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1 Aims & Scope

1.1 K-theoretic enumerative geometry

1.1.1

These lectures are for graduate students who want to learn how to do the com-

putations from the title. Here I put emphasis on computations because I think
it is very important to keep a connection between abstract notions of algebraic
geometry, which can be very abstract indeed, and something we can see, feel,
or test with code.

While it is a challenge to adequately illustrate a modern algebraic geome-
try narrative, one can become familiar with main characters of these notes by
working out examples, and my hope is that these notes will be placed alongside
a pad of paper, a pencil, an eraser, and a symbolic computation interface.

1.1.2

Modern enumerative geometry is not so much about numbers as it is about
deeper properties of the moduli spaces that parametrize the geometric objects
being enumerated.

Of course, once a relevant moduli space M is constructed one can study it
as one would study any other algebraic scheme (or stack, depending on the
context). Doing this in any generality would appear to be seriously challenging,
as even the dimension of some of the simplest moduli spaces considered here
(namely, the Hilbert scheme of points of 3-folds) is not known.
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1.1.3

A productive middle ground is to compute the Euler characteristics �pF q of
naturally defined coherent sheaves F on M, as representations of a group G of
automorphisms of the problem. This goes beyond intersecting natural cycles in
M, which is the realm of the traditional enumerative geometry, and is a nutshell
description of equivariant K-theoretic enumerative geometry.

The group G will typically be connected and reductive, and the G-character
of �pF q will be a Laurent polynomial on the maximal torus T Ä G provided
�pF q is a finite-dimensional virtual G-module. Otherwise, it will be a rational
function on T . In either case, it is a very concrete mathematical object, which
can be turned and spun to be seen from many di↵erent angles.

1.1.4

Enumerative geometry has received a very significant impetus from modern high
energy physics, and this is even more true of its K-theoretic version. From its
very origins, K-theory has been inseparable from indices of di↵erential operators
and related questions in mathematical quantum mechanics. For a mathemat-
ical physicist, the challenge is to study quantum systems with infinitely many
degrees of freedom, systems that describe fluctuating objects that have some
spatial extent.

While the dynamics of such systems is, obviously, very complex, their vacua,
especially supersymmetric vacua, i.e. the quantum states in the kernel of a
certain infinite-dimensional Dirac operator

Heven

{D
,,
Hodd

{D

ll (1)

may often be understood in finite-dimensional terms. In particular, the compu-
tations of supertraces

str e´� {D2

A “ trpKer {Dqeven A ´ trpKer {Dqodd
A

“ strindex {D A (2)

of natural operators A commuting with {D may be equated with the kind of
computations that is done in these notes.

Theoretical physicists developed very powerful and insightful ways of think-
ing about such problems and theoretical physics serves as a very important
source of both inspiration and applications for the mathematics pursued here.
We will see many examples of this below.

1.1.5

What was said so far encompasses a whole universe of physical and enumerative
contexts. While resting on certain common principles, this universe is much too
rich and diverse to be reasonably discussed here.
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These lectures are written with a particular goal in mind, which is to intro-
duce a student to computations in two intertwined subjects, namely:

— K-theoretic Donaldson-Thomas theory, and

— quantum K-theory of Nakajima varieties.

Some key features of these theories, and of the relationship between them, may
be summarized as follows.

1.2 Quantum K-theory of Nakajima varieties

1.2.1

Nakajima varieties [] are associated to a quiver (that is, a finite graph with
possibly parallel edges and loops), a pair of dimension vectors, and a choice
of stability chamber. They form a remarkable family of equivariant symplec-

tic resolutions [] and have found many geometric and representation-theoretic
applications. Their construction will be recalled in Section 4.

For quivers of a�ne ADE type, and a suitable choice of stability, Nakajima
varieties are the moduli spaces of framed coherent sheaves on the corresponding
ADE surfaces, e.g. on C2 for a quiver with one vertex and one loop. These
moduli spaces play a very important role in supersymmetric gauge theories and
algebraic geometry.

For general quivers, Nakajima varieties share many properties of the moduli
spaces of sheaves on a symplectic surface. In fact, from their construction,
they may be interpreted as moduli spaces of stable objects in certain abelian
categories which have the same duality properties as coherent sheaves on a
symplectic surface.

1.2.2

From many di↵erent perspectives, rational curves in Nakajima varieties are of
particular interest. Geometrically, a map

curve C Ñ Moduli of sheaves on a surface S

produces a coherent sheaf on a threefold C ˆ S. One thus expects a relation
between enumerative geometry of sheaves on threefolds fibered in ADE surfaces
and enumerative geometry of maps from a fixed curve to a�ne ADE Nakajima
varieties.

Such a relation indeed exists and has been already profitably used in coho-
mology []. For it to work well, it is important that the fibers are symplectic.
Also, because the source C of the map is fixed and doesn’t vary in moduli, it
can be taken to be a rational curve, or a union of rational curves.

Rational curves in other Nakajima varieties lead to enumerative problems
of similar 3-dimensional flavor, even when they are lacking a direct geometric
interpretations as counting sheaves on some threefold.
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1.2.3

In cohomology, counts of rational curves in a Nakajima variety X are conve-
niently packaged in terms of equivariant quantum cohomology, which is a certain
deformation of the cup product in H

‚

GpXq with deformation base H2pXq. A re-
lated structure is the equivariant quantum connection, or Dubrovin connection,
on the trivial H

‚

GpXq bundle with base H2pXq.
While such packaging of enumerative information may be performed for an

abstract algebraic variety X, for Nakajima varieties these structures are de-
scribed in the language of geometric representation theory, and namely in terms
of an action of a certain Yangian Ypgq on H

‚

GpXq. In particular, the quantum
connection is identified with the trigonometric Casimir connection for Ypgq,
studied in [] for finite-dimensional Lie algebras.

The construction of the required Yangian Ypgq, and the identification of
quantum structures in terms of Ypgq, are the main results of []. That work was
inspired by conjectures put forward by Nekrasov and Shatashvili [], on the one
hand, and by Bezrukavnikov and his collaborators, on the other.

A similar geometric representation theory description of quantum cohomol-
ogy is expected for all equivariant symplectic resolutions, and perhaps a little
bit beyond, see for example []. Further, there are conjectural links, due to
Bezrukavnikov and his collaborators, between quantum connections for sym-
plectic resolutions X and representation theory of their quantizations (see, for
example, []), their derived autoequivalences etc.

1.2.4

The extension [17] of our work [16] with D. Maulik to K-theory requires sev-
eral new ideas, as certain arguments that are used again and again in [16] are
simply not available in K-theory. For instance, in equivariant cohomology, a
proper integral of correct dimension is a nonequivariant constant, which may
be computed using an arbitrary specialization of the equivariant parameters (it
is typically very convenient to set the weight ~ of the symplectic form to 0 and
send all other equivariant variables to infinity).

By contrast, in equivariant K-theory, the only automatic conclusion about a
proper pushforward to a point is that it is a Laurent polynomial in the equivari-
ant variables, and, most of the time, this cannot be improved. If this Laurent
polynomial does not involve some equivariant variable variable a then this is
called rigidity, and is typically shown by a careful study of the a˘1 Ñ 8 limit.
We will see many variations on this theme below.

Also, very seldom there is rigidity with respect to the weight q “ e~ of the
symplectic form and nothing can be learned from making that weight trivial.
Any argument that involves such step in cohomology needs to be modified, most
notably the proof of the commutation of quantum connection with the di↵erence
Knizhnik-Zamolodchikov connection, see Sections 1.4 and 9 of [16]. In the logic
of [16], quantum connection is characterized by this commutation property, so
it is very important to lift the argument to K-theory.
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One of the goals of these notes is to serve as an introduction to the addi-
tional techniques required for working in K-theory. In particular, the quantum
Knizhnik-Zamolodchikov connection appears in Section 9.3 as the computation
of the shift operator corresponding to a minuscule cocharacter. Previously in
Section 8.2 we construct a di↵erence connection which shifts equivariant vari-
ables by cocharacters of the maximal torus and show it commutes with the
K-theoretic upgrade of the quantum connection. That upgrade is a di↵erence
connection that shifts the Kähler variables

z P H2pX,Cq
L
2⇡iH2pX,Zq

by cocharacters of this torus, that is, by a lattice isomorphic to PicpXq. This
quantum di↵erence connection is constructed in Section 8.1.

1.2.5

Technical di↵erences notwithstanding, the eventual description of quantum K-
theory of Nakajima varieties is exactly what one might have guessed recognizing
a general pattern in geometric representation theory. The Yangian Ypgq, which
is a Hopf algebra deformation of U pg b Crtsq, is a first member of a hierarchy
in which the Lie algebra

g b Crts “ MapspC, gq

is replaced, in turn, by a central extension of maps from

— the multiplicative group Cˆ, or

— an elliptic curve.

Geometric realizations of the corresponding quantum groups are constructed in
equivariant cohomology, equivariant K-theory, and equivariant elliptic cohomol-
ogy, respectively, see [] and also [] for the construction of an elliptic quantum
group from Nakajima varieties.

Here we are on the middle level of the hierarchy, where the quantum group
is denoted Uqpĝq. The variable q is the deformation parameter; its geometric
meaning is the equivariant weight of the symplectic form. For quivers of finite
type, these are identical to Drinfeld-Jimbo quantum groups from textbooks.
For other quivers, Uqpĝq is constructed in the style of Faddeev, Reshetikhin,
and Takhtajan from geometrically constructed R-matrices, see []. In turn, the
construction of R-matrices, that is, solutions of the Yang-Baxter equations with
a spectral parameter, rests on the K-theoretic version of stable envelopes of [].
We discuss those in Section 9.1.

Stable envelopes in K-theory di↵er from their cohomological ancestors in
one important feature: they depend on an additional parameter, called slope,
which is a choice of an alcove of a certain periodic hyperplane arrangement in
PicpXq bZ R. This is the same data as appears, for instance, in the study of
quantization of X over a field of large positive characteristic. A technical ad-
vantage of such slope dependence is a factorization of R-matrices into infinite
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product of certain root R-matrices, which generalizes the classical results ob-
tained by Khoroshkin and Tolstoy in the case when the Lie algebra g is of finite
dimension.

1.2.6

The identification of the quantum di↵erence connection in term of Uqpĝq was
long expected to be the lattice part of the quantum dynamical Weyl group
action on KGpXq. For finite-dimensional Lie algebras, this object was studied
by Etingof and Varchenko in [] and many related papers, and it was shown in []
to correctly degenerate to the Casimir connection in the suitable limit.

Intertwining operators between Verma modules, which is the main technical
tool of [], are only available for real simple roots and so don’t yield a large enough
dynamical Weyl group as soon as the quiver is not of finite type. However, using
root R-matrices and other ideas that were, in some form, already present in [],
one can define and study the quantum dynamical Weyl group for arbitrary
quivers. This is done in [].

In these notes we stop where the analysis of [] starts: we show that quan-
tum connection commutes with qKZ, which is one of the key features of the
dynamical Weyl group.

1.2.7

These notes are meant to be a partial sample of basic techniques and results,
and this is not an attempt to write an A to Z technical manual on the subject,
nor to present a panorama of geometric applications that these techniques have.

For instance, one of the most exciting topics in quantum K-theory of sym-
plectic resolutions is the duality, known under many di↵erent names including
“symplectic duality” or “3-dimensional mirror symmetry”, see [] for an intro-
duction. Nakajima varieties may be interpreted as the moduli space of Higgs
vacua in certain supersymmetric gauge theories, and the computations in their
quantum K-theory may be interpreted as indices of the corresponding gauge
theories on real 3-folds of the form C ˆ S1. A physical duality equates these
indices for certain pairs of theories, exchanging the Kähler parameters on one
side with the equivariant parameters on the other.

In the context of these notes, this means that an exchange of the Kähler
and equivariant di↵erence equations of Section 8, which may be studied as such
and generalizes various dualities known in representation theory. This is just
one example of a very interesting phenomenon that lies outside of the scope of
these lectures.

1.3 K-theoretic Donaldson-Thomas theory

1.3.1

Donaldson-Thomas theory, or DT theory for short, is an enumerative theory of
sheaves on a fixed smooth quasiprojective threefold Y , which need not be Calabi-
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Yau to point out one frequent misconception. There are many categories similar
to the category of coherent sheaves on a smooth threefold, and one can profitably
study DT-style questions in that larger context. In fact, we already met with
such generalizations in the form of quantum K-theory of general Nakajima quiver
varieties. Still, I consider sheaves on threefolds to be the core object of study
in DT theories.

An example of a sheaf to have in mind could be the structure sheaf OC of a
curve, or more precisely, a 1-dimensional subscheme, C Ä Y . The corresponding
DT moduli space M is the Hilbert scheme of curves in Y and what we want to
compute from them is the K-theoretic version of counting curves in Y of given
degree and arithmetic genus satisfying some further geometric constraints like
incidence to a given point or tangency to a given divisor.

There exist other enumerative theories of curves, notably the Gromov-Witten
theory, and, in cohomology, there is a rather nontrivial equivalence between the
DT and GW counts, first conjectured in [] and explored in many papers since.
At present, it is not known whether the GW/DT correspondence may be lifted
to K-theory, as one stumbles early on trying to mimic the DT computations on
the GW side 1.

1.3.2

Instead, in K-theory there is a di↵erent set of challenging conjectures [] which
may serve as one of the goalposts for the development of the theory.

This time the conjectures relate DT counts of curves in Y to a very di↵erent
kind of curve counts in a Calabi-Yau 5-fold Z which is a total space

Z “
L4 ‘ L5

Ó
Y

, L4 b L5 “ KY , (3)

of a direct sum of two line bundles on Y . One interesting feature of this cor-
respondence is the following. One the DT side, one forms a generating func-
tion over all arithmetic genera and then its argument z becomes an element
z P AutpZ,⌦5q which acts by diagpz, z´1q in the fibers of L4 ‘ L5. Here ⌦

5 is
the canonical holomorphic 5-form on Z.

A K-theoretic curve count in Z is naturally a virtual representation of the
group AutpZ,⌦5q and, in particular, z has a trace in it which is a rational
function of z. This rational function is then equated to something one computes
on the DT side by summing over all arithmetic genera. We see it is a nontrivial
operation and, also, that equivariant K-theory is the natural setting in which
such operations make sense. More general conjectures proposed in [] similarly
identify certain equivariant variables for Y with variables that keep track of
those curve degree for 5-folds that are lost in Y .

