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2.6 The Euler–Poincaré Equations . . . . . . . . . . . . . . . . 37
2.7 Momentum Maps . . . . . . . . . . . . . . . . . . . . . . . 39
2.8 Symplectic and Poisson Reduction . . . . . . . . . . . . . 42
2.9 Singularities and Symmetry . . . . . . . . . . . . . . . . . 45
2.10 A Particle in a Magnetic Field . . . . . . . . . . . . . . . . 46

3 Tangent and Cotangent Bundle Reduction 49



ii Contents

3.1 Mechanical G-systems . . . . . . . . . . . . . . . . . . . . 50
3.2 The Classical Water Molecule . . . . . . . . . . . . . . . . 52
3.3 The Mechanical Connection . . . . . . . . . . . . . . . . . 56
3.4 The Geometry and Dynamics of Cotangent Bundle Reduc-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6 Lagrangian Reduction and the Routhian . . . . . . . . . . 72
3.7 The Reduced Euler–Lagrange Equations . . . . . . . . . . 77
3.8 Coupling to a Lie group . . . . . . . . . . . . . . . . . . . 79

4 Relative Equilibria 85
4.1 Relative Equilibria on Symplectic Manifolds . . . . . . . . 85
4.2 Cotangent Relative Equilibria . . . . . . . . . . . . . . . . 88
4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 The Rigid Body . . . . . . . . . . . . . . . . . . . . . . . . 95

5 The Energy–Momentum Method 101
5.1 The General Technique . . . . . . . . . . . . . . . . . . . . 101
5.2 Example: The Rigid Body . . . . . . . . . . . . . . . . . . 105
5.3 Block Diagonalization . . . . . . . . . . . . . . . . . . . . 109
5.4 The Normal Form for the Symplectic Structure . . . . . . 114
5.5 Stability of Relative Equilibria for the Double Spherical

Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Geometric Phases 121
6.1 A Simple Example . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3 Cotangent Bundle Phases—a Special Case . . . . . . . . . 125
6.4 Cotangent Bundles—General Case . . . . . . . . . . . . . 126
6.5 Rigid Body Phases . . . . . . . . . . . . . . . . . . . . . . 128
6.6 Moving Systems . . . . . . . . . . . . . . . . . . . . . . . . 130
6.7 The Bead on the Rotating Hoop . . . . . . . . . . . . . . 132

7 Stabilization and Control 135
7.1 The Rigid Body with Internal Rotors . . . . . . . . . . . . 135
7.2 The Hamiltonian Structure with Feedback Controls . . . . 136
7.3 Feedback Stabilization of a Rigid Body with a Single Rotor 138
7.4 Phase Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.5 The Kaluza–Klein Description of Charged Particles . . . . 145
7.6 Optimal Control and Yang–Mills Particles . . . . . . . . . 148

8 Discrete Reduction 151
8.1 Fixed Point Sets and Discrete Reduction . . . . . . . . . . 153
8.2 Cotangent Bundles . . . . . . . . . . . . . . . . . . . . . . 159
8.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



Contents iii

8.4 Sub-Block Diagonalization with Discrete Symmetry . . . . 165
8.5 Discrete Reduction of Dual Pairs . . . . . . . . . . . . . . 168

9 Mechanical Integrators 173
9.1 Definitions and Examples . . . . . . . . . . . . . . . . . . 173
9.2 Limitations on Mechanical Integrators . . . . . . . . . . . 177
9.3 Symplectic Integrators and Generating Functions . . . . . 179
9.4 Symmetric Symplectic Algorithms Conserve J . . . . . . . 180
9.5 Energy–Momentum Algorithms . . . . . . . . . . . . . . . 182
9.6 The Lie–Poisson Hamilton–Jacobi Equation . . . . . . . . 184
9.7 Example: The Free Rigid Body . . . . . . . . . . . . . . . 187
9.8 PDE Extensions . . . . . . . . . . . . . . . . . . . . . . . 188

10 Hamiltonian Bifurcation 191
10.1 Some Introductory Examples . . . . . . . . . . . . . . . . 191
10.2 The Role of Symmetry . . . . . . . . . . . . . . . . . . . . 198
10.3 The One-to-One Resonance and Dual Pairs . . . . . . . . 203
10.4 Bifurcations in the Double Spherical Pendulum . . . . . . 205
10.5 Continuous Symmetry Groups and Solution Space Singu-

larities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
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Preface

Many of the greatest mathematicians—Euler, Gauss, Lagrange, Rie-
mann, Poincaré, Hilbert, Birkhoff, Atiyah, Arnold, Smale—mastered
mechanics and many of the greatest advances in mathematics use
ideas from mechanics in a fundamental way. Hopefully the revival
of it as a basic subject taught to mathematicians will continue and
flourish as will the combined geometric, analytic and numerical ap-
proach in courses taught in the applied sciences. Anonymous

I venture to hope that my lectures may interest engineers, physi-
cists, and astronomers as well as mathematicians. If one may accuse
mathematicians as a class of ignoring the mathematical problems
of the modern physics and astronomy, one may, with no less justice
perhaps, accuse physicists and astronomers of ignoring departments
of the pure mathematics which have reached a high degree of de-
velopment and are fitted to render valuable service to physics and
astronomy. It is the great need of the present in mathematical sci-
ence that the pure science and those departments of physical science
in which it finds its most important applications should again be
brought into the intimate association which proved so fruitful in the
work of Lagrange and Gauss. Felix Klein, 1896

Mechanics is a broad subject that includes, not only the mechanics of
particles and rigid bodies, but also continuum mechanics (fluid mechanics,
elasticity, plasma physics, etc), field theory (Maxwell’s equations, the Ein-
stein equations etc) and even, as the name implies, quantum mechanics.
Rather than compartmentalizing these into separate subjects (and even
separate departments in Universities), there is power in seeing these topics
as a unified whole. For example, the fact that the flow of a Hamiltonian
system consists of canonical transformations becomes a single theorem com-
mon to all these topics. Numerical techniques one learns in one branch of
mechanics are useful in others.

These lectures cover a selection of topics from recent developments in
the mathematical approach to mechanics and its applications. In partic-
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ular, we emphasize methods based on symmetry, especially the action of
Lie groups, both continuous and discrete, and their associated Noether
conserved quantities viewed in the geometric context of momentum maps.
In this setting, relative equilibria, the analogue of fixed points for systems
without symmetry are especially interesting. In general, relative equilibria
are dynamic orbits that are also one-parameter group orbits. For the rota-
tion group SO(3), these are uniformly rotating states or, in other words,
dynamical motions in steady rotation.

Some of the main points treated in the lectures are as follows:

• The stability of relative equilibria analyzed using the method of sep-
aration of internal and rotational modes, also referred to as the block
diagonalization or normal form technique.

• Geometric phases, including the phases of Berry and Hannay, are
studied using the technique of reduction and reconstruction.

• Mechanical integrators, such as numerical schemes that exactly pre-
serve the symplectic structure, energy, or the momentum map.

• Stabilization & control using methods for mechanical systems.

• Bifurcation of relative equilibria in mechanical systems, dealing with
the appearance of new relative equilibria and their symmetry break-
ing as parameters are varied, and with the development of complex
(chaotic) dynamical motions.

A unifying theme for many of these aspects is provided by reduction the-
ory and the associated mechanical connection for mechanical systems with
symmetry. When one does reduction, one sets the corresponding conserved
quantity (the momentum map) equal to a constant, and quotients by the
subgroup of the symmetry group that leaves this set invariant. One arrives
at the reduced symplectic manifold that itself is often a bundle that carries
a connection. This connection is induced by a basic ingredient in the the-
ory, the mechanical connection on configuration space. This point of view
is sometimes called the gauge theory of mechanics.

The geometry of reduction and the mechanical connection is an impor-
tant ingredient in the decomposition into internal and rotational modes
in the block diagonalization method, a powerful method for analyzing the
stability and bifurcation of relative equilibria. The holonomy of the con-
nection on the reduction bundle gives geometric phases. When stability of
a relative equilibrium is lost, one can get bifurcation, solution symmetry

breaking , instability and chaos. The notion of system symmetry break-

ing (also called forced symmetry breaking) in which not only the solutions,
but the equations themselves lose symmetry, is also important but here is
treated only by means of some simple examples.
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Two related topics that are discussed are control and mechanical inte-
grators. One would like to be able to control the geometric phases with the
aim of, for example, controlling the attitude of a rigid body with internal
rotors. With mechanical integrators one is interested in designing numeri-
cal integrators that exactly preserve the conserved momentum (say angular
momentum) and either the energy or symplectic structure, for the purpose
of accurate long time integration of mechanical systems. Such integrators
are becoming popular methods as their performance gets tested in specific
applications. We include a chapter on this topic that is meant to be a basic
introduction to the theory, but not the practice of these algorithms.

This work proceeds at a reasonably advanced level but has the corre-
sponding advantage of a shorter length. The exposition is intended to be,
as the title suggests, in lecture style and is not meant to be a complete
treatise. For a more detailed exposition of many of these topics suitable
for beginning students in the subject, see Marsden and Ratiu [1999]. There
are also numerous references to the literature where the reader can find
additional information.

The work of many of my colleagues from around the world is drawn upon
in these lectures and is hereby gratefully acknowledged. In this regard, I es-
pecially thank Mark Alber, Vladimir Arnold, Judy Arms, John Ball, Tony
Bloch, David Chillingworth, Richard Cushman, Michael Dellnitz, Arthur
Fischer, Mark Gotay, Marty Golubitsky, John Harnad, Aaron Hershman,
Darryl Holm, Phil Holmes, John Guckenheimer, Jacques Hurtubise, Sameer
Jalnapurkar, Vivien Kirk, Wang-Sang Koon, P.S. Krishnaprasad, Debbie
Lewis, Robert Littlejohn, Ian Melbourne, Vincent Moncrief, Richard Mont-
gomery, George Patrick, Tom Posbergh, Tudor Ratiu, Alexi Reyman, Glo-
ria Sanchez de Alvarez, Shankar Sastry, Jürgen Scheurle, Mary Silber, Juan
Simo, Ian Stewart, Greg Walsh, Steve Wan, Alan Weinstein, Shmuel Weiss-
man, Steve Wiggins, and Brett Zombro. The work of others is cited at
appropriate points in the text.

I would like to especially thank David Chillingworth for organizing the
LMS lecture series in Southampton, April 15–19, 1991 that acted as a ma-
jor stimulus for preparing the written version of these notes. I would like
to also thank the Mathematical Sciences Research Institute and especially
Alan Weinstein and Tudor Ratiu at Berkeley for arranging a preliminary
set of lectures along these lines in April, 1989, and Francis Clarke at the
Centre de Recherches Mathématique in Montréal for his hospitality during
the Aisenstadt lectures in the fall of 1989. Thanks are also due to Phil
Holmes and John Guckenheimer at Cornell, the Mathematical Sciences
Institute, and to David Sattinger and Peter Olver at the University of
Minnesota, and the Institute for Mathematics and its Applications, where
several of these talks were given in various forms. I also thank the Hum-
boldt Stiftung of Germany, Jürgen Scheurle and Klaus Kirchgässner who
provided the opportunity and resources needed to put the lectures to paper
during a pleasant and fruitful stay in Hamburg and Blankenese during the
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first half of 1991. I also acknowledge a variety of research support from
NSF and DOE that helped make the work possible. I thank several partic-
ipants of the lecture series and other colleagues for their useful comments
and corrections. I especially thank Hans Peter Kruse, Oliver O’Reilly, Rick
Wicklin, Brett Zombro and Florence Lin in this respect.

Very special thanks go to Barbara for typesetting the lectures and for
her support in so many ways. Our late cat Thomas also deserves thanks
for his help with our understanding of 180◦ cat maneuvers. This work was
not responsible for his unfortunate fall from the roof (resulting in a broken
paw), but his feat did prove that cats can execute 90◦ attitude control as
well.

Jerry Marsden

Pasadena, California

Summer, 2004
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1
Introduction

This chapter gives an overview of some of the topics that will be covered
so the reader can get a coherent picture of the types of problems and
associated mathematical structures that will be developed.1

1.1 The Classical Water Molecule and the
Ozone Molecule

An example that will be used to illustrate various concepts throughout
these lectures is the classical (non-quantum) rotating “water molecule”.
This system, shown in Figure 1.1.1, consists of three particles interacting
by interparticle conservative forces (think of springs connecting the par-
ticles, for example). The total energy of the system, which will be taken
as our Hamiltonian, is the sum of the kinetic and potential energies, while
the Lagrangian is the difference of the kinetic and potential energies. The
interesting special case of three equal masses gives the “ozone” molecule.

We use the term “water molecule” mainly for terminological convenience.
The full problem is of course the classical three body problem in space.
However, thinking of it as a rotating system evokes certain constructions
that we wish to illustrate.

1We are grateful to Oliver O’Reilly, Rick Wicklin, and Brett Zombro for providing a
helpful draft of the notes for an early version of this lecture.
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Figure 1.1.1. The rotating and vibrating water molecule.

Imagine this mechanical system rotating in space and, simultaneously,
undergoing vibratory, or internal motions. We can ask a number of ques-
tions:

• How does one set up the equations of motion for this system?

• Is there a convenient way to describe steady rotations? Which of these
are stable? When do bifurcations occur?

• Is there a way to separate the rotational from the internal motions?

• How do vibrations affect overall rotations? Can one use them to con-
trol overall rotations? To stabilize otherwise unstable motions?

• Can one separate symmetric (the two hydrogen atoms moving as mir-
ror images) and non-symmetric vibrations using a discrete symmetry?

• Does a deeper understanding of the classical mechanics of the water
molecule help with the corresponding quantum problem?

It is interesting that despite the old age of classical mechanics, new and
deep insights are coming to light by combining the rich heritage of knowl-
edge already well founded by masters like Newton, Euler, Lagrange, Jacobi,
Laplace, Riemann and Poincaré, with the newer techniques of geometry and
qualitative analysis of people like Arnold and Smale. I hope that already
the classical water molecule and related systems will convey some of the
spirit of modern research in geometric mechanics.

The water molecule is in fact too hard an example to carry out in as
much detail as one would like, although it illustrates some of the general
theory quite nicely. A simpler example for which one can get more detailed
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information (about relative equilibria and their bifurcations, for example)
is the double spherical pendulum . Here, instead of the symmetry group
being the full (non-Abelian) rotation group SO(3), it is the (Abelian) group
S1 of rotations about the axis of gravity. The double pendulum will also
be used as a thread through the lectures. The results for this example are
drawn from Marsden and Scheurle [1993a, 1993b]. To make similar progress
with the water molecule, one would have to deal with the already complex
issue of finding a reasonable model for the interatomic potential. There
is a large literature on this going back to Darling and Dennison [1940]
and Sorbie and Murrell [1975]. For some of the recent work that might be
important for the present approach, and for more references, see Xiao and
Kellman [1989] and Li, Xiao, and Kellman [1990]. Other useful references
are Haller [1999], Montaldi and Roberts [1999] and Tanimura and Iwai
[1999].

The special case of the ozone molecule with its three equal masses is
also of great interest, not only for environmental reasons, but because this
molecule has more symmetry than the water molecule. In fact, what we
learn about the water molecule can be used to study the ozone molecule
by putting m = M . A big change that has very interesting consequences
is the fact that the discrete symmetry group is enlarged from “reflections”
Z2 to the “symmetry group of a triangle” D3. This situation is also of
interest in chemistry for things like molecular control by using laser beams
to control the potential in which the molecule finds itself. Some believe
that, together with ideas from semiclassical quantum mechanics, the study
of this system as a classical system provides useful information. We refer
to Pierce, Dahleh, and Rabitz [1988], Tannor [1989] and Tannor and Jin
[1991] for more information and literature leads.

1.2 Lagrangian and Hamiltonian
Formulation

Lagrangian Formalism. Around 1790, Lagrange introduced general-
ized coordinates (q1, . . . , qn) and their velocities (q̇q, . . . , q̇n) to describe
the state of a mechanical system. Motivated by covariance (coordinate inde-
pendence) considerations, he introduced the Lagrangian L(qi, q̇i), which
is often the kinetic energy minus the potential energy, and proposed the
equations of motion in the form

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, (1.2.1)
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called the Euler–Lagrange equations. About 1830, Hamilton realized
how to obtain these equations from a variational principle

δ

∫ b

a

L(qi(t), q̇i(t))dt = 0, (1.2.2)

called the principle of critical action , in which the variation is over
all curves with two fixed endpoints and with a fixed time interval [a, b].
Curiously, Lagrange knew the more sophisticated principle of least action
(that has the constraint of conservation of energy added), but not the proof
of the equivalence of (1.2.1) and (1.2.2), which is simple if we assume the
appropriate regularity and is as follows. Let q(t, ǫ) be a family of curves
with q(t) = q(t, 0) and let the variation be defined by

δq(t) =
d

dǫ
q(t, ǫ)

∣∣∣∣
ǫ=0

. (1.2.3)

Note that, by equality of mixed partial derivatives,

δq̇(t) = δ̇q(t).

Differentiating
∫ b

a
L(qi(t, ǫ), q̇i(t, ǫ))dt in ǫ at ǫ = 0 and using the chain rule

gives

δ

∫ b

a

Ldt =

∫ b

a

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
dt

=

∫ b

a

(
∂L

∂qi
δqi − d

dt

∂L

∂q̇i
δqi

)
dt

where we have integrated the second term by parts and have used δqi(a) =
δqi(b) = 0. Since δqi(t) is arbitrary except for the boundary conditions, the
equivalence of (1.2.1) and (1.2.2) becomes evident.

The collection of pairs (q, q̇) may be thought of as elements of the tangent
bundle TQ of configuration space Q. We also call TQ the velocity phase

space . One of the great achievements of Lagrange was to realize that (1.2.1)
and (1.2.2) make intrinsic (coordinate independent) sense; today we would
say that Lagrangian mechanics can be formulated on manifolds. For me-
chanical systems like the rigid body, coupled structures etc., it is essential
that Q be taken to be a manifold and not just Euclidean space.

The Hamiltonian Formalism. If we perform the Legendre trans-

form, that is, change variables to the cotangent bundle T ∗Q by

pi =
∂L

∂q̇i

(assuming this is an invertible change of variables) and let the Hamilto-

nian be defined by

H(qi, pi) = piq̇
i − L(qi, q̇i) (1.2.4)
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(summation on repeated indices understood), then the Euler–Lagrange
equations become Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n. (1.2.5)

The symmetry in these equations leads to a rich geometric structure.

1.3 The Rigid Body

As we just saw, the equations of motion for a classical mechanical system
with n degrees of freedom may be written as a set of first order equations
in Hamiltonian form:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n.

The configuration coordinates (q1, . . . , qn) and momenta (p1, . . . , pn) to-
gether define the system’s instantaneous state, which may also be regarded
as the coordinates of a point in the cotangent bundle T ∗Q, the systems
(momentum) phase space . The Hamiltonian function H(q, p) defines the
system and, in the absence of constraining forces and time dependence, is
the total energy of the system. The phase space for the water molecule is
R18 (perhaps with collision points removed) and the Hamiltonian is the
kinetic plus potential energies.

Recall that the set of all possible spatial positions of bodies in the sys-
tem is their configuration space Q. For example, the configuration space
for the water molecule is R9 and for a three dimensional rigid body mov-
ing freely in space is SE(3), the six dimensional group of Euclidean (rigid)
transformations of three-space, that is, all possible rotations and transla-
tions. If translations are ignored and only rotations are considered, then
the configuration space is SO(3). As another example, if two rigid bodies
are connected at a point by an idealized ball-in-socket joint, then to specify
the position of the bodies, we must specify a single translation (since the
bodies are coupled) but we need to specify two rotations (since the two bod-
ies are free to rotate in any manner). The configuration space is therefore
SE(3)× SO(3). This is already a fairly complicated object, but remember
that one must keep track of both positions and momenta of each compo-
nent body to formulate the system’s dynamics completely. If Q denotes the
configuration space (only positions), then the corresponding phase space P
(positions and momenta) is the manifold known as the cotangent bundle

of Q, which is denoted by T ∗Q.
One of the important ways in which the modern theory of Hamiltonian

systems generalizes the classical theory is by relaxing the requirement of
using canonical phase space coordinate systems, that is, coordinate systems
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in which the equations of motion have the form (1.2.5) above. Rigid body
dynamics, celestial mechanics, fluid and plasma dynamics, nonlinear elas-
todynamics and robotics provide a rich supply of examples of systems for
which canonical coordinates can be unwieldy and awkward. The free mo-
tion of a rigid body in space was treated by Euler in the eighteenth century
and yet it remains remarkably rich as an illustrative example. Notice that
if our water molecule has stiff springs between the atoms, then it behaves
nearly like a rigid body. One of our aims is to bring out this behavior.

The rigid body problem in its primitive formulation has the six di-
mensional configuration space SE(3). This means that the phase space,
T ∗ SE(3) is twelve dimensional. Assuming that no external forces act on
the body, conservation of linear momentum allows us to solve for the com-
ponents of the position and momentum vectors of the center of mass. Re-
duction to the center of mass frame, which we will work out in detail for
the classical water molecule, reduces one to the case where the center of
mass is fixed, so only SO(3) remains. Each possible orientation corresponds
to an element of the rotation group SO(3) which we may therefore view as
a configuration space for all “non-trivial” motions of the body. Euler for-
mulated a description of the body’s orientation in space in terms of three
angles between axes that are either fixed in space or are attached to sym-
metry planes of the body’s motion. The three Euler angles, ψ,ϕ and θ are
generalized coordinates for the problem and form a coordinate chart for
SO(3). However, it is simpler and more convenient to proceed intrinsically
as follows.

We regard the element A ∈ SO(3) giving the configuration of the body as
a map of a reference configuration B ⊂ R3 to the current configuration
A(B). The map A takes a reference or label point X ∈ B to a current point
x = A(X) ∈ A(B). For a rigid body in motion, the matrix A becomes time
dependent and the velocity of a point of the body is ẋ = ȦX = ȦA−1x.
Since A is an orthogonal matrix, we can write

ẋ = ȦA−1x = ω × x, (1.3.1)

which defines the spatial angular velocity vector ω. The corresponding
body angular velocity is defined by

Ω = A−1ω, (1.3.2)

so that Ω is the angular velocity as seen in a body fixed frame. The kinetic
energy is the usual expression

K =
1

2

∫

B
ρ(X)‖ȦX‖2 d3X, (1.3.3)

where ρ is the mass density. Since

‖ȦX‖ = ‖ω × x‖ = ‖A−1(ω × x)‖ = ‖Ω×X‖,
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the kinetic energy is a quadratic function of Ω. Writing

K =
1

2
ΩT

IΩ (1.3.4)

defines the (time independent) moment of inertia tensor I, which, if
the body does not degenerate to a line, is a positive definite 3× 3 matrix,
or better, a quadratic form. Its eigenvalues are called the principal mo-

ments of inertia. This quadratic form can be diagonalized, and provided
the eigenvalues are distinct, uniquely defines the principal axes. In this
basis, we write I = diag(I1, I2, I3). Every calculus text teaches one how to
compute moments of inertia!

From the Lagrangian point of view, the precise relation between the
motion in A space and in Ω space is as follows.

1.3.1 Theorem. The curve A(t) ∈ SO(3) satisfies the Euler–Lagrange
equations for

L(A, Ȧ) =
1

2

∫

B
ρ(X)‖ȦX‖2d3X (1.3.5)

if and only if Ω(t) defined by A−1Ȧv = Ω × v for all v ∈ R3 satisfies
Euler’s equations:

IΩ̇ = IΩ× Ω. (1.3.6)

Moreover, this equation is equivalent to conservation of the spatial angular
momentum:

d

dt
π = 0 (1.3.7)

where π = AIΩ.

Probably the simplest way to prove this is to use variational principles.
We already saw that A(t) satisfies the Euler–Lagrange equations if and
only if δ

∫
Ldt = 0. Let l(Ω) = 1

2 (IΩ) · Ω so that l(Ω) = L(A, Ȧ) if A and
Ω are related as above. To see how we should transform the variational
principle for L, we differentiate the relation

A−1Ȧv = Ω× v (1.3.8)

with respect to a parameter ǫ describing a variation ofA, as we did in (1.2.3),
to get

−A−1δAA−1Ȧv +A−1δȦv = δΩ× v. (1.3.9)

Let the skew matrix Σ̂ be defined by

Σ̂ = A−1δA (1.3.10)

and define the associated vector Σ by

Σ̂v = Σ× v. (1.3.11)
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From (1.3.10) we get

˙̂
Σ = −A−1ȦA−1δA+A−1δȦ,

and so
A−1δȦ =

˙̂
Σ +A−1ȦΣ̂. (1.3.12)

Substituting (1.3.8), (1.3.10), and (1.3.12) into (1.3.9) gives

−Σ̂Ω̂v +
˙̂
Σv + Ω̂Σ̂v = δ̂Ωv;

that is,

δ̂Ω =
˙̂
Σ + [Ω̂, Σ̂]. (1.3.13)

Now one checks the identity

[Ω̂, Σ̂] = (Ω× Σ)̂ (1.3.14)

by using Jacobi’s identity for the cross product. Thus, (1.3.13) gives

δΩ = Σ̇ + Ω× Σ. (1.3.15)

These calculations prove the following

1.3.2 Theorem. The variational principle

δ

∫ b

a

Ldt = 0 (1.3.16)

on SO(3) is equivalent to the reduced variational principle

δ

∫ b

a

l dt = 0 (1.3.17)

on R3 where the variations δΩ are of the form (1.3.15) with Σ(a) = Σ(b) =
0.

To complete the proof of Theorem 1.3.1, it suffices to work out the
equations equivalent to the reduced variational principle (1.3.17). Since
l(Ω) = 1

2 〈IΩ,Ω〉, and I is symmetric, we get

δ

∫ b

a

l dt =

∫ b

a

〈IΩ, δΩ〉dt

=

∫ b

a

〈IΩ, Σ̇ + Ω× Σ〉dt

=

∫ b

a

[〈
− d

dt
IΩ,Σ

〉
+ 〈IΩ,Ω× Σ〉

]
dt

=

∫ b

a

〈
− d

dt
IΩ + IΩ× Ω,Σ

〉
dt
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where we have integrated by parts and used the boundary conditions Σ(b) =
Σ(a) = 0. Since Σ is otherwise arbitrary, (1.3.17) is equivalent to

− d

dt
(IΩ) + IΩ× Ω = 0,

which are Euler’s equations.
As we shall see in Chapter 2, this calculation is a special case of a pro-

cedure valid for any Lie group and, as such, leads to the Euler–Poincaré
equations; (Poincaré [1901]).

The body angular momentum is defined, analogous to linear momen-
tum p = mv, as

Π = IΩ

so that in principal axes,

Π = (Π1,Π2,Π3) = (I1Ω1, I2Ω2, I3Ω3).

As we have seen, the equations of motion for the rigid body are the Euler–
Lagrange equations for the Lagrangian L equal to the kinetic energy, but
regarded as a function on T SO(3) or equivalently, Hamilton’s equations
with the Hamiltonian equal to the kinetic energy, but regarded as a function
on the cotangent bundle of SO(3). In terms of the Euler angles and their
conjugate momenta, these are the canonical Hamilton equations, but as
such they are a rather complicated set of six ordinary differential equations.

Assuming that no external moments act on the body, the spatial angular
momentum vector π = AΠ is conserved in time. As we shall recall in
Chapter 2, this follows by general considerations of symmetry, but it can
also be checked directly from Euler’s equations:

dπ

dt
= ȦIΩ +A(IΩ× Ω) = A(A−1ȦIΩ + IΩ× Ω)

= A(Ω× IΩ + IΩ× Ω) = 0.

Thus, π is constant in time. In terms of Π, the Euler equations read
Π̇ = Π× Ω, or, equivalently

Π̇1 =
I2 − I3
I2I3

Π2Π3,

Π̇2 =
I3 − I1
I3I1

Π3Π1,

Π̇3 =
I1 − I2
I1I2

Π1Π2.

(1.3.18)

Arnold [1966] clarified the relationships between the various representations
(body, space, Euler angles) of the equations and showed how the same ideas
apply to fluid mechanics as well.
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Viewing (Π1,Π2,Π3) as coordinates in a three dimensional vector space,
the Euler equations are evolution equations for a point in this space. An
integral (constant of motion) for the system is given by the magnitude of
the total angular momentum vector: ‖Π‖2 = Π2

1+Π2
1+Π2

1. This follows from
conservation of π and the fact that ‖π‖ = ‖Π‖ or can be verified directly
from the Euler equations by computing the time derivative of ‖Π‖2 and
observing that the sum of the coefficients in (1.3.18) is zero.

Because of conservation of ‖Π‖, the evolution in time of any initial point
Π(0) is constrained to the sphere ‖Π‖2 = ‖Π(0)‖2 = constant. Thus we
may view the Euler equations as describing a two dimensional dynamical
system on an invariant sphere. This sphere is the reduced phase space for
the rigid body equations. In fact, this defines a two dimensional system as
a Hamiltonian dynamical system on the two-sphere S2. The Hamiltonian
structure is not obvious from Euler’s equations because the description in
terms of the body angular momentum is inherently non-canonical. As we
shall see in §1.4 and in more detail in Chapter 4, the theory of Hamiltonian
systems may be generalized to include Euler’s formulation. The Hamilto-
nian for the reduced system is

H =
1

2
〈Π, I−1Π〉 =

1

2

(
Π2

1

I1
+

Π2
2

I2
+

Π2
3

I3

)
(1.3.19)

and we shall show how this function allows us to recover Euler’s equa-
tions (1.3.18). Since solutions curves are confined to the level sets of H
(which are in general ellipsoids) as well as to the invariant spheres ‖Π‖ =
constant, the intersection of these surfaces are precisely the trajectories of
the rigid body, as shown in Figure 1.3.1.

On the reduced phase space, dynamical fixed points are called relative

equilibria . These equilibria correspond to periodic orbits in the unreduced
phase space, specifically to steady rotations about a principal inertial axis.
The locations and stability types of the relative equilibria for the rigid body
are clear from Figure 1.3.1. The four points located at the intersections of
the invariant sphere with the Π1 and Π2 axes correspond to pure rotational
motions of the body about its major and minor principal axes. These mo-
tions are stable, whereas the other two relative equilibria corresponding to
rotations about the intermediate principal axis are unstable.

In Chapters 4 and 5 we shall see how the stability analysis for a large class
of more complicated systems can be simplified through a careful choice of
non-canonical coordinates. We managed to visualize the trajectories of the
rigid body without doing any calculations, but this is because the rigid body
is an especially simple system. Problems like the rotating water molecule
will prove to be more challenging. Not only is the rigid body problem in-
tegrable (one can write down the solution in terms of integrals), but the
problem reduces in some sense to a two dimensional manifold and allows
questions about trajectories to be phrased in terms of level sets of integrals.
Many Hamiltonian systems are not integrable and trajectories are chaotic
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Figure 1.3.1. Phase portrait for the rigid body. The magnitude of the angular
momentum vector determines a sphere. The intersection of the sphere with the
ellipsoids of constant Hamiltonian gives the trajectories of the rigid body.

and are often studied numerically. The fact that we were able to reduce the
number of dimensions in the problem (from twelve to two) and the fact that
this reduction was accomplished by appealing to the non-canonical coordi-
nates Ω or Π turns out to be a general feature for Hamiltonian systems with
symmetry. The reduction procedure may be applied to non-integrable or
chaotic systems, just as well as to integrable ones. In a Hamiltonian context,
non-integrability is generally taken to mean that any analytic constant of
motion is a function of the Hamiltonian. We will not attempt to formulate
a general definition of chaos, but rather use the term in a loose way to
refer to systems whose motion is so complicated that long-term prediction
of dynamics is impossible. It can sometimes be very difficult to establish
whether a given system is chaotic or non-integrable. Sometimes theoret-
ical tools such as “Melnikov’s method” (see Guckenheimer and Holmes
[1983] and Wiggins [1988]) are available. Other times, one resorts to nu-
merics or direct observation. For instance, numerical integration suggests
that irregular natural satellites such as Saturn’s moon, Hyperion, tumble in
their orbits in a highly irregular manner (see Wisdom, Peale, and Mignard
[1984]). The equations of motion for an irregular body in the presence of
a non-uniform gravitational field are similar to the Euler equations except
that there is a configuration-dependent gravitational moment term in the
equations that presumably render the system non-integrable.

The evidence that Hyperion tumbles chaotically in space leads to diffi-
culties in numerically modelling this system. The manifold SO(3) cannot
be covered by a single three dimensional coordinate chart such as the Eu-
ler angle chart (see §1.7). Hence an integration algorithm using canonical
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variables must employ more than one coordinate system, alternating be-
tween coordinates on the basis of the body’s current configuration. For a
body that tumbles in a complicated fashion, the body’s configuration might
switch from one chart of SO(3) to another in a short time interval, and the
computational cost for such a procedure could be prohibitive for long time
integrations. This situation is worse still for bodies with internal degrees of
freedom like our water molecule, robots, and large-scale space structures.
Such examples point out the need to go beyond canonical formulations.

1.4 Geometry, Symmetry and Reduction

We have emphasized the distinction between canonical and non-canonical
coordinates by contrasting Hamilton’s (canonical) equations with Euler’s
equations. We may view this distinction from a different perspective by
introducing Poisson bracket notation. Given two smooth (C∞) real-valued
functions F and K defined on the phase space of a Hamiltonian system,
define the canonical Poisson bracket of F and K by

{F,K} =

n∑

i=1

(
∂F

∂qi

∂K

∂pi
− ∂K

∂qi

∂F

∂pi

)
(1.4.1)

where (qi, pi) are conjugate pairs of canonical coordinates. If H is the
Hamiltonian function for the system, then the formula for the Poisson
bracket yields the directional derivative of F along the flow of Hamilton’s
equations; that is,

Ḟ = {F,H}. (1.4.2)

In particular, Hamilton’s equations are recovered if we let F be each of the
canonical coordinates in turn:

q̇i = {qi, H} =
∂H

∂pi
, ṗi = {pi, H} = −∂H

∂qi
.

Once H is specified, the chain rule shows that the statement “Ḟ = {F,H}
for all smooth functions F” is equivalent to Hamilton’s equations. In fact,
it tells how any function F evolves along the flow.

This representation of the canonical equations of motion suggests a gen-
eralization of the bracket notation to cover non-canonical formulations. As
an example, consider Euler’s equations. Define the following non-canonical
rigid body bracket of two smooth functions F and K on the angular
momentum space:

{F,K} = −Π · (∇F ×∇K), (1.4.3)

where {F,K} and the gradients of F and K are evaluated at the point
Π = (Π1,Π2,Π3). The notation in (1.4.3) is that of the standard scalar
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triple product operation in R3. If H is the rigid body Hamiltonian (see
(1.3.18)) and F is, in turn, allowed to be each of the three coordinate
functions Πi, then the formula Ḟ = {F,H} yields the three Euler equations.

The non-canonical bracket corresponding to the reduced free rigid body
problem is an example of what is known as a Lie–Poisson bracket. In
Chapter 2 we shall see how to generalize this to any Lie algebra. Other
bracket operations have been developed to handle a wide variety of Hamil-
tonian problems in non-canonical form, including some problems outside
of the framework of traditional Newtonian mechanics (see for instance,
Arnold [1966], Marsden, Weinstein, Ratiu, Schmid, and Spencer [1982] and
Holm, Marsden, Ratiu, and Weinstein [1985]). In Hamiltonian dynamics,
it is essential to distinguish features of the dynamics that depend on the
Hamiltonian function from those that depend only on properties of the
phase space. The generalized bracket operation is a geometric invariant
in the sense that it depends only on the structure of the phase space.
The phase spaces arising in mechanics often have an additional geometric
structure closely related to the Poisson bracket. Specifically, they may be
equipped with a special differential two-form called the symplectic form .
The symplectic form defines the geometry of a symplectic manifold much as
the metric tensor defines the geometry of a Riemannian manifold. Bracket
operations can be defined entirely in terms of the symplectic form without
reference to a particular coordinate system.

The classical concept of a canonical transformation can also be given
a more geometric definition within this framework. A canonical transfor-
mation is classically defined as a transformation of phase space that takes
one canonical coordinate system to another. The invariant version of this
concept is a symplectic map, a smooth map of a symplectic manifold
to itself that preserves the symplectic form or, equivalently, the Poisson
bracket operation.

The geometry of symplectic manifolds is an essential ingredient in the
formulation of the reduction procedure for Hamiltonian systems with sym-
metry. We now outline some important ingredients of this procedure and
will go into this in more detail in Chapters 2 and 3. In Euler’s problem of
the free rotation of a rigid body in space (assuming that we have already ex-
ploited conservation of linear momentum), the six dimensional phase space
is T ∗ SO(3)—the cotangent bundle of the three dimensional rotation group.
This phase space T ∗ SO(3) is often parametrized by three Euler angles and
their conjugate momenta. The reduction from six to two dimensions is a
consequence of two essential features of the problem:

1. Rotational invariance of the Hamiltonian, and

2. The existence of a corresponding conserved quantity, the spatial an-
gular momentum.
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These two conditions are generalized to arbitrary mechanical systems with
symmetry in the general reduction theory of Marsden and Weinstein [1974]
(see also Meyer [1973]), which was inspired by the seminal works of Arnold
[1966] and Smale [1970]. In this theory, one begins with a given phase
space that we denote P . We assume there is a group G of symmetry trans-
formations of P that transform P to itself by canonical transformation.
Generalizing 2, we use the symmetry group to generate a vector-valued
conserved quantity denoted J and called the momentum map.

Analogous to the set where the total angular momentum has a given
value, we consider the set of all phase space points where J has a given
value µ; that is, the µ-level set for J. The analogue of the two dimensional
body angular momentum sphere in Figure 1.3.1 is the reduced phase

space , denoted Pµ that is constructed as follows:

Pµ is the µ-level set for J on which any two points that can
be transformed one to the other by a group transformation are
identified.

The reduction theorem states that

Pµ inherits the symplectic (and hence Poisson bracket) structure
from that of P , so it can be used as a new phase space. Also,
dynamical trajectories of the Hamiltonian H on P determine
corresponding trajectories on the reduced space.

This new dynamical system is, naturally, called the reduced system . The
trajectories on the sphere in Figure 1.3.1 are the reduced trajectories for
the rigid body problem.

We saw that steady rotations of the rigid body correspond to fixed points
on the reduced manifold, that is, on the body angular momentum sphere.
In general, fixed points of the reduced dynamics on Pµ are called relative

equilibria , following terminology introduced by Poincaré [1885]. The re-
duction process can be applied to the system that models the motion of
the moon Hyperion, to spinning tops, to fluid and plasma systems, and
to systems of coupled rigid bodies. For example, if our water molecule is
undergoing steady rotation, with the internal parts not moving relative to
each other, this will be a relative equilibrium of the system. An oblate
Earth in steady rotation is a relative equilibrium for a fluid-elastic body.
In general, the bigger the symmetry group, the richer the supply of relative
equilibria.

Fluid and plasma dynamics represent one of the interesting areas to
which these ideas apply. In fact, already in the original paper of Arnold
[1966], fluids are studied using methods of geometry and reduction. In
particular, it was this method that led to the first analytical nonlinear
stability result for ideal flow, namely the nonlinear version of the Rayleigh
inflection point criterion in Arnold [1969]. These ideas were continued in
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Ebin and Marsden [1970] with the major result that the Euler equations
in material representation are governed by a smooth vector field in the
Sobolev Hs topology, with applications to convergence results for the zero
viscosity limit. In Morrison [1980] and Marsden and Weinstein [1982] the
Hamiltonian structure of the Maxwell–Vlasov equations of plasma physics
was found and in Holm, Kupershmidt, and Levermore [1985] the stability
for these equations along with other fluid and plasma applications was
investigated. In fact, the literature on these topics is now quite extensive,
and we will not attempt a survey here. We refer to Marsden and Ratiu
[1999] for more details. However, some of the basic techniques behind these
applications are discussed in the sections that follow.

1.5 Stability

There is a standard procedure for determining the stability of equilibria of
an ordinary differential equation

ẋ = f(x) (1.5.1)

where x = (x1, . . . , xn) and f is smooth. Equilibria are points xe such that
f(xe) = 0; that is, points that are fixed in time under the dynamics. By
stability of the fixed point xe we mean that any solution to ẋ = f(x) that
starts near xe remains close to xe for all future time. A traditional method
of ascertaining the stability of xe is to examine the first variation equation

ξ̇ = df(xe)ξ (1.5.2)

where df(xe) is the Jacobian of f at xe, defined to be the matrix of partial
derivatives

df(xe) =

[
∂f i

∂xj

]

x=xe

. (1.5.3)

Liapunov’s theorem If all the eigenvalues of df(xe) lie in
the strict left half plane, then the fixed point xe is stable. If any
of the eigenvalues lie in the right half plane, then the fixed point
is unstable.

For Hamiltonian systems, the eigenvalues come in quartets that are sym-
metric about the origin, and so they cannot all lie in the strict left half
plane. (See, for example, Marsden and Ratiu [1999] for the proof of this
assertion.) Thus, the above form of Liapunov’s theorem is not appropriate
to deduce whether or not a fixed point of a Hamiltonian system is stable.

When the Hamiltonian is in canonical form, one can use a stability test
for fixed points due to Lagrange and Dirichlet. This method starts with
the observation that for a fixed point (qe, pe) of such a system,

∂H

∂q
(qe, pe) =

∂H

∂p
(qe, pe) = 0.
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Hence the fixed point occurs at a critical point of the Hamiltonian.

Lagrange-Dirichlet Criterion If the 2n × 2n matrix δ2H
of second partial derivatives, (the second variation) is either
positive or negative definite at (qe, pe) then it is a stable fixed
point.

The proof is very simple. Consider the positive definite case. Since H has a
nondegenerate minimum at ze = (qe, pe), Taylor’s theorem with remainder
shows that its level sets near ze are bounded inside and outside by spheres
of arbitrarily small radius. Since energy is conserved, solutions stay on level
surfaces of H, so a solution starting near the minimum has to stay near
the minimum.

For a Hamiltonian of the form kinetic plus potential V , critical points
occur when pe = 0 and qe is a critical point of the potential of V . The
Lagrange-Dirichlet Criterion then reduces to asking for a non-degenerate
minimum of V .

In fact, this criterion was used in one of the classical problems of the 19th
century: the problem of rotating gravitating fluid masses. This problem was
studied by Newton, MacLaurin, Jacobi, Riemann, Poincaré and others. The
motivation for its study was in the conjectured birth of two planets by
the splitting of a large mass of solidifying rotating fluid. Riemann [1860],
Routh [1877] and Poincaré [1885, 1892, 1901] were major contributors to
the study of this type of phenomenon and used the potential energy and
angular momentum to deduce the stability and bifurcation.

The Lagrange-Dirichlet method was adapted by Arnold [1966, 1969] into
what has become known as the energy–Casimir method . Arnold ana-
lyzed the stability of stationary flows of perfect fluids and arrived at an
explicit stability criterion when the configuration space Q for the Hamilto-
nian of this system is the symmetry group G of the mechanical system.

A Casimir function C is one that Poisson commutes with any function
F defined on the phase space of the Hamiltonian system, that is,

{C,F} = 0. (1.5.4)

Large classes of Casimirs can occur when the reduction procedure is per-
formed, resulting in systems with non-canonical Poisson brackets. For ex-
ample, in the case of the rigid body discussed previously, if Φ is a function
of one variable and µ is the angular momentum vector in the inertial coor-
dinate system, then

C(µ) = Φ(‖µ‖2) (1.5.5)

is readily checked to be a Casimir for the rigid body bracket (1.3.3).

Energy–Casimir method Choose C such that H + C has
a critical point at an equilibrium ze and compute the second
variation δ2(H + C)(ze). If this matrix is positive or negative
definite, then the equilibrium ze is stable.
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When the phase space is obtained by reduction, the equilibrium ze is called
a relative equilibrium of the original Hamiltonian system.

The energy–Casimir method has been applied to a variety of problems
including problems in fluids and plasmas (Holm, Kupershmidt, and Lev-
ermore [1985]) and rigid bodies with flexible attachments (Krishnaprasad
and Marsden [1987]). If applicable, the energy–Casimir method may per-
mit an explicit determination of the stability of the relative equilibria. It
is important to remember, however, that these techniques give stability in-
formation only. As such one cannot use them to infer instability without
further investigation.

The energy–Casimir method is restricted to certain types of systems,
since its implementation relies on an abundant supply of Casimir functions.
In some important examples, such as the dynamics of geometrically exact
flexible rods, Casimirs have not been found and may not even exist. A
method developed to overcome this difficulty is known as the energy–

momentum method , which is closely linked to the method of reduction.
It uses conserved quantities, namely the energy and momentum map, that
are readily available, rather than Casimirs.

The energy momentum method (Marsden, Simo, Lewis, and Posbergh
[1989], Simo, Posbergh, and Marsden [1990, 1991], Simo, Lewis, and Mars-
den [1991], and Lewis and Simo [1990]) involves the augmented Hamil-

tonian defined by

Hξ(q, p) = H(q, p)− ξ · J(q, p) (1.5.6)

where J is the momentum map described in the previous section and ξ may
be thought of as a Lagrange multiplier. For the water molecule, J is the
angular momentum and ξ is the angular velocity of the relative equilibrium.
One sets the first variation of Hξ equal to zero to obtain the relative equi-
libria. To ascertain stability, the second variation δ2Hξ is calculated. One
is then interested in determining the definiteness of the second variation.

Definiteness in this context has to be properly interpreted to take into
account the conservation of the momentum map J and the fact that d2Hξ

may have zero eigenvalues due to its invariance under a subgroup of the
symmetry group. The variations of P and Q must satisfy the linearized an-
gular momentum constraint (δq, δp) ∈ ker[DJ(qe, pe)], and must not lie in
symmetry directions; only these variations are used to calculate the second
variation of the augmented Hamiltonian Hξ. These define the space of ad-

missible variations V. The energy momentum method has been applied
to the stability of relative equilibria of among others, geometrically exact
rods and coupled rigid bodies (Patrick [1989, 1990] and Simo, Posbergh,
and Marsden [1990, 1991]).

A cornerstone in the development of the energy–momentum method was
laid by Routh [1877] and Smale [1970] who studied the stability of relative
equilibria of simple mechanical systems. Simple mechanical systems are
those whose Hamiltonian may be written as the sum of the potential and
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kinetic energies. Part of Smale’s work may be viewed as saying that there
is a naturally occurring connection called the mechanical connection on
the reduction bundle that plays an important role. A connection can be
thought of as a generalization of the electromagnetic vector potential.

The amended potential Vµ is the potential energy of the system plus a
generalization of the potential energy of the centrifugal forces in stationary
rotation:

Vµ(q) = V (q) +
1

2
µ · I−1(q)µ, (1.5.7)

where I is the locked inertia tensor , a generalization of the inertia tensor
of the rigid structure obtained by locking all joints in the configuration
Q. We will define it precisely in Chapter 3 and compute it for several
examples. Smale showed that relative equilibria are critical points of the
amended potential Vµ, a result we prove in Chapter 4. The corresponding
momentum P need not be zero since the system is typically in motion.

The second variation δ2Vµ of Vµ directly yields the stability of the relative
equilibria. However, an interesting phenomenon occurs if the space V of
admissible variations is split into two specially chosen subspaces VRIG and
VINT. In this case the second variation block diagonalizes:

δ2Vµ | V × V =




D2Vµ | VRIG × VRIG 0

0 D2Vµ | VINT × VINT



 (1.5.8)

The space VRIG (rigid variations) is generated by the symmetry group,
and VINT are the internal or shape variations. In addition, the whole
matrix δ2Hξ block diagonalizes in a very efficient manner as we will see
in Chapter 5. This often allows the stability conditions associated with
δ2Vµ | V ×V to be recast in terms of a standard eigenvalue problem for the
second variation of the amended potential.

This splitting, that is, block diagonalization, has more miracles associ-
ated with it. In fact,

the second variation δ2Hξ and the symplectic structure (and
therefore the equations of motion) can be explicitly brought into
normal form simultaneously .

This result has several interesting implications. In the case of pseudo-rigid
bodies (Lewis and Simo [1990]), it reduces the stability problem from an
unwieldy 14 × 14 matrix to a relatively simple 3 × 3 subblock on the di-
agonal. The block diagonalization procedure enabled Lewis and Simo to
solve their problem analytically, whereas without it, a substantial numeri-
cal computation would have been necessary.

As we shall see in Chapter 8, the presence of discrete symmetries (as for
the water molecule and the pseudo-rigid bodies) gives further, or refined,
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subblocking properties in the second variation of δ2Hξ and δ2Vµ and the
symplectic form.

In general, this diagonalization explicitly separates the rotational and
internal modes, a result which is important not only in rotating and elastic
fluid systems, but also in molecular dynamics and robotics. Similar simpli-
fications are expected in the analysis of other problems to be tackled using
the energy momentum method.

1.6 Geometric Phases

The application of the methods described above is still in its infancy, but
the previous example indicates the power of reduction and suggests that the
energy–momentum method will be applied to dynamic problems in many
fields, including chemistry, quantum and classical physics, and engineering.
Apart from the computational simplification afforded by reduction, reduc-
tion also permits us to put into a mechanical context a concept known as
the geometric phase , or holonomy .

