), . . . , (un, w)
from v to w in E. The non-descendants of v are nd(v) = V \ ({v} ∪ de(v)).

The directed local Markov property associates the CI constraints

Xv⊥⊥Xnd(v)\pa(v) |Xpa(v), v ∈ V, (3.2.7)

with the DAG G. The constraints in (3.2.7) reflect the (in-)dependence structure
one would expect to observe if the edges represented parent-child or cause-effect
relationships; see the two examples in Figure 3.2.3.

What are the general consequences of the conditional independence con-
straints that the local Markov property associates with a DAG G? As for undi-
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X5

X3

X4
X1

X2

Figure 3.2.4: Directed acyclic graph.

rected graphs, this question can be answered by studying separation relations in
the graph. However, now a more refined notion of separation is required.

For a subset C ⊆ V , we define An(C) be the set of nodes w that are in C
or that are ancestors of some node v ∈ C. Here, w is an ancestor of v if there is
a directed path from w to v. In symbols, v ∈ de(w). Consider an undirected path
π = (v0, v1, . . . , vn) in G. This means that, for each i, either (vi, vi+1) or (vi+1, vi)
is a directed edge of G. If i ∈ [n− 1], then vi is a non-endpoint node on the path
π and we say that vi is a collider on π if the edges incident to vi are of the form

vi−1 −→ vi ←− vi+1.

For instance, X3 is a collider on the path from X1 to X2 in Figure 3.2.3(b).

Definition 3.2.4. Two nodes v and w in a DAG G = (V,E) are d-connected given
a conditioning set C ⊆ V \{v, w} if there is a path π from v to w such that

(i) all colliders on π are in An(C), and

(ii) no non-collider on π is in C.

If A,B,C ⊂ V are pairwise disjoint with A and B non-empty, then C d-separates
A and B provided no two nodes v ∈ A and w ∈ B are d-connected given C.

Example 3.2.5. In the DAG in Figure 3.2.3(a), the singleton {X2} d-separates
X1 and X3, whereas the empty set d-separates X1 and X2 in the DAG in Fig-
ure 3.2.3(b). For a little less obvious example, consider the DAG in Figure 3.2.4.
In this graph, the nodes X1 and X5 are d-separated by {X2}, but they are not
d-separated by any other subset of {X2, X3, X4}. �

We can now define the directed global Markov property, which associates with
a DAG G the constraints XA⊥⊥XB |XC for all triples of pairwise disjoint subsets
A,B,C ⊂ V , A and B non-empty, such that C d-separates A and B in G. For
this global Markov property, the following analogue to Theorem 3.2.2 holds.

Theorem 3.2.6 (Directed global Markov property). Any joint distribution PX for
the random vector X obeys the local Markov property for a directed acyclic graph
G = (V,E) if and only if it obeys the global Markov property for G.



80 Chapter 3. Conditional Independence

Proof. This result is proven, for example, in [67, §3.2.2]. The proof requires only
the contraction axiom from Proposition 3.1.2. As an illustration of how to work
with d-separation we present a proof of the easier implication.

(⇐=): We need to show that the parent set pa(v) d-separates a node v from
the non-descendants in nd(v) \ pa(v). For a contradiction, suppose that there is a
path π = (v, u1, . . . , un, w) that d-connects v and w ∈ nd(v) \ pa(v) given pa(v).
Then u1 /∈ pa(v) because otherwise it would be a non-collider in the conditioning
set pa(v). Therefore, the edge between v and u1 points away from v. Since w is a
non-descendant of v, there exists a node ui, i ∈ [n], that is a collider on π. Let uj

be the collider closest to v, that is, with minimal index j. Since π is d-connecting,
uj is an ancestor of v. This, however, is a contradiction to the acyclicity of G. �

As a further analogue to the undirected case, we remark that the directed
global Markov property is complete: Proposition 3.2.3 remains true if we consider
a DAG instead of an undirected graph and replace separation by d-separation.

Finally, we point out a problem that is particular to DAGs. Two distinct
DAGs can possess identical d-separation relations and thus encode the exact same
conditional independence constraints. The graphs are then termed Markov equiva-
lent. For instance, there are two DAGs that are Markov equivalent to the DAG in
Figure 3.2.3(a), namely the graphs X1 ← X2 → X3 and X1 ← X2 ← X3. Markov
equivalence can be determined efficiently using the following result.

Theorem 3.2.7. Two directed acyclic graphs G1 = (V,E1) and G2 = (V,E2) are
Markov equivalent if and only if the following two conditions are both met:

(i) G1 and G2 have the same skeleton, that is, (v, w) ∈ E1 \E2 implies (w, v) ∈
E2 and (v, w) ∈ E2 \ E1 implies (w, v) ∈ E1;

(ii) G1 and G2 have the same unshielded colliders, which are triples of nodes
(u, v, w) that induce a subgraph equal to u→ v ← w.

A proof of this result can be found in [7, Theorem 2.1], which also addresses
the problem of finding a suitable representative of a Markov equivalence class.

Chain graphs. Given the different conditional independence interpretations of
undirected and directed graphs, it is natural to ask for a common generalization.
Such a generalization is provided by chain graphs, as defined in Definition 3.2.10.
However, two distinct conditional independence interpretations of chain graphs
have been discussed in the statistical literature. These arise through different spec-
ifications of the interplay of directed and undirected edges. The two cases are re-
ferred to as LWF or AMP chain graphs in [8], and are called ‘block concentrations’
and ‘concentration regressions’ in [99]. Here we will use the two acronyms LWF
and AMP, which are the initials of the authors of the original papers: Lauritzen-
Wermuth-Frydenberg [49, 68] and Andersson-Madigan-Perlman [8].

In the Gaussian case, the two types of chain graph models always correspond
to smooth manifolds in the positive definite cone. In light of Section 2.3, this en-
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sures that chi-square approximations are valid for likelihood ratio tests comparing
two chain graph models.

Example 3.2.8 (Gaussian chain graphs). The graph G in Figure 3.2.5(a) is an
example of a chain graph. The conditional independence constraints specified by
the AMP Markov property for G turn out to be

X1⊥⊥(X2, X4), X2⊥⊥X4 | (X1, X3), (3.2.8)

whereas the LWF Markov property yields

X1⊥⊥(X2, X4)|X3, X2⊥⊥X4 | (X1, X3). (3.2.9)

We see that, under the LWF interpretation, the chain graph is Markov equiv-
alent to the undirected graph obtained by converting the directed edge between
X1 and X3 into an undirected edge. Therefore, the associated Gaussian model is
the set of multivariate normal distributions whose concentration matrix K = Σ−1

has zeros over the non-edges of G. The corresponding covariance matrices Σ form
a smooth subset of PD4. The AMP covariance matrices Σ = (σij) satisfy

σ12 = σ14 = 0, σ2
13σ24 − σ11σ24σ33 + σ11σ23σ34 = 0.

The variety defined by these equations is non-singular over PD4 because

∂

∂σ24
(σ2

13σ24 − σ11σ24σ33 + σ11σ23σ34) = σ2
13 − σ11σ33 6= 0

for all Σ = (σij) in PD4. �

By the Markov equivalence between the graph from Figure 3.2.5(a) and the
underlying undirected tree, the LWF model for discrete random variables is the
hierarchical modelMΓ for Γ = [13][23][34]. This connection to undirected graphs is
more general: the distributions in discrete LWF models are obtained by multiplying
together conditional probabilities from several undirected graphical models. In
particular, these models are always smooth over the interior of the probability
simplex; see the book by Lauritzen [67, §§4.6.1, 5.4.1] for more details.

Discrete AMP models, however, are still largely unexplored and computa-
tional algebra provides a way to explore examples and hopefully obtain more
general results in the future. A first step in this direction was made in [38]:

Proposition 3.2.9. If X1, X2, X3, X4 are binary random variables, then the set of
positive joint distributions that obey the AMP Markov property for the graph in
Figure 3.2.5(a) is singular exactly at distributions under which X2, X4 and the
pair (X1, X3) are completely independent.

Before we give the computational proof of this proposition, we comment on
its statistical implication. If Ḡ is the graph obtained by removing the undirected
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edges from the graph G in Figure 3.2.5(a), then the AMP Markov property for Ḡ
specifies the complete independence of X2, X4 and the pair (X1, X3). Since this
is the singular locus of the binary model associated with G, it follows that with
discrete random variables, chi-square approximations can be inappropriate when
testing for absence of edges in AMP chain graphs (recall Section 2.3).

Proof of Proposition 3.2.9. The conditional independence relations in (3.2.8) im-
pose rank-one constraints on the table of joint probabilities p = (pi1i2i3i4) ∈ ∆15

and the marginal table p = (pi1i2+i4) ∈ ∆7. Under the assumed positivity, each
joint probability factors uniquely as

pi1i2i3i4 = pi2i3i4|i1pi1+++ := P (X2 = i2, X3 = i3, X4 = i4 |X1 = i1)P (X1 = i1).

For i ∈ {1, 2} and a subset A ⊆ {2, 3, 4}, let

qA|i = P
(

Xj = 1 for all j ∈ A |X1 = i
)

.

For each i ∈ {1, 2}, the seven probabilities qA|i associated with non-empty sets
A ⊆ {2, 3, 4} can be used to reparameterize the condititional distribution of
(X2, X3, X4) given X1 = i. We have

p111|i = q234|i, p122|i = q2|i − q23|i − q24|i + q234|i,

p112|i = q23|i − q234|i, p212|i = q3|i − q23|i − q34|i + q234|i,

p121|i = q24|i − q234|i, p221|i = q4|i − q24|i − q34|i + q234|i,

p211|i = q34|i − q234|i, p222|i = 1− q2|i − q3|i − q4|i + q23|i + q24|i + q34|i − q234|i.

This reparametrization is convenient because in the new coordinates the condi-
tional independence X1⊥⊥(X2, X4) holds in a positive distribution if and only if

q2|1 = q2|2, q4|1 = q4|2, q24|1 = q24|2.

We can thus compute with only 12 probabilities, which makes the following cal-
culation of a singular locus in Singular feasible. We first load a library and then
set up our ring as usual:

LIB "sing.lib";

ring R = 0,(q2,q4,q24,q31,q32,q231,q232,q341,q342,q2341,q2342),dp;

The second conditional independence constraint X2⊥⊥X4 | (X1, X3) translates into
the vanishing of four determinants, and we set up the corresponding ideal:

matrix Q11[2][2] = q2341,q231,

q341, q31;

matrix Q21[2][2] = q2342,q232,

q342, q32;

matrix Q12[2][2] = q24-q2341,q2-q231,

q4-q341, 1-q31;
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matrix Q22[2][2] = q24-q2342,q2-q232,

Q4-q342, 1-q32;

ideal I = minor(Q11,2),minor(Q21,2),minor(Q12,2),minor(Q22,2);

The next piece of code first computes the singular locus, then saturates to remove
components corresponding to distributions on the boundary of the probability
simplex, and finally computes the radical ideal:

ideal SL = slocus(I);

radical(sat(SL,q31*(1-q31)*q32*(1-q32))[1]);

The output of these computations shows that the positive distributions in the
singular locus satisfy the equations

q2q4 = q24, q3|iq2 = q23|i, q3|iq4 = q34|i, q2q3|iq4 = q234|i, i = 1, 2.

These equations determine the complete independence X2⊥⊥X4⊥⊥(X1, X3). �

We now give the definition of chain graphs and introduce their two Markov
properties. Let G = (V,E) be a graph with possibly both directed and undirected
edges. Let (v0, . . . , vn) be a sequence of nodes, and define vn+1 = v0. This sequence
is a semi-directed cycle if (vi, vi+1) ∈ E for all 0 ≤ i ≤ n, and at least one of the
edges is directed, that is, (vi+1, vi) /∈ E for some 0 ≤ i < n. For example,

v0 −→ v1 −−− v2 −→ v3 −−− v4 −−− v0

is a semi-directed cycle.

Definition 3.2.10. A graph G = (V,E) with possibly both directed and undirected
edges is a chain graph if it contains no semi-directed cycles.

Two nodes v and w in a chain graph G are said to be equivalent if they
are connected by a path composed solely of undirected edges. The equivalence
classes of this equivalence relation are known as the chain components of G. Let
T be the set of chain components. Then each chain component T ∈ T induces a
connected undirected subgraph. We define a new graph D = (T , E) that has the
chain components as nodes, and it has an edge (T1, T2) ∈ E whenever there exist
nodes v1 ∈ T1 and v2 ∈ T2 such that (v1, v2) is in the edge set E of the chain
graph G. Since G has no semi-directed cycles, the graph D is a DAG.

Different parent sets will play an important role for the probabilistic inter-
pretation of chain graphs. If T is a chain component and A ⊆ T , then we define
paG(A) to be the union of all nodes v ∈ V \T such that (v, w) ∈ E for some w ∈ A.
In contrast, the parent set paD(T ) is the union of all chain components S ∈ T such
that (S, T ) ∈ E . In general, paG(T ) ( paD(T ). We write ndD(T ) for the union of
all chain components that are non-descendants of T in D.
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(a)

X2

X3

X4

X1

(b)

X1 X2

X4

X5

X3

X6

Figure 3.2.5: Chain graphs with (a) two and (b) three chain components.

Example 3.2.11. The chain graph G in Figure 3.2.5(b) has three chain components
enclosed in boxes, namely, T1 = {X1, X2}, T2 = {X3} and T3 = {X4, X5, X6}. The
derived DAG D is the graph T1 → T3 ← T2. The parent sets with respect to D
are paD(T1) = paD(T2) = ∅ and paD(T3) = {X1, X2, X3}. Note that paG(T3) =
{X2, X3} is a proper subset of paD(T3). The non-descendants with respect to D
are ndD(T1) = {X3}, ndD(T2) = {X1, X2} and ndD(T3) = {X1, X2, X3}. �

The most intuitive versions of the Markov properties for chain graphs are the
so-called block-recursive Markov properties. These employ the recursive structure
captured by the DAG D. First, they apply a directed Markov property to D. Con-
sidering the directed local Markov property from (3.2.7) we obtain the conditional
independence constraints

XT⊥⊥XndD(T )\paD(T ) |XpaD(T ), T ∈ T . (3.2.10)

Second, for each chain component T , a Markov property for the undirected graph
GT is applied to the conditional distribution of XT given XpaD(T ). Using the
pairwise Markov property from (3.2.1) we get the constraints

Xv⊥⊥Xw | (XT\{v,w}, XpaD(T )), T ∈ T , v, w ∈ T. (3.2.11)

Finally, an interpretation is given to the precise structure of the directed edges be-
tween chain components. Two non-equivalent interpretations have been considered
leading to two different block-recursive Markov properties; see e.g. [8, 99].

Definition 3.2.12. Let G = (V,E) be a chain graph with set of chain components
T and associated DAG D = (T , E). The AMP block-recursive Markov property for
G specifies the conditional independence constraints (3.2.10), (3.2.11), and

XA⊥⊥XpaD(T )\paG(A) |XpaG(A), T ∈ T , A ⊆ T.
The LWF block-recursive Markov property for G specifies (3.2.10), (3.2.11), and

XA⊥⊥XpaD(T )\paG(A) | (XpaG(A), Xnb(A)), T ∈ T , A ⊆ T.
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Here, nb(A) = {v ∈ T : (v, w) ∈ E for some w ∈ A} are the neighbors of A in
the undirected graph GT .

Example 3.2.13. If G is the chain graph G from Figure 3.2.5(b), then (3.2.10) and
(3.2.11) each yield precisely one constraint, namely,

(X1, X2)⊥⊥X3 and X4⊥⊥X6 | (X1, X2, X3, X5),

respectively. The additional constraints specified by the AMP block-recursive
Markov property include, for example,

(X5, X6)⊥⊥(X1, X3) |X2,

which becomes

(X5, X6)⊥⊥(X1, X3) | (X2, X4)

in the LWF case. �

Results for AMP and LWF chain graphs include global Markov properties
defined using graphical separation criteria, completeness of these global Markov
properties, and results on Markov equivalence. Papers that provide entry-points
to this topic are [9, 79]. The issue of singularities of discrete AMP chain graph
models that we encountered in Proposition 3.2.9 will reappear in Problem 7.10.

3.3 Parametrizations of Graphical Models

Algebraic varieties can be described by polynomials in two different ways, either
parametrically or implicitly. For example, the space curve with parametric rep-
resentation (x, y, z) = (t3, t4, t5) has its implicit representation as a variety V (P )
given by the prime ideal P = 〈y2 − xz, x2y − z2, x3 − yz〉. Not every variety has
a polynomial parametrization, but many interesting ones do (those that do are
called unirational). As an example of a unirational variety, consider the hyperde-
terminantal hypersurface in the space of 2× 2× 2-tables, which was parametrized
as a context specific independence model in Example 2.2.10. See also Question
3.1.9. The design of algorithms for going back and forth between parametric and
implicit representations is an important research area in computational algebra.

The availability of both parametric and implicit representations is also a key
feature in the theory of graphical models. For undirected graphical models, the
result which makes this relationship precise is the Hammersley-Clifford Theorem,
which is the main focus of this section. For directed graphical models, the relevant
result is the recursive factorization theorem. In Section 3.2, graphical models were
introduced via their conditional independence constraints in broad generality. It
is also possible to give parametric descriptions of graphical models in broad gen-
erality. We first present these general descriptions, and then we narrow down to
their specific realizations for discrete models and Gaussian models, respectively.
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Undirected graphical models. Let G be an undirected graph on the set of nodes
[m] = {1, 2, . . . ,m} with edge set E. A clique C ⊆ [m] in the graph is a collection
of nodes such that (i, j) ∈ E for every pair i, j ∈ C. The set of maximal cliques
is denoted C(G). For each C ∈ C(G), we introduce a continuous potential function
ψC(xC) ≥ 0 which is a function on XC , the state space of the random vector XC .

Definition 3.3.1. The parametrized undirected graphical model consists of all prob-
ability density functions on X of the form

f(x) =
1

Z

∏

C∈C(G)

ψC(xC) (3.3.1)

where

Z =

∫

X

∏

C∈C(G)

ψC(xC)dν(x)

is the normalizing constant. The parameter space for this model consists of all
tuples of potential functions such that the normalizing constant is finite and non-
zero. A probability density is said to factorize according to the graph G if it can
be written in the product form (3.3.1).

The Hammersley-Clifford theorem gives the important result that the para-
metrized undirected graphical model is the same as the (conditional independence)
undirected graphical model from Section 3.2, provided we restrict ourselves to
strictly positive distributions. For an interesting historical account see Peter Clif-
ford’s article [22]; a proof can also be found in [67, Theorem 3.9].

Theorem 3.3.2 (Hammersley-Clifford). A continuous positive probability density
f on X satisfies the pairwise Markov property on the graph G if and only if it
factorizes according to G.

It is our aim to explore the Hammersley-Clifford theorem from the perspec-
tive of algebraic statistics. In particular, we would like to know:

1. What probability distributions come from the factorization/parametrization
(3.3.1) in the case of discrete and normal random variables?

2. How can we interpret the Hammersley-Clifford theorem algebraically?

3. Can we use the primary decomposition technique of Section 3.1 to explore the
failure of the Hammersley-Clifford theorem for non-negative distributions?

We first focus on the case of discrete random variables X1, . . . , Xm. Let Xj

take its values in [rj ]. The joint state space is R =
∏m

j=1[rj ]. The graphical model
specified by the undirected graph G is a subset of ∆R−1. In the discrete case, the
general parametric description from (3.3.1) becomes a monomial parametrization.
Indeed, taking parameters θC

iC
∈ RRC

≥0 , we have the rational parameterization:

pi1i2···im
= φi1i2···im

(θ) =
1

Z(θ)

∏

C∈C(G)

θ
(C)
iC

. (3.3.2)
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Proposition 3.3.3. The parametrized discrete undirected graphical model associated
to G consists of all probability distributions in ∆R−1 of the form p = φ(θ) for

θ = (θ(C))C∈C(G) ∈
∏

C∈C(G)

RRC

≥0 .

In particular, the positive part of the parametrized graphical model is precisely the
hierarchical log-linear model associated to the complex of cliques C(G).

Denote by IG the toric ideal of this graphical model. Thus, IG is the ideal
generated by the binomials pu−pv corresponding to the Markov basis as in Sections
1.2 and 1.3. We consider the variety V∆(IG) of the ideal IG in the closed simplex
∆R−1. Equivalently, V∆(IG) consists of all probability distributions on R that are
limits of probability distributions that factor according to the graph. See [51] for a
precise polyhedral description of the discrepancy between the set of distributions
that factor and the closure of this set. We want to study a coarser problem, namely,
comparing V∆(IG) to conditional independence models V∆(IC) where C ranges over
conditional independence constraints associated to the graph. Let

pairs(G) = {i⊥⊥j | ([m] \ {i, j}) : (i, j) /∈ E}
be the set of pairwise Markov constraints associated to G and let

global(G) = {A⊥⊥B |C : C separates A from B in G}
be the global Markov constaints associated to G. A graph is called decomposable if
its complex of cliques is a decomposable simplicial complex (see Definition 1.2.13).

Example 3.3.4. Let G be the graph in Figure 3.2.1. Its Markov properties are

pairs(G) =
{

1⊥⊥4 | {2, 3} , 1⊥⊥3 | {2, 4}
}

global(G) = pairs(G) ∪
{

1⊥⊥{3, 4} | 2
}

.

We consider the case r1 = r2 = r3 = r4 = 2 of four binary random variables. The
quadrics described by global(G) are the twelve 2× 2-minors of the two matrices

M1 =

(

p1111 p1112 p1122 p1121

p2111 p2112 p2122 p2121

)

and M2 =

(

p1211 p1212 p1222 p1221

p2211 p2212 p2222 p2221

)

.

These twelve minors generate a prime ideal of codimension six. This prime ideal
is the conditional independence ideal

I1⊥⊥{3,4}|2 = minors(M1) + minors(M2).

The maximal cliques C of the graph G are {1, 2} and {2, 3, 4}, so the repre-

sentation (3.3.2) of this model has 12 = 22+23 parameters θ
(C)
iC

. The following code
describes the ring map corresponding to φ in the algebra software Macaulay2. The
partition function Z can be ignored because we are only interested in homogeneous
polynomials that belong to the vanishing ideal. We use the following notation for

the model parameters: θ
(12)
11 = a11, θ

(12)
12 = a12, . . . , θ

(234)
221 = b221, θ

(234)
222 = b222.
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R = QQ[p1111,p1112,p1121,p1122,p1211,p1212,p1221,p1222,

p2111,p2112,p2121,p2122,p2211,p2212,p2221,p2222];

S = QQ[a11,a12,a21,a22,b111,b112,b121,b122,b211,b212,b221,b222];

phi = map(S,R, {a11*b111,a11*b112,a11*b121,a11*b122,

a12*b211,a12*b212,a12*b221,a12*b222,

a21*b111,a21*b112,a21*b121,a21*b122,

a22*b211,a22*b212,a22*b221,a22*b222});

P = kernel phi

The output of this Macaulay2 code is precisely the prime ideal IG = I1⊥⊥{3,4}|2.
On the other hand, the ideal Ipairs(G) representing the pairwise Markov

property on G is not prime. It is properly contained in IG. Namely, it is generated
by eight of the twelve minors of M1 and M2, and it can be decomposed as follows:

Ipairs(G) =
(

minors(M1) ∩ 〈p1111, p1122, p2111, p2122〉 ∩ 〈p1112, p1121, p2112, p2121〉
)

+
(

minors(M2) ∩ 〈p1211, p1222, p2211, p2222〉 ∩ 〈p1212, p1221, p2212, p2221〉
)

It follows that Ipairs(G) is the intersection of nine prime ideals. One of these primes
is IG = Iglobal(G). Each of the other eight primes contains one of the unknowns
pijkl which means its variety lies on the boundary of the probability simplex ∆15.

This computation confirms Theorem 3.3.2, and it shows how the conclusion
of Proposition 3.3.3 fails on the boundary of ∆15. There are eight such “failure
components”, one for each associated prime of Ipairs(G). For instance, the prime

〈p1111, p1122, p2111, p2122〉 + 〈p1211, p1222, p2211, p2222〉
represents the family of all distributions such that P (X3 = X4) = 0. All such
probability distributions satisfy the pairwise Markov constraints on G but they
are not in the closure of the image of the parametrization φ. �

In general, even throwing in all the polynomials implied by global(G) might
not be enough to characterize the probability distributions that are limits of factor-
ing distributions. Indeed, this failure occurred for the four-cycle graph in Example
3.1.10. For decomposable graphs, however, everything works out nicely [51].

Theorem 3.3.5. The following conditions on an undirected graph G are equivalent:

(i) IG = Iglobal(G).

(ii) IG is generated by quadrics.

(iii) The ML degree of V (IG) is one.

(iv) G is a decomposable graph.

Let us now take a look at Gaussian undirected graphical models. The density
of the multivariate normal distribution N (µ,Σ) can be written as

f(x) =
1

Z

m
∏

i=1

exp

{

−1

2
(xi − µi)

2kii

}

∏

1≤i<j≤m

exp

{

−1

2
(xi − µi)(xj − µj)kij

}

,
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where K = (kij) = Σ−1 is the concentration matrix, and Z is a normalizing
constant. In particular, we see that the density f always factorizes into pairwise
potentials, and that f factorizes as in (3.3.1) if and only if kij = 0 for all (i, j) /∈ E.
This leads to the following observation.

Proposition 3.3.6. The parametrized Gaussian undirected graphical model corre-
sponds to the set of pairs (µ,Σ) ∈ Rm × PDm with (Σ−1)ij = 0 for all (i, j) /∈ E.

