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1. Introduction

The AdS/CFT correspondence a remarkable equivalence between certain gauge theories and
string/M-theory on certain backgrounds involving AdS spaces. In these lectures we will look
at the correspondence in the case of AdS4/CFT3, in particular for ABJM theory [4]. One of
the mysterious consequences of this correspondence is that, at strong coupling, the number of
degrees of freedom of the CFT3 should scale as N3/2 [28]. This was finally established at the
gauge theory level in [15].

The derivation of the N3/2 behavior in [15] is based on two ingredients. The first one,
due to [26], is that certain path integrals in the CFT3 can be reduced to matrix integrals by
using the powerful localization techniques of [33]. Localization techniques have a long story in
supersymmetric QFTs, and the applications of [33, 26] to superconformal field theories provide
a powerful technique to analyze certain observables in terms of matrix models. One of these
observables is, in the three-dimensional case, the partition function on the three-sphere. The
second ingredient in [15] was the realization that this quantity is a good measure of the number
of degrees of freedom in a CFT3 and that it can be calculated at strong coupling in the gauge
theory and in the AdS SUGRA. This leads to new powerful tests of the AdS/CFT correspondence.

In some cases, the partition function on the 3-sphere can be computed explicitly at all
couplings, and it gives a non-trivial interpolating function between perturbation theory and
supergravity results. In the case of ABJM theory, the planar limit of the free energy on S3 can
be calculated at weak ’t Hooft coupling (a one-loop calculation in QFT) and at strong coupling
(where it is given by the regularized gravity action) with the result

− lim
N→∞

1
N2

FABJM(S3) =





− log(2πλ) + 3
2 + 2 log(2) +O(λ), λ→ 0,

π
√

2
3
√
λ

+O
(

e−2π
√

2λ
)
, λ→∞.

(1.1)

The goal of these lectures is to explain how to obtain the above result, both in QFT and in the
AdS dual, and then we will show how the recent progress in [26, 15] makes possible to obtain
the exact function of the ’t Hooft coupling interpolating between these two results. To do this,
we will present the localization technique of [26] and the matrix model techniques of [15].

2. Chern–Simons–matter theories

In this section we will introduce the basic building blocks of supersymmetric Chern–Simons–
matter theories. We will work in Euclidean space, and we will eventually put the theories on the
three-sphere, for reasons that will be discussed later on. In this section we will closely follow the
presentation of [22].
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2.1 Conventions

Our conventions for Euclidean spinors follow essentially [39]. In Euclidean space, the fermions
ψ and ψ̄ are independent and they transform in the same representation of the Lorentz group.
Their index structure is

ψα, ψ̄α. (2.1)

For example, in [39] (with Minkowski signature) one has

ψα →
(
M−1

) α
β
ψβ, M ∈ Sl(2,C). (2.2)

In our case (Euclidean three-dimensional space) the Lorentz group is SU(2) and we will simply
have

ψα →Mα
βψ

β, M ∈ SU(2). (2.3)

We will take γµ to be the Pauli matrices, which are hermitian, and

γµν =
1
2

[γµ, γν ] = iεµνργρ. (2.4)

We introduce the usual symplectic product through the antisymmetric matrix

Cαβ =
(

0 C
−C 0

)
. (2.5)

In [39] we have C = −1 and the matrix is denoted by εαβ. The product is

ε̄λ = ε̄αCαβλ
β (2.6)

Notice that
ε̄γµλ = ε̄βCβγ (γµ)γα λ

α (2.7)

It is easy to check that
ε̄λ = λε̄, ε̄γµλ = −λγµε̄. (2.8)

and in particular
(γµε̄)λ = −ε̄γµλ (2.9)

We also have the following Fierz identities

ε̄ (εψ) + ε (ε̄ψ) + (ε̄ε)ψ = 0. (2.10)

and
ε (ε̄ψ) + 2 (ε̄ε)ψ + (ε̄γµψ) γµε = 0. (2.11)

2.2 Vector multiplet and supersymmetric Chern–Simons theory

We first start with theories based on vector multiplets. The three dimensional Euclidean N = 2
vector superfield V has the following content

V : Aµ, σ, λ, λ̄ D (2.12)

where Aµ is a gauge field, σ is an auxiliary scalar field, λ, λ̄ are two-component complex Dirac
spinors, and D is an auxiliary scalar. This is just the dimensional reduction of the N = 1 vector
multiplet in 4 dimensions, and σ is the reduction of the fourth component of Aµ. All fields are
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valued in the Lie algebra g of the gauge group G. For G = U(N) our convention is that g are
Hermitian matrices. It follows that the gauge covariant derivative is given by

Dµ = ∂µ + i[Aµ, .] (2.13)

while the gauge field strength is

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ]. (2.14)

The transformations of the fields are generated by two independent complex spinors ε, ε̄.
They are given by,

δAµ = i
2(ε̄γµλ− λ̄γµε),

δσ = 1
2(ε̄λ− λ̄ε),

δλ = −1
2γ

µνεFµν −Dε+ iγµεDµσ + 2i
3 σγ

µDµε,

δλ̄ = −1
2γ

µν ε̄Fµν +Dε̄− iγµε̄Dµσ − 2i
3 σγ

µDµε̄,

δD = − i
2 ε̄γ

µDµλ− i
2Dµλ̄γ

µε+ i
2 [ε̄λ, σ] + i

2 [λ̄ε, σ]− i
6(Dµε̄γ

µλ+ λ̄γµDµε),

(2.15)

and we have naturally
δ = δε + δε̄. (2.16)

Here we follow the conventions of [22], but we change the sign of the gauge connection: Aµ →
−Aµ. On all the fields except D the commutator [δε, δε̄] becomes a sum of translation, gauge
transformation, Lorentz rotation, dilation and R-rotation:

[δε, δε̄]Aµ =ivν∂νAµ + i∂µvνAν +DµΛ,

[δε, δε̄]σ =ivµ∂µσ + i[Λ, σ] + ρσ,

[δε, δε̄]λ =ivµ∂µλ+ i
4Θµνγ

µνλ+ i[Λ, λ] + 3
2ρλ+ αλ,

[δε, δε̄]λ̄ =ivµ∂µλ̄+ i
4Θµνγ

µν λ̄+ i[Λ, λ̄] + 3
2ρλ̄− αλ̄,

[δε, δε̄]D =ivµ∂µD + i[Λ, D] + 2ρD + 1
3σ(ε̄γµγνDµDνε− εγµγνDµDν ε̄),

(2.17)

where
vµ =ε̄γµε,

Θµν =D[µvν] + vλωµνλ ,

Λ =vµiAµ + σε̄ε,

ρ = i
3(ε̄γµDµε+Dµε̄γ

µε),

α = i
3(Dµε̄γ

µε− ε̄γµDµε).

(2.18)

As a check, let us calculate the commutator acting on σ. We have,

σ =δε

(
1
2
ε̄λ

)
− δε̄

(
−1

2
λ̄ε

)

=
1
2
ε̄

(
−1

2
γµνεFµν −Dε+ iγµεDµσ

)
+

i
3
ε̄γµDµε

+
1
2

(
−1

2
γµν ε̄Fµν +Dε− iγµε̄Dµσ

)
ε− i

3
γµ (Dµε̄) ε

=iε̄γµεDµσ + ρσ,

(2.19)
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where we have used (2.9).
In order for the supersymmetry algebra to close, the last term in the right hand side of

[δε, δε̄]D must vanish. This means that the Killing spinors must satisfy

γµγνDµDνε = hε, γµγνDµDν ε̄ = hε̄ (2.20)

for some scalar function h. A sufficient condition for this is to have

Dµε =
i

2r
γµε, Dµε̄ =

i
2r
γµε̄ (2.21)

and
h = − 9

4r2
. (2.22)

This condition is satisfied by one of the Killing spinors on the three-sphere (the one which is
constant in the left-invariant frame).

The (Euclidean) SUSY CS action, in flat space, is given by

SCS =
∫

d3xTr
(
A ∧ dA+

2i
3
A3 − λ̄λ+ 2Dσ

)

=
∫

d3xTr
(
εµνρ

(
Aµ∂νAρ +

2i
3
AµAνAρ

)
− λ̄λ+ 2Dσ

) (2.23)

Here Tr denotes an invariant inner product. Usually we will take it to be k/4π times the trace
in the fundamental representation.

We can check that the supersymmetric CS action is invariant under the supersymmetry
generated by δε (the proof for δε̄ is similar). We find

δεL = (2δAµ∂νAρ + 2iδAµAνAρ) εµνρ − λ̄δλ+ 2(δD)σ + 2Dδσ

=− iλ̄γµε∂νAρεµνρ + λ̄γµεAνAρε
µνρ

− λ̄
(
−1

2
γµνFµν −D + iγµDµσ

)
ε− 2i

3
λ̄γµDµεσ

− i
(
Dµλ̄

)
γµσε+ i[λ̄ε, σ]σ − i

3
λ̄γµDµεσ − λ̄εD.

(2.24)

The terms involving D cancel on the nose. Let us look at the terms involving the gauge field.
After using (2.4) we find

1
2
λ̄γµνFµν = iλ̄γρεεµνρ∂µAν − λ̄γρεεµνρAµAν (2.25)

which cancel the first two terms in (2.24). Let us now look at the remaining terms. The covariant
derivative of λ̄ is

Dµλ̄ = ∂µλ̄+
i

2r
γµλ̄+ i[Aµ, λ̄] (2.26)

If we integrate by parts the term involving the derivative of λ we find in total

iλ̄γµε∂µσ + iλ̄γµ∂µεσ +
1
2r
(
γµλ̄

)
γµε+ [Aµ, λ̄]γµεσ

= iλ̄γµε∂µσ + iλ̄γµDµεσ + [Aµ, λ̄]γµεσ
(2.27)
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where we used that (
γµλ̄

)
γµε = −λ̄γµγµε. (2.28)

The derivative of σ cancels against the corresponding term in the covariant derivative of σ.
Putting all together, we find

iλ̄γµ (Dµε)σ − iλ̄γµ (Dµε)σ + [Aµ, λ̄]γµεσ + λ̄γµε[Aµ, σ] + i[λ̄ε, σ]σ (2.29)

The last three terms cancel due to the cyclic property of the trace. This proves the invariance
of the supersymmetric CS theory.

Of course, there is another Lagrangian for vector multiplets, namely the standard Yang–Mills
Lagrangian,

LYM = Tr
(

1
4FµνF

µν + 1
2DµσD

µσ + 1
2(D + σ

` )2 + i
2 λ̄γ

µDµλ+ i
2 λ̄[σ, λ]− 1

4` λ̄λ
)
. (2.30)

which is not only invariant under SUSY, but it can be written as a superderivative,

ε̄εLYM = δε̄δεTr
(

1
2 λ̄λ− 2Dσ

)
. (2.31)

This will be important later on.

2.3 Supersymmetric matter multiplets

We will now add supersymmetric matter, i.e. a chiral multiplet in representation R. The com-
ponents are

φ, φ̄, ψ, ψ̄, F, F̄ . (2.32)

The supersymmetry transformations are

δφ =ε̄ψ,

δφ̄ =εψ̄,

δψ =iγµεDµφ+ iεσφ+
2∆i
3
γµDµεφ+ ε̄F,

δψ̄ =iγµε̄Dµφ̄+ iφ̄σε̄+
2∆i
3
φ̄γµDµε̄+ F̄ ε,

δF =ε(iγµDµψ − iσψ − iλφ) +
i
3

(2∆− 1)Dµεγ
µψ,

δF̄ =ε̄(iγµDµψ̄ − iψ̄σ + iφ̄λ̄) +
i
3

(2∆− 1)Dµε̄γ
µψ̄.

(2.33)

where ∆ is the possible anomalous dimension of φ. For theories with N ≥ 3 supersymmetry, the
field has the canonical dimension

∆ =
1
2
, (2.34)

but in general this is not the case.
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The commutators of these transformations are given by

[δε, δε̄]φ = ivµ∂µφ+ iΛφ+ qρφ− qαφ,
[δε, δε̄]φ̄ = ivµ∂µφ̄− iφ̄Λ + qρφ̄+ qαφ̄,

[δε, δε̄]ψ = ivµ∂µψ + 1
4Θµνγ

µνψ + iΛψ + (q + 1
2)ρψ + (1− q)αψ,

[δε, δε̄]ψ̄ = ivµ∂µψ̄ + 1
4Θµνγ

µνψ̄ − iψ̄Λ + (q + 1
2)ρψ̄ + (q − 1)αψ̄,

[δε, δε̄]F = ivµ∂µF + iΛF + (q + 1)ρF + (2− q)αF,
[δε, δε̄]F̄ = ivµ∂µF̄ − iF̄Λ + (q + 1)ρF̄ + (q − 2)αF̄ . (2.35)

The lowest components are now assigned the dimension q and R-charge ∓q. The supersymmetry
algebra closes off-shell when the Killing spinors ε, ε̄ satisfy (2.20) and h is given by (2.22).