An example in which holonomy occurs is the Foucault pendulum. During
a single rotation of the earth, the plane of the pendulum’s oscillations
is shifted by an angle that depends on the latitude of the pendulum’s
location. Specifically if a pendulum located at co-latitude (i.e., the polar
angle) α is swinging in a plane, then after twenty-four hours, the plane
of its oscillations will have shifted by an angle 2π cosα. This holonomy is
(in a non-obvious way) a result of parallel translation: if an orthonormal
coordinate frame undergoes parallel transport along a line of co-latitude α,
then after one revolution the frame will have rotated by an amount equal to
the phase shift of the Foucault pendulum (see Figure 1.6.1). Geometrically,
the holonomy of the Foucault pendulum is equal to the solid angle swept out
by the pendulum’s axis during one rotation of the earth. Thus a pendulum
at the north pole of the earth will experience a holonomy of 2π. If you
imagine parallel transporting a vector around a small loop near the north
pole, it is clear that one gets an answer close to 2π, which agrees with what
the pendulum experiences. On the other hand, a pendulum on the earth’s
equator experiences no holonomy.

A less familiar example of holonomy was presented by Hannay [1985]
and discussed further by Berry [1985]. Consider a frictionless, non-circular,
planar hoop of wire on which is placed a small bead. The bead is set
in motion and allowed to slide along the wire at a constant speed (see
Figure 1.6.2). (We will need the notation in this figure only later in Chapter
6.) Clearly the bead will return to its initial position after, say, τ seconds,
and will continue to return every τ seconds after that. Allow the bead to
make many revolutions along the circuit, but for a fixed amount of total
time, say T . Suppose that the wire hoop is slowly rotated in its plane by



20 1. Introduction
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frame along a
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Figure 1.6.1. The parallel transport of a coordinate frame along a curved surface.

S

Figure 1.6.2. A bead sliding on a planar, non-circular hoop of area A and length
L. The bead slides around the hoop at constant speed with period τ and is allowed
to revolve for time T .

360 degrees while the bead is in motion for exactly the same total length
of time T . At the end of the rotation, the bead is not in the location where
we might expect it, but instead will be found at a shifted position that is
determined by the shape of the hoop. In fact, the shift in position depends
only on the length of the hoop, L, and on the area it encloses, A. The shift
is given by 8π2A/L2 as an angle, or by 4πA/L as length. (See §6.6 for a
derivation of these formulas.) To be completely concrete, if the bead’s initial
position is marked with a tick and if the time of rotation is a multiple of the
bead’s period, then at the end of rotation the bead is found approximately
4πA/L units from its initial position. This is shown in Figure 1.6.3. Note
that if the hoop is circular then the angular shift is 2π. Let us indicate
how holonomy is linked to the reduction process by returning to our rigid
body example. The rotational motion of a rigid body can be described as
a geodesic (with respect to the inertia tensor regarded as a metric) on the
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Figure 1.6.3. The hoop is slowly rotated in the plane through 360 degrees. After
one rotation, the bead is located 4πA/L units behind where it would have been,
had the rotation not occurred.

manifold SO(3). As mentioned earlier, for each angular momentum vector
µ, the reduced space Pµ can be identified with the two-sphere of radius
‖µ‖. This construction corresponds to the Hopf fibration which describes
the three-sphere S3 as a nontrivial circle bundle over S2. In our example, S3

(or rather S3/Z2
∼= J−1(µ)) is the subset of phase space which is mapped

to µ under the reduction process.
Suppose we are given a trajectory Π(t) on Pµ that has period T and

energy E. Following Montgomery [1991] and Marsden, Montgomery, and
Ratiu [1990] we shall show in §6.4 that after time T the rigid body has
rotated in physical 3-space about the axis µ by an angle (modulo 2π)

∆θ = −Λ +
2ET

‖µ‖ . (1.6.1)

Here Λ is the solid angle subtended by the closed curve Π(t) on the sphere
S2 and is oriented according to the right hand rule. The approximate phase
formula ∆θ ∼= 8π2A/L2 for the ball in the hoop is derived by the classical
techniques of averaging and the variation of constants formula. However,
formula (1.6.1) is exact . (In Whittaker [1959], (1.6.1) is expressed as a
complicated quotient of theta functions!)

An interesting feature of (1.6.1) is the manner in which ∆θ is split into
two parts. The term Λ is purely geometric and so is called the geometric

phase . It does not depend on the energy of the system or the period of
motion, but rather on the fraction of the surface area of the sphere Pµ that
is enclosed by the trajectory Π(t). The second term in (1.6.1) is known as
the dynamic phase and depends explicitly on the system’s energy and
the period of the reduced trajectory.

Geometrically we can picture the rigid body as tracing out a path in
its phase space. More precisely, conservation of angular momentum im-
plies that the path lies in the submanifold consisting of all points that are
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mapped onto µ by the reduction process. As Figure 1.2.1 shows, almost
every trajectory on the reduced space is periodic, but this does not imply
that the original path was periodic, as is shown in Figure 1.6.4. The differ-
ence between the true trajectory and a periodic trajectory is given by the
holonomy plus the dynamic phase.

Pμ

dynamic phase

geometric phase

true trajectory

horizontal lift

reduced trajectory

D

Figure 1.6.4. Holonomy for the rigid body. As the body completes one period
in the reduced phase space Pµ, the body’s true configuration does not return
to its original value. The phase difference is equal to the influence of a dynamic
phase which takes into account the body’s energy, and a geometric phase which
depends only on the area of Pµ enclosed by the reduced trajectory.

It is possible to observe the holonomy of a rigid body with a simple
experiment. Put a rubber band around a book so that the cover will not
open. (A “tall”, thin book works best.) With the front cover pointing up,
gently toss the book in the air so that it rotates about its middle axis (see
Figure 1.6.5). Catch the book after a single rotation and you will find that
it has also rotated by 180 degrees about its long axis—that is, the front
cover is now facing the floor!

This particular phenomena is not literally covered by Montgomery’s for-
mula since we are working close to the homoclinic orbit and in this limit
∆θ → +∞ due to the limiting steady rotations. Thus, “catching” the book
plays a role. For an analysis from another point of view, see Ashbaugh,
Chicone, and Cushman [1991].

There are other everyday occurrences that demonstrate holonomy. For
example, a falling cat usually manages to land upright if released upside
down from complete rest, that is, with total angular momentum zero. This
ability has motivated several investigations in physiology as well as dy-



1.6 Geometric Phases 23

Figure 1.6.5. A book tossed in the air about an axis that is close to the middle
(unstable) axis experiences a holonomy of approximately 180 degrees about its
long axis when caught after one revolution.

namics and more recently has been analyzed by Montgomery [1990] with
an emphasis on how the cat (or, more generally, a deformable body) can
efficiently readjust its orientation by changing its shape. By “efficiently”,
we mean that the reorientation minimizes some function—for example the
total energy expended. In other words, one has a problem in optimal con-
trol . Montgomery’s results characterize the deformations that allow a cat
to reorient itself without violating conservation of angular momentum. In
his analysis, Montgomery casts the falling cat problem into the language
of principal bundles. Let the shape of a cat refer to the location of the
cat’s body parts relative to each other, but without regard to the cat’s
orientation in space. Let the configuration of a cat refer both to the cat’s
shape and to its orientation with respect to some fixed reference frame.
More precisely, if Q is the configuration space and G is the group of rigid
motions, then Q/G is the shape space .

If the cat is completely rigid then it will always have the same shape,
but we can give it a different configuration by rotating it through, say 180
degrees about some axis. If we require that the cat has the same shape at
the end of its fall as it had at the beginning, then the cat problem may
be formulated as follows: Given an initial configuration, what is the most
efficient way for a cat to achieve a desired final configuration if the final
shape is required to be the same as the initial shape? If we think of the
cat as tracing out some path in configuration space during its fall, the
projection of this path onto the shape space results in a trajectory in the
shape space, and the requirement that the cat’s initial and final shapes are
the same means that the trajectory is a closed loop. Furthermore, if we
want to know the most efficient configuration path that satisfies the initial
and final conditions, then we want to find the shortest path with respect to
a metric induced by the function we wish to minimize. It turns out that the
solution of a falling cat problem is closely related to Wong’s equations that
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describe the motion of a colored particle in a Yang–Mills field (Montgomery
[1990], Shapere and Wilczeck [1989]). We will come back to these points in
Chapter 7.

The examples above indicate that holonomic occurrences are not rare. In
fact, Shapere and Wilczek showed that aquatic microorganisms use holon-
omy as a form of propulsion. Because these organisms are so small, the
environment in which they live is extremely viscous to them. The apparent
viscosity is so great, in fact, that they are unable to swim by conventional
stroking motions, just as a person trapped in a tar pit would be unable
to swim to safety. These microorganisms surmount their locomotion dif-
ficulties, however, by moving their “tails” or changing their shapes in a
topologically nontrivial way that induces a holonomy and allows them to
move forward through their environment. There are probably many conse-
quences and applications of “holonomy drive” that remain to be discovered.

Yang and Krishnaparasd [1990] have provided an example of holonomy
drive for coupled rigid bodies linked together with pivot joints as shown in
Figure 1.6.5. (For simplicity, the bodies are represented as rigid rods.) This
form of linkage permits the rods to freely rotate with respect of each other,
and we assume that the system is not subjected to external forces or torques
although torques will exist in the joints as the assemblage rotates. By our
assumptions, angular momentum is conserved in this system. Yet, even if
the total angular momentum is zero, a turn of the crank (as indicated in
Figure 1.6.6) returns the system to its initial shape but creates a holonomy
that rotates the system’s configuration. See Thurston and Weeks [1984] for
some relationships between linkages and the theory of 3-manifolds (they
do not study dynamics, however). Brockett [1987, 1989] studies the use of
holonomy in micromotors.

overall phase rotation

of the assemblage

crank

Figure 1.6.6. Rigid rods linked by pivot joints. As the “crank” traces out the
path shown, the assemblage experiences a holonomy resulting in a clockwise shift
in its configuration.

Holonomy also comes up in the field of magnetic resonance imaging
(MRI) and spectroscopy. Berry’s work shows that if a quantum system
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experiences a slow (adiabatic) cyclic change, then there will be a shift in
the phase of the system’s wave function. This is a quantum analogue to
the bead on a hoop problem discussed above. This work has been verified
by several independent experiments; the implications of this result to MRI
and spectroscopy are still being investigated. For a review of the appli-
cations of the geometric phase to the fields of spectroscopy, field theory,
and solid-state physics, see Zwanziger, Koenig, and Pines [1990] and the
bibliography therein.

Another possible application of holonomy drive is to the somersaulting
robot. Due to the finite precision response of motors and actuators, a slight
error in the robot’s initial angular momentum can result in an unsatisfac-
tory landing as the robot attempts a flip. Yet, in spite of the challenges,
Hodgins and Raibert [1990] report that the robot can execute 90 percent
of the flips successfully. Montgomery, Raibert, and Li [1991] are asking
whether a robot can use holonomy to improve this rate of success. To do
this, they reformulate the falling cat problem as a problem in feedback con-
trol: the cat must use information gained by its senses in order to determine
how to twist and turn its body so that it successfully lands on its feet.

It is possible that the same technique used by cats can be implemented
in a robot that also wants to complete a flip in mid-air. Imagine a robot
installed with sensors so that as it begins its somersault it measures its
momenta (linear and angular) and quickly calculates its final landing po-
sition. If the calculated final configuration is different from the intended
final configuration, then the robot waves mechanical arms and legs while
entirely in the air to create a holonomy that equals the difference between
the two configurations.

If “holonomy drive” can be used to control a mechanical structure, then
there may be implications for future satellites like a space telescope. Sup-
pose the telescope initially has zero angular momentum (with respect to
its orbital frame), and suppose it needs to be turned 180 degrees. One way
to do this is to fire a small jet that would give it angular momentum, then,
when the turn is nearly complete, to fire a second jet that acts as a brake
to exactly cancel the acquired angular momentum. As in the somersaulting
robot, however, errors are bound to occur, and the process of returning
the telescope to (approximately) zero angular momentum may be a long
process. It would seem to be more desirable to turn it while constantly pre-
serving zero angular momentum. The falling cat performs this very trick.
A telescope can mimic this with internal momentum wheels or with flexi-
ble joints. This brings us to the area of control theory and its relation to
the present ideas. Bloch, Krishnaprasad, Marsden, and Sanchez de Alvarez
[1992] represents one step in this direction. We shall also discuss their result
in Chapter 7.
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1.7 The Rotation Group and the Poincaré
Sphere

The rotation group SO(3), consisting of all 3× 3 orthogonal matrices with
determinant one, plays an important role for problems of interest in this
book, and so one should try to understand it a little more deeply. As a first
try, one can contemplate Euler’s theorem, which states that every rotation
in R3 is a rotation through some angle about some axis. While true, this
can be misleading if not used with care. For example, it suggests that we
can identify the set of rotations with the set consisting of all unit vectors
in R3 (the axes) and numbers between 0 and 2π (the angles); that is, with
the set S2 × S1. However, this is false for reasons that involve some basic
topology. Thus, a better approach is needed.

One method for gaining deeper insight is to realize SO(3) as SU(2)/Z2,
where SU(2) is the group of 2×2 complex unitary matrices of determinant
1, using quaternions and Pauli spin matrices; see Abraham and Marsden
[1978, pp. 273–4], for the precise statement. This approach also shows that
the group SU(2) is diffeomorphic to the set of unit quaternions, the three
sphere S3 in R4.

The Hopf fibration is the map of S3 to S2 defined, using the above
approach to the rotation group, as follows. First map a point w ∈ S3 to its
equivalence class A = [w] ∈ SO(3) and then map this point to Ak, where
k is the standard unit vector in R3 (or any other fixed unit vector in R3).

Closely related to the above description of the rotation group, but in
fact a little more straightforward, is Poincaré’s representation of SO(3)
as the unit circle bundle T1S

2 of the two sphere S2. This comes about
as follows. Elements of SO(3) can be identified with oriented orthonormal
frames in R3; that is, with triples of orthonormal vectors (n,m,n ×m).
Such triples are in one to one correspondence with the points in T1S

2 by
(n,m,n×m)↔ (n,m) where n is the base point in S2 and m is regarded
as a vector tangent to S2 at the point n (see Figure 1.7.1).

Poincaré’s representation shows that SO(3) cannot be written as S2×S1

(i.e., one cannot globally and in a unique and singularity free way, write
rotations using an axis and an angle, despite Euler’s theorem). This is
because of the (topological) fact that every vector field on S2 must vanish
somewhere. Thus, we see that this is closely related to the nontriviality of
the Hopf fibration.

Not only does Poincaré’s representation show that SO(3) is topologi-
cally non-trivial, but this representation is useful in mechanics. In fact,
Poincaré’s representation of SO(3) as the unit circle bundle T1S

2 is the
stepping stone in the formulation of optimal singularity free parameteriza-
tions for geometrically exact plates and shells. These ideas have been ex-
ploited within a numerical analysis context in Simo, Fox, and Rifai [1990]
for statics and Simo, Fox, and Rifai [1991] for dynamics. Also, this represen-
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Figure 1.7.1. The rotation group is diffeomorphic to the unit tangent bundle to
the two sphere.

tation is helpful in studying the problem of reorienting a rigid body using
internal momentum wheels. We shall treat some aspects of these topics in
the course of the lectures.
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2
A Crash Course in Geometric
Mechanics

We now set out some of the notation and terminology that is used in sub-
sequent chapters. The reader is referred to one of the standard books, such
as Abraham and Marsden [1978], Arnold [1989], Guillemin and Sternberg
[1984] and Marsden and Ratiu [1999] for proofs omitted here.1

2.1 Symplectic and Poisson Manifolds

2.1.1 Definition. Let P be a manifold and let F(P ) denote the set of
smooth real-valued functions on P . Consider a given bracket operation de-
noted

{ , } : F(P )×F(P )→ F(P ).

The pair (P, { , }) is called a Poisson manifold if { , } satisfies

PB1. bilinearity {f, g} is bilinear in f and g,
PB2. anticommutativity {f, g} = −{g, f},
PB3. Jacobi’s identity {{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0,
PB4. Leibnitz’ rule {fg, h} = f{g, h}+ g{f, h}.

Conditions PB1–PB3 make (F(P ), { , }) into a Lie algebra. If (P, { , })
is a Poisson manifold, then because of PB1 and PB4, there is a tensor B

1We thank Hans Peter Kruse for providing a helpful draft of the notes for this lecture.
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on P , assigning to each z ∈ P a linear map B(z) : T ∗
z P → TzP such that

{f, g}(z) = 〈B(z) · df(z),dg(z)〉. (2.1.1)

Here, 〈 , 〉 denotes the natural pairing between vectors and covectors. Be-
cause of PB2, B(z) is antisymmetric. Letting zI , I = 1, . . . ,M denote
coordinates on P , (2.1.1) becomes

{f, g} = BIJ ∂f

∂zI

∂g

∂zJ
. (2.1.2)

Antisymmetry means BIJ = −BJI and Jacobi’s identity reads

BLI ∂B
JK

∂zL
+BLJ ∂B

KI

∂zL
+BLK ∂BIJ

∂zL
= 0. (2.1.3)

2.1.2 Definition. Let (P1, { , }1) and (P2, { , }2) be Poisson manifolds. A
mapping ϕ : P1 → P2 is called Poisson if for all f, h ∈ F(P2), we have

{f, h}2 ◦ ϕ = {f ◦ ϕ, h ◦ ϕ}1. (2.1.4)

2.1.3 Definition. Let P be a manifold and Ω a 2-form on P . The pair
(P,Ω) is called a symplectic manifold if Ω satisfies

S1. dΩ = 0 (i.e., Ω is closed) and

S2. Ω is nondegenerate.

2.1.4 Definition. Let (P,Ω) be a symplectic manifold and let f ∈ F(P ).
Let Xf be the unique vector field on P satisfying

Ωz(Xf (z), v) = df(z) · v for all v ∈ TzP. (2.1.5)

We call Xf the Hamiltonian vector field of f . Hamilton’s equations

are the differential equations on P given by

ż = Xf (z). (2.1.6)

If (P,Ω) is a symplectic manifold, define the Poisson bracket operation

{·, ·} : F(P )×F(P )→ F(P ) by

{f, g} = Ω(Xf , Xg). (2.1.7)

The construction (2.1.7) makes (P, { , }) into a Poisson manifold. In other
words,

2.1.5 Proposition. Every symplectic manifold is Poisson.

The converse is not true; for example the zero bracket makes any manifold
Poisson. In §2.4 we shall see some non-trivial examples of Poisson brackets
that are not symplectic, such as Lie–Poisson structures on duals of Lie
algebras.

Hamiltonian vector fields are defined on Poisson manifolds as follows.
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2.1.6 Definition. Let (P, { , }) be a Poisson manifold and let f ∈ F(P ).
Define Xf to be the unique vector field on P satisfying

Xf [k] : = 〈dk,Xf 〉 = {k, f} for all k ∈ F(P ).

We call Xf the Hamiltonian vector field of f .

A check of the definitions shows that in the symplectic case, the Def-
initions 2.1.4 and 2.1.6 of Hamiltonian vector fields coincide. If (P, { , })
is a Poisson manifold, there are therefore three equivalent ways to write
Hamilton’s equations for H ∈ F(P ):

(i) ż = XH(z),

(ii) ḟ = df(z) ·XH(z) for all f ∈ F(P ), and

(iii) ḟ = {f,H} for all f ∈ F(P ).

2.2 The Flow of a Hamiltonian Vector Field

Hamilton’s equations described in the abstract setting of the last section are
very general. They include not only what one normally thinks of as Hamil-
ton’s canonical equations in classical mechanics, but also the equations of
elasticity, fluids, electromagnetism, Schrödinger’s equation in quantum me-
chanics to mention a few. Despite this generality, as we shall see, the theory
has a rich structure.

LetH ∈ F(P ) where P is a Poisson manifold. Let ϕt be the flow of Hamil-
ton’s equations; thus, ϕt(z) is the integral curve of ż = XH(z) starting at z.
(If the flow is not complete, restrict attention to its domain of definition.)
There are two basic facts about Hamiltonian flows (ignoring functional
analytic technicalities in the infinite dimensional case—see Chernoff and
Marsden [1974]).

2.2.1 Proposition. The following hold for Hamiltonian systems on Pois-
son manifolds:

(i) each ϕt is a Poisson map,

(ii) H ◦ ϕt = H (conservation of energy).

The first part of this proposition is true even if H is a time dependent
Hamiltonian, while the second part is true only when H is independent of
time.
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2.3 Cotangent Bundles

Let Q be a given manifold (usually the configuration space of a mechanical
system) and T ∗Q be its cotangent bundle. Coordinates qi on Q induce
coordinates (qi, pj) on T ∗Q, called the canonical cotangent coordinates

of T ∗Q.

2.3.1 Proposition. There is a unique 1-form Θ on T ∗Q such that in
any choice of canonical cotangent coordinates,

Θ = pidq
i; (2.3.1)

Θ is called the canonical 1-form . We define the canonical 2-form Ω
by

Ω = −dΘ = dqi ∧ dpi (a sum on i is understood). (2.3.2)

In infinite dimensions, one needs to use an intrinsic definition of Θ, and
there are many such; one of these is the identity β∗Θ = β for β : Q→ T ∗Q
any one form. Another is

Θ(wαq
) = 〈αq, TπQ · wαq

〉,

where αq ∈ T ∗
q Q,wαq

∈ Tαq
(T ∗Q) and where πQ : T ∗Q→ Q is the cotan-

gent bundle projection.

2.3.2 Proposition. (T ∗Q,Ω) is a symplectic manifold.

In cotangent bundle coordinates (naturally induced from coordinates on
Q), the Poisson brackets on T ∗Q have the classical form

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi
, (2.3.3)

where summation on repeated indices is understood.

2.3.3 Theorem (Darboux’ Theorem). Every symplectic manifold locally
looks like T ∗Q; in other words, on every finite dimensional symplectic man-
ifold, there are local coordinates in which Ω has the form (2.3.2).

(See Marsden [1981] and Olver [1988] for a discussion of the infinite
dimensional case.)

Hamilton’s equations in these canonical coordinates have the classical
form

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi

,

as one can readily check.
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The local structure of Poisson manifolds is more complex than the sym-
plectic case. However, Kirillov [1976] has shown that every Poisson manifold
is the union of symplectic leaves; to compute the bracket of two functions
in P , one does it leaf-wise . In other words, to calculate the bracket of f
and g at z ∈ P , select the symplectic leaf Sz through z, and evaluate the
bracket of f |Sz and g|Sz at z. We shall see a specific case of this picture
shortly.

2.4 Lagrangian Mechanics

Let Q be a manifold and TQ its tangent bundle. Coordinates qi on Q
induce coordinates (qi, q̇i) on TQ, called tangent coordinates. A mapping
L : TQ → R is called a Lagrangian . It is often the case that L has the
form L = K − V where K(v) = 1

2 〈〈v, v〉〉 is the kinetic energy associated
to a given Riemannian metric 〈〈 , 〉〉, and where V : Q → R is a potential

energy function.

2.4.1 Definition. Hamilton’s principle singles out particular curves
q(t) by the condition

δ

∫ a

b

L(q(t), q̇(t))dt = 0, (2.4.1)

where the variation is over smooth curves in Q with fixed endpoints.

Note that (2.4.1) is unchanged if we replace the integrand by L(q, q̇) −
d
dtS(q, t) for any function S(q, t). This reflects the gauge invariance of
classical mechanics and is closely related to Hamilton–Jacobi theory.

If one prefers, the action principle states that the map I defined by

I(q(·)) =
∫ b

a
L(q(t), q̇(t))dt from the space of curves with prescribed end-

points in Q to R has a critical point at the curve in question. In any case, a
basic and elementary result of the calculus of variations, whose proof was
sketched in §1.2, is:

2.4.2 Proposition. Hamilton’s principle for a curve q(t) is equivalent to
the condition that q(t) satisfies the Euler–Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (2.4.2)

Since Hamilton’s principle is intrinsic (independent of coordinates), the
Euler–Lagrange equations must be as well. It is interesting to do so—see,
for example, Marsden and Ratiu [1999] for an exposition of this.

Another interesting fact is that if one keeps track of the boundary con-
ditions in Hamilton’s principle, they essentially define the canonical one
form, pidq

i. In fact, this can be carried further and used as a completely
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different way of showing that the flow of the Euler–Lagrange equations are
symplectic. Namely, one considers the action function on solution curves
(q(t), q̇(t)) emanating from given initial conditions (q0, q̇0), thought of as a
function of time and the initial conditions:

S(q0, q̇0, t) =

∫ t

0

L(q(s), q̇(s), s) ds

Interestingly, the identity d2S = 0 gives the symplecticity condition, an
argument due to Marsden, Patrick and Shkoller [1998], which we refer to
for details and multisymplectic generalizations.

2.4.3 Definition. Let L be a Lagrangian on TQ and let FL : TQ→ T ∗Q
be defined (in coordinates) by

(qi, q̇j) 7→ (qi, pj)

where pj = ∂L/∂q̇j. We call FL the fiber derivative. (Intrinsically, FL
differentiates L in the fiber direction.)

A Lagrangian L is called hyperregular if FL is a diffeomorphism. If L
is a hyperregular Lagrangian, we define the corresponding Hamiltonian

by
H(qi, pj) = piq̇

i − L.
The change of data from L on TQ to H on T ∗Q is called the Legendre

transform .

One checks that the Euler–Lagrange equations for L are equivalent to
Hamilton’s equations for H.

In a relativistic context one finds that the two conditions pj = ∂L/∂q̇j

and H = piq̇
i − L, defining the Legendre transform, fit together as the

spatial and temporal components of a single object. Suffice it to say that
the formalism developed here is useful in the context of relativistic fields.

2.5 Lie–Poisson Structures and the Rigid
Body

Not every Poisson manifold is symplectic. For example, a large class of non-
symplectic Poisson manifolds is the class of Lie–Poisson manifolds, which
we now define. Let G be a Lie group and g = TeG its Lie algebra with
[ , ] : g× g→ g the associated Lie bracket.

2.5.1 Proposition. The dual space g∗ is a Poisson manifold with either
of the two brackets

{f, k}±(µ) = ±
〈
µ,

[
δf

δµ
,
δk

δµ

]〉
. (2.5.1)
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Here g is identified with g∗∗ in the sense that δf/δµ ∈ g is defined by
〈ν, δf/δµ〉 = df(µ) · ν for ν ∈ g∗, where d denotes the derivative. (In the
infinite dimensional case one needs to worry about the existence of δf/δµ;
in this context, methods like the Hahn–Banach theorem are not always
appropriate!) The notation δf/δµ is used to conform to the functional
derivative notation in classical field theory. In coordinates, (ξ1, . . . , ξm) on
g and corresponding dual coordinates (µ1, . . . , µm) on g∗, the Lie–Poisson

bracket (2.5.1) is

{f, k}±(µ) = ±µaC
a
bc

∂f

∂µb

∂k

∂µc
; (2.5.2)

here Ca
bc are the structure constants of g defined by [ea, eb] = Cc

abec,
where (e1, . . . , em) is the coordinate basis of g and where, for ξ ∈ g, we
write ξ = ξaea, and for µ ∈ g∗, µ = µae

a, where (e1, . . . , em) is the dual
basis. Formula (2.5.2) appears explicitly in Lie [1890, Section 75].

Which sign to take in (2.5.2) is determined by understanding Lie–

Poisson reduction , which can be summarized as follows. Let

λ : T ∗G→ g∗ be defined by pg 7→ (TeLg)
∗pg ∈ T ∗

eG
∼= g∗ (2.5.3)

and

ρ : T ∗G→ g∗ be defined by pg 7→ (TeRg)
∗pg ∈ T ∗

eG
∼= g∗. (2.5.4)

Then λ is a Poisson map if one takes the (−) Lie–Poisson structure on g∗

and ρ is a Poisson map if one takes the (+) Lie–Poisson structure on g∗.
Every left invariant Hamiltonian and Hamiltonian vector field is mapped

by λ to a Hamiltonian and Hamiltonian vector field on g∗. There is a similar
statement for right invariant systems on T ∗G. One says that the original
system on T ∗G has been reduced to g∗. The reason λ and ρ are both
Poisson maps is perhaps best understood by observing that they are both
equivariant momentum maps generated by the action of G on itself by right
and left translations, respectively. We take up this topic in §2.7.

We saw in Chapter 1 that the Euler equations of motion for rigid body
dynamics are given by

Π̇ = Π× Ω, (2.5.5)

where Π = IΩ is the body angular momentum and Ω is the body angu-
lar velocity. Euler’s equations are Hamiltonian relative to a Lie–Poisson
structure. To see this, take G = SO(3) to be the configuration space. Then
g ∼= (R3,×) and we identify g ∼= g∗. The corresponding Lie–Poisson struc-
ture on R3 is given by

{f, k}(Π) = −Π · (∇f ×∇k). (2.5.6)

For the rigid body one chooses the minus sign in the Lie–Poisson bracket.
This is because the rigid body Lagrangian (and hence Hamiltonian) is left
invariant and so its dynamics pushes to g∗ by the map λ in (2.5.3).
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Starting with the kinetic energy Hamiltonian derived in Chapter 1, we
directly obtain the formula H(Π) = 1

2Π · (I−1Π), the kinetic energy of the
rigid body. One verifies from the chain rule and properties of the triple
product that:

2.5.2 Proposition. Euler’s equations are equivalent to the following
equation for all f ∈ F(R3):

ḟ = {f,H}. (2.5.7)

2.5.3 Definition. Let (P, { , }) be a Poisson manifold. A function C ∈
F(P ) satisfying

{C, f} = 0 for all f ∈ F(P ) (2.5.8)

is called a Casimir function .

A crucial difference between symplectic manifolds and Poisson manifolds
is this: On symplectic manifolds, the only Casimir functions are the con-
stant functions (assuming P is connected). On the other hand, on Poisson
manifolds there is often a large supply of Casimir functions. In the case of
the rigid body, every function C : R3 → R of the form

C(Π) = Φ(‖Π‖2) (2.5.9)

where Φ : R → R is a differentiable function, is a Casimir function, as we
noted in Chapter 1. Casimir functions are constants of the motion for any
Hamiltonian since Ċ = {C,H} = 0 for any H. In particular, for the rigid
body, ‖Π‖2 is a constant of the motion—this is the invariant sphere we saw
in Chapter 1.

There is an intimate relation between Casimirs and symmetry generated
conserved quantities, or momentum maps, which we study in §2.7.

The maps λ and ρ induce Poisson isomorphisms between (T ∗G)/G and g∗

(with the (−) and (+) brackets respectively) and this is a special instance
of Poisson reduction, as we will see in §2.8. The following result is one
useful way of formulating the general relation between T ∗G and g∗. We
treat the left invariant case to be specific. Of course, the right invariant
case is similar.

2.5.4 Theorem. Let G be a Lie group and H : T ∗G → R be a left
invariant Hamiltonian. Let h : g∗ → R be the restriction of H to the
identity. For a curve p(t) ∈ T ∗

g(t)G, let µ(t) = (T ∗
g(t)L) · p(t) = λ(p(t))

be the induced curve in g∗. Assume that ġ = ∂H/∂p ∈ TgG. Then the
following are equivalent:

(i) p(t) is an integral curve of XH ; that is, Hamilton’s equations on T ∗G
hold,

(ii) for any F ∈ F(T ∗G), Ḟ = {F,H}, where { , } is the canonical bracket
on T ∗G,
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(iii) µ(t) satisfies the Lie–Poisson equations

dµ

dt
= ad∗

δh/δµµ (2.5.10)

where adξ : g→ g is defined by adξη = [ξ, η] and ad∗
ξ is its dual, that

is,

µ̇a = Cd
ba

δh

δµb
µd, (2.5.11)

(iv) for any f ∈ F(g∗), we have

ḟ = {f, h}− (2.5.12)

where { , }− is the minus Lie–Poisson bracket.

We now make some remarks about the proof. First of all, the equivalence
of (i) and (ii) is general for any cotangent bundle, as we have already noted.
Next, the equivalence of (ii) and (iv) follows directly from the fact that λ
is a Poisson map (as we have mentioned, this follows from the fact that λ
is a momentum map; see Proposition 2.7.6 below) and H = h ◦ λ. Finally,
we establish the equivalence of (iii) and (iv). Indeed, ḟ = {f, h}− means

〈
µ̇,
δf

δµ

〉
= −

〈
µ,

[
δf

δµ
,
δh

δµ

]〉

=

〈
µ, adδh/δµ

δf

δµ

〉

=

〈
ad∗

δh/δµµ,
δf

δµ

〉
.

Since f is arbitrary, this is equivalent to iii. �

2.6 The Euler–Poincaré Equations

In §1.3 we saw that for the rigid body, there is an analogue of the above
theorem on SO(3) and so(3) using the Euler–Lagrange equations and the
variational principle as a starting point. We now generalize this to an arbi-
trary Lie group and make the direct link with the Lie–Poisson equations.

2.6.1 Theorem. Let G be a Lie group and L : TG→ R a left invariant
Lagrangian. Let l : g → R be its restriction to the identity. For a curve
g(t) ∈ G, let

ξ(t) = g(t)−1 · ġ(t); that is ξ(t) = Tg(t)Lg(t)−1 ġ(t).

Then the following are equivalent
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(i) g(t) satisfies the Euler–Lagrange equations for L on G,

(ii) the variational principle

δ

∫
L(g(t), ġ(t))dt = 0 (2.6.1)

holds, for variations with fixed endpoints,

(iii) the Euler–Poincaré equations hold:

d

dt

δl

δξ
= ad∗

ξ

δl

δξ
, (2.6.2)

(iv) the variational principle

δ

∫
l(ξ(t))dt = 0 (2.6.3)

holds on g, using variations of the form

δξ = η̇ + [ξ, η], (2.6.4)

where η vanishes at the endpoints.

Let us discuss the main ideas of the proof. First of all, the equivalence of
(i) and (ii) holds on the tangent bundle of any configuration manifold Q, as
we have seen, secondly, (ii) and (iv) are equivalent. To see this, one needs
to compute the variations δξ induced on ξ = g−1ġ = TLg−1 ġ by a variation
of g. To calculate this, we need to differentiate g−1ġ in the direction of a
variation δg. If δg = dg/dǫ at ǫ = 0, where g is extended to a curve gǫ,
then,

δξ =
d

dǫ

(
g−1 d

dt
g

)∣∣∣∣
ǫ=0

while if η = g−1δg, then

η̇ =
d

dt

(
g−1 d

dǫ
g

)∣∣∣∣
ǫ=0

.

The difference δξ − η̇ is the commutator, [ξ, η]. This argument is fine for
matrix groups, but takes a little more work to make precise for general
Lie groups. See Bloch, Krishnaprasad, Marsden, and Ratiu [1996] for the
general case. Thus, (ii) and (iv) are equivalent.

To complete the proof, we show the equivalence of (iii) and (iv). Indeed,
using the definitions and integrating by parts,

δ

∫
l(ξ)dt =

∫
δl

δξ
δξ dt

=

∫
δl

δξ
(η̇ + adξη)dt

=

∫ [
− d

dt

(
δl

δξ

)
+ ad∗

ξ

δl

δξ

]
η dt
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so the result follows. �

Generalizing what we saw directly in the rigid body, one can check di-
rectly from the Euler–Poincaré equations that conservation of spatial an-
gular momentum holds:

d

dt
π = 0 (2.6.5)

where π is defined by

π = Ad∗
g

δl

δξ
. (2.6.6)

Since the Euler–Lagrange and Hamilton equations on TQ and T ∗Q are
equivalent, it follows that the Lie–Poisson and Euler–Poincaré equations
are also equivalent under a regularity hypothesis. To see this directly, we
make the following Legendre transformation from g to g∗:

µ =
δl

δξ
, h(µ) = 〈µ, ξ〉 − l(ξ).

Note that
δh

δµ
= ξ +

〈
µ,
δξ

δµ

〉
−
〈
δl

δξ
,
δξ

δµ

〉
= ξ

and so it is now clear that (2.5.10) and (2.6.2) are equivalent.

2.7 Momentum Maps

Let G be a Lie group and P be a Poisson manifold, such that G acts on
P by Poisson maps (in this case the action is called a Poisson action).
Denote the corresponding infinitesimal action of g on P by ξ 7→ ξP , a map
of g to X(P ), the space of vector fields on P . We write the action of g ∈ G
on z ∈ P as simply gz; the vector field ξP is obtained at z by differentiating
gz with respect to g in the direction ξ at g = e. Explicitly,

ξP (z) =
d

dǫ
[exp(ǫξ) · z]

∣∣∣∣
ǫ=0

.

2.7.1 Definition. A map J : P → g∗ is called a momentum map if
X〈J,ξ〉 = ξP for each ξ ∈ g, where 〈J, ξ〉(z) = 〈J(z), ξ〉.
2.7.2 Theorem (Noether’s Theorem). If H is a G invariant Hamiltonian
on P , then J is conserved on the trajectories of the Hamiltonian vector field
XH .

Proof. Differentiating the invariance condition H(gz) = H(z) with re-
spect to g ∈ G for fixed z ∈ P , we get dH(z)·ξP (z) = 0 and so {H, 〈J, ξ〉} =
0 which by antisymmetry gives d〈J, ξ〉 ·XH = 0 and so 〈J, ξ〉 is conserved
on the trajectories of XH for every ξ in G. �
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Turning to the construction of momentum maps, let Q be a manifold and
let G act on Q. This action induces an action of G on T ∗Q by cotangent
lift—that is, we take the transpose inverse of the tangent lift. The action
of G on T ∗Q is always symplectic and therefore Poisson.

2.7.3 Theorem. A momentum map for a cotangent lifted action is given
by

J : T ∗Q→ g∗ defined by 〈J, ξ〉(pq) = 〈pq, ξQ(q)〉. (2.7.1)

In canonical coordinates, we write pq = (qi, pj) and define the action

functions Ki
a by (ξQ)i = Ki

a(q)ξa. Then

〈J, ξ〉(pq) = piK
i
a(q)ξa (2.7.2)

and therefore
Ja = piK

i
a(q). (2.7.3)

Recall that by differentiating the conjugation operation h 7→ ghg−1 at the
identity, one gets the adjoint action of G on g. Taking its dual produces
the coadjoint action of G on g∗.

2.7.4 Proposition. The momentum map for cotangent lifted actions is
equivariant , that is, the diagram in Figure 2.7.1 commutes.

T ∗Q g∗

T ∗Q g∗

J

J

G-action
on T ∗Q

coadjoint
action

✲

✲
❄ ❄

Figure 2.7.1. Equivariance of the momentum map.

2.7.5 Proposition. Equivariance implies infinitesimal equivariance, which
can be stated as the classical commutation relations:

{〈J, ξ〉, 〈J, η〉} = 〈J, [ξ, η]〉.

2.7.6 Proposition. If J is infinitesimally equivariant, then J : P → g∗

is a Poisson map. If J is generated by a left (respectively, right) action then
we use the (+) (respectively, (−)) Lie–Poisson structure on g∗.

The above development concerns momentum maps using the Hamilto-
nian point of view. However, one can also consider them from the La-
grangian point of view. In this context, we consider a Lie group G acting
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on a configuration manifold Q and lift this action to the tangent bundle TQ
using the tangent operation. Given a G-invariant Lagrangian L : TQ→ R,
the corresponding momentum map is obtained by replacing the momentum
pq in (2.7.1) with the fiber derivative FL(vq). Thus, J : TQ → g∗ is given
by

〈J(vq), ξ〉 = 〈FL(vq), ξQ(q)〉 (2.7.4)

or, in coordinates,

Ja =
∂L

∂q̇i
Ki

a, (2.7.5)

where the action coefficients Ki
a are defined as before by writing ξQ(qi) =

Ki
aξ

a∂/∂qi.

2.7.7 Proposition. For a solution of the Euler–Lagrange equations (even
if the Lagrangian is degenerate), J is constant in time.

Proof. In case L is a regular Lagrangian, this follows from its Hamilto-
nian counterpart. It is useful to check it directly using Hamilton’s principle
(which is the way it was originally done by Noether). To do this, choose any
function φ(t, ǫ) of two variables such that the conditions φ(a, ǫ) = φ(b, ǫ) =
φ(t, 0) = 0 hold. Since L is G-invariant, for each Lie algebra element ξ ∈ g,
the expression

∫ b

a

L(exp(φ(t, ǫ)ξ)q, exp(φ(t, ǫ)ξ)q̇)) dt (2.7.6)

is independent of ǫ. Differentiating this expression with respect to ǫ at ǫ = 0
and setting φ′ = ∂φ/∂ǫ taken at ǫ = 0, gives

0 =

∫ b

a

(
∂L

∂qi
ξi
Qφ

′ +
∂L

∂q̇i
(TξQ · q̇)iφ′

)
dt. (2.7.7)

Now we consider the variation q(t, ǫ) = exp(φ(t, ǫ)ξ) · q(t). The correspond-
ing infinitesimal variation is given by

δq(t) = φ′(t)ξQ(q(t)).

By Hamilton’s principle, we have

0 =

∫ b

a

(
∂L

∂qi
δqi +

∂L

∂q̇i
˙δqi

)
dt. (2.7.8)

Note that
δ̇q = φ̇′ξQ + φ′(TξQ · q̇)

and subtract (2.7.8) from (2.7.7) to give

0 =

∫ b

a

∂L

∂q̇i
(ξQ)iφ̇′ dt = −

∫ b

a

d

dt

(
∂L

∂q̇i
ξi
Q

)
φ′ dt.
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Since φ′ is arbitrary, except for endpoint conditions, it follows that the
integrand vanishes, and so the time derivative of the momentum map is
zero and so the proposition is proved. �

2.8 Symplectic and Poisson Reduction

We have already seen how to use variational principles to reduce the Euler–
Lagrange equations. On the Hamiltonian side, there are three levels of
reduction of decreasing generality, that of Poisson reduction, symplectic
reduction, and cotangent bundle reduction. Let us first consider Poisson
reduction.

For Poisson reduction we start with a Poisson manifold P and let
the Lie group G act on P by Poisson maps. Assuming P/G is a smooth
manifold, endow it with the unique Poisson structure on such that the
canonical projection π : P → P/G is a Poisson map. We can specify the
Poisson structure on P/G explicitly as follows. For f and k : P/G→ R, let
F = f ◦π and K = k◦π, so F and K are f and k thought of as G-invariant
functions on P . Then {f, k}P/G is defined by

{f, k}P/G ◦ π = {F,K}P . (2.8.1)

To show that {f, k}P/G is well defined, one has to prove that {F,K}P is
G-invariant. This follows from the fact that F and K are G-invariant and
the group action of G on P consists of Poisson maps.

For P = T ∗G we get a very important special case.

2.8.1 Theorem (Lie–Poisson Reduction). Let P = T ∗G and assume that
G acts on P by the cotangent lift of left translations. If one endows g∗ with
the minus Lie–Poisson bracket, then P/G ∼= g∗.

For symplectic reduction we begin with a symplectic manifold (P,Ω).
Let G be a Lie group acting by symplectic maps on P ; in this case the
action is called a symplectic action . Let J be an equivariant momentum
map for this action and H a G-invariant Hamiltonian on P . Let Gµ = { g ∈
G | g · µ = µ } be the isotropy subgroup (symmetry subgroup) at µ ∈ g∗.
As a consequence of equivariance, Gµ leaves J−1(µ) invariant. Assume for
simplicity that µ is a regular value of J, so that J−1(µ) is a smooth manifold
(see §2.8 below) and that Gµ acts freely and properly on J−1(µ), so that
J−1(µ)/Gµ =: Pµ is a smooth manifold. Let iµ : J−1(µ) → P denote the
inclusion map and let πµ : J−1(µ)→ Pµ denote the projection. Note that

dimPµ = dimP − dimG− dimGµ. (2.8.2)

Building on classical work of Jacobi, Liouville, Arnold and Smale, we have
the following basic result of Marsden and Weinstein [1974] (see also Meyer
[1973]).
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2.8.2 Theorem (Reduction Theorem). There is a unique symplectic
structure Ωµ on Pµ satisfying

i∗µΩ = π∗
µΩµ. (2.8.3)

Given a G-invariant Hamiltonian H on P , define the reduced Hamilto-
nian Hµ : Pµ → R by H = Hµ ◦ πµ. Then the trajectories of XH project
to those of XHµ

. An important problem is how to reconstruct trajectories
of XH from trajectories of XHµ

. Schematically, we have the situation in
Figure 2.8.1.

reduction reconstruction

❄ ❄

✻ ✻

P

Pµ

J−1(µ)

iµ

πµ

Figure 2.8.1. Reduction to Pµ and reconstruction back to P .

As we shall see later, the reconstruction process is where the holonomy
and “geometric phase” ideas enter. In fact, we shall put a connection on the
bundle πµ : J−1(µ)→ Pµ and it is through this process that one encounters
the gauge theory point of view of mechanics.

Let Oµ denote the coadjoint orbit through µ. As a special case of the
symplectic reduction theorem, we get

2.8.3 Corollary. (T ∗G)µ
∼= Oµ.

The symplectic structure inherited on Oµ is called the (Lie–Kostant–

Kirillov) orbit symplectic structure. This structure is compatible with
the Lie–Poisson structure on g∗ in the sense that the bracket of two func-
tions on Oµ equals that obtained by extending them arbitrarily to g∗,
taking the Lie–Poisson bracket on g∗ and then restricting to Oµ.

Examples

A. G = SO(3), g∗ = so(3)∗ ∼= R3. In this case the coadjoint action is
the usual action of SO(3) on R3. This is because of the orthogonality of the
elements of G. The set of orbits consists of spheres and a single point. The
reduction process confirms that all orbits are symplectic manifolds. One
calculates that the symplectic structure on the spheres is a multiple of the
area element.
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B. Jacobi–Liouville theorem. Let G = Tk be the k-torus and assume
G acts on a symplectic manifold P . In this case the components of J are in
involution and dimPµ = dimP − 2k, so 2k variables are eliminated. As we
shall see, reconstruction allows one to reassemble the solution trajectories
on P by quadratures in this Abelian case.

C. Jacobi–Deprit elimination of the node. Let G = SO(3) act on
P . In the classical case of Jacobi, P = T ∗R3 and in the generalization of
Deprit [1983] one considers the phase space of n particles in R3. We just
point out here that the reduced space Pµ has dimension dimP − 3 − 1 =
dimP − 4 since Gµ = S1 (if µ 6= 0) in this case. �

The orbit reduction theorem of Marle [1976] and Kazhdan, Kostant,
and Sternberg [1978] states that Pµ may be alternatively constructed as

PO = J−1(O)/G, (2.8.4)

where O ⊂ g∗ is the coadjoint orbit through µ. As above we assume we
are away from singular points (see §2.8 below). The spaces Pµ and PO are
isomorphic by using the inclusion map lµ : J−1(µ) → J−1(O) and taking
equivalence classes to induce a symplectic isomorphism Lµ : Pµ → PO. The
symplectic structure ΩO on PO is uniquely determined by

j∗OΩ = π∗
OΩO + J∗

OωO, (2.8.5)

where jO : J−1(O)→ P is the inclusion, πO : J−1(O)→ PO is the projec-
tion, and where JO = J|J−1(O) : J−1(O) → O and ωO is the orbit sym-
plectic form. In terms of the Poisson structure, J−1(O)/G has the bracket
structure inherited from P/G; in fact, J−1(O)/G is a symplectic leaf in
P/G. Thus, we get the picture in Figure 2.8.2.

/Gµ /G /G

❄ ❄ ❄

J−1(µ) ⊂ J−1(O) ⊂ P

Pµ
∼= PO ⊂ P/G

Figure 2.8.2. Orbit reduction gives another realization of Pµ.

Kirillov has shown that every Poisson manifold P is the union of sym-
plectic leaves, although the preceding construction explicitly realizes these
symplectic leaves in this case by the reduction construction. A special case
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is the foliation of the dual g∗ of any Lie algebra g into its symplectic leaves,
namely the coadjoint orbits. For example SO(3) is the union of spheres plus
the origin, each of which is a symplectic manifold. Notice that the drop in
dimension from T ∗ SO(3) to O is from 6 to 2, a drop of 4, as in general
SO(3) reduction. An exception is the singular point, the origin, where the
drop in dimension is larger. We turn to these singular points next.

2.9 Singularities and Symmetry

2.9.1 Proposition. Let (P,Ω) be a symplectic manifold, let G act on P
by Poisson mappings, and let J : P → g∗ be a momentum map for this
action (J need not be equivariant). Let Gz denote the symmetry group of
z ∈ P defined by Gz = { g ∈ G | gz = z } and let gz be its Lie algebra, so
gz = { ζ ∈ g | ζP (z) = 0 }. Then z is a regular value of J if and only if gz

is trivial; that is, gz = {0}, or, equivalently, Gz is discrete.

Proof. The point z is regular when the range of the linear map DJ(z)
is all of g∗. However, ζ ∈ g is orthogonal to the range (in the sense of the
g, g∗ pairing) if and only if for all v ∈ TzP ,

〈ζ,DJ(z) · v〉 = 0

that is,
d〈J, ζ〉(z) · v = 0

or
Ω(X〈J,ζ〉(z), v) = 0

or
Ω(ζP (z), v) = 0.