From the linear parametrization of the concentration matrices in the model,
we can employ the classical adjoint formula for the inverse to deduce a rational
parametrization of the covariance matrices that belong to the model.

Example 3.3.7. Let T be the tree with V = [4] and E = {(1, 2), (1, 3), (1, 4)}. The
concentration matrices in the Gaussian undirected graphical model for T are the
positive definite matrices of the form

K =









k11 k12 k13 k14

k12 k22 0 0
k13 0 k33 0
k14 0 0 k44









.

Applying the adjoint formula, we find that the corresponding covariance matrices
Σ have the form

Σ =
1

detK









k22k33k44 −k12k33k44 −k13k22k44 −k14k22k33

−k12k33k44 k11k33k44 −k12k13k44 −k12k14k33

−k13k22k44 −k12k13k44 k11k22k44 −k13k14k22

−k14k22k33 −k12k14k33 −k13k14k22 k11k22k33









.

It follows that the set of covariance matrices in this Gaussian undirected tree model
determine a toric variety (since it is given by a monomial parametrization). Direct
computation in this case shows that the vanishing ideal JT of this set of covariance
matrices is equal to the ideal Jglobal(T ) which is generated by quadrics. �

It is unknown whether the characterization of decomposable graphs on dis-
crete random variables given in Theorem 3.3.5 can be extended in a meaningful
way to Gaussian undirected graphical models. For directed graphs see (3.3.7).

Directed graphical models. In the remainder of this section we consider a directed
acyclic graph G on the vertex set [m] and discuss parametrizations of the associ-
ated directed graphical models. For each node j of G, we introduce a conditional
distribution fj(xj |xpa(j)) and consider probability densities of the form

f(x) =

m
∏

j=1

fj(xj |xpa(j)). (3.3.3)

Definition 3.3.8. The parametric directed graphical model consists of all probability
densities that factorize as the product of conditionals (3.3.3).
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Here the situation is even better than in the undirected case: factorizations
are equivalent to satisfying the local or global Markov property [67, Thm. 3.27].

Theorem 3.3.9 (Recursive factorization). A probability density f satisfies the re-
cursive factorization property (3.3.3) with respect to the directed acyclic graph G
if and only if it satisfies the local Markov property.

In the discrete case, the parametric representation of the directed graphical
model G takes the form

φ : pi1i2···im
=

m
∏

j=1

θ(j)(ij | ipa(j)), (3.3.4)

where the parameters θ(j)(ij | ipa(j)) represent conditional probabilities. They are
assumed to satisfy the following linear constraints for all tuples ipa(j) in Rpa(j):

rj
∑

k=1

θ(j)(k | ipa(j)) = 1.

We write φ≥0 for the restriction of the map φ to the cone of non-negative parame-
ters or, more precisely, to the product of simplices given by these linear constraints.
For instance, in Example 3.3.11 below, the parameter space is the 9-dimensional
hypercube ∆9

1.
The local Markov property associated with the directed acyclic graph G is

the set of conditional independence statements seen in (3.2.7). We abbreviate

local(G) =
{

u⊥⊥
(

nd(u) \ pa(u)
)

|pa(u) : u = 1, 2, . . . , n
}

. (3.3.5)

In the discrete case, these CI statements translate into a system of homogeneous
quadratic polynomials. As in Definition 3.1.5, we consider their ideal Ilocal(G), and
we write V∆(Ilocal(G)) for the corresponding variety in the closed simplex ∆R−1.
The discrete recursive factorization theorem takes the following form.

Theorem 3.3.10. The image of the parametrization φ≥0 equals the set of all dis-
crete probability distributions which satisfy the local Markov property. In symbols,

image(φ≥0) = V∆(Ilocal(G)).

In Theorem 3.3.10 we may replace the local Markov property, local(G), by
the global Markov property, global(G). The latter was defined in Section 3.2.
However, the given formulation is a priori stronger since local(G) ⊆ global(G).
The next example illustrates the statement of Theorem 3.3.10.

Example 3.3.11. Let G be the DAG depicted in Figure 3.3.1, where the nodes are
binary random variables. The local Markov property for this directed graph equals

local(G) =
{

2⊥⊥ 3 | 1 , 4⊥⊥ 1 | {2, 3}
}

.
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The ideal generated by the quadrics associated with these two conditional inde-
pendence statements is

Ilocal(G) =
〈

(p1111 + p1112)(p1221 + p1222)− (p1121 + p1122)(p1211 + p1212),

(p2111 + p2112)(p2221 + p2222)− (p2121 + p2122)(p2211 + p2212),

p1111p2112 − p1112p2111 , p1121p2122 − p1122p2121,

p1211p2212 − p1212p2211 , p1221p2222 − p1222p2221

〉

.

The ideal Ilocal(G) is prime, and its projective variety is irreducible and has dimen-
sion nine. In particular, the implicitly defined model V∆(Ilocal(G)) has no “failure
components” in the boundary of the probability simplex. We have the equality

Ilocal(G) = Iglobal(G) = IG.

The recursive factorization theorem expresses this directed graphical model
as the image of a polynomial map φ≥0 into the simplex ∆15. We abbreviate the
vector of 9 = 20 + 21 + 21 + 22 parameters for this model as follows:

θ =
(

a, b1, b2, c1, c2, d11, d12, d21, d22

)

.

The letters a, b, c, d correspond to the random variables X1, X2, X3, X4 in this
order. The parameters represent the conditional probabilities of each node given
its parents. For instance, the parameter d21 was denoted θ(4)(1|21) in (3.3.4), and
it represents the conditional probability of the event “X4 = 1 ” given “X2 = 2
and X3 = 1”. With this notation, the coordinates of the map φ in (3.3.4) are

p1111 = a · b1 · c1 · d11

p1112 = a · b1 · c1 · (1− d11)

p1121 = a · b1 · (1− c1) · d12

p1122 = a · b1 · (1− c1) · (1− d12)

p1211 = a · (1− b1) · c1 · d21

p1212 = a · (1− b1) · c1 · (1− d21)

p1221 = a · (1− b1) · (1− c1) · d22

p1222 = a · (1− b1) · (1− c1) · (1− d22)

p2111 = (1− a) · b2 · c2 · d11

p2112 = (1− a) · b2 · c2 · (1− d11)

p2121 = (1− a) · b2 · (1− c2) · d12

p2122 = (1− a) · b2 · (1− c2) · (1− d12)

p2211 = (1− a) · (1− b2) · c2 · d21

p2212 = (1− a) · (1− b2) · c2 · (1− d21)

p2221 = (1− a) · (1− b2) · (1− c2) · d22

p2222 = (1− a) · (1− b2) · (1− c2) · (1− d22).



92 Chapter 3. Conditional Independence

X1

X2

X3

X4

Figure 3.3.1: Directed acyclic graph.

Note that each of the six quadrics above vanish under this specialization. In fact,
the prime ideal of all algebraic relations among these sixteen quantities is

Ilocal(G) +
〈

2
∑

i=1

2
∑

j=1

2
∑

k=1

2
∑

l=1

pijkl − 1
〉

.

A detailed computer algebra study of discrete directed graphical models with at
most five nodes was undertaken by Garcia, Stillman and Sturmfels in [50]. �

We now examine the case of multivariate normal random vectors. The re-
cursive factorization (3.3.3) translates into a sequence of recursive regressions of
random variables lower in the graph in terms of random variables farther up the
graph. Indeed, suppose that the vertices of the graph G are ordered so that j → k
is an edge only if j < k. For each j ∈ [m], let εj ∼ N (νj , ω

2
j ) be a normal ran-

dom variable and assume that ε1, . . . , εm are independent. To each edge j → k in
the graph, we associate a regression coefficient λjk. We can then define a random
vector X = (X1, . . . , Xm) as the solution to the recursive linear equations

Xk =
∑

j∈pa(k)

λjkXj + εk, k ∈ [m]. (3.3.6)

The random vector X is multivariate normal, with a mean vector and covariance
matrix whose entries are polynomial functions of the parameters νj , ω

2
j , and λjk.

More precisely, X ∼ N (Λ−T ν,Λ−T ΩΛ−1), where ν = (ν1, . . . , νm), the matrix
Ω = diag(ω2

1 , . . . , ω
2
m) is diagonal, and the matrix Λ is upper-triangular with

Λjk =







1 if j = k
−λjk if j → k ∈ E

0 otherwise.
(3.3.7)

It can be shown, by induction on the number m of nodes, that the conditional
distribution of Xk given Xj = xj for all j < k is the normal distribution

N
(

νk +
∑

j∈pa(k)

λjkxj , ω
2
k

)

.
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X1

X3 X5X2 X4

Figure 3.3.2: Directed acyclic graph, often called the Verma graph.

This is also the conditional distribution of Xk given Xj = xj for all j ∈ pa(k).
From these observations one can infer that the density f(x) of a multivariate
normal distribution N (µ,Σ) factorizes as in (3.3.3) if and only if Σ = Λ−T ΩΛ−1.
In other words, the following result holds.

Proposition 3.3.12. The parametrized Gaussian directed graphical model associ-
ated to G corresponds to all pairs (µ,Σ) ∈ Rm × PDm such that Σ = Λ−T ΩΛ−1

with Λ upper-triangular as in (3.3.7) and Ω diagonal with positive diagonal entries.

Let Jglobal(G) be the ideal generated by all the determinantal constraints
coming from the global Markov property of the DAG G, that is, those that come
from the d-separation characterization in Definition 3.2.4. The ideal Jglobal(G) is
generated by certain minors of the covariance matrix, spelled out explicitly in
Definition 3.1.14. Let JG be the vanishing ideal of all covariance matrices coming
from the parametrization in Proposition 3.3.12. By definition, JG is a prime ideal.
The recursive factorization theorem (Theorem 3.3.2) guarantees that:

Proposition 3.3.13. The set of positive definite matrices satisfying the conditional
independence constraints equals the set of positive definite matrices that factorize
as Σ = Λ−T ΩΛ−1. In particular, the following equality of semi-algebraic sets holds:

V (Jglobal(G)) ∩ PDm = V (JG) ∩ PDm.

Unlike the discrete case, there can be probability distributions that satisfy all
conditional independence constraints, but are not limits of Gaussian densities that
factorize according to the graph. These will correspond to singular positive semi-
definite covariance matrices, which yield probability distributions concentrated on
lower-dimensional planes in Rm. Here is an example where this happens:

Example 3.3.14 (Verma graph). Let G be the DAG on five vertices depicted in
Figure 3.3.2. This graph is often called the Verma graph. The matrix Λ−1 in this
case is the path polynomial matrix

Λ−1 =













1 0 λ13 λ13λ34 λ13λ34λ45 + λ15

0 1 λ23 λ23λ34 + λ24 λ23λ34λ45 + λ24λ45

0 0 1 λ34 λ34λ45

0 0 0 1 λ45

0 0 0 0 1













.
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The conditional independence statements expressed by the d-separation re-
lations in the Verma graph G are all implied by the three CI statements

1⊥⊥2, 1⊥⊥4 | {2, 3}, and {2, 3}⊥⊥5 | {1, 4}.

Thus, the conditional independence ideal Jglobal(G) is generated by one linear form
and five determinantal cubics. Using algebraic implicitization (e.g. in Singular),
we find that JG = Jglobal(G) + 〈f〉 where f is the degree four polynomial

f = σ23σ24σ25σ34 − σ22σ25σ
2
34 − σ23σ

2
24σ35 + σ22σ24σ34σ35

−σ2
23σ25σ44 + σ22σ25σ33σ44 + σ2

23σ24σ45 − σ22σ24σ33σ45.

The primary decomposition of Jglobal(G) is

Jglobal(G) = JG ∩ 〈σ11, σ12, σ13, σ14〉 .

Therefore, the zero set of Jglobal(G) inside the positive semi-definite cone contains
singular covariance matrices that are not limits of covariance matrices that belong
to the model. Note that since none of the indices of the σij appearing in f contain
1, f vanishes on the marginal distribution for the random vector (X2, X3, X4, X5).
This is the Gaussian version of what is known as the Verma constraint in machine
learning; compare for example [77, §7.3.1]. The computation shows that the Verma
constraint is still needed as a generator of the unmarginalized Verma model. �



Chapter 4

Hidden Variables

One of the goals of algebraic statistics is to extend classical statistical theory for
smooth statistical models to models that have singularities. Typically, these singu-
larities arise in statistical models with hidden variables, in which a smooth model
involving both observed and hidden variables is projected, via marginalization, to
a model for the observed variables only. Hidden variable models are ubiquitous in
statistical applications, but standard asymptotic theory usually does not apply be-
cause of model singularities. For example, we saw in Chapter 2 that the chi-square
asymptotics for the likelihood ratio test are typically not valid at a singular point.

This chapter describes hidden variable models in some specific instances,
and begins to address their geometric structure. Section 4.1 explains ties between
hidden variable models and the algebraic geometry notion of secant varieties. The
statistical models presented there are for discrete random variables. A Gaussian
example, namely, the factor analysis model, is discussed in detail in Section 4.2.

4.1 Secant Varieties in Statistics

In this section, we focus on a special family of algebraic varieties called secant
varieties. These varieties (or rather their positive parts) arise as special cases of
the statistical models with hidden variables we are interested in studying. The
hope is that by performing a detailed study of these particular models, much can
be learned about more general families of mixtures and hidden variable models.

Let K be a field and consider two affine varieties V,W ⊆ Kk. The join of V
and W is the affine algebraic variety

J (V,W ) = {λv + (1− λ)w : v ∈ V,w ∈W,λ ∈ K}.

This is the (Zariski) closure of the set of all points lying on lines spanned by a
point in V and a point in W . If V = W then this is the secant variety of V ,
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denoted Sec2(V ) = J (V, V ). The s-th higher secant variety is defined by the rule:

Sec1(V ) = V, Secs(V ) = J (Secs−1(V ), V ).

In other words, the s-th secant variety is the closure of the set of all points on
planes spanned by s points lying on V . For large s, this operation stabilizes, and we
get the affine hull of V . If V and W are cones (that is, λv ∈ V for all v ∈ V, λ ∈ K)
then we can drop the affine combinations in the definition of join and merely take
sums of elements. If V and W are projective varieties in Pk−1 then their join
J (V,W ) is the projective variety associated with the join of their affine cones.

Secant varieties are well-studied objects in algebraic geometry. See [48, 105]
for two book length monographs highlighting the connections of joins and secant
varieties to classical algebraic geometry. Most of the algebraic geometry literature
on secant varieties focuses on their dimensions, namely, to what extent this di-
mension can differ from the expected dimension. However, there is now also an
emerging body of work on the vanishing ideals of secant varieties.

The statistical models we consider are generally not algebraic varieties, but
are usually semi-algebraic sets. Furthermore, when we form new statistical models
we typically take convex combinations of elements rather than affine combinations.
This leads us to the notion of a mixture. For the rest of this section, we assume
that our statistical models correspond, via their parameter spaces, to subsets of a
real vector space Rk. Let V and W be two such sets. Their mixture is the new set

Mixt(V,W ) = {λv + (1− λ)w | v ∈ V,w ∈W,λ ∈ [0, 1]} .

The mixture Mixt(V,W ) consists of all convex combinations of a point in V and
a point in W . We define the higher mixtures, of a set with itself, by the rules

Mixt1(V ) = V, Mixts(V ) = Mixt(Mixts−1(V ), V ).

We can write the higher mixtures explicitly as follows:

Mixts(V ) =

{

s
∑

i=1

λivi | vi ∈ V, λi ∈ [0, 1] and λ1 + · · ·+ λs = 1

}

.

Note that for large s this operation stabilizes, and we obtain the convex hull of V .

Proposition 4.1.1. If V is a semi-algebraic set, then the secant variety Secs(V ) is
the Zariski closure of the mixture Mixts(V ).

Proof. The mixture is clearly contained in the secant variety. If the λi are chosen
generically in [0, 1] then the corresponding point in Mixts(V ) is a non-singular
point in Secs(V ). From this the assertation can be derived. �

Secant varieties and mixtures can be quite different from each other:
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Example 4.1.2 (Non-negative rank). Let V be the set of all non-negative r × c
matrices with rank ≤ 1. This is the non-negative part of the cone over the Segre
variety Pr−1 × Pc−1. The secant variety Secs(V ) consists of all r × c matrices of
rank ≤ s. On the other hand, the mixture Mixts(V ) consists of all non-negative
r×c matrices that can be written as a sum of ≤ s non-negative matrices of rank 1.

The smallest number s such that a non-negative matrix A can be written as
the sum of s non-negative matrices of rank 1 is called the non-negative rank of A.
Thus Mixts(V ) consists of all matrices of non-negative rank ≤ s. To illustrate the
differences between these two sets, we note that, whereas the rank of a matrix can
be computed in polynomial time, determining its non-negative rank is NP-hard
[96]. In other words, deciding whether a matrix A ∈ Qr×c belongs to Secs(V ) can
be decided in polynomial time, whereas deciding whether A belongs to Mixts(V )
is unlikely to have a polynomial time algorithm. Specifically, it is known that

Mixt2(V ) = Sec2(V ) ∩ Rr×c
≥0

but Mixts(V ) 6= Secs(V ) ∩ Rr×c
≥0 for s ≥ 3.

For instance, the following matrix has rank 3 but non-negative rank 4:

A =









1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1









.

The set of all s-tuples of rank 1 matrices whose sum is a fixed matrix in Mixts(V )
is known as the space of explanations. We refer to [71] for an interesting study of
the topology of this space as well as a discussion of its statistical meaning. �

Now we are ready to describe two instances where mixtures arise in statistics.

Mixture models. The first family of models where a mixture arises are the dis-
crete mixture models. To describe this family, suppose that P ⊂ ∆r−1 is a statis-
tical model for a random variable X with state space [r]. In the mixture model,
we assume that there is a hidden random variable Y with state space [s], and
that for each j ∈ [s], the conditional distribution of X given Y = j is p(j) ∈ P.
Furthermore, the random variable Y has some probability distribution π ∈ ∆s−1.
Thus, the joint distribution of Y and X is given by the formula

P (Y = j,X = i) = πj · p(j)
i .

However, we are assuming that Y is a hidden variable, so that we can only observe
the marginal distribution of X, which is

P (X = i) =

s
∑

j=1

πj · p(j)
i .
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In other words, the marginal distribution of X is the convex combination of the J
distributions p(1), . . . , p(s), with weights given by π. The mixture model consists
of all probability distributions that can arise in this way.

Definition 4.1.3. Let P ⊂ ∆r−1 be a statistical model. The s-th mixture model is

Mixts(P) =

{

s
∑

j=1

πjp
(j) : π ∈ ∆s−1 and p(j) ∈ P for all j

}

.

Mixture models provide a way to build complex models out of simpler mod-
els. The basic assumption is that the underlying population to be modeled is one
that can be split into r disjoint subpopulations. In each subpopulation, the un-
derlying observable random variable X follows a probability distribution from the
(simple) model P. However, upon marginalization, the structure of the probability
distribution is significantly more complex, because it is the convex combination of
these simple probability distributions.

We have already seen a number of mixture models in the preceding chapters.

Example 4.1.4 (Non-negative rank, revisited). The independence model MX⊥⊥Y

is the set of rank one probability matrices, so thatMX⊥⊥Y = V ∩∆rc−1, where V
is the set of non-negative matrices of rank ≤ 1 from Example 4.1.2. Thus the s-th
mixture model Mixts(MX⊥⊥Y ) is the set of probability matrices of non-negative
rank≤ s. As we argued in Example 4.1.2, this is a very complicated set if s > 2. �

Example 4.1.5 (The cheating coin flipper). To illustrate the discrepancy between
the complex algebraic geometry and semi-algebraic geometry inherent in these
mixture models, consider the model of the cheating coin flipper from Example
2.2.3. This is a mixture model with two hidden states of a binomial random variable
with four trials. To simplify our analysis, suppose that the number of hidden states
s is ≥ 4, so that our model Mixts(V ) is the convex hull of the monomial curve

V =
{

((1− α)4, 4α(1− α)3, 6α2(1− α)2, 4α3(1− α), α4) : α ∈ [0, 1]
}

.

Among the semi-algebraic constraints of this convex hull are the conditions that
the following two Hankel matrices are positive semi-definite:





12p0 3p1 2p2

3p1 2p2 3p3

2p2 3p3 12p4



 � 0 and

(

3p1 2p2

2p2 3p3

)

� 0. (4.1.1)

We drew 1, 000, 000 random points according to a uniform distribution on the
probability simplex ∆4 and found that only 91, 073 satisfied these semi-algebraic
constraints. Roughly speaking, the mixture model takes up only ≤ 10% of the
probability simplex, whereas the secant variety Secs(V ) fills the simplex. We do
not know whether the linear matrix inequalities in (4.1.1) suffice to characterize
the mixture model, so it is possible that the model takes up an even smaller
percentage of the probability simplex. �
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Among the most important discrete mixture models is the latent class model,
in which the underlying model P is the model of complete independence for m ran-
dom variables X1, X2, . . . , Xm. Here, complete independence X1⊥⊥X2⊥⊥ . . .⊥⊥Xm

means that the statement XA⊥⊥XB holds for every partition A∪B = [m]. A joint
distribution belongs to the model of complete independence if and only if

pi =

m
∏

k=1

(p|{k})ik
for all i ∈ R =

m
∏

j=1

[rj ].

In other words, this model consists of all probability distributions that are rank
one tensors. Describing the mixture model of the complete independence model
amounts to supposing thatX1, X2, . . . , Xm are all conditionally independent, given
the hidden variable Y . Passing to the Zariski closure, we are left with the problem
of studying the secant varieties of the Segre varieties Pr1−1 × · · · × Prm−1.

Proposition 4.1.6. The mixture model Mixts(MX1⊥⊥X2⊥⊥···⊥⊥Xm
) consists of all

probability distributions of non-negative tensor rank less than or equal to s.

Given this interpretation as a conditional independence model with hidden
variables, the mixture model of complete independence is also a graphical model
with hidden variables (based on either a directed or an undirected graph). In the
directed case, the graph has the edges Y → Xj for all j.

There are many important algebraic problems about latent class models, the
solutions of which would be useful for statistical inference. By far the most basic,
but still unanswered, problem is to determine the dimensions of these models.
There has been much work on this problem, and in some situations, the dimensions
of the secant varieties are all known. For instance, if we only have two random
variables X1 and X2, then the secant varieties are the classical determinantal
varieties and their dimensions, and thus the dimensions of the mixture models,
are all known. However, already in the case m = 3, it is an open problem to
determine the dimensions of all the secant varieties, as s, r1, r2, and r3 vary.

Example 4.1.7 (Identifiability of mixture models). Consider the mixture model
Mixt2(MX1⊥⊥X2⊥⊥X3) where X1, X2, and X3 are binary. A simple parameter count
gives the expected dimension of the mixture model as 2× 3 + 1 = 7 = dim ∆R−1.
It is known, and the code below verifies, that this expected dimension is correct,
and the mixture model is a full dimensional subset of probability simplex.

The next natural question to ask is: Is the model identifiable? Equivalently,
given a probability distribution that belongs to the model, is it possible to re-
cover the parameters in the probability specification. The following Macaulay2

code shows that the mixing parameter (labeled q) can be recovered by solving a
quadratic equation in q whose coefficients are polynomials in the pijk. Note that
the coefficient of q2 is precisely the hyperdeterminant, featured in Example 2.2.10.

S = QQ[l, a,b,c,d,e,f,t];

R = QQ[q,p111,p112,p121,p122,p211,p212,p221,p222];
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F = map(S,R,matrix{{

t*l,

t*(l*a*b*c + (1-l)*d*e*f),

t*(l*a*b*(1-c) + (1-l)*d*e*(1-f)),

t*(l*a*(1-b)*c + (1-l)*d*(1-e)*f),

t*(l*a*(1-b)*(1-c) + (1-l)*d*(1-e)*(1-f)),

t*(l*(1-a)*b*c + (1-l)*(1-d)*e*f),

t*(l*(1-a)*b*(1-c) + (1-l)*(1-d)*e*(1-f)),

t*(l*(1-a)*(1-b)*c + (1-l)*(1-d)*(1-e)*f),

t*(l*(1-a)*(1-b)*(1-c) + (1-l)*(1-d)*(1-e)*(1-f))}});

I = kernel F

The degree 2 that arises here shows the trivial non-identifiability called “pop-
ulation swapping” or “label switching” which amounts to the fact that in the
mixture model we cannot tell the two subpopulations apart. The two solutions to
this quadric will always be a pair λ, 1−λ. The quadratic equation in q can also be
used to derive some nontrivial semi-algebraic constraints for this mixture model.
If there is a solution, it must be real, so the discriminant of this equation must
be positive. This condition describes the real secant variety. Other semi-algebraic
conditions arise by requiring that the two solutions lie in the interval [0, 1]. �

Example 4.1.8 (A secant variety with dimension defect). Consider the mixture
model Mixt3(MX1⊥⊥X2⊥⊥X3⊥⊥X4

) where X1, X2, X3 and X4 are binary. The ex-
pected dimension of this model is 3 × 4 + 2 = 14, but it turns out that the true
dimension is only 13. Indeed, the secant variety Sec3(P1×P1×P1×P1) is well-known
to be defective. It is described implicitly by the vanishing of the determinants of
the two 4× 4 matrices:









p1111 p1112 p1121 p1122

p1211 p1212 p1221 p1222

p2111 p2112 p2121 p2122

p2211 p2212 p2221 p2222

















p1111 p1112 p1211 p1212

p1121 p1122 p1221 p1222

p2111 p2112 p2211 p2212

p2121 p2122 p2221 p2222









and thus is a complete intersection of degree 16 in P15. �

Another problem, which is likely to require an even deeper investigation, is
to understand the singularities of these mixture models. The importance of the
singularities for statistical inference is a consequence of the following proposition.