As a check, we compute

φ = δε (ε̄ψ)

= ε̄

(
iγµεDµφ+ iεσφ+

2iq
3
γµ (Dµε)φ

)
= ivµDµφ+ iσε̄ε+

2iq
3

(ε̄γµDµε) ,
(2.36)

which is the wished-for result. Let us now consider supersymmetric Lagrangians for the matter
hypermultiplet. If the fields have their canonical dimensions, the Lagrangian,

L = Dµφ̄D
µφ− iψ̄γµDµψ +

3
4r2

φ̄φ+ iψ̄σψ + iψ̄λφ− iφ̄λ̄ψ + iφ̄Dφ+ φ̄σ2φ+ F̄F, (2.37)

which is invariant under supersymmetry if the Killing spinors ε, ε̄ satisfy (2.20). The quadratic
part of the Lagrangian for φ gives indeed the standard conformal coupling for a scalar field. We
recall that the action for the conformal coupling of a scalar field in d dimensions is

S =
∫

ddx
√
g

(
1
2
gµν∂µφ∂νφ+

d− 2
4(d− 1)

Rφ2

)
, (2.38)

where R is the curvature of a sphere of radius r

R =
d(d− 1)

r2
. (2.39)

The curvature coupling can then be written as

d(d− 2)
4r2

φ2 (2.40)

which in d = 3 gives the quadratic term for φ in (2.37). Of course, this term is effectively a mass
for the complex scalar field.

If the fields have non-canonical dimensions, it turns out that the Lagrangian

Lmat =Dµφ̄D
µφ+ φ̄σ2φ+

i(2∆− 1)
r

φ̄σφ+
∆(2−∆)

r2
φ̄φ+ iφ̄Dφ+ F̄F

− iψ̄γµDµψ + iψ̄σψ − 2∆− 1
2r

ψ̄ψ + iψ̄λφ− iφ̄λ̄ψ.
(2.41)
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is supersymmetric, provided the parameters ε, ε̄ satisfy

Dµε = i
2`γµε, Dµε̄ = i

2`γµε̄. (2.42)

An important fact, which will be useful later, is that the Lagrangian (2.41) can be written as a
total superderivative,

ε̄εLmat = δε̄δε

(
ψ̄ψ − 2iφ̄σφ+

2(∆− 1)
r

φ̄φ

)
. (2.43)

3. A brief review of Chern–Simons theory

3.1 Perturbative approach

We recall that the CS action is given by

S =
k

4π

∫

M
Tr
(
A ∧ dA+

2i
3
A ∧A ∧A

)
(3.1)

It will be useful to introduce a Hermitian basis for the Lie algeba, Ta, with commutation relations

[Ta, Tb] = ifabcTc, (3.2)

and normalization
Tr(TaTb) = δab. (3.3)

If we write
A = AaTa, (3.4)

then the action reads

S = − k

4π

∫
d3xεµνρ

(
Aaµ∂νAρ −

1
3
fabcA

a
µA

b
νA

c
ρ

)
. (3.5)

We will assume that the theory is defined on a compact three-manifold M . In this case, the
partition function

Z(M) =
1

vol(G)

∫
[DA]eiS (3.6)

should be well-defined. Here G is the group of gauge transformations. There are many different
approaches to the calculation of (3.6), but the obvious strategy is to use perturbation theory, as in
standard QFT. In perturbation theory we evaluate (3.6) by expanding around the saddle–points.
These are flat connections, which are in one-to-one correspondence with group homomorphisms

π1(M)→ G. (3.7)

For example, if M = S3/Zp is the lens space L(p, 1), one has π1(L(p, 1)) = Zp, and flat connec-
tions are labelled by homomorphisms Zp → G. Let us assume that these are a discrete set of
points (this happens, for example, if M is a rational homology sphere, since in that case π1(M)
is a finite group). We will label the flat connections with an index c, and the flat connection will
be denoted by A(c). Each flat connection leads to a covariant derivative

dA(c) = d + iA(c), (3.8)
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Ker d0
A(c) Ker

(
d0

A(c)

)†

(
d0

A(c)

)†

d0
A(c)

Im
(
d0

A(c)

)†
Im d0

A(c)

Ω0(M,g) Ω1(M,g)

Figure 1: The standard elliptic decomposition of Ω0,1(M,g).

and flatness implies that
d2
A(c) = FA(c) = 0. (3.9)

Therefore, the covariant derivative leads to a complex

0→ Ω0(M,g)
d
A(c)−−−→ Ω1(M,g)

d
A(c)−−−→ Ω2(M,g)

d
A(c)−−−→ Ω3(M,g), (3.10)

We recall the basic orthogonal decompositions (see Fig. 1)

Ω0(M,g) =Ker dA(c) ⊕ Im d†
A(c) ,

Ω1(M,g) =Ker d†
A(c) ⊕ Im dA(c) .

(3.11)

To prove the first decomposition, we just note that

a ∈ Ker dA(c) ⇒ 〈dA(c)a, φ〉 = 〈a,d†
A(c)φ〉 = 0, ∀φ (3.12)

therefore
(Ker dA(c))⊥ = Im d†

A(c) . (3.13)

In the following we will assume that

H1(M,dA(c)) = 0. (3.14)

This means that the connection A(c) is isolated. However, we will consider the possibility that
A(c) has a non-trivial isotropy group Hc. We recall that the isotropy group of a connection A(c)

is the subgroup of gauge transformations which leave A(c) invariant,

Hc = {φ ∈ G|φ(A(c)) = A(c)}. (3.15)

The Lie algebra of this group is given by zero-forms annihilated by the covariant derivative (3.8)

Lie(Hc) = H0(M, dA(c)) = Ker dA(c) (3.16)

which is in general non-trivial. We recall that a connection is irreducible if its isotropy group is
equal to the centrer of the group. In particular, if A(c) is irreducible one has

H0(M,dA(c)) = 0. (3.17)

It can be shown that the isotropy group Hc consists of constant gauge transformations that leave
A(c) invariant,

φA(c)φ−1 = A(c). (3.18)
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They correspond then to a subgroup of G which we will denote by Hc.
In the semiclassical approximation, Z(M) is written as a sum of terms associated to station-

ary points:
Z(M) =

∑

c

Z(c)(M), (3.19)

where c labels the different flat connections A(c) on M . Each of the Z(c)(M) will be an asympotic
series in 1/k of the form

Z(c)(M) = Z
(c)
1−loop(M) exp

{ ∞∑

`=1

S
(c)
` k−`

}
. (3.20)

Let us study this in detail. First of all, we split the connection into a “background”, which is a
flat connection A(c), plus a “fluctuation” B:

A = A(c) +B. (3.21)

Expanding around this, we find

SCS(A) = SCS(A(c)) + S(B), (3.22)

where
S(B) =

k

4π

∫

M
Tr (B ∧ dA(c)B +

2
3
B3). (3.23)

The first term is the classical Chern–Simons invariant of the connection A(c). Since we have
a gauge theory, we have to fix the gauge. Our gauge choice will be the standard, covariant,
Feynman gauge,

gA(c)(B) = d†
A(c)B = 0 (3.24)

where gA(c) is the gauge fixing function. In the treatment of the path–integral, we will follow
the detailed analysis of [1]. We recall that in the standard Fadeev–Popov gauge fixing one first
defines

∆−1
A(c) (B) =

∫
DU δ

(
gU ·A(c)

(
BU
))
, (3.25)

where the superscript U denotes the gauge transformation by U , and then inserts into the path
integral

1 =
∫
DU δ

(
gA(c)

(
BU
))

∆A(c) (B) . (3.26)

The key new ingredient here is the presence of a non-trivial isotropy group Hc for the flat
connection A(c). When there is a non-trivial isotropy group, the gauge-fixing condition does not
fix the gauge completely, since

gA(c)(Bφ) = φgA(c)(B)φ−1, φ ∈ Hc, (3.27)

i.e. the basic assumption that g(A) = 0 only cuts once the gauge orbit is not true. Another
way to see this is that the standard FP determinant is not well-defined. In fact, the standard
calculation (which is valid if the isotropy group of A(c) is trivial) gives

∆−1
A(c) =

∣∣∣∣det
δgA(c)

δU

∣∣∣∣
−1

=
∣∣∣∣det d†

A(c)dA

∣∣∣∣
−1

. (3.28)
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But when Hc 6= 0, the operator dA(c) has zero modes due to the nonvanishing of (3.16), and the
above determinant cannot be computed in perturbation theory. The correct way to proceed in
the calculation of (3.25) is to split the integration over the gauge group into two pieces. The first
piece is the integration over the isotropy group, and since the integrand does not depend on it,
this just gives a factor of Vol(Hc). The second piece gives an integration over the remaining part
of the gauge transformations, which has as its Lie algebra

(Ker dA(c))⊥. (3.29)

The integration over this piece leads to the standard FP determinant (3.28) but with the zero
modes removed. We then find,

∆−1
A(c) (B) = Vol(Hc)

∣∣∣∣det d†
A(c)dA

∣∣∣∣
−1

(Ker d
A(c) )⊥

(3.30)

This phenomenon was first observed by Rozansky in [35], and developed in this language in [1].
As usual, the determinant appearing here can be written in terms of ghost fields,

Sghosts(C,C,B) =
∫

M
〈C,d†

A(c)dAC〉, (3.31)

where
〈a, b〉 = Tr (a ∧ ∗b) (3.32)

is the standard norm for g–valued forms on M , and the fields C,C take values in

C,C ∈ (Ker dA(c))⊥. (3.33)

The action for the ghosts can be divided into a kinetic term plus an interaction term between
the ghost fields and the fluctuation B:

Sghosts(C,C,B) = 〈C,∆0
A(c)C〉+ 〈C, (dA(c))†[B,C]〉. (3.34)

The FP gauge–fixing leads then to the path integral

Z =
eiSCS(A(c))

vol(G)

∫

Ω1(M,g)
DB eS(B)∆A(c)(B)δ

(
d†
A(c)B

)

=
eiSCS(A(c))

Vol(Hc)

∫
DB δ

(
d†
A(c)B

)∫

(Ker d
A(c) )⊥

DCDC eS(B)+Sghosts(C,C,B)

(3.35)

Finally, we notice that the delta constraint imposes that

B ∈ Ker d†
A(c) , (3.36)

and therefore restricts the integration range in the path integral, but it also introduces a factor

(det′∆0
A(c))−

1
2 , (3.37)

where the ′ indicates, as usual, that we are removing zero modes. This is the generalization of
the standard formula ∫

dxf(x)δ(ax) =
1
|a|f(0). (3.38)
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It can be also seen by writing the delta constraint as

δ
(

d†
A(c)B

)
=
∫
Dϕ ei

R
〈ϕ,d†

A(c)
B〉 (3.39)

The final result for the gauge-fixed path integral is then

Z =
eiSCS(A(c))

Vol(Hc)
(det′∆0

A(c))−
1
2

∫

Ker d†
A(c)

DB
∫

(Ker d
A(c) )⊥

DCDC eS(B)+Sghosts(C,C,B). (3.40)

3.2 The one–loop contribution

We now consider the one-loop contribution of a saddle-point to the path integral. This has been
studied in many papers [17, 25, 35, 36]. The most detailed treatment, in our view, is the one
presented in [2].