As Ω is nondegenerate, ζ is orthogonal to the range iff ζP (z) = 0. �

The above proposition is due to Smale [1970]. It is the starting point of
a large literature on singularities in the momentum map and singular re-
duction. Arms, Marsden, and Moncrief [1981] show, under some reasonable
hypotheses, that the level sets J−1(0) have quadratic singularities. As we
shall see in the next chapter, there is a general shifting construction that
enables one to effectively reduce J−1(µ) to the case J−1(0). In the finite
dimensional case, this result can be deduced from the equivariant Darboux
theorem, but in the infinite dimensional case, things are much more subtle.
In fact, the infinite dimensional results were motivated by, and apply to,
the singularities in the solution space of relativistic field theories such as
gravity and the Yang–Mills equations (see Fischer, Marsden, and Moncrief
[1980], Arms, Marsden, and Moncrief [1981, 1982] and Arms [1981]). The
convexity theorem states that the image of the momentum map of a
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torus action is a convex polyhedron in g∗; the boundary of the polyhedron
is the image of the singular (symmetric) points in P ; the more symmetric
the point, the more singular the boundary point. These results are due to
Atiyah [1982] and Guillemin and Sternberg [1984] based on earlier con-
vexity results of Kostant and the Shur–Horne theorem on eigenvalues of
symmetric matrices. The literature on these topics and its relation to other
areas of mathematics is vast. See, for example, Kirwan [1984a], Goldman
and Millson [1990], Sjamaar [1990], Bloch, Flaschka, and Ratiu [1990], Sja-
maar and Lerman [1991] and Lu and Ratiu [1991].

2.10 A Particle in a Magnetic Field

During cotangent bundle reduction considered in the next chapter, we shall
have to add terms to the symplectic form called “magnetic terms”. To
explain this terminology, we consider a particle in a magnetic field.

Let B be a closed two-form on R3 and B = Bxi+Byj+Bzk the associated
divergence free vector field, that is, iB(dx ∧ dy ∧ dz) = B, or

B = Bxdy ∧ dz −Bydx ∧ dz +Bzdx ∧ dy.

Thinking of B as a magnetic field, the equations of motion for a particle
with charge e and mass m are given by the Lorentz force law :

m
dv

dt
=
e

c
v ×B (2.10.1)

where v = (ẋ, ẏ, ż). On R3 × R3, that is, on (x,v)-space, consider the
symplectic form

ΩB = m(dx ∧ dẋ+ dy ∧ dẏ + dz ∧ dż)− e

c
B. (2.10.2)

For the Hamiltonian, take the kinetic energy:

H =
m

2
(ẋ2 + ẏ2 + ż2) (2.10.3)

writingXH(u, v, w) = (u, v, w, (u̇, v̇, ẇ)), the condition definingXH , namely
iXH

ΩB = dH is

m(udẋ− u̇dx+ vdẏ − v̇dy + wdż − ẇdz)
− e

c
[Bxvdz −Bxwdy −Byudz +Bywdx+Bzudy −Bzvdx]

= m(ẋdẋ+ ẏdẏ + żdż) (2.10.4)
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which is equivalent to u = ẋ, v = ẏ, w = ż, mu̇ = e(Bzv − Byw)/c,
mv̇ = e(Bxw −Bzu)/c, and mẇ = e(Byu−Bxv)/c, that is, to

mẍ =
e

c
(Bz ẏ −By ż)

mÿ =
e

c
(Bxż −Bzẋ) (2.10.5)

mz̈ =
e

c
(Byẋ−Bxẏ)

which is the same as (2.10.1). Thus the equations of motion for a particle
in a magnetic field are Hamiltonian, with energy equal to the kinetic energy
and with the symplectic form ΩB .

If B = dA; that is, B = ∇ × A, where A is a one-form and A is the
associated vector field, then the map (x,v) 7→ (x,p) where p = mv +
eA/c pulls back the canonical form to ΩB , as is easily checked. Thus,
equations (2.10.1) are also Hamiltonian relative to the canonical bracket on
(x,p)-space with the Hamiltonian

HA =
1

2m
‖p− e

c
A‖2. (2.10.6)

Even in Euclidean space, not every magnetic field can be written as
B = ∇ × A. For example, the field of a magnetic monopole of strength
g 6= 0, namely

B(r) = g
r

‖r‖3 (2.10.7)

cannot be written this way since the flux of B through the unit sphere
is 4πg, yet Stokes’ theorem applied to the two hemispheres would give
zero. Thus, one might think that the Hamiltonian formulation involving
only B (i.e., using ΩB and H) is preferable. However, one can recover
the magnetic potential A by regarding A as a connection on a nontrivial
bundle over R3\{0}. The bundle over the sphere S2 is in fact the same Hopf

fibration S3 → S2 that we encountered in §1.6. This same construction
can be carried out using reduction. For a readable account of some aspects
of this situation, see Yang [1980]. For an interesting example of Weinstein
in which this monopole comes up, see Marsden [1981, p. 34].

When one studies the motion of a colored (rather than a charged) particle
in a Yang–Mills field, one finds a beautiful generalization of this construc-
tion and related ideas using the theory of principal bundles; see Sternberg
[1977], Weinstein [1978b] and Montgomery [1984, 1986]. In the study of
centrifugal and Coriolis forces one discovers some structures analogous to
those here (see Marsden and Ratiu [1999] for more information). We shall
return to particles in Yang–Mills fields in our discussion of optimal control
in Chapter 7.
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3
Tangent and Cotangent Bundle
Reduction

In this chapter we discuss the cotangent bundle reduction theorem. Versions
of this are already given in Smale [1970], but primarily for the Abelian
case. This was amplified in the work of Satzer [1977] and motivated by
this, was extended to the nonabelian case in Abraham and Marsden [1978].
An important formulation of this was given by Kummer [1981] in terms
of connections. Building on this, the “bundle picture” was developed by
Montgomery, Marsden, and Ratiu [1984], Montgomery [1986] and Cendra,
Marsden, and Ratiu [2001].

From the symplectic viewpoint, the principal result is that the reduction
of a cotangent bundle T ∗Q at µ ∈ g∗ is a bundle over T ∗(Q/G) with fiber
the coadjoint orbit through µ. Here, S = Q/G is called shape space . From
the Poisson viewpoint, this reads: (T ∗Q)/G is a g∗-bundle over T ∗(Q/G),
or a Lie–Poisson bundle over the cotangent bundle of shape space. We de-
scribe the geometry of this reduction using the mechanical connection and
explicate the reduced symplectic structure and the reduced Hamiltonian
for simple mechanical systems.

On the Lagrangian, or tangent bundle, side there is a counterpart of
both symplectic and Poisson reduction in which one concentrates on the
variational principle rather than on the symplectic and Poisson structures.
We will develop this as well.
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3.1 Mechanical G-systems

By a symplectic (resp., Poisson) G-system we mean a symplectic (resp.,
Poisson) manifold (P,Ω) together with the symplectic action of a Lie group
G on P , an equivariant momentum map J : P → g∗ and a G-invariant
Hamiltonian H : P → R.

Following terminology of Smale [1970], we refer to the following special
case of a symplectic G-system as a simple mechanical G-system . We
choose P = T ∗Q, assume there is a Riemannian metric 〈〈 , 〉〉 on Q, that G
acts on Q by isometries (and so G acts on T ∗Q by cotangent lifts) and that

H(q, p) =
1

2
‖p‖2q + V (q), (3.1.1)

where ‖ · ‖q is the norm induced on T ∗
q Q, and where V is a G-invariant

potential.
We abuse notation slightly and write either z = (q, p) or z = pq for a

covector based at q ∈ Q and we shall also let ‖ · ‖q denote the norm on
TqQ. Points in TqQ shall be denoted vq or (q, v) and the pairing between
T ∗

q Q and TqQ is simply written

〈pq, vq〉, 〈p, v〉, or 〈(q, p), (q, v)〉. (3.1.2)

Other natural pairings between spaces and their duals are also denoted 〈 , 〉.
The precise meaning will always be clear from the context.

Unless mentioned to the contrary, the default momentum map for simple
mechanical G-systems will be the standard one:

J : T ∗Q→ g∗, where 〈J(q, p), ξ〉 = 〈p, ξQ(q)〉 (3.1.3)

and where ξQ denotes the infinitesimal generator of ξ on Q.
For the convenience of the reader we will write most formulas in both

coordinate free notation and in coordinates using standard tensorial con-
ventions. As in Chapter 2, coordinate indices for P are denoted zI , zJ , etc.,
on Q by qi, qj , etc., and on g (relative to a vector space basis of g) by ξa, ξb,
etc. For instance, ż = XH(z) can be written

żI = XI
H(zJ) or żI = {zI , H}. (3.1.4)

Recall from Chapter 2 that the Poisson tensor is defined by B(dH) =
XH , or equivalently, BIJ(z) = {zI , zJ}, so (3.1.4) reads

XI
H = BIJ ∂H

∂zJ
or żI = BIJ(z)

∂H

∂zJ
(z). (3.1.5)

Equation (3.1.1) reads

H(q, p) =
1

2
gijpipj + V (q) (3.1.6)
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and (3.1.2) reads
〈p, v〉 = piv

i, (3.1.7)

while (3.1.3) reads
Ja(q, p) = piK

i
a(q) (3.1.8)

where the action tensor Ki
a is defined, as in Chapter 2, by

[ξQ(q)]i = Ki
a(q)ξa. (3.1.9)

The Legendre transformation is denoted FL : TQ → T ∗Q and in the case
of simple mechanical systems, is simply the metric tensor regarded as a
map from vectors to covectors; in coordinates,

FL(q, v) = (q, p), where pi = gijv
j . (3.1.10)

Examples

A. The spherical pendulum. Here Q = S2, the sphere on which the
bob moves, the metric is the standard one, the potential is the gravitational
potential and G = S1 acts on S2 by rotations about the vertical axis. The
momentum map is simply the angular momentum about the z-axis. We
will work this out in more detail below.

B. The double spherical pendulum. Here the configuration space is
Q = S2 × S2, the group is S1 acting by simultaneous rotation about the
z-axis and again the momentum map is the total angular momentum about
the z-axis. Again, we will see more detail below.

C. Coupled rigid bodies. Here we have two rigid bodies in R3 coupled
by a ball in socket joint. We choose Q = R3 × SO(3) × SO(3) describing
the joint position and the attitude of each of the rigid bodies relative to
a reference configuration B. The Hamiltonian is the kinetic energy, which
defines a metric on Q. Here G = SE(3) which acts on the left in the
obvious way by transforming the positions of the particles xi = AiX + w,
i = 1, 2 by Euclidean motions. The momentum map is the total linear and
angular momentum. If the bodies have additional material symmetry, G is
correspondingly enlarged; cf . Patrick [1989]. See Figure 3.1.1.

D. Ideal fluids. For an ideal fluid moving in a container represented by
a region Ω ⊂ R3, the configuration space is Q = Diffvol(Ω), the volume pre-
serving diffeomorphisms of Ω to itself. Here G = Q acts on itself on the right
and H is the total kinetic energy of the fluid. Here Lie–Poisson reduction
is relevant. We refer to Ebin and Marsden [1970] for the relevant functional
analytic technicalities. We also refer to Marsden and Weinstein [1982, 1983]
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z

x

y

w

B

X

1

2

Figure 3.1.1. The configuration space for the dynamics of two coupled rigid
bodies.

for more information and corresponding ideas for plasma physics, and to
Marsden and Hughes [1983] and Simo, Marsden, and Krishnaprasad [1988]
for elasticity. �

The examples we will focus on in these lectures are the spherical pendula
and the classical water molecule. Let us pause to give some details for the
later example.

3.2 The Classical Water Molecule

We started discussing this example in Chapter 1. The “primitive” configu-
ration space of this system is Q = R3 × R3 × R3, whose points are triples,
denoted (r, r1, r2), giving the positions of the three masses relative to an
inertial frame. For simplicity, we ignore any singular behavior that may
happen during collisions, as this aspect of the system is not of concern to
the present discussion.

The Lagrangian is given on TQ by

L(r, r1, r2, ṙ, ṙ1, ṙ2) =
1

2
{M‖ṙ‖2+m‖ṙ1‖2+m‖ṙ2‖2}−V (r, r1, r2) (3.2.1)

where V is a potential.
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The Legendre transformation produces a Hamiltonian system on Z =
T ∗Q with

H(r, r1, r2,P,p1,p2) =
‖P‖2
2M

+
‖p1‖2
2m

+
‖p2‖2
2m

+ V. (3.2.2)

The Euclidean group acts on this system by simultaneous translation and
rotation of the three component positions and momenta. In addition, there
is a discrete symmetry closely related to interchanging r1 and r2 (and, si-
multaneously, p1 and p2). Accordingly, we will assume that V is symmetric
in its second two arguments as well as being Euclidean-invariant.

The translation group R3 acts on Z by

a · (r, r1, r2,P,p1,p2) = (r + a, r1 + a, r2 + a,P,p1,p2)

and the corresponding momentum map J : Z → R3 is the total linear
momentum

J(r, r1, r2,P,p1,p2) = P + p1 + p2. (3.2.3)

Reduction to center of mass coordinates entails that we set J equal to a
constant and quotient by translations. To coordinatize the reduced space
(and bring relevant metric tensors into diagonal form), we shall use Jacobi–
Bertrand–Haretu coordinates, namely

r = r2 − r1 and s = r− 1

2
(r1 + r2) (3.2.4)

as in Figure 3.2.1.

m

M

m

Figure 3.2.1. Jacobi-Bertrand-Haretu coordinates.

To determine the correct momenta conjugate to these variables, we go
back to the Lagrangian and write it in the variables r, s, ṙ, ṡ, using the
relations

ṙ = ṙ2 − ṙ1, ṡ = ṙ− 1

2
(ṙ1 + ṙ2)
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and

J = m(ṙ1 + ṙ2) +M ṙ,

which give

ṙ1 = ṙ− ṡ− 1

2
ṙ

ṙ2 = ṙ− ṡ +
1

2
ṙ

ṙ =
1

M (J + 2mṡ)

where M = M + 2m is the total mass. Substituting into (3.2.1) and sim-
plifying gives

L =
‖J‖2
2M +

m

4
‖ṙ‖2 +Mm‖ṡ‖2 − V (3.2.5)

where m = m/M and where one expresses the potential V in terms of r
and s (if rotationally invariant, it depends on ‖r‖, ‖s‖, and r · s alone).

A crucial feature of the above choice is that the Riemannian metric
(mass matrix ) associated to L is diagonal as (3.2.5) shows. The conjugate
momenta are

π =
∂L

∂ṙ
=
m

2
ṙ =

1

2
(p2 − p1) (3.2.6)

and, with M = M/M,

σ =
∂L

∂ṡ
= 2Mmṡ = 2mP−M(p1 + p2)

= P−MJ = 2mJ− p1 − p2. (3.2.7)

We next check that this is consistent with Hamiltonian reduction. First,
note that the symplectic form before reduction,

Ω = dr1 ∧ dp1 + dr2 ∧ dp2 + dr ∧ dP

can be written, using the relation p1 + p2 + P = J, as

Ω = dr ∧ dπ + ds ∧ dσ + dr̄ ∧ dJ (3.2.8)

where r̄ = 1
2 (r1 + r2) +Ms is the system center of mass.

Thus, if J is a constant (or we pull Ω back to the surface J = constant),
we get the canonical form in (r, π) and (s, σ) as pairs of conjugate variables,
as expected.

Second, we compute the reduced Hamiltonian by substituting into

H =
1

2m
‖p1‖2 +

1

2m
‖p2‖2 +

1

2M
‖P‖2 + V
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the relations

p1 + p2 + P = J, π =
1

2
(p2 − p1), and σ = P−MJ.

One obtains

H =
1

4mM
‖σ‖2 +

‖π‖2
m

+
1

2M‖J‖
2 + V. (3.2.9)

Notice that in this case the reduced Hamiltonian and Lagrangian are Leg-
endre transformations of one another .

Remark. There are other choices of canonical coordinates for the system
after reduction by translations, but they might not be as convenient as the
above Jacobi–Bertrand–Haretu coordinates. For example, if one uses the
apparently more “democratic” choice

s1 = r1 − r and s2 = r2 − r,

then their conjugate momenta are

π1 = p1 −mJ and π2 = p2 −mJ.

One finds that the reduced Lagrangian is

L =
1

2
m′′‖ṡ1‖2 +

1

2
m′′‖ṡ2‖2 −mmṡ1 · ṡ2 − V

and the reduced Hamiltonian is

H =
1

2m′ ‖π1‖2 +
1

2m′ ‖π2‖2 +
1

M
π1 · π2 + V

where m′ = mM/(m + M) and m′′ = mMm/m′. It is the cross terms in
H and L that make these expressions inconvenient. �

Next we turn to the action of the rotation group, SO(3) and the role of
the discrete group that “swaps” the two masses m.

Our phase space is Z = T ∗(R3 × R3) parametrized by (r, s, π, σ) with
the canonical symplectic structure. The group G = SO(3) acts on Z by
the cotangent lift of rotations on R3 ×R3. The corresponding infinitesimal
action on Q is

ξQ(r, s) = (ξ × r, ξ × s)

and the corresponding momentum map is J : Z → R3, where

〈J(r, s, π, σ), ξ〉 = π · (ξ × r) + σ · (ξ × s) = ξ · (r× π + s× σ).
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In terms of the original variables, we find that

J = r× π + s× σ

= (r2 − r1)×
1

2
(p2 − p1) +

(
r− 1

2
(r1 + r2)

)
× (P−MJ) (3.2.10)

which becomes, after simplification,

J = r1 × (p1 −mJ) + r2 × (p2 −mJ) + r× (P−MJ) (3.2.11)

which is the correct total angular momentum of the system.

Remark. This expression for J also equals s1 × π1 + s2 × π2 in terms of
the alternative variables discussed above. �

3.3 The Mechanical Connection

In this section we work in the context of a simple mechanical G-system. We
shall also assume that G acts freely on Q so we can regard Q→ Q/G as a
principal G-bundle. (We make some remarks on this assumption later.)

For each q ∈ Q, let the locked inertia tensor be the map I(q) : g→ g∗

defined by
〈I(q)η, ζ〉 = 〈〈ηQ(q), ζQ(q)〉〉. (3.3.1)

Since the action is free, I(q) is an inner product. The terminology comes
from the fact that for coupled rigid or elastic systems, I(q) is the classical
moment of inertia tensor of the rigid body obtained by locking all the joints
of the system. In coordinates,

Iab = gijK
i
aK

j
b. (3.3.2)

Define the map A : TQ→ g by assigning to each (q, v) the corresponding
angular velocity of the locked system :

A(q, v) = I(q)−1(J(FL(q, v))). (3.3.3)

In coordinates,
Aa = I

abgijK
i
bv

j . (3.3.4)

One can think of Aq (the restriction of A to TqQ) as the map induced by
the momentum map via two Legendre transformations, one on the given
system and one on the instantaneous rigid body associated with it, as in
Figure 3.3.1.

3.3.1 Proposition. The map A is a connection on the principal G-bundle
Q→ Q/G.
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T ∗Q g∗

TQ g

J

Aq

FLq I(q)

✲

✲

✻ ✻

Figure 3.3.1. The diagram defining the mechanical connection.

In other words, A is G-equivariant and satisfies A(ξQ(q)) = ξ, both of
which are readily verified. A concise and convenient summary of principal
connections is given in Bloch [2003].

In checking equivariance one uses invariance of the metric; that is, equiv-
ariance of FL : TQ→ T ∗Q, equivariance of J : T ∗Q→ g∗, and equivariance
of I in the sense of a map I : Q→ L(g, g∗), namely

I(gq) ·Adgξ = Ad∗
g−1I(q) · ξ.

We call A the mechanical connection . This connection is implicitly
used in the work of Smale [1970], and Abraham and Marsden [1978], and ex-
plicitly in Kummer [1981], Guichardet [1984], Shapere and Wilczeck [1989],
Simo, Lewis, and Marsden [1991], and Montgomery [1990]. We note that
all of the preceding formulas are given in Abraham and Marsden [1978,
Section 4.5], but not from the point of view of connections.

The horizontal space horq of the connection A at q ∈ Q is given by
the kernel of Aq; thus, by (3.3.3),

horq = { (q, v) | J(FL(q, v)) = 0 }. (3.3.5)

Using the formula (3.1.3) for J, we see that horq is the space orthogonal
to the G-orbits, or, equivalently, the space of states with zero total angular
momentum in the case G = SO(3) (see Figure 3.3.2). This may be used to
define the mechanical connection—in fact, principal connections are char-
acterized by their horizontal spaces. The vertical space consists of vectors
that are mapped to zero under the projection Q→ S = Q/G; that is,

verq = { ξQ(q) | ξ ∈ g }. (3.3.6)

For each µ ∈ g∗, define the 1-form Aµ on Q by

〈Aµ(q), v〉 = 〈µ,A(q, v)〉 (3.3.7)

that is,
(Aµ)i = gijK

j
bµaI

ab. (3.3.8)

This coordinate formula shows that Aµ is given by (I−1µ)Q. We prove this
intrinsically in the next Proposition.
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q
Q

G.q

Q/G[q]

Figure 3.3.2. The horizontal space of the mechanical connection.

3.3.2 Proposition. The one form Aµ takes values in J−1(µ). Moreover,
identifying vectors and one-forms,

Aµ = (I−1µ)Q.

Proof. The first part holds for any connection on Q→ Q/G and follows
from the property A(ξQ)=ξ. Indeed,

〈J(Aµ(q)), ξ〉 = 〈Aµ(q), ξQ(q)〉 = 〈µ,A(ξQ(q))〉 = 〈µ, ξ〉.

The second part follows from the definitions:

〈Aµ(g), v〉 = 〈µ,A(v)〉
= 〈µ, I−1(q)J(FL(v))〉
= 〈I−1(q)µ,J(FL(v))〉
= 〈(I−1(q)µ)Q(q),FL(v)〉
= 〈〈(I−1(q)µ)Q(q), v〉〉q. �

Notice that this proposition holds for any connection on Q → Q/G,
not just the mechanical connection. It is straightforward to see that Aµ is
characterized by

K(Aµ(q)) = inf{K(q, β) | β ∈ J−1
q (µ) } (3.3.9)

where Jq = J|T ∗
q Q and K(q, p) = 1

2‖p‖2q is the kinetic energy function (see
Figure 3.3.3). Indeed (3.3.9) means that Aµ(q) lies in and is orthogonal to
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the affine space J−1
q (µ), that is, is orthogonal to the linear space Jq(µ) −

Aµ(q) = J−1
q (0). The latter means Aµ(q) is in the vertical space, so is of

the form ηq and the former means η is given by I−1(q)µ.

Q
q

Figure 3.3.3. The mechanical connection as the orthogonal vector to the level
set of J in the cotangent fiber.

The horizontal-vertical decomposition of a vector (q, v) ∈ TqQ is given
by the general prescription

v = horq v + verqv (3.3.10)

where
verqv = [A(q, v)]Q(q) and horq v = v − verqv.

In terms of T ∗Q rather than TQ, we define a map ω : T ∗Q→ g by

ω(q, p) = I(q)−1J(q, p) (3.3.11)

that is,
ωa = I

abKi
bpi, (3.3.12)

and, using a slight abuse of notation, a projection hor : T ∗Q→ J−1(0) by

hor(q, p) = p−AJ(q,p)(q) (3.3.13)

that is,
(hor(q, p))i = pi − gijK

j
bpkK

k
aI

ab. (3.3.14)

This map hor in (3.3.13) will play a fundamental role in what follows. We
also refer to hor as the shifting map. This map will be used in the proof
of the cotangent bundle reduction theorem in §3.4; it is also an essential
ingredient in the description of a particle in a Yang–Mills field via the
Kaluza–Klein construction, generalizing the electromagnetic case in which
p 7→ p− e

cA. This aspect will be brought in later.
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Example. Let Q = G be a Lie group with symmetry group G itself,
acting say on the left. In this case, Aµ is independent of the Hamiltonian.
Since Aµ(q) ∈ J−1(µ), it follows that Aµ is the right invariant one form
whose value at the identity e is µ. (This same one form Aµ was used in
Marsden and Weinstein [1974].) �

The curvature curv A of the connection A is the covariant exterior

derivative of A, defined to be the exterior derivative acting on the hor-
izontal components. The curvature may be regarded as a measure of the
lack of integrability of the horizontal subbundle. At q ∈ Q,

(curvA)(v, w) = dA(hor v,hor w) = −A([hor v,hor w]), (3.3.15)

where the Jacobi–Lie bracket is computed using extensions of v, w to vector
fields. The first equality in (3.3.9) is the definition and the second follows
from the general formula

dγ(X,Y ) = X[γ(Y )]− γ([X,Y ])

relating the exterior derivative of a one form and Lie brackets.
Taking the µ-component of (3.3.15), we get a 2-form 〈µ, curvA〉 on Q

given by

〈µ, curvA〉(v, w) = −Aµ([hor v,hor w])

= −Aµ([v −A(v)Q, w −A(w)Q])

= Aµ([v,A(w)Q]−Aµ([w,A(v)Q]

−Aµ([v, w])− 〈µ, [A(v),A(w)]〉. (3.3.16)

In (3.3.16) we may choose v and w to be extended by G-invariance. Then
A(w)Q = ζQ for a fixed ζ, so [v,A(w)Q] = 0, so we can replace this term by
v[Aµ(w)], which is also zero, noting that v[〈µ, ξ〉] = 0, as 〈µ, ξ〉 is constant.
Thus, (3.3.16) gives the Cartan structure equation :

〈µ, curvA〉 = dAµ − [A,A]µ (3.3.17)

where [A,A]µ(v, w) = 〈µ, [A(v),A(w)]〉, the bracket being the Lie algebra
bracket.

The amended potential Vµ is defined by

Vµ = H ◦ Aµ; (3.3.18)

this function also plays a crucial role in what follows. In coordinates,

Vµ(q) = V (q) +
1

2
I
ab(q)µaµb (3.3.19)

or, intrinsically

Vµ(q) = V (q) +
1

2
〈µ, I(q)−1µ〉. (3.3.20)
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3.4 The Geometry and Dynamics of
Cotangent Bundle Reduction

Given a symplectic G-system (P,Ω, G,J, H), in Chapter 2 we defined the
reduced space Pµ to be

Pµ = J−1(µ)/Gµ, (3.4.1)

assuming µ is a regular value of J (or a weakly regular value) and that the
Gµ action is free and proper (or an appropriate slice theorem applies) so
that the quotient (3.4.1) is a manifold. The reduction theorem states that
the symplectic structure Ω on P naturally induces one on Pµ; it is denoted
Ωµ. Recall that Pµ

∼= PO where

PO = J−1(O)/G

and O ⊂ g∗ is the coadjoint orbit through µ.
Next, map J−1(O) → J−1(0) by the map hor given in the last section.

This induces a map on the quotient spaces by equivariance; we denote it
horO:

horO : J−1(O)/G→ J−1(0)/G. (3.4.2)

Reduction at zero is simple: J−1(0)/G is isomorphic with T ∗(Q/G) by the
following identification: βq ∈ J−1(0) satisfies 〈βq, ξQ(q)〉 = 0 for all ξ ∈ g,
so we can regard βq as a one form on T (Q/G).

As a set, the fiber of the map horO is identified with O. Therefore, we
have realized (T ∗Q)O as a coadjoint orbit bundle over T ∗(Q/G). The spaces
are summarized in Figure 3.4.1.

/Gµ /G πO

❄

❄

❄

❄

(T ∗Q)µ
∼= (T ∗Q)O

injection horµ horO surjection

❄

❄

❄

T ∗(Q/Gµ) T ∗(Q/G)

❄

T ∗Q ⊂ J−1(µ) ⊂ J−1(O) ⊂ T ∗Q

Q −→ Q/Gµ −→ Q/G ←− Q

Figure 3.4.1. Cotangent bundle reduction.

The Poisson bracket structure of the bundle horO as a synthesis of the
Lie–Poisson structure, the cotangent structure, the magnetic and inter-
action terms is investigated in Montgomery, Marsden, and Ratiu [1984],
Montgomery [1986] and Cendra, Marsden, and Ratiu [2001].
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For the symplectic structure, it is a little easier to use Pµ. Here, we
restrict the map hor to J−1(µ) and quotient by Gµ to get a map of Pµ

to J−1(0)/Gµ. If Jµ denotes the momentum map for Gµ, then J−1(0)/Gµ

embeds in J−1
µ (0)/Gµ

∼= T ∗(Q/Gµ). The resulting map horµ embeds Pµ

into T ∗(Q/Gµ). This map is induced by the shifting map:

pq 7→ pq −Aµ(q). (3.4.3)

The symplectic form on Pµ is obtained by restricting the form on T ∗(Q/Gµ)
given by

Ωcanonical − dAµ. (3.4.4)

The two form dAµ drops to a two form βµ on the quotient, so (3.4.4) defines
the symplectic structure of Pµ. We call βµ the magnetic term following
the ideas from §2.10 and the terminology of Abraham and Marsden [1978].
We also note that on J−1(µ) (and identifying vectors and covectors via
FL), [A(v),A(w)] = [µ, µ] = 0, so that the form βµ may also be regarded as
the form induced by the µ-component of the curvature. In the PO context,
the distinction between dAµ and (curv α)µ becomes important. We shall
see this aspect in Chapter 4.

Two limiting cases. The first (that one can associate with Arnold
[1966]) is when Q = G in which case PO ∼= O and the base is trivial
in the PO → T ∗(Q/G) picture, while in the Pµ → T ∗(Q/Gµ) picture, the
fiber is trivial and the base space is Q/Gµ

∼= O. Here the description of
the orbit symplectic structure induced by dαµ coincides with that given by
Kirillov [1976].

The other limiting case (that one can associate with Smale [1970]) is
when G = Gµ; for instance, this holds in the Abelian case. Then

Pµ = PO = T ∗(Q/G)

with symplectic form Ωcanonical − βµ.1

Note that the construction of Pµ requires only that the Gµ action be free;
then one gets Pµ embedded in T ∗(Q/Gµ). However, the bundle picture of
PO → T ∗(Q/G) with fiber O requires G to act freely on Q, so Q/G is
defined. If the G-action is not free, one can either deal with singularities
or use Montgomery’s method above, replacing shape space Q/G with the

1 Richard Montgomery has given an interesting condition, generalizing this Abelian
case and allowing non-free actions, which guarantees that Pµ is still a cotangent bundle.
This condition (besides technical assumptions guaranteeing the objects in question are
manifolds) is dim g− dim gµ = 2(dim gQ − dim g

µ
Q

), where gQ is the isotropy algebra

of the G-action on Q (assuming gQ has constant dimension) and g
µ
Q

is that for Gµ.
The result is that Pµ is identified with T ∗(Qµ/Gµ), where Qµ is the projection of

J
−1(µ) ⊂ T ∗Q to Q under the cotangent bundle projection. (For free actions of G on

Q, Qµ = Q.) The proof is a modification of the one given above.
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modified shape space Qµ/G. For example, already in the Kepler problem
in which G = SO(3) acts on Q = R3\{0}, the action of G on Q is not
free; for µ 6= 0, Qµ is the plane orthogonal to µ (minus {0}). On the other
hand, Gµ = S1, the rotations about the axis µ 6= 0, acts freely on J−1(µ),
so Pµ is defined. But Gµ does not act freely on Q! Instead, Pµ is actually
T ∗(Qµ/Gµ) = T ∗(0,∞), with the canonical cotangent structure. The case
µ = 0 is singular and is more interesting! (See Marsden [1981].)

Semidirect Products. Another context in which one can get interesting
reduction results, both mathematically and physically, is that of semi-direct
products ( Marsden, Ratiu, and Weinstein [1984a, 1984b]). Here we consider
a linear representation of G on a vector space V . We form the semi-direct
product S = GsV and look at its coadjoint orbit Oµ,a through (µ, a) ∈
g∗ × V ∗. The semi-direct product reduction theorem says that Oµ,a

is symplectomorphic with the reduced space obtained by reducing T ∗G at
µa = µ|ga by the sub-group Ga (the isotropy for the action of G on V ∗ at
a ∈ V ∗). If Ga is Abelian (the generic case) then Abelian reduction gives

Oµ,a
∼= T ∗(G/Ga)

with the canonical plus magnetic structure. For example, the generic orbits
in SE(3) = SO(3)s R3 are cotangent bundles of spheres; but the orbit
symplectic structure has a non-trivial magnetic term—see Marsden and
Ratiu [1999] for their computation.

Semi-direct products come up in a variety of interesting physical sit-
uations, such as the heavy rigid body, compressible fluids and MHD; we
refer to Marsden, Ratiu, and Weinstein [1984a, 1984b] and Holm, Marsden,
Ratiu, and Weinstein [1985] for details.

For semidirect products, one has a useful result called reduction by

stages. Namely, one can reduce by S in two successive stages, first by V
and then by G. For example, for SE(3) one can reduce first by translations,
and then by rotations, and the result is the same as reducing by SE(3).
For a general reduction by stages result, see Marsden, Misiolek, Perlmutter,
and Ratiu [1998].

For a Lagrangian analogue of semidirect product theory, see Holm, Mars-
den, and Ratiu [1998b] and for Lagrangian reduction by stages, see Cendra,
Marsden, and Ratiu [2001].

The Dynamics of Cotangent Bundle Reduction. Given a symplec-
tic G-system, we get a reduced Hamiltonian system on Pµ

∼= PO obtained
by restricting H to J−1(µ) or J−1(O) and then passing to the quotient.
This produces the reduced Hamiltonian function Hµ and thereby a Hamil-
tonian system on Pµ. The resulting vector field is the one obtained by
restricting and projecting the Hamiltonian vector field XH on P . The re-
sulting dynamical system XHµ

on Pµ is called the reduced Hamiltonian

system .
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Let us compute Hµ in each of the pictures Pµ and PO. In either case the
shift by the map hor is basic, so let us first compute the function on J−1(0)
given by

HAµ
(q, p) = H(q, p+Aµ(q)). (3.4.5)

Indeed,

HAµ
(q, p) =

1

2
〈〈p+Aµ, p+Aµ〉〉q + V (q)

=
1

2
‖p‖2q + 〈〈p,Aµ〉〉q +

1

2
‖Aµ‖2q + V (q). (3.4.6)

If p = FL · v, then 〈〈p,Aµ〉〉q = 〈Aµ, v〉 = 〈µ,A(q, v)〉 = 〈µ, I(q)J(p)〉 = 0
since J(p) = 0. Thus, on J−1(0),

HAµ
(q, p) =

1

2
‖p‖2q + Vµ(q). (3.4.7)

In T ∗(Q/Gµ), we obtain Hµ by selecting any representative (q, p) of
T ∗(Q/Gµ) in J−1(0) ⊂ T ∗Q, shifting it to J−1(µ) by p 7→ p + Aµ(q) and
then calculating H. Thus, the above calculation (3.4.7) proves:

3.4.1 Proposition. The reduced Hamiltonian Hµ is the function ob-
tained by restricting to the affine symplectic subbundle Pµ ⊂ T ∗(Q/Gµ),
the function

Hµ(q, p) =
1

2
‖p‖2 + Vµ(q) (3.4.8)

defined on T ∗(Q/Gµ) with the symplectic structure

Ωµ = Ωcan − βµ (3.4.9)

where βµ is the two form on Q/Gµ obtained from dAµ on Q by passing
to the quotient. Here we use the quotient metric on Q/Gµ and identify Vµ

with a function on Q/Gµ.

Example. If Q = G and the symmetry group is G itself, then the reduc-
tion construction embeds Pµ ⊂ T ∗(Q/Gµ) as the zero section. In fact, Pµ

is identified with Q/Gµ
∼= G/Gµ

∼= Oµ. �

To describe Hµ on J−1(O)/G is easy abstractly; one just calculates H
restricted to J−1(O) and passes to the quotient. More concretely, we choose
an element [(q, p)] ∈ T ∗(Q/G), where we identify the representative with
an element of J−1(0). We also choose an element ν ∈ O, a coadjoint orbit,
and shift (q, p) 7→ (q, p+Aν(q)) to a point in J−1(O). Thus, we get:

3.4.2 Proposition. Regarding Pµ
∼= PO as an O-bundle over T ∗(Q/G),

the reduced Hamiltonian is given by

HO(q, p, ν) =
1

2
‖p‖2 + Vν(q)



3.5 Examples 65

where (q, p) is a representative in J−1(0) of a point in T ∗(Q/G) and where
ν ∈ O.

The symplectic structure in this second picture was described abstractly
above. To describe it concretely in terms of T ∗(Q/G) and O is more diffi-
cult; this problem was solved by Montgomery, Marsden, and Ratiu [1984].
See also Cendra, Marsden, and Ratiu [2001], Marsden and Perlmutter [1999]
and Zaalani [1999] for related issues. For a Lagrangian version of this theo-
rem, see below and Marsden, Ratiu and Scheurle [2000]. We shall see some
special aspects of this structure when we separate internal and rotational
modes in the next chapters.

3.5 Examples

We next give some basic examples of the cotangent bundle reduction con-
struction. The examples will be the spherical pendulum, the double spher-
ical pendulum, and the water molecule. Of course many more examples
can be given and we refer the reader to the literature cited for a wealth of
information. The ones we have chosen are, we hope, simple enough to be
of pedagogical value, yet interesting.

A. The Spherical Pendulum. Here, Q = S2 with the standard metric
as a sphere of radius R in R3, V is the gravitational potential for a mass
m, and G = S1 acts on Q by rotations about the vertical axis. To make
the action free, one has to delete the north and south poles. Relative to
coordinates θ, ϕ as in Figure 3.5.1, we have V (θ, ϕ) = −mgR cos θ.

We claim that the mechanical connection A : TQ→ R is given by

A(θ, ϕ, θ̇, ϕ̇) = ϕ̇. (3.5.1)

To see this, note that
ξQ(θ, ϕ) = (θ, ϕ, 0, ξ) (3.5.2)

since G = S1 acts by rotations about the z-axis: (θ, ϕ) 7→ (θ, ϕ + ψ). The
metric is

〈〈(θ, ϕ, θ̇1, ϕ̇1), (θ, ϕ, θ̇2, ϕ̇2)〉〉 = mR2θ̇1θ̇2 +mR2 sin2 θϕ̇1ϕ̇2, (3.5.3)

which is m times the standard inner product of the corresponding vectors
in R3.

The momentum map is the angular momentum about the z-axis:

J : T ∗Q→ R; J(θ, ϕ, pθ, pϕ) = pϕ. (3.5.4)

The Legendre transformation is

pθ = mR2θ̇, pϕ = (mR2 sin2 θ)ϕ̇ (3.5.5)
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x

z

y

R

Figure 3.5.1. The configuration space of the spherical pendulum is the two
sphere.

and the locked inertia tensor is

〈I(θ, ϕ)η, ζ〉 = 〈〈(θ, ϕ, 0, η)(θ, ϕ, 0, ζ)〉〉 = (mR2 sin2 θ)ηζ. (3.5.6)

Note that I(θ, ϕ) = m(R sin θ)2 is the (instantaneous) moment of inertia
of the mass m about the z-axis.

In this example, we identify Q/S1 with the interval [0, π]; that is, the
θ-variable. In fact, it is convenient to regard Q/S1 as S1 mod Z2, where
Z2 acts by reflection θ 7→ −θ. This helps to understand the singularity in
the quotient space.

For µ ∈ g∗ ∼= R, the one form Aµ is given by (3.3.3) and (3.3.7) as

Aµ(θ, ϕ) = µdϕ. (3.5.7)

From (3.5.4), one sees directly that Aµ takes values in J−1(µ). The shifting
map is given by (3.3.13):

hor(θ, ϕ, pθ, pϕ) = (θ, ϕ, pθ, 0).

The curvature of the connection A is zero in this example because shape
space is one dimensional. The amended potential is

Vµ(θ) = V (θ, ϕ) +
1

2
〈µ, I(θ, ϕ)−1µ〉 = −mgR cos θ +

1

2

µ2

mR2 sin2 θ

and so the reduced Hamiltonian on T ∗(S1/Z2) is

Hµ(θ, pθ) =
1

2

p2
θ

mR2
+ Vµ(θ). (3.5.8)
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The reduced Hamiltonian equations are therefore

θ̇ =
pθ

mR2
,

and

ṗθ = −mgR sin θ +
cos θ

sin3 θ

µ2

mR2
. (3.5.9)

Note that the extra term is singular at θ = 0.

B. The Double Spherical Pendulum. Consider the mechanical sys-
tem consisting of two coupled spherical pendula in a gravitational field
(see Figure 3.5.2).

x

z

y

gravity

Figure 3.5.2. The configuration space for the double spherical pendulum consists
of two copies of the two sphere.

Let the position vectors of the individual pendula relative to their joints
be denoted q1 and q2 with fixed lengths l1 and l2 and with masses m1

and m2. The configuration space is Q = S2
l1
× S2

l2
, the product of spheres

of radii l1 and l2 respectively. Since the “absolute” vector for the second
pendulum is q1 + q2, the Lagrangian is

L(q1,q2, q̇1, q̇2) =
1

2
m1‖q̇1‖2 +

1

2
m2‖q̇1 + q̇2‖2

−m1gq1 · k−m2g(q1 + q2) · k. (3.5.10)

Note that (3.5.10) has the standard form of kinetic minus potential energy.
We identify the velocity vectors q̇1 and q̇2 with vectors perpendicular to
q1 and q2, respectively.
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The conjugate momenta are

p1 =
∂L

∂q̇1
= m1q̇1 +m2(q̇1 + q̇2) (3.5.11)

and

p2 =
∂L

∂q̇2
= m2(q̇1 + q̇2) (3.5.12)

regarded as vectors in R3 that are paired with vectors orthogonal to q1 and
q2 respectively.

The Hamiltonian is therefore

H(q1,q2,p1,p2) =
1

2m1
‖p1 − p2‖2 +

1

2m2
‖p2‖2

+m1gq1 · k +m2g(q1 + q2) · k. (3.5.13)

The equations of motion are the Euler–Lagrange equations for L or,
equivalently, Hamilton’s equations for H. To write them out explicitly, it
is easiest to coordinatize Q. We will describe this process in §5.5.

Now let G = S1 act on Q by simultaneous rotation about the z-axis. If
Rθ is the rotation by an angle θ, the action is

(q1,q2) 7→ (Rθq1, Rθq2).

The infinitesimal generator corresponding to the rotation vector ωk is given
by ω(k× q1,k× q2) and so the momentum map is

〈J(q1,q2,p1,p2), ωk〉 = ω[p1 · (k× q1) + p2 · (k× q2)]

= ωk · [q1 × p1 + q2 × p2]

that is,

J = k · [q1 × p1 + q2 × p2]. (3.5.14)

From (3.5.11) and (3.5.12),

J = k · [m1q1 × q̇1 +m2q1 × (q̇1 + q̇2) +m2q2 × (q̇1 + q̇2)]

= k · [m1(q1 × q̇1) +m2(q1 + q2)× (q̇1 + q̇2)].

The locked inertia tensor is read off from the metric defining L in (3.5.10):

〈I(q1,q2)ω1k, ω2k〉 = ω1ω2〈〈(k× q1,k× q2), (k× q1,k× q2)〉〉
= ω1ω2{m1‖k× q1‖2 +m2‖k× (q1 + q2)‖2}.

Using the identity (k× r) · (k× s) = r · s− (k · r)(k · s), we get

I(q1,q2) = m1‖q⊥
1 ‖2 +m2‖(q1 + q2)

⊥‖2, (3.5.15)
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where ‖q⊥
1 ‖2 = ‖q1‖2 − ‖q1 · k‖2 is the square length of the projection of

q1 onto the xy-plane. Note that I is the moment of inertia of the system
about the k-axis.

The mechanical connection is given by (3.3.3):

A(q1,q2,v1,v2) = I
−1J(m1v1 +m2(v1 + v2),m2(v1 + v2))

= I
−1(k · [m1q1 × v1 +m2(q1 + q2)× (v1 + v2)])

=
k · [m1q1 × v1 +m2(q1 + q2)× (v1 + v2)]

m1‖q⊥
1 ‖2 +m2‖(q1 + q2)⊥‖2

.

Identifying this linear function of (v1,v2) with a function taking values in
R3 × R3 gives

A(q1,q2) =
1

m1‖q⊥
1 ‖2 +m2‖(q1 + q2)⊥‖2

×

[k× ((m1 +m2)q
⊥
1 +m2q

⊥
2 ),k×m2(q1 + q2)

⊥]. (3.5.16)

A short calculation shows that J(α(q1,q2)) = 1, as it should. Also, from (3.5.16),
and (3.3.20),

Vµ(q1,q2) = m1gq1 · k +m2g(q1 + q2) · k

+
1

2

µ2

m1‖q⊥
1 ‖2 +m2‖(q1 + q2)⊥‖2

. (3.5.17)

The reduced space is T ∗(Q/S1), which is 6-dimensional and it carries a
nontrivial magnetic term obtained by taking the differential of (3.5.16).

C. The Water (or Ozone) Molecule. We now compute the locked in-
ertia tensor, the mechanical connection and the amended potential for this
example at symmetric states. Since I(q) : g→ g∗ satisfies

〈I(q)η, ξ〉 = 〈〈ηQ(q), ξQ(q)〉〉

where 〈〈 , 〉〉 is the kinetic energy metric coming from the Lagrangian, I(r, s)
is the 3× 3 matrix determined by

〈I(r, s)η, ξ〉 = 〈〈(η × r, η × s), (ξ × r, ξ × s)〉〉.

From our expression for the Lagrangian, we get the kinetic energy metric

〈〈(u1,u2), (v1,v2)〉〉 =
m

2
(u1 · v1) + 2Mm(u2 · v2).

Thus,

〈I(r, s)η, ξ〉 = 〈〈(η × r, η × s), (ξ × r, ξ × s)〉〉
=
m

2
(η × r) · (ξ × r) + 2Mm(η × s) · (ξ × s)

=
m

2
ξ · [r× (η × r)] + 2Mmξ · [s× (η × s)]
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and so

I(r, s)η =
m

2
r× (η × r) + 2Mms× (η × s)

=
m

2
[η‖r‖2 − r(r · η)] + 2Mm[η‖s‖2 − s(s · η)]

=
[m

2
‖r‖2 + 2Mm‖s‖2

]
η −

[m
2

r(r · η) + 2Mms(s · η)
]
.

Therefore,

I(r, s) =
[m

2
‖r‖2 + 2Mm‖s‖2

]
Id−

[m
2

r⊗ r + 2Mms⊗ s
]
, (3.5.18)

where Id is the identity. To form the mechanical connection we need to
invert I(r, s). To do so, one has to solve

[m
2
‖r‖2 + 2Mm‖s‖2

]
η −

[m
2

r(r · η) + 2Mms(s · η)
]

= u (3.5.19)

for η.
An especially easy, but still interesting case is that of symmetric molecules,

in which case r and s are orthogonal. Write η in the corresponding orthog-
onal basis as:

η = ar + bs + c(r× s). (3.5.20)

Taking the dot product of (3.5.19) with r, s and r× s respectively, we find

a =
u · r

2Mm‖r‖2‖s‖2 , b =
2u · s

m‖r‖2‖s‖2 , c =
u · (r× s)

γ‖r‖2‖s‖2 (3.5.21)

where

γ = γ(r, s) =
m

2
‖r‖2 + 2Mm‖s‖2.

With r = ‖r‖ and s = ‖s‖, we arrive at

I(r, s)−1 =
1

γ
Id +

m

4Mms2γ
r⊗ r +

4Mm

mr2γ
s⊗ s

=
1

γ

[
Id +

1

4Ms2
r⊗ r +

4M

r2
s⊗ s

]
(3.5.22)

We state the general case. Let s⊥ be the projection of s along the line

perpendicular to r, so s = s⊥ +
s · r
r2

r. Then

I(r, s)−1u = η, (3.5.23)

where

η = ar + bs⊥ + cr× s⊥
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and

a =
δu · r + βu · s⊥

αδ − β2
, b =

βu · r + αu · s⊥
αδ − β2

, c =
u · (r× s⊥)

γrs⊥

and

α = γr2 − 1

2
mr4 − 2Mm(s · r)2, β = 2Mm(s⊥)2s · r,

δ = γr2 − 2Mm(s⊥)4.

The mechanical connection, defined in general by

A : TQ→ g; A(vq) = I(q)−1J(FL(vq))

gives the “overall” angular velocity of the system. For us, let (r, s, ṙ, ṡ) be
a tangent vector and (r, s, π, σ) the corresponding momenta given by the
Legendre transform. Then, A is determined by

I · A = r× π + s× σ

or,
[m

2
‖r‖2 + 2Mm‖s‖2

]
A−

[m
2

r(r · A) + 2Mms(s · A)
]

= r × π + s× σ.

The formula for A is especially simple for symmetric molecules, when r ⊥ s.
Then one finds:

A =
ṡ · n
‖s‖ r̂− ṙ · n

‖r‖ ŝ +
1

γ‖r‖‖s‖
{m

2
‖r‖2s · ṙ− 2Mm‖s‖2r · ṡ

}
n (3.5.24)

where r̂ = r/‖r‖, ŝ = s/‖s‖, and n = (r×s)/‖r‖‖s‖. The formula for a gen-
eral r and s is a bit more complicated, requiring the general formula (3.5.23)
for I(r, s)−1.

Fix a total angular momentum vector µ and let 〈Aµ(q), vq〉 = 〈µ,A(vq)〉,
so Aµ(q) ∈ T ∗Q. For example, using A above (for symmetric molecules),
we get

Aµ =
1

γ

[
m

2
(µ× r)− 2Mm

r2
(s · µ)(r× s)

]
dr

+
1

γ

[
2Mm(µ× s) +

m

2s2
(r · µ)(r× s)

]
ds.

The momentum Aµ has the property that J(Aµ) = µ, as may be checked.
The amended potential is then

Vµ(r, s) = H(Aµ(r, s)).