For various DT computations below, we will point out their 5-dimensional
interpretation, but this will be the extent of our discussion of 5-dimensional

1Clearly, the subject of these note has not even begun to settle, and our presents view of
many key phenomena throughout the paper may easily change overnight.
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curve counting. It is still in its infancy and not ready to be presented in an
introductory lecture series. It is quite di↵erent from either the DT or GW curve
counting in that it lacks a parameter that keeps track of the curve genus. Curves
of any genus are counted equally, but the notion of stability is set up so that
that only finitely many genera contribute to any given count.

1.3.3

When faced with a general threefold Y , a natural instinct is to try to cut Y into
simpler pieces from which the curve counts in Y may be reconstructed. There
are two special scenarios in which this works really well, they can be labeled
degeneration and localization.

In the first scenario, we put Y in a 1-parameter family rY with a smooth
total space

Y
� � //

✏✏

rY

✏✏

Y1 YD Y2

✏✏

? _oo

1 �
�

// C 0? _oo

so that a special fiber of this family is a union Y1 YD Y2 of two smooth 3-
folds along a smooth divisor D. In this case the curve counts in Y may be
reconstructed from certain refined curve counts in each of the Yi’s. These refined
counts keep track of the intersection of the curve with the divisor D and are
called relative DT counts. The technical foundations of the subjets are laid in
[]. We will get a sense how this works in Section ??.

The work of Levin and Pandharipande [] supports the idea that using degen-
erations one should be able to reduce curve counting in general 3-folds to that
in toric 3-folds. Papers by Maulik and Pandharipande [] and by Pandharipande
and Pixton [] o↵er spectacular examples of this idea being put into action.

1.3.4

Curve counting in toric 3-folds may be broken into further pieces using equivari-
ant localization. Localization is a general principle by which all computations
in G-equivariant K-theory of M depend only on the formal neighborhood of the
T -fixed locus MT , where T Ä G is a maximal torus in a connected group G.
We will rely on localization again and again in these notes. Localization is par-
ticularly powerful when used in both directions, that is, going from the global
geometry to the localized one and back, because each point of view has its own
advantages and limitations.

A threefold Y is toric if T – pCˆq3 acts with an open orbit on Y . It
then follows that Y has finitely many orbits and, in particular, finitely many
orbits of dimension § 1. Those are the fixed points and the T -invariant curves,
and they correspond to the 1-skeleton of the toric polyhedron of Y . From the
localization viewpoint, Y may very well be replaced by this 1-skeleton. All
nonrelative curve counts in Y may be done in terms of certain 3- and 2-valent
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tensors, called vertices and edges, associated to fixed points and T -invariant
curves, respectively. See, for example, [] for a pictorial introduction.

The underlying vector space for these tensors is

— the equivariant K-theory of HilbpC2, pointsq, or equivalently

— the standard Fock space, or the algebra of symmetric functions,

with an extension of scalars to include all equivariant variables as well as the
variable z that keeps track of the arithmetic genus. Natural bases of this vector
space are indexed by partitions and curve counts are obtained by contracting
all indices, in great similarity to many TQFT computations.

In the basis of torus-fixed points of the Hilbert scheme, edges are simple
diagonal tensors, while vertices are something complicated. More sophisticated
bases spread the complexity more evenly.

1.3.5

These vertices and edges, and related objects, are the nuts and bolts of the
theory and the ability to compute with them is a certain measure of professional
skill in the subject.

A simple, but crucial observation is that the geometry of ADE surface fi-
brations captures 2 all these vertices and edges. This bridges DT theory with
topics discussed in Section 1.2, and was already put to very good use in [].

In [], there are two kind of vertices: bare, or standard, and capped. They
are the same tensors expressed in two di↵erent bases, and which have di↵erent
geometric meaning and di↵erent properties. Parallel catalogization can be made
in K-theory and it is convenient to extend it to general Nakajima varieties (or
to general quasimap problems, for that matter).

For general Nakajima varieties, the notion of a bare 1-leg vertex coincides
with Givental’s notion of I-function, and there is no real analog of 2- or 3-legged
vertex for general Nakajima variety 3. These vertices, their capped versions,
and their various properties are the subject of Section 7.

1.4 Acknowledgements

2 Before we begin

The goal of this section is to have a brief abstract discussion of several construc-
tion in equivariant K-theory which will appear and reappear in more concrete

2In fact, formally, it suffices to understand An-surface fibrations with n § 2.
3The Hilbert scheme HilbpAn´1q of the An´1-surface is dual, in the sense of Section 1.2.7,

to the moduli space Mpnq of framed sheaves of rank n of A0 – C2, which is a Nakajima
variety for the quiver with one vertex and one loop. The splitting of the 1-leg vertex for the
An´1-surface into n simpler vertices is a phenomenon which is dual to Mpnq being an n-fold
tensor product of HilbpC2q in the sense of []. For a general Nakajima variety, there is no direct
analog of this.
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situations below. This section is not meant to be an introduction to equivariant
K-theory; Chapter 5 of [?] is highly recommended for that.

2.1 Symmetric and exterior algebras

2.1.1

Let T be a torus and V a finite dimensional T -module. Clearly, V is a direct
sum of 1-dimensional T -modules, which are called the weights of V . The weights
µ are recorded by the character of V

χV ptq “ trV t “
ÿ

tµ , t P T ,

where repetitions are allowed among the µ’s.
We denote by KT or KT pptq the K-group of the category of T -modules. Of

course, any exact sequence

0 Ñ V 1 Ñ V Ñ V 2 Ñ 0

is anyhow split, so there is no need to impose the relation rV s “ rV 1s ` rV 2s in
this case. The map V fiÑ χV gives an isomorphism

KT – Zrtµs ,

with the group algebra of the character lattice of the torus T . Multiplication in
Zrtµs corresponds to b-product in KT .

2.1.2

For V as above, we can form its symmetric powers S2V, S3V, . . . , including
S0V “ C. These are GLpV q-modules and hence also T modules.

Exercise 2.1. Prove that
ÿ

k•0

sk χSkV ptq “
π 1

1 ´ s tµ

“ exp
ÿ

n°0

1

n
sn χV ptnq . (4)

We can view the functions in (4) as an element of KTrrsss or as a character
of an infinite-dimensional graded T-module S

‚

V with finite-dimensional graded
subspaces, where s keeps track of the degree.

For the exterior powers we have, similarly,

Exercise 2.2. Prove that
ÿ

k•0

p´sqk χΛkV ptq “
π

p1 ´ s tµq

“ exp

˜
´

ÿ

n°0

1

n
sn χV ptnq

¸
. (5)
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The functions in (4) and (5) are reciprocal of each other. The representation-
theoretic object behind this simple observation is known as the Koszul complex.

Exercise 2.3. Construct an GLpV q-equivariant exact sequence

¨ ¨ ¨ Ñ ⇤
2V b S

‚

V Ñ ⇤
1V b S

‚

V Ñ S
‚

V Ñ C Ñ 0 , (6)

where C is the trivial representation.

Exercise 2.4. Consider V as an algebraic variety on which GLpV q acts. Con-
struct a GLpV q-equivariant resolution of the structure sheaf of 0 P V by vector
bundles on V . Be careful not to get (6) as your answer.

2.1.3

Suppose µ “ 0 is not a weight of V , which means that (4) does not have a pole
at s “ 1. Then we can set s “ 1 in (4) and define

χS
‚
V “

π 1

1 ´ tµ
“ exp

ÿ

n

1

n
χV tn , (7)

This is a well-defined element of completed K-theory of T provided

}tµ} † 1

for all weights of V with respect to some norm KT.
Alternatively, and with only the µ ‰ 0 assumption on weights, (7) well-

defined element of the localized K-theory of T

KT,localized “ Z

„
t⌫ ,

1

1 ´ tµ

⇢

where we invert some or all elements 1 ´ tµ P KT.
Since

KT ãÑ KT,localized

characters of finite-dimensional modules may be computed in localization with-
out loss of information. However, certain di↵erent infinite-dimensional modules
become the same in localization, for example

Exercise 2.5. For V as above, check that

S
‚

V “ p´1qrkV detV _ b S
‚

V _ (8)

in localization of KT.

We will see, however, that this is a feature rather than a bug.
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Exercise 2.6. Show that S
‚

extends to a map

K 1
T

S
‚

›››››Ñ KT,localized (9)

where prime means that there is no zero weight, which satisfies

S
‚

pV1 ‘ V2q “ S
‚

V1 b S
‚

V2 ,

and, in particular,
S

‚

p´V q “ ⇤
‚

V “
ÿ

i

p´1qi⇤iV . (10)

Here and in what follows, the symbol ⇤
‚

V is defined by (10) as the alternating
sum of exterior powers.

2.1.4

The map (9) may be extended by continuity to a completion of KT with respect
to a suitable norm. This gives a compact way to write infinite products, for
example

S
‚ a ´ b

1 ´ q
“

π

n•0

1 ´ qnb

1 ´ qna
,

which converges in any norm } ¨ } such that }q} † 1.

Exercise 2.7. Check that

S
‚ a

p1 ´ qqk`1
“

π

n•0

p1 ´ qnaq´pk`n

n q .

2.1.5

The map S
‚

is also known under many aliases, including plethystic exponential.
Its inverse is known, correspondingly, as the plethystic logarithm.

Exercise 2.8. Prove that the inverse to S
‚

is given by the formula

χV ptq “
ÿ

n°0

µpnq

n
ln χS

‚
V ptnq

where µ is the Möbius function

µpnq “

#
p´1q# of prime factors , n squarefree

0 , otherwise .

The relevant property of the Möbius function is that it gives the matrix elements
of C´1 where the matrix C “ pCijqi,jPN is defined by

Cij “

#
1 , i|j

0 , otherwise .

In other words, µ is the Möbius function of the set N partially ordered by
divisibility, see [24].
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2.1.6

If the determinant of V is a square as a character of T, we define

pS‚

V “ pdetV q1{2
S

‚

(11)

which by (8) satisfies
pS‚

V _ “ p´1qrkV pS‚

V .

Somewhat repetitively, it may be called the symmetrized symmetric algebra.

2.2 KGpXq and K
˝
G

pXq

2.2.1

Let a reductive group G act on a scheme X. We denote by KGpXq the K-group
of the category of G-equivariant coherent sheaves on X. Replacing general
coherent sheaves by locally free ones, that is, by G-equivariant vector bundles
on X, gives another group K˝

GpXq with a natural homomorphism

K˝
GpXq Ñ KGpXq . (12)

Remarkably and conveniently, (12) is is an isomorphism if X is nonsingular.
In other words, every coherent sheaf on a nonsingular variety is perfect, which
means it admits a locally free resolution of finite length, see for example Section
B.8 in [?].

Exercise 2.9. Consider X “ tx1x2 “ 0u Ä C2 with the action of the maximal
torus

T “

"ˆ
t1

t2

˙*
Ä GLp2q .

Let F “ O0 be the structure sheaf of the origin 0 P X. Compute the minimal
T -equivariant resolution

¨ ¨ ¨ Ñ R
´2 Ñ R

´1 Ñ R
0 Ñ F Ñ 0

of F by sheaves of the form

R
´i “ OX b Ri ,

where Ri is a finite-dimensional T -module. Observe from the resolution that
the groups

ToripF ,F q
def

“ H´ipR‚ b F q “ Ri (13)

are nonzero for all i • 0 and conclude that F is not in the image of K˝
T pXq.

Also observe that

ÿ
p´1qiχToripF ,Fq “

�pF q2

�pOXq
“

p1 ´ t´1
1 qp1 ´ t´1

2 q

1 ´ t´1
1 t´1

2

(14)

expanded in inverse powers of t1 and t2.
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Exercise 2.10. Generalize (14) to the case

X “ SpecCrx1, . . . , xds{I ,

F “ Crx1, . . . , xds{I 1 ,

where I Ä I 1 are monomial ideals, that is, ideals generated by monomials in the
variables xi.

2.2.2

The domain and the source of the map (12) have di↵erent functorial properties
with respect to G-equivariant morphisms

f : X Ñ Y (15)

of schemes.
The pushforward of a K-theory class rG s represented by a coherent sheaf G

is defined as
f˚ rG s “

ÿ

i

p´1qi
“
Rif˚G

‰
. (16)

We abbreviate f˚G “ f˚ rG s in what follows.
The length of the sum in (16) is bounded, e.g. by the dimension of X, but

the terms, in general, are only quasicoherent sheaves on Y . If f is proper on
the support of G then this ensures f˚G is coherent and thus lies in KGpY q.
Additional hypotheses are required to conclude f˚G is perfect. For an example,
take ◆˚O0 where

◆ : t0u ãÑ tx1x2 “ 0u

is the inclusion in Exercise 2.9.

Exercise 2.11. The group GLp2q acts naturally on P1 “ PpC2q and on line
bundles Opkq over it. Push forward these line bundles under P1 Ñ pt using a
explicit T -invariant Čech covering of P1. Generalize to Pn.

2.2.3

The pull-back of rE s P KGpY q is defined by

f˚ rE s “
ÿ

p´1qi
”
TorOY

i pOX ,E q
ı
.

Here the terms are coherent, but there may be infinitely many of them, as is the
case for ◆˚O0 in our running example. To ensure the sum terminates we need
some flatness assumptions, such as E being locally free. In particular,

f˚ : K˝
GpY q Ñ K˝

GpXq

is defined for arbitrary f by simply pulling back vector bundles.
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Exercise 2.12. Globalize the computation in Exercise 2.4 to compute ◆˚OX P
KGpOXq for a G-equivariant inclusion

◆ : X ãÑ Y

of a nonsingular subvariety X in a nonsingular variety Y .

2.2.4

Tensor product makes K˝
GpXq a ring and KGpXq is a module over it. The

projection formula
f˚pF b f˚

E q “ f˚pF q b E (17)

expresses the covariance of this module structure with respect to morphisms f .

Exercise 2.13. Write a proof of the projection formula.

Projection formula can be used to prove that a proper pushforward f˚G is
perfect if G is flat over Y , see Theorem 8.3.8 in [11].