The main ingredients in the one-loop contribution are the determinants of the operators
appearing in the kinetic terms for B, C and C. For B, we obtain

(detD1
A(c))−

1
2 , (3.41)

where
D1
A(c) =

ik
2π
∗ dA(c) (3.42)

is the operator appearing in the kinetic term for B, but restricted to

Ker d†
A(c) = (Im dA(c))⊥ (3.43)

due to the gauge fixing. Notice that the determinant is well–defined if (3.14) holds, since in this
case one has

H1(M,g) = 0⇒ Ker dA(c) = Im dA(c) , (3.44)

and since the operator is restricted to (3.43), no zero modes are involved in its evaluation.
For the ghost fields we obtain

det′∆0
A(c) (3.45)

since we are restricting to (3.33). Recalling that there is a determinant coming from the delta
function, we finally get, after putting all together,

(det′∆0
A(c))

detD1
A(c)

) 1
2

. (3.46)

The operator ∆0
A(c) is positive–definite, so its square root is well–defined. The operator D1

A(c)

is not positive definite, and one has to do a careful analysis of its phase as first pointed out by
Witten [40]. The starting point is the trivial Gaussian integral

∫ ∞

−∞
dx exp

(
i
x2

2λ

)
=
√

2π|λ| exp
(

iπ
4

signλ
)
. (3.47)

In our problem,

λ =
2π
k
. (3.48)
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We then conclude that, for each eigenvalue of D1
A(c) we have a factor of

(
k

4π2

)−1/2

(3.49)

The regularized number of eigenvalues of the operator is simply

ζ(A(c)) = ζ (0, |∗dA(c) |) . (3.50)

Here we have defined the zeta function for the operator |T |

ζ (s, |T |) =
∑

j

1
|λj |s

(3.51)

where λj are the eigenvalues of the original operator T . We obtain then a factor

(
k

4π2

)−ζ(A(c))/2

. (3.52)

Finally, the signs of the different eigenvalues combine into the η invariant of the operator ∗dA(c) .
We recall that the η invariant is defined as

η(s, T ) =
∑

j

1(
λ+
j

)s −
∑

j

1(
−λ−j

)s (3.53)

where λ±j are the strictly positve (negative, respectively) eigenvalues of T . The regularized
difference of eigenvalues is then η(0, T ). In our case, this gives

η(A(c)) = η (0, ∗dA(c)) . (3.54)

We then obtain,

(detD1
A(c))−

1
2 =

(
k

4π2

)−ζ(A(c))/2

exp
(

iπ
4
η(A(c))

)(
det′ d†

A(c)dA(c)

)− 1
4
, (3.55)

where the last determinant is evaluated after subtracting the zero–modes.
The quotient of the determinants of the Laplacians gives the square root of the Ray–Singer

torsion,
(det′∆0

A(c))
1
2

(
det′ d†

A(c)dA(c)

) 1
4

=
√
τ ′R(M,A(c)). (3.56)

When the connection A(c) is isolated and irreducible, this is a topological invariant of M , but in
general it is not. However, for a reducible and isolated flat connection, the dependence on the
metric is just given by an overall factor, equal to the volume of the manifold M :

τ ′R(M,A(c)) = (vol(M))dim(Hc) τR(M,A(c)). (3.57)

where τR(M,A(c)) is now metric-indepedendent. It is interesting to notice that the volume,
metric-dependent factor cancels in the final answer for the one-loop path integral. The isotropy
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group Hc is a space of constant zero forms, taking values in a subgroup Hc ⊂ G of the gauge
group. Each generator of its Lie algebra has a norm given by its norm as an element of g, times

(∫

M
∗1
)1/2

= (vol(M))1/2 . (3.58)

Therefore,

vol(Hc) = (vol(M))dim(Hc)/2 vol(Hc), (3.59)

and √
τ ′R(M,A(c))

vol(Hc)
=

√
τR(M,A(c))
vol(Hc)

(3.60)

which does not depend on the metric of M .
Finally, in order to write down the answer, we take into account that ζ(A(c)) can be evaluated

as [3]

ζ(A(c)) = dimH0(M,dA(c)). (3.61)

Putting everything together, we find for the one–loop contribution to the path integral

Z
(c)
1−loop(M) =

(k/4π2)−
1
2

dimH0(M,d
A(c) )

vol(Hc)
eikSCS(A(c))+ iπ

4
η(A(c))

√
τR(M,A(c)). (3.62)

Notice that, when A(c) = 0 is the trivial flat connection, one has that Hc = G, where G is the
gauge group. This result will be useful later on.

4. The partition function of 3d CFTs on S3

The partition function of a CFT on the three sphere should incorporate some information about
the number of degrees of freedom of the theory. For example, if a theory has N2 degrees of
freedom we should expect the free energy on the three-sphere to scale as

F (S3, N) = log Z(S3, N) ∼ O(N2), (4.1)

at least in the weak coupling approximation, i.e. when the N2 degress of freedom are weakly
interacting. This follows from the fact that, at weak coupling, the partition function factorizes

Z(S3, N) ∼
(
Z(S3, 1)

)N2

. (4.2)

In this section we will first compute this partition function at weak coupling in Chern–Simons–
matter theories. More precisely, we will compute this partition function on the three sphere
at one-loop. First, we will review the computation in Chern–Simons theory, and then we will
consider the much simpler case of the matter multiplets. Finally, we will explain what is the
expected behavior at strong coupling from the large N AdS duals.
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4.1 Chern–Simons theory on S3

The above general procedure to calculate the one-loop contribution on the three-sphere can be
made very concrete on S3. Here, there is only a flat connection, the trivial one A(c) = 0, and the
cohomology twisted by A(c) reduces to the ordinary cohomology. The group Hc is the full gauge
group, since any constant gauge transformation leaves A(c) invariant, and Hc = G.

We first calculate the quotient of determinants appearing in (3.56) (a similar calculation was
made in Appendix A of [18]). The determinant of the scalar Laplacian on the sphere can be
computed very explicitly, since the eigenvalues are known to be given by

λj = 4j(j + 1) = n(n+ 2), n = 0, 1, · · · (4.3)

where
j =

n

2
(4.4)

is the left SU(2) spin, and their degeneracy is

dj = (2j + 1)2 = (n+ 1)2. (4.5)

We have assumed that S3 is endowed with its standard metric (the one induced by its standard
embedding in R4 with Euclidean metric), and that its radius is R = 1. Removing the zero
eigenvalue just means that we remove j = 0 from the spectrum. To calculate the determinant
we must calculate the zeta function,

ζ∆(0)(s) =
∑

j>0

dj
λsj

=
∞∑

n=1

(n+ 1)2

(n(n+ 2))s
=
∞∑

m=2

m2

(m2 − 1)s
, (4.6)

since
log det′∆(0) = −ζ ′

∆(0)(0). (4.7)

This can be done in many ways, and general results for the determinant of Laplacians on the
n-sphere can be found in for example [34]. We will follow a simple procedure inspired by [32].
We split

m2

(m2 − 1)s
=

1
m2(s−1)

+
s

m2s
+R(m, s), (4.8)

where

R(m, s) =
m2

(m2 − 1)s
− 1
m2(s−1)

− s

m2s
(4.9)

which decreases as m−2s−2 for large m, and therefore leads to a convergent series for all s ≥ −1/2
which is moreover uniformly convergent, and one can exchange sums with derivatives. The
derivative of R(m, s) at s = 0 can be calculated as

dR(m, s)
ds

∣∣∣∣
s=0

= −1 +m2 log
(

1− 1
m2

)
(4.10)

The sum of this series can be explicitly calculated by using the Hurwitz zeta function (or, in
practical terms, by plugging it in Mathematica), and one finds

−
∞∑

m=2

[
1 +m2 log

(
1− 1

m2

)]
=

3
2
− log(π). (4.11)
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We then find

ζ∆(0)(s) = ζ(2s− 2)− 1 + s (ζ(2s)− 1) +
∞∑

m=2

R(m, s), (4.12)

where ζ(s) is Riemann’s zeta function, and

−ζ ′
∆(0)(0) = log(π)− 2ζ ′(−2). (4.13)

Here we have used that
ζ ′(0) = −1

2
log(2π). (4.14)

The final result can be expressed in terms of ζ(3), since

ζ ′(−2) = −ζ(3)
4π2

. (4.15)

We conclude that the determinant of the scalar Laplacian on S3 is given by

log det′∆(0) = log(π) +
ζ(3)
2π2

. (4.16)

We now compute the determinant in the denominator of (3.56). We must consider the space
of one-forms on S3, and restrict to the ones that are not in the image of d. These forms are
precisely the vector spherical harmonics, whose properties are reviewed in the Appendix. The
eigenvalues of the operator d†d are given in (B.30), and they read

λn = (n+ 1)2, n = 1, 2, · · · , (4.17)

with degeneracies
dn = 2n(n+ 2). (4.18)

The zeta function associated to this Laplacian (restricted to the vector spherical harmonics) is

ζ∆(1)(s) =
∞∑

n=1

2n(n+ 2)
((n+ 1))2s = 2

∞∑

m=1

m2 − 1
m2s

= 2ζ(2s− 2)− 2ζ(2s), (4.19)

and
log det′∆(1) = −4ζ ′(−2)− 2 log(2π) = −2 log(2π) +

ζ(3)
π2

. (4.20)

We conclude that

log τ ′R(S3, 0) = log det′∆(0) − log det′∆(1) = log(2π2). (4.21)

This is in agreement with the calculation of the analytic torsion for general spheres in [38]. In
view of (3.57), and since

vol(S3) = 2π2, (4.22)

we find
τR(S3, 0) = 1. (4.23)

One can also calculate the invariant (3.50) directly, since

ζ (s, ∗d) = 2
∑

n≥1

n(n+ 2)
(n+ 1)s

= 2 (ζ(s− 2)− ζ(s)) , (4.24)
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and
ζ (0, ∗d) = −2ζ(0) = 1. (4.25)

Since there are dimG copies of this operator, we verify the expression (3.61). Finally, a similar
calculation gives

η(0) = 0. (4.26)

We conclude that

Z1−loop(S3) =
1

vol(G)

(
k

4π2

)− 1
2

dimG

(4.27)

4.2 Matter fields

The supersymmetric multiplet contains a complex scalar and a fermion. At one loop we just have
to compute the functional determinant for a conformally coupled complex scalar and a complex
fermion.

We will first consider the complex scalar. The kinetic operator is now the conformal Laplacian

∆c = −∇2 +
3
4

(4.28)

where for simplicity we have set r = 1 (we will incorporate later on the dependence on r). The
eigenvalues of the conformal Laplacian are simply

n(n+ 2) +
3
4
, n = 0, 1, · · · , (4.29)

with the same multiplicity as the standard Laplacian, namely (n+ 1)2. We then have

ζ∆c =
∑

n=0

(n+ 1)2

(
n(n+ 2) + 3

4

)s =
∞∑

m=1

m2

(
m2 − 1

4

)s . (4.30)

As in the case of the standard Laplacian, we split

m2

(
m2 − 1

4

)s =
1

m2(s−1)
+

s

4m2s
+Rc(m, s), (4.31)

where

Rc(m, s) =
m2

(
m2 − 1

4

)s −
1

m2(s−1)
− s

4m2s
. (4.32)

The derivative of Rc(m, s) at s = 0 can be calculated as

dRc(m, s)
ds

∣∣∣∣
s=0

= −1
4

+m2 log
(

1− 1
4m2

)
(4.33)

The sum of this series can be explicitly calculated as

−
∞∑

m=1

[
1
4

+m2 log
(

1− 1
4m2

)]
=

1
8
− 1

4
log(2) +

7ζ(3)
8π2

. (4.34)

We then find

ζ∆c(s) = ζ(2s− 2) +
s

4
ζ(2s) +

∞∑

m=1

Rc(m, s), (4.35)
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and

−ζ ′∆c
(0) =

1
4

log(2)− 3ζ(3)
8π2

. (4.36)

We conclude that the determinant of the conformalLaplacian on S3 is given by

log det ∆c =
1
4

log(2)− 3ζ(3)
8π2

. (4.37)

This is in agreement with the result quoted in the Erratum to [14]1.
Let us now consider the determinant (in absolute value) for the spinor field. We have, using

(B.44),

ζ|D/ |(s) = 2
∞∑

n=1

n(n+ 1)(
n+ 1

2

)s . (4.38)

After a small manipulation we can write it as

ζ|D/ |(s) =2 · 2s−2




∑

m≥1

1
(2m+ 1)s−2

−
∑

m≥1

1
(2m+ 1)s





=2
(
2s−2 − 1

)
ζ(s− 2)− 1

2
(2s − 1) ζ(s),

(4.39)

where we have used that

∑

m≥0

1
(2m+ 1)s

=
∑

n≥1

1
ns
−
∑

k≥1

1
(2k)s

=
(
1− 2−s

)
ζ(s). (4.40)

We can then compute

log det (−iD/ ) = −ζ ′|D/ |(0) = − 3
8π2

ζ(3)− 1
4

log 2. (4.41)

In fact, the regularized number of negative eigenvalues is

ζ|D/ |(s) = 0 (4.42)

and there is no contribution from the extra phases. The above result is the determinant we were
looking for. Notice that the supersymmetric, one-loop quantity is then

log det (−iD/ )− log det ∆c = −1
2

log 2. (4.43)

This can be seen directly at the level of eigenvalues. The quotient of determinants is

∞∏

m=1

(
m+ 1

2

)m(m+1) (
m− 1

2

)m(m−1)

(
m2 − 1

4

)m2 =
∞∏

m=1

(
m+ 1

2

)m
(
m− 1

2

)m (4.44)

and its regularization leads directly to the result above.