Notice that for the water molecule, the reduced bundle (T ∗Q)µ → T ∗S is
an S2 bundle over shape space. The sphere represents the effective “body
angular momentum variable”. �
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Iwai [1987, 1990] has given nice formulas for the curvature of the mechan-
ical connection using a better choice of variables than Jacobi coordinates
and Montgomery [1995] has given a related phase formula for the three
body problem.

3.6 Lagrangian Reduction and the Routhian

So far we have concentrated on the theory of reduction for Hamiltonian
systems. There is a similar procedure for Lagrangian systems, although it
is not so well known. The Abelian version of this was known to Routh by
around 1860 and this is reported in the book of Arnold [1988]. However,
that procedure has some difficulties—it is coordinate dependent, and does
not apply when the magnetic term is not exact. The procedure developed
here (from Marsden and Scheurle [1993a] and Marsden, Ratiu and Scheurle
[2000]) avoids these difficulties and extends the method to the nonabelian
case. We do this by including conservative gyroscopic forces into the varia-
tional principle in the sense of Lagrange and d’Alembert. One uses a Dirac
constraint construction to include the cases in which the reduced space is
not a tangent bundle (but it is a Dirac constraint set inside one). Some of
the ideas of this section are already found in Cendra, Ibort, and Marsden
[1987]. The nonabelian case is well illustrated by the rigid body.

Given µ ∈ g∗, define the Routhian Rµ : TQ→ R by:

Rµ(q, v) = L(q, v)− 〈A(q, v), µ〉 (3.6.1)

where A is the mechanical connection. Notice that the Routhian has the
form of a Lagrangian with a gyroscopic term; see Bloch, Krishnaprasad,
Marsden, and Sanchez de Alvarez [1992] and Wang and Krishnaprasad
[1992] for information on the use of gyroscopic systems in control theory.
One can also regard Rµ as a partial Legendre transform of L, changing
the angular velocity A(q, v) to the angular momentum µ. We will see this
explicitly in coordinate calculations below.

A basic observation about the Routhian is that solutions of the Euler–
Lagrange equations for L can be regarded as solutions of the Euler–Lagrange
equations for the Routhian, with the addition of “magnetic forces”. To un-
derstand this statement, recall that we define the magnetic two form β
to be

β = dAµ, (3.6.2)

a two form on Q (that drops to Q/Gµ). In coordinates,

βij =
∂Aj

∂qi
− ∂Ai

∂qj
,
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where we write Aµ = Aidq
i and

β =
∑

i<j

βijdq
i ∧ dqj . (3.6.3)

We say that q(t) satisfies the Euler–Lagrange equations for a Lagrangian L
with the magnetic term β provided that the associated variational principle
in the sense of Lagrange and d’Alembert is satisfied:

δ

∫ b

a

L(q(t), q̇)dt =

∫ b

a

iq̇β, (3.6.4)

where the variations are over curves in Q with fixed endpoints and where iq̇
denotes the interior product by q̇. This condition is equivalent to the coor-
dinate condition stating that the Euler–Lagrange equations with gyroscopic
forcing are satisfied:

d

dt

∂L
∂q̇i
− ∂L
∂qi

= q̇jβij . (3.6.5)

3.6.1 Proposition. A curve q(t) in Q whose tangent vector has mo-
mentum J(q, q̇) = µ is a solution of the Euler–Lagrange equations for the
Lagrangian L iff it is a solution of the Euler–Lagrange equations for the
Routhian Rµ with gyroscopic forcing given by β.

Proof. Let p denote the momentum conjugate to q for the Lagrangian L
(so that in coordinates, pi = gij q̇

j) and let p be the corresponding conjugate
momentum for the Routhian. Clearly, p and p are related by the momentum
shift p = p−Aµ. Thus by the chain rule,

d

dt
p =

d

dt
p− TAµ · q̇,

or in coordinates,
d

dt
pi =

d

dt
pi −

∂Ai

∂qj
q̇j . (3.6.6)

Likewise, dqR
µ = dqL− dq〈A(q, v), µ〉 or in coordinates,

∂Rµ

∂qi
=
∂L

∂qi
− ∂Aj

∂qi
q̇j . (3.6.7)

Subtracting these expressions, one finds (in coordinates, for convenience):

d

dt

∂Rµ

∂q̇i
− ∂Rµ

∂qi
=

d

dt

∂L

∂q̇i
− ∂L

∂qi
+

(
∂Aj

∂qi
− ∂Ai

∂qj

)
q̇j

=
d

dt

∂L

∂q̇i
− ∂L

∂qi
+ βij q̇

j , (3.6.8)

which proves the result. �
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3.6.2 Proposition. For all (q, v) ∈ TQ and µ ∈ g∗ we have

Rµ =
1

2
‖hor(q, v)‖2 + 〈J(q, v)− µ, ξ〉 −

(
V +

1

2
〈I(q)ξ, ξ〉

)
, (3.6.9)

where ξ = A(q, v).

Proof. Use the definition hor(q, v) = v− ξQ(q, v) and expand the square
using the definition of J. �

Before describing the Lagrangian reduction procedure, we relate our
Routhian with the classical one. If one has an Abelian group G and can
identify the symmetry group with a set of cyclic coordinates, then there is
a simple formula that relates Rµ to the “classical” Routhian Rµ

class. In this
case, we assume that G is the torus T k (or a torus cross Euclidean space)
and acts on Q by qα 7→ qα, α = 1, . . . ,m and θa 7→ θa + ϕa, a = 1, . . . , k
with ϕa ∈ [0, 2π), where q1, . . . , qm, θ1, . . . , θk are suitably chosen (local)
coordinates on Q. Then G-invariance that the Lagrangian L = L(q, q̇, θ̇)
does not explicitly depend on the variables θa, that is, these variables are
cyclic. Moreover, the infinitesimal generator ξQ of ξ = (ξ1, . . . , ξk) ∈ g on
Q is given by ξQ = (0, . . . , 0, ξ1, . . . , ξk), and the momentum map J has

components given by Ja = ∂L/∂θ̇a, that is,

Ja(q, q̇, θ̇) = gαa(q)q̇α + gba(q)θ̇b. (3.6.10)

Given µ ∈ g∗, the classical Routhian is defined by taking a Legendre
transform in the θ variables:

Rµ
class(q, q̇) = [L(q, q̇, θ̇)− µaθ̇

a]|θ̇a=θ̇a(q,q̇), (3.6.11)

where
θ̇a(q, q̇) = [µc − gαc(q)q̇

α]Ica(q) (3.6.12)

is the unique solution of Ja(q, q̇, θ̇) = µa with respect to θ̇a.

3.6.3 Proposition. Rµ
class = Rµ + µcgαaq̇

αIca.

Proof. In the present coordinates we have

L =
1

2
gαβ(q)q̇αq̇β + gαa(q)q̇αθ̇a +

1

2
gab(q)θ̇

aθ̇b − V (q, θ) (3.6.13)

and
Aµ = µadθ

a + gbαµaI
abdqα. (3.6.14)

By (3.3.14), and the preceding equation, we get

‖hor(q,θ)(q̇, θ̇)‖2 = gαβ(q)q̇αq̇β − gαa(q)gbγ(q)q̇αq̇γ
I
ab(q). (3.6.15)

Using this and the identity (Iab) = (gab)
−1, the proposition follows from the

definitions ofRµ andRµ
class by a straightforward algebraic computation. �
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As Routh showed, and is readily checked, in the context of cyclic vari-
ables, the Euler–Lagrange equations (with solutions lying in a given level set
Ja = µa) are equivalent to the Euler–Lagrange equations for the classical
Routhian. As we mentioned, to generalize this, we reformulate it somewhat.

The reduction procedure is to drop the variational principle (3.6.4) to the
quotient space Q/Gµ, with L = Rµ. In this principle, the variation of the
integral of Rµ is taken over curves satisfying the fixed endpoint condition;
this variational principle therefore holds in particular if the curves are also
constrained to satisfy the condition J(q, v) = µ. Then we find that the
variation of the function Rµ restricted to the level set of J satisfies the
variational condition. The restriction of Rµ to the level set equals

Rµ =
1

2
‖hor(q, v)‖2 − Vµ. (3.6.16)

In this constrained variational principle, the endpoint conditions can be
relaxed to the condition that the ends lie on orbits rather than be fixed.
This is because the kinetic part now just involves the horizontal part of
the velocity, and so the endpoint conditions in the variational principle,
which involve the contraction of the momentum p with the variation of
the configuration variable δq, vanish if δq = ζQ(q) for some ζ ∈ g, that
is, if the variation is tangent to the orbit. The condition that (q, v) be in
the µ level set of J means that the momentum p vanishes when contracted
with an infinitesimal generator on Q. This procedure is studied in detail in
Marsden, Ratiu and Scheurle [2000].

We note, for correlation with Chapter 7, that the term 1
2‖hor(q, v)‖2 is

called the Wong kinetic term and that it is closely related to the Kaluza–
Klein construction.

From (3.6.16), we see that the function Rµ restricted to the level set de-
fines a function on the quotient space T (Q/Gµ)—that is, it factors through
the tangent of the projection map τµ : Q → Q/Gµ. The variational prin-
ciple also drops, therefore, since the curves that join orbits correspond to
those that have fixed endpoints on the base. Note, also, that the magnetic
term defines a well-defined two form on the quotient as well, as is known
from the Hamiltonian case, even though αµ does not drop to the quotient
in general. We have proved:

3.6.4 Proposition. If q(t) satisfies the Euler–Lagrange equations for L
with J(q, q̇) = µ, then the induced curve on Q/Gµ satisfies the reduced

Lagrangian variational principle; that is, the variational principle of
Lagrange and d’Alembert on Q/Gµ with magnetic term β and the Routhian
dropped to T (Q/Gµ).

In the special case of a torus action, that is, with cyclic variables, this re-
duced variational principle is equivalent to the Euler–Lagrange equations for
the classical Routhian, which agrees with the classical procedure of Routh.
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For the rigid body, we get a variational principle for curves on the mo-
mentum sphere—here Q/Gµ

∼= S2. For it to be well defined, it is essen-
tial that one uses the variational principle in the sense of Lagrange and
d’Alembert, and not in the naive sense of the Lagrange-Hamilton princi-
ple. In this case, one checks that the dropped Routhian is just (up to a
sign) the kinetic energy of the body in body coordinates. The principle
then says that the variation of the kinetic energy over curves with fixed
points on the two sphere equals the integral of the magnetic term (in this
case a factor times the area element) contracted with the tangent to the
curve. One can check that this is correct by a direct verification. (If one
wants a variational principle in the usual sense, then one can do this by
introduction of “Clebsch variables”, as in Marsden and Weinstein [1983]
and Cendra and Marsden [1987].)

The rigid body also shows that the reduced variational principle given
by Proposition 3.6.4 in general is degenerate. This can be seen in two es-
sentially equivalent ways; first, the projection of the constraint J = µ can
produce a nontrivial condition in T (Q/Gµ)—corresponding to the embed-
ding as a symplectic subbundle of Pµ in T ∗(Q/Gµ). For the case of the
rigid body, the subbundle is the zero section, and the symplectic form is
all magnetic (i.e., all coadjoint orbit structure). The second way to view
it is that the kinetic part of the induced Lagrangian is degenerate in the
sense of Dirac, and so one has to cut it down to a smaller space to get well
defined dynamics. In this case, one cuts down the metric corresponding to
its degeneracy, and this is, coincidentally, the same cutting down as one
gets by imposing the constraint coming from the image of J = µ in the
set T (Q/Gµ). Of course, this reduced variational principle in the Routhian
context is consistent with the variational principle for the Euler–Poincaré
equations discussed in §2.6.

For the rigid body, and more generally, for T ∗G, the one form αµ is inde-
pendent of the Lagrangian, or Hamiltonian. It is in fact, the right invariant
one form on G equaling µ at the identity, the same form used by Marsden
and Weinstein [1974] in the identification of the reduced space. Moreover,
the system obtained by the Lagrangian reduction procedure above is “al-
ready Hamiltonian”; in this case, the reduced symplectic structure is “all
magnetic”.

There is a well defined reconstruction procedure for these systems. One
can horizontally lift a curve in Q/Gµ to a curve d(t) in Q (which therefore
has zero angular momentum) and then one acts on it by a time dependent
group element solving the equation

ġ(t) = g(t)ξ(t)

where ξ(t) = α(d(t)), as in the theory of geometric phases—see Chapter 6
and Marsden, Montgomery, and Ratiu [1990].

In general, one arrives at the reduced Hamiltonian description on Pµ ⊂
T ∗(Q/Gµ) with the amended potential by performing a Legendre transform
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in the non-degenerate variables; that is, the fiber variables corresponding to
the fibers of Pµ ⊂ T ∗(Q/Gµ). For example, for Abelian groups, one would
perform a Legendre transformation in all the variables.

Remarks.

1. This formulation of Lagrangian reduction is useful for certain non-
holonomic constraints (such as a nonuniform rigid body with a spheri-
cal shape rolling on a table); see Krishnaprasad, Yang, and Dayawansa
[1993], and Bloch, Krishnaprasad, Marsden, and Murray [1996].

2. If one prefers, one can get a reduced Lagrangian description in the
angular velocity rather than the angular momentum variables. In this
approach, one keeps the relation ξ = α(q, v) unspecified till near the
end. In this scenario, one starts by enlarging the space Q to Q×G
(motivated by having a rotating frame in addition to the rotating
structure, as in §3.7 below) and one adds to the given Lagrangian, the
rotational energy for the G variables using the locked inertia tensor
to form the kinetic energy—the motion on G is thus dependent on
that on Q. In this description, one has ξ as an independent velocity
variable and µ is its legendre transform. The Routhian is then seen
already to be a Legendre transformation in the ξ and µ variables. One
can delay making this Legendre transformation to the end, when the
“locking device” that locks the motion on G to be that induced by
the motion on Q by imposition of ξ = A(q, v) and ξ = I(q)−1µ or
J(q, v) = µ. �

3.7 The Reduced Euler–Lagrange Equations

As we have mentioned, the Lie–Poisson and Euler–Poincaré equations oc-
cur for many systems besides the rigid body equations. They include the
equations of fluid and plasma dynamics, for example. For many other sys-
tems, such as a rotating molecule or a spacecraft with movable internal
parts, one can use a combination of equations of Euler–Poincaré type and
Euler–Lagrange type. Indeed, on the Hamiltonian side, this process has
undergone development for quite some time, and is discussed briefly be-
low. On the Lagrangian side, this process is also very interesting, and has
been recently developed by, amongst others, Marsden and Scheurle [1993a,
1993b]. The general problem is to drop Euler–Lagrange equations and vari-
ational principles from a general velocity phase space TQ to the quotient
TQ/G by a Lie group action of G on Q. If L is a G-invariant Lagrangian
on TQ, it induces a reduced Lagrangian l on TQ/G.
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An important ingredient in this work is to introduce a connection A
on the principal bundle Q → S = Q/G, assuming that this quotient is
nonsingular. For example, the mechanical connection may be chosen for
A. This connection allows one to split the variables into a horizontal and
vertical part.

We let xα, also called “internal variables”, be coordinates for shape space
Q/G, ηa be coordinates for the Lie algebra g relative to a chosen basis, l
be the Lagrangian regarded as a function of the variables xα, ẋα, ηa, and
let Ca

db be the structure constants of the Lie algebra g of G.
If one writes the Euler–Lagrange equations on TQ in a local principal

bundle trivialization, using the coordinates xα introduced on the base and
ηa in the fiber, then one gets the following system of Hamel equations

d

dt

∂l

∂ẋα
− ∂l

∂xα
= 0, (3.7.1)

d

dt

∂l

∂ηb
− ∂l

∂ηa
Ca

dbη
d = 0. (3.7.2)

However, this representation of the equations does not make global intrinsic
sense (unless Q→ S admits a global flat connection) and the variables may
not be the best ones for other issues in mechanics, such as stability. The
introduction of a connection allows one to intrinsically and globally split the
original variational principle relative to horizontal and vertical variations.
One gets from one form to the other by means of the velocity shift given
by replacing η by the vertical part relative to the connection:

ξa = Aa
αẋ

α + ηa.

Here, Ad
α are the local coordinates of the connection A. This change of

coordinates is well motivated from the mechanical point of view. Indeed,
the variables ξ have the interpretation of the locked angular velocity and
they often complete the square in the kinetic energy expression, thus, help-
ing to bring it to diagonal form. The resulting reduced Euler–Lagrange

equations, also called the Euler-Poincaré equations, are:

d

dt

∂l

∂ẋα
− ∂l

∂xα
=

∂l

∂ξa

(
Ba

αβẋ
β + Ba

αdξ
d
)

(3.7.3)

d

dt

∂l

∂ξb
=

∂l

∂ξa
(Ba

αbẋ
α + Ca

dbξ
d). (3.7.4)

In these equations, Ba
αβ are the coordinates of the curvature B of A, Ba

αd =

Ca
bdAb

α and Ba
dα = −Ba

αd.
The variables ξa may be regarded as the rigid part of the variables on

the original configuration space, while xα are the internal variables. As in
Simo, Lewis, and Marsden [1991], the division of variables into internal and
rigid parts has deep implications for both stability theory and for bifurca-
tion theory, again, continuing along lines developed originally by Riemann,
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Poincaré and others. The main way this new insight is achieved is through
a careful split of the variables, using the (mechanical) connection as one of
the main ingredients. This split puts the second variation of the augmented
Hamiltonian at a relative equilibrium as well as the symplectic form into
“normal form”. It is somewhat remarkable that they are simultaneously put
into a simple form. This link helps considerably with an eigenvalue analysis
of the linearized equations, and in Hamiltonian bifurcation theory—see for
example, Bloch, Krishnaprasad, Marsden, and Ratiu [1994].

A detailed study of the geometry of the bundle (TQ)/G → T (Q/G) is
given in Cendra, Marsden, and Ratiu [2001].

As we have seen, a key result in Hamiltonian reduction theory says that
the reduction of a cotangent bundle T ∗Q by a symmetry group G is a
bundle over T ∗S, where S = Q/G is shape space, and where the fiber is
either g∗, the dual of the Lie algebra of G, or is a coadjoint orbit, depend-
ing on whether one is doing Poisson or symplectic reduction. The reduced
Euler–Lagrange equations give the analogue of this structure on the tangent
bundle.

Remarkably, equations (3.7.3) are formally identical to the equations for
a mechanical system with classical nonholonomic velocity constraints (see
Neimark and Fufaev [1972] and Koiller [1992]). The connection chosen in
that case is the one-form that determines the constraints. This link is made
precise in Bloch, Krishnaprasad, Marsden, and Murray [1996]. In addition,
this structure appears in several control problems, especially the problem
of stabilizing controls considered by Bloch, Krishnaprasad, Marsden, and
Sanchez de Alvarez [1992].

For systems with a momentum map J constrained to a specific value µ,
the key to the construction of a reduced Lagrangian system is the modifi-
cation of the Lagrangian L to the Routhian Rµ, which is obtained from the
Lagrangian by subtracting off the mechanical connection paired with the
constraining value µ of the momentum map. On the other hand, a basic
ingredient needed for the reduced Euler–Lagrange equations is a velocity
shift in the Lagrangian, the shift being determined by the connection, so
this velocity shifted Lagrangian plays the role that the Routhian does in
the constrained theory.

3.8 Coupling to a Lie group

The following results are useful in the theory of coupling flexible structures
to rigid bodies; see Krishnaprasad and Marsden [1987] and Simo, Posbergh,
and Marsden [1990].

Let G be a Lie group acting by canonical (Poisson) transformations on
a Poisson manifold P . Define φ : T ∗G× P → g∗ × P by

φ(αg, x) = (TL∗
g · αg, g

−1 · x) (3.8.1)
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where g−1 ·x denotes the action of g−1 on x ∈ P . For example, if G = SO(3)
and αg is a momentum variable which is given in coordinates on T ∗ SO(3)
by the momentum variables pφ, pθ, pϕ conjugate to the Euler angles φ, θ, ϕ,
then the mapping φ transforms αg to body representation and transforms
x ∈ P to g−1 · x, which represents x relative to the body.

For F,K : g∗ × P → R, let {F,K}− stand for the minus Lie–Poisson
bracket holding the P variable fixed and let {F,K}P stand for the Poisson
bracket on P with the variable µ ∈ g∗ held fixed.

Endow g∗ × P with the following bracket:

{F,K} = {F,K}− + {F,K}P − dxF ·
(
δK

δµ

)

P

+ dxK ·
(
δF

δµ

)

P

(3.8.2)

where dxF means the differential of F with respect to x ∈ P and the
evaluation point (µ, x) has been suppressed.

3.8.1 Proposition. The bracket (3.8.2) makes g∗ × P into a Poisson
manifold and φ : T ∗G× P → g∗ × P is a Poisson map, where the Poisson
structure on T ∗G×P is given by the sum of the canonical bracket on T ∗G
and the bracket on P . Moreover, φ is G invariant and induces a Poisson
diffeomorphism of (T ∗G× P )/G with g∗ × P .

Proof. For F,K : g∗ × P → R, let F̄ = F ◦ φ and K̄ = K ◦ φ. Then
we want to show that {F̄ , K̄}T∗G + {F̄ , K̄}P = {F,K} ◦ φ. This will show
φ is canonical. Since it is easy to check that φ is G invariant and gives
a diffeomorphism of (T ∗G × P )/G with g∗ × P , it follows that (3.8.2)
represents the reduced bracket and so defines a Poisson structure.

To prove our claim, write φ = φG × φP . Since φG does not depend on x
and the group action is assumed canonical, {F̄ , K̄}P = {F,K}P ◦φ. For the
T ∗G bracket, note that since φG is a Poisson map of T ∗G to g∗−, the terms
involving φG will be {F,K}− ◦ φ. The terms involving φP (αg, x) = g−1 · x
are given most easily by noting that the bracket of a function S of g with
a function L of αg is

dgS ·
δL

δαg

where δL/δαg means the fiber derivative of L regarded as a vector at g.
This is paired with the covector dgS.

Letting Ψx(g) = g−1 · x, we find by use of the chain rule that missing
terms in the bracket are

dxF · TΨx ·
δK

δµ
− dxK · TΨx ·

δF

δµ
.

However,

TΨx ·
δK

δµ
= −

(
δK

δµ

)

P

◦Ψx,
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so the preceding expression reduces to the last two terms in equation (3.8.2).
�

Suppose that the action of G on P has an Ad∗ equivariant momentum
map J : P → g∗. Consider the map α : g∗ × P → g∗ × P given by

α(µ, x) = (µ+ J(x), x). (3.8.3)

Let the bracket { , }0 on g∗ × P be defined by

{F,K}0 = {F,K}− + {F,K}P . (3.8.4)

Thus { , }0 is (3.8.2) with the coupling or interaction terms dropped. We
claim that the map α eliminates the coupling:

3.8.2 Proposition. The mapping α : (g∗ × P, { , }) → (g∗ × P, { , }0) is
a Poisson diffeomorphism.

Proof. For F,K : g∗ × P → R, let F̂ = F ◦ α and K̂ = K ◦ α. Letting
ν = µ+ J(x), and dropping evaluation points, we conclude that

δF̂

δµ
=
δF

δν
and dxF̂ =

〈
δF

δν
,dxJ

〉
+ dxF.

Substituting into the bracket (3.8.2), we get

{F̂ , K̂} = −
〈
µ,

[
δF

δν
,
δK

δν

]〉
+ {F,K}P

+

{〈
δF

δν
,dxJ

〉
,

〈
δK

δν
,dxJ

〉}

P

+

{〈
δF

δν
,dxJ

〉
,dxK

}

P

+

{
dxF,

〈
δK

δν
,dxJ

〉}

P

−
〈
δF

δν
,dxJ ·

(
δK

δν

)

P

〉
− dxF ·

(
δK

δν

)

P

+

〈
δK

δν
,dxJ ·

(
δF

δν

)

P

〉
+ dxK ·

(
δF

δν

)

P

. (3.8.5)

Here, {dxF, 〈δK/δν,dxJ〉}P means the pairing of dxF with the Hamil-
tonian vector field associated with the one form 〈δK/δν,dxJ〉, which is
(δK/δν)P , by definition of the momentum map. Thus the corresponding
four terms in (3.8.5) cancel. Let us consider the remaining terms. First of
all, we consider {〈

δF

δν
,dxJ

〉
,

〈
δK

δν
,dxJ

〉}

P

. (3.8.6)
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Since J is equivariant, it is a Poisson map to g∗+. Thus, (3.8.6) becomes
〈J, [δF/δν, δK/δν]〉. Similarly each of the terms

−
〈
δF

δν
,dxJ ·

(
δK

δν

)

P

〉
and

〈
δK

δν
,dxJ ·

(
δF

δν

)

P

〉

equal −〈J, [δF/δν, δK/δν]〉, and therefore these three terms collapse to
−〈J, [δF/δν, δK/δν]〉 which combines with −〈µ, [δF/δν, δK/δν]〉 to pro-
duce the expression −〈ν, [δF/δν, δK/δν]〉 = {F,K}−. Thus, (3.8.5) col-
lapses to (3.8.4). �

Remark. This result is analogous to the isomorphism between the “Stern-
berg” and “Weinstein” representations of a reduced principal bundle. This
isomorphism is discussed in Sternberg [1977], Weinstein [1978b], Mont-
gomery, Marsden, and Ratiu [1984] and Montgomery [1984]. �

3.8.3 Corollary. Suppose C(ν) is a Casimir function on g∗. Then

C(µ, x) = C(µ+ J(x))

is a Casimir function on g∗ × P for the bracket (3.8.2).

We conclude this section with some consequences. The first is a connec-
tion with semi-direct products. Namely, we notice that if h is another Lie
algebra and G acts on h, we can reduce T ∗G× h∗ by G.

3.8.4 Corollary. Giving T ∗G×h∗ the sum of the canonical and the minus
Lie–Poisson structure on h∗, the reduced space (T ∗G × h∗)/G is g∗ × h∗

with the bracket

{F,K} = {F,K}g∗ + {F,K}h∗ −dνF ·
(
δK

δµ

)

h∗

+ dνK ·
(
δF

δµ

)

h∗

(3.8.7)

where (µ, ν) ∈ g∗ × h∗, which is the Lie–Poisson bracket for the semidirect
product gs h.

Here is another consequence which reproduces the symplectic form on
T ∗G written in body coordinates (Abraham and Marsden [1978, p. 315]).
We phrase the result in terms of brackets.

3.8.5 Corollary. The map of T ∗G to g∗ ×G given by αg 7→ (TL∗
gαg, g)

maps the canonical bracket to the following bracket on g∗ ×G:

{F,K} = {F,K}− + dgF · TLg
δK

δµ
− dgK · TLg

δF

δµ
(3.8.8)

where µ ∈ g∗ and g ∈ G.
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Proof. For F : g∗ ×G→ R, let F̄ (αg) = F (µ, g) where µ = TL∗
gαg. The

canonical bracket of F̄ and K̄ will give the (−) Lie–Poisson structure via
the µ dependence. The remaining terms are

〈
dgF̄ ,

δK̄

δp

〉
−
〈
dgK̄,

δF̄

δp

〉
,

where δF̄ /δp means the fiber derivative of F̄ regarded as a vector field
and dgK̄ means the derivative holding µ fixed. Using the chain rule, one
gets (3.8.8). �

In the same spirit, one gets the next corollary by using the previous
corollary twice.

3.8.6 Corollary. The reduced Poisson space (T ∗G × T ∗G)/G is identi-
fiable with the Poisson manifold g∗ × g∗ ×G, with the Poisson bracket

{F,K}(µ1, µ2, g) = {F,K}−µ1
+ {F,K}−µ2

− dgF · TRg ·
δK

δµ1
+ dgK · TRg ·

δF

δµ1

+ dgF · TLg ·
δK

δµ2
− dgK · TLg ·

δF

δµ2
(3.8.9)

where {F,K}−µ1
is the minus Lie–Poisson bracket with respect to the first

variable µ1, and similarly for {F,K}−µ2
.
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4
Relative Equilibria

In this chapter we give a variety of equivalent variational characterizations
of relative equilibria. Most of these are well known, going back in the mid to
late 1800’s to Liouville, Laplace, Jacobi, Tait and Thomson, and Poincaré,
continuing to more recent times in Smale [1970] and Abraham and Marsden
[1978]. Our purpose is to assemble these conveniently and to set the stage
for the energy–momentum method in the next chapter. We begin with
relative equilibria in the context of symplectic G-spaces and then later
pass to the setting of simple mechanical systems.

4.1 Relative Equilibria on Symplectic
Manifolds

Let (P,Ω, G,J, H) be a symplectic G-space.

4.1.1 Definition. A point ze ∈ P is called a relative equilibrium if

XH(ze) ∈ Tze
(G · ze)

that is, if the Hamiltonian vector field at ze points in the direction of the
group orbit through ze.

4.1.2 Theorem (Relative Equilibrium Theorem). Let ze ∈ P and let
ze(t) be the dynamic orbit of XH with ze(0) = ze and let µ = J(ze). The
following assertions are equivalent:
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(i) ze is a relative equilibrium,

(ii) ze(t) ∈ Gµ · ze ⊂ G · ze,

(iii) there is a ξ ∈ g such that ze(t) = exp(tξ) · ze,

(iv) there is a ξ ∈ g such that ze is a critical point of the augmented

Hamiltonian

Hξ(z) := H(z)− 〈J(z)− µ, ξ〉, (4.1.1)

(v) ze is a critical point of the energy–momentum map H × J : P →
R× g∗,

(vi) ze is a critical point of H|J−1(µ),

(vii) ze is a critical point of H|J−1(O), where O = G · µ ⊂ g∗,

(viii) [ze] ∈ Pµ is a critical point of the reduced Hamiltonian Hµ.

Remarks.

1. In bifurcation theory one sometimes refers to relative equilibria as
rotating waves and G · ze as a critical group orbit .

2. Our definition is designed for use with a continuous group. If G were
discrete, we would replace the above definition by the existence of a
nontrivial subgroup Ge ⊂ G such that Ge · ze ⊂ { ze(t) | t ∈ R }. In
this case we would use the terminology discrete relative equilibria

to distinguish it from the continuous case we treat.

3. The equivalence of (i)–(v) is general. However, the equivalence with
(vi)–(viii) requires µ to be a regular value of J and for (vii) that the
reduced manifold be nonsingular. It would be interesting to generalize
the methods here to the singular case by using the results on bifur-
cation of momentum maps of Arms, Marsden, and Moncrief [1981].
Roughly, one should use J alone for the singular part of H−1(µe)
(done by the Liapunov–Schmidt technique) and Hξ for the regular
part.

4. One can view (iv) as a constrained optimality criterion with ξ as a
Lagrange multiplier.

5. We note that the criteria here for relative equilibria are related to the
principle of symmetric criticality. See Palais [1979, 1985] for details.

�
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Proof. The logic will go as follows:
(i) ⇒ (iv) ⇒ (iii) ⇒ (ii) ⇒ (i)

and (iv) ⇒ (v) ⇒ (vi) ⇒ (vii) ⇒ (viii) ⇒ (ii).
First assume (i), so XH(ze) = ξP (ze) for some ξ ∈ g. By definition of

momentum map, this gives XH(ze) = X〈J,ξ〉(ze) or XH−〈J,ξ〉(ze) = 0. Since
P is symplectic, this implies H − 〈J, ξ〉 has a critical point at ze, that is,
that Hξ has a critical point at ze, which is (iv).

Next, assume (iv). Let ϕt denote the flow of XH and ψξ
t that of X〈J,ξ〉,

so ψξ
t (z) = exp(tξ) · z. Since H is G-invariant, ϕt and ψξ

t commute, so

the flow of XH−〈J,ξ〉 is ϕt ◦ ψξ
−t. Since H − 〈J, ξ〉 has a critical point at

ze, it is fixed by ϕt ◦ ψξ
−t, so ϕt(exp(−tξ) · ze) = ze for all t ∈ R. Thus,

ϕt(ze) = exp(tξ) · ze, which is (iii).
Condition (iii) shows that ze(t) ∈ G · ze; but ze(t) ∈ J−1(µ) and

G · ze ∩ J−1(µ) = Gµ · ze

by equivariance, so (iii) implies (ii) and by taking tangents, we see that (ii)
implies (i).

Assume (iv) again and notice that Hξ|J−1(µ) = H|J−1(µ), so (v) clearly
holds. That (v) is equivalent to (vi) is one version of the Lagrange multiplier
theorem.

Note by G-equivariance of J that J−1(O) is the G-orbit of J−1(µ), so
(vi) is equivalent to (vii) by G-invariance of H.

That (vi) implies (viii) follows by G-invariance of H and passing to the
quotient.

Finally, (viii) implies that the equivalence class [ze] is a fixed point for
the reduced dynamics, and so the orbit ze(t) in J−1(µ) projects to [ze]; but
this is exactly (ii). �

To indicate the dependence of ξ on ze when necessary, let us write ξ(ze).
For the case G = SO(3), ξ(ze) is the angular velocity of the uniformly
rotating state ze.

4.1.3 Proposition. Let ze be a relative equilibrium. Then

(i) g · ze is a relative equilibrium for any g ∈ G and

ξ(gze) = Adg[ξ(ze)], (4.1.2)

and

(ii) ξ(ze) ∈ gµ that is, Ad∗
exp tξµ = µ.

Proof. Since

ze(t) = exp(tξ) · ze ∈ J−1(µ) ∩G · ze = Gµ · ze,

exp(tξ) ∈ Gµ, which is (ii). Property (i) follows from the identityHAdgξ(gz)
= Hξ(z). �

For G = SO(3), (ii) means that ξ(ze) and µ are parallel vectors.
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4.2 Cotangent Relative Equilibria

We now refine the relative equilibrium theorem to take advantage of the
special context of simple mechanical systems. First notice that if H is of
the form kinetic plus potential, then Hξ can be rewritten as follows

Hξ(z) = Kξ(z) + Vξ(q) + 〈µ, ξ〉 (4.2.1)

where z = (q, p),

Kξ(q, p) =
1

2
‖p− FL(ξQ(q)‖2, (4.2.2)

and where

Vξ(q) = V (q)− 1

2
〈ξ, I(q)ξ〉. (4.2.3)

Indeed,

1

2
‖p− FL(ξQ(q))‖2 + V (q)− 1

2
〈ξ, I(q)ξ〉+ 〈µ, ξ〉

=
1

2
‖p‖2 − 〈〈p,FL(ξQ(q))〉〉q +

1

2
‖FL(ξQ(q))‖2

+ V (q)− 1

2
〈〈ξQ(q), ξQ(q)〉〉q + 〈µ, ξ〉

=
1

2
‖p‖2 − 〈p, ξQ(q)〉+ 1

2
〈〈ξQ(q), ξQ(q)〉〉q

+ V (q)− 1

2
〈〈ξQ(q), ξQ(q)〉〉q + 〈µ, ξ〉

=
1

2
‖p‖2 − 〈J(q, p), ξ〉+ V (q) + 〈µ, ξ〉

= H(q, p)− 〈J(q, p)− µ, ξ〉 = Hξ(q, p).

This calculation together with parts (i) and (iv) of the relative equilibrium
theorem proves the following.

4.2.1 Proposition. A point ze = (qe, pe) is a relative equilibrium if and
only if there is a ξ ∈ g such that

(i) pe = FL(ξQ(qe)) and

(ii) qe is a critical point of Vξ.

The functionsKξ and Vξ are called the augmented kinetic and potential
energies respectively. The main point of this proposition is that it reduces
the job of finding relative equilibria to finding critical points of Vξ. We also
note that Proposition 4.2.1 follows directly from the method of Lagrangian
reduction given in §3.6.

There is another interesting way to rearrange the terms in Hξ, using the
mechanical connection A and the amended potential Vµ. In carrying this
out, it will be useful to note these two identities:

J(FL(ηQ(q))) = I(q)η (4.2.4)
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for all η ∈ g and
J(Aµ(q)) = µ. (4.2.5)

Indeed,

〈J(FL(ηQ(q))), χ〉 = 〈FL(ηQ(q)), χQ(q)〉
= 〈〈ηQ(q), χQ(q)〉〉q = 〈I(q)η, χ〉

which gives (4.2.4) and (4.2.5) was proved in the last chapter.
At a relative equilibrium, the relation pe = FL(ξQ(qe)) and (4.2.4) give

I(qe)ξ = J(FL(ξQ(qe))) = J(qe, pe) = µ;

that is,
µ = I(qe)ξ. (4.2.6)

We now show that if ξ = I(q)−1µ, then

Hξ(z) = Kµ(z) + Vµ(q) (4.2.7)

where

Kµ(z) =
1

2
‖p−Aµ(q)‖2 (4.2.8)

and Vµ(q) is the amended potential as before. Indeed,

Kµ(z) + Vµ(q)

=
1

2
‖p−Aµ(q)‖2 + V (q) +

1

2
〈µ, I(q)−1µ〉

=
1

2
‖p‖2 − 〈〈p,Aµ(q)〉〉q +

1

2
‖Aµ(q)‖2q + V (q) +

1

2
〈µ, ξ〉

=
1

2
‖p‖2 − 〈µ,A(FL−1(q, p))〉+ 1

2
〈µ,A(FL−1(Aµ(q))〉+ V (q) +

1

2
〈µ, ξ〉

=
1

2
‖p‖2 − 〈µ, I−1J(q, p)〉+ 1

2
〈µ, I(q)−1J(Aµ(q)〉+ V (q) +

1

2
〈µ, ξ〉

=
1

2
‖p‖2 − 〈I−1µ,J(q, p)〉+ 1

2
〈µ, ξ〉+ V (q) +

1

2
〈µ, ξ〉

=
1

2
‖p‖2 + V (q)− 〈J(q, p), ξ〉+ 〈µ, ξ〉 = Hξ(q, p)

using J(Aµ(q)) = µ and J(z) = µ. Next we observe that

pe = Aµ(qe) (4.2.9)

since

〈Aµ(qe), v〉 = 〈µ, I−1(qe)J(FL(v)〉 = 〈J(qe, pe), I
−1(qe)J(FL(v))〉

= 〈pe, [I
−1(qe)J(FL(v))]Q〉

= 〈FL(ξQ(q)), [I−1(qe)J(FL(v))]Q〉
= 〈ξ,J(FL(v))〉 = 〈ξQ(qe),FL(v)〉
= 〈〈ξQ(qe), v〉〉q = 〈FL(ξQ(qe)), v〉 = 〈pe, v〉.

These calculations prove the following result:
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4.2.2 Proposition. A point ze = (qe, pe) is a relative equilibrium if and
only if

(i) pe = Aµ(qe) and

(ii) qe is a critical point of Vµ.

One can also derive (4.2.9) from (4.2.7) and also one can get (ii) directly
from (ii) of Proposition 4.2.1. As we shall see later, it will be Vµ that gives
the sharpest stability results, as opposed to Vξ.

In Simo, Lewis, and Marsden [1991] it is shown how, in an appropriate
sense, Vξ and Vµ are related by a Legendre transformation.

4.2.3 Proposition. If ze = (qe, pe) is a relative equilibrium and µ =
J(ze), then µ is an equilibrium for the Lie–Poisson system on g∗ with
Hamiltonian h(ν) = 1

2 〈ν, I(q−1
e )ν〉, that is, the locked inertia Hamiltonian.

Proof. The Hamiltonian vector field of h is

Xh(ν) = ad∗
δh/δνν = ad∗

I(qe)−1νν.

However, I(qe)
−1µ = ξ by (4.2.6) and ad∗

ξµ = 0 by Proposition 4.1.3, part
(ii). Hence Xh(µ) = 0. �

4.3 Examples

A. The spherical pendulum. Recall from Chapter 3 that Vξ and Vµ

are given by

Vξ(θ) = −mgR cos θ − ξ2

2
mR2 sin2 θ

and

Vµ(θ) = −mgR cos θ +
1

2

µ2

mR2 sin2 θ
.

The relation (4.2.6) is µ = mR2 sin2 θeξ, the usual relation between angular
momentum µ and angular velocity ξ. The conditions of Proposition 4.2.1
are:

(pθ)e = 0, (pϕ)e = mR2 sin2 θeξ

and V ′
ξ (θe) = 0, that is,

mgR sin θe − ξ2mR2 sin θe cos θe = 0

that is, sin θe = 0 or g = Rξ2 cos θe. Thus, the relative equilibria correspond
to the pendulum in the upright or down position (singular case) or, with
θe 6= 0, π to any θe 6= π/2 with

ξ = ±
√

g

R cos θe
.
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Using the relation between µ and ξ, the reader can check that Proposition
4.2.2 gives the same result.

B. The double spherical pendulum. In Chapter 3 we saw that

Vµ(q1,q2) = m1gq1 · k +m2g(q1 + q2) · k +
1

2

µ2

I
, (4.3.1)

where
I(q1,q2) = m1‖q⊥

1 ‖2 +m2‖q⊥
1 + q⊥

2 ‖2.
The relative equilibria are computed by finding the critical points of

Vµ. There are four obvious relative equilibria—the ones with q⊥
1 = 0 and

q⊥
2 = 0, in which the individual pendula are pointing vertically upwards

or vertically downwards. We now search for solutions with each pendulum
pointing downwards, and with q⊥

1 6= 0 and q⊥
2 6= 0. There are some other

relative equilibria with one of the pendula pointing upwards, as we shall
discuss below.

We next express Vµ as a function of q⊥
1 and q⊥

2 by using the constraints,
which gives the third components:

q31 = −
√
l21 − ‖q⊥

1 ‖2 and q32 = −
√
l22 − ‖q⊥

2 ‖2.

Thus,

Vµ(q⊥
1 ,q

⊥
2 ) = −(m1 +m2)g

√
l21 − ‖q⊥

1 ‖2 −m2g
√
l22 − ‖q⊥

2 ‖2 +
1

2

µ2

I
.

(4.3.2)
Setting the derivatives of Vµ equal to zero gives

(m1 +m2)g
q⊥

1√
l21 − ‖q⊥

1 ‖2
=
µ2

I2
[(m1 +m2)q

⊥
1 +m2q

⊥
2 ]

m2g
q⊥

2√
l22 − ‖q⊥

2 ‖2
=
µ2

I2
[m2(q

⊥
1 + q⊥

2 )].

(4.3.3)

We note that the equations for critical points of Vξ give the same equa-
tions with µ = Iξ.

From (4.3.3) we see that the vectors q⊥
1 and q⊥

2 are parallel. Therefore,
define a parameter α by

q⊥
2 = αq⊥

1 (4.3.4)

and let λ be defined by
‖q⊥

1 ‖ = λl1. (4.3.5)

Notice that α and λ determine the shape of the relative equilibrium. Define
the system parameters r and m by

r =
l2
l1
, m =

m1 +m2

m2
, (4.3.6)
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so that conditions (4.3.3) are equivalent to

mg

l1

1√
1− λ2

=
µ2

I2
(m+ α)

g

l1

α√
r2 − α2λ2

=
µ2

I2
(1 + α)

(4.3.7)

The restrictions on the parameters are as follows: First, from ‖q⊥
1 ‖ ≤ l1

and ‖q⊥
2 ‖ ≤ l2, we get

0 ≤ λ ≤ min
{ r
α
, 1
}

(4.3.8)

and next, from Equations (4.3.7), we get the restriction that either

α > 0 or −m < α < −1. (4.3.9)

The intervals (−∞,m) and (−1, 0) are also possible and correspond to
pendulum configurations with the first and second pendulum inverted, re-
spectively. Dividing the Equations (4.3.7) to eliminate µ and using a little
algebra proves the following result.

4.3.1 Theorem. All of the relative equilibria of the double spherical pen-
dulum apart the four equilibria with the two pendula vertical are given by
the points on the graph of

λ2 =
L2 − r2
L2 − α2

(4.3.10)

where

L(α) =
(
1 +

α

m

)( α

1 + α

)
,

subject to the restriction 0 ≤ λ2 ≤ r2/α2.

From (4.3.7) we can express either µ or ξ in terms of α. In Figures 4.3.1
and 4.3.2 we show the relative equilibria for two sample values of the system
parameters. Note that there is a bifurcation of relative equilibria for fixed
m and increasing r, and that it occurs within the range of restricted values
of α and λ. Also note that there can be two or three relative equilibria for
a given set of system parameters.

The bifurcation of relative equilibria that happens between Figures 4.3.1
and 4.3.2 does so along the curve in the (r,m) plane given by

r =
2m

1 +m

as is readily seen. For instance, for m = 2 one gets r = 4/3, in agreement
with the figures. The above results are in agreement with those of Baillieul
[1987].
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Figure 4.3.1. The graphs of λ2 verses α for r = 1, m = 2 and of λ2 = r2/α2.
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Figure 4.3.2. The graph of λ2 verses α for r = 1.35 and m = 2 and of λ2 = r2/α2.

C. The water molecule. Because it is a little complicated to work out
Vµ (except at symmetric molecules) we will concentrate on the conditions
involving Hξ and Vξ for finding the relative equilibria.
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Let us work these out in turn. By definition,

Hξ = H − 〈J, ξ〉

=
1

4mM
‖σ‖2 +

‖π‖2
m

+
1

2M‖J‖
2 + V

− π · (ξ × r)− σ · (ξ × s). (4.3.11)

Thus, the conditions for a critical point associated with δHξ = 0 are:

δπ :
2

m
π = ξ × r (4.3.12)

δσ :
1

2mM
σ = ξ × s (4.3.13)

δr :
∂V

∂r
= π × ξ (4.3.14)

δs :
∂V

∂s
= σ × ξ. (4.3.15)

The first two equations express π and σ in terms of r and s. When they
are substituted in the second equations, we get conditions on (r, s) alone:

∂V

∂r
=
m

2
(ξ × r)× ξ =

m

2

[
ξ(ξ · r)− r‖ξ‖2

]
(4.3.16)

and
∂V

∂s
= 2mM(ξ × s)× ξ = 2mM

[
ξ(ξ · s)− s‖ξ‖2

]
. (4.3.17)

These are the conditions for a relative equilibria we sought. Any collection
(ξ, r, s) satisfying (4.3.16) and (4.3.17) gives a relative equilibrium.

Now consider Vξ for the water molecule:

Vξ(r, s) = V (r, s)− 1

2

[
‖ξ‖2

(m
2
‖r‖2 + 2Mm‖s‖2

)]

− 1

2

[m
2

(ξ · r)2 + 2Mm(ξ · s)2
]
. (4.3.18)

The conditions for a critical point are:

δr :
∂V

∂r
− ‖ξ‖2mr

2
− m

2
(ξ · r)ξ = 0 (4.3.19)

δs :
∂V

∂s
− ‖ξ‖2 · 2Mms− 2Mm(ξ · s)ξ = 0, (4.3.20)

which coincide with (4.3.16) and (4.3.17). The extra condition from Propo-
sition 4.2.1, namely pe = FL(ξQ(qe)), gives (4.3.12) and (4.3.13). �



4.4 The Rigid Body 95

4.4 The Rigid Body

Since examples like the water molecule have both rigid and internal vari-
ables, it is important to understand our constructions for the rigid body
itself.

The rotation group SO(3) consists of all orthogonal linear transforma-
tions of Euclidean three space to itself, which have determinant one. Its
Lie algebra, denoted so(3), consists of all 3 × 3 skew matrices, which we
identify with R3 by the isomorphism ˆ: R3 → so(3) defined by

Ω 7→ Ω̂ =




0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0



 , (4.4.1)

where Ω = (Ω1,Ω2,Ω3). One checks that for any vectors r, and Θ,

Ω̂r = Ω× r, and Ω̂Θ̂− Θ̂Ω̂ = (Ω×Θ)̂. (4.4.2)

Equations (4.4.1) and (4.4.2) identify the Lie algebra so(3) with R3 and
the Lie algebra bracket with the cross product of vectors. If Λ ∈ SO(3) and
Θ̂ ∈ so(3), the adjoint action is given by

AdΛΘ̂ = [ΛΘ]̂ . (4.4.3)

The fact that the adjoint action is a Lie algebra homomorphism, corre-
sponds to the identity

Λ(r× s) = Λr× Λs, (4.4.4)

for all r, s ∈ R3.
Given Λ ∈ SO(3), let v̂Λ denote an element of the tangent space to SO(3)

at Λ. Since SO(3) is a submanifold of GL(3), the general linear group, we
can identify v̂Λ with a 3× 3 matrix, which we denote with the same letter.
Linearizing the defining (submersive) condition ΛΛT = 1 gives

Λv̂T
Λ + v̂ΛΛT = 0, (4.4.5)

which defines TΛ SO(3). We can identify TΛ SO(3) with so(3) by two iso-
morphisms: First, given Θ̂ ∈ so(3) and Λ ∈ SO(3), define (Λ, Θ̂) 7→ Θ̂Λ ∈
TΛ SO(3) by letting Θ̂Λ be the left invariant extension of Θ̂:

Θ̂Λ := TeLΛ · Θ̂ ∼= (Λ,ΛΘ̂). (4.4.6)

Second, given θ̂ ∈ so(3) and Λ ∈ SO(3), define (Λ, θ̂) 7→ θ̂Λ ∈ TΛ SO(3)
through right translations by setting

θ̂Λ := TeRΛ · θ̂ ∼= (Λ, θ̂Λ). (4.4.7)

The notation is partially dictated by continuum mechanics considerations;
upper case letters are used for the body (or convective) variables and lower
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case for the spatial (or Eulerian) variables. Often, the base point is omit-

ted and with an abuse of notation we write ΛΘ̂ and θ̂Λ for Θ̂Λ and θ̂Λ,
respectively.