Proposition 4.1.9. Suppose that Secs(V ) 6= aff(V ), affine hull of V . Then

Secs−1(V ) ⊆ Sing(Secs(V )).

Proof. If f is any non-zero polynomial in the vanishing ideal I(Secs(V )) ⊆ C[p],
then any first order partial derivative ∂f

∂pi
belongs to the ideal I(Secs−1(V )). One

way to prove this result is based on prolongations [84]. This approach implies that
the Jacobian matrix associated to any generating set of I(Secs(V )) evaluated at
a point of Secs−1(V ) is the zero matrix. �
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Thus the study of the behavior of the likelihood ratio test statistic, as in Sec-
tion 2.3, for hypothesis testing with respect to the models Mixts−1(P) ⊂ Mixts(P)
will require a careful analysis of the singularities of these secant varieties.

Phylogenetic models. Another important family of statistical models involving
mixtures, and thus secant varieties, arises in phylogenetics (see [46, 83] for book-
length introductions to this area). Phylogenetic models are graphical models with
hidden variables that are defined over trees. The nodes in the tree correspond to a
site in aligned DNA sequences of several species. The leaves of the trees represent
species that are alive today and whose DNA is available for analysis. Internal nodes
in the tree correspond to extinct ancestral species whose DNA is not available.
Thus, all internal nodes of the tree correspond to hidden random variables.

Typically, we assume that each discrete random variable represented in the
tree has the same number of states r. When working with the nucleotides directly,
this number is 4. If we compress our DNA consideration to only look at mutations
across the purine/pyrimidine divide, then each random variable would have only
two states. Going to the other extreme, if we consider regions of DNA that code for
proteins, we could group the DNA into codons that correspond to one of twenty
amino acids. Here we will focus primarily on the case of either r = 2 or r = 4.

A particular phylogenetic model is specified by placing restrictions on the
transition matrices that can be used on the edges in the tree. A transition matrix
contains the conditional probabilities for a random variable given its (unique)
parent variable in the tree. The largest possible model, allowing the biggest possible
class of transition structures, is known as the general Markov model. In the general
Markov model, the transition matrices are unconstrained except that they should
actually contain valid conditional probabilities. However, one often also considers
other classes of models that are submodels of the general Markov model.

One of the basic problems of phylogenetic algebraic geometry is to determine
the vanishing ideals of phylogenetic models. Given a tree T , and particular choice
of transition structure, we get a rational map φT from a low dimensional parameter
space (the space of all suitably structured transition matrices) into the high dimen-
sional probability simplex containing the probability distributions for the random
variables at the m leaves. The image of this map im(φT ) is a semi-algebraic set in
∆rm−1, and we would like to determine its vanishing ideal IT = I(im(φT )) ⊆ R[p].

A fundamental result of Draisma and Kuttler says that for “reasonable” al-
gebraic phylogenetic models, the problem of determining a generating set of the
phylogenetic ideals IT for an arbitrary tree T can be reduced, via a combinatorial
procedure, to very small trees. We here do not offer a formal definition of what
“reasonable” means but refer to [36] instead. Let K1,m denote the complete bipar-
tite graph with one hidden node and m observed nodes. These graphs are often
called claws.

Theorem 4.1.10 (Draisma-Kuttler [36]). Given a “reasonable” phylogenetic model,
there is an explicit combinatorial procedure to build generators for the phylogenetic
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ideal IT from the generators of the phylogenetic ideal IK1,m
, where m is the largest

degree of a vertex in T .

For the rest of this section, we focus exclusively on the case of phylogenetic
models on claw trees. For many classes of transition matrices used in phylogenetics,
the algebraic varieties corresponding to claws are secant varieties of toric varieties.

There are three important situations to which the Draisma-Kuttler theorem
applies. First, and most classically, is the class of group-based phylogenetic models.
After applying the Fourier transform, these models decompose into simple cases
of claw trees. We assume that the underlying trees are bifurcating (or trivalent or
binary, depending on the reference), in which case we only need to understand the
model for three-leaf claw trees. The vanishing ideal for three-leaf claw trees can be
determined by a computation, first carried out in [89]. We refer the reader to this
paper for the details on group based models, and the resulting toric structure.

The next important case where the Draisma-Kuttler theorem is applicable
is the general Markov model mentioned above. See also [3] and [73, §19.1]. To
solve the case of bifurcating trees, we must again determine the vanishing ideal
for the three-leaf claw tree. If there are r states for the random variables, we must
determine the vanishing ideal of the parametrization

φ : Rr × Rr2 × Rr2 × Rr2 −→ Rr3

(π,A,B,C) 7→
r
∑

i=1

πi ·Ai· ⊗Bi· ⊗ Ci· .

In phylogenetic models, the root distribution parameter π is in the simplex ∆r−1.
For each fixed value i ∈ [r], the tensor Ai· ⊗Bi· ⊗Ci· = (aijbikcil) has rank one,
and hence belongs to the model of complete independenceMX1⊥⊥X2⊥⊥X3 .

Proposition 4.1.11. The general Markov model on a three leaf claw tree for r states
is the same family of probability distributions as the mixture model

Mixtr(MX1⊥⊥X2⊥⊥X3)

where each Xi has r states. The projectivized Zariski closure of the model is the
secant variety

Secr(Pr−1 × Pr−1 × Pr−1).

The secant variety Sec2(P1 × P1 × P1) fills all of projective space P7; recall
Example 4.1.7. Therefore, the vanishing ideal of the general Markov model on a
bifurcating tree with binary states can be described very explicitly:

Theorem 4.1.12. Let T be a bifurcating tree, and let each random variable be binary
(r = 2). Then the phylogenetic ideal IT for the general Markov model is generated
by the 3× 3 minors of all flattenings of the table (pi1...im

) that come from splits in
the tree T .
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X1 X2  X3

X4 X5

Figure 4.1.1: Bifurcating tree.

Proof. This was conjectured in [50, §7] and proved in [5] and in [65]. The Draisma-
Kuttler theorem [36] can be regarded as a generalization of this statement. �

Example 4.1.13. Let T be the bifurcating tree with five leaves in Figure 4.1.1. Let

P12|345 =









p11111 p11112 p11121 p11122 p11211 p11212 p11221 p11222

p12111 p12112 p12121 p12122 p12211 p12212 p12221 p12222

p21111 p21112 p21121 p21122 p21211 p21212 p21221 p21222

p22111 p22112 p22121 p22122 p22211 p22212 p22221 p22222









and

P123|45 =

























p11111 p11112 p11121 p11122

p11211 p11212 p11221 p11222

p12111 p12112 p12121 p12122

p12211 p12212 p12221 p12222

p21111 p21112 p21121 p21122

p21211 p21212 p21221 p21222

p22111 p22112 p22121 p22122

p22211 p22212 p22221 p22222

























.

These two matrices correspond to the two non-trivial splits of the tree T . The
phylogenetic ideal for r = 2 is generated by all 3×3 minors of the two matrices. �

For r = 3, there is also an explicit description in the case of bifurcating trees,
which follows from Theorem 4.1.10 and [66]. However, for the most interesting case
of DNA sequences (r = 4), it is still an open problem to describe the generating
sets of these ideals. It is known that certain polynomials of degrees 5, 6, and 9 are
needed as generators, but it is unknown whether these polynomials suffice [65, 88].

Another case where an interesting secant variety appears is the strand sym-
metric model (see Chapter 16 in [73]). In this model, we make restrictive assump-
tions on the allowable transition matrices. The restrictions are based on the fact
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that DNA is double-stranded, and the strands always form base pairs. In partic-
ular, A is always paired with T and C is always paired with G. The base pairing
of the double stranded DNA sequence means that a mutation on one strand will
always force a balancing mutation on the opposite strand. We infer the following
equalities between entries in a transition matrix in the strand symmetric model:

θAA = θTT , θAC = θTG,

θAG = θTC , θAT = θTA,

θCA = θGT , θCC = θGG,

θCG = θGC , θCT = θGA.

Rearranging the rows and columns of the constrained transition matrix θ, we see
that it has the block form:

θ =

(

α β
β α

)

where α =

(

θAA θAG

θGA θGG

)

, β =

(

θAT θAC

θGT θGC

)

.

Furthermore, the strand symmetric assumption implies that the root distribution
should satisfy the relationship πA = πT and πC = πG. This block form implies
that it is possible to use a Fourier transform to simplify the parametrization. In
the Fourier coordinates, the underlying algebraic variety of the strand symmetric
model has a simple combinatorial structure.

Definition 4.1.14. Let φ : Pr1−1×Pr2−1×Pr3−1 −→ Pr1r2r3−1 be the rational map

φijk(a, b, c) =

{

aibjck if i+ j + k is even
0 if i+ j + k is odd.

The image of φ is the checkerboard Segre variety :

SegZ2
(Pr1−1 × Pr2−1 × Pr3−1).

The checkerboard Segre variety is a toric variety, and its vanishing ideal is
generated by quadrics. Its secant varieties arise as the Zariski closure of the strand
symmetric model.

Proposition 4.1.15 ([73, Chap. 16]). The projectivized Zariski closure of the strand
symmetric model for DNA sequences on the 3-leaf claw tree is the secant variety
of the checkboard Segre variety:

Sec2(SegZ2
(P3 × P3 × P3)).

While some of the equations in the ideal of this secant variety are known (in
particular, equations of degree 3 and 4), it is still an open problem to compute its
prime ideal. Once this problem has been solved, we could apply Theorem 4.1.10
to recover all equations for the strand symmetric model on any trivalent tree.
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H1

X5X1 X2 X3 X4

H2

Figure 4.2.1: Directed acyclic graph for the factor analysis model F5,2.

4.2 Factor Analysis

Let X1, . . . , Xm be a collection of continuous random variables that represent
a randomly selected individual’s performance when solving m math problems.
It is natural to expect the individual to do well (or poorly) in most tasks pro-
vided he/she has (or does not have) a talent for the type of considered problems.
Therefore, if the population the individual is selected from indeed exhibits vary-
ing mathematical talent, then the random variablesX1, . . . , Xm will be dependent.
However, one might expect the variables X1, . . . , Xm to be independent if the ran-
dom selection of an individual occurs conditionally on a fixed talent level.

Situations of the type just described are the subject of factor analysis, where
notions such as mathematical talent are quantified using one or more hidden vari-
ables H1, . . . ,Hs. The hidden variables are termed factors and we assume through-
out that their number is smaller than the number of observed variables, that is,
s < m. The factor analysis model Fm,s for the joint distribution of X1, . . . , Xm

assumes that the random vector (X1, . . . , Xm,H1, . . . ,Hs) follows a joint multi-
variate normal distribution with a positive definite covariance matrix such that

X1⊥⊥X2⊥⊥ . . .⊥⊥Xm | (H1, . . . ,Hs). (4.2.1)

Display (4.2.1) refers to complete conditional independence of X1, . . . , Xm given
H1, . . . ,Hs, that is,

XA⊥⊥XB | (H1, . . . ,Hs) for all partitions (A,B) of [m]. (4.2.2)

Having assumed a joint multivariate normal distribution, (4.2.2) is equivalent to

Xi⊥⊥Xj | (H1, . . . ,Hs) for 1 ≤ i < j ≤ s. (4.2.3)

This equivalence is false for discrete random variables. We remark that the model
Fm,s is a graphical model with hidden variables based on a directed acyclic graph
that is complete bipartite with edges pointing from the hidden to the observed
variables; recall Section 3.2. The graph for F5,2 is shown in Figure 4.2.1.

We start out by deriving the following parametric model representation from
the determinantal implicit description given in (4.2.1) and (4.2.3).
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Proposition 4.2.1. The factor analysis model Fm,s is the family of multivariate
normal distributions Nm(µ,Σ) on Rm whose mean vector µ is an arbitrary vector
in Rm and whose covariance matrix Σ lies in the (non-convex) cone

Fm,s = {Ω + ΛΛT ∈ Rm×m : Ω ≻ 0 diagonal, Λ ∈ Rm×s}
= {Ω + Ψ ∈ Rm×m : Ω ≻ 0 diagonal, Ψ � 0 symmetric, rank(Ψ) ≤ s}.

Here the notation A ≻ 0 means that A is a positive definite matrix, and
similarly A � 0 means that A is a positive semi-definite matrix.

Proof. Consider the joint covariance matrix of hidden and observed variables,

Cov

(

X
H

)

=

(

Σ Λ
ΛT Φ

)

. (4.2.4)

Using Definition 3.1.14, the conditional independence relations (4.2.3) translate
into the vanishing of the following (s+ 1)× (s+ 1)-determinants

det

(

σij Λi∗
ΛT

j∗ Φ

)

= det(Φ) · (σij − Λi∗Φ
−1ΛT

j∗) = 0. (4.2.5)

Here we assume i 6= j. Since det(Φ) > 0, (4.2.5) implies that the positive definite
Schur complement Ω = Σ − ΛΦ−1ΛT is diagonal. By Cholesky decomposition of
Φ−1, the covariance matrix Σ = Ω+ΛΦ−1ΛT for the observed variables is seen to
be in Fm,s, and all matrices in Fm,s can be obtained in this fashion. �

In what follows we identify the factor analysis model Fm,s with its parameter
space Fm,s. By Proposition 4.2.1, the semi-algebraic set Fm,s can be parametrized
by the polynomial map with coordinates

σij =

{

ωii +
∑s

r=1 λ
2
ir if i = j,

∑s
r=1 λirλjr if i < j,

(4.2.6)

where ωii > 0 and λij ∈ R. Note that this parametrization can also be derived
from Proposition 3.3.13.

The dimension d = dim(Fm,s) of the model Fm,s is equal to the maximal
rank of the Jacobian matrix of the parametrization (4.2.6). The codimension of
Fm,s is

(

m+1
2

)

− d. The following result appears in [40, Thm. 2].

Theorem 4.2.2. The dimension and the codimension of the factor analysis model
are

dim(Fm,s) = min

{

m(s+ 1)−
(

s

2

)

,

(

m+ 1

2

)}

,

codim(Fm,s) = max

{(

m− s
2

)

− s, 0
}

.
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From (4.2.6) it is evident that a matrix Σ is in Fm,s if and only if it is the sum
of s matrices in Fm,1. The sets Fm,s being cones, the latter holds if and only if Σ
is a convex combination of matrices in Fm,1. We observe the following structure.

Remark 4.2.3. In factor analysis, Fm,s = Mixts(Fm,1), and the Zariski closure of
Fm,s is the s-th secant variety of the Zariski closure of Fm,1.

Such secant structure also arises in other Gaussian graphical models with
hidden variables [92, §7.3]. For factor analysis, it implies that the singular locus
of the factor analysis model with s factors contains the model with s− 1 factors;
recall Proposition 4.1.9. Therefore, the statistical estimation of the number of
hidden factors presents a non-standard problem. It should be noted, however,
that Fm,1 already has singularities in the cone of positive definite matrices, and
that Fm,s contains positive definite singularities outside Fm,s−1. The occurrence
of singularities is related to the identifiability issues discussed in [6].

In the remainder of this section we will be interested in polynomial relations
among the entries of a factor analysis covariance matrix Σ ∈ Fm,s. Let

Im,s =
{

f ∈ R[σij , i ≤ j] : f(Σ) = 0 for all Σ ∈ Fm,s

}

(4.2.7)

be the ideal of these relations. The ideal Im,s contains much useful information
about the geometry of the model. But relations in Im,s can also serve as closed-form
test statistics for what are commonly termed Wald tests. The next proposition
follows from the asymptotic normality of the sample covariance matrix S and an
application of the delta-method, which refers to using a Taylor-expansion in order
to derive the asymptotic distribution of a transformation of S; compare [40, §3].

Proposition 4.2.4. Let S be the sample covariance matrix based on an n-sample
drawn from a distribution N (µ,Σ) in Fm,s. Let f ∈ Im,s and VarΣ[f(S)] the
variance of sample evaluation. If ∇f(Σ) 6= 0 and n→∞, then

f(S)2

VarS [f(S)]

D−→ χ2
1.

Here ∇f denotes the gradient of the polynomial function f . The convergence
in distribution in Proposition 4.2.4 justifies (asymptotic) p-value calculations. As
stated the convergence result is most useful for hypersurfaces but it can be gen-
eralized to the case where several polynomials in Im,s are considered. It should
be noted, however, that the validity of the χ2-asymptotics is connected to the
smoothness of the set Fm,s.

As we will see next, the (s+1)×(s+1)-minors of Σ will play a particular role
for the factor analysis ideal Im,s. Their sampling variance and covariance structure
is derived in [39]. Since membership in the Zariski closure of Fm,s depends only
on the off-diagonal entries of the matrix Σ, the ideal Im,s can be computed by
elimination of the diagonal entries σii:



108 Chapter 4. Hidden Variables

Proposition 4.2.5 ([40, Thm. 7]). Let Mm,s ⊆ R[σij , i ≤ j] be the ideal generated
by all (s+ 1)× (s+ 1)-minors of a symmetric matrix Σ ∈ Rm×m. Then

Im,s = Mm,s ∩ R[σij , i < j].

If the symmetric matrix Σ ∈ Rm×m is of size m ≥ 2(s+ 1), then it contains
(s + 1) × (s + 1)-minors in R[σij , i < j]. Such off-diagonal minors are clearly
in Im,s. Each off-diagonal minor det(ΣA,B) is derived from two disjoint subset
A,B ⊂ [m] of equal cardinality s+ 1, and thus, up to sign change, there are

1

2

(

m

2(s+ 1)

)(

2(s+ 1)

s+ 1

)

off-diagonal minors.

Example 4.2.6 (Tetrad). Up to sign change, the matrix

Σ =









σ11 σ12 σ13 σ14

σ12 σ22 σ23 σ24

σ13 σ23 σ33 σ34

σ14 σ24 σ34 σ44









contains three off-diagonal 2× 2-minors, namely

σ12σ34 − σ13σ24, σ14σ23 − σ13σ24, σ12σ34 − σ14σ23. (4.2.8)

In the statistical literature these minors are known as tetrads or tetrad differences,
as they arise in the one-factor model with four observed variables [55]. The three
tetrads in (4.2.8) are algebraically dependent: the third tetrad is the difference of
the first and the second tetrad. In fact, the first and second tetrad generate the
entire ideal I4,1, as can be verified using the following computation in Singular:

LIB "elim.lib";

ring R = 0,(s11,s22,s33,s44, s12,s23,s34,s14, s13,s24),lp;

matrix S[4][4] = s11,s12,s13,s14,

s12,s22,s23,s24,

s13,s23,s33,s34,

s14,s24,s34,s44;

ideal M41 = minor(S,2);

eliminate(M41,s11*s22*s33*s44);

The command eliminate computes the intersection M4,1 ∩ R[σij , i < j] in
Proposition 4.2.5 and thus (a finite generating set of) the ideal I4,1. �

The ideal structure encountered in Example 4.2.6 generalizes to larger models
with s = 1 factor. Any four indices i < j < k < ℓ in [m] define a 4 × 4-principal
submatrix of Σ from which we can extract two algebraically independent tetrads.
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Choosing these two tetrads in the way the first two tetrads in (4.2.8) were obtained,
we create the 2

(

m
4

)

tetrads

Tm = {σijσkℓ − σikσjℓ, σiℓσjk − σikσjℓ | 1 ≤ i < j < k < ℓ ≤ m}.

As described in [30], the underlined terms are the leading terms with respect to
certain circular monomial orders on R[σij , i < j]. Let

d(i, j) = min{ (i− j mod m), (j − i mod m)}

be the circular distance of two indices i, j ∈ [m]. Under a circular monomial order,
σij ≻ σkl if d(i, j) < d(k, l). One example of a circular monomial order is the
lexicographic order that was used in the Singular code in Example 4.2.6.

Theorem 4.2.7 ([30, Thm. 2.1]). If m ≤ 3 the ideal Im,1 is the zero ideal. If m ≥ 4,
the set Tm is the reduced Gröbner basis of the ideal Im,1 with respect to a circular
monomial order.

Example 4.2.8 (Pentad). If m = 5 and s = 2, then there are no off-diagonal 3× 3-
minors in I5,2. Nevertheless, Theorem 4.2.2 informs us that F5,2 has codimension
1, that is, it is a hypersurface in the space of symmetric 5× 5-matrices. Adapting
the Singular code presented in Example 4.2.6, we can compute this hypersurface.
We find that the ideal I5,2 is generated by the irreducible polynomial

σ12σ13σ24σ35σ45 − σ12σ13σ25σ34σ45 − σ12σ14σ23σ35σ45 + σ12σ14σ25σ34σ35

+σ12σ15σ23σ34σ45 − σ12σ15σ24σ34σ35 + σ13σ14σ23σ25σ45 − σ13σ14σ24σ25σ35

−σ13σ15σ23σ24σ45 + σ13σ15σ24σ25σ34 − σ14σ15σ23σ25σ34 + σ14σ15σ23σ24σ35.

This polynomial is referred to as the pentad in the statistical literature. It was first
derived in the 1930’s by Kelley [64].

Why is the pentad in I5,2? We can argue this by selecting two 3× 3-minors
that both involve exactly one element of the diagonal of Σ. For instance, consider
the {1, 2, 3} × {3, 4, 5} and the {2, 3, 4} × {1, 3, 5}-minors. We can expand these
determinants as

det (Σ123,345) = σ33 · a11(Σ) + a10(Σ), (4.2.9a)

det (Σ234,135) = σ33 · a21(Σ) + a20(Σ), (4.2.9b)

where ak1 and ak0 are quadratic and cubic polynomials in R[σij , i < j], respec-
tively. Setting the minors in (4.2.9a) and (4.2.9b) equal to zero we obtain two
equations, which we view as linear equations in the unknown σ33 with coefficients
akl. Now recall that Proposition 4.2.1 states that a positive definite matrix Σ is in
Fm,s if and only if we can create a matrix of rank s by subtracting positive reals
from the diagonal of Σ. Therefore, if the coefficients akl are derived from a matrix
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Σ ∈ F5,2, then the two equations given by (4.2.9a) and (4.2.9b) have a solution in
σ33. This requires the following determinant to vanish:

det

(

a10(Σ) a11(Σ)
a20(Σ) a21(Σ)

)

= 0. (4.2.10)

Plugging the original quadratic and cubic coefficient polynomials akl ∈ R[σij , i <
j] from (4.2.9a) and (4.2.9b) into (4.2.10) we obtain a quintic polynomial in I5,2.
Upon expansion of the determinant, this polynomial is seen to be the pentad. �

The reasoning leading to (4.2.10) can be generalized. Suppose m and s are
such that the codimension of Fm,s is positive and m ≥ 2(s+1)−k for some k ≥ 1.
Then we can select a set of k indices D = {d1 . . . , dk} ⊂ [m] and k + 1 many
(s + 1) × (s + 1)-minors that all involve the diagonal entries σii, i ∈ D, but no
other diagonal entries. The expansion of the minors yields a system of k + 1 mul-
tilinear equations in the k unknowns σii, i ∈ D. The other terms in the expansion
are treated as coefficients for the equations. If these coefficients are derived from
a matrix Σ ∈ Fm,s then the multilinear equation system has a solution. It can be
shown that this requires an irreducible polynomial in the coefficients of the sys-
tem to vanish; compare [40, §6]. This polynomial is known as the k-th multilinear
resultant. The determinant in (4.2.10) is the multilinear resultant for k = 1. Mul-
tilinear resultants can be employed to compute polynomials in Im,s in the same
way as the determinant in (4.2.10) yields the pentad. In [40], this approach was
used in particular to show that the Zariski closure of F9,5 is a hypersurface defined
by an irreducible homogeneous polynomial of degree 54.

Let us now return to the ideals Im,s for s = 2 factors. We have encountered
two types of polynomials in Im,2, namely, off-diagonal 3×3-minors and the pentad
of degree 5. In Example 4.2.8 we have seen that the pentad generates I5,2. The
Gröbner basis computation underlying this result is also feasible for larger models.
The following conjecture can be verified computationally for small to moderate m.
It holds at least for m ≤ 9.

Conjecture 4.2.9. The ideal of the two-factor model, Im,2, is minimally generated
by 5

(

m
6

)

off-diagonal 3× 3-minors and
(

m
5

)

pentads.

A Gröbner basis for Im,2 is described in [93]. This Gröbner basis contains the
conjectured minimal generating set but also additional polynomials of every odd
degree between 3 and m. We refer to [40, Conjecture 28] for a specific conjecture
about the case of s = 3 factors, based on various computational experiments.

We close this section by commenting on a particular symmetry structure
in factor analysis models. Let

(

[m]
k

)

be the set of all subsets A ⊂ [m] that have

cardinality k. If A ∈
(

[m]
k

)

, then we write IA,s to denote the ideal Ik,s when the
entries of the submatrix ΣA,A are used as indeterminates. In Theorem 4.2.7, we
have seen that if m ≥ 4 then a generating set of the ideal Im,1 can be obtained

by taking the union of generating sets of the ideals IA,1 for subsets A ∈
(

[m]
4

)

.
Similarly, if m ≥ 6, then the generating set for Im,2 proposed in Conjecture 4.2.9 is
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composed of generating sets of the ideals IA,2 for A ∈
(

[m]
6

)

. This raises the question
whether such finiteness up to symmetry holds more generally; see Problem 7.8.
A positive answer to this question would be important for statistical practice, as
a statistical test of the model Fm,s for large m could be carried out by testing
lower-dimensional models FA,s for an appropriately chosen set of margins A ⊆ [m].
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Chapter 5

Bayesian Integrals

A key player in Bayesian statistics is the integrated likelihood function of a model
for given data. The integral, also known as the marginal likelihood, is taken over
the model’s parameter space with respect to a measure that quantifies prior belief.
While Chapter 2 was concerned with maximizing the likelihood function, we now
seek to integrate that same function. This chapter aims to show how algebraic
methods can be applied to various aspects of this problem. Section 5.1 discusses
asymptotics of Bayesian integrals for large sample size, while Section 5.2 concerns
exact evaluation of integrals for small sample size.