2.2.5

Let X be a scheme and X 1
Ä X a closed G-invariant subscheme. Then the

sequence
KGpX 1q Ñ KGpXq Ñ KGpXzX 1q Ñ 0 (18)

where all maps are the natural pushforwards, is exact, see e.g. Proposition 7 in
[3] for a classical discussion. This is the beginning of a long exact sequence of
higher K-groups.

Exercise 2.14. For X “ Cn, X 1 “ t0u, and T Ä GLpnq the maximal torus, fill
in the question marks in the following diagram

KT pX 1q //

„

✏✏

KT pXq //

„

✏✏

KT pXzX 1q

„

✏✏

// 0

Zrtµs
? // Zrtµs // ? // 0

in which the vertical arrows send the structure sheaves to 1 P Zrtµs.

In particular, since XzXred “ ?, the sequence (18) implies

KGpXredq – KGpXq

where Xred Ä X is the reduced subscheme, whose sheaf of ideals I Ä OX is
formed by nilpotent elements. Concretely, any coherent sheaf F has a finite
filtration

F Å I ¨ F Å I
2 ¨ F Å . . .

with quotients pushed forward from Xred.
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2.2.6

One can think about the sequence (18) like this. Let F1 and F2 two coherent
sheaves on X, together with an isomorphism

s : F2

ˇ̌
U

„
›Ñ F1

ˇ̌
U

of their restriction to the open set U “ XzX 1. Let ◆ : U Ñ X denote the
inclusion and let

xF Ä ◆˚◆
˚
F1

be the subsheaf generated by the natural maps

F1 Ñ ◆˚◆
˚
F1 , F2

s
›Ñ ◆˚◆

˚
F1 .

Of course, ◆˚◆
˚F1 is only a quasicoherent sheaf on Y , which is evident in the

simplest example X “ A1, X 1 “ point, F1 “ OY . However, the sheaf xF is
generated by the generators of F1 and F2, and hence coherent.

By construction, the kernels and cokernels of the natural maps

fi : Fi Ñ xF

are supported on X 1. Thus

F1 ´ F2 “ Coker f1 ´ Ker f1 ` Ker f2 ´ Coker f2

is in the image of KpX 1q Ñ KpXq.

2.2.7

Exercise 2.15. Let G be trivial and let F be a coherent sheaf on X with
support Y Ä X. Let E be a vector bundle on X of rank r. Prove that there
exists Y 1

Ä Y of codimension 1 such that

E b F ´ rF

is in the image of KpY 1q Ñ KpXq.

This exercise illustrates a very useful finite filtration on KpXq formed by the
images of KpY q Ñ KpXq over all subvarieties of given codimension.

Exercise 2.16. Let G be trivial and E be a vector bundle on X of rank r.
Prove that pE ´ rqb is nilpotent as an operator on KpXq.

Exercise 2.17. Take X “ P1 and G “ GLp2q. Compute the minimal polyno-
mial of the operator Op1qb and see, in particular, that it is not unipotent.
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2.3 Localization

2.3.1

Let a torus T act on a scheme X and let XA be subscheme of T-fixed points,
that is, let

OX Ñ OXT Ñ 0

be the largest quotient on which T acts trivially. For what follows, both X and
XT may be replaced by their reduced subschemes.

Consider the kernel and cokernel of the map

◆˚ : KT pXT q Ñ KT pXq .

This kernel and cokernel are KT pptq-modules and have some support in the
torus T . A very general localization theorem of Thomason [] states

suppCoker ◆˚ Ä

§

µ

ttµ “ 1u (19)

where the union over finitely many nontrivial characters µ. The same is true of
Ker ◆˚, but since

KT pXT q “ KpXq bZ KT pptq (20)

has no such torsion, this forces Ker ◆˚ “ 0. To summarize, ◆˚ becomes an
isomorphism after inverting finitely many coe�cients of the form tµ ´ 1.

This localization theorem is an algebraic analog of the classical localization
theorems in topological K-theory that go back to [].

Exercise 2.18. Compute Coker ◆˚ for X “ P1 and T Ä GLp2q the maximal
torus. Compare your answer with what you computed in Exercise 2.14.

2.3.2

For general X, it is not so easy to make the localization theorem explicit, but a
very nice formula exists if X is nonsingular. This forces XT to be also nonsin-
gular.

Let N “ NX{XT denote the normal bundle to XT in X. The total space of
N has a natural action of s P Cˆ by scaling the normal directions. Using this
scaling action, we may define

ON,graded “
ÿ

k“0

s´k SkN_ “
â
µ

1

⇤
‚
`
s´1t´µN_

µ

˘ P KT pXT qrrs´1ss , (21)

where
N “

à
tµNµ

is the decomposition of N into eigenspaces of T -action according to (20).
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Exercise 2.19. Using Exercise 2.16 prove that

ON “ ON,graded

ˇ̌
ˇ
s“1

“ S
‚

N_ P K˝
TpXTq

„
1

1 ´ tµ

⇢

where µ are the weights of T in N .

Exercise 2.20. Prove that

◆˚◆˚G “ G b ⇤
‚

N_

for any G P KT pXT q and that the operator ⇤
‚

N_b becomes an isomorphism
after inverting 1 ´ tµ for all weights of N . Conclude the localization theorem
(19) implies

◆´1
˚ F “ S

‚

N_ b ◆˚
F (22)

for any F in localized equivariant K-theory.

2.3.3

A T -equivariant map f : X Ñ Y induces a diagram

XT ◆X //

fT

✏✏

X

f

✏✏

Y T ◆Y // Y

(23)

with
f˚ ˝ ◆X,˚ “ ◆Y,˚ ˝ fT

˚ . (24)

Normally, we don’t care much about torsion, or we may know ahead of time
that there is no torsion in f˚, like when f is a proper map to a point, or some
other trivial T -variety. Then, we can write

f˚ “ ◆Y,˚ ˝ fT
˚ ˝ ◆´1

X,˚ . (25)

This is what it means to compute the pushforward by localization.

Exercise 2.21. Redo Exercise 2.11, that is, compute �pPn,Opkqq by localiza-
tion.

Exercise 2.22. Let G be a reductive group and X “ G{B the corresponding
flag variety. Every character � of the maximal torus T gives a character of B
and hence a line bundle

L� : pG ˆ C�q {B Ñ X

over X. Compute �pX,L�q by localization. A theorem of Bott, see e.g. [] states
that at most one cohomology group HipX,L�q is nonvanishing, in which case it
is an irreducible representation of G. So be prepared to rederive Weyl character
formula from your computation.

Exercise 2.23. Explain how Exercise 2.21 is a special case of Exercise 2.22.
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2.3.4

Using (25), one may define pushforward f˚F in localized equivariant cohomol-
ogy as long as fT is proper on psuppF qT . This satisfies all usual properties and
leads to meaningful results, like

�pCn,Oq “
π

i

1

1 ´ t´1
i

as a module over the maximal torus T Ä GLpnq.

2.3.5

The statement of the localization theorem goes over with little or no change to
certain more general X, for example, to orbifolds. Those are modelled locally
on rX{�, where rX is nonsingular and � is finite. By definition, coherent sheaves

on rX{� are �-equivariant coherent sheaves on rX.

A torus action on rX{� is a T ˆ � action on rX and, in particular, the nor-
mal bundle NÄX{ÄXT is �-equivariant, which means it descends to to an orbifold

normal bundle to
”

rX{�

ıT
.

Exercise 2.24. For a, b ° 0, consider the weighted projective line

Xa,b “ C
2zt0u

Nˆ
za

zb

˙
, z P C

ˆ .

Show it can be covered by two orbifold charts. Like any Cˆ-quotient, it inherits
an orbifold line bundle Op1q whose sections are functions � on the prequotient
such that

�pz ¨ xq “ z �pxq .

Show that ÿ

k•0

�pXa,b,Opkqq sk “
1

p1 ´ t´1
1 saqp1 ´ t´1

2 sbq
(26)

as a module over diagonal matrices. Compute �pXa,b,Opkqq by localization.
Compare your answer to the computation of the sk-coe�cient in (26) by residues.

2.3.6

What we will really need in these lectures is the virtual localization formula

from []. It will be discussed after we get some familiarity with virtual classes.
In particular, in this greater generality the normal bundle N to the fixed

locus is a virtual vector bundle, that is, an element of K˝
T pXT q of the form

N “ NDef ´ NObs ,
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where the NDef is responsible for first-order deformations, while NObs contains
obstructions to extending those. Naturally,

S
‚

N_ “ S
‚

N_
Def b ⇤

‚

N_
Obs ,

so a virtual localization formula has both denominators and numerators.

2.4 Rigidity

2.4.1

If the support of a T -equivariant sheaf F is proper then �pF q is an element
of KT pptq and so a Laurent polynomial in t P T . In general, this polynomial
is nontrivial which, of course, is precisely what makes equivariant K-theory
interesting.

However, for the development of the theory, one would like its certain build-
ing blocks to depend on few or no equivariant variables. This phenomenon is
known as rigidity. A classical [] and surprisingly e↵ective way to show rigidity
is to use the following elementary observation:

ppzq is bounded as z˘1 Ñ 8 ô p “ const

for any p P Crz˘1s. The behavior of �pF q at the infinity of the torus T can be
often read o↵ directly from the localization formula.

Exercise 2.25. Let X be proper and smooth with an action of a connected
reductive group G. Write a localization formula for the action of T Ä G on

ÿ

p

p´mqp�pX,⌦pq

and conclude that every term in this sum is a trivial G-module.

Of course, Hodge theory gives the triviality of G-action on each

HqpX,⌦pq Ä Hp`qpX,Cq

for a compact Kähler X and a connected group G.

2.4.2

When the above approach works it also means that the localization formula
may be simplified by sending the equivariant variable to a suitable infinity of
the torus.

Exercise 2.26. In Exercise 2.25, pick a generic 1-parameter subgroup

z P C
ˆ Ñ T

and compute the asymptotics of your localization formula as z Ñ 0.

21



It is instructive to compare the result of Exercise 2.26 with the Bia lynicki-
Birula decomposition, which goes as follows. Assume X Ä PpCN q is smooth
and invariant under the action of a 1-parameter subgroup Cˆ Ñ GLpNq. Let

XC
ˆ

“
ß

i

Fi

be the decomposition of the fixed locus into connected components. It induces
a decomposition of X

X “
ß

Xi , Xi “
!
x

ˇ̌
ˇ lim
zÑ0

z ¨ x P Fi

)
(27)

into locally closed sets. The key property of this decomposition is that the
natural map

Xi
lim

›››Ñ Yi

is a fibration by a�ne spaces of dimension

di “ rk
`
NX{Yi

˘
`

where plus denotes the subbundle spanned by vectors of positive z-weight, see
for example [] for a recent discussion. As also explained there, the decomposition
(27) is, in fact, motivic, and in particular the Hodge structure of X is that sum
of those for Yi shifted by pdi, diq.

The same decomposition of X can be obtained from Morse theory applied
to the Hamiltonian H that generated the action of Up1q Ä Cˆ on the (real)
symplectic manifold X. Concretely, if z acts by

rx1 : x2 : ¨ ¨ ¨ : xns
z

››Ñ rzm1 x1 : zm2 x2 : ¨ ¨ ¨ : zmn xns

then
Hpxq “

ÿ
mi|xi|

2
Mÿ

|xi|
2 .

2.4.3

In certain instances, the same argument gives more.

Exercise 2.27. Let X be proper nonsingular with a nontrivial action of T –
Cˆ. Assume that a fractional power K p for 0 † p † 1 of the canonical bundle
KX exists in PicpXq. Replacing T by a finite cover, we can make it act on K p.
Show that

�pX,K pq “ 0 .

What does this say about projective spaces ?
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3 The Hilbert scheme of points of 3-folds

3.1 Our very first DT moduli space

3.1.1

For a moment, let X be nonsingular quasiprojective 3-fold; very soon we will
specialize the discussion to the case X “ C3. Our interest is in the enumera-
tive geometry of subschemes in X, and usually we will want these subscheme
projective and 1-dimensional.

A subscheme Z Ä X is defined by a sheaf of ideals IZ Ä OX in the sheaf
OX of functions on X and, by construction, there is an exact sequence

0 Ñ IZ Ñ OX Ñ OZ Ñ 0 (28)

of coherent sheaves on X. Either the injection IZ ãÑ OX , or the surjection
OX ⇣ OZ determines Z and can be used to parametrize subschemes of X.
The result, known as the Hilbert scheme, is a countable union of quasiprojec-
tive algebraic varieties, one for each possible topological K-theory class of OZ .
The construction of the Hilbert scheme goes back to A. Grothendieck and is
explained, for example, in [].

In particular, for 1-dimensional Z, the class rOZs is specified by

degZ “ ´c2pOZq P H2pX,Zqeffective

and by the Euler characteristic �pOZq P Z. In this section, we consider the case
degZ “ 0, that is, the case of the Hilbert scheme of points.

3.1.2

If X is a�ne then the Hilbert scheme of points parametrizes modules M over
the ring OX such that

dimC M “ n , n “ �pOZq ,

together with a surjection from a free module. Such Hilbert schemes HilbpR,nq
may, in fact, be defined for an arbitrary finitely-generated algebra

R “ C xx1, . . . , xky
L
relations

and consists of k-tuples of n ˆ n matrices

X1 . . . ,Xk P EndpCnq (29)

satisfying the relations of R, together with a cyclic vector v P Cn, all modulo
the action of GLpnq by conjugation. Here, a vector is called cyclic if it generates
Cn under the action of Xi’s. Clearly, a surjection R1 ⇣ R2 leads to inclusion
HilbpR2, nq ãÑ HilbpR1, nq and, in particular,

HilbpR,nq Ä HilbpFreek, nq

if R is generated by k elements.
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Exercise 3.1. Prove that HilbpFreek, nq is a smooth algebraic variety of dimen-
sion pk ´ 1qn2 ` n. Show that HilbpFree1, nq is isomorphic to SnC – Cn by the
map that takes x1 to its eigenvalues.

By contrast, HilbpC3, nq is a very singular variety of unknown dimension.

Exercise 3.2. Let m Ä OCd be the ideal of the origin. Following Iarrobino,
observe, that any linear linear subspace I such that mr

Å I Å mr`1 for some r

is an ideal in OCd . Conclude that the dimension of HilbpCd, nq grows at least
like a constant times n2´2{d as n Ñ 8. This is, of course, consistent with

dimHilbpC1, nq “ n , dimHilbpC2, nq “ 2n

but shows that HilbpCd, nq is not the closure of the locus of n distinct points
for d • 3 and large enough n.