The dual space to so(3) is identified with R3 using the standard dot
product : Π · Θ = 1

2 tr[Π̂T Θ̂]. This extends to the left-invariant pairing on
TΛ SO(3) given by

〈Π̂Λ, Θ̂Λ〉 =
1

2
tr[Π̂T

ΛΘ̂Λ] =
1

2
tr[Π̂T Θ̂] = Π ·Θ. (4.4.8)

Write elements of so(3)∗ as Π̂, where Π ∈ R3, (or π̂ with π ∈ R3) and
elements of T ∗

Λ SO(3) as

Π̂Λ = (Λ,ΛΠ̂), (4.4.9)

for the body representation, and for the spatial representation

π̂Λ = (Λ, π̂Λ). (4.4.10)

Again, explicit indication of the base point will often be omitted and
we shall simply write ΛΠ̂ and π̂Λ for Π̂Λ and π̂Λ, respectively. If (4.4.9)
and (4.4.10) represent the same covector, then

π̂ = ΛΠ̂ΛT , (4.4.11)

which coincides with the co-adjoint action. Equivalently, using the isomor-
phism (4.4.2) we have

π = ΛΠ. (4.4.12)

The mechanical set-up for rigid body dynamics is as follows: the config-
uration manifold Q and the phase space P are

Q = SO(3) and P = T ∗ SO(3) (4.4.13)

with the canonical symplectic structure.
The Lagrangian for the free rigid body is, as in Chapter 1, its kinetic

energy:

L(Λ, Λ̇) =
1

2

∫

B
ρref(X)‖Λ̇X‖2 d3X (4.4.14)

where ρref is a mass density on the reference configuration B. The La-
grangian is evidently left invariant. The corresponding metric is the left
invariant metric given at the identity by

〈〈ξ̂, η̂〉〉 =

∫

B
ρref(X) ξ̂(X) · η̂(X) d3X

or on R3 by

〈〈a, b〉〉 =

∫

B
ρref(X)(a×X) · (b×X) d3X = a · Ib (4.4.15)
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where

I =

∫

B
ρref(X)[‖X‖2Id−X ⊗X] d3X (4.4.16)

is the inertia tensor .
The corresponding Hamiltonian is

H =
1

2
Π · I−1Π =

1

2
π · I−1π (4.4.17)

where I = ΛIΛ−1 is the time dependent inertia tensor .
The expression H = 1

2Π ·I−1Π reflects the left invariance of H under the
action of SO(3). Thus left reduction by SO(3) to body coordinates induces a
function on the quotient space T ∗ SO(3)/SO(3) ∼= so(3)∗. The symplectic
leaves are spheres, ‖Π‖ = constant. The induced function on these spheres
is given by (4.4.17) regarded as a function of Π. The dynamics on this
sphere is obtained by intersection of the sphere ‖Π‖2 = constant and the
ellipsoid H = constant that we discussed in Chapter 1.

Consistent with the preceding discussion, let G = SO(3) act from the
left on Q = SO(3); that is,

Q · Λ = LQΛ = QΛ, (4.4.18)

for all Λ ∈ SO(3) and Q ∈ G. Hence the action of G = SO(3) on P =
T ∗ SO(3) is by cotangent lift of left translations. Since the infinitesimal

generator associated with ξ̂ ∈ so(3) is obtained as

ξ̂SO(3)(Λ) =
d

dt
exp

[
tξ̂
]
Λ

∣∣∣∣
t=0

= ξ̂Λ, (4.4.19)

the corresponding momentum map is

〈
J(π̂λ), ξ̂

〉
=

1

2
tr
[
π̂T

Λξso(3)Λ
]

=
1

2
tr
[
ΛT π̂T ξ̂Λ

]
=

1

2
tr
[
π̂T ξ̂

]
= π · ξ,

(4.4.20)
that is,

J(π̂Λ) = π̂, or J(ξ̂) = π · ξ. (4.4.21)

To locate the relative equilibria, consider

Hξ(π̂Λ) = H − [(J(ξ)− πe) · ξ] =
1

2
π · I−1π − ξ · (π − πe). (4.4.22)

To find its critical points, we note that although π̂Λ ∈ T ∗ SO(3) are the
basic variables, it is more convenient to regard Hξ as a function of (Λ, π) ∈
SO(3)× R3∗ through the isomorphism (4.4.10).

Thus, let π̂Λe
∼= (Λe, π̂eΛe) ∈ T ∗ SO(3) be a relative equilibrium point.

For any δθ ∈ R3 we construct the curve

ǫ 7→ Λǫ = exp
[
ǫδ̂θ
]
Λe ∈ SO(3), (4.4.23)
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which starts at Λe and
d

dǫ
Λǫ

∣∣∣∣
ǫ=0

= δ̂θΛ. (4.4.24)

Let δπ ∈ (R3)∗ and consider the curve in (R3)∗ defined as

ǫ 7→ πǫ = πe + ǫδπ ∈ (R3)∗, (4.4.25)

which starts at πe. These constructions induce a curve ǫ 7→ π̂Λe
∈ T ∗ SO(3)

via the isomorphism (4.4.10); that is, π̂Λe
:= (Λǫ, π̂ǫΛǫ). With this notation

at hand we compute the first variation using the chain rule. Let

δHξ |e:=
d

dǫ
Hξ,ǫ

∣∣∣∣
ǫ=0

= 0, (4.4.26)

where

Hξ,ǫ :=
1

2
πǫ · I−1

ǫ πǫ − ξ · πǫ and I
−1
ǫ := ΛǫI

−1ΛT
ǫ .

In addition, at equilibrium, J(ze) = µ reads

π = πe. (4.4.27)

To compute δHξ, observe that

1

2
πe ·

d

dǫ
I
−1
ǫ πe

∣∣∣∣
ǫ=0

=
1

2
πe ·

[
δθ̂I−1

e − I
−1
e δθ̂

]
πe

=
1

2

[
πe · δθ × I

−1
e πe − I

−1
e πe · δθ × πe

]

= δθ ·
(
I
−1
e πe × πe

)
, (4.4.28)

where we have made use of elementary vector product identities. Thus,

δHξ |e= δπ ·
[
I
−1
e πe − ξ

]
+ δθ ·

[
I
−1
e πe × πe

]
= 0. (4.4.29)

From this relation we obtain the two equilibrium conditions:

I
−1
e πe × πe = 0 and I

−1
e πe = ξ. (4.4.30)

Equivalently,

ξ × πe = 0 and I
−1
e ξ = λξ, (4.4.31)

where λ > 0 by positive definiteness of Ie = ΛeIΛ
T
e . These conditions state

that πe is aligned with a principal axis, and that the rotation is about this
axis. Note that πe = Ieξ, so that ξ does indeed correspond to the angular
velocity.

Equivalently, we can locate the relative equilibria using Proposition 4.2.1.
The locked inertia tensor (as the notation suggests) is just I and here
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pe = FL(ξQ(qe)) reads πe = Ieξ, while qe = Λe is required to be a critical
point of Vξ or Vµ, where µ = πe = Iξ. Thus

Vξ(Λ) =
1

2
ξ · (Iξ) and Vµ(Λ) = −1

2
µ · (I−1µ). (4.4.32)

The calculation giving (4.4.28) shows that Λe is a critical point of Vξ, or of
Vµ iff ξ × πe = 0.

These calculations show that rigid body relative equilibria correspond
to steady rotational motions about their principal axes. The “global” per-
spective taken above is perhaps a bit long winded, but it is a point of view
that is useful in the long run.
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5
The Energy–Momentum Method

This chapter develops the energy–momentum method of Simo, Posbergh,
and Marsden [1990, 1991] and Simo, Lewis, and Marsden [1991]. This
is a technique for determining the stability of relative equilibria and for
putting the equations of motion linearized at a relative equilibrium into
normal form. This normal form is based on a special decomposition of vari-
ations into rigid and internal components that gives a block structure to
the Hamiltonian and symplectic structure. There has been considerable de-
velopment of stability and bifurcation techniques over the last decade, and
some properties like block diagonalization have been seen in a variety of
problems; for example, this appears to be what is happening in Morrison
and Pfirsch [1990].

5.1 The General Technique

In these lectures we will confine ourselves to the regular case ; that is,
we assume ze is a relative equilibrium that is also a regular point (i.e.,
gze

= {0}, or ze has a discrete isotropy group) and µ = J(ze) is a generic

point in g∗ (i.e., its orbit is of maximal dimension). We are seeking condi-
tions for Gµ-orbital stability of ze; that is, conditions under which for any
neighborhood U of the orbit Gµ · ze, there is a neighborhood V with the
property that the trajectory of an initial condition starting in V remains
in U for all time. To do so, find a subspace

S ⊂ Tze
P
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satisfying two conditions (see Figure 5.1.1):

(i) S ⊂ kerDJ(ze) and

(ii) S is transverse to the Gµ-orbit within ker DJ(ze).

The energy–momentum method is as follows:

(a) find ξ ∈ g such that δHξ(ze) = 0,

(b) test δ2Hξ(ze) for definiteness on S.

S

Figure 5.1.1. The energy–momentum method tests the second variation of the
augmented Hamiltonian for definiteness on the space S.

5.1.1 Theorem (The Energy–Momentum Theorem). If δ2Hξ(ze) is def-
inite, then ze is Gµ-orbitally stable in J−1(µ) and G-orbitally stable in P .

Proof. First, one has Gµ-orbital stability within J−1(µ) because the re-
duced dynamics induces a well defined dynamics on the orbit space Pµ; this
dynamics induces a dynamical system on S for which Hξ is an invariant
function. Since it has a non-degenerate extremum at ze, invariance of its
level sets gives the required stability.

Second, one gets Gν orbital stability within J−1(ν) for ν close to µ since
the form of Figure 5.1.1 changes in a regular way for nearby level sets, as
µ is both a regular value and a generic point in g∗. �

For results for non-generic µ or non-regular µ, see Patrick [1990] and
Lewis [1992].



5.1 The General Technique 103

A well known example that may be treated as an instance of the energy–
momentum method, where the necessity of considering orbital stability is
especially clear, is the stability of solitons in the KdV equation. (A result
of Benjamin [1972] and Bona [1975].) Here one gets stability of solitons
modulo translations; one cannot expect literal stability because a slight
change in the amplitude cases a translational drift, but the soliton shape
remains dynamically stable.

This example is actually infinite dimensional, and here one must employ
additional hypotheses for Theorem 5.1.1 to be valid. Two possible infinite
dimensional versions are as follows: one uses convexity hypotheses going
back to Arnold [1969] (see Holm, Kupershmidt, and Levermore [1985] for
a concise summary) or, what is appropriate for the KdV equation, em-
ploy Sobolev spaces on which the calculus argument of Theorem 5.1.1 is
correct—one needs the energy norm defined by δ2Hξ(ze) to be equivalent
to a Sobolev norm in which one has global existence theorems and on which
Hξ is a smooth function. Sometimes, such as in three dimensional elasticity,
this can be a serious difficulty (see, for instance, Ball and Marsden [1984]).
In other situations, a special analysis is needed, as in Wan and Pulvirente
[1984] and Batt and Rein [1993].

The energy–momentum method can be compared to Arnold’s energy–
Casimir method that takes place on the Poisson manifold P/G rather than
on P itself. Consider the diagram in Figure 5.1.2.

P/G g∗

P

R

C Φ

π J
�

�
�

�✠

❅
❅

❅
❅❘

❅
❅

❅
❅❘

�
�

�
�✠

Figure 5.1.2. Comparing the energy–Casimir and energy–momentum methods.

The energy–Casimir method searches for a Casimir function C on
P/G such that H + C has a critical point at ue = [ze] for the reduced
system and then requires definiteness of δ2(H+C)(ue). If one has a relative
equilibrium ze (with its associated µ and ξ), and one can find an invariant



104 5. The Energy–Momentum Method

function Φ on g∗ such that

δΦ

δµ
(µ) = −ξ,

then one can define a Casimir C by C ◦ π = Φ ◦ J and H + C will have a
critical point at ue.

Remark. This diagram gives another way of viewing symplectic reduc-
tion, namely, as the level sets of Casimir functions in P/G. In general, the
symplectic reduced spaces may be viewed as the symplectic leaves in P/G.
These may or may not be realizable as level sets of Casimir functions. �

The energy–momentum method is more powerful in that it does not
depend on the existence of invariant functions, which is a serious difficulty
in some examples, such as geometrically exact elastic rods, certain plasma
problems, and 3-dimensional ideal flow. On the other hand, the energy–
Casimir method is able to treat some singular cases rather easily since
P/G can still be a smooth manifold in the singular case. However, there is
still the problem of interpretation of the results in P ; see Patrick [1990].

For simple mechanical systems, one way to choose S is as follows. Let

V = { δq ∈ Tqe
Q | 〈〈δq, χQ(qe)〉〉 = 0 for all χ ∈ gµ },

that is, the metric orthogonal of the tangent space to the Gµ-orbit in Q.
Let

S = { δz ∈ kerdJ(ze) | TπQ · δz ∈ V }
where πQ : T ∗Q = P → Q is the projection.

The following gauge invariance condition will be helpful.

5.1.2 Proposition. Let ze ∈ P be a relative equilibrium, and let G · ze =
{ g · ze | g ∈ G } be the orbit through ze with tangent space

Tze
(G · ze) = { ηP (ze) | η ∈ g }. (5.1.1)

Then, for any δz ∈ Tze
[J−1(µ)], we have

δ2Hξ(ze) · (ηP (ze), δz) = 0 for all η ∈ g. (5.1.2)

Proof. Since H : P → R is G-invariant, Ad∗-equivariance of the momen-
tum map gives

Hξ(g · z) = H(g · z)− 〈J(g · z), ξ〉+ 〈µ, ξ〉
= H(z)− 〈Ad∗

g−1(J(z)), ξ〉+ 〈µ, ξ〉
= H(z)− 〈J(z),Adg−1(ξ)〉+ 〈µ, ξ〉, (5.1.3)
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for any g ∈ G and z ∈ P . Choosing g = exp(tη) with η ∈ g, and differenti-
ating (5.1.3) with respect to t gives

dHξ(z) · ηP (z) = −
〈
J(z),

d

dt

∣∣∣∣
t=0

Adexp(−tη)(ξ)

〉
= 〈J(z), [η, ξ]〉. (5.1.4)

Taking the variation of (5.1.4) with respect to z, evaluating at ze and using
the fact that dHξ(ze) = 0, one gets the expression

δ2Hξ(ze)(ηP (ze), δz) = 〈Tze
J · δz, [η, ξ]〉, (5.1.5)

which vanishes if Tze
J(ze) · δz = 0, that is, if δz ∈ ker [Tze

J(ze)] =
Tze

J−1(µe). �

In particular, from the above result and Proposition 4.1.3, we have

5.1.3 Proposition. δ2Hξ(ze) vanishes identically on ker [Tze
J(ze)] along

the directions tangent to the orbit Gµ · ze; that is

δ2Hξ(ze) · (ηP (ze), ζP (ze)) = 0 for any η, ζ ∈ gµ. (5.1.6)

Proof. A general fact about reduction is that Tze
(Gµ · ze) = Tze

(G · ze)∩
ker[Tze

J(ze)]. Since Tze
(Gµ ·ze) ⊂ Tze

(G ·ze) the result follows from (5.1.2)
by taking δz = ξP (ze) with ξ ∈ gµ. �

These propositions confirm the general geometric picture set out in Fig-
ure 5.1.1. They show explicitly that the orbit directions are neutral direc-
tions of δ2Hξ(ze), so one has no chance of proving definiteness except on a
transverse to the Gµ-orbit.

Remark. Failure to understand these simple distinctions between sta-
bility and orbital stability can sometimes lead to misguided assertions
like “Arnold’s method can only work at symmetric states”. (See Andrews
[1984], Chern and Marsden [1990] and Carnevale and Shepherd [1990].)

�

5.2 Example: The Rigid Body

The classical result about free rigid body stability mentioned in Chapter 1
is that uniform rotation about the longest and shortest principal axes are
stable motions, while motion about the intermediate axis is unstable. A
simple way to see this is by using the energy–Casimir method.

We begin with the equations of motion in body representation:

Π̇ =
dΠ

dt
= Π× Ω (5.2.1)
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where Π,Ω ∈ R3, Ω is the angular velocity, and Π is the angular momentum.
Assuming principal axis coordinates, Πj = IjΩj for j = 1, 2, 3, where
I = (I1, I2, I3) is the diagonalized moment of inertia tensor, I1, I2, I3 > 0.
As we saw in Chapter 2, this system is Hamiltonian in the Lie–Poisson
structure with the kinetic energy Hamiltonian

H(Π) =
1

2
Π · Ω =

1

2

3∑

i=0

Π2
i

Ii
, (5.2.2)

and that for a smooth function Φ : R→ R, the function

CΦ(Π) = Φ

(
1

2
‖Π‖2

)
(5.2.3)

is a Casimir function. We first choose Φ such that HCΦ
:= H + CΦ has

a critical point at a given equilibrium point of (5.2.1). Such points occur
when Π is parallel to Ω. We can assume that the equilibrium solution is
Πe = (1, 0, 0). The derivative of

HCΦ
(Π) =

1

2

3∑

i=0

Π2
i

Ii
+ Φ

(
1

2
‖Π‖2

)

is

dHCΦ
(Π) · δΠ =

(
Ω + ΠΦ′

(
1

2
‖Π‖2

))
· δΠ. (5.2.4)

This equals zero at Π = (1, 0, 0), provided that

Φ′
(

1

2

)
= − 1

I1
. (5.2.5)

The second derivative at the equilibrium Πe = (1, 0, 0) is

d2HCΦ
(Πe) · (δΠ, δΠ)

= δΩ · δΠ + Φ′
(

1

2
‖Πe‖2

)
‖δΠ‖2 + (Πe · δΠ)2Φ′′

(
1

2
‖Πe‖2

)

=

3∑

i=0

(δΠi)
2

Ii
− ‖δΠ‖

2

I1
+ Φ′′

(
1

2

)
(δΠ1)

2

=

(
1

I2
− 1

I1

)
(δΠ2)

2 +

(
1

I3
− 1

I1

)
(δΠ3)

2 + Φ′′
(

1

2

)
(δΠ1)

2.

(5.2.6)

This quadratic form is positive definite if and only if

Φ′′
(

1

2

)
> 0 (5.2.7)
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and
I1 > I2, I1 > I3. (5.2.8)

Consequently,

Φ(x) = −
(

1

I1

)
x+

(
x− 1

2

)2

satisfies (5.2.5) and makes the second derivative of HCΦ
at (1, 0, 0) posi-

tive definite, so stationary rotation around the longest axis is stable. The
quadratic form is negative definite provided

Φ′′
(

1

2

)
< 0 (5.2.9)

and
I1 < I2, I1 < I3. (5.2.10)

A specific function Φ satisfying the requirements (5.2.5) and (5.2.9) is

Φ(x) = −
(

1

I1

)
x−

(
x− 1

2

)2

.

This proves that the rigid body in steady rotation around the short axis is
(Liapunov) stable. Finally, the quadratic form (5.2.6) is indefinite if

I1 > I2, I3 > I1. (5.2.11)

or the other way around. One needs an additional argument to show that
rotation around the middle axis is unstable. Perhaps the simplest way is
as follows: Linearizing equation (5.2.1) at Πe = (1, 0, 0) yields the linear
constant coefficient system

d

dt
δΠ = δΠ× Ωe + Πe × δΩ =

(
0,
I3 − I1
I3I1

δΠ3,
I1 − I2
I1I2

δΠ2

)

=




0 0 0

0 0
I3 − I1
I3I1

0
I1 − I2
I1I2

0


 δΠ. (5.2.12)

On the tangent space at Πe to the sphere of radius ‖Πe‖ = 1, the linear
operator given by this linearized vector field has matrix given by the lower
right 2× 2 block, whose eigenvalues are

± 1

I1
√
I2I3

√
(I1 − I2)(I3 − I1).

Both eigenvalues are real by (5.2.11) and one is strictly positive. Thus Πe is
spectrally unstable and thus is (nonlinearly) unstable. Thus, in the motion
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of a free rigid body, rotation around the long and short axes is (Liapunov)
stable and around the middle axis is unstable.

The energy–Casimir method deals with stability for the dynamics on Π-
space. However, one also wants (corresponding to what one “sees”) to show
orbital stability for the motion in T ∗ SO(3). This follows from stability in
the variable Π and conservation of spatial angular momentum. The energy–
momentum method gives this directly.

While it appears to be more complicated for the rigid body, the power
of the energy–momentum method is revealed when one does more complex
examples, as in Simo, Posbergh, and Marsden [1990] and Lewis and Simo
[1990].

In §4.4 we set up the rigid body as a mechanical system on T ∗ SO(3) and
we located the relative equilibria. By differentiating as in (4.4.29) we find
the following formula:

δ2Hξ|e((δπ, δθ), (δπ, δθ)) =

[δπT δθT ]




I−1
e (I−1

e − λ1)π̂e

−π̂e(I
−1
e − λ1) −π̂e(I

−1
e − λ1)π̂e








δπ

δθ



 .

(5.2.13)

Note that this matrix is 6×6. Corresponding to the two conditions on S, we
restrict the admissible variations (δ, π, δθ) ∈ R3∗ × R3. Here, J(π̂∧) = π̂Λ;
hence µ = π̂e and Tze

(Gµ · ze) = infinitesimal rotations about the axis πe;
that is, multiples of πe, or equivalently ξ. Variations that are orthogonal
to this space and also lie in the space δπ = 0 (which is the condition
δJ = δπ = 0) are of the form δθ with δθ ⊥ πe. Thus, we choose

S = { (δπ, δθ) | δπ = 0, δθ ⊥ πe }. (5.2.14)

Note that δθ is a variation that rotates πe on the sphere

Oπe
:= {π ∈ R

3 | ‖π‖2 = ‖πe‖2 }, (5.2.15)

which is the co-adjoint orbit through πe. The second variation (5.2.13)
restricted to the subspace S is given by

δ2Hξ,µ|e = δθ ·
(
π̂T

e (I−1
e − λ1)π̂e

)
δθ

= (πe × δθ) · (I−1
e − λ1)(πe × δθ). (5.2.16)

If λ is the largest or smallest eigenvalue of I, (5.2.16) will be definite; note
that the null space of I−1 − λ1 in (5.2.16) consists of vectors parallel to
πe, which have been excluded. Also note that in this example, S is a 2-
dimensional space and (5.2.16) in fact represents a 2 × 2 matrix. As we
shall see below, this 2 × 2 block can also be viewed as δ2Vµ(qe) on the
space of rigid variations.
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5.3 Block Diagonalization

If the energy–momentum method is applied to mechanical systems with
Hamiltonian H of the form kinetic energy (K) plus potential (V ), it is pos-
sible to choose variables in a way that makes the determination of stability
conditions sharper and more computable. In this set of variables (with the
conservation of momentum constraint and a gauge symmetry constraint
imposed on S), the second variation of δ2Hξ block diagonalizes; schemati-
cally,

δ2Hξ =




[
2× 2 rigid
body block

]
0

0

[
Internal vibration

block

]


 .

Furthermore, the internal vibrational block takes the form

[
Internal vibration

block

]
=

[
δ2Vµ 0

0 δ2Kµ

]

where Vµ is the amended potential defined earlier, and Kµ is a momentum
shifted kinetic energy, so formal stability is equivalent to δ2Vµ > 0 and that
the overall structure is stable when viewed as a rigid structure, which, as
far as stability is concerned, separates the overall rigid body motions from
the internal motions of the system under consideration.

The dynamics of the internal vibrations (such as the elastic wave speeds)
depend on the rotational angular momentum. That is, the internal vibra-
tional block is µ-dependent, but in a way we shall explicitly calculate. On
the other hand, these two types of motions do not dynamically decouple,
since the symplectic form does not block diagonalize. However, the sym-
plectic form takes on a particularly simple normal form as we shall see.
This allows one to put the linearized equations of motion into normal form
as well.

To define the rigid-internal splitting, we begin with a splitting in con-
figuration space. Consider (at a relative equilibrium) the space V defined
above as the metric orthogonal to gµ(q) in TqQ. Here we drop the subscript
e for notational convenience. Then we split

V = VRIG ⊕ VINT (5.3.1)

as follows. Define

VRIG = { ηQ(q) ∈ TqQ | η ∈ g⊥µ } (5.3.2)

where g⊥µ is the orthogonal complement to gµ in g with respect to the
locked inertia metric. (This choice of orthogonal complement depends on
q, but we do not include this in the notation.) From (3.3.1) it is clear that
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VRIG ⊂ V and that VRIG has the dimension of the coadjoint orbit through
µ. Next, define

VINT = { δq ∈ V | 〈η, [dI(q) · δq] · ξ〉 = 0 for all η ∈ g⊥µ } (5.3.3)

where ξ = I(q)−1µ. An equivalent definition is

VINT = { δq ∈ V | [dI(q)−1 · δq] · µ ∈ gµ }.

The definition of VINT has an interesting mechanical interpretation in terms
of the objectivity of the centrifugal force in case G = SO(3); see Simo,
Lewis, and Marsden [1991].

Define the Arnold form Aµ : g⊥µ × g⊥µ → R by

Aµ(η, ζ) = 〈ad∗
ηµ, χ(q,µ)(ζ)〉 = 〈µ, adηχ(q,µ)(ζ)〉, (5.3.4)

where χ(q,µ) : g⊥µ → g is defined by

χ(q,µ)(ζ) = I(q)−1ad∗
ζµ+ adζI(q)−1µ.

The Arnold form appears in Arnold [1966] stability analysis of relative
equilibria in the special case Q = G. At a relative equilibrium, the form Aµ

is symmetric, as is verified either directly or by recognizing it as the second
variation of Vµ on VRIG × VRIG (see (5.3.15) below for this calculation).

At a relative equilibrium, the form Aµ is degenerate as a symmetric
bilinear form on g⊥µ when there is a non-zero ζ ∈ g⊥µ such that

I(q)−1ad∗
ζµ+ adζI(q)−1µ ∈ gµ;

in other words, when I(q)−1 : g∗ → g has a nontrivial symmetry relative to
the coadjoint-adjoint action of g (restricted to g⊥µ ) on the space of linear
maps from g∗ to g. (When one is not at a relative equilibrium, we say the
Arnold form is non-degenerate when Aµ(η, ζ) = 0 for all η ∈ g⊥µ implies
ζ = 0.) This means, for G = SO(3) that Aµ is non-degenerate if µ is not
in a multidimensional eigenspace of I−1. Thus, if the locked body is not
symmetric (i.e., a Lagrange top), then the Arnold form is non-degenerate.

5.3.1 Proposition. If the Arnold form is non-degenerate, then

V = VRIG ⊕ VINT. (5.3.5)

Indeed, non-degeneracy of the Arnold form implies VRIG ∩ VINT = {0}
and, at least in the finite dimensional case, a dimension count gives (5.3.5).
In the infinite dimensional case, the relevant ellipticity conditions are needed.

The split (5.3.5) can now be used to induce a split of the phase space

S = SRIG ⊕ SINT. (5.3.6)
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Using a more mechanical viewpoint, Simo, Lewis, and Marsden [1991] show
how SRIG can be defined by extending VRIG from positions to momenta
using superposed rigid motions. For our purposes, the important character-
ization of SRIG is via the mechanical connection:

SRIG = Tqαµ · VRIG, (5.3.7)

so SRIG is isomorphic to VRIG. Since αµ maps Q to J−1(µ) and VRIG ⊂ V,
we get SRIG ⊂ S. Define

SINT = { δz ∈ S | δq ∈ VINT }; (5.3.8)

then (5.3.6) holds if the Arnold form is non-degenerate. Next, we write

SINT =WINT ⊕W∗
INT, (5.3.9)

where WINT and W∗
INT are defined as follows:

WINT = Tqαµ · VINT and W∗
INT = { vert(γ) | γ ∈ [g · q]0 } (5.3.10)

where g ·q = { ζQ(q) | ζ ∈ g }, [g ·q]0 ⊂ T ∗
q Q is its annihilator, and vert(γ) ∈

Tz(T
∗Q) is the vertical lift of γ ∈ T ∗

q Q; in coordinates, vert(qi, γj) =

(qi, pj , 0, γj). The vertical lift is given intrinsically by taking the tangent to
the curve σ(s) = z + sγ at s = 0.

5.3.2 Theorem (Block Diagonalization Theorem). In the splittings in-
troduced above at a relative equilibrium, δ2Hξ(ze) and the symplectic form
Ωze

have the following form:

δ2Hξ(ze) =




[
Arnold
form

]
0 0

0 δ2Vµ 0
0 0 δ2Kµ




and

Ωze
=




[
coadjoint orbit
symplectic form

] [
internal rigid

coupling

]
0

−
[

internal rigid
coupling

]
S 1

0 −1 0




where the columns represent elements of SRIG, WINT, and W∗
INT, respec-

tively.

Remarks.
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1. For the viewpoint of these splittings being those of a connection, see
Lewis, Marsden, Ratiu, and Simo [1990].

2. Arms, Fischer, and Marsden [1975] and Marsden [1981] describe an
important phase space splitting of TzP at a point z ∈ J−1(0) into
three pieces, namely

TzP = Tz(G · z)⊕ S ⊕ [TzJ
−1(0)]⊥,

where S is, as above, a complement to the gauge piece Tz(G·z) within
TzJ

−1(0) and can be taken to be the same as S defined in §5.1, and
[TzJ

−1(0)]⊥ is a complement to TzJ
−1(0) within TzP . This splitting

has profound implications for general relativistic fields, where it is
called the Moncrief splitting . See, for example, Arms, Marsden,
and Moncrief [1982] and references therein. Thus, we get, all together,
a six-way splitting of TzP . It would be of interest to explore the
geometry of this situation further and arrive at normal forms for the
linearized dynamical equations valid on all of TzP .

3. It is also of interest to link the normal forms here with those in
singularity theory. In particular, can one use the forms here as first
terms in higher order normal forms? �

The terms appearing in the formula for Ωze
will be explained in §5.4

below. We now give some of the steps in the proof.

5.3.3 Lemma. δ2Hξ(ze) · (∆z, δz) = 0 for ∆z ∈ SRIG and δz ∈ SINT.

Proof. In Chapter 3 we saw that for z ∈ J−1(µ),

Hξ(z) = Kµ(z) + Vµ(q) (5.3.11)

where each of the functions Kµ and Vµ has a critical point at the rela-
tive equilibrium. It suffices to show that each term separately satisfies the
lemma. The second variation of Kµ is

δ2Kµ(ze) · (∆z, δz) = 〈〈∆p− Tαµ(qe) ·∆q, δp− Tαµ(qe) · δq〉〉. (5.3.12)

By (5.3.7), ∆p = Tαµ(qe) · ∆q, so this expression vanishes. The second
variation of Vµ is

δ2Vµ(qe) · (∆q, δq) = δ(δV (q) ·∆q +
1

2
µ[dI

−1(q) ·∆q]µ) · δq. (5.3.13)

By G-invariance, δV (q)·∆q is zero for any q ∈ Q, so the first term vanishes.
As for the second, let ∆q = ηQ(q) where η ∈ g⊥µ . As was mentioned in
Chapter 3, I is equivariant:

〈I(gq)Adgχ,Adgζ〉 = 〈I(q)χ, ζ〉.
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Differentiating this with respect to g at g = e in the direction η gives

(dI(q) ·∆q)χ+ I(q)adηχ+ ad∗
η[I(q)χ] = 0

and so

dI
−1(q) ·∆q ν = −I(q)−1dI(q) ·∆qI(q)−1ν

= adηI(q)−1ν + I(q)−1ad∗
ην. (5.3.14)

Differentiating with respect to q in the direction δq and letting ν = µ gives

d2
I
−1(q) · (∆q, δq)] · µ = adη[(DI(q)−1 · δq)µ] + (DI(q)−1 · δq) · ad∗

ηµ.

Pairing with µ and using symmetry of I gives

〈µ,D2
I
−1(q) · (∆q, δq) · µ〉 = 2〈µ, adη[(DI(q)−1 · δq)µ]〉. (5.3.15)

If δq is a rigid variation, we can substitute (5.3.14) in (5.3.15) to express
everything using I itself. This is how one gets the Arnold form in (5.3.4).

If, on the other hand, δq ∈ VINT, then ζ := (DI(q)−1δq)µ ∈ gµ, so (5.3.15)
gives

δ2Vµ(qe) · (∆q, δq) = 〈µ, adηζ〉 = −〈ad∗
ζµ, η〉

which vanishes since ζ ∈ gµ. �

These calculations and similar ones given below establish the block diag-
onal structure of δ2Hξ(ze). We shall see in Chapter 8 that discrete symme-
tries can produce interesting subblocking within δ2Vµ on VINT. Lewis [1992]
has shown how to perform these same constructions for general Lagrangian
systems. This is important because not all systems are of the form kinetic
plus potential energy. For example, gyroscopic control systems are of this
sort. We shall see one example in Chapter 7 and refer to Wang and Krish-
naprasad [1992] for others, some of the general theory of these systems and
some control theoretic applications. The hallmark of gyroscopic systems is
in fact the presence of magnetic terms and we shall discuss this next in the
block diagonalization context.

As far as stability is concerned, we have the following consequence of
block diagonalization.

5.3.4 Theorem (Reduced Energy–Momentum Method). Let ze = (qe, pe)
be a cotangent relative equilibrium and assume that the internal variables
are not trivial; that is, VINT 6= {0}. If δ2Hξ(ze) is definite, then it must
be positive definite. Necessary and sufficient conditions for δ2Hξ(ze) to be
positive definite are:

1. The Arnold form is positive definite on VRIG and

2. δ2Vµ(qe) is positive definite on VINT.
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This follows from the fact that δ2Kµ is positive definite and δ2Hξ has
the above block diagonal structure.

In examples, it is this form of the energy–momentum method that is
often the easiest to use.

Finally in this section we should note the relation between δ2Vξ(qe) and
δ2Vµ(qe). A straightforward calculation shows that

δ2Vµ(qe) · (δq, δq) = δ2Vξ(qe) · (δq, δq)
+ 〈I(qe)−1dI(qe) · δqξ,dI(qe) · δqξ〉 (5.3.16)

and the correction term is positive. Thus, if δ2Vξ(qe) is positive definite,
then so is δ2Vµ(qe), but not necessarily conversely. Thus, δ2Vµ(qe) gives
sharp conditions for stability (in the sense of predicting definiteness of
δ2Hξ(ze)), while δ2Vξ gives only sufficient conditions.

Using the notation ζ = [DI−1(qe) · δq]µ ∈ gµ (see (5.3.3)), observe that
the “correcting term” in (5.3.16) is given by 〈I(qe)ζ, ζ〉 = 〈〈ζQ(qe), ζQ(qe)〉〉.
Formula (5.3.16) is often the easiest to compute with since, as we saw with
the water molecule, Vµ can be complicated compared to Vξ.

Example: The water molecule For the water molecule, VRIG is two
dimensional (as it is for any system with G = SO(3)). The definition gives,
at a configuration (r, s), and angular momentum µ,

VRIG = { (η × r,η × s) | η ∈ R
3 satisfies

(m
2
‖r‖2 + 2Mm‖s‖2

)
η · µ

− m

2
(r · η)(r · µ) + 2Mm(s · µ)(s · η) = 0 }.

The condition on η is just the condition η ∈ g⊥µ . The internal space is three
dimensional, the dimension of shape space. The definition gives

VINT = { (δr, δs) | (η · ξ)(mr · δr + 4Mms · δs)
− m

2
[(δr · ξ)(r · η) + (r · ξ)(δr · η)]

− 2Mm[(δs · ξ)(s · η) + (s · ξ)(δs · η)] = 0

for all ξ,η ∈ g⊥µ }. �

5.4 The Normal Form for the Symplectic
Structure

One of the most interesting aspects of block diagonalization is that the
rigid-internal splitting introduced in the last section also brings the sym-
plectic structure into normal form. We already gave the general structure of
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this and here we provide a few more details. We emphasize once more that
this implies that the equations of motion are also put into normal form and
this is useful for studying eigenvalue movement for purposes of bifurcation
theory. For example, for Abelian groups, the linearized equations of motion
take the gyroscopic form:

Mq̈ + Sq̇ + Λq = 0

where M is a positive definite symmetric matrix (the mass matrix), Λ is
symmetric (the potential term) and S is skew (the gyroscopic, or magnetic
term). This second order form is particularly useful for finding eigenval-
ues of the linearized equations (see, for example, Bloch, Krishnaprasad,
Marsden, and Ratiu [1991, 1994]).

To make the normal form of the symplectic structure explicit, we shall
need a preliminary result.

5.4.1 Lemma. Let ∆q = ηQ(qe) ∈ VRIG and ∆z = TAµ · ∆q ∈ SRIG.
Then

∆z = vert [FL(ζQ(qe))]− T ∗ηQ(qe) · pe (5.4.1)

where ζ = I(qe)
−1ad∗

ηµ and vert denotes the vertical lift.

Proof. We shall give a coordinate proof and leave it to the reader to
supply an intrinsic one. In coordinates, Aµ is given by (3.3.8) as (Aµ)i =

gijK
j
bµaIab. Differentiating,

[TAµ · ν]i =
∂gij

∂qk
νkKj

bµaI
ab + gij

∂Kj
b

∂qk
νkµaI

ab + gijK
j
bµa

∂Iab

∂qk
νk. (5.4.2)

The fact that the action consists of isometries gives an identity allowing
us to eliminate derivatives of gij :

∂gij

∂qk
Kk

aη
a + gkj

∂Kk
a

∂qi
ηa + gik

∂Kk
a

∂qj
ηa = 0. (5.4.3)

Substituting this in (5.4.2), taking νm = Km
a η

a, and rearranging terms
gives

(∆z)i =

{
gik

∂Kk
b

∂qm
Km

a − gik
∂Kk

a

∂qm
Km

b − gkj
∂Kk

a

∂qi
Kj

b

}
ηaµcI

bc

+ gijK
j
bK

k
c

∂Iab

∂qk
µaη

c. (5.4.4)

For group actions, one has the general identity [ηQ, ζQ] = −[η, ζ]Q which
gives

∂Kk
a

∂qm
Km

b −
∂Kk

b

∂qm
Km

a = Kk
cC

c
ab. (5.4.5)
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This allows one to simplify the first two terms in (5.4.4) giving

(∆z)i = −gikK
k
dC

d
abη

aµcI
bc − gkj

∂Kk
a

∂qi
Kj

bη
aµcI

bc + gijK
j
bK

k
c

∂Iab

∂qk
µaη

c.

(5.4.6)
Next, employ the identity (5.3.14):

∂Iab

∂qk
Kk

cη
c = Ca

edη
e
I
db + I

aeCb
deη

d. (5.4.7)

Substituting (5.4.7) into (5.4.6), one pair of terms cancels, leaving

(∆z)i = gikK
k
dC

c
abη

aµcI
bd − gkj

∂Kk
a

∂qi
Kj

bη
aµcI

bc (5.4.8)

which is exactly (5.4.1) since at a relative equilibrium, p = Aµ(q); that is,

pk = gkjK
j
bI

bcµc. �

Now we can start computing the items in the symplectic form.

5.4.2 Lemma. For any δz ∈ Tze
P ,

Ω(ze)(∆z, δz) = 〈[dJ(ze) · δz], η〉 − 〈〈ζQ(qe), δq〉〉. (5.4.9)

Proof. Again, a coordinate calculation is convenient. The symplectic
form on (∆p,∆q), (δp, δq) is

Ω(ze)(∆z, δz) = (δp)i(∆q)
i − (∆p)i(δq)

i = δpiK
i
aη

a − (∆p)i(δq
i).

Substituting from (5.4.8), and using

〈(dJ · δz), η〉 = δpiK
i
aη

a + pi
∂Ki

a

∂qk
δqkηa

gives (5.4.9). �

If δz ∈ SINT, then it lies in ker dJ, so we get the internal-rigid inter-

action terms:

Ω(ze)(∆z, δz) = −〈〈ζQ(qe), δq〉〉. (5.4.10)

Since these involve only δq and not δp, there is a zero in the last slot in the
first row of Ω.

5.4.3 Lemma. The rigid-rigid terms in Ω are

Ω(ze)(∆1z,∆2z) = −〈µ, [η1, η2]〉, (5.4.11)

which is the coadjoint orbit symplectic structure.
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Proof. By Lemma 5.4.9, with ζ1 = I−1ad∗
η1
µ,

Ω(ze)(∆1z,∆2z) = −〈〈ζ1Q(qe), η2Q(qe)〉〉
= −〈ad∗

η1
µ, η2〉 = −〈µ, adη1

η2〉. �

Next, we turn to the magnetic terms:

5.4.4 Lemma. Let δ1z = TAµ · δ1q and δ2z = TAµ · δ2q ∈ WINT, where
δ1q, δ2q ∈ VINT. Then

Ω(ze)(δ1z, δ2z) = −dAµ(δ1q, δ2q). (5.4.12)

Proof. Regarding Aµ as a map of Q to T ∗Q, and recalling that ze =
Aµ(qe), we recognize the left hand side of (5.4.12) as the pull back of Ω by
αµ (and then restricted to VINT). However, as we saw already in Chapter
2, the canonical one-form is characterized by β∗Θ = β, so β∗Ω = −dβ for
any one-form β. Therefore, Ω(ze)(δ1z, δ2z) = −dAµ(qe)(δ1q, δ2q). �

If we define the one form Aξ by Aξ(q) = FL(ξQ(q)), then the definition
of VINT shows that on this space dAµ = dAξ. This is a useful remark since
dAξ is somewhat easier to compute in examples.

If we had made the “naive” choice of VINT as the orthogonal complement
of the G-orbit, then we could also replace dAµ by 〈µ, curvA〉. However,
with our choice of VINT, one must be careful of the distinction.

We leave it for the reader to check that the rest of theWINT,W∗
INT block

is as stated.

5.5 Stability of Relative Equilibria for the
Double Spherical Pendulum

We now give some of the results for the stability of the branches of the
double spherical pendulum that we found in the last chapter. We refer the
reader to Marsden and Scheurle [1993a] for additional details. Even though
the symmetry group of this example is Abelian, and so there is no rigid
body block, the calculations are by no means trivial. We shall leave the
simple pendulum to the reader, in which case all of the relative equilibria
are stable, except for the straight upright solution, which is unstable.

The water molecule is a nice illustration of the general structure of the
method. We shall not work this example out here, however, as it is quite
complicated, as we have mentioned. However, we shall come back to it in
Chapter 8 and indicate some more general structure that can be obtained
on grounds of discrete symmetry alone. For other informative examples,
the reader can consult Lewis and Simo [1990], Simo, Lewis, and Marsden
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[1991], Simo, Posbergh, and Marsden [1990, 1991], and Zombro and Holmes
[1993].

To carry out the stability analysis for relative equilibria of the double
spherical pendulum, one must compute δ2Vµ on the subspace orthogonal
to the Gµ-orbit. To do this, is is useful to introduce coordinates adapted to
the problem and to work in Lagrangian representation. Specifically, let q⊥

1

and q⊥
2 be given polar coordinates (r1, θ1) and (r2, θ2) respectively. Then

ϕ = θ2 − θ1 represents an S1-invariant coordinate, the angle between the
two vertical planes formed by the pendula. In these terms, one computes
from our earlier expressions that the angular momentum is

J = (m1 +m2)r
2
1 θ̇1 +m2r

2
2 θ̇2

+m2r1r2(θ̇1 + θ̇2) cosϕ+m2(r1ṙ2 − r2ṙ1) sinϕ (5.5.1)

and the Lagrangian is

L =
1

2
m1(ṙ

2
1 + r21 θ̇

2
1) +

1

2
m2

{
ṙ21 + r21 θ̇

2
1 + ṙ22 + r22 θ̇

2
2

+2(ṙ1ṙ2 + r1r2θ̇1θ̇2) cosϕ+ 2(r1ṙ2θ̇1 − r2ṙ1θ̇2) sinϕ
}

+
1

2
m1

r21 ṙ
2
1

l21 − r21
+

1

2
m2

(
r1ṙ1√
l21 − r21

+
r2ṙ2√
l22 − r22

)2

+m1g
√
l21 − r21 +m2g

(√
l21 − r21 +

√
l22 − r22

)
. (5.5.2)

One also has, from (3.5.17),

Vµ = −m1g
√
l21 − r21 −m2g

(√
l21 − r21 +

√
l22 − r22

)

+
1

2

µ2

m1r21 +m2(r21 + r22 + 2r1r2 cosϕ)
. (5.5.3)

Notice that Vµ depends on the angles θ1 and θ2 only through ϕ = θ2−θ1, as
it should by S1-invariance. Next one calculates the second variation at one
of the relative equilibria found in §4.3. If we calculate it as a 3× 3 matrix
in the variables r1, r2, ϕ, then one checks that we will automatically be in
a space orthogonal to the Gµ-orbits. One finds, after some computation,
that

δ2Vµ =




a b 0
b d 0
0 0 e



 (5.5.4)
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where

a =
µ2(3(m+ α)2 − α2(m− 1))

λ4l41m2(m+ α2 + 2α)3
+

gm2m

l1(1− λ2)3/2
,

b = (signα)
µ2

λ4l41m2

3(m+ α2 + 2α) + 4α(m− 1)

(m+ α2 + 2α)3
,

d =
µ2

λ4l41m2

3(α+ 1)2 + 1−m
(m+ α2 + 2α)3

+
m2g

l1

r2

(r2 − λ2α2)3/2
,

e =
µ2

λ2l21m2

α

(m+ α2 + 2α)2
.

Notice the zeros in (5.5.4); they are in fact a result of discrete symmetry,
as we shall see in Chapter 8. Without the help of these zeros (for example,
if the calculation is done in arbitrary coordinates), the expression for δ2Vµ

might be intractable.
Based on this calculation one finds:

5.5.1 Proposition. The signature of δ2Vµ along the “straight out” branch
of the double spherical pendulum (with α > 0) is (+,+,+) and so is sta-
ble. The signature along the “cowboy branch” with α < 0 and emanating
from the straight down state (λ = 0) is (−,−,+) and along the remaining
branches is (−,+,+).

The stability along the cowboy branch requires further analysis that we
shall outline in Chapter 10. The remaining branches are linearly unstable
since the index is odd (this is for reasons we shall go into in Chapter 10).

To get this instability and bifurcation information, one needs to linearize
the reduced equations and compute the corresponding eigenvalues. There
are (at least) three methodologies that can be used for computing the
reduced linearized equations:

(i) Compute the Euler–Lagrange equations from (5.5.2), drop them to
J−1(µ)/Gµ and linearize the resulting equations.

(ii) Read off the linearized reduced equations from the block diagonal
form of δ2Hξ and the symplectic structure.

(iii) Perform Lagrangian reduction as in §3.6 to obtain the Lagrangian
structure of the reduced system and linearize it at a relative equilib-
rium.

For the double spherical pendulum, perhaps the first method is the quickest
to get the answer, but of course the other methods provide insight and
information about the structure of the system obtained.

The linearized system obtained has the following standard form expected
for Abelian reduction:

Mq̈ + Sq̇ + Λq = 0. (5.5.5)
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In our case q = (r1, r2, ϕ) and Λ is the matrix (5.5.4) given above. The
mass matrix M is

M =




m11 m12 0
m12 m22 0
0 0 m33





where

m11 =
m1 +m2

1− λ2
, m12 = (signα)m2

(
1 +

αλ2

√
1− λ2

√
r2 − α2λ2

)
,

m22 = m2
r2

r2 − λ2α2
, m33 = m2l

2
1λ

2(m− 1)
α2

m+ α2 + 2α
,

and the gyroscopic matrix S (the magnetic term) is

S =




0 0 s13
0 0 s23
−s13 −s23 0





where

s13 =
µ

λl1

2α2(m− 1)

(m+ α2 + 2α)2
and s23 = −(signα)

µ

λl1

2α(m− 1)

(m+ α2 + 2α)2
.

We will pick up this discussion again in Chapter 10.
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6
Geometric Phases

In this chapter we give the basic ideas for geometric phases in terms of
reconstruction, prove Montgomery’s formula for rigid body phases, and give
some other basic examples. We refer to Marsden, Montgomery, and Ratiu
[1990] and to Marsden, Ratiu and Scheurle [2000] for more information.

6.1 A Simple Example

In Chapter 1 we discussed the idea of phases and gave several examples
in general terms. What follows is a specific but very simple example to
illustrate the important role played by the conserved quantity (in this case
the angular momentum).

Consider two planar rigid bodies joined by a pin joint at their centers of
mass. Let I1 and I2 be their moments of inertia and θ1 and θ2 be the angle
they make with a fixed inertial direction, as in Figure 6.1.1.

Conservation of angular momentum states that I1θ̇1 + I2θ̇2 = µ = con-
stant in time, where the overdot means time derivative. Recall from Chapter
3 that the shape space Q/G of a system is the space whose points give the
shape of the system. In this case, shape space is the circle S1 parametrized
by the hinge angle ψ = θ2 − θ1. We can parametrize the configuration
space of the system by θ1 and θ2 or by θ = θ1 and ψ. Conservation of
angular momentum reads

I1θ̇ + I2(θ̇ + ψ̇) = µ; that is, dθ +
I2

I1 + I2
dψ =

µ

I1 + I2
dt. (6.1.1)
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inertial frame
body #1

body #2

Figure 6.1.1. Two rigid bodies coupled at their centers of mass.

The left hand side of (6.1.1) is the mechanical connection discussed in
Chapter 3, where ψ parametrizes shape space Q/G and θ parametrizes the
fiber of the bundle Q→ Q/G.