5.1 Information Criteria and Asymptotics

We fix a statistical model PΘ = {Pθ : θ ∈ Θ} with parameter space Θ ⊆ Rk.
Consider a sample of independent random vectors,

X(1), . . . , X(n) ∼ Pθ0 , (5.1.1)

drawn from an (unknown) true distribution Pθ0 where θ0 ∈ Θ. We say that a
submodel given by a subset Θ0 ⊂ Θ is true if θ0 ∈ Θ0.

In this section we discuss the model selection problem, that is, using the
information provided by the sample in (5.1.1), we wish to find the “simplest” true
model from a finite family of competing submodels associated with the sets

Θ1,Θ2, . . . ,ΘM ⊆ Θ. (5.1.2)

In the spirit of algebraic statistics, we assume the sets in (5.1.2) to be semi-
algebraic (recall Definition 2.3.8). Moreover, as in previous sections we assume that
the distributions Pθ have densities pθ(x) with respect to some common dominating
measure. In order to emphasize the role of the underlying observations, we denote
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the likelihood and log-likelihood function as

Ln(θ |X(1), . . . , X(n)) =

n
∏

i=1

pθ(X
(i)). (5.1.3)

and ℓn(θ |X(1), . . . , X(n)) = logLn(θ |X(1), . . . , X(n)), respectively.
Our approach to selecting true models among (5.1.2) is to search for models

for which the maximized log-likelihood function

ℓ̂n(i) = sup
θ∈Θi

ℓn(θ |X(1), . . . , X(n)) (5.1.4)

is large. Of course, evaluating the quantity (5.1.4) requires solving the maximum
likelihood estimation problem in Chapter 2. However, this methodology is not yet
satisfactory since mere maximization of the log-likelihood function does not take
into account differences in model complexity. In particular, Θ1 ⊂ Θ2 implies that
ℓ̂n(1) ≤ ℓ̂n(2). Information criteria provide a more refined approach.

Definition 5.1.1. The information criterion associated with a family of penalty
functions πn : [M ]→ R assigns the score

τn(i) = ℓ̂n(i)− πn(i)

to the i-th model, i = 1, . . . ,M .

The following are two classical examples of information criteria. Both measure
model complexity in terms of dimension.

Example 5.1.2. The Akaike information criterion (AIC) due to [2] uses the penalty
πn(i) = dim(Θi). The Bayesian information criterion (BIC) introduced in [82]

uses the penalty πn(i) = dim(Θi)
2 log(n). �

A score-based model search using an information criterion τn selects the
model for which τn(i) is maximal. This approach has the consistency property in
Theorem 5.1.3. This result is formulated in terms of regular exponential families.
These were featured in Definition 2.3.11. As in Section 2.3, the details of the
definition of this class of statistical models are not of importance here. It suffices
to note that the class comprises very well-behaved models such as the family of
all multivariate normal distributions and the interior of a probability simplex.

Theorem 5.1.3 (Consistency). Consider a regular exponential family {Pθ : θ ∈ Θ}.
Let Θ1,Θ2 ⊆ Θ be arbitrary sets. Denote the ordinary closure of Θ1 by Θ1.

(i) Suppose θ0 ∈ Θ2 \ Θ1. If the penalty functions are chosen such that the
sequence |πn(2)− πn(1)|/n converges to zero as n→∞, then

Pθ0
(τn(1) < τn(2))

n→∞−→ 1.
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(ii) Suppose θ0 ∈ Θ1 ∩ Θ2. If the sequence of differences πn(1) − πn(2) diverges
to ∞ as n→∞, then

Pθ0 (τn(1) < τn(2))
n→∞−→ 1.

For a proof of Theorem 5.1.3, see [56, Prop. 1.2]. Note that in [56] the result
is stated for the case where Θ1 and Θ2 are smooth manifolds but this property is
not used in the proof. In algebraic statistics, Θ1 and Θ2 will be semi-algebraic.

While the penalty for the AIC satisfies condition (i) but not (ii) in Theo-
rem 5.1.3, it is straightforward to choose penalty functions that satisfy both (i)
and (ii). For instance, the BIC penalty has this property. The original motivation
for the BIC, however, is based on a connection to Bayesian model determination.

In the Bayesian approach we regard the data-generating distributions Pθ to
be conditional distributions given the considered model being true and given the
value of the parameter θ. In our setup, we thus assume that, given the i-th model
and a parameter value θ ∈ Θi, the observationsX(1), . . . , X(n) are independent and
identically distributed according to Pθ. We then express our (subjective) beliefs
about the considered scenario by specifying a prior distribution over models and
parameters. To this end, we choose a prior probability P (Θi), i ∈ [M ], for each
of the competing models given by (5.1.2). And given the i-th model, we specify a
(conditional) prior distribution Qi for the parameter θ ∈ Θi.

After data are collected, statistical inference proceeds conditionally on the
data. Being interested in model selection, we compute the posterior probability of
the i-th model, namely, the conditional probability

P (Θi |X(1), . . . , X(n)) ∝ P (Θi)

∫

Θi

Ln(θ |X(1), . . . , X(n))dQi(θ). (5.1.5)

Here we omitted the normalizing constant obtained by summing up the right
hand sides for i = 1, . . . ,M . The difficulty in computing (5.1.5) is the evaluation
of the integrated likelihood function, also known as marginal likelihood integral, or
marginal likelihood for short. Integrals of this type are the topic of this chapter.

In typical applications, each set Θi is given parametrically as the image of
some map gi : Rd → Rk, and the prior Qi is specified via a distribution with
Lebesgue density pi(γ) on Rd. Suppressing the index i distinguishing between
models, the marginal likelihood takes the form

µ(X(1), . . . , X(n)) =

∫

Rd

Ln

(

g(γ) |X(1), . . . , X(n)
)

p(γ) dγ (5.1.6a)

=

∫

Rd

exp
{

ℓn
(

g(γ) |X(1), . . . , X(n)
)}

p(γ) dγ. (5.1.6b)

Example 5.1.4. Let X(1), . . . , X(n) be independent N (θ, Idk) random vectors, θ ∈
Rk. In Example 2.3.2, we wrote the log-likelihood function of this model in terms



116 Chapter 5. Bayesian Integrals

of the sample mean X̄n. Plugging the expression into (5.1.6b) we see that the
marginal likelihood is

µ(X(1), . . . , X(n)) =

(

1
√

(2π)k

)n

exp

{

− 1

2

n
∑

i=1

‖X(i) − X̄n‖22
}

×
∫

Rd

exp
{

− n

2
‖X̄n − g(γ)‖22

}

p(γ) dγ. (5.1.7)

Note that the factor

(

1
√

(2π)k

)n

exp

{

− 1

2

n
∑

i=1

‖X(i) − X̄n‖22
}

(5.1.8)

is the maximized value of the likelihood function for θ ∈ Rk. �

In Section 5.2, we discuss exact symbolic evaluation of marginal likelihood
integrals in discrete models. In the present section, we will focus on the asymptotic
behavior of integrals such as (5.1.7) when the sample size n is large. These allow one
to approximate Bayesian model selection procedures. In particular, Theorem 5.1.5
below clarifies the connection between posterior model probabilities and the BIC.

For an asymptotic study, we shift back to the non-Bayesian setting of (5.1.1),
in which we view the observations as drawn from some fixed unknown true distri-
bution Pθ0

. In particular, we treat the marginal likelihood in (5.1.6a) as a sequence
of random variables indexed by the sample size n and study its limiting behavior.
Recall that a sequence of random variables (Rn) is bounded in probability if for all
ε > 0 there exists a constant Mε such that P (|Rn| > Mε) < ε for all n. We use
the notation Op(1) for this property.

Theorem 5.1.5 (Laplace approximation). Let {Pθ : θ ∈ Θ} be a regular exponential
family with Θ ⊆ Rk. Consider an open set Γ ⊆ Rd and a smooth injective map
g : Γ → Rk that has continuous inverse on g(Γ) ⊆ Θ. Let θ0 = g(γ0) be the true
parameter, and assume that the Jacobian of g has full rank at γ0 and that the prior
density p(γ) is a smooth function that is positive in a neighborhood of γ0. Then

logµ(X(1), . . . , X(n)) = ℓ̂n −
d

2
log(n) + Op(1),

where
ℓ̂n = sup

γ∈Γ
ℓn
(

g(γ) |X(1), . . . , X(n)
)

.

This theorem is proven in [56, Thm. 2.3], where a more refined expansion
gives a remainder that is bounded in probability when multiplied by

√
n.

Theorem 5.1.5 shows that model selection using the BIC approximates a
Bayesian procedure seeking the model with highest posterior probability. However,
this approximation is only true for smooth models as we show in the next example.
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Example 5.1.6 (Cuspidal cubic). Let X(1), . . . , X(n) be independent N (θ, Idk)
random vectors with k = 2. Following Example 2.3.6, we consider the cuspidal
cubic model given by the parametrization g(γ) = (γ2, γ3), γ ∈ R. Let X̄n =
(X̄n,1, X̄n,2) be the sample mean. By (5.1.7), evaluation of the marginal likelihood
µ(X(1), . . . , X(n)) requires the computation of the integral

µ̄(X̄n) =

∫ ∞

−∞
exp

{

− n

2
‖X̄n − g(γ)‖22

}

p(γ) dγ (5.1.9)

=

∫ ∞

−∞
exp

{

− 1

2

[

(
√
nγ2 −√nX̄n,1)

2 + (
√
nγ3 −√nX̄n,2)

3
]

}

p(γ) dγ.

If the true parameter θ0 = g(γ0) is non-zero, that is, γ0 6= 0, then Theorem 5.1.5
applies with d = 1. If, however, θ0 = g(0) = 0, then we find a different asymptotic
behavior of the marginal likelihood. Changing variables to γ̄ = n1/4γ we obtain

µ̄(X̄n) = n−1/4

∫ ∞

−∞
exp

{

− 1

2

[

(γ̄2 −√nX̄n,1)
2+

( γ̄3

n1/4
−√nX̄n,2

)3]}

p
( γ̄

n1/4

)

dγ̄. (5.1.10)

By the central limit theorem, the independent sequences
√
nX̄n,1 and

√
nX̄n,2

each converge to the N (0, 1) distribution. Therefore, if Z1 and Z2 are independent
N (0, 1) random variables, then

n1/4µ̄(X̄n)
D−→

∫ ∞

−∞
exp

{

− 1

2

[

(γ2 − Z1)
2 + Z2

2

]

}

p (0) dγ. (5.1.11)

Since convergence in distribution implies boundedness in probability, we obtain

log µ̄(X̄n) = −1

4
log(n) +Op(1).

It follows that

logµ(X(1), . . . , X(n)) = ℓ̂n −
1

4
log(n) +Op(1) (5.1.12)

if θ0 = 0. Note that ℓ̂n refers to the maximized log-likelihood function in the
cuspidal cubic model. However, the difference between ℓ̂n and the factor in (5.1.8)
is bounded in probability because it is equal to 1/2 times a likelihood ratio statistic
and thus converges in distribution according to Theorem 2.3.12. �

The rates of convergence we computed in Example 5.1.6 have an interesting
feature. If we replace the sample mean X̄n in (5.1.9) by its expectation, which is
the point θ0 = g(γ0) on the cuspidal cubic, then we obtain the integral

µ̄(θ0) =

∫ ∞

−∞
exp

{

− n

2
‖g(γ0)− g(γ)‖22

}

p(γ) dγ. (5.1.13)
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This is a deterministic Laplace integral. If θ0 6= 0, then the asymptotics of (5.1.13)
can be determined using the classical Laplace approximation [101, p. 495] as fol-
lows:

log µ̄(θ0) = −1

2
log(n) +O(1). (5.1.14)

If θ0 = 0 then (5.1.10) implies

log µ̄(θ0) = −1

4
log(n) +O(1). (5.1.15)

This suggests that the asymptotic behavior of the marginal likelihood can be de-
termined by studying the integral obtained by replacing the log-likelihood function
in (5.1.6b) by its expectation under Pθ0

. This deterministic integral is equal to

µ(θ0) =

∫

Rd

exp{nℓ0(g(γ))} p(γ) dγ, (5.1.16)

where ℓ0(θ) = E[log pθ(X)] for X ∼ Pθ0 . The function ℓ0(θ) for discrete models is
obtained easily by writing log pθ(X) as in Example 2.3.10. In the Gaussian case,
ℓ0(θ) can be found using that E[X] = µ0 and E[XXT ] = Σ0 + µ0µ

T
0 , where µ0

and Σ0 are the mean vector and covariance matrix determined by θ0.
The following result shows that what we observed in the example is true

more generally.

Theorem 5.1.7. Let {Pθ : θ ∈ Θ} be a regular exponential family with Θ ⊆ Rk.
Consider an open set Γ ⊆ Rd and a polynomial map g : Γ → Θ. Let θ0 = g(γ0)
be the true parameter. Assume that g−1(θ0) is a compact set and that the prior
density p(γ) is a smooth function on Γ that is positive on g−1(θ0). Then

logµ(X(1), . . . , X(n)) = ℓ̂n − q log(n) + (s− 1) log log(n) + Op(1),

where the rational number q ∈ (0, d/2] ∩Q and the integer s ∈ [d] satisfy that

logµ(θ0) = nℓ0(θ0)− q log(n) + (s− 1) log log(n) + O(1).

This and more general theorems are proven in the forthcoming book by Sumio
Watanabe [98], which also gives an introduction to methods for computing the
learning coefficient q and the multiplicity s in Theorem 5.1.7. These techniques
are based on resolution of singularities in algebraic geometry. They have been
applied to various mixture and hidden variable models; see e.g. [80, 102, 103, 104].

Example 5.1.8 (Reduced rank regression). Let (X1, . . . , Xm) ∼ N (0,Σ) be a multi-
variate normal random vector with mean zero, and consider a partition A∪B = [m]
of the index set [m]. As mentioned in the proof of Proposition 3.1.13, the condi-
tional distribution of XA given XB = xB is the multivariate normal distribution

N
(

ΣA,BΣ−1
B,BxB , ΣA,A − ΣA,BΣ−1

B,BΣB,A

)

.
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Reduced rank regression is a Gaussian model in which the matrix of regression
coefficients ΣA,BΣ−1

B,B has low rank. In some instances, the requirement that the
rank is at most h expresses the conditional independence of XA and XB given h
hidden variables.

Let a = #A and b = #B and consider parametrizing ΣA,BΣ−1
B,B as

gh : Ra×h × Rb×h → Ra×b,

(α, β) 7→ αβT .

The asymptotics of marginal likelihood integrals associated with this parametriza-
tion of reduced rank regression models were studied in a paper by Aoyagi and
Watanabe [11]. The problem at the core of this work is to determine the asymp-
totics of integrals of the form

∫

exp
{

−n‖αβT − α0β
T
0 ‖22

}

p(α, β) dα dβ, (5.1.17)

where α0 ∈ Rh×a and β0 ∈ Rb×h are the true parameters. Since the preimages
g−1

h (θ0) are not always compact, it is assumed in [11] that the prior density p(α, β)
has compact support Ω and is positive at (α0, β0). Then the learning coefficient
and associated multiplicity are derived for arbitrary values of a, b and h.

We illustrate here the case of rank h = 1. We assume that a ≥ b ≥ 1. If both
α0 ∈ Ra and β0 ∈ Rb are non-zero, then g−1

1 (α0β
T
0 ) = {(α, β) : αβT = α0β

T
0 } is

a one-dimensional smooth manifold, and the Jacobian of g1 achieves its maximal
rank a + b − 1 at (α0, β0). Therefore, in a neighborhood of g1(α0, β0), the image
of g1 is an a+ b− 1 dimensional smooth manifold. It follows from Theorem 5.1.5
that the learning coefficient is q = (a+ b− 1)/2 and the multiplicity is s = 1.

The non-standard singular case occurs if α0 = 0 or β0 = 0, in which case
g1(α0, β0) = 0. As explained, for example, in the book by Watanabe [98] and his
paper [97], the negated learning coefficient q is the largest pole of the zeta function.
The zeta function is the meromorphic continuation of the function

λ 7→
∫

(

‖αβT − α0β
T
0 ‖22

)λ
p(α, β) dα dβ =

∫

(

α2
1 + · · ·+ α2

a

)λ (
β2

1 + · · ·+ β2
b

)λ
p(α, β) dα dβ

from the set of complex numbers λ with Re(λ) > 0 to the entire complex plane.
The multiplicity s is the order of this pole.

Let Ωε = Ω∩{(α, β) : ‖αβ‖22 < ε} for small ε > 0. Outside Ωε the integrand
in (5.1.17) is bounded away from its maximum, and the asymptotic behavior of
the integral remains unchanged if we restrict the integration domain to Ωε. We can
cover Ωε by small neighborhoods U(α′, β′) around the singularities (α′, β′) with
α′ = 0 or β′ = 0. The learning coefficient q and the multiplicity s are determined
by the most complicated singularity of g1, which is at the origin (α′, β′) = 0.



120 Chapter 5. Bayesian Integrals

The resulting mathematical problem is to determine the poles of the integral
∫

U(0,0)

(

α2
1 + · · ·+ α2

a

)λ (
β2

1 + · · ·+ β2
b

)λ
p(α, β) dα dβ. (5.1.18)

This can be done using blow-up transformations. Here, we use the transformation

α1 = α′
1, αj = α′

1α
′
j for all j = 2, . . . , a.

This map is a bijection for α1 6= 0, and it transforms the integral in (5.1.18) to
∫

U(0,0)

α2λ
1

(

1 + α2
2 + · · ·+ α2

a

)λ (
β2

1 + · · ·+ β2
b

)λ
αa−1

1 p(α, β) dα dβ.

Using the analogous transformation for β we obtain the integral
∫

U(0,0)

α2λ
1 β2λ

1

(

1 + α2
2 + · · ·+ α2

a

)λ (
1 + β2

2 + · · ·+ β2
b

)λ
αa−1

1 βb−1
1 p(α, β) dα dβ.

The product
(

1 + α2
2 + · · ·+ α2

a

) (

1 + β2
2 + · · ·+ β2

b

)

and the prior density p(α, β)
are bounded away from 0 in the neighborhood U(0, 0). Therefore, we may consider

∫

α2λ+a−1
1 β2λ+b−1

1 dα1dβ1 =
α2λ+a

1 β2λ+b
1

(2λ+ a)(2λ+ b)
.

As a function of λ, this integral has poles at λ = −a/2 and λ = −b/2. Having
assumed that a ≥ b, the larger pole is −b/2, and thus the learning coefficient is
q = b/2. The multiplicity is s = 2 if a = b, and it is s = 1 if a > b. �

Blow-up transformations are the engine behind algorithms for resolutions
of singularities in algebraic geometry. An implementation of such a resolution
algorithm can be found in Singular. In theory, this implementation can be used to
obtain information about the asymptotic behavior of Laplace integrals. However,
in practice, we found it prohibitive to use a general algorithm for resolution of
singularities, because of the enormous complexity in running time and output
size. On the other hand, polyhedral geometry and the theory of toric varieties
furnish combinatorial tools for resolution of singularities. These work well under
suitable genericity assumptions. We conclude this section by showing an example.

Example 5.1.9 (Remoteness and Laplace integrals). Let l and k be two even pos-
itive integers and consider the integral

µk,l =

∫ ∞

−∞

∫ ∞

−∞
e−n(xk+yl) dx dy,

which is a product of two univariate integrals that can be computed in closed
form, e.g. using Maple. We find that the logarithm of the integral equals

logµk,l = −
(

1

k
+

1

l

)

log(n) +O(1). (5.1.19)
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Figure 5.1.1: Newton diagram for x6 + y4.

The coefficient q = 1/k + 1/l can be obtained from the Newton diagram of the
phase function xk +yl. The Newton diagram is the convex hull of the set obtained
by attaching the non-negative orthant [0,∞)2 to each of the exponents (k, 0) and
(0, l) appearing in the phase function; see Figure 5.1.1. The remoteness of the
Newton diagram is the reciprocal 1/ρ of the smallest positive real ρ such that
ρ · (1, 1) is in the Newton diagram. In this example, ρ = kl/(k + l), and the
remoteness is found to be 1/ρ = 1/k + 1/l. This coincides with the coefficient q
appearing in the integral (5.1.19). �

In general, the phase function needs to exhibit certain non-degenerateness
conditions for the remoteness of the Newton diagram to be equal to the learning
coefficient q. If the conditions apply, then the codimension of the face in which
the diagonal spanned by the vector (1, . . . , 1)T first hits the Newton diagram
determines the multiplicity s for the log logn term. We illustrate this in the re-
duced rank regression example below and refer the reader to the book [12, §8.3.2]
for the precise results. In many other statistical models, however, the required
non-degeneracy conditions do not apply. Extending the scope of Newton diagram
methods is thus an important topic for future work.

Example 5.1.10 (Remoteness in reduced rank regression). Suppose a = b = 2 in
the reduced rank regression problem considered in Example 5.1.8. The Newton
diagram of the phase function (α2

1 + α2
2)(β

2
1 + β2

2) in (5.1.18) has the vertices
(2, 0, 2, 0), (2, 0, 0, 2), (0, 2, 2, 0) and (0, 2, 0, 2) and the rays (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0) and (0, 0, 0, 1). It can also be described by the inequalities

α1, α2, β1, β2 ≥ 0, α1 + α2 ≥ 2, β1 + β2 ≥ 2.

If ρ · (1, 1, 1, 1) is in the Newton diagram then 2ρ ≥ 2. The minimum feasible value
for ρ is thus 1, and we find that the remoteness, being also equal to 1, gives the
correct learning coefficient b/2 = 2/2 = 1. Since the point (1, 1, 1, 1) lies on a
two-dimensional face of the Newton diagram, the multiplicity is s = 2. �
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5.2 Exact Integration for Discrete Models

Inference in Bayesian statistics involves the evaluation of marginal likelihood in-
tegrals. We present algebraic methods for computing such integrals exactly for
discrete data of small sample size. The relevant statistical models are mixtures
of independent probability distributions, or, in geometric language, secant vari-
eties of Segre-Veronese varieties. Our approach applies to both uniform priors and
Dirichlet priors. This section is based on the paper [69] by Lin, Sturmfels, and
Xu. Our notational conventions in this section differ slightly from the rest of these
notes. These differences make for simpler formulas and allow for the easier use of
the Maple code described later.

We consider a collection of discrete random variables

X
(1)
1 , X

(1)
2 , . . . , X

(1)
s1 ,

X
(2)
1 , X

(2)
2 , . . . , X

(2)
s2 ,

...
...

. . .
...

X
(m)
1 , X

(m)
2 , . . . , X

(m)
sm ,

where the variables in the i-th row, X
(i)
1 , X

(i)
2 , . . . , X

(i)
si , are identically distributed

with values in {0, 1, . . . , ri}. The independence model M for these variables is a
log-linear model as in Chapter 1. It is represented by a d× k-matrix A with

d = r1 + r2 + · · ·+ rm +m and k =

m
∏

i=1

(ri + 1)si . (5.2.1)

The columns of the matrix A are indexed by elements v of the state space

{0, 1, . . . , r1}s1 × {0, 1, . . . , r2}s2 × · · · × {0, 1, . . . , rm}sm . (5.2.2)

The rows of the matrix A are indexed by the model parameters, which are the d
coordinates of the points θ = (θ(1), θ(2), . . . , θ(m)) in the product of simplices

Θ = ∆r1 ×∆r2 × · · · ×∆rm
. (5.2.3)

The independence model M is the subset of the probability simplex ∆k−1 which
is given by the parametrization

pv = P
(

X
(i)
j = v

(i)
j for all i, j

)

=

m
∏

i=1

si
∏

j=1

θ
(i)

v
(i)
j

. (5.2.4)

This expression is a monomial in d unknowns. The column vector av of the matrix
A corresponding to state v is the exponent vector of the monomial in (5.2.4).

For an algebraic geometer, the modelM is the Segre-Veronese variety

Pr1 × Pr2 × · · · × Prm →֒ Pk−1, (5.2.5)

where the embedding is given by the line bundle O(s1, s2, . . . , sm). The manifold
M is the toric variety of the polytope Θ. Both objects have dimension d−m.
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Example 5.2.1. Consider three binary random variables where the last two random
variables are identically distributed. In our notation, this corresponds to m = 2,
s1 = 1, s2 = 2 and r1 = r2 = 1. We find that d = 4, k = 8, and

A =











p000 p001 p010 p011 p100 p101 p110 p111

θ
(1)
0 1 1 1 1 0 0 0 0

θ
(1)
1 0 0 0 0 1 1 1 1

θ
(2)
0 2 1 1 0 2 1 1 0

θ
(2)
1 0 1 1 2 0 1 1 2











.