1Beware: the arXiv version of this paper gives a wrong result for this determinant.
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4.3 ABJM theory at weak coupling

We can now calculate the free energy on S3 of ABJM theory. We have two copies of CS theory
with gauge group U(N), together with four chiral multiplets. Keeping the first term (one-loop)
in perturbation theory we find,

FABJM(S3) = −N2 log
(

k

4π2

)
− 2 log (vol(U(N)))− 2N2 log(2) + · · · (4.45)

where the first two terms come from the CS theories, and the last term comes from the su-
persymmetric matter. The volume of U(N) can be calculated in various ways, and its value
is

vol(U(N)) =
(2π)

1
2
N(N+1)

G2(N + 1)
, (4.46)

where G2(z) is the Barnes function, defined by

G2(z + 1) = Γ(z)G2(z), G2(1) = 1. (4.47)

Using the asymptotic expansion of the Barnes function

log G2(N + 1) =
N2

2
log N − 1

12
log N − 3

4
N2 +

1
2
N log 2π + ζ ′(−1)

+
∞∑

g=2

B2g

2g(2g − 2)
N2−2g, (4.48)

where B2g are the Bernoulli numbers, we finally obtain

FABJM(S3) = N2

{
log(2πλ)− 3

2
− 2 log(2) + · · ·

}
+O(N0), (4.49)

5. AdS duals

Some 3d SCFTs have a dual AdS description which gives precise predictions for the strong
coupling behavior of the free energy on S3. The dual computation involves calculating the
gravitational action on AdS4, and this calculation needs regularization in order to obtain finite
results. I will now review the method of holographic renormalization and work out two examples:
the closely related example of the Casimir energy of N = 4 SYM on R× S3, and the free energy
of ABJM theory on S3.

5.1 Holographic renormalization

The holographic calculation of many quantities in the AdS/CFT correspondence involves the
calculation of the gravitational action on AdS backgrounds. We recall that this action has two
parts: the bulk part, given by the Einstein–Hilbert action

Ibulk = − 1
16πGN

∫

M
dn+1x

√
G (R− 2Λ) (5.1)

and a boundary part, or Gibbons–Hawking term [19]

Isurf = − 1
8πG

∫

∂M
K|γ|1/2ddx, (5.2)
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where ∂M is the boundary of spacetime, γ is the metric induced by G on the boundary, and K
is the extrinsic curvature, which satisfies

√
γK = Ln

√
γ (5.3)

where n is the normal unit vector to ∂M . Both actions, when computed on an AdS background,
diverge due to the non-compactness of the space. For example, the bulk action of an AdS space
of radius L can be written as

I =
n

8πGNL2

∫
dn+1x

√
G (5.4)

which is proportional to the volume of space-time.
In order to use the AdS/CFT correspondence, we have to regularize the gravitational action

in an appropriate way. The standard procedure is to introduce a set of universal counterterms,
depending only on the induced metric on the boundary, which lead to finite values of the grav-
itational action, energy-momentum tensors, etc. This procedure leads to the correct value for
many interesting quantities computed in the CFT side, and we will adopt it here. It is sometimes
called “holographic renormalization” and it has been developed in for example [23, 7, 16, 13].
We now present the basics of holographic renormalization in AdS.

An asymptotically AdS metric can be written as

ds2 = L2

[
du2

u2
+

1
u2
gij(u2, x)dxidxj

]
(5.5)

where the boundary of AdS occurs at u = 0. Notice that, because of the second order pole at the
boundary, this metric does not define an induced metric at the boundary, but rather a conformal
structure. Essentially this is due to the fact that, in order to remove the pole, we should multiply
the metric by a function r with a first-order zero at the boundary (such functions are called
defining functions), and this gives a boundary metric

gb = r2G
∣∣∣
u=0

. (5.6)

However, if r is such a function, ewr also is, and this multiplies gb by a Weyl rescaling.
Let us now solve for the metric gij(u2, x) in a power series in u. This gives,

gij(u2, x) = g
(0
ij (x) + u2g

(2)
ij (x) + u4

[
g(4)(x) + log(u2)h(4)(x)

]
+ · · · (5.7)

This is then plugged in Einstein’s equations in order to solve for g(2n)
ij recursively. One finds, for

example [13]2

g
(2)
ij = − 1

n− 2

(
Rij −

1
2(n− 1)

Rg
(0)
ij

)
. (5.8)

The resulting metric is finally plugged in the gravitational action for the AdS metric,

Ibulk + Iboundary = − 1
16πGN

∫

M
dn+1x

√
G

(
R+

n(n− 1)
L2

)
− 1

8πGN

∫

∂M
K|γ|1/2dnx (5.9)

To calculate the boundary term, we consider the normal vector to the hypersurfaces of constant
u,

nu = −u
L
. (5.10)

2The sign in the curvature is opposite to the conventions in [13], which give a positive curvature to AdS.
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The minus sign is due to the fact that the boundary is at u = 0, so that the normal vector points
towards the origin. The induced metric is

γijdxidxj =
L2

u2
gij(u2, x)dxidxj , (5.11)

with element of volume
√
γ =

(
L

u

)d√
g (5.12)

The intrinsic curvature of the hypersurface at constant u is then

√
γK = Ln

√
γ = −u

L
∂u

[(
L

u

)n√
g

]
=
nLn−1

un

(
1− 1

n
u∂u

)√
g. (5.13)

We then find,

Iε =
nLn−1

8πGN

∫
dnx

∫

ε

du
un+1

√
g − nLn−1

8πGN εn

∫
dnx

(
1− 1

n
u∂u

)√
g
∣∣∣
u=ε

. (5.14)

The singularity structure of this regulated action is [13]

Iε =
Ln−1

16πGN

∫
dnx

√
g(0)

(
ε−na(0) + ε−n/2+1a(2) + · · ·+ ε−2a(n−2) − log(ε)an

)
+O(ε0) (5.15)

Let us now calculate the first two coefficients (the next two are computed in [13]). We first
expand,

det g = det
(
g(0) + u2g(2) + · · ·

)
= exp Tr

{
log g(0) + u2g(0)−1g(2) + · · ·

}

= det g(0)
(

1 + u2Tr
(
g(0)−1g(2)

)
+ · · ·

)
,

(5.16)

so that √
g(u2, x) =

√
g(0)

(
1 +

u2

2
Tr
(
g(0)−1g(2)

)
+ · · ·

)
,

(
1− 1

n
u∂u

)√
g(u2, x) =

√
g(0)

(
1 +

n− 2
2n

u2Tr
(
g(0)−1g(2)

)
+ · · ·

)
.

(5.17)

The first term (coming from the bulk Einstein–Hilbert action) gives

nLn−1

8πGN

∫
dnx

√
g(0)

[
1
nεn

+
1

2(n− 2)εn−2
Tr
(
g(0)−1g(2)

)
+ · · ·

]
(5.18)

while the Gibbons–Hawking term gives

−nL
n−1

8πGN

∫
dnx

√
g(0)

[
1
εn

+
n− 2

2nεn−2
Tr
(
g(0)−1g(2)

)
+ · · ·

]
(5.19)

In total, we find

Ln−1

16πGN

∫
dnx

√
g(0)

[
2(1− n)

εn
− n2 − 5n+ 4

(n− 2)εn−2
Tr
(
g(0)−1g(2)

)
+ · · ·

]
(5.20)
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and we deduce,
a(0) = 2(1− n),

a(2) = −(n− 4)(n− 1)
n− 2

Tr
(
g(0)−1g(2)

)
, n 6= 2.

(5.21)

The counterterm action is just minus the divergent part of Iε,

Ict =
Ln−1

16πGN

∫
dnx

√
g(0)

[
2(n− 1)

εn
+

(n− 4)(n− 1)
(n− 2)εn−2

Tr
(
g(0)−1g(2)

)
+ · · ·

]
. (5.22)

We should re-write this in terms of the induced metric in the boundary (5.11), evaluated at u = ε.
From (5.17) we deduce

√
g(0) =

( ε
L

)n(
1− ε2

2
Tr
(
g(0)−1g(2)

)
+O(ε4)

)√
γ. (5.23)

On the other hand, from (5.8) we obtain

Tr
(
g(0)−1g(2)

)
= − 1

n− 2

(
g

(0)
ij R

ij − 1
2(n− 1)

R[g(0)]g(0)
ij g

(0)ij

)
= − 1

2(n− 1)
R[g(0)]

= − L2

2(n− 1)ε2
R[γ] + · · ·

(5.24)

Plugging these into the counterterm action we find

Ict =
1

16πGNL

∫
dnx
√
γ

(
1 +

L2

4(n− 1)
R[γ] + · · ·

)[
2(n− 1)− n− 4

2(n− 2)
L2R[γ] + · · ·

]

=
1

8πGN

∫
dnx
√
γ

(
n− 1
L

+
L

2(n− 2)
R[γ] + · · ·

)
,

(5.25)

which is the result written down in [16] (for Euclidean signature). This is the counterterm
action which is relevant for AdS in four and five dimensions, and the dots denote higher order
counterterms (in the Riemann tensor) which are needed for higher dimensional spaces [7, 16, 13].

5.2 An example: Casimir energy

Let us consider an n-dimensional CFT on the manifold S1 × Sn−1, with periodic boundary con-
ditions for the fermions. Let us suppose that we want to compute the supersymmetric partition
function on S1 × Sn−1, where the circle has length β. This is

Z
(
S1 × Sn−1

)
= Tr(−1)F e−βH(Sn−1) = e−βE0 + · · · (5.26)

where E0 is the energy of the ground state, i.e. the Casimir energy on Sn−1. In the SUGRA
approximation, this can be computed by evaluating the regularized gravity action I [41]

Z
(
S1 × Sn−1

)
= e−I . (5.27)

In order to calculate I, we need a Euclidean AdS metric which is asymptotic to S1× Sn−1 at the
boundary. This metric can be written as [16]

ds2 =
(

1 +
r2

L2

)
dτ2 +

dr2

1 + r2/L2
+ r2dΩ2

n−1 (5.28)
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where the boundary is at r →∞. Here, dΩ2
n is the metric on the unit n-sphere, and τ has length

β. Let us compute the gravitational action for this theory, with a cutoff at the boundary ∂M
located at r. At the end of the calculation we will take r →∞. Evaluated on the metric (5.28)
we find

8πGNIbulk =
1
L2
rnvol(Sn−1)β,

8πGNIsurf = −vol(Sn−1)βrn−1

{
n− 1
r

V (r) +
1
2
V ′(r)

}
,

8πGNIct = −vol(Sn−1)βrn−1

{
n− 1
L

+
(n− 1)L

2r2

}
V 1/2(r),

(5.29)

where

V (r) = 1 +
r2

L2
. (5.30)

Plugging the expression for V (r) above, we find

8πGNIsurf = −vol(Sn−1)βrn
{
n− 1
r2

+
n

L2

}
,

8πGNIct = −vol(Sn−1)βrn
{
n− 1
L2

+
n− 1
2r2

}(
1 +

L2

r2

)1/2

= −vol(Sn−1)βrn
{
n− 1
L2

+
n− 1
2r2

}(
1 +

L2

2r2
− L4

8r4
+ · · ·

)
(5.31)

We then find, in total,

8πGNI

=
vol(Sn−1)β

L2
rn−1

[
−(n− 1)L2

r

(
1 +

r2

L2

)
+ (n− 1)r

(
1 +

L2

2r2

)(
1 +

L2

r2

)1/2
]

(5.32)

Expanding for r →∞ we find, for n = 3, a vanishing action, while for n = 4 (i.e. AdS5) we find

8πGNI =
3vol(S3)βL2

8
⇒ I =

3πL2β

32GN
(5.33)

Let us suppose that we want to compute the supersymmetric partition function on S1×Sn−1,
where the circle has length β. This is

Z
(
S1 × Sn−1

)
= Tr(−1)F e−βH(Sn−1) = e−βE0 + · · · (5.34)

where E0 is the energy of the ground state, i.e. the Casimir energy on Sn−1. In the SUGRA
approximation, this is just

Z
(
S1 × Sn−1

)
= e−I = exp

(
−3πL2β

32GN

)
(5.35)

and in this approximation the Casimir energy is

E0 =
3πL2

32GN
(5.36)
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Let us now compute the Casimir energy directly in QFT at weak coupling. A massless scalar
field on R× S3 satisfies the equation

(gµν∇µ∇ν + ξR)φ = 0, (5.37)

where ξ is a general coupling to curvature. For a conformally coupled scalar in 4d, we have

ξ =
1
6
. (5.38)

Let η,x be coordinates for R× S3. The metric can be written as

ds2 = L2
(
dη2 − dΩ2

3

)
(5.39)

where L is the radius of S3, and dω2
3 is the element of volume on an S3 of unit radius. The

coordinate η (which is dimensionless) is called the conformal time parameter (see [9], p. 120),
and it is related to the time coordinate by

t = Lη. (5.40)

We write the wavefunctions in factorized form

unm(η,x) = χm(η)φnm(x), (5.41)

where φj(x) is a spherical harmonic, i.e. an eigenfunction of the Laplacian on S3,

−∇2
S3φ

n
m =

(
m2 − 1

)
φnm, n = 1, · · · ,m2, m = 1, 2, · · · . (5.42)

The function unm satisfies the wave equation (5.37), which after separation of variables reads
[

1
L2

(
∂2
η −∇2

S3

)
+ ξR

]
χm(η)φnm = 0 (5.43)

which leads to the following equation for χm(η):

∂2
ηχm +

(
m2 − 1 + L2ξR

)
χm = 0. (5.44)

Now, R is here just the curvature of the sphere, therefore

R =
6
L2
, (5.45)

and for a conformally coupled scalar the equation reads

∂2
ηχm +m2χm = 0 (5.46)

with the solution
χm(η) ∝ e−iωmη, ωm = m. (5.47)

We can now calculate the Casimir energy of this system by zeta-function regularization

E =
1
2

∞∑

m=1

m2 · (m/L). (5.48)
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To understand the factor of L, notice that the frequencies are usuallt defined w.r.t. to the
time-depending phase

e−iω̂mt = e−iLω̂mη ⇒ ω̂m =
ωm
L
. (5.49)

The above sum is of course divergent, but we can regularize it with a zeta-function regularization
to obtain

E(s) =
1

2L

∞∑

m=1

m2m−s (5.50)

which has then to be continued to s = −1. We obtain in this way

E(s) =
1

2L
ζ(s− 2) (5.51)

and
E = E(−1) =

1
2L
ζ(−3) =

1
240L

. (5.52)

For Weyl spinors, the Casimir energy is obtained by summing over the modes of the spinor
spherical harmonics, and with a negative sign due Fermi statistics, i.e.