Suppose that body #2 goes through one full revolution so that ψ in-
creases from 0 to 2π. Suppose, moreover, that the total angular momentum
is zero: µ = 0. From (6.1.1) we see that

∆θ = − I2
I1 + I2

∫ 2π

0

dψ = −
(

I2
I1 + I2

)
2π. (6.1.2)

This is the amount by which body #1 rotates, each time body #2 goes
around once. This result is independent of the detailed dynamics and only
depends on the fact that angular momentum is conserved and that body
#2 goes around once. In particular, we get the same answer even if there is
a “hinge potential” hindering the motion or if there is a control present in
the joint. Also note that if we want to rotate body #1 by −2πkI2/(I1 + I2)
radians, where k is an integer, all one needs to do is spin body #2 around
k times, then stop it. By conservation of angular momentum, body #1 will
stay in that orientation after stopping body #2.

In particular, if we think of body #1 as a spacecraft and body #2 as an
internal rotor, this shows that by manipulating the rotor, we have control
over the attitude (orientation) of the spacecraft.

Here is a geometric interpretation of this calculation. Define the one form

A = dθ +
I2

I1 + I2
dψ. (6.1.3)

This is a flat connection for the trivial principal S1-bundle π : S1×S1 → S1

given by π(θ, ψ) = ψ. Formula (6.1.2) is the holonomy of this connection,
when we traverse the base circle, 0 ≤ ψ ≤ 2π.
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Another interesting context in which geometric phases comes up is the
phase shift that occurs in interacting solitons. In fact, Alber and Marsden
[1992] have shown how this is a geometric phase in the sense described in
this chapter. In the introduction we already discussed a variety of other
examples.

6.2 Reconstruction

This section presents a reconstruction method for the dynamics of a given
Hamiltonian system from that of the reduced system. Let P be a symplectic
manifold on which a Lie group acts in a Hamiltonian manner and has a
momentum map J : P → g∗. Assume that an integral curve cµ(t) of the
reduced Hamiltonian vector field XHµ

on the reduced space Pµ is known.
For z0 ∈ J−1(µ), we search for the corresponding integral curve c(t) =
Ft(z0) of XH such that πµ(c(t)) = cµ(t), where πµ : J−1(µ) → Pµ is the
projection.

To do this, choose a smooth curve d(t) in J−1(µ) such that d(0) = z0
and πµ(d(t)) = cµ(t). Write c(t) = Φg(t)(d(t)) for some curve g(t) in Gµ to
be determined, where the group action is denoted g · z = Φg(z). First note
that

XH(c(t)) = c′(t)

= Td(t)Φg(t)(d
′(t))

+ Td(t)Φg(t) ·
(
Tg(t)Lg(t)−1(g′(t))

)
P

(d(t)). (6.2.1)

Since Φ∗
gXH = XΦ∗

gH = XH , (6.2.1) gives

d′(t) +
(
Tg(t)Lg(t)−1(g′)(t)

)
P

(d(t))

= TΦg(t)−1XH(Φg(t)(d(t)))

= (Φ∗
g(t)XH)(d(t))

= XH(d(t)). (6.2.2)

This is an equation for g(t) written in terms of d(t) only. We solve it in two
steps:
Step 1. Find ξ(t) ∈ gµ such that

ξ(t)P (d(t)) = XH(d(t))− d′(t). (6.2.3)

Step 2. With ξ(t) determined, solve the following non-autonomous ordi-
nary differential equation on Gµ:

g′(t) = TeLg(t)(ξ(t)), with g(0) = e. (6.2.4)

Step 1 is typically of an algebraic nature; in coordinates, for matrix
Lie groups, (6.2.3) is a matrix equation. We show later how ξ(t) can be
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explicitly computed if a connection is given on J−1(µ) → Pµ. With g(t)
determined, the desired integral curve c(t) is given by c(t) = Φg(t)(d(t)). A
similar construction works on P/G, even if the G-action does not admit a
momentum map.

Step 2 can be carried out explicitly when G is Abelian. Here the con-
nected component of the identity of G is a cylinder Rp ×Tk−p and the ex-
ponential map exp(ξ1, . . . , ξk) = (ξ1, . . . , ξp, ξp+1(mod2π), . . . , ξk(mod2π))
is onto, so we can write g(t) = exp η(t), where η(0) = 0. Therefore ξ(t) =

Tg(t)Lg(t)−1(g′(t)) = η′(t) since η′ and η commute, that is, η(t) =
∫ t

0
ξ(s)ds.

Thus the solution of (6.2.4) is

g(t) = exp

(∫ t

0

ξ(s)ds

)
. (6.2.5)

This reconstruction method depends on the choice of d(t). With addi-
tional structure, d(t) can be chosen in a natural geometric way. What is
needed is a way of lifting curves on the base of a principal bundle to curves
in the total space, which can be done using connections. One can object
at this point, noting that reconstruction involves integrating one ordinary
differential equation, whereas introducing a connection will involve integra-
tion of two ordinary differential equations, one for the horizontal lift and
one for constructing the solution of (6.2.4) from it. However, for the deter-
mination of phases, there are some situations in which the phase can be
computed without actually solving either equation, so one actually solves
no differential equations; a specific case is the rigid body.

Suppose that πµ : J−1(µ) → Pµ is a principal Gµ-bundle with a con-

nection A. This means that A is a gµ-valued one-form on J−1(µ) ⊂ P
satisfying

(i) Ap · ξP (p) = ξ for ξ ∈ gµ,

(ii) L∗
gA = Adg ◦A for g ∈ Gµ.

Let d(t) be the horizontal lift of cµ through z0, that is, d(t) satisfies
A(d(t)) · d′(t) = 0, πµ ◦ d = cµ, and d(0) = z0. We summarize:

6.2.1 Theorem (Reconstruction). Suppose πµ : J−1(µ)→ Pµ is a prin-
cipal Gµ-bundle with a connection A. Let cµ be an integral curve of the
reduced dynamical system on Pµ. Then the corresponding curve c through
a point z0 ∈ π−1

µ (cµ(0)) of the system on P is determined as follows:

(i) Horizontally lift cµ to form the curve d in J−1(µ) through z0.

(ii) Let ξ(t) = A(d(t)) ·XH(d(t)), so that ξ(t) is a curve in gµ.

(iii) Solve the equation ġ(t) = g(t) · ξ(t) with g(0) = e.

Then c(t) = g(t) · d(t) is the integral curve of the system on P with initial
condition z0.
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Suppose cµ is a closed curve with period T ; thus, both c and d reintersect
the same fiber. Write

d(T ) = ĝ · d(0) and c(T ) = h · c(0)

for ĝ, h ∈ Gµ. Note that
h = g(T )ĝ. (6.2.6)

The Lie group element ĝ (or the Lie algebra element log ĝ) is called the
geometric phase . It is the holonomy of the path cµ with respect to the
connection A and has the important property of being parametrization in-
dependent. The Lie group element g(T ) (or log g(T )) is called the dynamic

phase .
For compact or semi-simple G, the group Gµ is generically Abelian. The

computation of g(T ) and ĝ are then relatively easy, as was indicated above.

6.3 Cotangent Bundle Phases—a Special
Case

We now discuss the case in which P = T ∗Q, and G acts on Q and therefore
on P by cotangent lift. In this case the momentum map is given by the
formula

J(αq) · ξ = αq · ξQ(q) = ξT∗Q(αq) y θ(αq),

where ξ ∈ gµ, αq ∈ T ∗
q Q, θ = pidq

i is the canonical one-form and y is the
interior product.

Assume Gµ is the circle group or the line. Pick a generator ζ ∈ gµ, ζ 6= 0.
For instance, one can choose the shortest ζ such that exp(2πζ) = 1. Identify
gµ with the real line via ω 7→ ωζ. Then a connection one-form is a standard
one-form on J−1(µ).

6.3.1 Proposition. Suppose Gµ
∼= S1 or R. Identify gµ with R via a

choice of generator ζ. Let θµ denote the pull-back of the canonical one-
form to J−1(µ). Then

A =
1

〈µ, ζ〉θµ ⊗ ζ

is a connection one-form on J−1(µ)→ Pµ. Its curvature as a two-form on
the base Pµ is

Ω = − 1

〈µ, ζ〉ωµ,

where ωµ is the reduced symplectic form on Pµ.

Proof. Since G acts by cotangent lift, it preserves θ, and so θµ is pre-
served by Gµ and therefore A is Gµ-invariant. Also, A ·ζP = [ζP y θ/〈µ, ζ〉]ζ
= [〈J, ζ〉/〈µ, ζ〉]ζ = ζ. This verifies that A is a connection. The calculation
of its curvature is straightforward. �
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Remarks.

1. The result of Proposition 6.3.1 holds for any exact symplectic mani-
fold. We shall use this for the rigid body.

2. In the next section we shall show how to construct a connection on
J−1(µ) → Pµ in general. For the rigid body it is easy to check that
these two constructions coincide! If G = Q and Gµ = S1, then the
construction in Proposition 6.3.1 agrees with the pullback of the me-
chanical connection for G semisimple and the metric defined by the
Cartan-Killing form.

3. Choose P to be a complex Hilbert space with symplectic form

Ω(ϕ,ψ) = −Im〈ϕ,ψ〉
and S1 action given by eiθψ. The corresponding momentum map is
J(ϕ) = −‖ϕ‖2/2. Write Ω = −dΘ where Θ(ϕ) · ϕ = 1

2 Im〈ϕ,ψ〉. Now
we identify the reduced space at level −1/2 to get projective Hilbert
space. Applying Proposition 6.3.1, we get the basic phase result for
quantum mechanics due to Aharonov and Anandan [1987]:

The holonomy of a loop in projective complex Hilbert space
is the exponential of twice the symplectic area of any two
dimensional submanifold whose boundary is the given loop.

�

6.4 Cotangent Bundles—General Case

If Gµ is not Abelian, the formula for A given above does not satisfy the
second axiom of a connection. However, if the bundle Q → Q/Gµ has a
connection, we will show below how this induces a connection on J−1(µ)→
(T ∗Q)µ. To do this, we can use the cotangent bundle reduction theorem.
Recall that the mechanical connection provides a connection on Q→ Q/G
and also on Q→ Q/Gµ. Denote the latter connection by γ.

Denote by Jµ : T ∗Q→ g∗µ the induced momentum map, that is, Jµ(αq) =
J(αq)|gµ. From the cotangent bundle reduction theorem, it follows that the
diagram in Figure 6.4.1 commutes.

In this figure, tµ(αq) = αq − µ′ · γq(·) is fiber translation by the µ′-
component of the connection form and where [αq − µ′ · γq(·)] means the
element of T ∗(Q/Gµ) determined by αq −µ′ · γq(·) and µ′ = µ|gµ. Call the
composition of the two maps on the bottom of this diagram

σ : [αq] ∈ (T ∗Q)µ 7→ [q] ∈ Q/Gµ.

We induce a connection on J−1(µ)→ (T ∗Q)µ by being consistent with this
diagram.
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J−1(µ) ✲ J−1
µ (µ′) ✲

tµ
J−1

µ (0) ✲
i

T ∗Q ✲
π

Q

(T ∗Q)µ
✲ T ∗(Q/Gµ) ✲ Q/Gµ

❄

πµ /Gµ

❄

ρµ

❄

[αq] ✲ [αq − µ′ · γd(·)] ✲ [q]

Figure 6.4.1. Notation for cotangent bundles.

6.4.1 Proposition. The connection one-form γ induces a connection
one-form γ̃ on J−1(µ) by pull-back: γ̃ = (π ◦ tµ)∗γ, that is,

γ̃(αq) · Uαq
= γ(q) · Tαq

π(Uαq
), for αq ∈ T ∗

q Q, Uαq
∈ Tαq

(T ∗Q).

Similarly curv(γ̃) = (π ◦ tµ)∗curv(γ) and in particular the µ′-component of
the curvature of this connection is the pull-back of µ′ · curv(γ).

The proof is a direct verification.

6.4.2 Proposition. Assume that ρµ : Q → Q/Gµ is a principal Gµ-
bundle with a connection γ. If H is a G-invariant Hamiltonian on T ∗Q
inducing the Hamiltonian Hµ on (T ∗Q)µ and cµ(t) is an integral curve
of XHµ

denote by d(t) a horizontal lift of cµ(t) in J−1(µ) relative to the
natural connection of Proposition 6.4.1 and let q(t) = π(d(t)) be the base
integral curve of c(t). Then ξ(t) of step (ii) in Theorem 6.2.1 is given by

ξ(t) = γ(q(t)) · FH(d(t)),

where FH : T ∗Q→ TQ is the fiber derivative of H, that is, FH(αq) · βq =
d
dtH(αq + tβq)

∣∣
t=0

.

Proof. γ̃ ·XH = γ · Tπ ·XH = γ · FH. �

6.4.3 Proposition. With γ the mechanical connection, step ii in Theo-
rem 6.2.1 is equivalent to

(ii′) ξ(t) ∈ gµ is given by ξ(t) = γ(q(t)) · d(t)♯, where d(t) ∈ T ∗
q(t)Q.

Proof. Apply Proposition 6.4.1 and use the fact that FH(αq) = a♯
q. (In

coordinates, ∂H/∂pµ = gµνpν .) �

To see that the connection of Proposition 6.4.1 coincides with the one
in §6.3 for the rigid body, use the fact that Q = G and αµ must lie in
J−1(µ), so αµ is the right invariant one form equalling µ at g = e and that
Gµ = S1.
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6.5 Rigid Body Phases

We now derive a formula of Goodman and Robinson [1958] and Mont-
gomery [1991] for the rigid body phase (see also Marsden, Montgomery,
and Ratiu [1990]). (See Marsden and Ratiu [1999] for more historical in-
formation.)

As we have seen, the motion of a rigid body is a geodesic with respect
to a left-invariant Riemannian metric (the inertia tensor) on SO(3). The
corresponding phase space is P = T ∗ SO(3) and the momentum map J :
P → R3 for the left SO(3) action is right translation to the identity. We
identify so(3)∗ with so(3) via the Killing form and identify R3 with so(3)
via the map v 7→ v̂ where v̂(w) = v×w, and where × is the standard cross
product. Points in so(3)∗ are regarded as the left reduction of points in
T ∗ SO(3) by SO(3) and are the angular momenta as seen from a body-fixed
frame. The reduced spaces J−1(µ)/Gµ are identified with spheres in R3 of
Euclidean radius ‖µ‖, with their symplectic form ωµ = −dS/‖µ‖ where dS
is the standard area form on a sphere of radius ‖µ‖ and where Gµ consists
of rotations about the µ-axis. The trajectories of the reduced dynamics
are obtained by intersecting a family of homothetic ellipsoids (the energy
ellipsoids) with the angular momentum spheres. In particular, all but four
of the reduced trajectories are periodic. These four exceptional trajectories
are the homoclinic trajectories.

Suppose a reduced trajectory Π(t) is given on Pµ, with period
T . After time T , by how much has the rigid body rotated in
space?

The spatial angular momentum is π = µ = gΠ, which is the conserved
value of J. Here g ∈ SO(3) is the attitude of the rigid body and Π is the
body angular momentum. If Π(0) = Π(T ) then

µ = g(0)Π(0) = g(T )Π(T )

and so
g(T )−1µ = g(0)−1µ

that is, g(T )g(0)−1 is a rotation about the axis µ. We want to compute the
angle of this rotation.

To answer this question, let c(t) be the corresponding trajectory in
J−1(µ) ⊂ P . Identify T ∗ SO(3) with SO(3)×R3 by left trivialization, so c(t)
gets identified with (g(t),Π(t)). Since the reduced trajectory Π(t) closes af-
ter time T , we recover the fact that c(T ) = gc(0) where g = g(T )g(0)−1 ∈
Gµ. Thus, we can write

g = exp[(∆θ)ζ] (6.5.1)

where ζ = µ/‖µ‖ identifies gµ with R by aζ 7→ a, for a ∈ R. Let D be one
of the two spherical caps on S2 enclosed by the reduced trajectory, Λ be
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the corresponding oriented solid angle, with |Λ| = (areaD)/‖µ‖2, and let
Hµ be the energy of the reduced trajectory. All norms are taken relative to
the Euclidean metric of R3. We shall prove below that modulo 2π, we have

∆θ =
1

‖µ‖

{∫

D

ωµ + 2HµT

}
= −Λ +

2HµT

‖µ‖ . (6.5.2)

The special case of this formula for a symmetric free rigid body was given
by Hannay [1985] and Anandan [1988]. Other special cases were given by
Ishlinskii [1952].

To prove (6.5.2), we choose the connection one-form on J−1(µ) to be the
one from Proposition 6.3.1, or equivalently from Proposition 6.4.1:

A =
1

‖µ‖θµ, (6.5.3)

where θµ is the pull back to J−1(µ) of the canonical one-form θ on T ∗ SO(3).
The curvature of A as a two-form on the base Pµ, the sphere of radius ‖µ‖
in R3, is given by

− 1

‖µ‖ωµ =
1

‖µ‖2 dS. (6.5.4)

The first terms in (6.5.2) represent the geometric phase, that is, the holon-
omy of the reduced trajectory with respect to this connection. The loga-
rithm of the holonomy (modulo 2π) is given as minus the integral over D
of the curvature, that is, it equals

1

‖µ‖

∫

D

ωµ = − 1

‖µ‖2 (areaD) = −Λ(mod 2π). (6.5.5)

The second terms in (6.5.2) represent the dynamic phase. By Theorem
6.3.1, it is calculated in the following way. First one horizontally lifts the
reduced closed trajectory Π(t) to J−1(µ) relative to the connection (6.5.3).
This horizontal lift is easily seen to be (identity, Π(t)) in the left trivializa-
tion of T ∗ SO(3) as SO(3)× R3. Second, we need to compute

ξ(t) = (A ·XH)(Π(t)). (6.5.6)

Since in coordinates

θµ = pidq
i and XH = pi ∂

∂qi
+

∂

∂p
terms

for pi =
∑

j g
ijpj , where gij is the inverse of the Riemannian metric gij on

SO(3), we get

(θµ ·XH)(Π(t)) = pip
i = 2H(identity,Π(t)) = 2Hµ, (6.5.7)
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where Hµ is the value of the energy on S2 along the integral curve Π(t).
Consequently,

ξ(t) =
2Hµ

‖µ‖ ζ. (6.5.8)

Third, since ξ(t) is independent of t, the solution of the equation

ġ = gξ =
2Hµ

‖µ‖ gζ is g(t) = exp

(
2Hµt

‖µ‖ ζ
)

so that the dynamic phase equals

∆θd =
2Hµ

‖µ‖ T (mod 2π). (6.5.9)

Formulas (6.5.5) and (6.5.9) prove (6.5.2). Note that (6.5.2) is independent
of which spherical cap one chooses amongst the two bounded by Π(t).
Indeed, the solid angles on the unit sphere defined by the two caps add to
4π, which does not change Formula (6.5.2).

For other examples of the use of (6.5.2) see Chapter 7 and Levi [1993].
We also note that Goodman and Robinson [1958] and Levi [1993] give an
interesting link between this result, the Poinsot description of rigid body
motion and the Gauss–Bonnet theorem.

6.6 Moving Systems

The techniques above can be merged with those for adiabatic systems, with
slowly varying parameters. We illustrate the ideas with the example of the
bead in the hoop discussed in Chapter 1.

Begin with a reference configuration Q and a Riemannian manifold S.
Let M be a space of embeddings of Q into S and let mt be a curve in M .
If a particle in Q is following a curve q(t), and if we let the configuration
space Q have a superimposed motion mt, then the path of the particle in S
is given by mt(q(t)). Thus, its velocity in S is given by the time derivative:

Tq(t)mt · q̇(t) + Zt(mt(q(t))) (6.6.1)

where Zt, defined by Zt(mt(q)) = d
dtmt(q), is the time dependent vector

field (on S with domain mt(Q)) generated by the motion mt and Tq(t)mt ·w
is the derivative (tangent) of the map mt at the point q(t) in the direction
w. To simplify the notation, we write

mt = Tq(t)mt and q(t) = mt(q(t)).

Consider a Lagrangian on TQ of the form kinetic minus potential energy.
Using (6.6.1), we thus choose

Lmt
(q, v) =

1

2
‖mt · v + Zt(q(t))‖2 − V (q)− U(q(t)) (6.6.2)
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where V is a given potential on Q and U is a given potential on S.
Put on Q the (possibly time dependent) metric induced by the mapping

mt. In other words, choose the metric on Q that makes mt into an isometry
for each t. In many examples of mechanical systems, such as the bead
in the hoop given below, mt is already a restriction of an isometry to a
submanifold of S, so the metric onQ in this case is in fact time independent.
Now we take the Legendre transform of (6.6.2), to get a Hamiltonian system
on T ∗Q. Taking the derivative of (6.6.2) with respect to v in the direction
of w gives:

p · w = 〈mt · v + Zt(q(t)),mt · w〉q(t) = 〈mt · v + Zt(q(t))
T ,mt · w〉q(t)

where p · w means the natural pairing between the covector p ∈ T ∗
q(t)Q

and the vector w ∈ Tq(t)Q, 〈 , 〉q(t) denotes the metric inner product on the
space S at the point q(t) and T denotes the tangential projection to the
space mt(Q) at the point q(t). Recalling that the metric on Q, denoted
〈 , 〉q(t) is obtained by declaring mt to be an isometry, the above gives

p · w = 〈v + m−1
t Zt(q(t))

T , w〉q(t); that is, p = (v + m−1
t Zt(q(t))

T )b

(6.6.3)
where b denotes the index lowering operation at q(t) using the metric on Q.
The (in general time dependent) Hamiltonian is given by the prescription
H = p · v − L, which in this case becomes

Hmt
(q, p) =

1

2
‖p‖2 − P(Zt)−

1

2
Z⊥

t ‖2 + V (q) + U(q(t))

= H0(q, p)− P(Zt)−
1

2
‖Z⊥

t ‖2 + U(q(t)), (6.6.4)

where H0(q, p) = 1
2‖p‖2 +V (q), the time dependent vector field Zt ∈ X(Q)

is defined by Zt(q) = m−1
t [Zt(mt(q))]

T , the momentum function P(Y ) is
defined by P(Y )(q, p) = p · Y (q) for Y ∈ X(Q), and where Z⊥

t denotes the
orthogonal projection of Zt to mt(Q). Even though the Lagrangian and
Hamiltonian are time dependent, we recall that the Euler–Lagrange equa-
tions for Lmt

are still equivalent to Hamilton’s equations for Hmt
. These

give the correct equations of motion for this moving system. (An interesting
example of this is fluid flow on the rotating earth, where it is important to
consider the fluid with the motion of the earth superposed, rather than the
motion relative to an observer. This point of view is developed in Chern
[1991].)

Let G be a Lie group that acts on Q. (For the bead in the hoop, this will
be the dynamics of H0 itself.) We assume for the general theory that H0

is G-invariant. Assuming the “averaging principle” (cf. Arnold [1978], for
example) we replace Hmt

by its G-average,

〈Hmt
〉(q, p) =

1

2
‖p‖2 − 〈P(Zt)〉 −

1

2
〈‖Z⊥

t ‖2〉+ V (q) + 〈U(q(t))〉 (6.6.5)
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where 〈 · 〉 denotes the G-average. This principle can be hard to rigorously
justify in general. We will use it in a particularly simple example where we
will see how to check it directly. Furthermore, we shall discard the term
1
2 〈‖Z⊥

t ‖2〉; we assume it is small compared to the rest of the terms. Thus,
define

H(q, p, t) =
1

2
‖p‖2 − 〈P(Zt)〉+ V (q) + 〈U(q(t))〉

= H0(q, p)− 〈P(Zt)〉+ 〈U(q(t))〉. (6.6.6)

The dynamics of H on the extended space T ∗Q×M is given by the vector
field

(XH, Zt) =
(
XH0

−X〈P(Zt)〉 +X〈U◦mt〉, Zt

)
. (6.6.7)

The vector field
hor(Zt) =

(
−X〈P(Zt)〉, Zt

)
(6.6.8)

has a natural interpretation as the horizontal lift of Zt relative to a con-
nection, which we shall call the Hannay–Berry connection induced by

the Cartan connection . The holonomy of this connection is interpreted
as the Hannay–Berry phase of a slowly moving constrained system.

6.7 The Bead on the Rotating Hoop

Consider Figures 1.5.2 and 1.5.3 which show a hoop (not necessarily circu-
lar) on which a bead slides without friction. As the bead is sliding, the hoop
is slowly rotated in its plane through an angle θ(t) and angular velocity
ω(t) = θ̇(t)k. Let s denote the arc length along the hoop, measured from a
reference point on the hoop and let q(s) be the vector from the origin to the
corresponding point on the hoop; thus the shape of the hoop is determined
by this function q(s). Let L be the length of the hoop. The unit tangent
vector is q′(s) and the position of the reference point q(s(t)) relative to an
inertial frame in space is Rθ(t)q(s(t)), where Rθ is the rotation in the plane
of the hoop through an angle θ.

The configuration space is diffeomorphic to the circle Q = S1. The La-
grangian L(s, ṡ, t) is the kinetic energy of the particle; that is, since

d

dt
Rθ(t)q(s(t)) = Rθ(t)q

′(s(t))ṡ(t) +Rθ(t)[ω(t)× q(s(t))],

we set

L(s, ṡ, t) =
1

2
m‖q′(s)ṡ+ ω × q(s)‖2. (6.7.1)

The Euler–Lagrange equations

d

dt

∂L

∂ṡ
=
∂L

∂s
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become

d

dt
m[ṡ+ q′ · (ω× q)] = m[ṡq′′ · (ω× q) + ṡq′ · (ω× q′) + (ω× q) · (ω× q′)]

since ‖q′‖2 = 1. Therefore

s̈+ q′′ · (ω × q)ṡ+ q′ · (ω̇ × q) = ṡq′′ · (ω × q) + (ω × q) · (ω × q′);

that is,
s̈− (ω × q) · (ω × q′) + q′ · (ω̇ × q) = 0. (6.7.2)

The second and third terms in (6.7.2) are the centrifugal and Euler forces
respectively. We rewrite (6.7.2) as

s̈ = ω2q · q′ − ω̇q sinα (6.7.3)

where α is as in Figure 1.5.2 and q = ‖q‖. From (6.7.3), Taylor’s formula
with remainder gives

s(t) = s0 + ṡ0t (6.7.4)

+

∫ t

0

(t− t′)
{
ω(t′)2q · q′(s(t′))− ω̇(t′)q(s(t′)) sinα(s(t′))

}
dt′.

Now ω and ω̇ are assumed small with respect to the particle’s velocity, so by
the averaging theorem (see, e.g., Hale [1969]), the s-dependent quantities
in (6.7.4) can be replaced by their averages around the hoop:

s(T ) ≈ s0 + ṡ0T (6.7.5)

+

∫ T

0

(T − t′)
{
ω(t′)2

1

L

∫ L

0

q · q′ds− ω̇(t′)
1

L

∫ L

0

q(s) sinαds

}
dt′.

Aside The essence of the averaging can be seen as follows. Suppose g(t)
is a rapidly varying function and f(t) is slowly varying on an interval [a, b].
Over one period of g, say [α, β], we have

∫ β

α

f(t)g(t)dt ≈
∫ β

α

f(t)ḡdt (6.7.6)

where

ḡ =
1

β − α

∫ β

α

g(t)dt

is the average of g. The error in (6.7.6) is

∫ β

α

f(t)(g(t)− ḡ)dt
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which is less than

(β − α)× (variation of f)× constant ≤ constant ‖f ′‖(β − α)2.

If this is added up over [a, b] one still gets something small as the period
of g tends to zero. �

The first integral in (6.7.5) over s vanishes and the second is 2A where
A is the area enclosed by the hoop. Now integrate by parts:

∫ T

0

(T − t′)ω̇(t′)dt′ = −Tω(0) +

∫ T

0

ω(t′)dt′ = −Tω(0) + 2π, (6.7.7)

assuming the hoop makes one complete revolution in time T . Substitut-
ing (6.7.7) in (6.7.5) gives

s(T ) ≈ s0 + ṡ0T +
2A

L
ω0T −

4πA

L
. (6.7.8)

The initial velocity of the bead relative to the hoop is ṡ0, while that relative
to the inertial frame is (see (6.7.1)),

v0 = q′(0) · [q′(0)ṡ0 + ω0 × q(0)] = ṡ0 + ω0q(s0) sinα(s0). (6.7.9)

Now average (6.7.8) and (6.7.9) over the initial conditions to get

〈s(T )− s0 − v0T 〉 ≈ −
4πA

L
(6.7.10)

which means that on average, the shift in position is by 4πA/L between
the rotated and nonrotated hoop. This extra length 4πA/L, (or in angular
measure, 8π2A/L2) is the Hannay–Berry phase. Note that if ω0 = 0 (the
situation assumed by Berry [1985]) then averaging over initial conditions is
not necessary. This process of averaging over the initial conditions used in
this example is related to work of Golin and Marmi [1990] on procedures
to measure the phase shift.
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7
Stabilization and Control

In this chapter we present a result of Bloch, Krishnaprasad, Marsden, and
Sanchez de Alvarez [1992] on the stabilization of rigid body motion using
internal rotors followed by a description of some of Montgomery [1990]
work on optimal control. Some other related results will be presented as
well.

7.1 The Rigid Body with Internal Rotors

Consider a rigid body (to be called the carrier body) carrying one, two or
three symmetric rotors. Denote the system center of mass by 0 in the body
frame and at 0 place a set of (orthonormal) body axes. Assume that the
rotor and the body coordinate axes are aligned with principal axes of the
carrier body. The configuration space of the system is SO(3)×S1×S1×S1.

Let Ibody be the inertia tensor of the carrier, body, Irotor the diagonal
matrix of rotor inertias about the principal axes and I′rotor the remaining
rotor inertias about the other axes. Let Ilock = Ibody + Irotor + I′rotor be the
(body) locked inertia tensor (i.e., with rotors locked) of the full system; this
definition coincides with the usage in Chapter 3, except that here the locked
inertia tensor is with respect to body coordinates of the carrier body (note
that in Chapter 3, the locked inertia tensor is with respect to the spatial
frame).
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The Lagrangian of the free system is the total kinetic energy of the body
plus the total kinetic energy of the rotor; that is,

L =
1

2
(Ω · IbodyΩ) +

1

2
Ω · I′rotorΩ +

1

2
(Ω + Ωr) · Irotor(Ω + Ωr)

=
1

2
(Ω · (Ilock − Irotor)Ω) +

1

2
(Ω + Ωr) · Irotor(Ω + Ωr) (7.1.1)

where Ω is the vector of body angular velocities and Ωr is the vector of
rotor angular velocities about the principal axes with respect to a (carrier)
body fixed frame. Using the Legendre transform, we find the conjugate
momenta to be:

m =
∂L

∂Ω
= (Ilock − Irotor)Ω + Irotor(Ω + Ωr) = IlockΩ + IrotorΩr (7.1.2)

and

l =
∂L

∂Ωr
= Irotor(Ω + Ωr) (7.1.3)

and the equations of motion including internal torques (controls) u in the
rotors are

ṁ = m× Ω = m× (Ilock − Irotor)
−1(m− l)

l̇ = u.
(7.1.4)

7.2 The Hamiltonian Structure with
Feedback Controls

The first result shows that for torques obeying a certain feedback law (i.e.,
the torques are given functions of the other variables), the preceding set of
equations including the internal torques u can still be Hamiltonian! As we
shall see, the Hamiltonian structure is of gyroscopic form.

7.2.1 Theorem. For the feedback

u = k(m× (Ilock − Irotor)
−1(m− l)), (7.2.1)

where k is a constant real matrix such that k does not have 1 as an eigen-
value and such that the matrix J = (1 − k)−1(Ilock − Irotor) is symmetric,
the system (7.1.4) reduces to a Hamiltonian system on so(3)∗ with respect
to the rigid body bracket {F,G}(m) = −m · (∇F ×∇G).

Proof. We have

l̇ = u = kṁ = k((IlockΩ + IrotorΩr)× Ω). (7.2.2)

Therefore, the vector
km− l = p, (7.2.3)
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is a constant of motion. Hence our feedback control system becomes

ṁ = m× (Ilock − Irotor)
−1(m− l)

= m× (Ilock − Irotor)
−1(m− km+ p)

= m× (Ilock − Irotor)
−1(1− k)(m− ξ) (7.2.4)

where ξ = −(1 − k)−1p and 1 is the identity. Define the k-dependent
“inertia tensor”

J = (1− k)−1(Ilock − Irotor). (7.2.5)

Then the equations become

ṁ = ∇C ×∇H (7.2.6)

where

C =
1

2
‖m‖2 (7.2.7)

and

H =
1

2
(m− ξ) · J−1(m− ξ). (7.2.8)

Clearly (7.2.6) are Hamiltonian on so(3)∗ with respect to the standard
Lie–Poisson structure (see §2.6). �

The conservation law (7.2.3), which is key to our methods, may be re-
garded as a way to choose the control (7.2.1). This conservation law is
equivalent to

k(IlockΩ + IrotorΩr)− Irotor(Ω + Ωr) = p;

that is,
(Irotor − kIrotor)Ωr = (kIlock − Irotor)Ω− p.

Therefore, if
kIlock = Irotor (7.2.9)

then one obtains as a special case, the dual spin case in which the acceler-
ation feedback is such that each rotor rotates at constant angular velocity
relative to the carrier (see Krishnaprasad [1985] and Sánchez de Alvarez
[1989]). Also note that the Hamiltonian in (7.2.8) can be indefinite.

If we set mb = m− ξ, (7.2.4) become

ṁb = (mb + ξ)× J
−1mb. (7.2.10)

It is instructive to consider the case where k = diag(k1, k2, k3). Let I =
(Ilock − Irotor) = diag(Ĩ1, Ĩ2, Ĩ3) and the matrix J satisfies the symmetry
hypothesis of Theorem 7.2.1. Then li = pi + kimi, i = 1, 2, 3, and the
equations become ṁ = m×∇H where

H =
1

2

[
((1− k1)m1 + p1)

2

(1− k1)Ĩ1
+

((1− k2)m2 + p2)
2

(1− k2)Ĩ2
+

((1− k3)m3 + p3)
2

(1− k3)Ĩ3

]
.

(7.2.11)
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It is possible to have more complex feedback mechanisms where the system
still reduces to a Hamiltonian system on so(3)∗. We refer to Bloch, Krish-
naprasad, Marsden, and Sanchez de Alvarez [1992] for a discussion of this
point.

7.3 Feedback Stabilization of a Rigid Body
with a Single Rotor

We now consider the equations for a rigid body with a single rotor. We
will demonstrate that with a single rotor about the third principal axis,
a suitable quadratic feedback stabilizes the system about its intermediate
axis.

Let the rigid body have moments of inertia I1 > I2 > I3 and suppose the
symmetric rotor is aligned with the third principal axis and has moments of
inertia J1 = J2 and J3. Let Ωi, i = 1, 2, 3, denote the carrier body angular
velocities and let α̇ denote that of the rotor (relative to a frame fixed on
the carrier body). Let

diag(λ1, λ2, λ3) = diag(J1 + I1, J2 + I2, J3 + I3) (7.3.1)

be the (body) locked inertia tensor. Then from (7.1.2) and (7.1.3), the
natural momenta are

mi = (Ji + Ii)Ωi = λiΩi, i = 1, 2,

m3 = λ3Ω3 + J3α̇, (7.3.2)

l3 = J3(Ω3 + α̇).

Note that m3 = I3Ω3 + l3. The equations of motion (7.1.4) are:

ṁ1 = m2m3

(
1

I3
− 1

λ2

)
− l3m2

I3
,

ṁ2 = m1m3

(
1

λ1
− 1

I3

)
+
l3m1

I3
,

ṁ3 = m1m2

(
1

λ2
− 1

λ1

)
,

l̇3 = u.

(7.3.3)

Choosing

u = ka3m1m2 where a3 =

(
1

λ2
− 1

λ1

)
,

and noting that l3 − km3 = p is a constant, we get:
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7.3.1 Theorem. With this choice of u and p, the equations (7.3.3) reduce
to

ṁ1 = m2

(
(1− k)m3 − p

I3

)
− m3m2

λ2
,

ṁ2 = −m1

(
(1− k)m3 − p

I3

)
+
m3m1

λ1
,

ṁ3 = a3m1m2

(7.3.4)

which are Hamiltonian on so(3)∗ with respect to the standard rigid body
Lie–Poisson bracket, with Hamiltonian

H =
1

2

(
m2

1

λ1
+
m2

2

λ2
+

((1− k)m3 − p)2
(1− k)I3

)
+

1

2

p2

J3(1− k)
(7.3.5)

where p is a constant.

When k = 0, we get the equations for the rigid body carrying a free
spinning rotor—note that this case is not trivial! The rotor interacts in a
nontrivial way with the dynamics of the carrier body. We get the dual spin
case for which J3α̈ = 0, when kIlock = Irotor from (7.2.9), or, in this case,
when k = J3/λ3. Notice that for this k, p = (1− k)α̇, a multiple of α̇.

We can now use the energy–Casimir method to prove

7.3.2 Theorem. For p = 0 and k > 1 − (J3/λ2), the system (7.3.4)
is stabilized about the middle axis, that is, about the relative equilibrium
(0,M, 0).

Proof. Consider the energy–Casimir functionH+C where C = ϕ(‖m‖2),
and m2 = m2

1 +m2
2 +m2

3. The first variation is

δ(H + C) =
m1δm1

λ1
+
m2δm2

λ2
+

(1− k)m3 − p
I3

δm3

+ ϕ′(m2)(m1δm1 +m2δm2 +m3δm3). (7.3.6)

This is zero if we choose ϕ so that

m1

λ1
+ ϕ′m1 = 0,

m2

λ2
+ ϕ′m2 = 0, (7.3.7)

(1− k)m3 − p
I3

+ ϕ′m3 = 0.

Then we compute

δ2(H + C) =
(δm1)

2

λ1
+

(δm2)
2

λ2
+

(1− k)(δm3)
2

I3

+ ϕ′(m2)((δm1)
2 + (δm2)

2 + (δm3)
2)

+ ϕ′′(m2)(m1δm1 +m2δm2 +m3δm3)
2. (7.3.8)
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For p = 0, that is, l3 = km3, (0,M, 0) is a relative equilibrium and (7.3.7)
are satisfied if ϕ′ = −1/λ2 at equilibrium. In that case,

δ2(H + C) = (δm1)
2

(
1

λ1
− 1

λ2

)
+ (δm3)

2

(
1− k
I3
− 1

λ2

)
+ ϕ′′(δm2)

2.

Now
1

λ1
− 1

λ2
=
I2 − I1
λ1λ2

< 0 for I1 > I2 > I3.

For k satisfying the condition in the theorem,

1− k
I3
− 1

λ2
< 0,

so if one chooses ϕ such that ϕ′′ < 0 at equilibrium, then the second
variation is negative definite and hence stability holds. �

For a geometric interpretation of the stabilization found here, see Holm
and Marsden [1991], along with other interesting facts about rigid rotors
and pendula, for example, a proof that the rigid body phase space is a union
of simple pendulum phase spaces.

Corresponding to the Hamiltonian (7.3.5) there is a Lagrangian found
using the inverse Legendre transformation

Ω̃1 =
m1

λ1
,

Ω̃2 =
m2

λ2
,

Ω̃3 =
(1− k)m3 − p

I3
,

˙̃α = − (1− k)m3 − p
(1− k)I3

+
p

(1− k)I3
.

(7.3.9)

Note that Ω̃1, Ω̃2 and Ω̃3 equal the angular velocities Ω1,Ω2, and Ω3 for the
free system, but that ˙̃α is not equal to α̇. In fact, we have the interesting
velocity shift

˙̃α =
α̇

(1− k) −
km3

(1− k)J3
. (7.3.10)

Thus the equations on T SO(3) determined by (7.3.9) are the Euler–
Lagrange equations for a Lagrangian quadratic in the velocities, so the
equations can be regarded as geodesic equations. The torques can be thought
of as residing in the velocity shift (7.3.10). Using the free Lagrangian, the
torques appear as generalized forces on the right hand side of the Euler–
Lagrange equations. Thus, the d’Alembert principle can be used to describe
the Euler–Lagrange equations with the generalized forces. This approach
arranges in a different way, the useful fact that the equations are derivable



7.4 Phase Shifts 141

from a Lagrangian (and hence a Hamiltonian) in velocity shifted variables.
In fact, it seems that the right context for this is the Routhian and the
theory of gyroscopic Lagrangians, as in §3.6, but we will not pursue this
further here.

For problems like the driven rotor and specifically the dual spin case
where the rotors are driven with constant angular velocity, one might think
that this is a velocity constraint and should be treated by using constraint
theory. For the particular problem at hand, this can be circumvented and in
fact, standard methods are applicable and constraint theory is not needed,
as we have shown.

Finally, we point out that a far reaching generalization of the ideas in the
preceding sections for stabilization of mechanical systems has been carried
out in the series of papers of Bloch, Leonard and Marsden cited in the
references. They use the technique of controlled Lagrangians whereby the
system with controls is identified with the Euler-Lagrange equations for a
different Lagrangian, namely the controlled Lagrangian.

7.4 Phase Shifts

Next, we discuss an attitude drift that occurs in the system and suggest a
method for correcting it. If the system (7.2.10) is perturbed from a stable
equilibrium, and the perturbation is not too large, the closed loop system
executes a periodic motion on a level surface (momentum sphere) of the
Casimir function ‖mb+ξ‖2 in the body-rotor feedback system. This leads to
an attitude drift which can be thought of as rotation about the (constant)
spatial angular momentum vector. We calculate the amount of this rotation
following the method of Montgomery we used in Chapter 6 to calculate the
phase shift for the single rigid body.

As we have seen, the equations of motion for the rigid body-rotor system
with feedback law (7.2.1) are

ṁb = (mb + ξ)× J
−1mb = ∇C ×∇H (7.4.1)

where mb = m+ (1− k)−1(km− l), ξ = −(1− k)−1(km− l), and

C =
1

2
‖mb + ξ‖2, (7.4.2)

H =
1

2
mb · J−1mb. (7.4.3)

As with the rigid body, this system is completely integrable with trajecto-
ries given by intersecting the level sets of C and H. Note that (7.4.2) just
defines a sphere shifted by the amount ξ.

The attitude equation for the rigid-body rotor system is

Ȧ = AΩ̂,
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where ˆ denotes the isomorphism between R3 and so(3) (see §4.4) and in
the presence of the feedback law (7.2.1),

Ω = (Ilock − Irotor)
−1(m− l)

= (Ilock − Irotor)
−1(m− km+ p)

= J
−1(m− ξ) = J

−1mb.

Therefore the attitude equation may be written

Ȧ = A(J−1mb)
ˆ. (7.4.4)

The net spatial (constant) angular momentum vector is

µ = A(mb + ξ). (7.4.5)

Then we have the following:

7.4.1 Theorem. Suppose the solution of

ṁb = (mb + ξ)× J
−1mb (7.4.6)

is a periodic orbit of period T on the momentum sphere, ‖mb + ξ‖2 =
‖µ‖2, enclosing a solid angle Φsolid. Let Ωav denote the average value of
the body angular velocity over this period, E denote the constant value of
the Hamiltonian, and ‖µ‖ denote the magnitude of the angular momentum
vector. Then the body undergoes a net rotation ∆θ about the spatial angular
momentum vector µ given by

∆θ =
2ET

‖µ‖ +
T

‖µ‖ (ξ · Ωav)− Φsolid. (7.4.7)

Proof. Consider the reduced phase space (the momentum sphere)

Pµ = {mb | ‖mb + ξ‖2 = ‖µ‖2 }, (7.4.8)

for µ fixed, so that in this space,

mb(t0 + T ) = mb(t0), (7.4.9)

and from momentum conservation

µ = A(T + t0)(mb(T + t0) + ξ) = A(t0)(mb(t0) + ξ). (7.4.10)

Hence
A(T + t0)A(t0)

−1µ = µ.

Thus A(T + t0)A(t0)
−1 ∈ Gµ, so

A(T + t0)A(t0)
−1 = exp

(
∆θ

µ

‖µ‖

)
(7.4.11)
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for some ∆θ, which we wish to determine.
We can assume that A(t0) is the identity, so the body is in the reference

configuration at t0 = 0 and thus that mb(t0) = µ − ξ. Consider the phase
space trajectory of our system

z(t) = (A(t),mb(t)), z(t0) = z0. (7.4.12)

The two curves in phase space

C1 = { z(t) | t0 ≤ t ≤ t0 + T }

(the dynamical evolution from z0), and

C2 =

{
exp

(
θ
µ

‖µ‖

)
z0

∣∣∣∣ 0 ≤ θ ≤ ∆θ

}

intersect at t = T . Thus C = C1 −C2 is a closed curve in phase space and
so by Stokes’ theorem,

∫

C1

pdq −
∫

C2

pdq =

∫∫

Σ

d(pdq) (7.4.13)

where pdq =
∑3

i=1 pidqi and where qi and pi are configuration space vari-
ables and conjugate momenta in the phase space and Σ is a surface enclosed
by the curve C.1 Evaluating each of these integrals will give the formula
for ∆θ. Letting ω be the spatial angular velocity, we get

p
dq

dt
= µ · ω = A(JΩ + ξ) ·AΩ = JΩ · Ω + ξ · Ω. (7.4.14)

Hence
∫

C1

pdq =

∫

C1

p · dq
dt
dt =

∫ T

0

JΩ · Ωdt+

∫ T

0

ξ · Ωdt = 2ET + (ξ · Ωav)T

(7.4.15)
since the Hamiltonian is conserved along orbits. Along C2,
∫

C2

p · dq
dt
dt =

∫

C2

µ · ωdt =

∫

C2

µ ·
{
dθ

dt

µ

‖µ‖

}
dt = ‖µ‖

∫

C2

dθ = ‖µ‖∆θ.
(7.4.16)

Finally we note that the map πµ from the set of points in phase space with
angular momentum µ to Pµ satisfies

∫∫

Σ

d(pdq) =

∫∫

πµ(Σ)

dA = ‖µ‖Φsolid (7.4.17)

1Either one has to show such a surface exists (as Montgomery has done) or, alter-
natively, one can use general facts about holonomy (as in Marsden, Montgomery, and

Ratiu [1990]) that require only a bounding surface in the base space, which is obvious
in this case.
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where dA is the area form on the two-sphere and πµ(Σ) is the spherical cap
bounded by the periodic orbit {mb(t) | t0 ≤ t ≤ t0 + T } ⊂ Pµ. Combining
(7.4.15)–(7.4.17) we get the result. �

Remarks.

1. When ξ = 0, (7.4.7) reduces to the Goodman–Robinson–Montgomery
formula in Chapter 6.

2. This theorem may be viewed as a special case of a scenario that is use-
ful for other systems, such as rigid bodies with flexible appendages.
As we saw in Chapter 6, phases may be viewed as occurring in the
reconstruction process, which lifts the dynamics from Pµ to J−1(µ).
By the cotangent bundle reduction theorem, Pµ is a bundle over T ∗S,
where S = Q/G is shape space. The fiber of this bundle is Oµ, the
coadjoint orbit through µ. For a rigid body with three internal rotors,
S is the three torus T3 parametrized by the rotor angles. Controlling
them by a feedback or other control and using other conserved quan-
tities associated with the rotors as we have done, leaves one with
dynamics on the “rigid variables” Oµ, the momentum sphere in our
case. Then the problem reduces to that of lifting the dynamics on
Oµ to J−1(µ) with the T ∗S dynamics given. For G = SO(3) this “re-
duces” the problem to that for geometric phases for the rigid body.

3. Some interesting control maneuvers for “satellite parking” using these
ideas may be found in Walsh and Sastry [1993].

4. See Montgomery [1990, p. 569] for comments on the Chow–Ambrose–
Singer theorem in this context. �

Finally, following a suggestion of Krishnaprasad, we show that in the
zero total angular momentum case one can compensate for this drift using
two rotors. The total spatial angular momentum if one has only two rotors
is of the form

µ = A(IlockΩ + b1α̇1 + b2α̇2) (7.4.18)

where the scalars α̇1 and α̇2 represent the rotor velocities relative to the
body frame. The attitude matrix A satisfies

Ȧ = AΩ̂, (7.4.19)

as above. If µ = 0, then from (7.4.18) and (7.4.19) we get,

Ȧ = −A((I−1
lockb1)̂ α̇1 + (I−1

lockb2)̂ α̇2). (7.4.20)



7.5 The Kaluza–Klein Description of Charged Particles 145

It is well known (see for instance Brockett [1973] or Crouch [1986]) that if
we treat the α̇i, i = 1, 2 as controls, then attitude controllability holds iff

(I−1
lockb1)̂ and (I−1

lockb2)̂ generate so(3),

or equivalently, iff the vectors

I
−1
lockb1 and I

−1
lockb2 are linearly independent. (7.4.21)

Moreover, one can write the attitude matrix as a reverse path-ordered
exponential

A(t) = A(0)·P̄ exp

[
−
∫ t

0

{
(I−1

lockb1)̂ α̇1(σ) + (I−1
lockb2)̂ α̇2(σ)

}
dσ

]
. (7.4.22)

The right hand side of (7.4.22) depends only on the path traversed in the
space T2 of rotor angles (α1, α2) and not on the history of velocities α̇i.
Hence the Formula (7.4.22) should be interpreted as a “geometric phase”.
Furthermore, the controllability condition can be interpreted as a curvature
condition on the principal connection on the bundle T2 × SO(3) → T2

defined by the so(3)-valued differential 1-form,

θ(α1, α2) = −((I−1
lockb1)̂dα1 + (I−1

lockb2)̂dα2). (7.4.23)

For further details on this geometric picture of multibody interaction see
Krishnaprasad [1989] and Wang and Krishnaprasad [1992]. In fact, our
discussion of the two coupled bodies in §6.1 can be viewed as an especially
simple planar version of what is required.