The columns of this matrix represent the monomials in the parametrization (5.2.4).
The model M is a surface known to geometers as a rational normal scroll. Its
Markov basis consists of the 2× 2-minors of the matrix

(

p000 p001 p100 p101

p010 p011 p110 p111

)

together with the two linear relations p001 = p010 and p101 = p110. �

The matrix A has repeated columns whenever si ≥ 2 for some i. It is usually
preferable to represent the model M by the matrix Ã which is obtained from A
by removing repeated columns. We label the columns of the matrix Ã by elements
v = (v(1), . . . , v(m)) of (5.2.2) whose components v(i) ∈ {0, 1, . . . , ri}si are weakly
increasing. Hence Ã is a d× k̃-matrix with

k̃ =

m
∏

i=1

(

si + ri
si

)

. (5.2.6)

The model M and its mixtures are subsets of a subsimplex ∆k̃−1 of ∆k−1.
We now examine Bayesian integrals for the independence model M. All do-

mains of integration in this section are products of standard probability simplices.
On each such polytope we fix the standard Lebesgue probability measure. This
corresponds to taking uniform priors p(γ) = 1 in the integral (5.1.6a). Naturally,
other prior distributions, such as the conjugate Dirichlet priors, are of interest,
and our methods will be extended to these in Corollary 5.2.8. For now, we simply
fix uniform priors. We identify the state space (5.2.2) with the set {1, . . . , k}. A
data vector u = (u1, . . . , uk) is thus an element of Nk. The sample size of these
data is ‖u‖1 = n. The likelihood function (5.1.3) for these data equals

L(θ) =
n!

u1!u2! · · ·uk!
· p1(θ)

u1 · p2(θ)
u2 · · · · · pk(θ)uk .

This expression is a polynomial function on the polytope Θ in (5.2.3). The marginal
likelihood (5.1.6a) for the independence modelM equals

∫

Θ

L(θ) dθ.
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The value of this integral is a rational number that we now compute explicitly.
The data u enter this calculation by way of the sufficient statistics b = Au. The

vector b is in Nd, and its coordinates b
(i)
j for i = 1, . . . ,m and j = 0, . . . , rm count

the total number of times each value j is attained by one of the random variables

X
(i)
1 , . . . , X

(i)
si in the i-th row. The sufficient statistics satisfy

b
(i)
0 + b

(i)
1 + · · ·+ b(i)ri

= si · n for all i = 1, 2, . . . ,m. (5.2.7)

Our likelihood function L(θ) is the constant n!/(u1! · · ·uk!) times the monomial

θb =

m
∏

i=1

ri
∏

j=0

(θ
(i)
j )b

(i)
j .

We note that the independence modelM has maximum likelihood degree one:

Remark 5.2.2. The function θb is concave on the polytope Θ, and its maximum

value is attained at the point θ̂ with coordinates θ̂
(i)
j = b

(i)
j /(si · n).

Not just maximum likelihood estimation but also Bayesian integration is very
easy for the modelM.

Lemma 5.2.3. The marginal likelihood integral for the independence model equals

∫

Θ

L(θ) dθ =
n!

u1! · · ·uk!
·

m
∏

i=1

ri! b
(i)
0 ! b

(i)
1 ! · · · b(i)ri !

(sin+ ri)!
.

Proof. Since Θ is the product of simplices (5.2.3), this follows from the formula

∫

∆t

θb0
0 θ

b1
1 · · · θbt

t dθ =
t! · b0! · b1! · · · bt!

(b0 + b1 + · · ·+ bt + t)!
(5.2.8)

for the integral of a monomial over the standard probability simplex ∆t. �

We now come to our main objective, which is to compute marginal likelihood
integrals for the mixture model Mixt2(M). Our parameter space is the polytope

Θ(2) = ∆1 × Θ × Θ.

The mixture model Mixt2(M) is the subset of ∆k−1 with the parametric repre-
sentation

pv = σ0 · θav + σ1 · ρav for (σ, θ, ρ) ∈ Θ(2). (5.2.9)

Here av ∈ Nd is the column vector of A indexed by the state v, which is either in
(5.2.2) or in {1, 2, . . . , k}. The likelihood function of the mixture model equals

L(σ, θ, ρ) =
n!

u1!u2! · · ·uk!
p1(σ, θ, ρ)

u1 · · · pk(σ, θ, ρ)uk , (5.2.10)
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and the marginal likelihood for the model Mixt2(M) equals

∫

Θ(2)

L(σ, θ, ρ) dσdθdρ =
n!

u1! · · ·uk!

∫

Θ(2)

∏

v

(σ0θ
av + σ1ρ

av )uv dσ dθ dρ.

(5.2.11)

Proposition 5.2.4. The marginal likelihood (5.2.11) is a rational number.

Proof. The likelihood function L(σ, θ, ρ) is a Q≥0-linear combination of monomials
σaθbρc. The integral (5.2.11) is the same Q≥0-linear combination of the numbers

∫

Θ(2)

σaθbρc dσ dθ dρ =

∫

∆1

σa dσ ·
∫

Θ

θb dθ ·
∫

Θ

ρc dρ.

Each of the three factors is an easy-to-evaluate rational number, by (5.2.8). �

The model Mixt2(M) corresponds to the first secant variety (see Section 4.1)
of the Segre-Veronese variety (5.2.5). We could also consider the higher mixture
models MixtlM, which correspond to mixtures of l independent distributions, and
much of our analysis can be extended to that case, but for simplicity we restrict
ourselves to l = 2. The secant variety Sec2(M) is embedded in the projective space

Pk̃−1 with k̃ as in (5.2.6). Note that k̃ can be much smaller than k. If this is the
case then it is convenient to aggregate states whose probabilities are identical and

to represent the data by a vector ũ ∈ Nk̃. Here is an example.

Example 5.2.5. Let m=1, s1=4 and r1=1, so M is the independence model for
four identically distributed binary random variables. Then d = 2 and k = 16. The
corresponding integer matrix and its row and column labels are

A =

(

p0000 p0001 p0010 p0100 p1000 p0011 · · · p1110 p1111

θ0 4 3 3 3 3 2 · · · 1 0
θ1 0 1 1 1 1 2 · · · 3 4

)

.

However, this matrix has only k̃ = 5 distinct columns, and we instead use

Ã =

(

p0 p1 p2 p3 p4

θ0 4 3 2 1 0
θ1 0 1 2 3 4

)

.

The mixture model Mixt2(M) is a Zariski dense subset of the cubic hypersurface in
∆4 that was discussed in Example 2.2.3, where we studied the likelihood function
(2.2.2) for the data vector

ũ = (ũ0, ũ1, ũ2, ũ3, ũ4) = (51, 18, 73, 25, 75).

It has three local maxima (modulo swapping θ and ρ) whose coordinates are
algebraic numbers of degree 12. Using the Maple library cited below, we computed
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the exact value of the marginal likelihood for the data ũ. The number (5.2.11) is
the ratio of two relatively prime integers having 530 digits and 552 digits, and its
numerical value is approximately 0.778871633883867861133574286090 ·10−22. �

Algorithms for computing (5.2.11) are sketched below, and described in detail
in [69]. These algorithms are implemented in a Maple library which is available at

http://math.berkeley.edu/∼shaowei/integrals.html.

The input for that Maple code consists of parameter vectors s = (s1, . . . , sm) and
r = (r1, . . . , rm) as well as a data vector u ∈ Nk. This input uniquely specifies the
d× k-matrix A. Here d and k are as in (5.2.1). Output features include the exact
rational values of the marginal likelihood for bothM and Mixt2(M).

Example 5.2.6. (“Schizophrenic patients”) We apply our exact integration method
to a data set taken from the Bayesian statistics literature. Evans, Gilula and
Guttman [45, §3] analyzed the association between length of hospital stay (in
years Y ) of 132 schizophrenic patients and the frequency with which they are
visited by their relatives. The data vector u for their data set is determined by the
3× 3-contingency table:

2≤Y <10 10≤Y <20 20≤Y Totals
Visited regularly 43 16 3 62

Visited rarely 6 11 10 27
Visited never 9 18 16 43

Totals 58 45 29 132

The paper [45] presents estimated posterior means and variances for these data,
where “each estimate requires a 9-dimensional integration” [45, p. 561]. Computing
these integrals is essentially equivalent to our integrals, for m = 2, s1 = s2 =
1, r1 = r2 = 2 and n = 132. The authors point out that “all posterior moments can
be calculated in closed form .... however, even for modest n these expressions are
far to complicated to be useful” [45, p. 559] and emphasize that “the dimensionality
of the integral does present a problem” [45, p. 562].

We disagree with the conclusion that closed form expressions are not useful.
In our view, exact integration is quite practical for modest sample size such as
n = 132. Using the Maple library, we computed the integral in (5.2.11). It is the
rational number with numerator

278019488531063389120643600324989329103876140805
285242839582092569357265886675322845874097528033
99493069713103633199906939405711180837568853737
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and denominator

12288402873591935400678094796599848745442833177572204
50448819979286456995185542195946815073112429169997801
33503900169921912167352239204153786645029153951176422
43298328046163472261962028461650432024356339706541132
34375318471880274818667657423749120000000000000000.

To obtain the marginal likelihood for the data u above, the integral has to be
multiplied with the normalizing constant 132!/(43!·16!·3!·6!·11!·10!·9!·18!·16!). �

Our approach to exact integration makes use of the fact that the Newton
polytope of the likelihood function (5.2.10) is a zonotope. Recall that the Newton
polytope of a polynomial is the convex hull of all exponent vectors appearing in the
expansion of that polynomial, and a polytope is a zonotope if it is the image of a
standard cube under a linear map; see Chapter 7 of [106] for more on zonotopes.
We are here considering the zonotope

ZA(u) =

k
∑

v=1

uv · [0, av],

where [0, av] is the line segment between the origin and the point av ∈ Rd. So,
the zonotope ZA(u) is the Minkowski sum of these k segments. Assuming that the
counts uv are all positive, we have

dim(ZA(u)) = rank(A) = d−m+ 1. (5.2.12)

The zonotope ZA(u) is related to the polytope Θ = conv(A) in (5.2.3) as follows.
The dimension d −m = r1 + · · · + rm of Θ is one less than dim(ZA(u)), and Θ
appears as the vertex figure of the zonotope ZA(u) at the distinguished vertex 0.

The marginal likelihood to be computed is n!/(u1! · · ·uk!) times the integral

∫

Θ(2)

k
∏

v=1

(σ0θ
av + σ1ρ

av )uv dσdθdρ (5.2.13)

Our approach to this computation is to sum over the lattice points in the zonotope
ZA(u). If the matrix A has repeated columns, we may replace A with the reduced
matrix Ã and u with the corresponding reduced data vector ũ. This would require
introducing an extra normalizing constant. In what follows we simply focus on
computing the integral (5.2.13) with respect to the original matrix A. Recall from
(5.2.4) that all columns of the matrix A have the same coordinate sum

a := |av| = s1 + s2 + · · ·+ sm, for all v = 1, 2, . . . , k,

and from (5.2.7) that we may denote the entries of a vector b ∈ Rd by b
(i)
j for

i = 1, . . . ,m and j = 0, . . . , rm. Also, let L denote the image of the linear map



128 Chapter 5. Bayesian Integrals

A : Zk → Zd. Thus L is a sublattice of rank d − m + 1 in Zd. We abbreviate
ZL

A(u) := ZA(u) ∩ L. Expanding the integrand in (5.2.13) gives

∏

v

(σ0θ
av + σ1ρ

av )uv =
∑

b∈ZL
A(u)

c=Au−b

φA(b, u) · σ|b|/a
0 σ

|c|/a
1 · θb · ρc. (5.2.14)

Writing D(u) = {(x1, . . . , xk) ∈ Zk : 0 ≤ xv ≤ uv, v = 1, . . . , k}, we can see that
the coefficient in (5.2.14) equals

φA(b, u) =
∑

Ax=b
x∈D(u)

k
∏

v=1

(

uv

xv

)

. (5.2.15)

Thus, by formulas (5.2.8) and (5.2.14), the integral (5.2.13) evaluates to

∑

b∈ZL
A(u)

c=Au−b

φA(b, u) · (|b|/a)! (|c|/a)!
(|u|+ 1)!

·
m
∏

i=1

(

ri! b
(i)
0 ! · · · b(i)ri !

(|b(i)|+ ri)!

ri! c
(i)
0 ! · · · c(i)ri !

(|c(i)|+ ri)!

)

. (5.2.16)

We summarize the result of this derivation in the following theorem.

Theorem 5.2.7. The marginal likelihood for the mixture model Mixt2(M) is equal
to the sum (5.2.16) times the normalizing constant n!/(u1! · · ·uk!).

Each individual summand in the formula (5.2.16) is a ratio of factorials and
hence can be evaluated symbolically. The challenge in turning Theorem 5.2.7 into
a practical algorithm lies in the fact that both of the sums (5.2.15) and (5.2.16)
are over very large sets. These challenges are addressed by the methods in [69, §4].

We now remove the restrictive assumption that our marginal likelihood in-
tegral be evaluated with respect to the uniform distribution (Lebesgue measure)
on the parameter space Θ(2). In Bayesian analysis of discrete data, it is standard
practice to compute such integrals with respect to the Dirichlet prior distributions,
which form conjugate priors to multinomial models like our independence model
M. We shall show in Corollary 5.2.8 how the formula in Theorem 5.2.7 extends
from uniform priors to Dirichlet priors.

The Dirichlet distribution Dir(α) is a continuous probability distribution that
is parametrized by a vector α = (α0, α1, . . . , αt) of positive reals. The probability
density function f(θ;α) of Dir(α) is supported on the t-dimensional simplex

∆t =
{

(θ0, . . . , θt) ∈ Rt
≥0 : θ0 + · · ·+ θt = 1

}

,

and it equals

f(θ0, . . . , θt;α0, . . . , αt) =
1

B(α)
· θα0−1

0 θα1−1
1 · · · θαt−1

t =:
θα−1

B(α)
.
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Here the normalizing constant is the multivariate beta function

B(α) =
t! · Γ(α0) · Γ(α1) · · · Γ(αt)

Γ(α0 + α1 + · · ·+ αt)
.

Note that, if the αi are all integers, then this is the rational number

B(α) =
t! · (α0 − 1)! · (α1 − 1)! · · · (αt − 1)!

(α0 + · · ·+ αt − 1)!
.

Thus the identity (5.2.8) is the special case of the identity
∫

∆t
f(θ;α) dθ = 1 for

the density of the Dirichlet distribution when all αi = bi + 1 are integers.
We now show how to compute marginal likelihood integrals for the mixture

model Mixt2(M) with respect to Dirichlet priors. Fix positive vectors α ∈ (0,∞)2,
and β(i), γ(i) ∈ (0,∞)ri+1 for i = 1, . . . ,m. These determine the distribution
Dir(α) on ∆1, and the distributions Dir(β(i)) and Dir(γ(i)) on the i-th factor ∆ri

in the product (5.2.3). The product probability measure

Dir(α)⊗
m
∏

i=1

Dir(β(i))⊗
m
∏

i=1

Dir(γ(i))

is a distribution on Θ(2) = ∆1 × Θ × Θ that we call the Dirichlet distribution
with parameters (α, β, γ). Its probability density function is the product of the
respective densities:

f(σ, θ, ρ;α, β, γ) =
σα−1

B(α)
·

m
∏

i=1

(θ(i))β(i)−1

B(β(i))
·

m
∏

i=1

(ρ(i))γ(i)−1

B(γ(i))
. (5.2.17)

By the marginal likelihood with Dirichlet priors we mean the integral
∫

Θ(2)

L(σ, θ, ρ) f(σ, θ, ρ;α, β, γ) dσdθdρ. (5.2.18)

This is a modification of (5.2.11), which depends not just on the data u and the
model Mixt2(M) but also on the choice of Dirichlet parameters (α, β, γ). When
the coordinates of these parameters are arbitrary positive reals but not integers,
then the value of the integral (5.2.18) is no longer a rational number. Nonetheless,
it can be computed exactly as follows. We abbreviate the product of Gamma
functions in the denominator of the density (5.2.17) as follows:

B(α, β, γ) := B(α) ·
m
∏

i=1

B(β(i)) ·
m
∏

i=1

B(γ(i)).

Instead of the integrand (5.2.14) we now need to integrate

∑

b∈ZL
A(u)

c=Au−b

φA(b, u)

B(α, β, γ)
· σ|b|/a+α0−1

0 · σ|c|/a+α1−1
1 · θb+β−1 · ρc+γ−1
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with respect to Lebesgue probability measure on Θ(2). Doing this term by term,
as before, we obtain the following modification of Theorem 5.2.7.

Corollary 5.2.8. The marginal likelihood for the mixture model Mixt2(M) with
respect to Dirichlet priors with parameters (α, β, γ) equals

n!

u1! · · ·uk! ·B(α, β, γ)

∑

b∈ZL
A(u)

c=Au−b

φA(b, u)
Γ(|b|/a+ α0)Γ(|c|/a+ α1)

Γ(|u|+ |α|)

×
m
∏

i=1

(

ri!Γ(b
(i)
0 + β

(i)
0 ) · · ·Γ(b

(i)
ri + β

(i)
ri )

Γ(|b(i)|+ |β(i)|)
ri!Γ(c

(i)
0 + γ

(i)
0 ) · · ·Γ(c

(i)
ri + γ

(i)
ri )

Γ(|c(i)|+ |γ(i)|)

)

.



Chapter 6

Exercises

This chapter presents solutions to eight problems. Problems 6.1 and 6.2 are con-
cerned with Markov bases and can be solved based on the material presented
in Chapter 1 alone. Problem 6.3 is about a Gaussian graphical model and relies
on Section 2.1. Problems 6.4 and 6.5 complement Section 2.3 by providing a de-
tailed study of the asymptotics of the likelihood ratio test in a Gaussian model
and a calculation of a Fisher-information matrix. The two problems 6.6 and 6.7
illustrate the use of algebraic techniques to study implications among conditional
independence relations as discussed in Chapter 3. Finally, problem 6.8 concerns
a mixture model (recall Section 4.1) and involves in particular questions about
exact computation of Bayesian integrals (recall Section 5.2).

For each problem we list the names of the participants who worked on this
problem during the week in Oberwolfach. These teams then submitted their solu-
tions to Florian Block, Dustin Cartwright, Filip Cools and Alex Engström, who
helped compile them into one chapter.

6.1 Markov Bases Fixing Subtable Sums

The team consisted of Jörn Dannemann, Hajo Holzmann, and Or Zuk.

Problem. Let S ⊂ [r]× [c]. Consider the log-linear model for a 2-way contingency
table given parametrically by

log pij =

{

αi + βj + λ if (i, j) ∈ S
αi + βj if (i, j) /∈ S

This is an extension of the independence model that includes a subtable change-
point parameter λ [53]. The sufficient statistics of this log-linear model are the
row sums, columns sums, and S-subtable sum of a 2-way table u. For instance,
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if r = 2, and c = 3, and S = {(1, 1), (2, 2)}, then the sufficient statistics of this
log-linear model are

















1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 0 1 0

































u11

u12

u13

u21

u22

u23

















and the minimal Markov basis consists of a single move and its negative:

(

+1 +1 −2
−1 −1 +2

)

.

1. Use the markov command in 4ti2 [57] to compute a Markov basis for the
model when r = c = 4 and S =

(a) {(1, 1), (2, 2), (3, 3), (4, 4)}

(b) {(1, 1), (1, 2), (2, 1), (2, 2)}

(c) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)}

(d) {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}

2. Describe a Markov basis for this model when S = S1 × S2 for S1 ⊆ [r],
S2 ⊆ [c].

3. Describe a Markov basis for this model when r = c and S = {(i, i) | i ∈ [r]}
is the set of diagonals.

Solution. 1. We consider the log-linear model for a 2-way contingency table with
r = c = 4. The model is specified by the matrix A that consists of the restrictions
from the independence model and an additional row depending on the set S. Our
goal is to find a Markov basis of moves for each set S. These moves leave the
column sums, rows sums, and the sum over S unchanged. Each move is an integer
vector b of length r×c satisfying Ab = 0 but we can also view b as an r×c matrix,
in which case the transpose of b is denoted bT . Using the latter representation,
let eij be the unit vector with a 1 at entry (i, j). Recall from Section 1.2 that the
basic moves for the independence model involve only four elements and are of the
form eik + ejl − eil − ejk. This example of a basic move adds one to the cells (i, j)
and (k, l) and subtracts one from the cells (i, l) and (j, k) in the contingency table.

If b is a move, then so is −b. Note that the output of 4ti2 contains only one
of the two vectors ±b. Furthermore, note that 4ti2 always computes a minimal
Markov basis.

(a) In order to compute a Markov basis for S = {(1, 1), (2, 2), (3, 3), (4, 4)} using
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the markov command in 4ti2, we set up the matrix

A =





























1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1





























that is passed as input to 4ti2. For each row of A, the 1’s correspond to ele-
ments whose sum must be fixed. The first four rows correspond to row sums,
the next four rows correspond to column sums, and the last row corresponds
to the sum over the elements indexed by S.

The Markov basis returned by the markov command contains 66 moves.
Using the formatting command output, we see that there are 6 elements of
degree 2, 24 elements of degree 3, and 36 elements of degree 4. The elements
of degree 2 in this Markov basis are basic moves eik + ejl − eil − ejk that
do not change the sum over S. The other 60 elements can be written as the
sum of two basic moves, where each one changes the sum over S but their
sum does not. One can distinguish five types of Markov basis elements and
we describe them for general r = c in part 3.

(b) Now we consider S = {(1, 1), (1, 2), (2, 1), (2, 2)}, that is, the upper 2 × 2-
rectangle of the table. Changing the last row of A according to the set S,
we can again use the markov command to compute a Markov basis, which
consists of 20 elements of degree 2. These are precisely the basic moves that
do not change the sum over S.

(c) For S = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)}, that is, the up-
per left and the lower right rectangle, we get the same Markov basis as for
the upper left rectangle in part (b). The reason for this is that a basic move
changes the sum over the upper left rectangle if and only if it changes the
sum over the lower right rectangle.

(d) If S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)} is the upper left triangle, then
we find that the Markov basis computed by 4ti2 comprises 16 moves. As for
the upper rectangle in part (b), these are all basic moves that do not change
the sum of S.

We note that in [53, Thm. 1] it is proven that the set of allowable basic moves
is a Markov basis for S if and only if S does not contain precisely the diagonal
elements (1, 1) and (2, 2) in any 3×2 or 2×3 sub-matrix of [r]× [c]. This condition
is satisfied for the sets S in (b),(c),(d), while it is violated for the diagonal S in
(a). The theorem is thus in agreement with our computational results.
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2. Let S1 ⊆ [r], S2 ⊆ [c] and consider S = S1 × S2. Part (b) of question 1, above,
is an example. Let B∅ be the minimal Markov basis for the independence model,
which contains the basic moves eik + ejl − eil − ejk for i < j and k < l. We claim
that if S = S1 × S2, then the set

BS =

{

b ∈ B∅ :
∑

(i,j)∈S

bij = 0

}

(6.1.1)

is a Markov basis for the model with the additional restriction based on S. The
set BS comprises all basic moves that do not change the sum in S. Let s1 = #S1

and s2 = #S2. Then the number of moves in this basis is

#BS =

(

r

2

)(

c

2

)

− s1s2(r − s1)(c− s2). (6.1.2)

The claim holds according to [53, Thm. 1], but for the particular set S con-
sidered here we can give a simpler proof. Let u and v be two distinct non-negative
integer matrices that have equal column sums, row sums, and sum over S. We
need to show that one can reach v from u by applying a series of moves from BS

while keeping all matrix entries non-negative. As in the proof of Proposition 1.2.2
it suffices to show that we can find b1, . . . , bL ∈ BS such that u+ b1 + · · ·+ bl ≥ 0
for all 1 ≤ l ≤ L and ‖u+ b1 + · · ·+ bL − v‖1 < ‖u− v‖1.

Suppose there exist two distinct indices i, j ∈ [r] \ S1 with uik − vik < 0 and
ujk−vjk > 0 for some k ∈ [c]. Then there is another column l ∈ [c]\{k} for which
uil − vil > 0. We can thus reduce the one-norm by adding eik + ejl − ejk − eil to
u. The same argument applies if i, j ∈ S1 with uik − vik < 0 and ujk − vjk > 0 for
some k ∈ [c]. Moreover, we can interchange the role of rows and columns.

In the remaining cases, there exist two distinct indices i, j ∈ S1 and two
distinct indices k, l ∈ S2 with uik − vik > 0 and ujl − vjl < 0. In order for the
above reasoning not to apply both uil − vil and ujk − vjk must be zero, and there
must exist an index m ∈ [c]\S2 such that ujm−vjm > 0. Update u by adding the
move ejk + eim − eik − ejm. Then ujk − vjk = 1 and ujl − vjl < 0 is unchanged.
We are done because we are back in the previously considered situation.

3. We are asked to describe a Markov basis when S = {(i, i) : i ∈ [r]} is the
diagonal in a square table. The case r = c = 4 was considered in part 1(a).

We represent each basic move by showing the non-zero elements participating
in it. A composition of basic moves is represented similarly, where the number
of non-zero elements might vary. For ease of presentation, we display moves in
4 × 4 matrices but they represent the same moves as in general r × r matrices.
Elements appearing on the diagonal are underlined. We introduce five classes of
moves. Recall that for each move in the Markov basis, we can use either it, or its
negation. We always consider only one of these as a member of the Markov basis.
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(i) The set B1 contains the
(

r
2

)(

r−2
2

)

basic moves ei1j1 + ei2j2 − ei1j2 − ei2j1 that
do not contain the diagonal. An example is









+1 −1
−1 +1









.

(ii) The set B2 comprises 2
(

r
2

)

(r − 2) moves created from two overlapping basic
moves. In each of the two basic moves one of the elements is on the diagonal.
The moves in B2 have the form ei1i1 + ei1i2 − 2ei1j3 − ei2i1 − ei2i2 + 2ei2j3 ,
possibly after transposition. An example is









+1 +1 −2
−1 −1 +2









.