3.1.3

Consider the embedding

HilbpC3, nq Ä HilbpFree3, nq

as the locus of matrices that commute, that is XiXj “ XjXi. For 3 matrices,
and only for 3 matrices, this relations can be written an equation for a critical
point:

d� “ 0 , �pXq “ tr pX1X2X3 ´ X1X3X2q .

Note that � is a well-defined function on HilbpFree3, nq which transforms in the
1-dimensional representation κ

´1, where

κ “ ⇤
3
C
3 “ detGLp3q ,

under the natural action of GLp3q on HilbpFree3, nq. Here we have to remind
ourselves that the action of a group G on functions is dual to its action on
coordinates.

This means that our moduli space M “ HilbpC3, nq is cut out inside an

ambient smooth space rM “ HilbpFree3, nq by a section

OrM
d�bκ

››››Ñ κ b T˚
rM ,

of a vector bundle on rM. The twist by κ is necessary to make this section
GLp3q-equivariant.

This illustrates two important points about moduli problems in general, and
moduli of coherent sheaves on nonsingular threefolds in particular. First, locally
near any point, deformation theory describes many moduli spaces in a similar
way:

M “ s´1p0q Ä rM, s P �prM,E q , (30)

for a certain obstruction bundle E . Second, for coherent sheaves on 3-folds,
there is a certain kinship between the obstruction bundle E and the cotangent
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bundle of rM, stemming from Serre duality beween the groups Ext1, which control
deformations, and the groups Ext2, which control obstructions. The kinship is
only approximate, unless the canonical class KX is equivariantly trivial, which
is not the case even for X “ C3 and leads to the twist by κ above.

3.2 Ovir and pOvir

3.2.1

The description (30) means that OM is the 0th cohomology of the Koszul complex

0 Ñ ⇤
rkE

E
_ d

›Ñ ¨ ¨ ¨ Ñ ⇤
2
E

_ d
›Ñ E

_ d
›Ñ OrM Ñ 0 (31)

in which OrM is placed in cohomological degree 0 and the di↵erential is the
contraction with the section s of E .

The Koszul complex is an example of a sheaf of differential graded algebras,
which by definition is a sheaf A ‚ of graded algebras with the di↵erential

. . .
d

›Ñ A
´2 d

›Ñ A
´1 d

›Ñ A
0 Ñ 0 (32)

satisfying the Leibnitz rule

dpa ¨ bq “ da ¨ b ` p´1qdeg aa ¨ db .

The notion of a DGA has become one of the cornerstone notions in deformation
theory, see for example how it used in the papers [1, 6, 7, 8] for a very incomplete
set of references.

In particular, the structure sheaves OM of great many moduli spaces are
described as H0pA ‚q of a certain natural DGAs.

3.2.2

Central to K-theoretic enumerative geometry is the concept of the virtual struc-
ture sheaf denoted Ovir

M
. While OM is the 0th cohomology of a complex (32),

the virtual structure sheaf is its Euler characteristic

O
vir
M “

ÿ

i

p´1qiA i

“
ÿ

i

p´1qiHipA ‚q , (33)

see [?, 8]. By Leibnitz rule, each HipA ‚q is acted upon by A 0 and annihilated
by dA ´1, hence defines a quasicoherent sheaf on

M “ SpecA
0
L
dA ´1 .

If cohomology groups are coherent A 0-modules and vanish for i ! 0 then the
second line in (33) gives a well-defined element of KpMq, or of KGpMq if all
constructions are equivariant with respect to a group G.

The definition of Ovir
M

is, in several respects, simpler than the definition [2]
of the virtual fundamental cycle in cohomology. The agreement between the
two is explained in Section 3 of [8].
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3.2.3

There are many reasons to prefer Ovir
M

over OM, and one of them is the invariance
of virtual counts under deformations.

For instance, in a family Xt of threefolds, special fibers may have many more
curves than a generic fiber, and even the dimensions of the Hilbert scheme of
curves in Xt may be jumping wildly. This is reflected by the fact that in a family
of complexes A ‚

t each individual cohomology group is only semicontinuous and
can jump up for special values of t. However, in a flat family of complexes the
(equivariant) Euler characteristic is constant, and equivariant virtual counts are
invariants of equivariant deformations.

3.2.4

Also, not the actual but rather the virtual counts are usually of interest in
mathematical physics.

A supersymmetric physical theory starts out as a Hilbert space and an oper-
ator of the form (1), where at the beginning the Hilbert space H is something
enormous, as it describes the fluctuations of many fields extended over many
spatial dimensions. However, all those infinitely many degrees of freedom that

correspond to nonzero eigenvalues of the operator {D
2
pair o↵ and make no

contribution to supertraces (2). What remains, in cases of interest to us, may
be identified with a direct sum (over various topological data) of complexes of
finite-dimensional C8 vector bundles over finite-dimensional Kähler manifolds.
These complexes combine the features of

(a) a Koszul complex for a section s of a certain vector bundle,

(b) a Lie algebra, or BSRT cohomology complex when a certain symmetry
needs to be quotiented out, and

(c) a Dolbeault cohomology, or more precisely a related Dirac cohomology
complex, which turns the supertraces into holomorphic Euler characteris-
tics of K-theory classes defined by (a) and (b).

If M is a Kähler manifold, then spinor bundles of M are the bundles

S˘ “ K
1{2
M b

à

n even/odd

⌦
0,n
M

with the Dirac operator {D “ B̄ ` B̄˚. Here KM is the canonical line bundle of
M , which needs to be a square in order for M to be spin.

In item (c) above, the di↵erence between Dolbeault and Dirac cohomology

is precisely the extra factor of K
1{2
M . While this detail may look insignificant

compared to many other layers of complexity in the problem, it will prove to be
of fundamental importance in what follows and will make many computations
work. The basic reason for this was already discussed in Section ??, and will be

revisited shortly: the twist by K
1{2
M makes formulas more self-dual and, thereby,

more rigid than otherwise.
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3.2.5

Back in the Hilbert scheme context, the distinction between Dolbeault and Dirac
is the distinction between Ovir

M
and

pOvir
M “ p´1qn K

1{2
vir b O

vir
M

where the sign will be explained below and the virtual canonical bundle K
1{2
vir

is constructed as the dual of the determinant of the virtual tangent bundle

T vir
M “ Def ´Obs (34)

“
´
TrM ´ κ b T˚

rM

¯ ˇ̌
ˇ
M

. (35)

From (35) we conclude

K
1{2
vir “ κ

dim

2 b KrM

ˇ̌
ˇ
M

where dim “ dim rM. This illustrates a general result of [19] that for DT moduli
spaces the virtual canonical line bundle Kvir is a square in the equivariant Picard
group up to a character of AutpXq and certain additional twists which will be
discussed presently.

From the canonical isomorphism

⇤
kTrM b KrM – ⌦

dim ´k
rM

and the congruence
dim ” n mod 2

we conclude that
pOvir
M “ κ

´ dim

2

ÿ

i

p´κqi ⌦
i
rM . (36)

We call pOvir
M

the modified or the symmetrized virtual structure sheaf. The hat

which this K-class is wearing should remind the reader of the pA-genus and hence
of the Dirac operator.

3.2.6

Formula (36) merits a few remarks. As discussed before, Serre duality between
Ext1 and Ext2 groups on threefolds yields a certain kinship between the defor-
mations and the dual of the obstructions. This makes the terms of the complex
(31) and hence of the virtual structure sheaf Ovir

M
look like polyvector fields

⇤
iTrM on the ambient space rM.

The twist by KrM « K
1{2
vir turns polyvector fields into di↵erential forms, and

di↵erential forms are everybody’s favorite sheaves for cohomological computa-
tions. For example, if rM is a compact Kähler manifold then Hqp⌦q

rMq is a piece of

the Hodge decomposition of H
‚

prM,Cq, and in particular, rigid for any connected
group of automorphisms. But even when these cohomology groups are not rigid,
or when the terms of pOvir are not exactly di↵erential forms, they still prove to
be much more manageable than Ovir.
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3.2.7

The general definition of pOvir from [19] involves, in addition to Ovir and Kvir,
a certain tautological class on the DT moduli spaces.

The vector space Cn in which the matrices (29) operate, descends to a rank
n vector bundle over the quotient HilbpFree, nq. Its fiber over Z P HilbpC3, nq is
naturally identified with global sections of OZ , that is, the pushforward of the
universal sheaf OZ along X, where

Z Ä HilbpX,nq ˆ X

is the universal subscheme.
Analogous universal sheaves exists for Hilbert schemes of subschemes of any

dimension. In particular, for the Hilbert scheme of curves, and other DT moduli
spaces M, there exists a universal 1-dimensional sheaf F on M ˆ X such that

F
ˇ̌
mˆX

“ F

where m “ pF , . . . q P M is the moduli point representing a 1-dimensional sheaf
F on X with possibly some extra data.

By construction, the sheaf F is flat over M, therefore perfect, that is, has
a finite resolution by vector bundles on M ˆ X. This is a nontrivial property,
since M is highly singular and for singular schemes K˝

à K, where K˝ is the
subgroup generated by vector bundles. From elements of K˝ one can form
tensor polynomials, for example

P “ S2F b �1 ` ⇤
3F b �2 P K˝pM ˆ Xq , (37)

for any �i P KpXq “ K˝pXq. The support of any tensor polynomial like (37) is
proper over M and therefore

⇡M,˚P P K˝pMq ,

where ⇡M is the projection along X. This is because a proper pushforward of
a flat sheaf is perfect, see for example Theorem 8.3.8 in [11]. It makes sense to
apply further tensor operations to ⇡M,˚P , or to take it determinant.

In this way one can manufacture a large supply of classes in K˝pMq which
are, in their totality, called tautological. One should think of them as K-theoretic
version of imposing various geometric conditions on curves, like meeting a cycle
in X specified by � P KpXq.

3.2.8

An example of the tautological class is the determinant term in the following
definition

pOvir “ prefactor O
vir b pKvir b det⇡M,˚pF b pL4 ´ L5qqq1{2

, (38)
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where L4 P PicpXq is an arbitrary line bundle and L5 is a line bundle deter-
mined from the equation

L4 b L5 “ KX .

These are the same L4 and L5 as in Section 1.3.2. The prefactor in (38) contains
the z-dependence

prefactor “ p´1qpL4,�q`nzn´pKX ,�q{2 , (39)

where
� “ degF P H2pX,Zq , n “ �pF q P Z

are locally constant functions of a 1-dimensional sheaf F on X.
The existence of square root in (38) is shown in [19]. With this definition, the

general problem of computing the K-theoretic DT invariants may be phrased as

�
´
M, pOvir b tautological

¯
“ ? , (40)

where M is one of the many possible DT moduli spaces. In a relative situation,
one can put further insertions in (40).

3.3 Nekrasov’s formula

3.3.1

LetX be a nonsingular quasiprojective threefold and consider its Hilbert scheme
of points

M “
ß

n•0

HilbpX,nq .

In the prefactor (39) we have � “ 0 and therefore

prefactor “ p´zqn . (41)

In [18], Nekrasov conjectured a formula for

ZX,points “ �
´
M, pOvir

¯
. (42)

Because of the prefactor, this is well-defined as a formal power series in z, as

long as �
´
Hilbpnq, pOvir

¯
is well-defined for each n. For that we need to assume

that either X is proper or, more generally, that there exists g P AutpXq0 such
that it fixed point set Xg is proper (if X is already proper we can always take
g “ 1). Then

ZX,points P

#
KAutpXqpptqrrzss , g “ 1

KAutpXqpptqlocrrzss , otherwise .

To be precise, [18] considers the case X “ C3, but the generalization to arbitrary
X is immediate.
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3.3.2

Nekrasov’s formula computes ZX,points in the form

ZX,points “ S
‚

�pX, ‹q , ‹ P KTpXqrrzss (43)

where S
‚

is the symmetric algebra from Section 2.1.
Here, and this is very important, the boxcounting variable z is viewed as a

part of the torus T, that is, it is also raised to the power n in the formula (7).
This is very natural from the 5-dimensional perspective, since the z really acts
on the 5-fold (3), with the fixed point set X, as discussed in Section 1.3.2.

Now we are ready to state the following result, conjectured by Nekrasov in
[18]

Theorem 1. We have

ZX,points “ S
‚

�

ˆ
X,

zL4 pTX ` KX ´ T_
X ´ K

´1
X q

p1 ´ zL4qp1 ´ zL ´1
5 q

˙
. (44)

3.3.3

In [18], this conjecture appeared together with an important physical interpre-
tation, as the supertrace of AutpZ,⌦5q-action on the fields of M-theory on (3).
M-theory is a supergravity theory in 10+1 real spacetime dimensions. Its fields
are:

— the metric, also known as the graviton,

— its fermionic superpartner, gravitino, which is a field of spin 3{2, and

— one more bosonic field, a 3-form analogous to a connection, or a gauge
boson, in gauge theories such as electromagnetism.

These are considered up to a gauge equivalence that includes: di↵eomorphisms,
changing the 3-form by an exact form, and changing gravitino by a derivative
of a spinor.

In addition to these fields, M -theory has extended objects, namely:

— membranes, which have a 3-dimensional worldvolume and hence are nat-
urally charged under the 3-form, and also

— magnetically dual M5-branes.

While membranes naturally appear in connection with DT invariants of posi-
tive degree [19], see for example Section 5.1.3 below, possible algebro-geometric
interpretations of M5-branes are still very much in the initial exploration stage.

In Hamiltonian description, the field sector of the Hilbert space of M-theory
is, formally, the L2 space of functions on a very infinite-dimensional configura-
tion supermanifold, namely

H
f

“ L2

ˆ
bosons ‘

1

2
fermions on Z

M
gauge

˙
, (45)

where
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— Z is a fixed time slice of the 11-dimensional spacetime,

— 1
2 of the fermions denotes a choice of polarization, that is, a splitting of
fermionic operators into operators of creation and annihilation,

— the
f

“ sign denotes an equality which is formal, ignores key analytic and
dynamical questions, but may be suitable for equivariant K-theory which
is often insensitive to finer details.

As a time slice, one is allowed to take a Calabi-Yau 5-fold, for example the one
in (3). Automorphisms of Z preserving the 5-form ⌦

5 are symmetries of the
theory and hence act on its Hilbert space.