7.5 The Kaluza–Klein Description of
Charged Particles

In preparation for the next section we describe the equations of a charged
particle in a magnetic field in terms of geodesics. The description we saw
in §2.10 can be obtained from the Kaluza–Klein description using an S1-
reduction. The process described here generalizes to the case of a particle in
a Yang–Mills field by replacing the magnetic potential A by the Yang–Mills
connection.

We are motivated as follows: since charge is a conserved quantity, we
introduce a new cyclic variable whose conjugate momentum is the charge.
This process is applicable to other situations as well; for example, in fluid
dynamics one can profitably introduce a variable conjugate to the conserved
mass density or entropy; cf. Marsden, Ratiu, and Weinstein [1984a, 1984b].
For a charged particle, the resultant system is in fact geodesic motion!
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Recall from §2.10 that if B = ∇ × A is a given magnetic field on R3,
then with respect to canonical variables (q,p), the Hamiltonian is

H(q,p) =
1

2m
‖p− e

c
A‖2. (7.5.1)

We can obtain (7.5.1) via the Legendre transform if we choose

L(q, q̇) =
1

2
m‖q̇‖2 +

e

c
A · q̇ (7.5.2)

for then

p =
∂L

∂q̇
= mq̇ +

e

c
A (7.5.3)

and

p · q̇− L(q, q̇) =
(
mq̇ +

e

c
A
)
· q̇− 1

2
m‖q̇‖2 − e

c
A · q̇

=
1

2
m‖q̇‖2

=
1

2m
‖p− e

c
A‖2 = H(q,p). (7.5.4)

Thus, the Euler–Lagrange equations for (7.5.2) reproduce the equations for
a particle in a magnetic field. (If an electric field E = −∇ϕ is present as
well, subtract eϕ from L, treating eϕ as a potential energy.)

Let the Kaluza–Klein configuration space be

QK = R
3 × S1 (7.5.5)

with variables (q, θ) and consider the one-form

ω = A+ dθ (7.5.6)

on QK regarded as a connection one-form. Define the Kaluza–Klein La-

grangian by

LK(q, q̇, θ, θ̇) =
1

2
m‖q̇‖2 +

1

2
‖〈ω, (q, q̇, θ, θ̇)〉‖2

=
1

2
m‖q̇‖2 +

1

2
(A · q̇ + θ̇)2. (7.5.7)

The corresponding momenta are

p = mq̇ + (A · q̇ + θ̇)A and pθ = A · q̇ + θ̇. (7.5.8)

Since (7.5.7) is quadratic and positive definite in q̇ and θ̇, the Euler–
Lagrange equations are the geodesic equations on R3×S1 for the metric for
which LK is the kinetic energy . Since pθ is constant in time as can be seen
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from the Euler–Lagrange equation for (θ, θ̇), we can define the charge e
by setting

pθ = e/c; (7.5.9)

then (7.5.8) coincides with (7.5.3). The corresponding Hamiltonian on T ∗QK

endowed with the canonical symplectic form is

HK(q, p, θ, pθ) =
1

2
m‖p− pθA‖2 +

1

2
p2

θ. (7.5.10)

Since pθ is constant, HK differs from H only by the constant p2
θ/2.

Notice that the reduction of the Kaluza–Klein system by S1 reproduces
the description in terms of (7.5.1) or (7.5.2). The magnetic terms in the
sense of reduction become the magnetic terms we started with. Note that
the description in terms of the Routhian from §3.6 can also be used here,
reproducing the same results. Also notice the similar way that the gyro-
scopic terms enter into the rigid body system with rotors—they too can be
viewed as magnetic terms obtained through reduction.

A Particle in a Yang–Mills Field. These Kaluza-Klein constructions
generalize to the case of a particle in a Yang–Mills field where ω becomes
the connection of a Yang–Mills field and its curvature measures the field
strength which, for an electromagnetic field, reproduces the relation B =
∇×A.

Some of the key literature on this topic is Kerner [1968], Wong [1970],
Sternberg [1977], Weinstein [1978a] and the beautiful work of Montgomery
[1984, 1986].

The equations for a particle in a Yang-Mills field, often called Wong’s

equations, involve a given principal connection A (a Yang-Mills field) on
a principal bundle π : Q → S = Q/G. As is well known, one can write a
principal connection in a local trivialization Q = S × G, with coordinates
(xα, ga) as

A(x, g)(ẋ, ġ) = Adg(g
−1ġ +Aloc(x)ẋ).

and the components of the connection are defined by

Aloc(x) · v = Aa
αv

αea

where ea is a basis of g, and the curvature is the g-valued two-form given
by the standard formula

Bb
αβ =

∂Ab
α

∂rβ
−
∂Ab

β

∂rα
− Cb

acAa
βAc

α.

Wong’s equations in coordinates are as follows:

ṗα = −λaBa
αβẋ

β − 1

2

∂gβγ

∂xα
pβpγ (7.5.11)

λ̇b = −λaC
a
dbAd

αẋ
α (7.5.12)
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where gαβ is the local representation of the metric on the base space S, gβγ

is the inverse of the matrix gαβ , and pα is defined by

pα = gαβẋ
β .

These equations have an intrinsic description as Lagrange–Poincaré equa-
tions on the reduced tangent bundle given by (TQ)/G ∼= T (Q/G) × g̃ or
its Hamiltonian counterpart, (T ∗Q)/G ∼= T ∗(Q/G)× g̃∗. We leave it to the
reader to consult these references, especially those of Montgomery as well
as Cendra, Marsden, and Ratiu [2001], Chapter 4, for an intrinsic account
of these equations and their relation to reduction.

Finally, we remark that the relativistic context is the most natural in
which to introduce the full electromagnetic field. In that setting the con-
struction we have given for the magnetic field will include both electric and
magnetic effects. Consult Misner, Thorne, and Wheeler [1973], Gotay and
Marsden [1992] and Marsden and Shkoller [1998] for additional information.

7.6 Optimal Control and Yang–Mills
Particles

This section discusses an elegant link between optimal control and the
dynamics of a particle in a Yang–Mills field that was discovered by Mont-
gomery, who was building on work of Shapere and Wilczeck [1989]. We
refer to Montgomery [1990] for further details and references. This topic,
together with the use of connections described in previous chapters has lead
one to speak about the “gauge theory of deformable bodies”. The example
of a falling cat as a control system is good to keep in mind while reading
this section.

We start with a configuration space Q and assume we have a symmetry
group G acting freely by isometries, as before. Put on the bundle Q→ S =
Q/G the mechanical connection, as described in §3.3. Fix a point q0 ∈ Q
and a group element g ∈ G. Let

hor(q0, gq0) = all horizontal paths joining q0 to gq0. (7.6.1)

This space of (suitably differentiable) paths may be regarded as the space of
horizontal paths with a given holonomy g. Recall from §3.3 that horizontal
means that this path is one along which the total angular momentum (i.e.,
the momentum map of the curve in T ∗Q corresponding to q̇) is zero.

The projection of the curves in hor (q0, gq0) to shape space S = Q/G are
closed, as in Figure 7.6.

The optimal control problem we wish to discuss is: Find a path c in
hor(q0, gq0) whose base curve x has minimal (or extremal) kinetic energy .
The minimum (or critical point) is taken over all paths s obtained from
projections of paths in hor(q0, gq0).
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Q

S

G-orbit

Figure 7.6.1. Loops in S with a fixed holonomy g and base point q0.

One may wish to use functions other than the kinetic energy of the shape
space path s to extremize. For example, the cat may wish to turn itself over
by minimizing some combination of the time taken and the amount of work
it actually does.

7.6.1 Theorem. Consider a path c ∈ hor(q0, gq0) with given holonomy
g and (with shape space curve denoted by x ∈ S). If c is extremal, then
there is a curve λ in g∗ such that the pair (x, λ) satisfies Wong’s equations,
7.5.11 and 7.5.12.

This result is closely related to, and may be deduced from, our work
on Lagrangian reduction in §3.6. The point is that c ∈ hor(q0, gq0) means
ċ ∈ J−1(0), and what we want to do is relate a variational problem on Q
but with the constraint J−1(0) imposed and with Hamiltonian the Kaluza–
Klein kinetic energy on TQ with a reduced variational principle on S. This
is exactly the set up to which the discussion in §3.6 applies.

More precisely, from considerations in the Calculus of Variations, if one
has a constrained critical point, there is a curve λ(t) ∈ g∗ such that the
unconstrained cost function

C(q, q̇) =

∫ (
1

2
‖Hor(q, q̇)‖2 + 〈λ,Amec(q, q̇)〉

)
dt

has a critical point at q(t) (use 〈ξ,J〉 if one wishes to replace λ with a curve
ξ in the Lie algebra—λ and ξ will be related by the locked inertia tensor).
This cost function is G-invariant and the methods of Lagrangian reduction
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can be applied to it. One finds that the corresponding Lagrange–Poincaré
equations (that is, the reduced Euler–Lagrange equations) are exactly the
Wong equations. For details of this compuation, see Koon and Marsden
[1997a], Cendra, Holm, Marsden, and Ratiu [1998] or Bloch [2003].

What is less obvious is how to use the methods of the calculus of vari-
ations to show the existence of minimizing loops with a given holonomy
and what their smoothness properties are. For this purpose, the subject
of sub-Riemannian geometry (dealing with degenerate metrics) is relevant.
The shape space kinetic energy, thought of as ‖Hor(vq)‖2 and regarded as
a quadratic form on TQ (rather that TS), is associated with a degenerate
metric. These are sometimes called Carnot–Caratheodory metrics. We
refer to Montgomery [1990, 1991, 2002]] for further discussion.

Montgomery’s theorem has been generalized to the case of nonzero mo-
mentum values as well as to nonholonomic systems in Koon and Marsden
[1997a] by making use of the techniques of Lagrangian reduction. This
original proof, as well as related problems (such as the rigid body with two
oscillators considered by Yang, Krishnaprasad, and Dayawansa [1996], and
variants of the falling cat problem in Enos [1993]) were done by means of
the Pontryagin principle together with Poisson reduction. The process of
Lagrangian reduction appears, at least to some, to be somewhat simpler
and more direct—it was this method that produced the generalizations of
the result mentioned just above.
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8
Discrete Reduction

In this chapter, we extend the theory of reduction of Hamiltonian systems
with symmetry to include systems with a discrete symmetry group acting
symplectically .1

For antisymplectic symmetries such as reversibility, this question has
been considered by Meyer [1981] and Wan [1990]. However, in this chapter
we are concerned with symplectic symmetries. Antisymplectic symmetries
are typified by time reversal symmetry, while symplectic symmetries are
typified by spatial discrete symmetries of systems like reflection symmetry.
Often these are obtained by taking the cotangent lift of a discrete symmetry
of configuration space.

There are two main motivations for the study of discrete symmetries.
The first is the theory of bifurcation of relative equilibria in mechanical
systems with symmetry. The rotating liquid drop is a system with a sym-
metric relative equilibrium that bifurcates via a discrete symmetry. An
initially circular drop (with symmetry group S1) that is rotating rigidly
in the plane with constant angular velocity Ω, radius r, and with surface
tension τ , is stable if r3Ω2 < 12τ (this is proved by the energy–Casimir
or energy–momentum method). Another relative equilibrium (a rigidly ro-
tating solution in this example) branches from this circular solution at the
critical point r3Ω2 = 12τ . The new solution has the spatial symmetry of
an ellipse; that is, it has the symmetry Z2 × Z2 (or equivalently, the dihe-

1Parts of the exposition in this lecture are based on unpublished work with J. Harnad

and J. Hurtubise.
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dral group D2). These new solutions are stable, although whether they are
subcritical or supercritical depends on the parametrization chosen (angular
velocity vs. angular momentum, for example). This example is taken from
Lewis, Marsden, and Ratiu [1987] and Lewis [1989]. It also motivated some
of the work in the general theory of bifurcation of equilibria for Hamiltonian
systems with symmetry by Golubitsky and Stewart [1987].

The spherical pendulum is an especially simple mechanical system having
both continuous (S1) and discrete (Z2) symmetries. Solutions can be rela-
tive equilibria for the action of rotations about the axis of gravity in which
the pendulum rotates in a circular motion. For zero angular momentum
these solutions degenerate to give planar oscillations, which lie in the fixed
point set for the action of reflection in that plane. In our approach, this
reflection symmetry is cotangent lifted to produce a symplectic involution
of phase space. The invariant subsystem defined by the fixed point set of
this involution is just the planar pendulum.

The double spherical pendulum has the same continuous and discrete
symmetry group as the spherical pendulum. However, the double spherical
pendulum has another nontrivial symmetry involving a spacetime symme-
try, much as the rotating liquid drop and the water molecule. Namely, we
are at a fixed point of a symmetry when the two pendula are rotating in a
steadily rotating vertical plane—the symmetry is reflection in this plane.
This symmetry is, in fact, the source of the subblocking property of the
second variation of the amended potential that we observed in Chapter 5.
In the S1 reduced space, a steadily rotating plane is a stationary plane and
the discrete symmetry just becomes reflection in that plane.

A related example is the double whirling mass system. This consists of
two masses connected to each other and to two fixed supports by springs,
but with no gravity. Assume the masses and springs are identical. Then
there are two Z2 symmetries now, corresponding to reflection in a (steadily
rotating) vertical plane as with the double spherical pendulum, and to
swapping the two masses in a horizontal plane.

The classical water molecule has a discrete symplectic symmetry group
Z2 as well as the continuous symmetry group SO(3). The discrete symmetry
is closely related to the symmetry of exchanging the two hydrogen atoms.

For these examples, there are some basic links to be made with the block
diagonalization work from Chapter 5. In particular, we show how the dis-
crete symmetry can be used to refine the block structure of the second
variation of the augmented Hamiltonian and of the symplectic form. Recall
that the block diagonalization method provides coordinates in which the
second variation of the amended potential on the reduced configuration
space is a block diagonal matrix, with the group variables separated from
the internal variables; the group part corresponds to a bilinear form com-
puted first by Arnold for purposes of examples whose configuration space
is a group. The internal part corresponds to the shape space variables, that
are on Q/G the quotient of configuration space by the continuous sym-
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metry group. For the water molecule, we find that the discrete symmetry
provides a further blocking of this second variation, by splitting the internal
tangent space naturally into symmetric modes and nonsymmetric ones.

In the dynamics of coupled rigid bodies one has interesting symmetry
breaking bifurcations of relative equilibria and of relative periodic orbits.
For the latter, discrete spacetime symmetries are important. We refer to
Montaldi, Roberts, and Stewart [1988], Oh, Sreenath, Krishnaprasad, and
Marsden [1989] and to Patrick [1989, 1990] for further details. In the opti-
mal control problem of the falling cat (Montgomery [1990] and references
therein), the problem is modeled as the dynamics of two identical coupled
rigid bodies and the fixed point set of the involution that swaps the bodies
describes the “no-twist” condition of Kane and Scher [1969]; this plays an
essential role in the problem and the dynamics is integrable on this set.

The second class of examples motivating the study of discrete symmetries
are integrable systems, including those of Bobenko, Reyman, and Semenov-
Tian-Shansky [1989]. This (spectacular) reference shows in particular how
reduction and dual pairs, together with the theory of R-matrices, can be
used to understand the integrability of a rich class of systems, including
the celebrated Kowalewski top. They also obtain all of the attendant al-
gebraic geometry in this context. It is clear from their work that discrete
symmetries, and specifically those obtained from Cartan involutions, play
a crucial role.

8.1 Fixed Point Sets and Discrete
Reduction

Let (P,Ω) be a symplectic manifold, G a Lie group acting on P by symplec-
tic transformations and J : P → g∗ an Ad∗-equivariant momentum map
for the G-action. Let Σ be a compact Lie group acting on P by symplectic
transformations and by group homomorphisms on G. For σ ∈ Σ, write

σP : P → P and σG : G→ G

for the corresponding symplectic map on P and group homomorphism on
G. Let σg : g→ g be the induced Lie algebra homomorphism (the derivative
of σG at the identity) and σg∗ : g∗ → g∗ be the dual of (σ−1)g, so σg∗ is a
Poisson map with respect to the Lie–Poisson structure.

Remarks.

1. One can also consider the Poisson case directly using the methods of
Poisson reduction (Marsden and Ratiu [1986]) or by considering the
present work applied to their symplectic leaves.
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2. As in the general theory of equivariant momentum maps, one may
drop the equivariance assumption by using another action on g∗.

3. Compactness of Σ is used to give invariant metrics obtained by aver-
aging over Σ—it can be weakened to the existence of invariant finite
measures on Σ.

4. The G-action will be assumed to be a left action, although right
actions can be treated in the same way. �

Assumption 1. The actions of G and of Σ are compatible in the sense
that the following equation holds:

σP ◦ gP = [σG(g)]P ◦ σP (8.1.1)

for each σ ∈ Σ and g ∈ G, where we have written gP for the action of
g ∈ G on P . (See Figure 8.1.1.)

P P

P P

gP

[σG(g)]P

σP σP

✲

✲
❄ ❄

Figure 8.1.1. Assumption 1.

If we differentiate Equation (8.1.1) with respect to g at the identity g = e,
in the direction ξ ∈ g, we get

TσP ◦X〈J,ξ〉 = X〈J,σg·ξ〉 ◦ σP (8.1.2)

where Xf is the Hamiltonian vector field on P generated by the function
f : P → R. Since σP is symplectic, (8.1.2) is equivalent to

X〈J,ξ〉◦σ−1

P
= X〈J,σg·ξ〉; (8.1.3)

that is,

J ◦ σP = σg∗ ◦ J + (cocycle). (8.1.4)

We shall assume, in addition, that the cocycle is zero. In other words, we
make:
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P g∗

P g∗

J

J

σP σg∗

✲

✲
❄ ❄

Figure 8.1.2. Assumption 2.

Assumption 2. The following equation holds (see Figure 8.1.2):

J ◦ σP = σg∗ ◦ J. (8.1.5)

Let GΣ = Fix(Σ, G) ⊂ G be the fixed point set of Σ; that is,

GΣ = { g ∈ G | σG(g) = g for all σ ∈ Σ }. (8.1.6)

The Lie algebra of GΣ is the fixed point (i.e., eigenvalue 1) subspace:

gΣ = Fix(Σ, g) = { ξ ∈ g | TσG(e) · ξ = ξ for all σ ∈ Σ }. (8.1.7)

Remarks.

1. If G is connected, then (8.1.5) (or (8.1.4)) implies (8.1.1).

2. If Σ is a discrete group, then Assumptions 1 and 2 say that J : P → g∗

is an equivariant momentum map for the semi-direct product ΣsG,
which has the multiplication

(σ1, g1) · (σ2, g2) = (σ1σ2, (g2 · (σ2)G(g1))). (8.1.8)

Recall that Σ embeds as a subgroup of ΣsG via σ 7→ (σ, e). The
action of Σ on G is given by conjugation within ΣsG. If one prefers,
one can take the point of view that one starts with a group G with
G chosen to be the connected component of the identity and with
Σ a subgroup of G isomorphic to the quotient of G by the normal
subgroup G.

3. One checks that ΣsGΣ = N(Σ), where N(Σ) is the normalizer of
Σ × {e} within G = ΣsG. Accordingly, we can identify GΣ with
the quotient N(Σ)/Σ. In Golubitsky and Stewart [1987] and related
works, the tendency is to work with the group N(Σ)/Σ; it will be a
bit more convenient for us to work with the group GΣ, although the
two approaches are equivalent, as we have noted. �
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Let PΣ = Fix(Σ, P ) ⊂ P be the fixed point set for the action of Σ on P :

PΣ = { z ∈ P | σP (z) = z for all σ ∈ Σ }. (8.1.9)

8.1.1 Proposition. The fixed point set PΣ is a smooth symplectic sub-
manifold of P .

Proof. Put on P a metric that is Σ-invariant and exponentiate the linear
fixed point set (TzP )Σ of the tangent map Tzσ : TzP → TzP for each
z ∈ PΣ to give a local chart for PΣ. Since (TzP )Σ is invariant under the
associated complex structure, it is symplectic, so PΣ is symplectic. �

8.1.2 Proposition. The manifold PΣ is invariant under the action of
GΣ.

Proof. Let z ∈ PΣ and g ∈ GΣ. To show that gP (z) ∈ PΣ, we show that
σP (gP (z)) = gP (z) for σ ∈ Σ. To see this, note that by (8.1.1), and the
facts that σG(g) = g and σP (z) = z,

σP (gP (z)) = [σG(g)]P (σP (z)) = gP (z). �

The main message of this section is the following:

Discrete Reduction Procedure. If H is a Hamiltonian system on P
that is G and Σ invariant, then its Hamiltonian vector field XH (or its
flow) will leave PΣ invariant and so standard symplectic reduction can be
performed with respect to the action of the symmetry group GΣ on PΣ.

We are not necessarily advocating that one should always perform this
discrete reduction procedure, or that it contains in some sense equivalent
information to the original system, as is the case with continuous reduction.
We do claim that the procedure is an interesting way to identify invariant
subsystems, and to generate new ones that are important in their own right.
For example, reducing the spherical pendulum by discrete reflection in a
plane gives the half-dimensional simple planar pendulum. Discrete reduc-
tion of the double spherical pendulum by discrete symmetry produces a
planar compound pendulum, possibly with magnetic terms. More impres-
sively, the Kowalewski top arises by discrete reduction of a larger system.
Also, the ideas of discrete reduction are very useful in the block diagonal-
ization stability analysis of the energy momentum method, even though
the reduction is not carried out explicitly.

To help understand the reduction of PΣ, we consider some things that
are relevant for the momentum map of the action of GΣ. The following
prepatory lemma is standard (see, for example, Guillemin and Prato [1990])
but we shall need the proof for later developments, so we give it.
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8.1.3 Lemma. The Lie algebra g of G splits as follows:

g = gΣ ⊕ (g∗Σ)0 (8.1.10)

where g∗Σ = Fix(Σ, g∗) is the fixed point set for the action of Σ on g∗ and
where the superscript zero denotes the annihilator in g. Similarly, the dual
splits as

g∗ = g∗Σ ⊕ (gΣ)0. (8.1.11)

Proof. First, suppose that ξ ∈ gΣ ∩ (g∗Σ)0, µ ∈ g∗ and σ ∈ Σ. Since
ξ ∈ gΣ,

〈µ, ξ〉 = 〈µ, σg · ξ〉 = 〈σ−1
g∗ · µ, ξ〉. (8.1.12)

Averaging (8.1.12) over σ relative to an invariant measure on Σ, which is
possible since Σ is compact, gives: 〈µ, ξ〉 = 〈µ̄, ξ〉. Since the average µ̄ of µ
is Σ-invariant, we have µ̄ ∈ g∗Σ and since ξ ∈ (g∗Σ)0 we get

〈µ, ξ〉 = 〈µ̄, ξ〉 = 0.

Since µ was arbitrary, ξ = 0. Thus, gΣ ∩ (g∗Σ)0 = {0}. Using an invariant
metric on g, we see that dim gΣ = dim(g∗Σ)0 and thus dim g = dim gΣ +
dim(g∗Σ)0, so we get the result (8.1.10). The proof of (8.1.11) is similar. (If
the group is infinite dimensional, then one needs to show that every element
can be split; in practice, this usually relies on a Fredholm alternative-elliptic
equation argument.) �

It will be useful later to note that this argument also proves a more
general result as follows:

8.1.4 Lemma. Let Σ act linearly on a vector space W . Then

W = WΣ ⊕ (W ∗
Σ)0 (8.1.13)

where WΣ is the fixed point set for the action of Σ on W and where (W ∗
Σ)0

is the annihilator of the fixed point set for the dual action of Σ on W ∗.
Similarly, the dual splits as

W ∗ = W ∗
Σ ⊕ (WΣ)0. (8.1.14)

Adding these two splittings gives the splitting

W ×W ∗ = (WΣ ×W ∗
Σ)⊕ ((W ∗

Σ)0 × (WΣ)0) (8.1.15)

which is the splitting of the symplectic vector space W × W ∗ into the
symplectic subspace WΣ ×W ∗

Σ and its symplectic orthogonal complement.
The splitting (8.1.10) gives a natural identification

(gΣ)∗ ∼= g∗Σ.

Note that the splittings (8.1.10) and (8.1.11) do not involve the choice
of a metric; that is, the splittings are natural.

The following block diagonalization into isotypic components will
be used to prove the subblocking theorem in the energy–momentum method.
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8.1.5 Lemma. Let B : W ×W → R be a bilinear form invariant un-
der the action of Σ. Then the matrix of B block diagonalizes under the
splitting (8.1.13). That is,

B(w, u) = 0 and B(u,w) = 0

if w ∈WΣ and u ∈ (W ∗
Σ)

0
.

Proof. Consider the element α ∈ W ∗ defined by α(v) = B(w, v). It
suffices to show that α is fixed by the action of Σ on W ∗ since it annihilates
W ∗

Σ. To see this, note that invariance of B means B(σw, σv) = B(w, v),
that is, B(w, σv) = B(σ−1w, v). Then

(σ∗α)(v) = α(σv) = B(w, σv) = B(σ−1w, v) = B(w, v) = α(v)

since w ∈ WΣ so w is fixed by σ. This shows that α ∈ W ∗
Σ and so α(u) =

B(w, u) = 0 for u in the annihilator. The proof that B(u,w) = 0 is similar.
�

For the classical water molecule,WΣ corresponds to symmetric variations
of the molecule’s configuration and (W ∗

Σ)
0

to non-symmetric ones.

8.1.6 Proposition. The inclusion J(PΣ) ⊂ g∗Σ holds and the momentum
map for the GΣ action on PΣ equals J restricted to PΣ, and takes values
in g∗Σ

∼= (gΣ)∗.

Proof. Let σ ∈ Σ and z ∈ PΣ. By (8.1.5),

gg∗ · J(z) = J(σP (z)) = J(z),

so J(z) ∈ Fix(Σ, g∗). The second result follows since the momentum map
for GΣ acting on PΣ is J composed with the projection of g∗ to g∗Σ. �

Next, we consider an interesting transversality property of the fixed point
set. Assume that each µ ∈ g∗Σ is a regular value of J. Then

WΣ = J−1(g∗Σ) ⊂ P
is a submanifold, PΣ ⊂WΣ, and π = J|WΣ : WΣ → gΣ is a submersion.

8.1.7 Proposition. The manifold PΣ is transverse to the fibers J−1(µ)∩
WΣ.

Proof. Recall that PΣ is a manifold with tangent space at z ∈ PΣ given
by

TzPΣ = { v ∈ TzP | TzσP · b = v for all σ ∈ Σ}.
Choose ν ∈ g∗Σ and u ∈ TzWΣ such that Tπ · u = ν. Note that if σ ∈ Σ,
then Tπ ·Tσ ·u = σg∗Tπ ·u = σg∗ ·ν = ν, so Tσ ·u has the same projection
as u. Thus, if we average over Σ, we get ū ∈ TzWΣ also with Tπ · ū = ν.
But since ū is the average, it is fixed by each Tzσ, so ū ∈ TzPΣ. Thus, TzPΣ

is transverse to the fibers of π. �
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See Lemma 3.2.3 of Sjamaar [1990] for a related result. In particular, this
result implies that

8.1.8 Corollary. The set of ν ∈ g∗Σ for which there is a Σ-fixed point in
J−1(ν), is open.

8.2 Cotangent Bundles

Let P = T ∗Q and assume that Σ and G act on Q and hence on T ∗Q by
cotangent lift. Assume that Σ acts on G but now assume the actions are
compatible in the following sense:

Assumption 1Q. The following equation holds (Figure 8.2.1):

σQ ◦ gQ = [σG(g)]G ◦ σQ. (8.2.1)

Q Q

Q Q

gQ

[σG(g)]Q

σQ σQ

✲

✲
❄ ❄

Figure 8.2.1. Assumption 1Q.

8.2.1 Proposition. Under Assumption 1Q, both Assumptions 1 and 2
are valid.

Proof. Equation (8.1.1) follows from (8.2.1) and the fact that cotangent
lift preserves compositions. Differentiation of (8.2.1) with respect to g at
the identity in the direction ξ ∈ g gives

TσQ ◦ ξQ = (σg · ξ)Q ◦ σQ. (8.2.2)

Evaluating this at q, pairing the result with a covector p ∈ T ∗
σQ(q)Q, and

using the formula for the momentum map of a cotangent lift gives

〈p, TσQ · ξQ(q)〉 = 〈p, (σg · ξ)Q(σQ(q))〉
that is,

〈Tσ∗
Q · p, ξQ(q)〉 = 〈p, (σg · ξ)Q(σQ(q))〉

that is,
〈J(Tσ∗

Q · p), ξ〉 = 〈J(p), σg · ξ〉 = 〈σ−1
g∗ J(p), ξ〉

that is,
J ◦ σ−1

P = σ−1
g∗ ◦ J,

so (8.1.5) holds. �
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8.2.2 Proposition. For cotangent lifts, and QΣ = Fix(Σ, Q), we have

PΣ = T ∗(QΣ) (8.2.3)

with the canonical cotangent structure. Moreover, the action of GΣ is the
cotangent lift of its action on QΣ and its momentum map is the standard
one for cotangent lifts.

For (8.2.3) to make sense, we need to know how T ∗
q QΣ is identified with

a subspace of T ∗
q Q. To see this, consider the action of Σ on T ∗

q Q by

σ · αq =
(
[TσQ(q)]−1

)∗ · αq

and regard Fix(Σ, T ∗
q Q) as a linear subspace of T ∗

q Q.

8.2.3 Lemma.

TqQ = TqQΣ ⊕ [Fix(Σ, T ∗
q Q)]0. (8.2.4)

Proof. As before, TqQΣ = Fix(Σ, TqQ). We prove the lemma by a pro-
cedure similar to Lemma 8.1.3. Let v ∈ TqQΣ ∩ Fix(Σ, T ∗

q Q)0, ξ ∈ T ∗
q Q,

and σ ∈ Σ. Then

〈α, v〉 = 〈α, TσQ · v〉 = 〈Tσ−1
Q · α, v〉. (8.2.5)

Averaging (8.2.5) over σ gives

〈σ, v〉 = 〈ᾱ, v〉 = 0

so v = 0. The result follows by a dimension count, as in Lemma 8.1.3. �

If αq ∈ T ∗
q QΣ, extend it to T ∗

q Q by letting it be zero on [Fix(Σ, T ∗
q Q)]0.

This embeds T ∗
q QΣ into T ∗

q Q and provides the split

T ∗
q Q = T ∗

q QΣ ⊕ (TqQΣ)0 (8.2.6)

identifying T ∗
q QΣ

∼= Fix(Σ, T ∗
q Q).

Returning to the proof of Proposition 8.2.2, by definition of PΣ, αq ∈ PΣ

iff σP (αq) = αq for all σ ∈ Σ; that is,

(
[TσQ(q)]−1

)∗
αq = αq

that is, αq ∈ Fix(Σ, T ∗
q Q) = T ∗QΣ. Thus, PΣ = T ∗(QΣ). The symplectic

structure on PΣ is obtained from T ∗Q by restriction. We need to show that
the inclusion map iΣ : T ∗QΣ → T ∗Q defined by (8.2.6) is a symplectic
embedding. In fact, it is readily checked that iΣ pulls the canonical one
form on T ∗Q back to that on T ∗QΣ because the projection πΣ : T ∗Q→ P
satisfies π ◦ iΣ = πΣ. The rest of the proposition now follows. �
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8.3 Examples

A. Let the phase space be P = C2 with the symplectic structure given
by

Ω((z1, w1), (z2, w2)) = 2 Im(z1z̄2 + w1w̄2).

Let G = U(2) act simply by matrix multiplication and let Σ = Z2 act on P
by σ(z, w) = (w, z), where σ denotes the nontrivial element of Σ. Identifying
σ with the matrix [ 0 1

1 0 ], the actions are compatible (Assumption 1) if we
let Σ act on G by conjugation: σ ·A = σAσ−1.

Note that the actions of G and Σ on P are symplectic. The Lie algebra
u(2) of U(2) is identified with the skew hermitian matrices, which we write
as

ξ =

[
iu β
−β̄ iv

]

where u and v are real and β ∈ C. The equivariant momentum map for the
U(2) action is given by

〈J(z, w), ξ〉 =
1

2
Ω

(
ξ

[
z
w

]
,

[
z
w

])
= u|z|2 + v|w|2 + 2Im(βz̄w).

Assumption 2 reads

〈J(σ(z, w)), ξ〉 = 〈J(z, w), σξσ−1〉,

which is easily checked.
In this example, GΣ consists of elements of G that commute with σ; that

is, GΣ is the subgroup of U(2) consisting of matrices of the form
[

a b
b a

]
.

Note that PΣ = { (z, z) ∈ P | z ∈ C } and that the GΣ action on PΣ is
(z, z) 7→ ((a + b)z, (a + b)z). We identify the Lie algebra of GΣ with gΣ

consisting of matrices of the form ξ = i [ u y
y u ] where u and y are real. Note

that

〈J(z, z), ξ〉 = 2(u+ y)|z|2,

consistent with Proposition 8.1.6. In §8.5, we shall see an alternative way of
viewing this example in terms of dual pairs using SU(2) and S1 separately,
rather than as U(2). This will also bring out links with the one-to-one
resonance more clearly. �

The next example is an elementary physical example in which we deal
with cotangent bundles.

B. We consider the spherical pendulum with P = T ∗Q where Q = S2
l ,

the two sphere of radius l. Here G = S1 acts on Q by rotations about
the z-axis so that the corresponding momentum map is simply the angular
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momentum about the z-axis (with the standard identifications). We let
Σ = Z2 act on S2

l by reflection in a chosen plane, say the yz-plane, so
σ(z, y, z) = (−x, y, z), where q = (x, y, z) ∈ Q. This action is lifted to P by
cotangent lift, so it is symplectic. We let σ act on G by conjugation; if Rθ

is the rotation about the z-axis through an angle θ, then

σ ·Rθ = σRθσ
−1 = R−θ.

Note that the group ΣsG is O(2). To check Assumptions 1 and 2, it
suffices to check Assumption 1Q. It states that

σ(Rθ · q) = (σRθσ
−1)(σ(q))

which is obviously correct. Here PΣ = T ∗(QΣ) where QΣ = S1
l is S2

l inter-
sect the yz-plane. Restriction to T ∗(QΣ) gives a simple pendulum moving
in the yz-plane. Here GΣ = {e,Rπ}, so the discrete reduced space is PΣ/Z2,
a symplectic orbifold (see Sjamaar [1990]). Thus, we essentially find that
discrete reduction of the spherical pendulum is the simple pendulum mov-
ing in the yz-plane. Note that here one has different choices of Σ that
correspond to different planes of swing of the simple pendulum. Note also,
consistent with this, that the angular momentum vanishes on PΣ. �

C. Here we consider the double spherical pendulum . Let P = T ∗Q
where Q = S2

l1
× S2

l2
and (q1,q2) ∈ Q gives the configuration of the two

arms of the pendulum. Again, we let G = S1 consist of rotations about the
z-axis, with G acting by the diagonal action on Q. We again let Σ = Z2,
and let σ act by reflection in the yz-plane, acting simultaneously on both
factors in Q = S2 × S2. As in Example B, this leads via discrete reduction
from the spherical double pendulum to the planar double pendulum and
GΣ = {e,Rπ}.

Another way Z2 acts on Q that is useful in our study of relative equilibria
is as follows.

Let σ ∈ Z2 be the nontrivial element of Z2 and let σ map (q1,q2) to
(q1, σpq2), where P is the vertical plane spanned by k and q1 and where σP

is the reflection in this plane. This time, Σ acts trivially on G, so Σ sG is
the direct product . Compatible with the general theory in the next section,
the subblocking property associated with this symmetry is what gave the
subblocking property we observed in equation (5.5.4) in which we calculated
δ2Vµ for purposes of the stability analysis.

Notice that interchanging the two pendula does not produce a discrete
symmetry because the presence of gravity leads to a noninvariance of the
kinetic and potential energies under particle interchange. �

An example with a slightly richer discrete symmetry group is the system
of two whirling masses.
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D. Here we let P = T ∗Q where Q = R3 × R3 and (q1,q2) ∈ Q give
the configuration of the two masses of the system, as in Figure 8.3.1. The
masses are connected to each other and to the supports by springs. The
Lagrangian is the standard one: kinetic minus potential energy. However,
in this example, the potential energy comes only from the springs; gravity
is ignored.

Figure 8.3.1. Two whirling masses.

Let G = S1 act by rotations of both masses about the (vertical) z-axis.
The momentum map is the angular momentum about the vertical axis. We
again let Σ = Z2, but now there are two cases:

Case 1. Here let σ act by reflection in a vertical plane, say the yz-plane,
acting simultaneously on both factors in Q. As above, this action produces
an associated invariant subsystem on its fixed point space, the problem
of two planar masses connected by springs. This is the case even if the
masses of the two particles are different and if the springs are different.
As in Example B, the group ΣsG is O(2). As with the double spherical
pendulum we can consider the discrete symmetry of reflection in a moving
vertical plane. This is important again in the study of relative equilibria.

Case 2. Here we let the masses of the two particles be the same, the two
outside springs be identical and all three springs be reflection invariant.
Now let Σ act on Q by simultaneous reflection in the horizontal plane (and
translation of the vector base points to the opposite support). In this case
the actions of G and S on Q (and hence on P ) commute, so we can let Σ
act trivially on G and Assumption 1Q holds. Here, ΣsG = Z2 × SO(2),
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a direct product. Now GΣ = S1 and PΣ = T ∗R3 corresponds to identical
motions of the two masses. Thus, in this case discrete reduction gives the
motion of a symmetric two mass system on which S1 still acts.

This richer collection of discrete symmetries then naturally leads to a rich
block structure in the second variation δ2Vµ and a simpler normal form for
the linearized equations at a relative equilibrium. See Zombro and Holmes
[1993] for more information. �

E. The rigid body has three copies of Z2 as symmetry group. Here
Q = SO(3) and we choose a plane P corresponding to one of the principle
moments of inertia and let σ be the reflection in this plane. Let Σ = Z2

be generated by σ. Let P = T ∗Q, and G = SO(3). Let G act on Q by
left multiplication (as is usual for the rigid body), so the momentum map
is the spatial angular momentum of the body. The discrete symmetries in
this example yield the well known symmetry of the phase portrait of the
rigid body as viewed on the two sphere. Let Σ act on Q by conjugation;
for A ∈ Q, σ ·A = σAσ−1. If we let Σ act on G the same way, then

σQ(RQ(A)) = σRAσ−1 = (σRσ−1)(σAσ−1) = σG(R) · σQ(A),

so Assumption 1Q holds. As in Example B, the semidirect product is the
orthogonal group: ΣsG = O(3). In this case, GΣ consists of rotations in
the plane defining σ and PΣ = T ∗GΣ. Here, the discrete reduction yields a
rigid rotor constrained to rotate about a fixed principal axis.

Remark This example illustrates two cautions that are needed when
dealing with discrete symplectic symmetries. First, while there is a well
defined action of Σ on P/G, this action need not be Poisson. For example
the induced action on so(3)∗ in Example E is anti-Poisson. Also, for σ ∈
Σ, σ maps J−1(µ) to J−1(σg∗µ), so there need not be a well defined action
on Pµ, let alone a symplectic one. (For the rigid body one gets an anti-
symplectic map of S2 to itself.) �

F. We modify Example E to a situation that is of interest in pseudo
rigid bodies and gravitating fluid masses (see Lewis and Simo [1990]). Let
Q = GL(3) (representing linear, but nonrigid deformations of a reference
configuration). Let G = SO(3) act on the left on Q as before, so again,
the momentum map represents the total spatial angular momentum of the
system. As in Example E, let Σ = Z2 and let σ be reflection in a chosen,
fixed plane P. Let σS denote reflection in the image of the plane P under
linear transformation S, and let the action of σ on an element A of Q be
on the right by σ and on the left by σA and let it act trivially on G. Again,
one checks that Assumption 1Q holds. In this case, the semidirect product
is the direct product Z2 × SO(3), so the full rotation group still acts on
PΣ =. Now, QΣ represents configurations that have a plane of symmetry,
so in this case, discrete reduction of this system corresponds to restriction
to symmetric bodies.
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In view of the block diagonalization results outlined in the next section, it
is of interest to not to actually carry out the discrete reduction, but rather
to use the discrete symmetry to study stability. This seems to explain, in
part, why, in their calculations, further subblocking, in some cases, even to
diagonal matrices, was found. �

8.4 Sub-Block Diagonalization with Discrete
Symmetry

In this section, we explain how Lemma 8.1.5 gives a subblocking theorem
in the energy–momentum method. We indicate how this result applies to
the classical water molecule without carrying out the calculations in detail
here. In this procedure, we do not carry out discrete reduction explicitly
(although it does give an interesting invariant subsystem for the dynam-
ics of symmetric molecules). Rather, we use it to divide the modes into
symmetric and non-symmetric ones.

Recall from Chapter 5, that one splits the space of variations of the
concrete realization V of Q/Gµ into variations VRIG in G/Gµ and variations
VINT in Q/Gµ. With the appropriate splitting, one gets the block diagonal
structure

δ2Vµ =




Arnold form 0

0 Smale form





where the Arnold form means δ2Vµ computed on the coadjoint orbit tangent
space, and the Smale form means δ2Vµ computed on Q/G. Perhaps even
more interesting is the structure of the linearized dynamics near a relative
equilibrium. That is, both the augmented Hamiltonian Hξ = H−〈J, ξ〉 and
the symplectic structure can be simultaneously brought into the following
normal form:

δ2Hξ =




Arnold form 0 0

0 Smale form 0

0 0 Kinetic Energy > 0




and

Symplectic form =




coadjoint orbit form C 0

−C magnetic (coriolis) I

0 −I 0






166 8. Discrete Reduction

where the columns represent the coadjoint orbit variables (G/Gµ), the
shape variables (Q/G) and the shape momenta respectively. The term
C is an interaction term between the group variables and the shape
variables. The magnetic term is the curvature of the µ-component of the
mechanical connection, as we described earlier.

Suppose that we have a compact discrete group Σ acting by isometries on
Q, and preserving the potential, so we are in the setting of the preceding
section. This action lifts to the cotangent bundle, as we have seen. The
resulting fixed point space is the cotangent bundle of the fixed point space
QΣ. This fixed point space represents the Σ-symmetric configurations.

Of more concern here is the fact that the action also gives an action on
the quotient space, or shape space Q/G. We can split the tangent space to
Q/G at a configuration corresponding to the relative equilibrium according
to Lemma 8.1.4 and can apply Lemma 8.1.5 to the Smale form. Here, one
must check that the amended potential is actually invariant under Σ. In
general, this need not be the case, since the discrete group need not leave
the value of the momentum µ invariant. However, there are two important
cases for which this is verified. The first is for SO(3) with Z2 acting by
conjugation, as in the rigid body example, it maps µ to its negative, so in
this case, from the formula Vµ(q) = V (q)−µI(q)−1µ we see that indeed Vµ

is invariant. The second case, which is relevant for the water molecule, is
when Σ acts trivially on G. Then Σ leaves µ invariant, and so Vµ is again
invariant.

8.4.1 Theorem. Under these assumptions, at a relative equilibrium, the
second variation δ2V (q) block diagonalizes, which we refer to as the sub-

blocking property .

The blocks in the Smale form are given by Lemma 8.1.4: they are the
Σ-symmetric variations, and their complement chosen according to that
lemma as the annihilator of the symmetric dual variations. Lemma 8.1.5
can also be applied to the symplectic form, showing that it subblocks as
well.

These remarks apply to the classical rotating water molecule as follows.
(We let the reader work out the case of the two whirling masses in a similar,
but simpler vein.) The discrete symmetry Σ is Z2 acting, roughly speak-
ing, by interchanging the two hydrogen atoms. We shall describe the action
more precisely in a moment. The action of Z2 on SO(3) will be the trivial
one, so the semi-direct product is the direct product and so GΣ is again
SO(3). The discrete reduction procedure then yields the system consisting
of symmetric molecules (with the two hydrogen atoms moving in a symmet-
ric way), but still with symmetry group the rotation group, which makes
good sense physically. The subblocking property mentioned above shows
that the Smale form, which in this example, is a 3 × 3 symmetric matrix,
becomes block diagonal, with a 2 × 2 subblock corresponding to the sym-
metric variations, and a singleton block corresponding to the nonsymmetric
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variations.
Explicitly, the nontrivial element σ of Σ acts on the configuration space

as follows:

σ(r, s) =

(
r, s− 2(r · s) r

‖ r ‖2
)
.

This symmetry interchanges the role of the two masses as in Figure 8.4.1.

m
m

M

M

m

m

Figure 8.4.1. Discrete symmetry of the water molecule.

If one prefers, σ is the transformation that rotates the system by 180
degrees about a line perpendicular to r in the plane of the system, followed
by an interchange of the particles. One now checks the claims made ear-
lier; for example, that the Assumption 1Q is satisfied, and that the fixed
point set of the discrete symmetry group does correspond to the symmetric
configurations, etc. Notice that for the ozone molecule, one can apply this
operation to any two pairs of atoms, and this leads to interesting conse-
quences such as, for the planar molecule, the “breathing mode” decouples
dynamically from the other modes, and in space, it couples very simply via
the internal rigid coupling discussed in Chapter 5.

We conclude that δ2Vµ takes the following form:

δ2Vµ =




a b 0
b d 0
0 0 g



 (8.4.1)

where the block
[

a b
b d

]
corresponds to the symmetric variations and [g] to

the symmetry breaking variations.
Another system in which an interesting discrete symmetry occurs is the

rotating liquid drop, as studied by Lewis, Marsden, and Ratiu [1987] and
Lewis [1989]. Here, one has an ideal incompressible, inviscid fluid system (so
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the system is infinite dimensional) that has a basic symmetry group S1 for a
planar drop, and SO(3) for a drop in space. In either case, the corresponding
momentum map is the angular momentum of the drop. However, there
is a discrete symmetry as well, that can be set up in a way somewhat
similar to that of the rigid body, described in §8.3. For the planar case,
one chooses a line say L in the reference configuration of the fluid and calls
the reflection in L by σL. The configuration space for the drop is Q = all
volume preserving embeddings of a reference configuration to the plane.
Then σL acts on an element η ∈ Q by conjugation, on the right by σL and
on the left by the reflection in the line that is the line through the images
η(P1), η(P2), where P1, P2 are the intersection points of the line with the
boundary of the reference configuration. This action is then lifted to the
cotangent space in the standard way. Here the fixed point set is the set
of symmetric drops, and the action of the discrete group on the group S1

is trivial, so the fixed point group GΣ is again S1 and it still acts on the
symmetric drops, as it should. One can view the planar water molecule as
a finite dimensional analogue of this model.

These discrete symmetries are clearly available for other problems as
well, such as the classical problem of rotating gravitational fluid masses. In
this case, one has a richer symmetry structure coming from finite subgroups
of the orthogonal group O(3). From the general discussion above, the sub-
blocking property that the discrete symmetry gives, should be useful for
the study of stability and bifurcation of these systems.

8.5 Discrete Reduction of Dual Pairs

We now give a set up one can use in the application of the discrete reduction
procedure to integrable Hamiltonian systems. Consider two Lie groups G
andH acting symplectically on the manifold P , and assume that the actions
commute. If g and h denote the Lie algebras of G and H respectively, we
suppose that there are equivariant momentum maps

JG : P → g∗ and JH : P → h∗ (8.5.1)

generating the actions.

Dual Pair Assumption. For all z ∈ P :

J−1
G (JG(z)) = OH

z and J−1
H (JH(z)) = OG

z (8.5.2)

where OH
z and OG

z denote the orbits of H and G respectively through z.
We also assume that the group Σ acts on P , G, and H and hence on g, h
and g∗ and h∗ where Assumptions 1 and 2 of §8.1 hold for both G and H
(Figures 8.5.1 and 8.5.2).
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P P

P P

gP or hP

[σG(g)]P or [σH(h)]P

σP σP

✲

✲
❄ ❄

Figure 8.5.1. Assumption 1 for dual pairs.

g∗ ✛ JG

JG

P ✲JH

JH

h∗

g∗ ✛ P ✲ h∗
❄

σg∗ σP

❄

σh∗

❄

Figure 8.5.2. Assumption 2 for dual pairs.

Assuming also that the action of H is free and proper, so that

P → P/H

is an H-fibration, it follows that the mapping induced by J

JG : P/H → g∗

is a Poisson embedding, where g∗ has the Lie–Poisson structure (the minus
structure if the actions are left, and the plus structure if the actions are
on the right) and where P/H has the quotient Poisson structure. Thus, we
have the commutative diagram in Figure 8.5.3.

g∗Σ h∗
Σ

JGΣ
JHΣ

PΣ
✛ ✲

J̄GΣ
proj proj J̄HΣ

PΣ/HΣ PΣ/GΣ

❅
❅

❅
❅■ ❅

❅
❅

❅❘

�
�

�
�✠ �

�
�

�✒

Figure 8.5.3. Reduction of dual pairs.

For the following proposition, note that OGΣ

z ⊂ OG
z ∩ PΣ and similarly

for H.