Espinor = − 1
2L

∞∑

m=1

2m(m+ 1)(m+ 1/2), (5.53)

where 2m(m + 1) is the degeneracy of the eigenvalue m + 1/2 of the Dirac operator. This can
be again regularized by considering

Espinor(s) = − 1
L

∞∑

n=1

n(n+ 1)(
n+ 1

2

)s (5.54)

and analytically continuing it for s = −1. Since

∞∑

n=1

n(n+ 1)(
n+ 1

2

)s =
(
2s−2 − 1

)
ζ(s− 2)− 1

4
(2s − 1) ζ(s) (5.55)

we find

Espinor(−1) = − 1
L

((
2−3 − 1

)
ζ(−3)− 1

4
(
2−1 − 1

)
ζ(−1)

)
=

17
960L

. (5.56)

Finally, for a gauge field, we have

Egauge =
1

2L

∞∑

n=1

2n(n+ 2)(n+ 1), (5.57)

where n+1 is the square root of the energies of the modes (i.e. the square root of the eigenvalues
of the Laplacian). This is regularized as

Egauge(s) =
1
L

∞∑

n=1

n(n+ 2)
(n+ 1)s

=
1
L

∞∑

m=1

m2 − 1
ms

= (ζ(s− 2)− ζ(s)) , (5.58)

and one finds
Egauge(−1) =

1
L

(ζ(−3)− 2ζ(−1)) =
11

120L
. (5.59)
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It follows that the Casimir energy on S3×R for a QFT with n0 conformally coupled real scalars,
n1/2 Weyl spinors and n1 vector fields is

E =
1

960L
(
4n0 + 17n1/2 + 88n1

)
. (5.60)

In the case of N = 4 SYM with gauge group U(N) we have

n0 = 6N2, n1/2 = 4N2, n1 = N2, (5.61)

and we obtain

E =
3N2

16L
. (5.62)

The Casimir energy computed in gravity is (5.36), which agrees with the result above after using
the dictionary

N2 =
πL3

2GN
. (5.63)

5.3 Example: free energy in AdS4

We are interested in studying CFTs on Sn. Therefore, in the AdS dual we need the Euclidean
version of the AdS metric with that boundary, which can be written as [16]

ds2 =
dr2

1 + r2/L2
+ r2dΩ2

n (5.64)

with the notations of the previous subsection. The boundary is again at r → ∞. This metric
can be also written as [41, 16]

ds2 = `2dρ2 + sinh2(ρ)dΩ2
n, (5.65)

5.4 AdS duals

The AdS duals to the theories we will consider are given by M-theory on the manifold

AdS4 ×X7, (5.66)

where X7 is a seven-dimensional manifold. In the case of ABJM theory,

X7 = S7/Zk. (5.67)

The eleven-dimensional metric and four-form flux are given by

ds2
11 = L2

X7

(
1
4

ds2
AdS4

+ ds2
X7

)
,

G =
3
8
L3
X7
ωAdS4 ,

(5.68)

where ωAdS4 is the volume form with unit radius. The radius LX7 is determined by the flux
quantization condition

(2π`p)6Q =
∫

C7

?11G = 6L6
X7

vol(X7). (5.69)
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In this equation, `p is the eleven-dimensional Planck length, and C7 is a cycle enclosing the brane
and homologous to X7. The charge Q is given, at large radius, by the number of M2 branes N ,
but it receives corrections [8, 5]. In ABJM theory we have

Q = N − 1
24

(
k − 1

k

)
. (5.70)

This extra term comes from the coupling
∫
C3 ∧ I8 (5.71)

in M-theory, where I8 is proportional to the Euler density in eight dimensions, and satisfies
∫

M8

I8 = − χ

24
(5.72)

where M8 is a compact eight-manifold. In ABJM theory, the relevant eight-manifold is C4/Zk,
with regularized Euler characteristic

χ
(
C4/Zk

)
= k − 1

k
. (5.73)

This leads to the shift in (5.70).
One final ingredient that we will need is Newton’s constant in four dimensions. It can be

obtained by standard compactification of the Einstein–Hilbert action in eleven dimensions, and
one finds

1
G4

=
2
√

6π2Q3/2

9
√

vol(X7)
. (5.74)

It follows that the regularized gravitational action in these backgrounds is of the form

IX7 =
π

2G4
= Q3/2

√
2π6

27vol(X7)
(5.75)

In particular, for ABJM theory we have

IS7/Zk =
π
√

2
3

k1/2Q3/2. (5.76)

6. Localization

6.1 A simple example of localization

In order to introduce the idea and the techniques of localization, it is useful to look at a very
simple example which has a purely geometric interpretation, namely the Poincaré–Hopf theorem.
This example has been worked out in some detail in many references, like for example [10, 12, 29].
We will follow the last one, see [30] as well.

Let X be a Riemannian manifold of dimension n, with metric gµν , vierbein eaµ, and a vector
field Vµ. We will consider the following “supercoordinates” on the tangent bundle TX

(xµ, ψµ) ,
(
ψ̄µ, Bµ

)
, (6.1)
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where the first doublet represents coordinates on the base X, and the second doublet represents
supercoordinates on the fiber. ψµ and ψ̄µ are Grasmann variables. The above supercoordinates
are related by the Grasmannian symmetry

δxµ = ψµ,

δψµ = 0,

δψ̄µ = Bµ,

δBµ = 0.
(6.2)

With these fields we construct the “action”

S =
1
2
gµν(BµBν + 2itBµV ν)− 1

4
Rρσµνψ̄ρψ̄σψ

µψν − it∇µV νψµψ̄ν , (6.3)

and we define the partition function of the theory as

Z(X) =
1

(2π)n

∫

X
dx dψ dψ̄ dB e−S (6.4)

It is very easy to see that the full action is δ-exact,

S = δΨ, Ψ =
1
2
ψ̄µ
(
Bµ + 2itV µ + Γστνψ̄σψ

νgµτ
)
. (6.5)

In particular, the partition function should be independent of t, and we can evaluate it in different
regimes: t→ 0 or t→∞. The calculation when t = 0 is very easy, since we just have

Z(X) =
1

(2π)n

∫

X
dx dψ dψ̄ dB e−

1
2
gµνBµBν+ 1

4
Rρσµν ψ̄ρψ̄σψµψν . (6.6)

The integral over B gives
(2π)n/2√

g
, (6.7)

and we can define orthonormal coordinates on the fiber by using the inverse vierbein,

χa = Eµa ψ̄µ, (6.8)

so that the integral reads

Z(X) =
1

(2π)n/2

∫

X
dx dψ dχ e

1
4
Rabµνχaχbψ

µψν =
1

(2π)n/2

∫

X
dx dψPf(R), (6.9)

where we have integrated over the Grassmann variables χa to obtain the Pfaffian of the matrix
Rab. The resulting top form in the integrand,

e(X) =
1

(2π)n/2
Pf(R) (6.10)

is nothing but the Chern–Weil representative of the Euler class, therefore the evaluation at t = 0
produces the Euler characteristic of X,

Z(X) = χ(X). (6.11)

Let us now calculate the integral in the limit t→∞. After integrating out B again, we find

Z(X) =
1

(2π)n/2

∫

X
dx dψ dχ e−

t2

2
gµνV µV ν+ 1

4
Rabµνχaχbψ

µψν+it∇µV νψµeaνχa . (6.12)
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We will now assume that V µ has isolated, simple zeroes pk where V µ(pk) = 0. These are the
saddle–points of the “path integral,” so we can write Z(X) as a sum over saddle–points pk, and
for each saddle–point we have to perform a perturbative expansion. Let ξµ be normal coordinates
around the point pk. We have the expansion,

V µ(x) =
∑

n≥1

1
n!
∂µ1 · · · ∂µnV µ(pk)ξµ1 · · · ξµn (6.13)

After rescaling the variables as

ξ → t−1ξ, ψ → t−1/2ψ, χ→ γ−1/2χ, (6.14)

in such a way that the measure remains invariant, we see that in the limit t → ∞ the theory
becomes Gaussian,

Z(X) =
∑

pk

1
(2π)n/2

∫

X
dx dψ dχ e−

1
2
gµνH

(k)µ
α H

(k)ν
β ξαξβ+iH

(k)ν
µ ψµeaνχa (6.15)

where
H(k)µ
σ = ∂σV

µ
∣∣
pk

(6.16)

The integral can now be computed as a sum over zeroes of the vector field,

Z(X) =
∑

pk

1
√
g|det H(k)|

det(eaµ)
(2m)!

(2m)!det H(k) =
∑

pk

det H(k)

|det H(k)| . (6.17)

6.2 Localization in the gauge sector

To localize in the gauge sector, we add to the CS-matter theory the term

−tSYM (6.18)

which is a total superderivative, and its bosonic part is positive definite. By the standard
localization argument, the partition function of the theory (as well as any δε-invariant operator)
does not depend on t, and we can take t→∞. This forces the fields to take the values that make
the bosonic part of (2.30) to vanish. Since this is a sum of positive definite terms, they have to
vanish separately. We then have the localizing locus,

Fµµ = 0, Dµσ = 0, D +
σ

r
= 0. (6.19)

The first equation says that the gauge connection Aµ must be flat, but since we are on S3 the
only flat connection is Aµ = 0. Plugging this into the second equation, we obtain

∂µσ = 0⇒ σ = σ0, (6.20)

a constant. Finally, we have
D = −σ0

r
. (6.21)

An equivalent analysis can be done by requiring δελ = 0. Once this is done, we have to consider
the one-loop fluctuations around this configuration. We have to pick a gauge fixing to proceed
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with the calculation, and we will choose the standard Lorentz gauge as in the case of Chern–
Simons theory. The path integral to be calculated to one-loop is

1
Vol(Hc)

(det′∆0)−
1
2

∫

Ker (d)†
DA

∫

(Ker d)⊥
DCDC e−tSYM(A)+Sghosts(C,C,A), (6.22)

where C,C are ghosts fields, which can be integrated out immediately to obtain

1
Vol(Hc)

(det′∆0)
1
2

∫

Ker (d)†
DA

∫

(Ker d)⊥
DCDC e−tSYM(A). (6.23)

We have to expand the YM action around the localizing locus, so we set

σ = σ0 +
1√
t
σ′

D = −σ0

r
+

1√
t
D′

A, λ→ 1√
t
A,

1√
t
λ,

(6.24)

where the factors of t are such that we remove the overall factor of t in the action. In this way
we obtain, up to quadratic order in the fluctuations,

1
2

∫ √
gd3xTr

(
−Aµ∆Aµ − [Aµ, σ0]2 + ∂µσ

′∂µσ′ + (D′ + σ′)2 + iλ̄γµ∇µλ+ iλ̄[σ0, λ]− 1
2r
λ̄λ

)

(6.25)
The integral over the fluctuation D′ is Gaussian and it can be done immediately. It just eliminates
the term in (D′ + σ′)2. The integral over σ′ gives