Since the configuration space is a linear representation of AutpZ,⌦5q, we
have

H
f

“ S
‚

Configuration space

in K-theory of AutpZ,⌦5q. The character of the latter may be computed, see
[18] and also the exposition of the results of [18] in Section 2.4 of [19], with the
result that

Configuration space “ ⇤
‚

�pZ, TZq ,

or its dual
⇤

‚�pZ, TZq “ S
‚

�pZ, T˚
Z q ,

depending on the choice of the polarization in (45).
Note that

�pZ, T˚
Z ´ TZq “ �

ˆ
X,KX ´ OX `

zL4 pTX ` KX ´ T˚
X ´ K

´1
X q

p1 ´ zL4qp1 ´ zL ´1
5 q

˙
.

This implies
S

‚

� pX,KX ´ OXq b ZX,points
f

“ H b H , (46)

which is a formula with at least two issues, one minor and the other more
interesting. The minor issue is the prefactor in the LHS, which is ill-defined as
written. We will see below how this prefactor appears in DT computations and
why in the natural regularization it is simply removed.

The interesting issue in (46) is the doubling the contribution of H . As
already pointed out by Nekrasov, it should be reexamined with a more careful
analysis of the physical Hilbert space of M-theory.

Exercise 3.3. Write a proof of Proposition 2.1 in [19].

3.3.4

Below we will see how (44) reproduces an earlier result in cohomology proven
in [15] for X toric varieties and in [13] for general 3-folds. The cohomological
version of (42) is

ZX,points,coh “
ÿ

n•0

p´zqn
ª

rHilbpX,nqsvir

1 , (47)
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where rHilbpX,nqsvir is the virtual fundamental cycle [2]. It may be defined as
the cycle corresponding to the K-theory class Ovir which, as [8] prove, has the
expected dimension of support.

In general, for DT moduli spaces, the expected dimension is

vir dim “ ´pdegF ,KXq ,

where F is the 1-dimensional sheaf on X. For Hilbert schemes of points this
vanishes and rHilbpX,nqsvir is an equivariant 0-cycle. For HilbpC3q this cycle is
the Euler class of the obstruction bundle.

The following result was conjectured in [15] and proven there for toric 3-
folds. The general algebraic cobordism approach of Levin and Pandharipande
reduces the case of a general 3-fold to the special case of toric varieties.

Theorem 2 ([15, 13]). We have

ZX,points,coh “ Mpzq
≥
X

c3pTXbKXq ,

where

Mpzq “ S
‚ z

p1 ´ zq2
“

π

n°0

p1 ´ znq´n ,

is McMahon’s generating function for 3-dimensional partitions.

The appearance of 3-dimensional partitions here is very natural — they index
the torus fixed points in HilbpC3, nq. These appear naturally in equivariant
virtual localization, which is the subject to which we turn next.

3.4 Tangent bundle and localization

3.4.1

Consider the action of the maximal torus

T “

$
’’’&
’’’%

¨
˚̊
˚̋

t1
t2

. . .

td

˛
‹‹‹‚

,
///.
///-

Ä GLpdq

on the HilbpCd, pointsq, that is, on ideals of finite codimension in the ring
Crx1, . . . , xds.

Exercise 3.4. Prove that the fixed points set HilbpCd, pointsqT is 0-dimensional
and formed by monomial ideals, that is, ideals generated by monomials in the
variables xi. In particular, the points of HilbpCd, nqT are in natural bijection
with d-dimensional partitions ⇡ on the number n.

32



3.4.2

For d “ 1, 2, Hilbert schemes are smooth and our next goal is to compute the
character of the torus action on T⇡ Hilb. This will be later generalized to the
computation of the torus character of the virtual tangent space for d “ 3.

By construction or by the functorial definition of the Hilbert scheme, its
Zariski tangent space at any subscheme Z Ä X is given by

TZ Hilb “ HompIZ ,OZq

where IZ is the sheaf of ideals of Z and OZ “ OX{IZ is its structure sheaf.
Indeed, the functorial description of Hilbert scheme says that

MapspB,HilbpXqq “

"
subschemes of B ˆ X

flat and proper over B

*

for any scheme B. In particular, a map from

B “ SpecCr"s{"2

is a point of HilbpXq together with a tangent vector, and this leads to the
formula above.

Exercise 3.5. Check this.

Exercise 3.6. LetX be a smooth curve and Z Ä X a 0-dimensional subscheme.
Prove that

TZ Hilb “ H0pT˚X b OZq˚ .

In particular, for X “ C1 and the torus-fixed ideal I “ pxn
1 q we have

Tpxn

1
q “ t1 ` ¨ ¨ ¨ ` tn1 ,

in agreement with global coordinates on HilbpC1, nq – Cn given by

I “ pfq, f “ xn ` a1 x
n´1 ` ¨ ¨ ¨ ` an .

3.4.3

Now let X be a nonsingular surface and Z Ä X a 0-dimensional subscheme. By
construction, we have a short exact sequence

0 Ñ IZ Ñ OX Ñ OZ Ñ 0

which we can apply in the first argument to get the following long exact sequence
of Ext-groups

0 // HompOZ ,OZq
„ // HompOX ,OZq

0 // HompIZ ,OZq //

// Ext1pOZ ,OZq //
h

h
h

h
h
hh

Ext1pOX ,OZq // Ext1pIZ ,OZq //

// Ext2pOZ ,OZq //
h

h
h

h
h
hh

Ext2pOX ,OZq //
h

h
h

h
h
hh

Ext2pIZ ,OZq // 0 ,

(48)
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all vanishing and isomorphisms in which follow from

ExtipOX ,OZq “ HipOZq “

#
H0pOZq “ HompOZ ,OZq , i “ 0 ,

0 , i ° 0 ,

because Z is a�ne.
Since the support of Z is proper, we can use Serre duality, which gives

Ext2pOZ ,OZq “ HompOZ ,OZ b KXq˚ “

“ H0pOZ b KXq˚ “ �pOZ b KXq˚ “ �pOZ ,OXq , (49)

where
�pA ,Bq “

ÿ
p´1qi ExtipA ,Bq . (50)

This is an sesquilinear pairing on the equivariant K-theory of X satisfying

�pA ,Bq˚ “ p´1qdimX�pB,A b KXq .

Putting (48) and (49) together, we obtain the following

Proposition 3.1. If X is a nonsingular surface then

TZ HilbpX, pointsq “ �pOZq ` �pOZ ,OXq ´ �pOZ ,OZq

“ �pOXq ´ �pIZ ,IZq . (51)

3.4.4

Proposition 3.1 lets us easily compute the characters of the tangent spaces to
the Hilbert scheme at monomial ideals. To any F P KT pC2q we can naturally
associate two T -modules: �pF q and the K-theoretic stalk of F at 0 P C2, which
we can write as �pF b O0q. They are related by

�pF q “ �pF b O0q�pOC2q (52)

where, keeping in mind that linear functions on C2 form a GLp2q-module dual

to C2 itself,

�pOC2q “ S
‚

`
C
2
˘˚

“
1

p1 ´ t´1
1 qp1 ´ t´1

2 q
.

The formula

�pF ,G q “ �pF b O0q˚�pG b O0q�pOC2q “
�pF q˚ �pG q

�pOq˚
(53)

generalizes (52).
Let I� be a monomial ideal and let � be the corresponding partition with

diagram

diagramp�q “
!

pi, jq
ˇ̌
ˇxi

1x
j
2 R I�

)
Ä Z

2
•0 .
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More traditionally, the boxes or the dots in the diagram of � are indexed by
pairs pi, jq P Z2

°0, but this, certainly, a minor detail. In what follows, we don’t
make a distinction between a partition and its diagram.

Let V “ �pOZq denote the tautological rank n vector bundle over HilbpC2, nq
as in Section 3.2.7, and let

V� “ �pOZλ
q

“
ÿ

pi,jqP�

t´i
1 t

´j
2 (54)

be the character of its stalk at I�. Clearly, this is nothing but the generating
function for the diagram �. From (51) and (53) we deduce the following

Proposition 3.2. Let I� Ä Crx1, x2s be a monomial ideal and let V denote the

generating function (54) for the diagram of �. We have

TIλ Hilb “ V ` V t1t2 ´ V V p1 ´ t1qp1 ´ t2q . (55)

as a T -module, where V “ V ˚ denotes the dual.

For example, take

� “ ˝ , I� “ m “ px1, x2q , V “ 1

then
T˝ Hilb “ 1 ` t1t2 ´ p1 ´ t1qp1 ´ t2q “ t1 ` t2 “ C

2

in agreement with HilbpX, 1q – X.

3.4.5

Formula (55) may be given the following combinatorial polish. For a square
˝ “ pi, jq in the diagram of � define its arm-length and leg-length by

ap˝q “#tj1
° j

ˇ̌
pi, j1q P �u ,

lp˝q “ #ti1
° i

ˇ̌
pi1, jq P �u . (56)

Exercise 3.7. Prove that

TIλ Hilb “
ÿ

˝P�

t
´lp˝q
1 t

ap˝q`1
2 ` t

lp˝q`1
1 t

´ap˝q
2 . (57)

Exercise 3.8. Prove a generalization of (55) and (57) for the character of
�pOXq ´ �pI�, Iµq. If in need of a hint, open [5].

Exercise 3.9. Using the formulas for TIλ Hilb and equivariant localization,
write a code for the computation of the series

ZHilbpC2q “
ÿ

n,i•0

znp´mqi �pHilbpC2, nq,⌦iq

and check experimentally that is S
‚

of a nice rational function of the variables
z,m, t1, t2. We will compute this function theoretically in Section 5.3.4.
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3.4.6

We now advance to the discussion of the case when X is a nonsingular threefold
and Z Ä X is a 1-dimensional subscheme and IZ is its sheaf of ideals. The
sheaf IZ is clearly torsion-free, as a subsheaf of OX , and

detIZ “ OX

because the two sheaves di↵er in codimension • 2.
Donaldson-Thomas theory views HilbpX, curvesq as the moduli space of

torsion-free sheaves rank 1 sheaves I with trivial determinant. For any such
sheaf we have

I ãÑ I
__ “ detI “ OX

and so I is the ideal sheaf of a subscheme Z Ä X. We have

0 “ c1pdetI q “ c1pI q “ rZs P H4pX,Zq

and therefore dimZ “ 1. The deformation theory of sheaves gives

T vir
I Hilb “ DefpI q ´ ObspI q “ �pOXq ´ �pI ,I q ,

“ �pOZq ` �pOZ ,OXq ´ �pOZ ,OZq (58)

just like in Proposition 3.1.
The group Ext1pI ,I q which enters (58) parametrizes sheaves on BˆX flat

over B for B “ Cr"s{"2, just like in Exercise 3.5. It describes the deformations
of the sheaf I . The obstructions to these deformations lie in Ext2pI ,I q.

We now examine how this works for the Hilbert scheme of points in C3.

3.4.7

Let ⇡ be a 3-dimensional partition and let I⇡ Ä Crx1, x2, x3s be the correspond-
ing monomial ideal. The passage from (51) to (55) is exactly the same as before,
with the correction for

�pOC3q “
1

p1 ´ t´1
1 qp1 ´ t´1

2 qp1 ´ t´1
3 q

.

We obtain the following

Proposition 3.3. Let I⇡ Ä Crx1, x2, x3s be a monomial ideal and let V denote

the generating function for ⇡, that is, the character of OZπ
. We have

T vir
Iπ

Hilb “ V ´ V t1t2t3 ´ V V

3π

1

p1 ´ tiq . (59)

as a T -module.
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As an example, take

⇡ “ r , I⇡ “ m “ px1, x2, x2q , V “ 1

then

T vir
r

Hilb “ t1 ` t2 ` t3 ´ t1t2 ´ t1t3 ´ t2t3 “ C
3 ´ detC

3 b
`
C
3
˘˚

in agreement with the identification

Mp1q “ HilbpX, 1q – X – HilbpFree3, 1q “ rMp1q

for the Hilbert schemes of 1 point in X “ C3 and the description of the obstruc-
tion bundle as

Obs “ κ b T˚
rM “ κ b

`
C
3
˘˚

where κ “ detC3.
In general, for rM “ HilbpFree3, nq we have

TrM “ pC3 ´ 1q b V b V ` V

by the construction of rM as the space of 3 operators and a vector in V modulo
the action of GLpV q. Therefore

T vir “ TrM ´ κ
´1 b T˚

rM

“ V ´ detC
3 b V ´ V b V b

ÿ
p´1qi⇤i

C
3 , (60)

which gives a di↵erent and more direct proof of (59).

Exercise 3.10. . . . or, rather, a combinatorial challenge. Is there a combinato-
rial formula for the character of TrM at torus-fixed points and can one find some
systematic cancellations in the first line of (60) ?

3.4.8

Let
◆̃ : M ãÑ rM

be the inclusion of M “ HilbpC3, pointsq into the Hilbert scheme of a free algebra.
By our earlier discussion,

◆̃˚O
vir “ ⇤

‚

Obs˚

and therefore we can use equivariant localization on the smooth ambient space
rM to compute �pM,Ovirq.

Let ⇡ be 3-dimensional partition and I⇡ P Hilb Ä rM the corresponding fixed
point. Since

T vir
⇡ “ T⇡

rM ´ κ b
´
T⇡

rM
¯˚

,
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we have
T vir
⇡ “

ÿ

w

´
w ´

κ

w

¯

where the sum is over the weights w of T⇡
rM. Therefore

O
vir
HilbpC3,nq “

ÿ

|⇡|“n

OIπ

π 1 ´ w{κ

1 ´ w´1
(61)

in localized equivariant K-theory. This formula illustrates a very important
notion of virtual localization, see in particular [?, ?, 8], which we now discuss.

3.4.9

Let a torus T act on a scheme M with a T -equivariant perfect obstruction theory.
For example, M be DT moduli space for a nonsingular threefold X on which a
torus T act. Let MT

Ä M be the subscheme of fixed points. We can decompose

pDef ´Obsq |MT “ Deffixed ´Obsfixed

` Defmoving ´Obsmoving (62)

in which the fixed part is formed by trivial T -modules and the moving part by
nontrivial ones.

Exercise 3.11. Check that for HilbpC3, pointsq and the maximal torus T Ä

GLp3q the fixed part of the obstruction theory vanishes.