(iii) The third set B3 is made up from pairs of non-overlapping basic moves in
the same rows, each containing one diagonal element. Modulo transposition,
the 2

(

r
2

)(

r−2
2

)

moves in B3 are of the form ei1i1 + ei1i2 − ei1j3 − ei1j4 − ei2i1 −
ei2i2 + ei2j3 + ei2j4 , as illustrated by









+1 +1 −1 −1
−1 −1 +1 +1









.

(iv) The forth set B4 collects moves created from two overlapping basic moves,
each containing two diagonal elements of which one is shared. They are of
the form ei1i1 − ei1j3 − ei2i2 + ei2j3 − ei3i1 + ei3i2 , as illustrated by









+1 −1
−1 +1

−1 +1









.

The indices are chosen distinct with the exception of i3 and j3, which may
be equal. Based on this index structure, there are

(

r
2

)

(r − 2)2 moves in B4.
However, some of these moves are redundant. In particular, when i3 = j3 we
get a move that can be compensated by the two moves associated with the
triplets (i1, i3, i2) and (i2, i3, i1). Excluding, for each triplet (i1, i2, i3), one of
the three moves in the basis, we obtain #B4 =

(

r
2

)

(r − 2)2 −
(

r
3

)

.
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(v) Finally, the set B5 is created from two overlapping basic moves, sharing their
one diagonal element. These

(

r
3

)

moves are of the form ei1i2 − ei1i3 − ei2i1 +
ei2i3 − ei3i1 + ei3i2 . An example of an element of B5 is









+1 −1
−1 +1
−1 +1









.

The union BS =
⋃5

i=1 Bi of the above listed moves has cardinality

(

r

2

)(

r − 2

2

)

+ 2

(

r

2

)

(r − 2) + 2

(

r

2

)(

r − 2

2

)

+

(

r

2

)

(r − 2)2 −
(

r

3

)

+

(

r

3

)

=

3

2

(

r

3

)

(5r − 9),

which is equal to 9, 66, 240, and 630 for r = 3, . . . , 6. Using 4ti2 we verified that
BS is a Markov basis for r ≤ 6. This confirms the following result of [54].

Theorem. Suppose S = {(i, i) : i ∈ [r]} is the diagonal in an r × r-contingency

table. Then BS =
⋃5

i=1 Bi is a Markov basis for the log-linear subtable change-point
model associated with S.

6.2 Quasi-symmetry and Cycles

The team consisted of Krzysztof Latuszynski and Carlos Trenado.

Problem. The quasi-symmetry model for two discrete random variables X,Y with
the same number of states is the log-linear model with

log pij = αi + βj + λij

where λij = λji.

1. What are the sufficient statistics of this model?

2. Compute the minimal Markov basis of the model for a few different values
of the number of states of X,Y .

3. Give a combinatorial description of the minimal Markov basis of the quasi-
symmetry model.

Solution. 1. Without loss of generality, assume that X and Y take values in the
set [r]. For a sample (X(1), Y (1)), . . . , (X(n), Y (n)), let u = (uij)i,j be the data
matrix, so uij =

∑n
k=1 1{X(k)=i,Y (k)=j}. To determine the sufficient statistics, we
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represent this model by a matrix A whose rows correspond to the parameters and
whose columns correspond to the entries of the table u. The columns are labeled
by pairs (i, j) ∈ [r] × [r] and the rows come in three blocks, corresponding to
the α, β, and λ parameters. The first two blocks each have r rows (corresponding
to rows and columns of u, respectively) and the λ block has

(

r+1
2

)

rows which
correspond to the 2 element multisets of [r]. The column corresponding to entry
uij has three ones in it, corresponding to the three parameter types, and all other
entries are zero. The positions of the ones are in the row corresponding to αi, the
row corresponding to βj , and the row corresponding to λij = λji. For example if
r = 3, the matrix A has the form:

A =









































1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0









































.

Now to determine the sufficient statistics of the quasi-symmetry model from the
matrix A, we read across the rows of A. The α and β blocks correspond to row
and column sums of u, as in a typical independence model. For the λ block, this
gets broken into two classes: diagonal and off-diagonal. If we are looking at λii, uii

is the only table entry affected by this parameter, in which case the corresponding
sufficient statistic is uii. For off-diagonal λij , uij and uji are affected, and the
vector of sufficient statistics is

ui+ for i = 1, . . . , r,

u+j for j = 1, . . . , r,

uii for i = 1, . . . , r,

uij + uji for i, j = 1, . . . , r and i < j.

2. To compute the Markov basis for the model for r×r tables we input the matrix
that computes sufficient statistics of the model to 4ti2 [57]. That matrix, which
is an 2r +

(

r+1
2

)

by r2 matrix, was described in the solution to part 1.
For r = 3, the Markov basis consists of the 2 moves

±





0 1 −1
−1 0 1
1 −1 0



 .
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For r = 4, the Markov basis consists of 2 ·7 moves, given by the following matrices:

±









0 0 0 0
0 0 −1 +1
0 +1 0 −1
0 −1 +1 0









, ±









0 0 −1 +1
0 0 0 0

+1 0 0 −1
−1 0 +1 0









, ±









0 −1 0 +1
+1 0 0 −1
0 0 0 0
−1 +1 0 0









,

±









0 0 −1 +1
0 0 +1 −1

+1 −1 0 0
−1 +1 0 0









, ±









0 −1 0 +1
+1 0 −1 0
0 +1 0 −1
−1 0 +1 0









,

±









0 −1 +1 0
+1 0 −1 0
−1 +1 0 0
0 0 0 0









, ±









0 +1 −1 0
−1 0 0 +1
+1 0 0 −1
0 −1 +1 0









.

We leave to the reader the enjoyable task of designing the A matrix and computing
the 2 · 37 moves of the Markov basis for r = 5 using 4ti2.

3. Markov bases for the quasi-symmetry model were considered e.g. in [76], where
the 4 × 4 example has been computed. However, the problem was not solved for
arbitrary r. Here we solve the problem of determining the minimal Markov basis
of this model by providing a proof of a conjecture by Filip Cools.

To each cyclic permutation σ of [r] of length between 3 to r, we associate an
r × r table Mσ = (mij), where

mij =







1 if σ(i) = j,
−1 if σ−1(i) = j,
0 otherwise.

Note that if Mσ−1 = −Mσ.

Theorem. The minimal Markov basis B of the r × r quasi-symmetry model is the
union of all the moves Mσ as σ ranges over all cyclic permutations with cycle
length between 3 and r. In particular, the Markov basis consists of

r
∑

k=3

(

r

k

)

(k − 1)! (6.2.1)

moves.

Proof. First of all note that Mσ ∈ kerZ A. It is easy to verify that the number of
such cycles, and thus the number of such matrices, is given by (6.2.1).

We must show that if we have two non-negative r×r integral tables u, v with
the same row and column sums, same diagonals, and same symmetric pair sum,
they can be connected to each other using the set of cyclic moves B. Using the
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same strategy as in the proof of Proposition 1.2.2, it suffices to show that there is
a b ∈ B such that u+ b ≥ 0 and ‖u+ b− v‖1 < ‖u− v‖1.

Suppose that u 6= v. Then there exists some index pair (i1, i2) such that
ui1i2 − vi1i2 > 0. By virtue of the fact u and v have the same symmetric pair sums
we have that ui2i1 − vi2i1 < 0. Since u and v have the same column sums, there
is an index i3 such that ui2i3 − vi2i3 > 0. By virtue of the fact u and v have the
same symmetric pair sums we have that ui3i2 − vi3i2 < 0. Since u and v have the
same column sums, there is an index i4 such that ui3i4 − vi3i4 > 0. Continuing in
this way for at most r steps, we produce a sequence of indices i1i2 · · · ik+1 with
ik+1 = i1 such that uilil+1

−vilil+1
> 0 and uil+1il

−vil+1il
< 0 for all l = 1, 2, . . . , k.

Letting σ be the corresponding cyclic permutation σ = (i1i2 · · · ik) and b = Mσ−1

gives the desired move.
Applying the same connecting argument to the pair of tables M+

σ and M−
σ ,

the positive and negative parts of Mσ, shows that none of these moves can be
omitted from the Markov basis, and hence, this is a minimal Markov basis. �

Note that the argument in the preceding proof shows that the set of moves
is more than just a Markov basis for the model, they form a Graver basis as well.

6.3 A Colored Gaussian Graphical Model

The team consisted of Florian Block, Sofia Massa and Martina Kubitzke.

Problem. Let Θ ⊂ PDm be the set of positive definite m×m-matrices that can be
written as ACA, where A is a diagonal matrix with diagonal entries α1, . . . , αm > 0
and

C =















1 γ
γ 1 γ

. . .
. . .

. . .

γ 1 γ
γ 1















is a tridiagonal positive definite matrix. Consider the model of all multivariate
normal distributions N (µ,Σ) with µ ∈ Rm and concentration matrix Σ−1 ∈ Θ.
This model is an instance of a colored Gaussian graphical model [60].

1. Suppose we observe a positive definite sample covariance matrix S = (sij).
Show that the likelihood function involves only sij with |i− j| ≤ 1, and that
for solution of the likelihood equations we may without loss of generality
replace S by the sample correlation matrix R = (rij) which has the entries

rij =

{

1 if i = j,
sij√
siisjj

if i 6= j.
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2. Compute all solutions to the likelihood equations if m = 3 and

S =





7 2 −1
2 5 3
−1 3 11



 .

3. Study the likelihood equations for m = 3 treating the correlations r12 and
r23 as parameters. Can there be more than one feasible solution?

4. Compute ML degrees for some m ≥ 4.

Solution. 1. In (2.1.5) in Section 2.1, we saw that the log-likelihood function for a
Gaussian model is

ℓn(µ,Σ) = −n
2

log det Σ− n

2
tr(SΣ−1)− n

2
(X̄ − µ)T Σ−1(X̄ − µ),

where n is the sample size. We also saw that the ML estimator of µ is the sample
mean X̄ and that for estimation of Σ we can maximize the function

ℓ(Σ) = − log det Σ− tr(SΣ−1). (6.3.1)

If Σ−1 = ACA, then ℓ(Σ) is equal to

2 log detA+ log detC − tr(ASAC). (6.3.2)

For i, j ∈ [m], let Eij be the zero-one matrix that has ones at exactly the entries
(i, j) and (j, i). If i = j, then Eii has only the entry (i, i) equal to one. Then

tr(ASAEii) = α2
i sii and tr(ASAEij) = 2αiαjsij ,

and since

C = γ

m−1
∑

i=1

Ei,i+1 +

m
∑

i=1

Eii

it holds that

tr(ASAC) = γ

m−1
∑

i=1

2αiαi+1si,i+1 +

m
∑

i=1

α2
i sii

involves only on the sample covariances sij with |i− j| ≤ 1.
Let DS be the diagonal matrix with

√
sii as i-th diagonal entry such that

S = DSRDS . Using the invertible linear transformation A 7→ Ā = ADS , (6.3.2)
can be rewritten as

2 log det Ā+ log detC − tr(ĀRĀC)− 2 log detDS . (6.3.3)
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Since 2 log detDS depends only on the data S, we can find the critical points
(α1, . . . , αm, γ) of (6.3.2) by computing the critical points (ᾱ1, . . . , ᾱm, γ) of

2 log det Ā+ log detC − tr(ĀRĀC) (6.3.4)

and transform the solutions Ā to A = ĀD−1
S , that is, we divide each ᾱi by

√
sii.

2. The likelihood equations are obtained by setting the partial derivatives of (6.3.2)
with respect to γ and α1, . . . , αm equal to zero. These are

∂ℓ(Σ)

∂γ
=

1

detC
· ∂ detC

∂γ
−

m−1
∑

i=1

2αiαi+1si,i+1,

∂ℓ(Σ)

∂αi
=

2

αi
− 2αisii − 2γ(αi−1si−1,i + αi+1si,i+1), i = 1, . . . ,m,

where sm,m+1 and s0,1 are understood to be zero. Clearing denominators by mul-
tiplying by detC and αi, respectively, and dividing each equation by 2, we obtain
the polynomial equation system

1

2

∂ detC

∂γ
− detC

m−1
∑

i=1

αiαi+1si,i+1 = 0, (6.3.5a)

1− α2
i sii − γαi(αi−1si−1,i + αi+1si,i+1) = 0, i = 1, . . . ,m. (6.3.5b)

We set up the equations for the given sample covariance matrix S in Singular:

LIB "solve.lib";

ring R = 0, (g,a(1..3)), lp;

matrix S[3][3] = 7,2,-1, 2,5,3, -1,3,11;

matrix C[3][3] = 1,g,0, g,1,g, 0,g,1;

ideal I = 1/2*diff(det(C),g)-det(C)*a(2)*(a(1)*S[1,2]+a(3)*S[2,3]),

1-a(1)^2*S[1,1]-g*a(1)*a(2)*S[1,2],

1-a(2)^2*S[2,2]-g*a(2)*(a(1)*S[1,2]+a(3)*S[2,3]),

1-a(3)^2*S[3,3]-g*a(2)*a(3)*S[2,3];

When clearing denominators it is possible to introduce new solutions with αi or
detC equal to zero. However, this is not the case here. Clearly, all solutions to
(6.3.5a) and (6.3.5b) have αi 6= 0, and since the command

groebner(I+ideal(det(C)));

returns one, no solution satisfies detC = 0. To compute the solutions to the
likelihood equations we issue the command

solve(I);

There are eight solutions, all of them real, but only one is feasible having all αi > 0
and detC = 1− 2γ2 > 0. The solutions come in two classes represented by
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[4]: [1]: 0.035667176 [8]: [1]: -0.3482478

[2]: 0.37568976 [2]: 0.40439204

[3]: 0.44778361 [3]: 0.51385299

[4]: -0.3036971 [4]: 0.32689921

where the components correspond to (γ, α1, α2, α3). The other solutions are ob-
tained by certain sign changes.

3. Continuing with the case m = 3, we use the observation that the solutions of
the likelihood equations can be found by computing the critical points of (6.3.4),
which only depends on r12 and r23. Treating these correlations as parameters in
Singular we define the ring and data as

ring R = (0,r12,r23), (g,a(1..3)), lp;

matrix S[3][3] = 1,r12,0, r12,1,r23, 0,r23,1;

The likelihood equations can then be set up using the code above, and we can com-
pute a reduced lexicographic Gröbner basis by setting the option option(redSB)

and typing groebner(I). The Gröbner basis corresponds to four equations:

(2− r223)(2− r212 − r223) · α4
3 − 2(2− r223)(2− r212) · α2

3 + 2(2− r212) = 0

(2− r212) · α2
2 − (4− r212 − r223) · α2

3 + (2− r212) = 0

−r12r23(2− r212) · α1 + (2− r223)(2− r212 − r223) · α3
3 − (2− r223)(2− r212) · α3 = 0

2r23h1 · γ + (2− r223)(2− r212 − r223)h2 · α2α
3
3 − 2(2− r223)h3 · α2α3 = 0

where h1, h2, h3 are polynomials in r212 and r223. In particular, the ML estimates
can be computed by solving quadratic equations.

If r212, r
2
23 ≤ 1, as is necessarily the case if the sample covariance matrix S is

positive definite, then a standard calculation shows that the first equation has four
real solutions for α3. All of them are such that the second equation has two real
solutions for α2. Hence, for a generic positive definite sample covariance matrix,
the ML degree is eight and all eight solutions to the likelihood equations are real.

If the sample covariance matrix S is positive definite, then the function ℓ(Σ)
in (6.3.1) is bounded over the positive definite cone and tends to minus infinity if
Σ or Σ−1 approach a positive semi-definite matrix. It follows that the likelihood
equations based on r12 and r23 have at least one feasible solution (α10, α20, α30, γ0).
Similarly, the likelihood equations based on −r12 and r23 have a feasible solution
(α11, α21, α31, γ1). The Gröbner basis displayed above reveals that the eight real
solutions to the likelihood equations based on r12 and r23 are









α10

α20

α30

γ0









,









α10

−α20

α30

−γ0









,









−α10

α20

−α30

−γ0









,









−α10

−α20

−α30

γ0
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and









−α11

α21

α31

γ1









,









−α11

−α21

α31

−γ1









,









α11

α21

−α31

−γ1









,









α11

−α21

−α31

γ1









.

Note that since αi0, αi1 > 0 all eight sign combinations for the αi occur. We con-
clude that, for a generic positive definite sample covariance matrix, the likelihood
equations have exactly one feasible solution.

4. Using the code below we compute the ML degree form ≥ 4 (and confirm that the
clearing of denominators did not introduce additional solutions). We generate data
at random and for m ≥ 6 we used a computation in different finite characteristics
(e.g., set int c = 99991).

LIB "linalg.lib";

int m = 4; int c = 0;

intmat X = random(31,m,m); intmat S = X*transpose(X);

ring R = c,(g,a(1..m)),lp;

matrix A[m][m];

for(int i=1;i<=m;i++){ A[i,i]=a(i); }

matrix C[m][m];

C[1,1] = 1;

for(i=2;i<=m;i++){ C[i,i] = 1; C[i-1,i]=g; C[i,i-1]=g; }

ideal I = diff(det(C),g)-diff(trace(A*C*A*S),g)*det(C);

for(i=1;i<=m;i++){

I = I+ideal(1-1/2*diff(trace(A*C*A*S),a(i))*a(i));

}

ideal G = groebner(I);

dim(G); vdim(G);

groebner(G+ideal(det(C)));

We obtain the results

m 3 4 5 6 7 8
ML deg 8 64 152 480 1072 2816

but, unfortunately, no obvious guess for a formula emerges.

6.4 Instrumental Variables and Tangent Cones

The team consisted of Shaowei Lin, Thomas Kahle and Oliver Wienand.

Problem. Let ε = (ε1, . . . , ε4) ∼ N (0,Ω) be a multivariate normal random vector
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with positive definite covariance matrix

Ω =









ω11 0 0 0
0 ω22 0 0
0 0 ω33 ω34

0 0 ω34 ω44









. (6.4.1)

Define new random variables X1, . . . , X4 as linear combinations:

X1 = ε1, X3 = λ31X1 + λ32X2 + ε3,

X2 = ε2, X4 = λ43X3 + ε4.

Then X1, . . . , X4 have zero means and are jointly multivariate normal. Let Θ be
the set of covariance matrices of X = (X1, . . . , X4) obtained by choosing any real
numbers for the coefficients λij and a positive definite matrix Ω as in (6.4.1).

1. Write the covariance matrix Σ = (σij) of X as a function of the entries of Ω
and the coefficients λij .

2. Describe the ideal I of polynomials in R[sij | 1 ≤ i ≤ j ≤ 4] that evaluate
to zero at all matrices in Θ. What is the singular locus of the variety V (I).
What choices of coefficients λij lead to singularities?

3. Let Σ ∈ Θ be a singularity of V (I). What is the tangent cone of Θ at Σ?

4. Find all possible asymptotic distributions of the likelihood ratio statistic λn

for testing

H0 : Σ ∈ Θ versus H1 : Σ 6∈ Θ

when the true distribution N (0,Σ0) has Σ0 ∈ Θ.

Solution. 1. Define the matrix

Λ =









1 0 0 0
0 1 0 0
−λ31 −λ32 1 0

0 0 −λ43 1









.

Then X = Λ−1ε has covariance matrix Σ = Λ−1ΩΛ−T , which is equal to









ω11 0 λ31ω11 λ31λ43ω11

ω22 λ32ω22 λ32λ43ω22

ω33 + λ2
31ω11 + λ2

32ω22 ω34 + λ43σ33

ω44 + 2λ43ω34 + λ2
43σ33









(6.4.2)

where the symmetric entries below the diagonal are omitted and the shorthand
σ33 = ω33 + λ2

31ω11 + λ2
32ω22 is used in the fourth column.
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Remark. We see that despite the possible dependence of the error terms ε3 and
ε4 the coefficient λ43 can be obtained from Σ using the instrumental variables
formulas

λ43 =
σj4

σj3
, j = 1, 2.

These formulas require σ13 or σ23 (or equivalently, λ31 or λ32) to be non-zero.

2. It is easy to see that if Σ = (σij) is the covariance matrix of X, then it holds
that σ12 = 0 and σ13σ24 − σ14σ23 = 0. In fact, all relations between entries of the
matrix are given by the ideal

I = 〈σ13σ24 − σ14σ23, σ12〉 . (6.4.3)

The next piece of Singular code verifies this claim:

LIB "linalg.lib";

ring R = 0,(w1,w2,w3,w34,w4, l31,l32,l43,

s11,s12,s13,s14, s22,s23,s24, s33,s34, s44),dp;

matrix L[4][4] = 1,0,0,0,

0,1,0,0,

-l31,-l32,1,0,

0,0,-l43,1;

matrix W[4][4] = w1,0,0,0,

0,w2,0,0,

0,0,w3,w34,

0,0,w34,w4;

matrix Sigma[4][4] = inverse(L)*W*transpose(inverse(L));

matrix S[4][4] = s11,s12,s13,s14,

s12,s22,s23,s24,

s13,s23,s33,s34,

s14,s24,s34,s44;

ideal E = 0;

for(int i=1; i<=4; i++){

for(int j=1; j<=4; j++){

E = E+ideal(S[i,j]-Sigma[i,j]);

}

}

ideal I = eliminate(E,w1*w2*w3*w34*w4*l31*l32*l43);

I;

In order to find the singularities we study the rank of the Jacobian J of the implicit
equations, which is

J =

(

1 0 0 0 0
0 σ24 −σ23 −σ14 σ13

)

;
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recall Definition 2.3.15. The rank of J drops if and only if σ13 = σ14 = σ23 = σ24 =
0, which is the case if and only if λ31 = λ32 = 0 (recall that ω11, ω22 > 0). For
computation of the singularities using Singular, load the library LIB "sing.lib"

and type slocus(I) or for a nicer output groebner(slocus(I)).

3. Let g be the parametrization map, which maps a vector of parameters

(ω, λ) = (ω1, ω2, ω3, ω34, ω4, λ31, λ32, λ43) (6.4.4)

to the covariance matrix displayed in (6.4.2). According to part 2, a matrix Σ̄ =
g(ω̄, λ̄) is a singularity of Θ if and only if λ̄31 = λ̄32 = 0, in which case it is of the
form

Σ̄ =









ω̄11 0 0 0
ω̄22 0 0

ω̄33 ω̄34 + λ̄43ω̄33

ω̄44 + 2λ̄43ω̄34 + λ̄2
43ω̄33









. (6.4.5)

By Lemma 2.3.17, the tangent cone TΘ(Σ̄) is a subset of the variety V (I), which is
itself a cone. We claim that TΘ(Σ̄) = V (I). To confirm this we study the Jacobian
H(ω, λ) of the parametrization g at a singular point. Continuing the Singular

session from part 2, we compute

matrix H[10][8];

int i,j,c; int r = 0;

for(i=1;i<=4;i++){

for(j=i;j<=4;j++){

r = r+1;

for(c=1;c<=8;c++){

H[r,c] = diff(Sigma[i,j],var(c));

}

}

}

When stating the result we vectorize the covariance matrices Σ = (σij) in the
image of the parametrization as

(σ12, σ11, σ22, σ33, σ34, σ44, σ13, σ14, σ23, σ24) (6.4.6)

and list partial derivatives in the order given by (6.4.4). Then the JacobianH(ω, λ)
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when λ31 = λ32 = 0 is

H(ω̄, λ̄) =



































0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 λ̄43 1 0 0 0 ω̄33

0 0 λ̄2
43 2λ̄43 1 0 0 2ω̄34 + 2λ̄43ω̄33

0 0 0 0 0 ω̄1 0 0
0 0 0 0 0 λ̄43ω̄1 0 0
0 0 0 0 0 0 ω̄22 0
0 0 0 0 0 0 λ̄43ω̄22 0



































According to Proposition 2.3.14, TΘ(Σ0) contains the column span of H(ω̄, λ̄),
which is the linear space

R× {0} × R4 × L(λ̄43),

where

L(α) =
{

(x13, x14, x23, x24) ∈ R4 : x14 = αx13, x24 = αx23

}

.

However, the parametrization map g is not injective at a point (ω, λ) with λ31 =
λ32 = 0. Indeed the preimage of Σ̄ = (σ̄ij) in (6.4.2) is one-dimensional and equals

g−1(Σ̄) =
{

(ω, λ) ∈ R8 : ω11 = σ̄11, ω22 = σ̄22, ω33 = σ̄33, λ31 = λ32 = 0,

ω34 = σ̄34 − λ43σ̄33, ω4 = σ̄44 − 2λ43σ̄34 + λ2
43σ̄33

}

.

Note that since Σ̄ is positive definite

ω4 = σ̄44 − 2λ43σ̄34 + λ2
43σ̄33 > 0

and

ω33ω44 − ω2
34 = σ̄33(σ̄44 − 2λ43σ̄34 + λ2

43σ̄33)− (σ̄34 − λ43σ̄33)
2

= σ̄33σ̄44 − σ̄2
34 > 0.

The coefficient λ43 in the parametrization of the preimage g−1(Σ̄) is arbitrary.
Therefore, and since tangent cones are closed, it holds that TΘ(Σ0) contains the
closure of

R× {0} × R4 ×
⋃

α∈R

L(α).

This closure is equal to V (I). Viewed as a variety in the space of symmetric
matrices, V (I) comprises all symmetric 4× 4-matrices τ = (τij) such that τ12 = 0
and the submatrix τ12×34 has rank at most one; recall (6.4.3).