(det′∆0)−
1
2 (6.26)

which cancels the term in (6.23). Before proceeding, we just note that due to gauge invariance we
can diagonalize σ0 so that it takes values in the Cartan subalgebra. But we can also decompose
Aµ as:

Aµ =
∑

α

Aµ
αXα + hµ (6.27)

where the sum is over the roots α of G, Xα are representatives of the root spaces of G, normalized
as

Tr(XαXβ) = δα+β (6.28)

Finally, hµ is the component of Aµ along the Carta subalgebra. Notice that this part of Aµ will
only contribute a σ0-independent factor to the one-loop determinant, so we will ignore it for the
moment being. Then we can write:

[σ0, Aµ] =
∑

α

α(σ0)AµαXα (6.29)

and similarly for λ. Plugging this into the action, we can now write it in terms of ordinary (as
opposed to matrix valued) vectors and spinors

1
2

∫ √
gd3x

∑

α

(
Aµ−α

(
−∆ + α(σo)2

)
Aµα − λ̄−α

(
iγµ∇µ + iα(σ0)− 1

2r

)
λα

)
(6.30)
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Notice that, due to the rescaling of the A field, at large t the Chern–Simons term for A does
not contribute to the quadratic Lagrangian. We then have to calculate the determinants of the
above operators. Notice that the integration over the fluctuations of the gauge field is restricted,
as in the Chern–Simons case, to the vector spherical harmonics. Using the results (4.17), (4.18),
we find that the bosonic part of the determinant is:

det(bosons) =
∏

α

∞∏

n=1

(
(n+ 1)2 + α(σ0)2

)2n(n+2) (6.31)

For the gaugino, we can use (B.44) to write the fermion determinant as:

det(fermions) =
∏

α

∞∏

n=1

(
(n+ iα(σ0))(−n− 1 + iα(σ0))

)n(n+1)

, (6.32)

and the quotient gives

Zgauge
1-loop[σ0] =

∏

α

∞∏

n=1

(n+ iα(σ0))n(n+1)(−n− 1 + iα(σ0))n(n+1)

((n+ 1)2 + α(σ0)2)n(n+2)

=
∏

α

∞∏

n=1

(n+ iα(σ0))n(n+1)(−n− 1 + iα(σ0))n(n+1)

(n+ iα(σ0))(n−1)(n+1)(n+ 1− iα(σ0))n(n+2)

(6.33)

We see there is partial cancellation between the numerator and the denominator, and this be-
comes:

Zgauge
1-loop[σ0] =

∏

α

∞∏

n=1

(n+ iα(σ0))n+1

(n− iα(σ0))n−1
=
∏

α>0

∞∏

n=1

(n2 + α(σ0)2)n+1

(n2 + α(σ0)2)n−1

=
∏

α>0

∞∏

n=1

(n2 + α(σ0)2)2,

(6.34)

where we use the fact that the roots split into positive roots α > 0 and negative roots −α, α > 0.
We finally obtain

Zgauge
1-loop[σ0] =

( ∞∏

n=1

n4

)∏

α>0

∞∏

n=1

(
1 +

α(σ0)2

n2

)2

(6.35)

We can now regularize this with the zeta function, which will lead to a finite result for the infinite
product

∞∏

n=1

n4. (6.36)

On the other hand, we can use the well-known formula

sinh(πz)
πz

=
∏

n=1

(
1 +

z2

n2

)
(6.37)

to write

Zgauge
1-loop[σ0] ∝

∏

α>0

(
sinh(πα(σ0))
πα(σ0)

)2

, (6.38)

where the proportionality factor is independent of σ0.

– 31 –



6.3 Localization in the matter sector

The matter Lagrangian is in itself a total superderivative, so we can introduce a coupling t in
the form

−tSmatter. (6.39)

By the usual localization argument, the partition function is independent of t, and we can
compute it for t = 1 (which is the original case) or for t → ∞. We can also restrict this
Lagrangian to the localization locus of the gauge sector. The matter kinetic terms are then

Lφ = gµν∂µφ̄∂νφ+ φ̄σ2
0φ+ 2i(∆−1)

r φ̄σφ+ ∆(2−∆)
r2

φ̄φ,

Lψ = −iψ̄γµ∂µψ + iψ̄σ0ψ − ∆−2
r ψ̄ψ. (6.40)

The real part of the bosonic Lagrangian is definite positive, and it is minimized (and equal to
zero) when

φ = 0. (6.41)

After using (B.11) and (B.39), we find that the operators governing the quadratic fluctuations
around this fixed point are given by

∆φ =
1
r2

{
4L2 − (∆− irσ0)(∆− 2− irσ0)

}
,

∆ψ =
1
r
{4L · S + irσ0 + 2−∆} . (6.42)

Their eigenvalues are, for the bosons,

∆φ = r−2(n+ 2 + irσ0 −∆)(n− irσ0 + ∆), n = 0, 1, 2, · · · , (6.43)

with multiplicity (n+ 1)2, and for the fermions

∆ψ = r−1(n+ 1 + irσ0 −∆), r−1(−n+ irσ0 −∆), n = 1, 2, · · · , (6.44)

with multiplicities n(n+ 1). We finally obtain,

|det∆ψ|
det∆φ

=
∏

m>0

(m+ 1 + irσ0 −∆)m(m+1)(m− irσ0 + ∆)m(m+1)

(m+ 1 + irσ0 −∆)m2(m− 1− irσ0 + ∆)m2 (6.45)

and we conclude

Zmatter
1-loop [σ0] =

∏

m>0

(m+ 1−∆ + irσ0

m− 1 + ∆− irσ0

)m
, (6.46)

As a check, notice that, when ∆ = 1/2 and σ0 = 0, we recover the quotient of determinants (4.44)
of the free theory. This quantity can be easily computed by using ζ-function regularization [24].
Denote

z = 1−∆ + irσ0, `(z) = logZmatter
1-loop [σ0]. (6.47)

Then

∂z`(z) =
∞∑

m=1

(
m

m+ z
+

m

m− z

)
, (6.48)
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which has a linear divergence. We can regularize this quantity as

∂z`(z) = − ∂

∂s

∣∣∣∣
s=0

∞∑

m=1

(
m

(m+ z)s
+

m

(m− z)s
)
. (6.49)

On the other hand,
∞∑

m=1

(
m

(m+ z)s
+

m

(m− z)s
)

= ζH(s− 1, z)− zζH(s, z)− ζH(s− 1,−z)− zζH(s,−z), (6.50)

where

ζH(s, z) =
∞∑

m=1

1
(m+ z)s

(6.51)

is the Hurwitz zeta function. Using standard properties of this function, one finally finds the
regularized result

∂z`(z) = −πz cot(πz), (6.52)

which can be integrated to give

`(z) = −z log
(
1− e2πiz

)
+

i
2

(
πz2 +

1
π

Li2(e2πiz)
)
− iπ

12
, (6.53)

where we have imposed the boundary condition coming from (4.43)

`

(
1
2

)
= −1

2
log 2. (6.54)

There is an important property of `(z), namely when ∆ = 1/2 (canonical dimension) one has

1
2

(`(z) + `(z∗)) = −1
2

log (2 cosh(πrσ0)) . (6.55)

To prove this, we write

z =
1
2

+ iθ, (6.56)

and we compute

1
2

(`(z) + `(z∗)) = −1
2

log (2 cosh(πθ)) +
1
2
πiθ2 +

iπ
24

+
i

4π

(
Li2(−e−2πθ) + Li2(−e2πθ)

)
. (6.57)

After using the following property of the dilogarithm,

Li2(−x) + Li2(−x−1) = −π
2

6
− 1

2
(log(x))2 , (6.58)

we obtain (6.55).
When one has a self-conjugate representation, the set of eigenvalues of σ0 is invariant under

change of sign, therefore we can calculate the contribution of such a multiplet by using (6.55).
We conclude that for such a matter multiplet,

Zmatter
1-loop [σ0] =

∏

ρ

(2 cosh(πrρ(σ0)))1/2 . (6.59)

For general representations and anomalous dimensions, one has to use the more complicated
result above for `(z).
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6.4 Wilson loops

The condition for invariance of a Wilson loop is

(γµẋµ − 1) ε = 0. (6.60)

The solution is
γµẋ

µ = constant (6.61)

Notice that
ẋµ =

∑

a

caEµa (6.62)

satisfies the above equation, since

γµẋ
µ =

∑

a

γke
k
µc
aEµa =

∑

a

caγa (6.63)

indeed a constant matrix.
We can then take the vector field

ẋµ
∂

∂xµ
(6.64)

to be parallel to

`3 = Eµ3
∂

∂xµ
. (6.65)

The integral curves of this vector field are “great circles” i.e. circles of radius R inside S3. We
then find,

γµẋ
µ = γ3, (6.66)

and the condition on the spinor is simply

γ3ε = ε, (6.67)

i.e.

ε =
(

1
0

)
, (6.68)

where we have normalized
ε†ε = 1 (6.69)

6.5 The Chern–Simons matrix model

6.6 The ABJM matrix model

7. Matrix models at large N

8. Chern–Simons matrix models at large N

8.1 Solving the CS matrix model

The saddle-point equation at finite N is

1
gs
ui =

∑

j 6=i
coth

(
ui − uj

2

)
. (8.1)
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The form of the r.h.s. suggest to define the resolvent as

ω(z) = gs

〈
N∑

i=1

coth
(
z − ui

2

)〉
. (8.2)

The large N limit of (8.1) gives then

z =
1
2

(ω0(z + iε) + ω0(z − iε)) . (8.3)

The planar resolvent has the boundary conditions

ω0(z) ∼ ±t, z → ±∞, (8.4)

where
t = gsN. (8.5)

Let us define the exponentiated variable

Z = ez. (8.6)

In terms of the Z variable, the resolvent is given by

ω(z)dz = −tdZ
Z

+ 2gs

〈
N∑

i=1

dZ
Z − eµi

〉
(8.7)

and it has the following expansion as Z →∞

ω(z)→ t+
2gs
Z

〈
N∑

i=1

eµi
〉

+ · · · (8.8)

From this resolvent it is possible to obtain the density of eigenvalues at the cuts. In the planar
approximation, we have that

ω0(z) = −t+ 2t
∫

C
ρ(u)

Z

Z − eu
du, (8.9)

where ρ(u) is the density of eigenvalues, normalized in the standard way
∫

C
ρ(u)du = 1. (8.10)

The standard discontinuity argument tells us that

ρ(X)dX = − 1
4πit

dX
X

(ω0(X + iε)− ω0(X − iε)) , X ∈ C (8.11)

Let us now solve explicitly for ω0 by using analyticity arguments, following [21]. We construct
the function

g(Z) = eω0/2 + Ze−ω0/2. (8.12)

This function is regular everywhere on the complex plane. Indeed, we have

g(Z + iε) = eω0(Z+iε)/2 + Ze−ω0(Z+iε)/2 = Ze−ω0(Z−iε)/2 + e−ω0(Z−iε)/2 = g(Z − iε), (8.13)
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so it has no branch cut. The boundary conditions for this function, inherited from (8.4), are

lim
Z→∞

g(Z) = e−t/2Z, lim
Z→0

g(Z) = e−t/2. (8.14)

Analiticity and boundary conditions determine uniquely

g(Z) = e−t/2(Z + 1), (8.15)

and we can now regard (8.12) as a quadratic equation that determines ω as

ω0(Z) = 2 log
[

1
2

(
g(Z)−

√
g2(Z)− 4Z

)]
. (8.16)

From this resolvent we can determine immediately the density of eigenvalues,

ρ(x) =
1
πt

tan−1




√
et − cosh2

(
x
2

)

cosh
(
x
2

)


 (8.17)

supported on the interval [−A,A] with

A = 2 cosh−1
(

et/2
)
. (8.18)

8.2 Solving the lens space matrix model

The lens space matrix model is

ZL(2,1)(N1, N2, gs) =
1

N1!N2!

∫ N1∏

i=1

dµi
2π

N2∏

j=1

dνj
2π

∏

i<j

(
2 sinh

(
µi − µj

2

))2(
2 sinh

(
νi − νj

2

))2

×
∏

i,j

(
2 cosh

(
µi − νj

2

))2

e−
1

2gs
(

P
i µ

2
i+

P
j ν

2
j ).