By a result of [?], the fixed part of the obstruction theory is perfect obstruc-
tion theory for MT and defines Ovir

MT . The virtual localization theorem of [8], see
also [?] for a cohomological version, states that

O
vir
M “ ◆˚

ˆ
O

vir
MT b S

‚

´
Defmoving ´Obsmoving

¯˚
˙

(63)

where
◆ : M

T
ãÑ M

is the inclusion. Since, by construction, the moving part of the obstruction
theory contains only nonzero T -weights, its symmetric algebra S

‚

is well defined.

Exercise 3.12. Let fpV q be a Schur functor of the tautological bundle V over
HilbpC3, nq, for example

fpV q “ S2
V ,⇤3

V , . . . .

Write a localization formula for �pHilbpC3, nq,Ovir b fpV qq.
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3.4.10

It remains to twist (61) by

K
1{2
vir “ det´1{2 T vir

to deduce a virtual localization formula for pOvir. It is convenient to define the
transformation pap. . . q, a version of the pA-genus, by

papx ` yq “ papxq papyq , papwq “
1

w1{2 ´ w´1{2

where w is a monomial, that is, a weight of T . For example

pa
`
T vir
⇡

˘
“
π

w

pκ{wq1{2 ´ pw{κq1{2

w1{2 ´ w´1{2
, (64)

where the product is over the same weights w as in (61).
With this notation, we can state the following

Proposition 3.4. We have

pOvir
HilbpC3,nq “ p´1qn

ÿ

|⇡|“n

pa
`
T vir
⇡

˘
OIπ (65)

in localized equivariant K-theory.

Exercise 3.13. Write a code to check a few first terms in z of Nekrasov’s
formula.

Exercise 3.14. Take the limit t1, t2, t3 Ñ 1 in Nekrasov’s formula for C3 and
show that it correctly reproduces the formula for ZC3,points,coh from Theorem 2.

Prefactor in (46)

3.5 Proof of Nekrasov’s formula

3.5.1

Our next goal is to prove Nekrasov’s formula for X “ C3. By localization, this
immediately generalizes to nonsingular toric threefolds. Later, when we discuss
relative invariants, we will see the generalization to the relative setting. The
path from there to general threefolds is the same as in [13].

Our proof of Theorem (1) will have two parts. In the first step, we prove

ZC3,points “ S
‚ ‹

p1 ´ t´1
1 qp1 ´ t´1

2 qp1 ´ t´1
2 q

(66)

where
‹ P Z

”
t˘1
1 , t˘1

2 , t˘1
3 , pt1t2t3q1{2

ı
rrzss
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is a formal power series in z, without a constant term, with coe�cients in Lau-
rent polynomials. In the second step, we identify the series ‹ by a combinatorial
argument involving equivariant localization.

The first step is geometric and, in fact, we prove that

ZC3,points “ S
‚

�pC3,G q , G “
8ÿ

i“1

zi Gi , Gi P KGLp3qpC3q , (67)

where each Gi is constructed iteratively starting from

G1 “ ´ pOvir
HilbpC,1q .

The same argument applies to many similar sheaves and moduli spaces, includ-
ing, for example, the generating function

ÿ

n

zn�pHilbpC3, nq,Ovirq (68)

in which we have zn instead of p´zqn and plain Ovir instead of the symmetrized
virtual structure sheaf. The second part of the proof, however, doesn’t work for
Ovir and I don’t know a reasonable formula for the series (68).

It is natural to prove (67) in that greater generality and this will be done in
Proposition 5.4 in Section 5.3.5 below. For now, we assume (67) and proceed
to the second part of the proof, that is, to the identification of the polynomial
‹ in (66).

3.5.2

For HilbpC3, nq, the line bundles L4 and L5 in (38) are necessarily trivial with,
perhaps, a nontrivial equivariant weight. Hence the determinant term in (38) is
a trivial bundle with weight

det1{2⇡M,˚pF b pL4 ´ L5qq “

ˆ
weightpL4q

weightpL5q

˙n{2

, (69)

which can be absorbed in the variable z. Therefore, without loss of generality,
we can assume that

L4 “ L5 “ κ
´1{2 “

1

pt1t2t3q1{2
,

where ti’s are the weights of the GLp3q action on C3, in which case the term
(69) is absent.

We define

t4 “
z

κ
1{2

, t5 “
1

z κ1{2
,

40



so that t1, . . . , t5 may be interpreted as the weights of the action of SLp5q Å Cˆ
z

on Z – C5. With this notation, what needs to be proven is

ZC3,points “ S
‚ pa

˜
5ÿ

i“1

ti ´
ÿ

i†j§3

titj

¸

“ S
‚

±
i†j§3pptitjq1{2 ´ ptitjq´1{2q

±
i§5pt

1{2
i ´ t

´1{2
i q

. (70)

3.5.3

Exercise 3.15. Prove that the localization weight (64) of any nonempty 3-
dimensional partition is divisible by t1t2 ´ 1. In fact, the order of vanishing of
this weight at t1t2 “ 1 is computed in Section 4.5 of [20].

By symmetry, the same is clearly true for all titj´1 with i † j § 3. Note that
plethystic substitutions ttiu fiÑ ttki u preserve vanishing at titj “ 1. Therefore,
using (66), we may define

I P Zrt
˘1{2
1 , t

˘1{2
2 , t

˘1{2
3 srrzss

so that

ZC3,points “ S
‚

˜
I

3π

i“1

pκ{tiq
1{2 ´ pti{κq1{2

t
1{2
i ´ t

´1{2
i

¸
. (71)

Proposition 3.5. We have

I P Zrκ˘1srrzss ,

that is, this polynomial depends only on the product t1t2t3, and not on the

individual ti’s.

Proof. A fraction of the form

pκ{wq1{2 ´ pw{κq1{2

w1{2 ´ w´1{2

remains bounded and nonzero as w˘1 Ñ 8 with κ fixed. Therefore, both
the localization contributions (64) and the fraction in (71) remain bounded as
t˘1
i Ñ 8 in such a way that κ remains fixed. We conclude that the Laurent
polynomial I is bounded at all such infinities and this means it depends on κ

only.

This is our first real example of rigidity.
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3.5.4

The proof of Nekrasov’s formula for C3 will be complete if we show the following

Proposition 3.6.

I “
1

pt
1{2
4 ´ t

´1{2
4 qpt

1{2
5 ´ t

´1{2
5 q

“ ´
z

p1 ´ κ
1{2 zqp1 ´ κ

´1{2 zq

To compute I, we may let the variables ti go to infinity with κ fixed. Since

pκ{wq1{2 ´ pw{κq1{2

w1{2 ´ w´1{2
Ñ

#
´κ

´1{2 , w Ñ 8 ,

´κ
1{2 , w Ñ 0 ,

we conclude that

pa
´ÿ

wi ´ κ

ÿ
w´1

i

¯
Ñ p´κ

1{2qindex

where
index “ #

 
i

ˇ̌
wi Ñ 0

(
´ #

 
i

ˇ̌
wi Ñ 8

(
.

For the computation of I we are free to send ti to infinity in any way we
like, as long as their product stays fixed. As we will see, a particularly nice
choice is

t1, t3 Ñ 0 , |t1| ! |t3| , κ “ fixed . (72)

For the fraction in (71) we have

3π

i“1

pκ{tiq
1{2 ´ pti{κq1{2

t
1{2
i ´ t

´1{2
i

Ñ p´κ
1{2qindexpC3q “ ´κ

1{2 .

Thus Proposition 3.6 becomes a corollary of the following

Proposition 3.7. Let the variables ti go to infinity of the torus as in (72).
Then

ZX,points Ñ S
‚ κ

1{2 z

p1 ´ κ
1{2 zqp1 ´ κ

´1{2 zq
. (73)

This is a special case of the computations of index vertices from Section 7
of [19] and the special case of the limit (72) corresponds to the refined vertex of
Iqbal, Kozcaz, and Vafa in [12]. We will now how this works in the example at
hand.

3.5.5

Recall the formula
TIπ

rM “ pC3 ´ 1q b V b V ` V

for tangent space to rM at a point corresponding to a 3-dimensional partition
⇡ with the generating function V . For a partition of size n, this is a sum of
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2n2 `n terms and, in principle, we need to compute the index of this very large
torus module to know the asymptotics of papT vir

⇡ q as t Ñ 8.
A special feature of the limit (72) is that one can see a cancellation of 2n2

terms in the index, with the following result

Lemma 3.8. In the limit (72),

index
´
TIπ

rM
¯

“ index
`
tk3 V

˘
,

for any k is such that k ° |⇡| but |t1| ! |t3|k.

This Lemma is proven in the Appendix to [19]. Clearly

index
`
tk3 V

˘
“

ÿ

r“pi1,i2,i3qP⇡

sgn pi2 ´ i1 ` 0q

and therefore Proposition becomes the

zκ1{2 “ q0 “ q1 “ q2 “ . . .

zκ´1{2 “ q´1 “ q´2 “ . . . (74)

case of the following generalization of McMahon’s enumeration

Theorem 3 ([21, 22]).

ÿ

⇡

π

r“pi1,i2,i3qP⇡

qi2´i1 “ S
‚

ÿ

a§0§b

qaqa`1 ¨ ¨ ¨ qb´1qb (75)

With the specialization (74) the sum under S
‚

in (75) become the series
expansion of the fraction in (73).

3.5.6

We conclude with a sequence of exercises that will lead the reader through the
proof of Theorem 3. It is based on introducing a transfer matrix, a very much
tried-and-true tool in statistical mechanics and combinatorics.

A textbook example of transfer matrix arises in 2-dimensional Ising model
on a torus. The configuration space in that model are assignments of ˘1 spins
to sites x of a rectangular grid, that is, functions

� : t1, . . . ,Mu ˆ t1, . . . , Nu Ñ t˘1u

Each is weighted with

Probp�q9W p�q “ expp´�Ep�qq ,

where � is the inverse temperature and the energy E is defined by

Ep�q “ ´
ÿ

nearest neighbors x and x1

�pxq�px1q ,
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with periodic boundary conditions.
Now introduce a vector space

V – pC2qN

with a basis formed by all possible spin configurations ~� in one column of our
grid. Define a diagonal matrix Wv and a dense matrix Wh by

Wv
~�,~� “ exp

¨
˚̋

´�
ÿ

vertical neighbors
in column ~�

�pxq�px1q

˛
‹‚ (76)

Wh
~�1,~�2

“ exp

¨
˚̊
˝´�

ÿ

horizontal neighbors
in columns ~�1 and ~�2

�1pxq�2px1q

˛
‹‹‚ (77)

Exercise 3.16. Prove that
ÿ

t�u

W p�q “ tr pWvWhqM

where the summation is over all 2MN spin configurations t�u.

The matrix WvWh is an example of a transfer matrix. Onsager’s great
discovery was the diagonalization of this matrix. Essentially, he has shown that
the transfer matrix is in the image of a certain matrix g P Op2Nq in the spinor
representation of this group.

3.5.7

Now in place of the spinor representation of Op2Nq we will have the action of

the Heisenberg algebra pglp1q on

V “ Fock space “ symmetric functions “

“ polynomial representations of GLp8q .

This space has an othonormal basis ts�u of Schur functions, that is, the charac-
ters of the Schur functors S�C8 of the defining representation of GLp8q. It is
indexed by 2-dimensional partitions � which will arise as slices of 3-dimensional
partitions ⇡ by planes i2 ´ i1 “ const.

The diagonal operator Wv will be replaced by the operator

q| ¨ | s� “ q|�|s� .

In place of the nondiagonal operator Wh, we will use the operators

�´pzq “

˜ ÿ

k•0

zk SkC8

¸
b
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and its transpose �`. The character of S
kC8 is the Schur function sk. It is well

known that
�´pzq s� “

ÿ

µ

z|µ|´|�| sµ

where the summation is over all partitions µ such that µ and � interlace, which
means that

µ1 • �1 • µ2 • �2 • . . . .

Exercise 3.17. Prove that

ÿ

⇡

π

r“pi1,i2,i3qP⇡

qi2´i1 “

“
´

¨ ¨ ¨ �`p1q q
| ¨ |
´1 �`p1q q

| ¨ |
0 �´p1q q

| ¨ |
1 �´p1q q

| ¨ |
2 ¨ ¨ ¨ s?, s?

¯
.

Exercise 3.18. Prove that q| ¨ |
�´pzq “ �´pqzq q| ¨ | and that

�`pzq �´pwq “
1

1 ´ zw
�´pwq �`pzq

if |zw| † 1. Deduce Theorem 3.

4 Nakajima varieties

4.1 Algebraic symplectic reduction

4.1.1

Symplectic reduction was invented in classical mechanics [] to deal with the
following situation. Let M be the configuration space of a mechanical system
and T˚M — the corresponding phase space. A function H, called Hamiltonian,
generates dynamics by

d

dt
f “ tH, fu

where f is an arbitrary function on T˚M and t ¨ , ¨ u is the Poisson bracket. If
this dynamics commutes with a Hamiltonian action of a Lie group G, it descends
to a certain reduced phase space T˚M{{{{G. The reduced space could be a more
complicated variety but of smaller dimension, namely

dimT˚M{{{{G “ 2 dimM ´ 2 dimG .

4.1.2

In the algebraic context, let a reductive group G act on a smooth algebraic
variety M . The induced action on T˚M , which is a algebraic symplectic variety,
is Hamiltonian: the function

µ⇠pp, qq “ xp, ⇠ ¨ qy , q P M ,p P T˚
q M , (78)
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generates the vector field ⇠ P LiepGq. This gives a map

µ : T˚M Ñ LiepGq˚ ,

known as the moment map, because in its mechanical origins G typically in-
cluded translational or rotational symmetry.

4.1.3

We can form the algebraic symplectic reduction

X “ T˚M{{{{G “ µ´1p0q{{G “ µ´1p0qsemistable{G , (79)

where a certain choice of stability is understood.

4.1.4

The zero section M Ä T˚M is automatically inside µ´1p0q and

T˚pMfree{Gq Ä X

is an open, but possibly empty, subset. Here Mfree Ä M is the set of semistable
points with trivial stabilizer. Thus algebraic symplectic reduction is an improved
version of the cotangent bundle to a G-quotient.

4.1.5

The Poisson bracket on T˚M induces a Poisson bracket on X, which is symplec-
tic on the open set of points with trivial stabilizer. In general, however, there
will be other, singular, points in X.

