Geophysical Fluid Dynamics

RICK SALMON

Scripps Institution of Oceanography University of California, San Diego

New York Oxford
OXFORD UNIVERSITY PRESS
1998

Contents

I Fundamentals 3		
1. Eulerian and Lagrangian Descriptions 5		
2. Mass Conservation 6		
3. Functionals and Variational Principles 7		
4. Hamilton's Principle for Point Masses 8		
5. Hamilton's Principle for a Barotropic Fluid 9		
6. Nonhomentropic Flow 11		
7. Variable Composition 12		
8. Equations of Motion for an Ideal Fluid 13		
9. The Method of Averaging 16		
10. Momentum Equation by the Method of Averaging	19	
11. An Example of Kinetic Theory 23		
12. Thermodynamic Constraints on Molecular Diffusion	26	
13. Macroscopic Averages of the Equations of Motion	31	
14. Stirring and Mixing 34		
15. Static Stability 39		
16. Potential Density and Potential Temperature 40		
17. The Equation of State for Seawater 42		
18. Statistical Mechanics: The Ideal Gas 45		
2 Introduction to Geophysical Fluid Dynamics 50		
1. Equations Of Motion in Rotating Coordinates 50		
2. Geostrophic, Hydrostatic Flow 54		
3. The Shallow-water Equations 57		

4. Potential Vorticity 61
5. The Quasigeostrophic Equation 63
6. A Second Look at the Quasigeostrophic Equation 65
7. Plane-wave Solutions of the Linear Equations 68
8. A Practical Benefit Of Filtering Out Inertia-gravity
Waves 73
9. Geostrophic Adjustment 76
10. A Third Look at the Quasigeostrophic Equation 81
11. Rigid-lid Approximation 83
12. Two-layer Equations 84
13. Two-layer Rossby Waves 87
14. Available Potential Energy 90
15. Baroclinic Instability 93
16. Primitive Equations for the Ocean 99
17. Primitive Equations for the Atmosphere 102
18. Primitive Equations in Isentropic Coordinates 105
19. Quasigeostrophic Equations for Continuously Stratified
Flow 107
20. Two-level Quasigeostrophic Equations 110
21. Quasigeostrophic Flow over Topography 112
3 Naminamial Theory of Ocean Circulation 120
3 Noninertial Theory of Ocean Circulation 120
1. Overview 120
2. Rotating Sector Models 124
3. Boundary-layer Methods 127
4. Theory of the Depth-averaged Circulation 131
5. Ekman Layers 137
6. A Second Look at Ekman Layers 142
7. Spin-up in the Laboratory 146
8. Simplified Inertia-less Equations 150
9. Linear Solutions of the Simplified Equations 153
10. The Case of Homogeneous Fluid 157
11. The Case of Stratified Fluid 161
12. Spin-up in the Ocean 166
13. The Effect Of Bottom Topography 170
14. Stratified Flow over Bottom Topography 176
15. A Nonlinear Model 182
16. The Thermocline 188
4 Vorticity and Turbulence 197
1. The Vorticity Equation 197
2. Ertel's Theorem 199
3. A Deeper Look at Potential Vorticity 201
4. Alternative Statements of the Vorticity Law 203
5. Turbulence 207
6. Kolmogorov's Theory 208
7 Intermittency and the Reta-model 213

	8.	Two-dimensional Turbulence 217
	9.	More Two-dimensional Turbulence 221
	10.	Energy Transfer in Two and Three Dimensions 226
5	Statistica	I Fluid Dynamics 232
	1.	The Closure Problem of Turbulence 233
	2.	The Eddy-damped Markovian Model 235
	3.	Stochastic Model Representation 240
	4.	Entropy 242
	5.	The Entropy Principle 246
	6.	Equilibrium Statistical Mechanics 251
	7.	The Meaning of Absolute Equilibrium 256
6	Geostro	phic Turbulence 263
	1.	Quasigeostrophic Flow over Topography 264
	2.	The Statistical Mechanics of Flow over Topography 269
	3.	Flow on the Beta-plane 273
	4.	Stratified Quasigeostrophic Flow 279
	5.	Two-layer Turbulence 286
7	Hamilton	nian Fluid Dynamics 295
		Symmetry and Conservation Laws 295
		The Particle-relabeling Symmetry Property 299
	3.	Sound Waves in One Dimension: The Conservation of Wave Action 304
	1	Sound Waves in One Dimension: The Equations for the Mear
	٦.	Flow 307
	5.	Sound Waves in Three Dimensions: Particle-relabeling and
		Nonacceleration 309
	6.	Approximations and Constraints 313
		The Canonical Equations 318
	8.	Eulerian Forms of Hamilton's Principle 326
	9.	The Geometrical View of Dynamics 332
	10.	Noncanonical Hamiltonian Dynamics 336
	11.	Poisson Brackets for Fluids 339
	12.	Pseudoenergy, Stability, and Available Energy 344
	, 13.	Dynamical Approximations: The Semigeostrophic
		Equations 352
R	eferences	363

Index 373