(8.19)
The saddle-point equations are

µi =
t1
N1

N1∑

j 6=i
coth

µi − µj
2

+
t2
N2

N2∑

a=1

tanh
µi − νa

2
,

νa =
t2
N2

N2∑

b 6=a
coth

νa − νb
2

+
t1
N1

N1∑

i=1

tanh
νa − µi

2
,

(8.20)

The total resolvent of the matrix model, ω(z), is defined as [21]

ω(z) = gs

〈
N1∑

i=1

coth
(
z − µi

2

)〉
+ gs

〈
N2∑

a=1

tanh
(
z − νa

2

)〉
(8.21)

In terms of the Z variable, it is given by

ω(z)dz = −(t1 + t2)
dZ
Z

+ 2gs

〈
N1∑

i=1

dZ
Z − eµi

〉
+ 2gs

〈
N2∑

a=1

dZ
Z + eνa

〉
(8.22)
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and it has the following expansion as Z →∞

ω(z)→ t1 + t2 +
2gs
Z

〈
N1∑

i=1

eµi −
N2∑

a=1

eνa
〉

+ · · · (8.23)

From the total resolvent it is possible to obtain the density of eigenvalues at the cuts. In the
planar approximation, we have that

ω0(z) = −(t1 + t2) + 2t1
∫

C1
ρ1(µ)

Z

Z − eµ
dµ+ 2t2

∫

C2
ρ2(ν)

Z

Z + eν
dν, (8.24)

where ρ1(µ), ρ2(ν) are the densities of eigenvalues on the cuts C1, C2, respectively, normalized as
∫

C1
ρ1(µ)dµ =

∫

C2
ρ2(ν)dν = 1. (8.25)

The standard discontinuity argument tells us that

ρ1(X)dX = − 1
4πit1

dX
X

(ω0(X + iε)− ω0(X − iε)) , X ∈ C1,

ρ2(Y )dY =
1

4πit2
dY
Y

(ω0(Y + iε)− ω0(Y − iε)) , Y ∈ C2.

(8.26)

Let us now find an explicit expression for the resolvent, following [21]. First, notice that it
can be split in two pieces,

ω(z) = ω(1)(z) + ω(2)(z + iπ), (8.27)

where

ω(1)(z) = gs

〈
N1∑

i=1

coth
(
z − µi

2

)〉
,

ω(2)(z) = gs

〈
N2∑

a=1

coth
(
z − νa

2

)〉
.

(8.28)

In fact, it is easy to see that the matrix model (8.19) is equivalent to a CS matrix model for N
variables ui, i = 1, · · · , N , where N1 variables

ui = µi, i = 1, · · · , N1, (8.29)

are expanded around the point z = 0, and N2 = N −N1 variables

uN1+a = iπ + νa, a = 1, · · · , N2, (8.30)

are expanded around the point z = iπ. At large N1,2 it is natural to assume that the first set
of eigenvalues will condense in a cut around z = 0, and the second set will condense in a cut
around z = πi. It follows that ω(1)(z) will have a discontinuity on a branch cut [−A,A], while
ω(2)(z) will have a discontinuity at the interval [−B,B]. When gs is real, these cuts occur in the
real axis, and the two cuts in the total resolvent are separated by iπ (see Fig. 2).

The saddle-point equations (8.20) become then, at large N ,

z =
1
2

(ω0(z + iε) + ω0(z − iε)) , z ∈ [−A,A],

z =
1
2

(ω0(z + iπ + iε) + ω0(z + iπ − iε)) , z ∈ [−B,B]
(8.31)
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A−A

πi + Bπi− B

Figure 2: Cuts in the z-plane and in the Z-plane.

It follows that the function
f(Z) = et

(
eω0 + Z2e−ω0

)
(8.32)

is regular everywhere on the complex plane and has limiting behavior

lim
Z→∞

f(Z) = Z2, lim
Z→0

f(Z) = 1. (8.33)

The unique solution satisfying these conditions is

f(Z) = Z2 − ζZ + 1, (8.34)

where ζ is a parameter to be determined. Solving now (8.32) as a quadratic equation for eω0

yields,

ω0(Z) = log
(

e−t

2

[
f(Z)−

√
f2(Z)− 4e2tZ2

])
(8.35)

Notice that eω0 has a square root branch cut involving the function

σ(Z) = f2(Z)− 4e2tZ2 = (Z − a) (Z − 1/a) (Z + b) (Z + 1/b) (8.36)

where a±1,−b±1 are the endpoints of the cuts in the Z = ez plane, see Fig. 2. We deduce that
the parameter ζ is related to the positions of the endpoints of the cuts as follows

ζ =
1
2

(
a+

1
a
− b− 1

b

)
, (8.37)

and we also find the constraint
1
4

(
a+

1
a

+ b+
1
b

)
= et. (8.38)

Once the resolvent is known, we can obtain both the ’t Hooft parameters and the derivative
of the genus zero free energy in terms of period integrals. The ’t Hooft parameters are given by

ti =
1

4πi

∮

Ci
ω0(z)dz, i = 1, 2. (8.39)

The planar free energy F0 satisfies the equation

I ≡ ∂F0

∂s
− πit = −1

2

∮

D
ω0(z)dz, (8.40)
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where
s =

1
2

(t1 − t2) (8.41)

and the D cycle encloses, in the Z plane, the interval between −1/b and 1/a (see Fig. 2).
The above period integrals are hard to compute, but their derivatives can be computed easily

by adpating a trick from [11]. One finds,

∂t1,2
∂ζ

= − 1
4πi

∮

C1,2

dZ√
(Z2 − ζZ + 1)2 − 4e2tZ2

= ±
√
ab

π(1 + ab)
K(k), (8.42)

where K(k) is the complete elliptic integral of the first kind, and its modulus is given by

k2 =
(a2 − 1)(b2 − 1)

(1 + ab)2
= 1−

(
a+ b

1 + ab

)2

. (8.43)

Likewise for the period integral in (8.40) we find

∂I
∂ζ

= −2

√
ab

1 + ab
K(k′), (8.44)

where
k′ =

a+ b

1 + ab
. (8.45)

8.3 ABJM theory and exact interpolating functions

We will now analyze this in the simplest case, namely the ABJM theory in which

t1 = −t2 = 2πi
N

k
. (8.46)

If we think about t1,2 as “moduli” parametrizing the space of complex ’t Hooft couplings, the
ABJM theory corresponds to a real, one-dimensional submanifold in this moduli space. We will
refer to it as the ABJM slice. In this slice, t = 0 and the theory has only one parameter, which
from the point of view of the resolvent is ζ. It follows from (8.37) and (8.38) that

a+
1
a

= 2 + ζ, b+
1
b

= 2− ζ, (8.47)

The derivative (8.42) can be expressed in a simpler way by using appropriate transformations of
the elliptic integral K(k). Let us consider the elliptic moduli

k1 =
1− k′
1 + k′

, k2 = i
k1

k′1
. (8.48)

One has that (see for example [20], 8.126 and 8.128)

K(k) = (1 + k1)K(k1) =
1 + k1

k′1
K(k2), (8.49)

and we can write
√
ab

π(1 + ab)
K(k) =

√
ab

π(1 + ab)
1 + k1

k′1
K(k2) =

1
π

√
ab

(a+ b)(1 + ab)
K(k2). (8.50)
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Notice that

k1 =
(a− 1)(b− 1)
(a+ 1)(b+ 1)

, k2
2 = − (a− 1)2(b− 1)2

4(a+ b)(1 + ab)
(8.51)

In the ABJM slice we have

k2
2 =

ζ2

16
,

√
ab

(a+ b)(1 + ab)
=

1
2

(8.52)

and
dλ
dζ

=
1

4π2i
K

(
ζ

4

)
(8.53)

It follows from this equation that, if we want λ to be real (as it should be in the ABJM theory),
ζ has to be pure imaginary, and we can write

ζ = iκ, κ ∈ R. (8.54)

It follows that
dλ
dκ

=
1

4π2
K

(
iκ
4

)
. (8.55)

This can be integrated explicitly in terms of a hypergeometric function [31]

λ(κ) =
κ

8π 3F2

(
1
2
,
1
2
,
1
2

; 1,
3
2

;−κ
2

16

)
. (8.56)

where we have used that λ = 0 when κ = 0 (in this limit, the cut [a, 1/a] collapses to zero size,
and the period t1 vanishes).

Let us now consider the prepotential. Its second derivative w.r.t. s, evaluated at t = 0, can
be calculated as

∂2F0

∂s2

∣∣∣
t=0

=
∂I
∂ζ

∣∣∣
t=0
·
(

dt1
dζ

)−1

. (8.57)

Like before, we will use the transformation properties of the elliptic integral K(k′) to write (8.44)
in a more convenient way. From (8.48) we deduce

k′1 =
2
√
k′

1 + k′
, k′2 =

1
k′1
, (8.58)

and we have, using again [20], 8.126 and 8.128,

K(k′) =
1

1 + k′
K(k′1) =

k′2
1 + k′

(
K(k′2) + iK(k2)

)
. (8.59)

In the ABJM slice we find,

∂I
∂ζ

∣∣∣∣
t=0

= −1
2

[
K ′
(

iκ
4

)
+ iK

(
iκ
4

)]
, (8.60)

so that
∂2F0

∂s2

∣∣∣∣
t=0

= −πK
′ ( iκ

4

)

K ′
(

iκ
4

) − πi. (8.61)
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We conclude that, in the ABJM theory,

∂2
λF0(λ) = 4π3K

′ ( iκ
4

)

K
(

iκ
4

) + 4π3i, (8.62)

A further integration leads to the following expression in terms of a Meijer function

∂λF0(λ) =
κ

4
G2,3

3,3

(
1
2 ,

1
2 ,

1
2

0, 0, −1
2

∣∣∣∣−
κ2

16

)
+
π2iκ

2 3F2

(
1
2
,
1
2
,
1
2

; 1,
3
2

;−κ
2.

16

)
. (8.63)

This is, indeed, the exact interpolating function we were looking for! To see this, we can expand
it at weak coupling as follows:

∂λF0(λ) = −8π2λ

(
log
(
πλ

2

)
− 1
)

+
16π4λ3

9
+O

(
λ5
)
. (8.64)

After including the term g−2
s , we find that the first term exactly reproduces the weak-coupling

answer (4.49). The comparison with the weak coupling expansion also fixes the integration
constant,

F0(λ) =
∫ λ

0
dλ′ ∂λ′F0(λ′) (8.65)

To study the strong-coupling behavior, we can now analytically continue the r.h.s. of (8.63) to
κ =∞, and we obtain

∂λF0(λ) = 2π2 log κ+
4π2

κ2 4F3

(
1, 1,

3
2
,
3
2

; 2, 2, 2;−16
κ2

)
. (8.66)

After integrating w.r.t. λ and introducing the shifted variables λ̂ we find,

F0(λ̂) =
4π3
√

2
3

λ̂3/2 +
∑

`≥1

e−2π`
√

2λ̂f`

(
1

π
√

2λ̂

)
(8.67)

where f`(x) is a polynomial in x of degree 2`− 3 (for ` ≥ 2).
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Figure 3: Comparison of the exact result for ∂λF0(λ) given in (8.63), plotted as a solid blue line, and
the weakly coupled and strongly coupled results. In the figure on the left, the red dashed line is the
supergravity result given by the first term in (8.67), while in the figure on the right, the black dashed line
is the Gaussian result given by the first two terms in (8.64).

– 41 –



A. Differential geometry of S3

A.1 Maurer–Cartan forms

We will first introduce some results and conventions for the Lie algebra and the Maurer–Cartan
forms. The basis of a Lie algebra g satisfies

[Ta, Tb] = fabcTc. (A.1)

If g ∈ G is a generic element of G, one defines the Maurer–Cartan forms ωa through the equation

g−1dg =
∑

a

Taω
a, (A.2)

and they satisfy

dωa +
1
2
fabcω

b ∧ ωc = 0. (A.3)

This is due to the fact that
d
(
g−1dg

)
+ g−1dg ∧ g−1dg = 0. (A.4)

Let us now specialize to SU(2). A basis for the Lie algebra is given by:

Ta =
i
2
σa, (A.5)

so explicitly

T1 =
i
2

(
0 1
1 0

)
, T2 =

i
2

(
0 −i
i 0

)
, T3 =

i
2

(
1 0
0 −1

)
(A.6)

The structure constants are
fabc = −εabc (A.7)

Elements of SU(2) are of the form

g =
(
α β
−β̄ ᾱ

)
, |α|2 + |β|2 = 1. (A.8)

We parametrize this element as (see for example [37])

|α| = cos
t1
2
, |β| = sin

t1
2
, Argα =

t2 + t3
2

, Arg β =
t2 − t3 + π

2
, (A.9)

where ti are the Euler angles and span the range

0 ≤ t1 < π, 0 ≤ t2 < 2π, −2π ≤ t3 < 2π. (A.10)

The general element of SU(2) will then be given by

g =u(t1, t2.t3) =
(

cos(t1/2)ei(t2+t3)/2 i sin(t1/2)ei(t2−t3)/2

i sin(t1/2)ei(−t2+t3)/2 cos(t1/2)e−i(t2+t3)/2

)

= u(t2, 0, 0)u(0, t1, 0)u(0, 0, t3).