Finite stabilizers are particularly hard to avoid. Algebraic symplectic reduc-
tion is a source of great many Poisson orbifolds, but it very rarely outputs an
algebraic symplectic variety.

4.2 Nakajima quiver varieties []

4.2.1

Nakajima varieties are a remarkable class of symplectic reductions for which
finite stabilizers can be avoided. For them,

G “
π

GLpViq

and M is a linear representation of the form

M “
à
i,j

HompVi, Vjq b Qij ‘
à
i

HompWi, Viq . (80)

Here Qij and Wi are multiplicity spaces, so that
π

GLpQijq ˆ
π

GLpWiq ˆ C
ˆ
~

Ñ AutpXq , (81)

where the C
ˆ
~
-factor scales the cotangent directions with weight ~´1, and hence

scales the symplectic form on X with weight ~.
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4.2.2

In English, the only representations allowed in M are

— the defining representations Vi of the GLpViq-factors,

— the adjoint representations of the same factors,

— representations of the form HompVi, Vjq with i ‰ j.

Latter are customary called bifundamental representations in gauge theory con-
text. Note that T˚M will also include the duals V ˚

i of the defining representa-
tions.

What is special about these representation is that the stabilizer Gy of any
point y P T˚M is the set of invertible elements in a certain associative algebra

Ey Ä
à

EndpViq

over the base field C, and hence cannot be a nontrivial finite group.

4.2.3

The data of the representation (83) is conveniently encoded by a graph, also
called a quiver, in which we join the ith vertex with the jth vertex by dimQij

arrows. After passing to T˚M , the orientation of these arrows doesn’t matter
because

HompVi, Vjq˚ “ HompVj , Viq .

Therefore, it is convenient to assume that only one of the spaces Qij and Qji is
nonzero for i ‰ j.

To the vertices of the quiver, one associates two dimension vectors

v “ pdimViq , w “ pdimWiq P Z
I
•0 ,

where I “ tiu is the set of vertices.

4.2.4

The quotient in (78) is a GIT quotient and choice of stability condition is a
choice of a character of G, that is, a choice of vector ✓ “ ZI , up to positive
proportionality. For ✓ away from certain hyperplanes, there are no strictly
semistable points and Nakajima varieties are holomorphic sympletic varieties.

Exercise 4.1. Let Q be a quiver with one vertex and no arrows. Show that,
for either choice of the stability condition, the corresponding Nakajima varieties
are the cotangent bundles of Grassmannians.

Exercise 4.2. Let Q be a quiver with one vertex and one loop. For w “ 1,
identify the Nakajima varieties with HilbpC2, nq where n “ v.
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4.3 Quasimaps to Nakajima varieties

4.3.1

The general notion of a quasimap to a GIT quotient is discussed in detail in [],
here we specialize it to the case of Nakajima varieties X. Twisted quasimaps,
which will play an important technical role below, are a slight variation on the
theme.

Let T be the maximal torus of the group (81) and A “ Ker ~ the subtorus
preserving the symplectic form. Let

� : C
ˆ Ñ A (82)

be a cocharacter of A, it will determine how the quasimap to X is twisted. In
principle, nothing prevents one from similarly twisting by a cocharacter of T,
but this will not be done in what follows.

4.3.2

Let C – P1 denote the domain of the quasimap. Since A acts on multiplicity
spaces Wi and Qij , a choice of � determines bundles Wi and Qij over C as
bundles associated to Op1q. To fix equivariant structure we need to linearize
Op1q and the natural choice is Opp1q, where p1 P C is a fixed point of the torus
action.

4.3.3

By definition, a twisted quasimap

f : C 99K X

is a collection of vector bundles Vi on C of ranks v and a section

f P H0pC,M ‘ M
˚ b ~

´1q

satisfying µ “ 0, where

M “
à
i,j

HompVi,Vjq b Qij ‘
à
i

HompWi,Viq . (83)

Here ~
´1 is a trivial line bundle with weight ~

´1, inserted to record the T-
action on quasimaps (in general, the centralizer of � in AutpXq acts on twisted
quasimaps). One can replace ~

´1 by an arbitrary line bundle and that will
correspond to T-twisted quasimaps.

4.3.4

We consider twisted quasimaps up to isomorphism that is required to be an
identity on C and on the multiplicity bundles Qij and Wi. In other words, we
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consider quasimaps from parametrized domains, and twisted in a fixed way. We
define

QMpXq “ tstable twisted quasimaps to Xu
L

– (84)

with the understanding that it is the data of the bundles Vi and of the section f

that varies in these moduli spaces, while the curve C and the twisting bundles
Qij and Wi are fixed4.

As defined, QMpXq is a union of countably many moduli spaces of quasimaps
of given degree, see below.

4.3.5

Let p P C be a point in the domain of f and fix a local trivialization of Qij and
Wi at p.

The value fppq of a quasimap at a point p P C gives a well-defined G-orbit
in µ´1p0q P T˚M or, in a more precise language, it defines a map

evppfq “ fppq P
“
µ´1p0q{G

‰
Å X (85)

to the quotient stack, which contains X “ µ´1p0qstable{G as an open set. By
definition, a quasimap is stable if

fppq P X

for all but finitely many points of C. These exceptional points are called the
singularities of the quasimap.

4.3.6

The degree of a quasimap is the vector

deg f “ pdegViq P Z
I . (86)

For nonsingular quasimaps, this agrees with the usual notion of degree modulo
the expected generation of H2pX,Zq by first Chern classes of the tautological
bundles.

The graph of a nonsingular twisted quasimap is a curve in a nontrivial X
bundle over C, the cycles of e↵ective curves in which lie in an extension of
H2pC,Zq by H2pX,Zq. Formula (86) is a particular way to split this extension5.

4More precisely, for relative quasimaps, to be discussed below, the curve C is allowed to
change to C1, where

π : C1 Ñ C

collapses some chains of P1s. The bundles Qij and Wi are then pulled back by π.
5There is no truly canonical notion of a degree zero twisted quasimap and the prescrip-

tion (86) depends on previously made choices. Concretely, if σ and σ
1 differ by something

in the kernel of (81) then the corresponding twisted quasimap moduli spaces are naturally
isomorphic. This isomorphism, however, may not preserve degree.
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4.3.7

Every fixed point x P X� defines a “constant” twisted quasimap with fpcq “ x

for all c P C. The degree of this constant map, which is nontrivial, is computed
as follows.

A fixed point of a P A in a quiver variety means a acts in the vector spaces
Vi so that all arrow maps are a-equivariant. This gives the i-tautological line
bundle

Li “ detVi (87)

an action of a, producing a locally constant map

µ : XA Ñ PicpXq_ b A_ , (88)

compatible with restriction to subgroups of A. We have

deg
`
f ” x

˘
“ xµpxq,— b �y (89)

where we used the pairing of characters with cocharacters.
The map (88) can be seen as the universal real moment map: the moment

maps for di↵erent Kähler forms

!R P H1,1pXq “ PicpXq bZ R

map fixed points to di↵erent points of

LiepAcompactq
_ – A_ bZ R .

4.3.8

Moduli spaces of stable quasimaps have a perfect obstruction theory with

Tvir “ H
‚

pM ‘ ~
´1

M
˚q ´ p1 ` ~

´1q
ÿ

Ext
‚

pVi,Viq . (90)

The second term accounts for the moment map equations as well as for

´HompVi,Viq “ ´LieAutpViq

Ext1pVi,Viq “ deformations of Vi .

With our assumptions on the twist, the degree terms vanish in the Riemann-
Roch formula, and we get

rkTvir “ dimX ,

as the virtual dimension.
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4.3.9

Let C be a smooth curve of arbitrary genus and

Y “
L1 ‘ L2

Ó
C

, (91)

the total space of two line bundles over C. We can use L1 and L2 to define
T-twisted quasimaps from C to HilbpC2, nq as follows. By definition

f : C 99K X

is a vector bundle V on C of rank n together with a section

f “ pv, v_,X1,X2q

of the bundles

v P H0pV q ,

v_ P H0pL ´1
1 b L

´1
2 b V

_q ,

Xi P H0pEndpV q b L
´1
i q ,

satisfying the equation
rX1,X2s ` v v_ “ 0

of the Hilbert scheme and the stability condition. The stability condition forces

rX1,X2s “ 0 ,

as in Exercise 4.2.

Exercise 4.3. Show this data defines a coherent sheaf F on the threefold Y ,
together with a section

s : OY Ñ F .

Exercise 4.4. Show the quasimap data is in bijection with complexes

OY
s

››››Ñ F ,

of sheaves on Y such that:

— the sheaf F is 1-dimensional and pure, that is, has no 0-dimensional sub-
sheaves, and

— the cokernel of the section s is 0-dimensional.

By definition, such complexes are parametrized by the Pandharipande-Thomas
(PT) moduli spaces for Y .

Exercise 4.5. Compute the virtual dimension of the quasimap/PT moduli
spaces.
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5 Symmetric powers

5.1 PT theory for smooth curves

5.1.1

Let X be nonsingular threefold. By definition, a point in the Pandharipande-
Thomas moduli space is a pure 1-dimensional sheaf with a section

OX
s

››Ñ F (92)

such that dimCoker s “ 0. Here pure means that F has no 0-dimensional
subsheaves.

Exercise 5.1. Consider the the structure sheaf

OC “ OX{AnnpF q

of the scheme-theoretic support of F . Show it is also pure 1-dimensional.

Another way of saying the conclusion of Exercise 5.1 is that C is a 1-
dimensional Cohen-Macaulay subscheme of X, a scheme that for any point
c P C has a function that vanishes at c but is not a zero divisor.

5.1.2

In this section, we consider the simplest case when C is a reduced smooth curve
in X. This forces (92) to have the form

OX Ñ OC Ñ OCpDq “ F

where D Ä C is a divisor, or equivalently, a zero-dimensional subscheme, and
the maps are the canonical ones. The moduli space, for fixed C, is thus

M “
ß

n•0

SnC “
ß

n•0

HilbpC, nq . (93)

The full PT moduli space also has directions that correspond to deforming the
curve C inside X, with deformation theory given by

DefpCq ´ ObspCq “ H
‚

pC,NX{Cq ,

where NX{C is the normal bundle to C in X.
Here we fix C and focus on (93). Our goal is to relate

ZC “ �pM, pOvirq

to deformations of the curve C in the 4th and 5th directions in (3), that is, to
H

‚

pC, zL4 ‘ z´1L5q.
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5.1.3

Remarkably, we will see that all 4 directions of

NZ{C “ NX{C ‘ zL4 ‘ z´1
L5 (94)

enter the full PT computation completely symmetrically.
This finds a natural explanation in the conjectural correspondence [19] be-

tween K-theoretic DT counts and K-theoretic counting of membranes in M-
theory. From the perspective of M-theory, the curve C Ä Z is a supersym-
metric membrane and its bosonic degrees of freedom are simply motions in the
transverse directions. All directions of NZ{C contribute equally to those.

While Theorem 4 below is a very basic check of the conjectures made in [19],
it does count as a nontrivial evidence in their favor.

5.1.4

As already discussed in Exercise 3.6, the moduli space M is smooth with the
cotangent bundle

⌦
1
M “ H0pOD b KCq .

Pandharipande-Thomas moduli spaces have a perfect obstruction theory which
is essentially the same as the deformation theory from Section 3.4.6, that is, the
deformation theory of complexes

OX ⇣ F

with a surjective map to F – OZ . In particular,

Def ´Obs “ �pF q ` �pF ,OXq ´ �pF ,F q . (95)

Exercise 5.2. Prove that the part of the obstruction in (95) that corresponds
to keeping the curve C fixed is given by

ObsM “ H0pC,OD b detNX{Cq (96)

“ H0pC,OD b KC L
´1
4 L

´1
5 q

and, in particular, is the cotangent bundle of M if KX – OX .

Since M is smooth and the obstruction bundle has constant rank, we conclude

O
vir
M “ ⇤

‚

Obs_ .

Define the integers

hi “ dimH
‚

pC,Liq “ degLi ` 1 ´ gpCq ,

as the numbers from the Riemann-Roch theorem for Li.

53



Lemma 5.1. We have

pOvir
ˇ̌
ˇ
SnC

“ p´1qh4z
h4`h5

2
`n pdetH

‚

pC,L4 ´ L5qq
1{2

b⇤
‚

Obs b L
bn
4 . (97)

where L
bn
4 is an Spnq-invariant line bundle on Cn which descends to a line

bundle on SnC.

Proof. We start the discussion of

pOvir “ prefactor O
vir b pKvir b detH

‚

pOCpDq b pL4 ´ L5qqq
1{2

with the prefactor. Since

dim�pF q “ 1 ´ gpCq ` degD

formula (39) specializes to

prefactor “ p´1qh4`nz
h4`h5

2
`n . (98)

Since rkObs “ n, we have

O
vir “ p´1qn⇤

‚

Obsb pdetObsq´1
.

This proves (97) modulo

L
bn
4

?
“ detH

‚

pC,OD b G q1{2

where
G “ KC ´ KC L

´1
4 L

´1
5 ` L4 ´ L5 .

We observe that for any two line bundles B1,B2 on C

detH
‚

pC,OD b pB1 ´ B2qq “ pB1{B2qbn ,

whence the conclusion.

5.1.5

In these notes, we focus on equivariant K-theory, that is, we compute equivariant
Euler characteristics of coherent sheaves. This can be already quite challenging,
but still much, much easier than computing individual cohomology groups of
the same sheaves.

Our next result is a rare exception to this rule. Here we get the individual
cohomology groups of pOvir on SnC as symmetric powers of H

‚

pC, . . . q. When
computing S

‚

H
‚

, one should keep in mind the sign rule — a product of two
odd cohomology classes picks up a sign when transposed. More generally, in a
symmetric power of a complex

C
‚ “ . . .

d
››Ñ C

i d
››Ñ C

i`1 d
››Ñ . . .
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the odd terms are antisymmetric with respect to permutations.
The virtual structure sheaf Ovir is defined on the level of derived category

of coherent sheaf as the complex (32) itself. Lemma 5.1 shows that up to a
shift and tensoring with a certain 1-dimensional vector space, the symmetrized
virtual structure sheaf pOvir is represented by the complex

O
‚
n “ ⇤

‚

Obs bL
bn
4

“ L
bn
4

0
››Ñ L

bn
4 b Obs

0
››Ñ L

bn
4 b ⇤

2 Obs
0

››Ñ . . .

with zero di↵erential. The di↵erential is zero because our moduli space is cut
out by the zero section of the obstruction bundle over SnC.