4. Let us first discuss the case of the true parameter Σ0 being a non-singular point
of Θ, that is, Σ0 = g(ω, λ) with λ31 6= 0 or λ32 6= 0. Continuing the Singular

session from part 3, we compute the locus where the rank of H is smaller than 8:
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sat( minor(H,8), w1*w2*w3*w4);

where the saturation takes into account that ωi > 0. The output shows that the
JacobianH has rank smaller than 8 exactly when λ31 = λ32 = 0. By Lemma 2.3.16,
it thus holds at all non-singular points Σ0 that

λn
D−→ χ2

codim(Θ) = χ2
2.

Next suppose that Σ0 = (σij) is a singularity of Θ. Chernoff’s Theorem
(Theorem 2.3.12) states that the asymptotic distribution of λn is given by

min
τ∈TΘ(Σ0)

‖Z − I(Σ0)
1/2τ‖2,

where I(Σ0) = I(Σ0)
t/2I(Σ0)

1/2 is the 10×10-Fisher information matrix obtained
from considering only covariances σij with 1 ≤ i ≤ j ≤ 4, the random vector
Z ∈ R10 is distributed according to N (0, I(Σ0)

−1), and TΘ(Σ0) is the tangent
cone of Θ at Σ0 viewed as a subset of R10.

As shown in Exercise 6.5, the Fisher information matrix satisfies

(I(Σ0)
−1)ij,kl = σijσkl + σilσkj .

By (6.4.5), a singularity Σ0 is of the form

Σ0 =









σ11 0 0 0
σ22 0 0

σ33 σ34

σ44









.

The many zeros lead to a block-diagonal structure for the Fisher-information.
When we order the rows and columns according to the variable ordering in (6.4.6),
then

I(Σ0)
−1 =









B1

B2

B3

B4









where

B1 =





σ11σ22

2σ2
11

2σ2
22



 , B2 =





2σ2
33 2σ33σ34 2σ2

34

2σ33σ34 σ2
34 + σ33σ44 2σ34σ44

2σ2
34 2σ34σ44 2σ2

44



 ,

B3 = σ11

(

σ33 σ34

σ34 σ44

)

, B4 = σ22

(

σ33 σ34

σ34 σ44

)

.

Since Σ0 is positive definite, all four blocks B1, . . . , B4 are positive definite as well.
This follows from exponential family theory but we can also calculate the leading
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principal minors that are all products of principal minors of Σ0. Now compute

block-diagonal matrices B
1/2
i such that B

1/2
i B

t/2
i = Bi, for instance, by Cholesky

decomposition. In particular, we can choose B
1/2
1 to be diagonal,

B
1/2
3 =

√
σ11

(

σ33 σ34

σ34 σ44

)1/2

and B
1/2
4 =

√
σ22

(

σ33 σ34

σ34 σ44

)1/2

.

Define I(Σ0)
1/2 to be the block-diagonal matrix with blocks B

−1/2
i . This is a

matrix square root satisfying I(Σ0)
t/2I(Σ0)

1/2 = I(Σ0) as desired.
We claim that I(Σ0)

1/2 leaves the tangent cone TΘ(Σ0) invariant. Recall that
in part 3 we showed that elements τ = (τij) of TΘ(Σ0) are of the form

τ =









τ11 0 τ13 τ14
τ22 τ23 τ24

τ33 τ34
τ44









where the τij are any reals satisfying τ13τ24 = τ23τ14. Let τ̄ = (τ̄ij) = I(Σ0)
1/2τ . It

is clear that τ̄12 = 0 such that τ̄ ∈ TΘ(Σ0) if τ̄13τ̄24 = τ̄14τ̄23. The latter equation
holds because the matrix

(

τ̃13 τ̃23
τ̃14 τ̃24

)

=

(

σ33 σ34

σ34 σ44

)−1/2(
τ13 τ23
τ14 τ24

)(√
σ11 √

σ22

)

has rank no more than one. Therefore, I(Σ0)
1/2TΘ(Σ0) ⊆ TΘ(Σ0). Similarly,

I(Σ0)
−1/2TΘ(Σ0) ⊆ TΘ(Σ0) such that I(Σ0)

1/2TΘ(Σ0) = TΘ(Σ0) as claimed.
Summarizing the results, we have

λn
D−→ min

τ∈TΘ(Σ0)
‖Z − τ‖2

with Z ∼ N (0, I). Given any matrix Z ∈ R4×4, the matrix τ ∈ TΘ(Σ0) minimizing
the above norm must be equal to Z in the entries τ11, τ22, τ33, τ34, τ44. Also, τ12 = 0.
Thus,

min
τ∈TΘ(Σ0)

‖Z − τ‖2 = Z2
12 + min

τ ′∈C1

‖Z12×34 − τ ′‖2,

where C1 is the set of 2 × 2-matrices of rank at most one. By classical linear
algebra, minτ ′∈C1 ‖Z12×34 − τ ′‖2 is equal to the smaller of the two eigenvalues of
W = Z12×34Z

T
12×34. The distribution of this latter random matrix is known as

a Wishart distribution with 2 degrees of freedom and scale matrix equal to the
identity matrix; we denote it by W2(I2×2). Therefore,

λn
D−→ V + min{λ1(W ), λ2(W )}

where V ∼ χ2
1 and W ∼ W2(I2×2) are independent, and λ1(W ) and λ1(W ) are

the two eigenvalues of W .
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6.5 Fisher Information for Multivariate Normals

The team consisted of Alex Engström and Johannes Rauh.

Problem. Consider the model given by all centered multivariate normal distri-
butions N (0,Σ) on Rm with (symmetric) positive definite covariance matrix Σ.
Let

pΣ(x) =
1

√

(2π)m det(Σ)
exp

{

−1

2
xT Σ−1x

}

, x ∈ Rm,

be the probability density of N (0,Σ). Viewing Σ as an element of R(m+1
2 ), the

Fisher-information I(Σ) is defined to be
(

m+1
2

)

×
(

m+1
2

)

-matrix whose elements
are the expected values

I(Σ)ij,kl = E

[(

∂

∂σij
log pΣ(X)

)(

∂

∂σkl
log pΣ(X)

)]

forX ∼ N (0,Σ). Alternatively, one can compute the entries of the Fisher-information
as

I(Σ)ij,kl = −E

[

∂2

∂σij∂σkl
log pΣ(X)

]

. (6.5.1)

(This can be shown to be true quite generally, as long as the order of integration
and differentiation can be interchanged.)

Verify that the inverse of the Fisher-information has entries of the form

(

I(Σ)−1
)

ij,kl
= σikσjl + σilσjk. (6.5.2)

Solution. We compute the Fisher-information matrix using formula (6.5.1), which
decomposes as

I(Σ)ij,kl = Aij,kl +Bij,kl, (6.5.3)

where

Aij,kl =
1

2

∂2

∂σij∂σkl
log det(Σ) (6.5.4)

and

Bij,kl = −1

2
E

[

∂2

∂σij∂σkl
XT Σ−1X

]

. (6.5.5)

We denote the inverse of a matrix Σ = (σij) by Σ−1 = (σ̄ij), and use the Einstein
summation convention which states that one should sum over indices occurring
twice in a product of variables. Further δij denotes the Kronecker delta. For ex-
ample, the fact that ΣΣ−1 equals the identity matrix then corresponds to

σkpσ̄pl = δkl. (6.5.6)
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The matrices Σ and Σ−1 are symmetric, and we identify the variables σij and σji,
i 6= j. Differentiating (6.5.6) with respect to σij we get

(δikδjp + δipδjk)σ̄pl − δijδikσ̄il = −σkp
∂σ̄pl

∂σij

The left hand side comes from differentiating the first factor. The first two terms
correspond to the two occurrences of σij in Σ for i 6= j. If i = j there is only
one occurrence, so this is corrected by the last term on the left hand side. By
multiplying with σ̄qk (and summing over k), we get the useful formula

∂σ̄ql

∂σij
= δij σ̄qiσ̄il − (σ̄qiσ̄jl + σ̄ilσ̄qj).

In order to calculate Bij,kl in (6.5.5) we compute

∂

∂σij

(

−Xqσ̄qlXl

2

)

=
1

2
(Xqσ̄qiσ̄jlXl +Xlσ̄liσ̄jqXq − δijXqσ̄qiσ̄ilXl)

=

(

1− δij
2

)

Xpσ̄piσ̄jqXq.

Differentiating once again with respect to σkl we get

(

1− δij
2

)

(

Xp

[

δklσ̄pkσ̄li − (σ̄pkσ̄li + σ̄ikσ̄lp)
]

σ̄jqXq

+Xqσ̄qi

[

δklσ̄jkσ̄lp − (σ̄jkσ̄lp + σ̄pkσ̄lj)
]

Xp

)

.

Taking expectations using that E[XpXq] = σpq we find that

Bij,kl = 2

(

1− δij
2

)

(δklσ̄jkσ̄li − σ̄liσ̄jk − σ̄ikσ̄jl) .

Now consider the term Aij,kl in (6.5.4). To calculate it we need to know
the derivative of the determinant of a matrix A by its (i, j)-th element. By an
expansion of the determinant, this equals the determinant of the submatrix Âij

obtained after removing the i-th row and j-th column with an appropriate sign.
If i 6= j, then symmetry gives another term with i and j exchanged. Thus we get

∂ log det(Σ)

∂σij
= (−1)i+j det(Σ̂ij) + det(Σ̂ji)− δij det(Σ̂ij)

det(Σ)
= (2− δij)σ̄ij .

In the last step we have used the equality det(Σ̂ij) = det(Σ̂ji) and Cramer’s rule
for matrix inversion. Differentiating with respect to σkl we obtain that

Aij,kl =
1

2

∂2

∂σij∂σkl
log det(Σ) =

1

2
(σ̄ikσ̄jl + σ̄ilσ̄jk − δklσ̄ikσ̄jl) (2− δij).
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Note that Bij,kl = −2Aij,kl. Thus, according to (6.5.3),

I(Σ)ij,kl = −Aij,kl −Bij,kl = Aij,kl.

Now in order to verify the claim in (6.5.2), we need to show that the matrix
with entries Aij,kl is indeed the inverse of the matrix M with entries

Mij,kl = σikσjl + σilσjk.

But

Aij,klMkl,pq = (2− δij)(δipδjq + δiqδjp −
∑

k

σ̄ikσ̄jkσkqσkp) (6.5.7)

does not look like the result we want, and indeed one last ingredient is missing.
Because of symmetry,

(I(Σ)M)ij,pq =
∑

k≤l

Aij,klMkl,pq 6=
∑

k,l

Aij,klMkl,pq = Aij,klMkl,pq.

Instead,

∑

k≤l

Aij,klMkl,pq =
1

2





∑

k,l

Aij,klMkl,pq +
∑

k=l

Aij,klMkl,pq



 .

The correction term is
∑

k=l

Aij,klMkl,pq = (2− δij)
∑

k

σ̄ikσ̄jkσkpσkq. (6.5.8)

Putting (6.5.7) and (6.5.8) together, we obtain

(I(Σ)M)ij,pq = (δiqδjp + δipδjq)
2− δij

2
.

This might still look strange at first sight but it is actually what we are looking for.
Simply check that the right hand side is one if {i, j} = {p, q} and zero otherwise.

6.6 The Intersection Axiom and Its Failure

The team consisted of Thomas Friedrich, Anna Kedzierska, and Zhiqiang Xu.

Problem. Let X1 ∈ [r1], X2 ∈ [r2], and X3 ∈ [r3] be discrete random variables.
If all joint probabilities pijk = P (X1 = i,X2 = j,X3 = k) are positive, then the
Intersection Axiom (Proposition 3.1.3) implies that

X1⊥⊥X2 |X3 and X1⊥⊥X3 |X2 =⇒ X1⊥⊥(X2, X3). (6.6.1)
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However, this implication might fail if some events are allowed to have zero prob-
ability. This problem explores the ways that the intersection axiom might fail,
together with a characterization of zero patterns that still allow the conclusion of
the intersection axiom to be deduced.

1. Show that the probability distribution with p111 = p222 = 1
2 , and pijk = 0

otherwise, satisfies X1⊥⊥X2|X3 and X1⊥⊥X3|X2 but not X1⊥⊥(X2, X3).

2. Compute the primary decomposition of the conditional independence ideal
I1⊥⊥2|3 + I1⊥⊥3|2 for various choices of the number of states of the random
variables.

3. Give a combinatorial description of the minimal primes of I1⊥⊥2|3 + I1⊥⊥3|2.
In particular, how many minimal primes are there?

4. Let (pijk) be a probability density satisfying X1⊥⊥X2|X3 and X1⊥⊥X3|X2.
Let G be the bipartite graph with vertex set [r2]∪[r3], and an edge (j, k) if the
marginal probability p+jk =

∑

i pijk is positive. Show that if G is connected
then X1⊥⊥(X2, X3). Conversely, if G is disconnected it need not be true that
X1⊥⊥(X2, X3).

Solution. 1. For a fixed value k of random variable X3, form the r1 × r2-matrix
Mk := (pijk)i,j . This matrix has at most one non-zero entry and thus has rank
less than or equal to one. By Proposition 3.1.4, it holds that X1⊥⊥X2|X3. By
symmetry, we also have X1⊥⊥X3|X2.

Let

P =







p111 p112 · · · p11r3 · · · p1r2r3

...
...

...
...

pr111 pr112 · · · pr11r3 · · · pr1r2r3






. (6.6.2)

This matrix has exactly two non-zero entries that appear in the invertible subma-
trix

(

p111 p122

p211 p222

)

=

(

1/2 0
0 1/2

)

.

Hence, rank(P ) = 2, which implies that X1 is not independent of (X2, X3).

2. The following Singular code computes the primary decomposition of the con-
ditional independence ideal IC = I1⊥⊥2|3 + I1⊥⊥3|2 for binary random variables.

LIB "primdec.lib";

ring R=0,(p(1..2)(1..2)(1..2)),dp;

matrix M1[2][2]=p(1..2)(1..2)(1);

matrix M2[2][2]=p(1..2)(1..2)(2);

matrix N1[2][2]=p(1..2)(1)(1..2);

matrix N2[2][2]=p(1..2)(2)(1..2);

ideal J=minor(M1,2),minor(M2,2);

ideal I=minor(N1,2),minor(N2,2);

primdecGTZ(I+J);



154 Chapter 6. Exercises

Running the code we find that there are three irreducible components. The fol-
lowing table summarizes our findings on the number of components when varying
the number of states of the random variables:

(r1, r2, r3) (2,2,2) (2,2,3) (2,2,4) (2,2,5) (2,3,3) (3,2,2) (3,3,3)
#comp’s 3 7 15 31 25 3 25

3. Based on the computations from part 2, Dustin Cartwright and Alexander
Engström made the following conjecture. It involves complete bipartite graphs on
a set of nodes [p] ∪ [q], which we denote by Kp,q.

Conjecture. The minimal primes of I1⊥⊥2|3 + I1⊥⊥3|2 correspond to the subgraphs
of Kr2,r3 that have the same vertex set [r2] ∪ [r3] and that have all connected
components isomorphic to some complete bipartite graph Kp,q with p, q ≥ 1.

Let η(p, q) be the number of such subgraphs. Then the exponential generating
function

f(x, y) =
∑

p≥0,q≥0

η(p, q)xpyq

p!q!
.

is equal to

f(x, y) = e(e
x−1)(ey−1).

This can be proved with Stirling numbers as described in [85].

4. Since X1⊥⊥X2|X3 and X1⊥⊥X3|X2, the matrices Mk = (pijk)i,j and Nj =
(pijk)i,k have rank ≤ 1 for all k ∈ [r3] and j ∈ [r2], respectively. Suppose the graph
G defined in the problem is connected. In order to prove that X1⊥⊥(X2, X3), we
need to show that each 2×2 minor of the matrix P in (6.6.2) is zero, or equivalently
that any non-zero column in P is a multiple of any other non-zero column (recall
Proposition 3.1.4). Since we are working with probability distributions, all entries
of P are non-negative, and the non-zero columns correspond to the edges in G.

Consider two non-zero columns Pjk and Pj′k′ of P . SinceG is connected, there
is a sequence of edges jk = j1k1, j2k2, . . . , jlkl = j′k′ such that each adjacent pair
of edges share a vertex. At the first step, for instance, either j2 = j1 or k2 = k1.
It follows that columns Pjtkt

and Pjt+1kt+1 both belong to one of the matrices
Mk or Nj . Since both columns are non-zero, there is a constant ct 6= 0 such that
Pjt+1kt+1 = ctPjtkt

. Hence, Pj′k′ = Pjk ·
∏

ct, which shows that P has rank one.

If, on the other hand, the graph G is disconnected, then we can construct
a counterexample similar to the one discussed in part 1. Let C ( [r2] ∪ [r3] be a
connected component of G. Pick a table of joint probabilities such that the only
non-zero entries are p1jk for adjacent vertices j, k ∈ C and p2jk for adjacent vertices
j, k 6∈ C. These joint probabilities are compatible with the graph G. Moreover, it
holds that X1⊥⊥X2|X3 because each matrix Mk = (pijk)i,j has only one non-zero
row, namely, the first row if k ∈ C and the second row if k 6∈ C. Similarly, we
have X1⊥⊥X3|X2 because only the first row of Nj is non-zero if j ∈ C and only
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the second row is non-zero if j 6∈ C. However, it does not hold that X1⊥⊥(X2, X3).
To see this, pick distinct indices j, k ∈ C and l,m 6∈ C. Then

p1jkp2lm − p1jmp2lk = p1jkp2lm > 0

is a non-zero 2× 2 minor of the matrix P in (6.6.2).

6.7 Primary Decomposition for CI Inference

The team consisted of Hugo Maruri-Aguilar, Filip Cools, and Helene Neufeld.

Problem. In Examples 3.1.7 and 3.1.15 we saw that for either binary or normal
random variables X1, X2, and X3,

X1⊥⊥X3 and X1⊥⊥X3|X2 =⇒ X1⊥⊥(X2, X3) or (X1, X2)⊥⊥X3. (6.7.1)

The goal of this problem is to determine a characterization of the ways that the
implication (6.7.1) can fail when X1, X2, and X3 are discrete.

1. Show that the implication (6.7.1) holds for discrete random variables as long
as X2 is binary.

2. Show that the implication (6.7.1) need not hold when X2 is ternary (try
computing a primary decomposition in Singular).

3. How many minimal primes does the ideal I1⊥⊥3+I1⊥⊥3|2 have for discrete ran-
dom variables? (Note: the number of components will depend on the number
of states of the random variables.)

Solution. 1. Let P = (pijk)i,j,k be the probability distribution of discrete random
variables X1 ∈ [r1], X2 ∈ [r2] and X3 ∈ [r3]. We consider the case where X2 is
binary, so r2 = 2. In this case, we are going to prove (6.7.1).

Let A1, A2 ∈ Rr1×r3 be the slices of P corresponding to X2 equals 1 or 2,
respectively. Since P satisfies both marginal and conditional independence, we
have that A1, A2, and A1 + A2 have rank ≤ 1. So we can write Ai = xiy

T
i where

xi ∈ Rr1×1 and yi ∈ Rr3×1 for i = 1, 2. Denote N = (x1, x2) ∈ Rr1×2 and
M = (y1, y2) ∈ Rr3×2. We have that NMT = A1 +A2 has rank 1.

We claim that N or M has rank ≤ 1. Indeed, assume N and M both have
rank two. So there exist i1, i2 ∈ [r1] and j1, j2 ∈ [r3] such that the submatrices
N(i1, i2) ∈ R2×2 of N , with row indices i1, i2 and M(j1, j2) ∈ R2×2 of M , with row
indices j1, j2 have non-zero determinant. The submatrix of A1 +A2 corresponding
to the rows i1, i2 and columns j1, j2 is equal to

N(i1, i2)M(j1, j2)
T ∈ R2×2,

thus it has non-zero determinant. This is in contradiction with rank(A1 +A2) = 1.
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If N has rank one, the column vectors x1 and x2 are linearly dependent, so
we have x2 = αx1 for some α ∈ R. The matrix (A1, A2) ∈ Rr1×(2r3) can be written
as

(A1, A2) = x1(y
T
1 , αy

T
2 ),

hence it has rank equal to one. This implies X1⊥⊥(X2, X3). Analogously, we can
show that rank(M) = 1 implies (X1, X2)⊥⊥X3.

2. The implication (6.7.1) does not always hold. For instance, consider the case
where X1 and X3 are binary and X2 is ternary. Using Singular, we can compute
the primary decomposition of the CI ideal I = I1⊥⊥3 + I1⊥⊥3|2.

LIB "primdec.lib";

ring r=0,(p(1..2)(1..3)(1..2)),dp;

matrix slZ1[2][2]=p(1..2)(1)(1..2);

matrix slZ2[2][2]=p(1..2)(2)(1..2);

matrix slZ3[2][2]=p(1..2)(3)(1..2);

matrix slZ[2][2]=slZ1+slZ2+slZ3;

ideal I=minor(slZ1,2),minor(slZ2,2),minor(slZ3,2),minor(slZ,2);

dim(std(I));

8

list L=primdecGTZ(I);

size(L);

1

So the algebraic variety V (I) ⊂ R12 is 8-dimensional and I has only one min-
imal prime. By examining list of primary components L, it follows that I is a
prime ideal. We can also compute the dimensions of the varieties V (I1⊥⊥{2,3}) and
V (I{1,2}⊥⊥3). The Singular code below computes dim(V (I1⊥⊥{2,3})).

matrix slY1[2][3]=p(1..2)(1..3)(1);

matrix slY2[2][3]=p(1..2)(1..3)(2);

ideal IX=minor(concat(slY1,slY2),2);

dim(std(IX));

7

Hence, the variety V (I) contains V (I1⊥⊥{2,3}) and V (I{1,2}⊥⊥3) as subvarieties of
codimension one. This shows the implication (6.7.1) does not hold in this case.

3. The number of minimal primes is given by the formula

max{1,min{r1, r2, r3, r1 + r3 − r2}}.

We will now explain what these minimal primes are, and how they are derived.
Our explanation is geometric and describes the varieties V (Q) associated to each
minimal prime Q, rather than ideal generators of the minimal primes.

Let P = (pijk) be the r1 × r2 × r3 probability tensor and denote by Aj

the slice of P corresponding to X2 = j, for all j = 1, . . . , r2. Since X1⊥⊥X3 and
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X1⊥⊥X3|X2, this implies that A1, . . . , Ar2
, A1 + . . . + Ar2 have rank ≤ 1. For all

j = 1, . . . , r2, we can write Aj as xjy
T
j where xj ∈ Rr1×1 and yj ∈ Rr3×1. Hence,

the rank one matrix A1 + . . .+Ar2 is equal to NMT , where

N = (x1, . . . , xr2) ∈ Rr1×r2 and M = (y1, . . . , yr2) ∈ Rr3×r2 .

Let ν : Rr2 → Rr1 be the linear map defined by N , and let µ : Rr3 → Rr2 be the
map corresponding to MT .

Denote by Ṽs,t the set of all joint probability distributions P of X1, X2, X3

such that X1⊥⊥X3, X1⊥⊥X3|X2, dim(image(ν)) = s and dim(image(µ)) = t. For
P ∈ Ṽs,t, we have

dim(image(µ) + ker(ν))− (r2 − s) = t− dim(ker(ν) ∩ image(µ))

= dim(image(ν ◦ µ)) = rank(NMT ) = 1.

Let Vs,t be the (Zariski) closure of Ṽs,t. These have the following properties:

• The sets Vs,t are irreducible.

• The set Vs,t is non-empty if and only if

0 < s ≤ r2, 0 < t ≤ r2, s ≤ r1, t ≤ r3 and r2 − s ≥ t− 1,

which is equivalent to 0 < s ≤ min{r1, r2} and 0 < t ≤ min{r3, r2, r2−s+1}.
• If Vs,t, Vs′,t′ are non-empty, then Vs,t ⊂ Vs′,t′ if and only if s ≤ s′ and t ≤ t′.
• The set Vs,t gives rise to an irreducible component of V (I) if and only if
Vs,t 6= ∅, but Vs′,t = ∅ for any s′ > s and Vs,t′ = ∅ for any t′ > s.

Using the above properties, we can give an explicit description of the irreducible
component of I(V ), depending on the values of r1, r2, r3.

1. If r1 + r3 − r2 ≤ 1, the set Vs,t is non-empty if and only if 0 < s ≤ r1 and
0 < t ≤ r3. Hence the only irreducible component of I(V ) corresponds to
Vr1,r3 .

2. If r1 ≤ r2, r3 ≤ r2 but r1 + r3 − r2 > 1, the set Vs,t is non-empty if and only
if 0 < s ≤ r1 and 0 < t ≤ min{r3, r2 − s + 1}. The components of V (I) are
Vr2−r3+1,r3 , Vr2−r3+2,r3−1, . . . , Vr1,r2−r1+1.

3. If r1 < r2 ≤ r3, the set Vs,t is non-empty if and only if 0 < s ≤ r1 and
0 < t ≤ r1−s+1. The components of V (I) are V1,r2 , V2,r2−1, . . . , Vr1,r2−r1+1.

4. If r3 < r2 ≤ r1, the set Vs,t is non-empty if and only if 0 < s ≤ r2 and
0 < t ≤ min{r3, r2−s+1}. The components of V (I) are Vr2−r3+1,r3 , . . . , Vr2,1.

5. If r1 ≥ r2 and r3 ≥ r2, the set Vs,t is non-empty if and only if 0 < s ≤ r2
and 0 < t ≤ r2 − t+ 1. The components of V (I) are V1,r2 , V2,r2−1, . . . , Vr2,1.
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Hence, the number of components of V (I) equals

max{1,min{r1, r2, r3, r1 + r3 − r2}}.

The irreducible components that arise in the solution to part 3 are the images
of quiver varieties (see [70, Chap. 17]) under a toric fiber product [91].