(A.11)

We then have

Ω = g−1dg =
i
2

(
dt3 + cos t1dt2 e−it3(dt1 + idt2 sin t1)

eit3(dt1 − idt2 sin t1) −dt3 − cos t1dt2

)
. (A.12)
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Therefore,
ω1 = cos t3dt1 + sin t3 sin t1dt2,

ω2 = sin t3dt1 − cos t3 sin t1dt2,

ω3 = cos t1dt2 + dt3,

(A.13)

and one checks explicitly

dωa =
1
2
εabc ωb ∧ ωc, (A.14)

as it should according to (A.3).

A.2 Metric and spin connection

The metric on SU(2) = S3 is induced from the metric on C2

ds2 = r2

(
d|α|2 + |α|2dArgα2 + d|β|2 + |β|2dArgβ2

)
, (A.15)

where r is the radius of the three-sphere. A simple calculation leads to

ds2 =
r2

4

(
dt21 + dt22 + dt23 + 2 cos t1 dt2dt3

)
, (A.16)

with inverse metric

G−1 =
4
r2




1 0 0
0 csc2 t1 − cot t1 csc t1
0 − cot t1 csc t1 csc2 t1


 . (A.17)

and volume element

(detG)1/2 =
r3 sin t1

8
. (A.18)

The volume of S3 is then ∫

SU(2)
(detG)1/2dt1 dt2 dt3 = 2π2 r3. (A.19)

which is the standard result. The only nonzero Christoffel symbols of this metric are

Γ1
23 =

1
2

sin t1, Γ2
13 = Γ3

12 = − 1
2 sin t1

, Γ3
13 = Γ2

12 =
1
2

cot t1. (A.20)

We can use the Maurer–Cartan forms to analyze the differential geometry of S3. The vierbein
of S3 is proportional to ωa, and we have

eaµ =
r

2
ωaµ. (A.21)

In terms of forms, we have
ea = eaµdxµ =

r

2
ωa. (A.22)

Indeed, one can explicitly check that

eaµe
b
νηab = Gµν . (A.23)

The inverse vierbein is defined by
Eµa = ηabG

µνebµ, (A.24)
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which can be used to define left-invariant vector fields

`a = Eµa
∂

∂xµ
. (A.25)

Let us give their explicit expression in components:

`1 =
2
r

(
cos t3

∂

∂t1
+

sin t3
sin t1

∂

∂t2
− sin t3 cot t1

∂

∂t3

)
,

`2 =
2
r

(
sin t3

∂

∂t1
− cos t3

sin t1
∂

∂t2
+ cos t3 cot t1

∂

∂t3

)
,

`3 =
2
r

∂

∂t3
.

(A.26)

Of course, they obey
ea(`b) = δab , (A.27)

as well as the following commutation relations

[`a, `b] = −2
r
εabc`c. (A.28)

This can be checked by direct computation. If we now introduce the operators La through

`a =
2i
r
La. (A.29)

we see that they satisfy the standard commutation relations of the SU(2) angular momentum
operators:

[La, Lb] = iεabcLc. (A.30)

The spin connection ωab is characterized by

dea + ωab ∧ eb = 0. (A.31)

Imposing no torsion one finds the explicit expression,

ωabµ = −Eνb
(
∂µe

a
ν − Γλµνe

a
λ

)
, (A.32)

or, equivalently,
∂µe

a
ν = Γλµνe

a
λ − ebνωabµ. (A.33)

In our case we find
ωab =

1
r
εabce

c (A.34)

A.3 Hodge dual

The ∗ operator reads

∗(dxi1 ∧ · · · ∧ dxip) =
(detG)1/2

(n− p)! ε
i1···ip

ip+1···indxip+1 ∧ · · · ∧ dxin (A.35)
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This leads to
∗dt1 =

r

2
sin t1dt2 ∧ dt3,

∗dt2 =− r

2 sin t1

(
dt1 ∧ dt3 + cos t1dt1 ∧ dt2

)
,

∗dt3 =
r

2 sin t1

(
cos t1dt1 ∧ dt3 + dt1 ∧ dt2

)
.

(A.36)

From this we obtain, using that ∗2 = 1,

∗(dt1 ∧ dt2) =
2

r sin t1
(cos t1dt2 + dt3),

∗(dt3 ∧ dt1) =
2

r sin t1
(dt2 + cos t1dt3),

∗(dt2 ∧ dt3) =
2

r sin t1
dt1,

(A.37)

∗1 = −r
3

8
ω1 ∧ ω2 ∧ ω3,

∗ωa = −r
4
εabcωb ∧ ωc,

∗(ωa ∧ ωb) = −2
r
εabcωc,

∗(ωa ∧ ωb ∧ ωc) = − 8
r3
εabc.

(A.38)

Finally, the norm of the Maurer–Cartan forms is

‖ωa‖2 =
∫

SU(2)
ωa ∧ ∗ωa = 8π2r. (A.39)

B. Differential operators and harmonic analysis

B.1 Laplacian operator and scalar spherical harmonics

The Laplacian can be calculated in coordinates from the general formula

∆φ =
1√

detG

∑

m,n

∂

∂xm

(√
detGGmn

∂φ

∂xn

)
, (B.1)

or equivalently
∆ = Gµν∂µ∂ν −GµνΓρµν∂ρ. (B.2)

In this case it reads

∆ =
4
r2

(
∂2

∂t21
+ cot t1

∂

∂t1
+ csc2 t1

∂2

∂t22
+ csc2 t1

∂2

∂t32
− 2 csc t1 cot t1

∂2

∂t2∂t3

)
. (B.3)

It is easy to check that it can be written, in terms of left-invariant vector fields, as

∆ =
∑

a

`2a. (B.4)
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To see this, we write ∑

a

`2a =
∑

a

Eµa
∂Eνa
∂xµ

∂

∂xν
+
∑

a

EµaE
ν
a∂µ∂ν . (B.5)

The second term is already the second term in (B.2). We now use the identity

∂µE
ν
b = Eνc ω

c
bµ − ΓνµλE

λ
b . (B.6)

After contraction with Eµa and use of the explicit form of the spin connection, we see that only
the second term survives, which is indeed the first term in (B.2).

The Peter–Weyl theorem says that any square-integrable function on S3 ' SU(2) can be
written as a linear combination of

Smnj = πmnj , m, n = 1, · · · , dj (B.7)

where
πj : SU(2)→Mdj×dj (B.8)

is the representation of spin j and dimension dj , and Mdj×dj are the inversible square matrices
of rank dj . The functions πabj are just

πmnj = ρmn πj (B.9)

where
ρmn : Mdj×dj → C, (B.10)

is just the (m,n)-th entry of the matrix. The eigenvalues of the Laplacian might be calculated
immediately by noticing that, in terms of the SU(2) angular momentum operators, it reads

∆ = − 4
r2

L2, (B.11)

and since the possible eigenvalues of L2 are

j(j + 1), j = 0,
1
2
, · · · , (B.12)

we conclude that the eigenvalues of the Laplacian are of the form

λj = − 4
R2

j(j + 1), j = 0,
1
2
, · · · (B.13)

Notice that the dependence on R is the expected one from dimensional analysis.
This result can be checked directly as follows. By the result mentioned above, any zero–form

φ ∈ Ω0(S3) can be written as
φ(x) =

∑

j∈N0/2

tr
(
πj(x)Bj

)
, (B.14)

where Bj is an endomorphism of the representation space Vj of πj . Notice that this is just

φ(x) =
∑

j∈N0/2

dj∑

m,n=1

πmnj (x)Bj
ba, (B.15)
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so the Bj
ba are just the coefficients of the expansion. We have

dπj(g) =
∑

α

πj(g)πj(Tα)ωα. (B.16)

Let us calculate the action of the Laplacian on

φ = tr
(
πj(x)Bj

)
. (B.17)

We have
dφ = tr

(
πj(x)πj(Ta)Bj

)
ωa. (B.18)

∗dφ = −r
4
εabctr

(
πj(x)πj(Ta)Bj

)
ωb ∧ ωc. (B.19)

d ∗ dφ =− r

4
εabctr

(
πj(x)πj(Td)πj(Ta)Bj

)
ωd ∧ ωb ∧ ωc

− r

2
εabctr

(
πj(x)πj(Ta)Bj

)
dωb ∧ ωc.

(B.20)

If we apply the Maurer–Cartan structure equations, we see that the last term vanishes. We
finally get

∆φ =
2
R2

εabcεdbctr
(
πj(x)πj(Td)πj(Ta)Bj

)
=

4
R2

tr
(
πj(x)πj(Ta)πj(Ta)Bj

)
=

4
R2

c2(Rj)φ.

(B.21)
Therefore, the eigenvalues of the Laplacian on zero–forms are given by

4
r2
c2(Rj) = −4j(j + 1)

r2
, (B.22)

in agreement with the result above. The degeneracy of these eigenvalues is

d2
j = (2j + 1)2 = (n+ 1)2, (B.23)

which is the dimension of the matrice Mdj×dj .

B.2 Vector spherical harmonics

A one–form ω ∈ Ω1(S3) can be written as

ω =
3∑

α=1

∑

j∈N0/2

tr
(
πj(x)Ejα

)
ωα, (B.24)

where πj is the irreducible representation of SU(2) of spin j, with dimension 2j + 1, Ejα is an
endomorphism of the representation space Vj of πj and {ωα}α=1,2,3 is a basis of left invariant
one-forms on SU(2), orthonormal with respect to the normalized bi-invariant metric.

The space of one-forms can be decomposed in fact in two different sets. One set is spanned
by gradients of Smnj , and it is proportional to

Smqj (Ta)
qn
j ω

a. (B.25)

The other set is spanned by the so-called vector spherical harmonics,

V mn
j± , ε = ±1, m = 1, · · · , dj± 1

2
, n = 1, · · · , dj∓ 1

2
, (B.26)
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see Appendix B of [6] for a useful summary of their properties. The ε = ±1 corresponds to two
linear combinations of the ωa which are independent from the one appearing in (B.25). The
vector spherical harmonics are in the representation

(
j ± 1

2
, j ∓ 1

2

)
(B.27)

of SU(2)× SU(2). We will write them, as in [6], as V α, where

α = (j,m,m′, ε), (B.28)

and we will regard them as one-forms. They satisfy the properties

d†V α = 0, ∗dV α = −εα(2jα + 1)V α. (B.29)

It follows that
∗d ∗ dV α = −∆V α = (2jα + 1)2V α. (B.30)

Their degeneracy is
2dj+ 1

2
dj− 1

2
= 4j(2j + 2) = 2n(n+ 2). (B.31)

B.3 Spinors

Using the dreibein, we define the “locally inertial” gamma matrices as

γa = Eµa γµ, (B.32)

which satisfy the relations

{γa, γb} = 2δab, [γa, γb] = 2iεabcγc. (B.33)

The standard definition of a covariant derivative acting on a spinor is

∇µ = ∂µ +
1
4
ωabµ γaγb = ∂µ +

1
8
ωabµ [γa, γb] (B.34)

Using the commutation relations of the gamma matrices γa and the explicit expression for the
spin connection (A.34) we find

∇µ =∂µ +
i

4r
εabcεabde

c
µγd = ∂µ +

i
2
ecµγc

=∂µ +
i

2r
γµ.

(B.35)

It follows that the Dirac operator is

−iD/ = −iγµ∂µ +
3
2r

= −iγaEµa∂µ +
3
2r

= −iγa`a +
3
2r
. (B.36)

Let us now introduce the spin operators

Sa =
1
2
γa, (B.37)
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which satisfy the SU(2) algebra
[Sa, Sb] = iεabcSc. (B.38)

In terms of the Sa and the SU(2) operators La, the Dirac operator reads

−iD/ =
1
r

(
4L · S +

3
2

)
. (B.39)

The calculation of the spectrum of this operator is as in standard Quantum Mechanics: we
introduce the total angular momentum

J = L + S, (B.40)

so that
4L · S = 2

(
J2 − L2 − S2

)
. (B.41)

Since S corresponds to spin s = 1/2, and L to j, the possible eigenvalues of J are j ± 1/2, and
we conclude that the eigenvalues of (B.39) are (we set r = 1)

2
((

j ± 1
2

)(
j ± 1

2
+ 1
)
− j(j + 1)

)
=

{
2j + 3

2 for +
−2j − 1

2 for −,
, j = 0,

1
2
, (B.42)

with degeneracies

dj± 1
2

=
(

2
(
j ± 1

2

))
(2j + 1) =

{
2(j + 1)(2j + 1) for +
2j(2j + 1) for −.

(B.43)

These can be written in a more compact form as

λ±n = ±
(
n+

1
2

)
, d±n = n(n+ 1), n = 1, 2, · · · (B.44)
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