In particular,

O
‚
1 “ L4

0
››Ñ KC b L

´1
5 ,

and hence by Serre duality

HipO‚
1q “

$
’’’&
’’’%

H0pL4q , i “ 0 ,

H1pL4q ‘ H1pL5q_ , i “ 1 ,

H0pL5q_ , i “ 2 ,

0 , otherwise .

In other words
H

‚

pO‚
1q “ H

‚

pL4q ‘ H
‚

pL5q_r´2s

where
C rksi “ C

k`i

denotes the shift of a complex C ‚ by k steps to the left.

Theorem 4. ÿ

n

znH
‚

pO‚
nq “ S

‚

z H
‚

pO‚
1q . (99)

It would be naturally very interesting to know to what extent our other formulas
can be upgraded to the level of the derived category of coherent sheaves.

5.1.6

Recall the definition of the symmetrized symmetric algebra from Section 2.1.6
. Working again in K-theory, we have

p´1qh4z
h4

2 pdetH
‚

pL4qq
1{2

S
‚

zH
‚

pC,L4q “ pS‚

H
‚

pC, zL4q_ .

With this notation, Theorem 4 gives the following

Corollary 5.2.

�pM, pOvirq “ pS‚

H
‚

pC, zL4 ‘ z´1
L5q_ . (100)

Since deformations of the curve C inside X contribute pS‚

H
‚

pC,NX{Cq_, we
see that, indeed, all directions (94) normal to C in Z contribute equally to the
K-theoretic PT count.
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5.1.7

As an example, let us take C “ C1 and work equivariantly. We have SnC – Cn,
so there is no higher cohomology anywhere.

Exercise 5.3. Show Theorem 4 for C “ C1 is equivalent to the following
identity, known as the q-binomial theorem

ÿ

n•0

zn
nπ

i“1

1 ´ mti

1 ´ ti
“ S

‚

z
1 ´ mt

1 ´ t
“

8π

k“0

1 ´ z m tk`1

1 ´ z tk
. (101)

Exercise 5.4. Prove (101) by proving a 1st order di↵erence equation with
respect to z fiÑ tz for both sides. This is a baby version of some quite a bit more
involved di↵erence equations to come.

5.2 Proof of Theorem 4

5.2.1

As a warm-up, let us start with the case

L4 “ L4 “ O,

in which case the theorem reduces to a classical formula, going back to Mac-
donald, for H

‚

p⌦
‚

SnCq and, in particular, for Hodge numbers of SnC. It says
that ÿ

n

znH
‚

pSnC,⌦
‚

SnCq “ S
‚

z H
‚

pC,⌦
‚

Cq , (102)

and this equality is canonical, in particular gives an isomorphism of orbifold
vector bundles over moduli of C.

Here ⌦
‚

is not the de Rham complex, but rather the complex

⌦
‚

“ O
0

››Ñ ⌦
1 0

››Ñ ⌦
2 0

››Ñ . . .

with zero di↵erential, as above.

5.2.2

Let M be a manifold of some dimension and consider the orbifold

eM “
ß

n•0

SnM .

It has a natural sheaf of orbifold di↵erential forms ⌦
‚

orb, which are the di↵er-
ential forms on Mn invariant under the action of Spnq.

By definition, this means that

⌦
‚

orb “ ⇡˚,orb

`
⌦

‚̆ bn
(103)
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where
⇡ : Mn Ñ SnM

is the natural projection and ⇡˚,orb is the usual direct image of an Spnq-equivariant
coherent sheaf followed by taking the Spnq-invariants. Since the map ⇡ is finite,
there are no higher direct images and from the triangle

Mn ⇡ //

p
##

SnM

zz
point

we conclude that

H
‚

pSnM,⌦
‚

orbq “ p˚,orb

`
⌦

‚̆ bn
“ SnH

‚

pM,⌦
‚

q .

If dimM “ 1 then ⌦
‚

orb “ ⌦
‚

SnM and we obtain (102).

5.2.3

Now let E be an arbitrary line bundle on a curve C and define rank n vector
bundles En on SnC by

En “ H
‚

pOD b E q .

This is precisely our obstruction bundle, with the substitution

E “ KC L
´1
4 L

´1
5 .

As before, we form a complex ⇤
‚

En with zero di↵erential and claim that

⇤
‚

En “ ⇡˚,orb p⇤
‚

E1q
bn

, (104)

in similarity to (103). In fact, locally on C there is no di↵erence between E and
KC , so these are really the same statements. See for example [9, 25] for places
in the literature where a much more powerful calculus of this kind is explained
and used.

By the projection formula

H
‚
`
SnC,⇤

‚

En b L
bn
4

˘
“ H

‚

´
Cn, p⇤

‚

E1q
bn

b L
bn
4

¯Spnq

“ SnH
‚

pC,O‚
1q ,

as was to be shown.

5.3 Hilbert schemes of surfaces and threefolds

5.3.1

Now let Y be a nonsingular surface. In this case SnY is singular and

⇡Hilb : HilbpY, nq Ñ SnY
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is a resolution of singularities. The sheaves ⇡Hilb,˚⌦
‚

and ⌦
‚

orb on Y are not
equal, but they share one important property known as factorization. It is a
very important property, much discussed in the literature, with slightly di↵erent
definitions in di↵erent contexts, see for example []. Here we will need only a
very weak version of factorization, which may be described as follows.

A point in SnY is an unordered n-tuple ty1, . . . , ynu of points from Y . Imag-
ine we partition the points tyiu into groups and let mk be the number of groups
of size k. In other words, consider the natural map

π

k

SmkSkY
f

››››Ñ SnY , n “
ÿ

mkk .

Let U be the open set of in the domain of f formed by

yi ‰ yj

for all yi and yj which belong to different groups.
Fix a sheaf, of a K-theory class Fn on each SnY . A factorization of this

family of sheaves is a collection of isomorphisms

Fn

ˇ̌
U

–
ò

SmkFk (105)

for all U as above. Here SmkFk is the orbifold pushforward of pFkqbmk and the
isomorphisms (105) must be compatible with subdivision into smaller groups.

For example, ⌦
‚

orb has a factorization by construction and it is easy to see
⇡Hilb,˚⌦

‚

similarly factors.

5.3.2

The following lemma is a geometric version of the well-known combinatorial
principle of inclusion-exclusion.

Lemma 5.3. For any scheme Y and any factorizable sequence Fn P KGpSnY q
there exists

G “ z G1 ` z2 G2 ` ¨ ¨ ¨ P KGpY qrrzss (106)

such that

1 `
ÿ

n°0

zn �pFnq “ S
‚

�pG q . (107)

Concretely, formula (107) means that

�pFnq “
ÿ

∞
kmk“n

â
Smk�pGkq , (108)

where the summations here over all solutions pm1,m2, . . . q of the equation∞
kmk “ n or, equivalently, over all partitions

µ “ p. . . 3m3 2m2 1m1q

of the number n. For example

�pF2q “ S2�pG1q ` �pG2q ,

�pF3q “ S3�pG1q ` �pG2q�pG1q ` �pG3q .
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5.3.3

Proof of Lemma 5.3. The sheaves Gi in (106) are constructed inductively, start-
ing with

G1 “ F1 .

and using the exact sequence (18). Consider X “ S2Y and let

Y – X 1
Ä X

be the diagonal. Factorization gives

F2

ˇ̌
U

– S2G1 , U “ XzX 1 ,

and so from (18) we obtain

G2 “ F2 ´ S2G1 P KpX 1q “ KpY q

which solves (106) modulo Opz3q.
Now take X “ S3Y and let X 1 “ ppY 2q where

ppy1, y2q “ 2y1 ` y2 P X .

Consider
F

1
3 “ F3 ´ S3G1 P KpX 1q ,

and denote
X2 “ ty1 “ y2 “ y3u “ ppdiagonalY 2q – Y .

By compatibility of factorization with respect to further refinements

F
1
3

ˇ̌
X1zX2

“ p˚pG2 b G1q .

Using the exact sequence (18) again, we construct

G3 “ F
2
3 “ F

1
3 ´ p˚pG2 b G1q P KpY q

which solves (106) modulo Opz4q.
For general n, we consider closed subvarieties

SnY “ Xn Å Xn´1 Å ¨ ¨ ¨ Å X1 “ Y

where Xk is the locus of n-tuples ty1, . . . , ynu among which at most k are dis-
tinct. In formula (108), Xk will correspond to partitions µ with

`pµq “ lengthpµq “
ÿ

mi “ k .

We construct
F

1
n P KpXn´1q , F

2
n P KpXn´2q , . . .

inductively, starting with Fn on Xn. For each k † n ´ 1, the set

Un´k “ Xn´kzXn´k´1
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is a union of sets to which factorization applies, and this gives

F
pkq

ˇ̌
ˇ
Xn´kzXn´k´1

“
ÿ

`pµq“n´k

pµ,˚
`ò

SmkGk

˘ ˇ̌
ˇ
Xn´kzXn´k´1

(109)

where
pµpy1, y2, . . . , y`q “

ÿ
µi yi P SnY .

We let F pk`1q be the di↵erence between two sheaves in (109), which is thus a
sheaf supported on Xn´k´1. Once we get to X1 – Y , this gives

Gn “ F
pn´1q
n .

5.3.4

Now we go back to Y being a nonsingular suface. Recall that the Hilbert scheme
of points in Y is nonsingular and that Proposition 3.1 expresses its tangent
bundle in terms of the universal ideal sheaf.

For symmetric powers of the curves in Section 5.1, the obstruction bundle
was a certain twisted version of the cotangent bundle. One can similarly twist
the tangent bundle of the Hilbert scheme of a surface, namely we define

THilb,L “ �pL q ´ �pIZ ,IZ b L q . (110)

for a line bundle L on Y . Let ⌦
‚

Hilb,L be the exterior algebra of the dual vector
bundle. It is clear that its pushforward to SnY factors just like the pushforward
of ⌦

‚

Hilb and therefore

ÿ

n

zn�pHilbpY, nq,⌦
‚

L q “ S
‚

�pY,G q (111)

for a certain G as in (106). The analog of Nekrasov’s formula in this case is the
following

Theorem 5.

ÿ

n

zn�pHilbpY, nq,⌦
‚

L q “ S
‚

�

ˆ
Y,⌦

‚

L

z

1 ´ zL ´1

˙
. (112)

See [4] for how to place this formula in a much more general mathematical and
physical context. As with Nekrasov’s formula, it is in fact enough to prove (112)
for a toric surface, and hence for Y “ C2, in which case it becomes a corollary
of the main result of [4].

Here we discuss an alternative approach, based on (111), which we format
as a sequence of exercises.
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Exercise 5.5. Check that for Y “ C2, the LHS in (112) becomes the function

ZHilbpC2q “
ÿ

n,i•0

znp´mqi �pHilbpC2, nq,⌦iq

investigated in Exercise 3.9, where L ´1 is a trivial bundle with weight m.

Exercise 5.6. Arguing as in Section 3.5.3, prove that

ZHilbpC2q “ S
‚

ˆ
I

p1 ´ mt´1
1 qp1 ´ mt´1

2 q

p1 ´ t´1
1 qp1 ´ t´1

2 q

˙

for a certain series
I P Zrmsrrzss .

Exercise 5.7. Arguing as in Section 3.5.4, prove that

I “
z

1 ´ mz
.

What is the best limit to consider for the parameters t1 and t2 ?

5.3.5

Now let X be a nonsingular threefold and let

⇡ : HilbpX,nq Ñ Sn

be the Hilbert-Chow map. To complete the proof Nekrasov’s formula given in
Section 3.5, we need to show (67), which follows from the following

Proposition 5.4. The sequence

Fn “ ⇡˚
pOvir P KpSnXq

factors.

There is, clearly, something to check here, because, for example, this sequence
would not factor without the minus sign in (41).

Proof. Recall from Section 3 that

pOvir “ . . .
d

››Ñ κ
´ dim

2
`i

⌦
i
rM

d
››Ñ κ

´ dim

2
`i`1

⌦
i`1
rM

d
››Ñ

where i is also the cohomological dimension and

d! “ κ d� ^ ! .

Here
�pXq “ tr pX1X2X3 ´ X1X3X2q

is the function whose critical locus in rM is the Hilbert scheme.
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Let U be the locus where the spectrum of X1 can be decomposed into two
mutually disjoint blocks of sizes n1 and n2, respectively. This means X1 can be
put it in the form

X1 “

ˆ
X1
1 0
0 X2

1

˙

up-to conjugation by GLpn1qˆGLpn2q or Sp2q˙GLpn1q2 if n1 “ n2. Thus block
o↵-diagonal elements of X1 and of the gauge group are eliminated simultane-
ously.

If �1
i and �2

j are the eigenvalues of X1
1 and X2

1 respectively, then as a function
of the o↵-diagonal elements of X2 and X3 the function � can be brought to the
form

� “
ÿ

ij

p�1
i ´ �2

j qX2,ijX3,ji ` . . . ,

and thus has many Morse terms of the form

�2pu, vq “ uv

where the weights of u and v multiply to κ
´1. For the Morse critical point on

C2, the complex

κ
´1

O
κ d�2^

›››››Ñ ⌦
1 κ d�2^

›››››Ñ κ⌦
2

is exact, except at the last term, where its cohomology is Ou“v“0. This is also
true if we replace C2 by vector bundle over some base because the existence of a
Morse function forces the determinant of this bundle to be trivial, up to a twist
by κ.

Therefore, all o↵-diagonal matrix elements of X2 and X3 are eliminated and
pOvir, restricted to U , is, up to an even shift, the tensor product of the corre-
sponding complexes for HilbpX,n1q and HilbpX,n2q.

6 More on quasimaps

6.1 Square roots

6.1.1

Virtual O and quasimaps vs. stable maps

6.1.2

Let KC be the canonical bundle of the domain C. For our specific domain, we
have, equivariantly,

KC ´ OC “ ´Op1
´ Op2

where p1, p2 P C are the fixed points of a torus in AutpCq. It is customary to
choose tp1, p2u “ t0,8u.
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