6.8 An Independence Model and Its Mixture

The team for this problem consisted of Dustin Cartwright, Mounir Nisse, Christof
Söger and Piotr Zwiernik.

Problem. LetM denote the independence model for four binary random variables,
where the first two variables are identically distributed, and the last two variables
are identically distributed.

1. Express M as a log-linear model and find its Markov basis.

2. Compare the degree of M with the maximum likelihood degree ofM.

3. How does one compute the marginal likelihood integrals for the modelM?

4. Let Mixt2(M) denote the mixture model which consists of all distributions
that are convex combinations of two distributions inM. Describe the geom-
etry of this semi-algebraic set.

5. Pick a data set and run the expectation maximization (EM) algorithm for
Mixt2(M) on your data set.

6. Compare the degree of Mixt2(M) with the maximum likelihood degree of
Mixt2(M).

7. How does one compute marginal likelihood integrals for the model Mixt2(M)?

Solution. 1. In the solution to this problem, we use some of the notational conven-
tions from Section 5.2. We describeM for the binary random variables X1, X2, X3

and X4 where the first two variables are identically distributed, and the last two
variables are identically distributed. If we set pijkl = P (X1 = i,X2 = j,X1 =
k,X2 = l) where i, j, k, l ∈ {0, 1} then, since the four variables are independent,
we have

pijkl = P (X1 = i) · P (X2 = j) · P (X3 = k) · P (X4 = l).

The first two variables are identically distributed, so we have P (X1 = 0) = P (X2 =
0) = s0 and P (X1 = 1) = P (X2 = 1) = s1. The same holds for the two last
variables P (X3 = 0) = P (X4 = 0) = t0 and P (X3 = 1) = P (X4 = 1) = t1. Thus,
for example, p0000 = s20t

2
0 and p1101 = s21t0t1.
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We now write out the matrix A defining the log-linear model M as follows.
The rows correspond to the four model parameters s0, s1, t0, and t1. The columns
correspond to the probabilities pijkl, listed in lexicographic order. The resulting
matrix A equals









0000 0001 0010 0011 0101 0101 0110 0111 1000 1001 1010 1011 1101 1101 1110 1111

2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2
2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0
0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2









.

To get the Markov basis of this model we use 4ti2. We enter the matrix A into
an input file that we call m.mat, and then we issue the command markov m. This
generates the Markov basis in the file m.mar, where the elements are the row
vectors. The first four lines of output are

27 16

0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 -2 0 1

0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0

This means the Markov basis consists of 27 elements. The first three vectors in the
output represent the binomials p1101−p1110, p1100p1111−p2

1101 and p0111−p1011.
These are minimal generators of the toric ideal of A. In total, the Markov basis
consists of seven linear binomials and twenty binomials of degree two.

2. Next we use the Markov basis computed by 4ti2 to describe the model M in
Singular. To do this, we use the command output --binomial m.mar in 4ti2,
where m.mar is the name of the file containing the Markov basis. This writes the
Markov basis as a list of binomials. This is not exactly in the format used by
Singular, but we can use “search and replace” to prepare our Singular input:

ring R = 0, (x(1..16)), dp;

ideal II =

x(14)-x(15),

x(13)*x(16)-x(14)^2,

x(8)-x(12),

...

ideal I = std(II);

degree(I);

Here x(1), x(2), . . . stand for p0000, p0001, . . .. This code generates the output:

// dimension (proj.) = 2

// degree (proj.) = 8

We see that the degree of the model M equals 8. On the other hand, the
maximum likelihood degree of M is just 1 because, for an independence model,
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the maximum likelihood estimates are given by a rational function in the data
(compare Example 2.1.2):

ŝ1 = 1− ŝ0 =
(Au)2

(Au)1 + (Au)2
,

t̂1 = 1− t̂0 =
(Au)3

(Au)3 + (Au)4
.

3. To compute the marginal likelihood integral ofM we use the formula in Lemma
5.2.3. Our independence model has two groups of distributions with two random
variables in each group, so that m = 2, s1 = s2 = 2. The variables are binary, that
is, r1 = r2 = 1. Given a data set u with n =

∑

ui, the marginal likelihood is

n!

u1! · · ·u16!
·
∫

Θ

θbdθ =
n!

u1! · · ·u16!
· b

(1)
0 !b

(1)
1 !b

(2)
0 !b

(2)
1 !

(2n+ 1)!
,

where Θ = ∆1 ×∆1 is the unit square, and











b
(1)
0

b
(1)
1

b
(2)
0

b
(2)
1











= Au.

We shall evaluate the marginal likelihood integral for a particular data set u.
But first we make a simplification. We have several identical columns in A corre-
sponding to events with identical probabilities. We can combine the occurrences
of these events to get a reduced model matrix Ã of format 4× 9:

Ã =









2 2 2 1 1 1 0 0 0
0 0 0 1 1 1 2 2 2
2 1 0 2 1 0 2 1 0
0 1 2 0 1 2 0 1 2









.

To compute the exact value of an integral, we pick the data

ũ = (2, 7, 17, 3, 11, 19, 5, 13, 23) (6.8.1)

and use the Maple library written by Shaowei Lin, which can be found at the web-
site http://math.berkeley.edu/∼shaowei/integrals.html. The command we
used is

ML([2,2],[1,1],[2,7,17,3,11,19,5,13,23],mixed=false);

This quickly returns

57696883517000264793599616123933186131788754862640988160000

34905601087767115539624642239243467952239504274075665794301699452473603
.
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This rational number is approximately equal to 1.652940552 · 10−12.

4. We will compute equations for the mixture model using Singular. To do this, we
use the code above to create the unmixed log-linear model in the ring R. Then we
create a new ring S, which has twice as many parameters, corresponding to drawing
independent observations from the model. We create three ring homomorphisms
from R to S, which correspond to projection onto the sum of the sets of parameters
(mixtures), projection onto the first set of probabilities, and projection onto the
second set of probabilities. This method works for arbitrary secant varieties [90].

ring S = 0, (y(1..16), z(1..16)), dp;

map f = R, y(1)+z(1), y(2)+z(2), y(3)+z(3), y(4)+z(4), y(5)+z(5),

y(6)+z(6), y(7)+z(7), y(8)+z(8), y(9)+z(9), y(10)+z(10),

y(11)+z(11), y(12)+z(12), y(13)+z(13), y(14)+z(14),

y(15)+z(15), y(16)+z(16);

map g = R, y(1..16);

map h = R, z(1..16);

ideal product = g(I) + h(I);

product = std(product);

setring R;

ideal mixture = preimage(S, f, product);

mixture = std(mixture);

degree(mixture);

which gives the output:

// dimension (proj.) = 5

// degree (proj.) = 10

In particular, notice that Mixt2(M) has the expected dimension 5 = 2 · 2 + 1
obtained by a simple parameter count: there are two parameters s0 and t0 in each
of the two copies of M and one mixing parameter. We note that the generators
of the ideal of Mixt2(M) are the 3× 3-subdeterminants of









p0000 p0001 p0100 p0101

p0010 p0011 p0110 p0111

p1000 p1001 p1100 p1101

p1010 p1011 p1110 p1111









together with the seven linear relations p0010 − p0001, p1110 − p1101, p1000 − p0100,
p1011 − p0111, p1010 − p0110, p1010 − p0101, p1010 − p1001. See [90, Example 5.2].

The model Mixt2(M) is a semi-algebraic set that is strictly smaller than the
intersection of its Zariski closure, the secant variety, and the probability simplex
∆15. For example, we will consider the point in probability space defined by p0100 =
p1000 = 1/2, and all other probabilities 0. We can compute the fiber of the secant
variety over this point as follows:
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ideal pt = 2*x(2) - 1, 2*x(3)-1, x(1), x(4), x(5), x(6), x(7),

x(8),x(9),x(10),x(11),x(12),x(13),x(14),x(15),x(16);

setring S;

ideal fiber = product + f(pt);

fiber = std(fiber);

Since the ideal fiber is not the unit ideal, this point is in the secant variety. On
the other hand, the ideal defining the fiber contains several equations of the form
y(16)+z(16). For this equation to hold with probabilistically valid non-negative
real numbers, we must have y16 = z16 = 0. By adding these equations to the ideal:

ideal realfiber = fiber + y(4) + y(5) + y(1) + y(6) + y(7) +

y(8) + y(9) + y(10) + y(11) + y(12) + y(13) + y(14) + y(16) +

y(15);

realfiber = std(realfiber);

realfiber;

we get that realfiber is the unit ideal, so our point is not in the statistical model,
despite being in its Zariski closure.

5. In order to find the maximum likelihood estimates for the mixture model, we use
the same data vector u as before. We implement the EM algorithm in Matlab. The
algorithm consists of two steps, as described on page 22 of the ASCB book [73].
The hidden model consists of two independent distributions from the model M,
together with the mixing parameter. Here is the complete Matlab code:

function th=oberem

th = [3/5,1/5,2/3,1/3,2/5];

th0 = [0,0,0,0,0];

tab=[2 3 5; 7 11 13; 17 19 23];

tol=1e-8;

while (max(abs(th-th0))>tol)

th0=th;

[U1,U2]=oberE(tab,th0); % E step

th=oberM(U1,U2); % M step

end

function [U1,U2]=oberE(tab,th0)

s=th0(1); t=th0(2); u=th0(3); w=th0(4); p=th0(5);

P1= p*[s^2,2*s*(1-s),(1-s)^2]’*[t^2,2*t*(1-t),(1-t)^2];

P2=(1-p)*[u^2,2*u*(1-u),(1-u)^2]’*[w^2,2*w*(1-w),(1-w)^2];

U1= (P1.*tab)./(P1+P2);

U2= tab-U1;

function th = oberM(U1,U2)

n1=sum(sum(U1));
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n2=sum(sum(U2));

s=(2*(U1(1,1)+U1(1,2)+U1(1,3))+(U1(2,1)+U1(2,2)+U1(2,3)))/(2*n1);

t=(2*(U1(1,1)+U1(2,1)+U1(3,1))+(U1(1,2)+U1(2,2)+U1(3,2)))/(2*n1);

u=(2*(U2(1,1)+U2(1,2)+U2(1,3))+(U2(2,1)+U2(2,2)+U2(2,3)))/(2*n2);

w=(2*(U2(1,1)+U2(2,1)+U2(3,1))+(U2(1,2)+U2(2,2)+U2(3,2)))/(2*n2);

p=n1/(n1+n2);

th=[s,t,u,w,p];

The E-step is realized by the function oberE which computes the expected
counts U1 and U2 for the model in each of the two hidden states. The subsequent
M-step in oberM uses the tables U1 and U2 to compute estimates of the parameters
θ = [s, t, v, w, π]. The algorithm repeats both steps until the parameters converge.
Convergence is checked by while(max(abs(th-th0))>tol) in the main loop.

For the initial values of parameters θ0 = [3/5, 1/5, 2/3, 1/3, 2/5] we get

θ̂ = [0.2895, 0.2137, 0.1942, 0.7973, 0.6379].

Starting with different values, for example θ0 = [1/5, 4/5, 2/5, 1/5, 2/5] we get

θ̂ = [0.1942, 0.7973, 0.2895, 0.2137, 0.3621].

These two vectors describe essentially the same solution under the symmetry of
swapping the two copies of the model and changing π to 1− π.

6. As computed above, the degree of the mixture model is 10. We do not know
the maximum likelihood degree. Unfortunately, our Singular implementation of
Algorithm 2.2.9 does not terminate for this model. Further work will be needed
to determine the ML degree for models such as this one.

7. To compute the marginal likelihood integral of the mixture model Mixt2(M)
we use Shaowei Lin’s Maple libary mentioned above. The relevant background is
explained in Section 3.2. The command in this case is

ML([2,2],[1,1],[2,7,17,3,11,19,5,13,23]);

This computation takes much longer (about two hours) than in the unmixed case
described in part 3 of this exercise. Eventually, Maple returns the exact value
which is a fraction with an 195 digits numerator and a 205 digits denominator.
This rational number is approximately equal to 4.373970139 · 10−9.
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Chapter 7

Open Problems

On the final day of the Seminar, we organized a short open problem session, to
highlight some of the open problems that appeared during the lectures and to give
students an opportunity to present problems. This final chapter lists problems that
arose during the session. Their order loosely follows the order of Chapters 1-5.

7.1 Symmetry and Verification of Markov Bases

Studying the output of software for computing Markov bases, such as 4ti2, often
reveals that a large set of moves contains only few different combinatorial types;
see for instance Exercise 6.1. Thomas Kahle posed the following problem.

Problem. Give an algorithm that computes the combinatorial types of Markov
moves without computing the Markov basis itself.

Johannes Rauh proposed a related problem.

Problem. Given a candidate for a Markov basis, give an algorithm that can verify
that it is a Markov basis without computing one from scratch. In particular, is
there a polynomial time algorithm in the bit complexity of the input that determines
whether or not a set of integral vectors is a Markov basis of the lattice they span?

7.2 Equivariant Inclusions in Binary Graph Models

Let G = (V,E) be an undirected graph. The binary graph model B(G) is the
hierarchical log-linear model for #V binary random variables associated to the
simplicial complex

{v : v ∈ V } ∪
{

{v, w} : (v, w) ∈ E
}

given by all nodes and edges in G. Note that this notion of a graph model is in
general different from that of a graphical model, which is the hierarchical log-linear
model associated to the complex of cliques in G; recall Proposition 3.3.3.
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The Markov width µ(G) of a graph G is the maximal degree of a minimal
generator of the toric ideal IG associated with the binary graph model B(G).
By Theorem 1.3.6, 2µ(G) is a bound on the one-norm of any move in a mini-
mal Markov basis for the model B(G). Markov widths were studied in [31]. The
following problem was proposed by Alexander Engström.

Problem. Let G,H be graphs and Γ a group acting transitively on both: Γ ⊆
Aut(G), Γ ⊆ Aut(H). If there exists an equivariant inclusion

G
Γ→֒ H,

show that µ(G) ≤ µ(H) and “explain” the additional generators in IH .

A few comments are in order to clarify this problem. Let V be the vertex set of
G. The action of the group Γ on G is a function that maps every pair (g, v) of an
element g ∈ Γ and a vertex v ∈ V to a new vertex gv ∈ V in such a way that (i)
(gh)(v) = g(hv) for all g, h ∈ Γ and v ∈ V , and (ii) the identity e ∈ Γ satisfies
ev = v for all v ∈ V . The group Γ being a subset of the group of automorphisms
Aut(G) means that if vw is an edge of G then so is (gv)(gw) for all g ∈ Γ. When
saying that Γ acts transitively on G, we mean that for any two vertices v, w ∈ V
there exists a group element g such that gv = w.

The notation G →֒ H is from algebraic topology and denotes that G is
included in H, or more formally, that there is an injective function from the vertex
set of G to the vertex set of H such that if vw is an edge of G then f(v)f(w) is

an edge of H. The inclusion is equivariant, indicated by the notation G
Γ→֒ H, if

f(gv) = gf(v) for all g ∈ Γ and v ∈ V .
The following is a simple example of the described situation. Let G be the

four-cycle graph with vertex set V = {1, 2, 3, 4} and edges 12, 23, 34, and 41.
Let Γ be the group generated by the cyclic permutation (1234). This group acts
transitively on G, and if we pick H to be the complete graph on V then we have

an equivariant inclusion G
Γ→֒ H.

In [31] it was conjectured that the removal of an edge from a graph does
not increase its Markov width. A proof of that conjecture would solve the Markov
width part of this open problem. Unfortunately, however, there are graphs which
only differ by one edge while having toric ideals do not look like each other at all.

7.3 Optimal Scaling in Iterative Proportional Scaling

In Section 2.1 we presented the ‘iterative proportional scaling’ (IPS) algorithm,
which can be used to compute maximum likelihood estimates in log-linear models.
In the setup of Algorithm 2.1.9, the model is specified via a non-negative integer
matrix A ∈ Nd×r whose columns all sum to the same value a. This integer a enters
the IPS algorithm in Step 2, where a rescaling factor is raised to the power 1/a.
Seth Sullivant asked the following question about this exponent.
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Question. Can the exponent 1/a in Step 2 of the IPS algorithm be replaced with a
larger number while still maintaining convergence? If yes, how does this affect the
convergence rate of the algorithm? Does there exist a connection between conver-
gence rates and the maximum likelihood degree of the model?

Note that the choice of the exponent is allowed to depend on the data vector u.

7.4 Maximum Likelihood Degree of Gaussian Cycles

For a positive integer m, let Cm be the undirected cycle with vertex set [m]
and edges (1, 2), (2, 3), . . . , (m,m − 1), (1,m). Consider the undirected Gaussian
graphical model associated with the graph Cm. Recall from Section 3.2 that this
is the family of multivariate normal distributions N (µ,Σ) with covariance matrix
Σ in the set

{

Σ ∈ PDm : (Σ−1)ij = 0, ij /∈ E(Cm)
}

.

According to Theorem 2.1.14, maximum likelihood estimation for this model is a
matrix completion problem. Based on computations for small m, Mathias Drton
and Seth Sullivant conjectured a formula for the maximum likelihood degree.

Conjecture. The maximum likelihood degree of the undirected Gaussian graphical
model associated with Cm, the cycle of length m, is

(m− 3)2m−2 + 1, m ≥ 3.

More generally, one might hope to give combinatorial formulae for the ML degree
for Gaussian graphical models associated with arbitrary graphs.

7.5 Bumpiness of Likelihood Surface

The likelihood function of hidden variable and mixture models may have several
local maxima; see for instance Example 5.2.5. This observation is the topic of
the next problem by Bernd Sturmfels, which concerns the independence model
MX⊥⊥Y for two discrete random variables X and Y that both take values in [r].

Problem. Construct pairs (u, s) of a data table u ∈ Nr×r and an integer s ∈
N \ {0, 1} for which the likelihood function of the mixture model Mixts

(

MX⊥⊥Y

)

has many local maxima in the probability simplex ∆r2−1. How does the number of
local maxima behave when s is fixed and r goes to infinity? Even the case of order
s = 2 is of interest.

7.6 Surjectively Positive Mixture Models

Let ai denote the i-th column of a matrix A ∈ Nd×r whose columns sum to a fixed
value a. Let

φA : Rd → Rr : (θ1, . . . , θd) 7→ (θa1 , . . . , θar )
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H1

X3 X4X1 X2

H2

Figure 7.1: Undirected graph with two hidden and four observed nodes.

be the monomial map determined by A. Define VA,≥0 = φA(Rd
≥0) to be the non-

negative part of the toric variety associated with A. Seth Sullivant proposed the
following problem about the relationship between mixture models and secant va-
rieties. Recall Section 4.1 and in particular Example 4.1.2.

Problem. Characterize pairs (A, s) with A ∈ Nd×r and s ∈ N \ {0, 1} such that
when taking the mixture of order s, it holds that

Mixts(VA,≥0) = Secs(VA,≥0) ∩ Rr
≥0.

Furthermore, compute the tropicalization Trop(Mixts(VA)) in these cases.

We remark that in [72], a rational map g : Rd → Rr such that

g(Rd
>0) = f(Rd) ∩ Rr

>0

is called surjectively positive. Thus, this problem asks for a charactization of the
surjectively positive mixtures of toric varieties.

7.7 An Implicitization Challenge

Let M ⊂ ∆15 be the hidden variable model associated with the undirected
graph in Figure 7.1 when all variables are binary, X1, X2, X3, X4 are observed
and H1,H2 are hidden. The modelM can be parametrized by concatenating the
monomial parametrization for the fully observed graphical model given in Propo-
sition 3.3.3 and the marginalization map that takes the joint probabilities for
(X1, X2, X3, X4,H1,H2) to those for (X1, X2, X3, X4). Bernd Sturmfels proposed
the following challenge.

Problem. The model M is a hypersurface in ∆15. Find its degree and defining
polynomial.

7.8 Finiteness in Factor Analysis

Consider the factor analysis model discussed in Section 4.2. Let Fm,s be the co-
variance matrix parameter space and Im,s the associated ideal in the model with



169

m observed and s hidden variables. The following questions were raised by Math-
ias Drton, Bernd Sturmfels, and Seth Sullivant in [40]; see also the concluding
paragraph of Section 4.2.

For a, b ∈ N, let
(

[a]

b

)

= {A ⊆ [a] : #A = b}.

Question. For each s ≥ 1, does there exist ms ∈ N such that for all m ≥ ms it
holds that

Σ ∈ Fm,s ⇐⇒ ΣA×A ∈ FA,s for all A ∈
(

[m]

ms

)

?

A stronger ideal-theoretic version of this question would ask whether for each s ≥ 1,
there exists ms ∈ N such that for all m ≥ ms we have

Im,s =
∑

A∈([m]
ms

)

IA,s.

If s = 1 then it is not hard to show thatm1 = 4 is the smallest integer satisfying the
set-theoretic property in question. The same holds for the ideal-theoretic property
with s = 1; see [40, Theorem 16]. For general s, there is some evidence that the
set-theoretic property might hold for ms = 2(s+ 1) and larger; see [40, Prop. 30].

7.9 Rational Conditional Independence Models

As explained in Section 3.1, a conditional independence model for a random vector
X = (X1, . . . , Xm) is given by a set of conditional independence statements C =
{A1⊥⊥B1 |C1, A2⊥⊥B2 |C2, . . .}. Here Ak, Bk, Ck are pairwise disjoint subsets of
[m] for each k. We also showed that conditional independence is an algebraic
condition when X is discrete or multivariate normal; recall Propositions 3.1.4
and 3.1.13. Therefore, in either the Gaussian or the discrete case, the conditional
independence statements C define an ideal

IC = IA1⊥⊥B1 |C1
+ IA2⊥⊥B2 |C2

+ · · · .

The following question was posed by Seth Sullivant (compare Question 3.1.9).
Recall that unirational varieties are varieties that have a rational parametrization.

Question. Does every minimal prime (or irreducible component) of a Gaussian
or discrete conditional independence ideal IC always correspond to a unirational
variety?
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7.10 Discrete Chain Graph Models

Section 3.2 gave a brief introduction to graphical models based on chain graphs.
These graphs may have both undirected and directed edges but no semi-directed
cycles. In particular, we defined two Markov properties for chain graphs that we
distinguished using the acronyms AMP and LWF. For discrete random variables,
the AMP Markov property yields conditional independence models that are not
yet well-understood. The below problems and questions, posed by Mathias Drton,
concern their smoothness properties.

Consider the chain graph in Figure 3.2.5(a), which under the AMP Markov
property, encodes the conditional independence statements X1⊥⊥(X2, X4) and
X2⊥⊥X4 | (X1, X3). If all variables are binary, then the conditional independence
model given by these constraints is not smooth. Its singularities within the interior
of the probability simplex ∆15 are exactly the points corresponding to complete
independence of X2, X4 and the pair (X1, X3); compare Proposition 3.2.9.

Problem. Describe the (positive part of the) singular locus of the discrete condi-
tional independence model defined by X1⊥⊥(X2, X4) and X2⊥⊥X4 | (X1, X3) when
X1, . . . , X4 have an arbitrary number of states. Does the positive part of the singu-
lar locus always include the locus of complete independence X2⊥⊥X4⊥⊥(X1, X3)?

Over four variables, all chain graphs other than the one in Figure 3.2.5(a) deter-
mine discrete AMP chain graph models that are smooth over the interior of the
probability simplex.

Problem. Characterize the chain graphs for which all associated discrete AMP
chain graph models are smooth over the interior of the probability simplex. Here
‘all models’ refers to allowing all combinations of integers ≥ 2 for the numbers of
states of the considered random variables.

7.11 Smoothness of Conditional Independence Models

In this book we encountered several examples of conditional independence models
with singularities. For instance, in Example 3.1.7, Example 3.1.15 and Exercise 6.7,
we saw that simultaneous marginal and conditional independence yields models
that may break into several components and thus be singular where the compo-
nents intersect. Another example occurred in Proposition 3.2.9, which concerned
the conditional independence statements X1⊥⊥(X2, X4) and X2⊥⊥X4 | (X1, X3).
For binary variables, the associated conditional independence ideal is a prime
ideal but the model is singular at positive distributions under which X2, X4 and
the pair (X1, X3) are completely independent (compare also Problem 7.10).

In the examples just mentioned, the singular loci include distributions that
exhibit additional conditional independence relations. In particular, the singulari-
ties of the above discrete models include the uniform distribution. This motivates
the following question asked by Mathias Drton.
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Question. Suppose the uniform distribution defines a regular point in a discrete
conditional independence model. Does this imply that the model is smooth over the
interior of the probability simplex?

The Gaussian analogue of this question is:

Question. Suppose the standard multivariate normal distribution N (0, Idm) defines
a regular point in a Gaussian conditional independence model. Does it follow that
the model is smooth over PDm, the cone of positive definite matrices?

7.12 Joint Entropies

LetX ∈ [r] be a discrete random variable with distribution given by the probability
vector p ∈ ∆r−1. The entropy of p = (pi | i ∈ [r]) is

H(p) = −
r
∑

i=1

pi log(pi).

Let X1, . . . , Xm be binary random variables. Their joint entropy map is the map

H : ∆2m−1 → R2m

≥0

p 7→
(

H(pA)
)

A⊆[m]
,

where pA denotes the probability vector for the distribution of (Xi | i ∈ A). For
example, if m = 4 and pi+j+ = P (X1 = i,X3 = j) then

H(p{1,3}) = −
2
∑

i=1

2
∑

j=1

pi+j+ log pi+j+.

The following problem was posed by Bernd Sturmfels.

Problem. Determine the image and the fibers of the joint entropy map H : ∆15 →
R16

≥0 for four binary random variables.
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