8.5.1 Proposition. Let (P,G,H) be a dual pair, acted on, as above, by
Σ. Suppose that for each z ∈ PΣ,

OGΣ

z = OG
z ∩ PΣ and OHΣ

z = OH
z ∩ PΣ. (8.5.3)

Then (PΣ, GΣ, HΣ) form a dual pair.
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Proof. That PΣ is a symplectic manifold, with commuting Hamilto-
nian actions of GΣ, HΣ follows from Propositions 8.1.1 and 8.1.2. Proposi-
tion 8.1.6 then implies that one has momentum maps JGΣ

,JHΣ
given by

restrictions of JG and JH . The conditions (8.5.3) guarantee that the dual
pair assumption is satisfied. �

Let us consider briefly the condition (8.5.3). As we noted, we always
have the inclusion OHΣ

z ⊂ OH
z ∩ PΣ. Let z′ = hz belong to OH

z ∩ PΣ. As
σP (z′) = z′, and σP (z) = z, for all σ ∈ Σ, one obtains:

h−1σH(h) ∈ StabH(z).

If σ is an involution, h−1σH(h) belongs to the subset Stab−
H(z) of elements

t satisfying σ(t) = t−1. One wants an ĥ = hs−1, where s ∈ StabH(z), such

that σH(ĥ) = ĥ, for all σ ∈ Σ. One must then solve the equations:

h−1σ(h) = s−1σ(s) for all σ ∈ Σ

for some s ∈ StabH(z). This is frequently possible: one simple case is when
the action of H is free. When Σ is generated by an involution σ, (i.e.,
Σ = Z2), the preceding equation will be solvable if the map

Πσ : StabH(z)→ Stab−
H(z); s 7→ s−1σ(s)

is surjective.
If the action of H (and so of HΣ) is free and proper and JG is a submer-

sion along J−1
G (g∗Σ) (or at least over some open subset of g∗Σ), then one has

an H-bundle in P

JG : J−1
G (g∗Σ)→ J−1

G (g∗Σ)/H ⊂ g∗Σ (8.5.4)

and an HΣ bundle in PΣ

JGΣ
: J−1

GΣ
: (g∗Σ)→ J−1

GΣ
(g∗Σ)/HΣ ⊂ g∗Σ (8.5.5)

giving an inclusion:

J−1
GΣ

(g∗Σ)/HΣ ⊂ J−1
G (g∗Σ)/H.

Over J−1
GΣ

(g∗Σ)/HΣ, (8.5.5) is a subbundle of (8.5.4). This, in fact, occurs
over an open set:

8.5.2 Proposition. Under the hypotheses given above, J−1
GΣ

(g∗Σ)/HΣ is

an open subset of J−1
G (g∗Σ)/H.

Proof. The set J−1
GΣ

(g∗Σ)/HΣ consists of those points ξ in g∗Σ for which
there is a z in PΣ with JGΣ

(z) = JG(z) = ξ. By Corollary 8.1.8, this set is
open in J−1

G (g∗Σ)/H. �
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Example. Consider the situation of Example A of §8.3. We choose the
same P = C2 and the same symplectic structure. However, now we choose
G = SU(2) and H = U(1) = S1 with G acting by matrix multiplication
and with H acting by the flow of two identical harmonic oscillators, with
Hamiltonian given by H(z, w) = 1

2 (|z|2 + |w|2). These form a dual pair
with the momentum maps given by the components of the Hopf map; see
Cushman and Rod [1982] and Marsden [1987]. Again, we choose the discrete
group Σ to be Z2 given by the map σ(z, w) = (w, z). Here the hypotheses
above are directly verified, and one finds, using the sort of computations
in Example A of §8.3, that the discrete reduction of this dual pair is the
trivial dual pair given by PΣ = C2 with GΣ = S1 acting by complex
multiplication and with HΣ = S1 acting the same way. In other words, the
discrete reduction of the (completely integrable) system defined by the one-
to-one resonance consisting of two identical harmonic oscillators (integrable
via the group SU(2)), is the (completely integrable) system consisting of a
single harmonic oscillator, trivially integrable using the group S1. �

For more sophisticated examples of integrable systems, and in particular,
the Kowalewski top, see Bobenko, Reyman, and Semenov-Tian-Shansky
[1989].
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9
Mechanical Integrators

For conservative mechanical systems with symmetry, it is of interest to
develop numerical schemes that preserve this symmetry, so that the associ-
ated conserved quantities are preserved exactly by the integration process.
One would also like the algorithm to preserve either the Hamiltonian or the
symplectic structure—one cannot expect to do both in general, as we shall
show below. There is some evidence (such as reported by Channell and
Scovel [1990], Marsden, O’Reilly, Wicklin, and Zombro [1991] and Pullin
and Saffman [1991]) that these mechanical integrators perform especially
well for long time integrations, in which chaotic dynamics can be expected.
Some standard algorithms can introduce spurious effects (such as nonex-
istent chaos) in long integration runs; see, for example, Reinhall, Caughy,
and Storti [1989]. We use the general term mechanical integrator for an
algorithm that respects one or more of the fundamental properties of being
symplectic, preserving energy, or preserving the momentum map.

9.1 Definitions and Examples

By an algorithm on a phase space P we mean a collection of maps Fτ :
P → P (depending smoothly, say, on τ ∈ R for small τ and z ∈ P ).
Sometimes we write zk+1 = Fτ (zk) for the algorithm and we write ∆t or
h for the step size τ . We say that the algorithm is consistent or is first
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order accurate with a vector field X on P if

d

dτ
Fτ (z)

∣∣∣∣
τ=0

= X(z). (9.1.1)

Higher order accuracy is defined similarly by matching higher order deriva-
tives. One of the basic things one is interested in is convergence namely,
when is

lim
n→∞

(Ft/n)n(z) = ϕt(z) (9.1.2)

where ϕt is the flow of X, and what are the error estimates? There are
some general theorems guaranteeing this, with an important hypothesis
being stability ; that is, (Ft/n)n(z) must remain close to z for small t and
all n = 1, 2, . . .. We refer to Chorin, Hughes, Marsden, and McCracken
[1978] and Abraham, Marsden, and Ratiu [1988] for details. For example,
the Lie–Trotter formula

et(A+B) = lim
n→∞

(etA/netB/n)n (9.1.3)

is an instance of this.
An algorithm Fτ is

1. a symplectic-integrator if each Fτ is symplectic,

2. an energy-integrator if H ◦ Fτ = H (where X = XH),

3. a momentum-integrator if J ◦ Fτ = J (where J is the momentum
map for a G-action).

If Fτ has one or more of these properties, we call it a mechanical inte-

grator . Notice that if an integrator has one of these three properties, then
so does any iterate of it.

There are two ways that have been employed to find mechanical inte-
grators. For example, one can search amongst existing algorithms and find
ones with special algebraic properties that make them symplectic or energy-
preserving. Second, one can attempt to design mechanical integrators from
scratch. Here are some simple examples.

A. A first order explicit symplectic scheme in the plane is given by the
map (q0, p0) 7→ (q, p) defined by

q = q0 + (∆t)p0

p = p0 − (∆t)V ′(q0 + (∆t)p0). (9.1.4)

This map is a first order approximation to the flow of Hamilton’s equations
for the Hamiltonian H = (p2/2) + V (q). Here, one can verify by direct
calculation that this scheme is in fact a symplectic map. �
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Example A is based on the use of generating functions, as we shall see
below. A modification of Example A using Poincaré’s generating function,
but also one that can be checked directly is:

B. An implicit symplectic scheme in the plane for the same Hamiltonian
as in Example A is

q = q0 + (∆t)
p+ p0

2

p = p0 − (∆t)V ′(
q + q0

2
).

(9.1.5)

�

Other examples are sometimes based on special observations. The next
example shows that the second order accurate mid-point rule is symplectic
( Feng [1986]). This algorithm is also useful in developing almost Poisson
integrators (Austin, Krishnaprasad, and Wang [1993]).

C. In a symplectic vector space the following mid point rule is sym-
plectic:

zk+1 − zk

∆t
= XH

(
zk + zk+1

2

)
. (9.1.6)

Notice that for small ∆t the map defined implicitly by this equation is
well defined by the implicit function theorem. To show it is symplectic, we
use the fact that the Cayley transform S of an infinitesimally symplectic
linear map A, namely

S = (1− λA)
−1

(1 + λA) (9.1.7)

is symplectic if 1 − λA is invertible for some real λ. To apply this to our
situation, rewrite the algorithm (9.1.6) as

Fτ (z)− z − τXH

(
z + Fτ (z)

2

)
= 0. (9.1.8)

Letting S = dFτ (z) and A = dXH

(
z+Fτ (z)

2

)
we get, by differentiation,

S − 1− 1
2τA(1 + S) = 0; that is, (9.1.7) holds with λ = τ/2. Thus, (9.1.6)

defines a symplectic scheme. �

D. Here is an example of an implicit energy preserving algorithm from
Chorin, Hughes, Marsden, and McCracken [1978]. Consider a Hamiltonian
system for q ∈ Rn and p ∈ Rn:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (9.1.9)
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Define the following implicit scheme

qn+1 = qn + ∆t
H(qn+1,pn+1)−H(qn+1,pn)

λT (pn+1 − pn)
λ, (9.1.10)

pn+1 = pn −∆t
H(qn+1,pn)−H(qn,pn)

µT (qn+1 − qn)
µ, (9.1.11)

where

λ =
∂H

∂p
(αqn+1 + (1− α)qn, βpn+1 + (1− β)pn), (9.1.12)

µ =
∂H

∂q
(γqn+1 + (1− γ)qn, δpn+1 + (1− δ)pn), (9.1.13)

and where α, β, γ, δ are arbitrarily chosen constants in [0, 1].
The proof of conservation of energy is simple: From (9.1.10), we have

(qn+1 − qn)T (pn+1 − pn) = ∆t(H(qn+1,pn+1)−H(qn+1,pn)), (9.1.14)

and from (9.1.11)

(pn+1 − pn)T (qn+1 − qn) = −∆t(H(qn+1,pn)−H(qn,pn)). (9.1.15)

Subtracting (9.1.15) from (9.1.14), we obtain

H(qn+1,pn+1) = H(qn,pn). (9.1.16)

This algorithm is checked to be consistent. In general, it is not symplectic—
this is in accord with Proposition 9.2.1 in the next section. �

E. Let us apply the Lie–Trotter or time splitting idea to the simple
pendulum. The equations are

d

dt

(
ϕ
p

)
=

(
p
0

)
+

(
0

− sinϕ

)
.

Each vector field can be integrated explicitly to give maps

Gτ (ϕ, p) = (ϕ+ τp, p)

and
Hτ (ϕ, p) = (ϕ, p− τ sinϕ)

each of which is symplectic. Thus, the composition Fτ = Gτ ◦Hτ , namely,

Fτ (q, p) = (ϕ+ τp− τ2 sinϕ, p− τ sinϕ)

is a first order symplectic scheme for the simple pendulum. It is closely
related to the standard map. The orbits of Fτ need not preserve energy
and they may be chaotic, whereas the trajectories of the simple pendulum
are of course not chaotic. �

We refer to the cited references, and to Ruth [1983], Feng [1986], Sanz-
Serna [1988] and references therein for more examples of this type, including
symplectic Runge–Kutta schemes.
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Variational Methods. A relatively new and powerful method for gener-
ating symplectic-momentum integrators is the variational technique, which
is described in Wendlandt and Marsden [1997]; see also MacKay [1992].
These are schemes that are based on a discrete version of Hamilton’s prin-
ciple and automatically lead to symplectic momentum integrators. The
discrete Lagrangian is in effect, the generating function for the algorithm
in the sense of §9.3 below.

In Simo, Tarnow, and Wong [1992], it is noted that “All of the im-
plicit members of the Newmark family, perhaps the most widely used time-
stepping algorithms in nonlinear structural dynamics, are not designed to
conserve energy and also fail to conserve momentum. Among the explicit
members, only the central difference method preserves momentum. Despite
this remark, it is shown that the Newmark family in fact is symplectic in
Kane, Marsden, Ortiz, and West [1999]. This is done by showing that the
algorithm is in fact, variational. It does not contradict the above quote be-
cause the conserved symplectic form differs from the “obvious” one, which
is not strictly conserved, by higher order terms in the time step, so is algo-
rithmically just as good a choice.

9.2 Limitations on Mechanical Integrators

A number of algorithms have been developed specifically for integrating
Hamiltonian systems to conserve the energy integral, but without attempt-
ing to capture all of the details of the Hamiltonian structure (see Example
D above and also Stofer [1987] and Greenspan [1974, 1984]). In fact, some
of the standard energy-conservative algorithms have poor momentum be-
havior over even moderate time ranges. This makes them unsuitable for
problems in satellite dynamics for example, where the exact conservation
of a momentum integral is essential to the control mechanism.

One can get angular momentum drift in energy-conservative simulations
of, for example, rods that are free to vibrate and rotate, and presumably
in the water molecule. To control such drifts and attain the high levels of
computational accuracy demanded by automated control mechanisms, one
would be forced to reduce computational step sizes to such an extent that
the numerical simulation would be prohibitively inefficient. Similarly, if one
attempts to use a standard energy-conservative algorithm to simulate both
the rotational and vibrational modes of a freely moving flexible rod, the
algorithm may predict that the rotational motion will come to a virtual
halt after only a few cycles! For a documented simulation of a problem
with momentum conservation, see Simo and Wong [1989]. One can readily
imagine that in the process of enforcing energy conservation one could upset
conservation of angular momentum.
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As we shall demonstrate in §9.4, the problem of how to generate a nu-
merical algorithm that exactly conserves momentum (or, more generally,
all momentum-like integrals of motion) is fairly easy to resolve. Since mo-
mentum integrals in Hamiltonian systems are associated with invariance of
the system under the action of symmetry groups, one might guess that to
derive momentum-conservative algorithms, one constrains the algorithm to
obey, in some sense, the same group invariance as the actual dynamics.

In traditional integrators, much attention has been paid to energy con-
servation properties, some, as we have noted to momentum conservation,
and even less to conserving the symplectic or Poisson structure. However,
one can imagine that it is also quite important.

The three notions of symplectic, energy, and momentum integrators are
connected in interesting ways. For example, as we shall show below, a re-
sult of Ge (see Ge and Marsden [1988]) is that under fairly weak additional
assumptions, a G-equivariant symplectic integrator is also momentum pre-
serving. For example, a symplectic integrator of this type applied to a free
rigid body motion would exactly preserve the angular momentum vector
in space.

Given the importance of conserving integrals of motion and the impor-
tant role played by the Hamiltonian structure in the reduction procedure
for a system with symmetry, one might hope to find an algorithm that
combines all of the desirable properties: conservation of energy, conserva-
tion of momenta (and other independent integrals), and conservation of
the symplectic structure. However, one cannot do all three of these things
at once unless one relaxes one or more of the conditions in the following
sense:

9.2.1 Proposition. If an algorithm is energy preserving, symplectic and
momentum preserving and if the dynamics is nonintegrable on the reduced
space (in the sense spelled out in the proof ) then the algorithm already
gives the exact solution of the original dynamics problem up to a time
reparametrization.

Proof. Suppose F∆t is our symplectic algorithm of the type discussed
above, and consider the application of the algorithm to the reduced phase
space. We assume that the Hamiltonian H is the only integral of motion
of the reduced dynamics, that is, all other integrals of the system have
been found and taken out in the reduction process in the sense that any
other conserved quantity (in a suitable class) is functionally dependent on
H. Since F∆t is symplectic it is the ∆t-time map of some time-dependent
Hamiltonian function K. Now assume that the symplectic map F∆t also
conserves H for all values of ∆t. Thus {H,K} = 0 = {K,H}. The latter
equation implies that K is functionally dependent on H since the flow of
H (the “true dynamics”) had no other integrals of motion. The functional
dependence of K on H in turn implies that their Hamiltonian vector fields
are parallel, so the flow of K (the approximate solution) and the flow of H
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(the exact solution) must lie along identical curves in the reduced phases
space; thus the flows are equivalent up to time reparametrization. �

Thus, it is unlikely one can find an algorithm that simultaneously con-
serves the symplectic structure, the momentum map, and the Hamiltonian.
It is tempting (but probably wrong) to guess from this that one can moni-
tor accuracy by keeping track of all three. Non-symplectic algorithms that
conserve both momentum and energy have been studied by Simo and Wong
[1989] and Austin, Krishnaprasad, and Wang [1993]. We study the basic
method in §9.5.

It is interesting to note that when adaptive time steps are used, the
arguments above no longer apply and indeed in this case it is possible
to find integrators that are, in an appropriate sense, symplectic, energy
preserving and momentum preserving, as shown in Kane, Marsden, and
Ortiz [1999].

9.3 Symplectic Integrators and Generating
Functions

Symplectic integrators based on generating functions have been developed
by a large number of people, starting with de Vogelaére [1956] and Feng
[1986]. We refer to Channell and Scovel [1990] and Ge [1991] for a survey.

Let us recall the following basic fact.

9.3.1 Proposition. If S : Q×Q→ R defines a diffeomorphism (q0, p0) 7→
(q, p) implicitly by

p =
∂S

∂q
and po = − ∂S

∂q0
(9.3.1)

then this diffeomorphism is symplectic.

Proof. Note that

dS =
∂S

∂qi
dqi +

∂S

∂q i
o

dq i
o = pidq

i − poidq
i

o

and so taking d of both sides, we get

dpi ∧ dqi = dpoi ∧ dq i
o

which means the diffeomorphism (9.3.1) is symplectic. �

Recall also one of the basic facts about Hamilton–Jacobi theory, namely
that the flow of Hamilton’s equations is the canonical transformation gen-
erated by the solution of the Hamilton–Jacobi equation

∂S

∂t
+H

(
q,
∂S

∂q

)
= 0 (9.3.2)
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where S(q0, q, t)|q=q0
t=0

generates the identity. (This may require singular be-

havior in t; for example, consider S = 1
2t (q − q0)2.) The strategy is to find

an approximate solution of the Hamilton–Jacobi equation for small time
∆t and to use this to obtain the algorithm using (9.3.1).

There are several other versions of the algorithm that one can also treat.
For example, if specific coordinates are chosen on the phase space, one can
use a generating function of the form S(qi, p0i, t). In this case one can get
the simple formula for a first order algorithm given in Example A in §9.1
by using S = p0iq

i − ∆tH(qi, p0i), which is easy to implement, and for
Hamiltonians of the form kinetic plus potential, leads to the stated explicit
symplectic algorithm. As explained in Ge [1991], one can use other types of
generating functions. For example, using the Poincaré generating function,
one recovers the mid-point scheme.

9.4 Symmetric Symplectic Algorithms
Conserve J

The construction of momentum-conserving algorithms, whether of symplec-
tic or energy–momentum type, requires that level sets of the momentum
map J remain invariant under the mapping ϕ : P → P that represents a
single iteration of the algorithm. We next give sufficient conditions under
which it is possible to obtain such a mapping in the symplectic case.

The argument is a modification of some ideas found in Ge and Marsden
[1988]. See also Ge [1991] and references therein. We make the following
assumptions:

(i) G is a Lie group acting symplectically on P and J : P → g∗ is an
associated momentum map for the action, with g representing the
action of g ∈ G;

(ii) ϕ : P → P is a symplectic map;

(iii) ϕ is G-equivariant: ϕ(gz) = gϕ(z), for all z ∈ P and g ∈ G.

Letting ξP = X〈J,ξ〉 designate the vector field corresponding to ξ ∈ g

under the action, we start by differentiating the equivariance condition

ϕ ◦ g = g ◦ ϕ

with respect to the group element in the direction of ξ at the identity of
the group. This results in ϕ∗ξP = ξP or, by definition of the momentum
map,

ϕ∗X〈J,ξ〉 = X〈J,ξ〉.

But ϕ∗X〈J,ξ〉 = X〈J,ξ〉◦ϕ from Assumption (iii), so

X〈J,ξ〉◦ϕ = X〈J,ξ〉.
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Since two Hamiltonian vector fields are equal if and only if the Hamiltonians
differ by a constant,

〈J, ξ〉 ◦ ϕ− 〈J, ξ〉 = constant.

We need 〈J, ξ〉 ◦ϕ = 〈J, ξ〉 for the value of J to be preserved by the map ϕ,
so we need to establish sufficient conditions under which the constant will
vanish.

An example of such conditions are:

(iv) P is a symplectic manifold endowed with an exact symplectic form
ω = −dθ;

(v) ϕ∗θ − θ, which is closed, is also G− exact; that is, if ϕ∗θ − θ = dS,
then S : P → R is a G-invariant generating function for the map ϕ;

(vi) 〈J, ξ〉 = iξpθ.

Then,

〈J, ξ〉 ◦ ϕ = ϕ∗〈J, ξ〉 = ϕ∗iξpθ (by (vi))

= iξpϕ
∗θ (by equivariance of ϕ)

= iξpθ + iξpdS (by (v)).

The first term in this last expression is 〈J, ξ〉 again, and the final term
vanishes by equivariance of S. Thus, the desired conservation condition,
〈J, ξ〉 ◦ ϕ = 〈J, ξ〉, follows from these assumptions.

Assuming that the original system is given in terms of canonical coordi-
nates on a cotangent bundle P = T ∗Q, we have ω = −dθ0, where θ0 = pidq

i

is the canonical one-form on the cotangent bundle. If the symmetry group
G acts by cotangent lifts, then vi follows automatically. Condition v is
equivalent to (9.1.1) if we regard S as a function of q0 and q.

This argument applies to all “types” of generating functions, but when
applied to ones of the form S(q0, q, t) we get:

9.4.1 Proposition. Suppose that S : Q × Q → R is invariant under
the diagonal action of G, that is, S(gq, gq0) = S(q, q0). Then the cotan-
gent momentum map J is invariant under the canonical transformation ϕS

generated by S, that is, J ◦ ϕS = J.

This may also be seen directly by differentiating the invariance condition
assumed on S with respect to g ∈ G in the direction of ξ ∈ g and utilizing
the definitions of ϕS , J, and ξQ. The following is also true: If G acts on
Q freely, and a given canonical transformation ϕ conserves J, then its
generating function S can be defined on an open set of Q × Q which is
invariant under the action of G, and S is invariant under the action of G.
This is proved in Ge [1991].
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Note that if H is invariant under the action of G, then the correspond-
ing solution of the Hamilton–Jacobi equation is G invariant as well. This
follows from the short time uniqueness of the generating function of the
type assumed for the flow of the Hamiltonian vector field XH determined
by H. It also follows from Proposition 9.4.1 that if the approximate solu-
tion of the Hamilton–Jacobi equation is chosen to be G-invariant, then the
corresponding algorithm will exactly conserve the momentum map.

For a start on the numerical analysis of symplectic integrators, see Sanz-
Serna [1988], Simo, Tarnow, and Wong [1992] and related papers. This
whole area needs further development for the community to be able to in-
telligently choose amongst various algorithms. For instance, from the point
of view of stability, the optimal second-order accurate symplectic integra-
tors are the mid point rule and the central difference method.

9.5 Energy–Momentum Algorithms

We now turn to some basic remarks on the construction of algorithms
that conserves the Hamiltonian and the momentum map, but will not, in
general, conserve the symplectic structure.

A class of algorithms satisfying this requirement can be obtained through
the steps outlined below. The geometry of the process is depicted in Fig-
ure 9.5.1.

(i) Formulate an energy-preserving algorithm on the symplectic reduced
phase space Pµ = J−1(µ)/Gµ or the Poisson reduced space P/G. If
such an algorithm is interpreted in terms of the primitive phase space
P , it becomes an iterative mapping from one orbit of the group action
to another.

(ii) In terms of canonical coordinates (q, p) on P , interpret the orbit-to-
orbit mapping described above and if P/G was used, impose the con-
straint J(qk, pk) = J(qk+1, pk+1). The constraint does not uniquely
determine the restricted mapping, so we may obtain a large class if
iterative schemes.

(iii) To uniquely determine a map from within the above class, we must
determine how points in one Gµ-orbit are mapped to points in an-
other orbit. There is still an ambiguity about how phase space points
drift in the Gµ-orbit directions. This drift is closely connected with
geometric phases (Chapter 6)! In fact by discretizing the geometric
phase formula for the system under consideration we can specify the
shift along each Gµ-orbit associated with each iteration of the map.

The papers of Simo and Wong [1989] and Austin, Krishnaprasad, and
Wang [1993] provide systematic methods for making the choices required
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projection

reduced space

constant energy

surfaces

-orbits

Figure 9.5.1. An energy preserving algorithm is designed on the reduced space
and is then lifted to the level set of the momentum map by specifying phase
information.

in Steps ii and iii. The general construction given above is, in fact, pre-
cisely the approach advocated in Simo, Tarnow, and Wong [1992]. There it
is shown that projection from the level set of constant angular momentum
onto the surface of constant energy can be performed implicitly or explic-
itly leading to predictor/corrector type of algorithms. From a numerical
analysis standpoint, the nice thing is that the cost involved in the actual
construction of the projection reduces to that of a line search (i.e., basi-
cally for free). The algorithm advocated in Simo and Wong [1989] is special
in the sense that the projection is not needed for Q = SO(3): the discrete
flow is shown to lie in the intersection of the level set of angular momentum
and the surface of constant energy. This algorithm is singularity-free and
integrates the dynamics exactly up to a time reparametrization, consistent
with the restrictions on mechanical integrators given in §9.2. Extensions
of these schemes to elasticity, rods and shells suitable for large-scale cal-
culation and amenable to parallelization are given in Simo, Fox, and Rifai
[1991], and Simo and Doblare [1991].
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9.6 The Lie–Poisson Hamilton–Jacobi
Equation

Suppose that we are able to produce a G-invariant generating function S.
Since it is G-invariant, it can be reduced, either by symplectic or Poisson
reduction to produce an algorithm on the reduced space. It also gives rise
to a reduced version of Hamilton–Jacobi theory. This can be applied to, for
example, the rigid body in body representation or, in principle, to fluids
and plasmas in the spatial representation. Instead of giving the generalities
of the theory, we shall illustrate it in an important case, namely, with the
case of Lie–Poisson reduction, whereby we take Q = G, so the reduced
space T ∗Q/G is isomorphic with the dual space g∗ with the Lie–Poisson
bracket (with a plus sign for right reduction and a minus sign for left
reduction). We shall give the special case of the rigid body for illustration,
taking G = SO(3). Since the momentum map is preserved, one also gets
an induced algorithm on the coadjoint orbits, or in the more general cases,
on the symplectic reduced spaces. The proofs can be routinely provided by
tracing through the definitions.

We begin with the reduced Hamilton–Jacobi equation itself. Thus, let
H be a G-invariant function on T ∗G and let HL be the corresponding left
reduced Hamiltonian on g∗. (To be specific, we deal with left actions—of
course there are similar statements for right reduced Hamiltonians.) If S
is invariant, there is a unique function SL such that S(g, g0) = SL(g−1g0).
(One gets a slightly different representation for S by writing g−1

0 g in place
of g−1g0.)

9.6.1 Proposition. The left reduced Hamilton–Jacobi equation is the
following equation for a function SL : G→ R:

∂SL

∂t
+HL(−TR∗

g · dSL(g)) = 0 (9.6.1)

which we call the Lie–Poisson Hamilton–Jacobi equation. The Lie–
Poisson flow of the Hamiltonian HL is generated by the solution SL of (9.6.1)
in the sense that the flow is given by the Poisson transformation of g∗ :
Π0 7→ Π defined as follows: Define g ∈ G by solving the equation

Π0 = −TL∗
g · dgSL (9.6.2)

for g ∈ G and then setting

Π = Ad∗
g−1Π0. (9.6.3)

Here Ad denotes the adjoint action and so the action in (9.6.3) is the
coadjoint action. Note that (9.6.3) and (9.6.2) give Π = −TR∗

g · dSL(g).
Note also that (9.6.2) and (9.6.3) are the analogues of equation (9.1.1)
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and that (9.6.1) is the analogue of (9.1.2). Thus, one can obtain a Lie–
Poisson integrator by approximately solving (9.6.1) and then using (9.6.2)
and (9.6.3) to generate the algorithm. This algorithm (9.6.3) manifestly
preserves the coadjoint orbits (the symplectic leaves in this case). As in the
canonical case, one can generate algorithms of arbitrary accuracy this way.

There may be conditions necessary on Π0 for the solvability of equa-
tion (9.6.2). This is noted in the example of the rigid body below.

For the case of the rigid body, these equations read as follows. First,
Equation (9.6.1) reads

∂SL

∂t
+HL(−∇SL(A) ·AT ) = 0, (9.6.4)

that is,

∂SL

∂t
+HL

(
− ∂SL

∂Ai
j

Ak
j

)
(9.6.5)

(sum over j) where the action function SL is a function of an orthogonal
matrix A and where we have identified tangent and cotangent spaces using
the bi-invariant metric on the rotation group. This metric corresponds to
the standard Euclidean metric on the Lie algebra, when identified with
Euclidean 3-space. This identification maps the Lie algebra bracket to the
cross product. The expression∇SL(A)·AT is a skew symmetric matrix, that
is, it lies in the Lie algebra so(3), so it makes sense for HL to be evaluated
on it. As usual, one has to be careful how the gradient (derivative) ∇SL is
computed, since there is a constraint AAT = I involved. If it is computed
naively in the coordinates of the ambient space of 3× 3 matrices, then one
interprets the expression ∇SL(A) · AT using naive partial derivatives and
skew symmetrizing the result; this projects the gradient to the constraint
space, so produces the gradient of the constrained function.

Equation (9.6.5) thus is the Hamilton–Jacobi equation for the dynam-
ics of a rigid body written directly in body representation. The flow of the
Hamiltonian is generated by SL in the following way: It is the transforma-
tion of initial conditions at time t = 0 to a general t determined by first
solving the equation

Π̂0 = −AT · ∇SL(A) (9.6.6)

for the matrix A and then setting Π = AΠ0, where Π̂ = [Πi
j ] is the skew

matrix associated to the vector Π in the usual way: Π̂ · v = Π× v. (Again,
the right hand side of (9.6.6) is to be skew symmetrized if the derivative was
taken in the naive way with the constraint ignored.) We have written the
result in terms of the body angular momentum vector Π; one can rewrite it
in terms of the body angular velocity vector by using the relation Π = Iω,
where I is the moment of inertia tensor. In coordinates, equation (9.6.6)
reads as follows:

(Π0)
k
i = −Aj

i

∂SL

∂Aj
k

. (9.6.7)
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Finally, we note that similar equations also apply for fluids and plasmas,
since they are also Lie–Poisson systems (but with right reduction). Also,
the methods here clearly will generalize to the situation for reduction of
any cotangent bundle; this generality is needed for example, for the case of
free boundary fluids—see Lewis, Marsden, Montgomery, and Ratiu [1986].
One of the ideas of current interest is to use mechanical integrators on
vortex algorithms. For example, one can use it on point vortices in the
plane (Pullin and Saffman [1991]) or on vortex dipoles in three space (cf.
Rouhi and Wright [1988]) both of which live on finite dimensional coadjoint
orbits for the Euler equations (Marsden and Weinstein [1983]).

A general way to construct first order algorithms valid in the Lie–Poisson
setting (as well as its analogues in the symplectic and Poisson context) is
as follows. Let H : g∗ → R be a given Hamiltonian function and let S0 be
a function that generates a Poisson transformation ϕ0 : g∗ → g∗ and let

S∆t = S0 + ∆tH(L∗
gdS0). (9.6.8)

For small ∆t, (9.6.8) generates a Poisson transformation, say ϕ∆t : g∗ → g∗.
Then we have:

9.6.2 Proposition. With the assumptions above, the algorithm

Πk 7→ Πk+1 = ϕ−1
0 ◦ ϕ∆t(Π

k) (9.6.9)

is a Poisson difference scheme that is a first order difference scheme for
the Hamiltonian system with Hamiltonian H.

In particular, if one can generate the identity transformation with a
function S0, then one can get a specific first order scheme. On G, one can
introduce singularities in the time variable to do this, as we have already re-
marked. Interestingly, for g semisimple, one can do this in a non-singular

way on g∗. In fact, in this case, the function

S0(g) = trace(Ad∗
g) (9.6.10)

generates the identity in a G-invariant neighborhood of the zero of g∗. One
can also check this with a direct calculation using (9.6.2) and (9.6.3). The
neighborhood condition is necessary since there may be some restrictions
on Π0 required for the solvability of (9.6.2). For example, for the rigid body
the condition is checked to be ‖Π0‖ < 1. This condition can be dealt with
using a scaling argument. We note that when one solves (9.6.2) for g, it
need not be the identity, and consistent with (9.6.3) we observe that the
solution g lies in the coadjoint isotropy of the element Π0.

More generally, we say that a Lie algebra is a regular quadratic Lie

algebra if there is a symmetric, Ad-invariant, non-degenerate bilinear form
on g.
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9.6.3 Proposition. There is a function S0 defined in some neighborhood
of the identity element in G that generates the identity map of g∗ iff g is a
regular quadratic Lie algebra.

Proof. If S0 exists, define the bilinear form B : g× g→ R by

B(ξ, η) =
d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

S0(exp(sξ) exp(tη))

for ξ, η ∈ g. One verifies B is Ad-invariant and is non-degenerate from the
fact that S0 generates the identity. Conversely, given B, define S0 by

S0(g) = B(log g, log g) (9.6.11)

where log is a local inverse of the exponential map. �

Combining (9.6.8) and (9.6.10) we get the following proposition.

9.6.4 Proposition. The generating function

S∆t(g) = trace(Ad∗
g) + ∆tH(L∗

gd trace(Ad∗
g)). (9.6.12)

defines, via (9.6.2) and (9.6.3), a Poisson map that is a first order Poisson
integrator for the Hamiltonian H.

We remark that this scheme will automatically preserve additional con-
served quantities on g∗ that, for example, arise from invariance of the
Hamiltonian under a subgroup of G acting on the right . This is the situa-
tion for a rigid body with symmetry and fluid flow in a symmetric container
(with left and right swapped), for instance.

9.7 Example: The Free Rigid Body

For the case of the free rigid body, we let so(3), the Lie algebra of SO(3), be
the space of skew symmetric 3×3 matrices. An isomorphism between so(3)
and R is given by mapping the skew vector v to the matrix v̂ defined previ-
ously. Using the Killing form 〈A,B〉 = 1

2 trace(ATB), which corresponds to
the standard inner product on R3, that is, 〈v̂, ŵ〉 = v ·w, we identify so(3)
with so(3)∗. We write the Hamiltonian H : so(3) → R as H(v̂) = 1

2v · Iv,
where I is the moment of inertia tensor. Let Î : so(3) → so(3) be de-
fined by Î(v̂) = (Iv)̂. Thus, H(v̂) = 1

4 〈v̂, Î(v̂)〉. Equation (9.6.10) becomes
S0(A) = trace(A) and so TL∗

AdS0 = 1
2 (A − AT ). Therefore, (9.6.12) be-

comes

S∆t(A) = trace(A) + ∆tH

(
1

2
(A−AT )

)
(9.7.1)
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and so Proposition 9.6.2 gives the following specific Lie–Poisson algorithm
for rigid body dynamics: It is the scheme Πk 7→ Πk+1 defined by

Π̂k =
1

2

[
1

4
{AÎ(A−AT ) + Î(A−AT )AT }∆t+ (A−AT )

]
, (9.7.2)

Π̂k+1 =
1

2

[
1

4
{Î(A−AT )A+AT Î(A−AT )}∆t+ (A−AT )

]
(9.7.3)

where, as before, the first equation is to be solved for the rotation matrix A
and the result substituted into the second. Letting AS = 1

2 [A−AT ] denote
the skew part of the matrix A, we can rewrite the scheme as

Π̂k = AS + (AÎAS)S∆t, (9.7.4)

Π̂k+1 = AS + (AT ÎAS)S∆t. (9.7.5)

Of course, one can write A = exp(ξ) and solve for ξ and express the
whole algorithm in terms of g and g∗ alone. This type of algorithm does
not keep track (except implicitly) of the rigid body phase. One can imagine
combining the ideas here with those in Chapter 6 to do that.

We know from the general theory that this scheme will automatically
be Poisson and will, in particular, preserve the coadjoint orbits, that is,
the total angular momentum surfaces ‖Π‖2 = constant. Of course, using
other choices of S0, it is possible to generate other algorithms for the rigid
body, but the choice S0(A) = trace(A) is particularly simple. We point
out the interesting feature that the function (9.6.10) for the case of ideal
Euler fluid flow is the function that assigns to a fluid placement field ϕ (an
element of the diffeomorphism group of the containing region) the trace
of the linear operator ω 7→ ϕ∗ω, on vorticity fields ω, which measures the
vortex distortion due to the nonrigidity of the flow. (See Marsden and
Weinstein [1983] for further information.)

9.8 PDE Extensions

There have been some interesting developments in symplectic-type inte-
grators for PDE’s. One point of view is to regard a PDE as an ordinary
differential equation on an infinite dimensional space and to apply sym-
plectic (or energy-momentum) algorithms to this context. Another point
of view is to develop the local description of a PDE in terms of jet bundles.
This point of view has been a very rich one within the development of the
calculus of variations and has led to the subject of multisymplectic geome-
try. See, for example, Marsden and Shkoller [1998] and references therein
for this approach.

Within this point of view, the variational technique of constructing sym-
plectic integrators has been interesting. This allows, for example, one to
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take a truly spacetime point of view in the development of symplectic inte-
grators. This development is given in Marsden, Patrick and Shkoller [1998]
who also show that this approach leads to very effective algorithms for
specific PDE’s, such as the sine-Gordon equation.
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10
Hamiltonian Bifurcation

In this chapter, we study some examples of bifurcations in the Hamilto-
nian context. A lot of the ideas from the previous chapters come into this
discussion, and links with new ones get established, such as connections
with chaotic dynamics and solution spaces in relativistic field theories. Our
discussion will be by no means complete; it will focus on certain results of
personal interest and results that fit in with the rest of the chapters. Some
additional information on bifurcation theory in the Hamiltonian context
may be found in the references cited below and in Abraham and Marsden
[1978], Arnold [1989], Meyer and Hall [1991] and the references therein.

10.1 Some Introductory Examples

Bifurcation theory deals with the changes in the phase portrait structure
of a given dynamical system as parameters are varied. One usually begins
by focussing on the simplest features of the phase portrait, such as equi-
librium points, relative equilibria, periodic orbits, relative periodic orbits,
homoclinic orbits, etc., and studies how they change in number and sta-
bility characteristics as the system parameters are changed. Often these
changes lead to new structures, such as more equilibria, periodic orbits,
tori, or chaotic solutions, and the way in which stability or instability is
transferred to these new structures from the old ones is of interest.

As we pointed out in Chapter 2, the symmetry (isotropy) group of a
point in phase space determines how degenerate it is for the momentum
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map. Correspondingly, one expects (see Golubitsky, Stewart, and Schaeffer
[1988]), that these symmetry groups will play a vital role in the bifurca-
tion theory of relative equilibria and its connections with dynamic stability
theory. The beginnings of this theory have started and as it evolves, it will
be tightly tied with the normal form methods and with the topology of
the level sets of H × J and their associated bifurcations as the level set
values and other system parameters vary. To begin, one can look at the
case in which the symmetry group of a point is discrete, so that the point
is a regular value of the momentum map. Already this case is reasonably
rich; we shall comment on the more general case in §10.5 below. In the case
of discrete symmetry groups, the energy momentum method can be used
to help put the linearized system into normal form and from this one can
calculate the stability transitions, and the eigenvalue evolution.

To begin with a simple example, consider a ball moving with no friction
in a hoop constrained to rotate with angular velocity ω (Figure 10.1.1).

z

x

y

R

g = acceleration

      due to gravity

Figure 10.1.1. A ball in a rotating hoop.

In a moment we shall show that as ω increases past
√
g/R, the stable

equilibrium at θ = 0 becomes unstable through a Hamiltonian pitchfork
bifurcation (Figure 10.1.2). The symmetry of these phase portraits is a
reflection of the original Z2 symmetry of the mechanical system. One can
break this symmetry by, for example, putting the rotation axis slightly off-
center, as we shall discuss below. Breaking this symmetry is an example of
system symmetry breaking since it is the whole system that loses the
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symmetry. In Figure 10.1.2 notice that the stable solution at the origin has
Z2 symmetry, before the bifurcation, but that the stable solutions for larger
ω do not. This is an example of solution symmetry breaking within a
symmetric system.

increasing

Figure 10.1.2. Hamiltonian pitchfork bifurcation as ω passes criticality.

This example will be compared with bifurcations of a planar liquid drop
(with a free boundary held with a surface tension τ) following Lewis, Mars-
den, and Ratiu [1987] and Lewis [1989]. In this example, a circular drop
loses its circular symmetry to a drop with Z2×Z2 symmetry as the angular
momentum of the drop is increased (although the stability analysis near
the bifurcation is somewhat delicate). There are also interesting stability
and bifurcation results in the dynamics of vortex patches, especially those
of Wan in a series of papers starting with Wan and Pulvirente [1984].

The ball in the hoop is an example of a steady state bifurcation. This
situation is already complicated, even when only discrete symmetry of the
underlying system is considered. A similar bifurcation occurs in the dy-
namics of rotating planar coupled rigid bodies, as was analyzed by Oh,
Sreenath, Krishnaprasad, and Marsden [1989] and in the bifurcations of
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two coupled rigid bodies, as in Patrick [1989, 1990]. It also occurs in our
double spherical pendulum, as we shall see.

Another basic bifurcation in the Hamiltonian context is the one-to-one
resonance, or the Hamiltonian Hopf bifurcation. In this case, two eigenval-
ues of the system linearized at a given equilibrium (or relative equilibrium)
come together on the imaginary axis—that is, two frequencies in the sys-
tem become equal. This is the Hamiltonian analogue of the well known
Poincaré–Hopf bifurcation for nonhamiltonian vector fields.

A classical example of the Hamiltonian Hopf bifurcation is the fast slow
transition in an upright spinning heavy Lagrange top. When the top makes
the transition from a fast top to a slow top

ω ↓ 2
√
MgℓI1
I3

an instability sets in of this sort. For a study of the possible bifurcations in
the dynamics of a heavy top see Lewis, Ratiu, Simo, and Marsden [1992].

Behavior of this sort is sometimes called a gyroscopic instability , or a
Krein collision (see Krein [1950]). Here more complex dynamic behav-
ior ensues, including periodic and chaotic motions (see also Holmes and
Marsden [1983] and references therein for how chaotic motion is related to
a homoclinic orbit that grows out of the fast-slow transition).

Next, we give a few more details for the ball moving in a rotating hoop.
The particle is assumed to have mass m and be acted on by gravitational
and frictional forces, as well as constraint forces that keep it on the hoop.
The hoop itself is spun about a vertical axis with constant angular velocity
ω, as in Figure 10.1.3.

The position of the ball in space is specified by the angles θ and ϕ, as
shown. We can take ϕ = ωt, so the position of the ball becomes determined
by θ alone. Let the orthonormal frame along the coordinate directions eθ,
eϕ, and er be as shown. The forces acting on the particle are:

1. Friction, proportional to the velocity of the ball relative to the hoop:
−νRθ̇eθ, where ν ≥ 0 is a constant.

2. Gravity: −mgk.

3. Constraint forces in the directions er and eϕ to keep the ball in the
hoop.

The equations of motion are derived from Newton’s second law F = ma.
To get them, we calculate the acceleration a. Relative to the xyz coordinate
system, we have

x = R sin θ cosϕ

y = R sin θ sinϕ (10.1.1)

z = −R cos θ.
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x

z

y

R

Figure 10.1.3. Coordinates for the derivation of the equations.

Calculating the second derivatives using ϕ = ωt and the chain rule in (10.1.1)
gives

ẍ = −ω2x− θ̇2x+ (R cos θ cosϕ)θ̈ − 2Rωθ̇ cos θ sinϕ,

ÿ = −ω2y − θ̇2y + (R cos θ sinϕ)θ̈ + 2Rωθ̇ cos θ cosϕ, (10.1.2)

z̈ = −zθ̇2 +R sin θθ̈.

If i,J,k denote unit vectors along the x, y, and z axes respectively, then

eθ = (cos θ cosϕ)i + (cos θ sinϕ)J + sin θk. (10.1.3)

In F = ma, F is the sum of the three forces described earlier and

a = ẍi + ÿJ + z̈k. (10.1.4)

The eϕ and er components of F = ma tell us what the constraint forces
must be; the equation of motion comes from the eθ component:

F · eθ = ma · eθ. (10.1.5)

Using (10.1.3), the left side of (10.1.5) is

F · eθ = −νRθ̇ −mg sin θ (10.1.6)

while from (10.1.1)–(10.1.4), the right side of (10.1.5) is, after some algebra,

ma · eθ = mR{θ̈ − ω2 sin θcosθ}. (10.1.7)
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Comparing (10.1.5), (10.1.6), and (10.1.7), we get

θ̈ = ω2 sin θ cos θ − ν

m
θ̇ − g

R
sin θ (10.1.8)

as the equation of motion. Several remarks concerning (10.1.8) are in order:

(i) If ω = 0 and ν = 0, (10.1.8) reduces to the pendulum equation

Rθ̈ + g sin θ = 0. (10.1.9)

In fact our system can be viewed just as well as a whirling planar

pendulum .

We notice that (10.1.8), when expressed in terms of the angular mo-
mentum is formally the same as the reduction of the spherical pendu-
lum. See equation (3.5.9). It is interesting that (10.1.8) is nonsingular
near θ = 0, whereas (3.5.9) has a singularity.

(ii) For ν = 0, (10.1.8) is Hamiltonian with respect to q = θ, p = mR2θ̇,
the canonical bracket structure

{F,K} =
∂F

∂q

∂K

∂p
− ∂K

∂q

∂F

∂p

and energy

H =
p2

2m
−mgR cos θ − mR2ω2

2
sin2 θ. (10.1.10)

We can also use Lagrangian methods to derive (10.1.8). From the figure,
the velocity is v = Rθ̇eθ + (ωR sin θ)eϕ, so

T =
1

2
m‖v‖2 =

1

2
m(R2θ̇2 + [ωR sin θ]2) (10.1.11)

while the potential energy is,

V = −mgR cos θ, (10.1.12)

so we choose

L = T − V =
1

2
mR2θ̇2 +

mR2ω2

2
sin2 θ +mgR cos θ. (10.1.13)

The Euler–Lagrange equations

d

dt

∂L

∂θ̇
− ∂L

∂θ
= T

then give (10.1.8). The Legendre transform gives p = mR2θ̇ and the Hamil-
tonian (10.1.10).
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Consider equilibrium solutions; that is, solutions satisfying θ̇ = 0, and
θ̈ = 0; (10.1.8) gives

Rω2 sin θ cos θ = g sin θ. (10.1.14)

Certainly θ = 0 and θ = π solve (10.1.14) corresponding to the particle at
the bottom or top of the hoop. If θ 6= 0 or π, (10.1.14) becomes

Rω2 cos θ = g (10.1.15)

which has two solutions when g/(Rω2) < 1. The value

ωc =

√
g

R
(10.1.16)

is the critical rotation rate. (Notice that ωc is the frequency of linearized
oscillations for the simple pendulum that is, for Rθ̈ + gθ = 0.) For ω < ωc

there are only two solutions θ = 0, π, while for ω > ωc there are four
solutions,

θ = 0, π,± cos−1
( g

Rω2

)
. (10.1.17)

We say that a Hamiltonian pitchfork bifurcation occurs as ω crosses
ωc.

This system with ν = 0 is symmetric in the sense that the symplectic Z2-
action given by θ 7→ −θ, and θ̇ 7→ −θ̇ leaves the phase portrait invariant. If
this Z2 symmetry is broken, by setting the rotation axis a little off center,
for example, then one side gets preferred, as in Figure 10.1.4. Let ǫ denote
the off-center distance, so ǫ is a symmetry breaking parameter .

Figure 10.1.4. The ball in the off-center hoop.

The evolution of the phase portrait for ǫ 6= 0 is shown in Figure 10.1.5.
Near θ = 0, the potential function has changed from the symmetric

bifurcation in Figure 10.1.2 to the unsymmetric one in Figure 10.1.6. This
is the cusp catastrophe .
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Figure 10.1.5. Phase portrait for the ball in the off-center hoop.

(a)

(b)

Figure 10.1.6. Potential for the centered and off-center ball in the hoop as the
angular velocity increases.

Aside For the symmetric ball in the hoop, imagine that the hoop is
subject to small periodic pulses; say ω = ω0 + ǫ cos(ηt), or perhaps the
hoop is coupled to another oscillator. Using the Melnikov method described
below, it is reasonable to expect that the resulting time periodic system
has horseshoe chaos if ǫ and ν are both small, but ǫ/ν is large enough. �

10.2 The Role of Symmetry

Consider a Hamiltonian vector field XH on a phase space P depending on a
parameter λ (like the angular velocity of the hoop in Figure 10.1.1) and we
have a given curve z(λ) of equilibrium solutions—these can also be relative
equilibria if we work on the reduced phase space. If we linearize the vector
field at the equilibrium we get a linear Hamiltonian system on the tangent
space Tz(λ)P and we can examine its eigenvalues. For relative equilibria
that have at most discrete symmetry, one can apply the same procedure to
the reduced vector field, where one sees a genuine equilibrium. The possible
movement of eigenvalues that we focus on are illustrated by the following
two cases:
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1. (Steady-state bifurcation) The equilibrium has a zero eigenvalue of
multiplicity two.

2. (One-to-one resonance) The equilibrium has a pair of purely imagi-
nary eigenvalues of multiplicity 2. (Without loss of generality, we may
assume that these eigenvalues are ±i.)

In Case 1, the kernel of the linearization is a two-dimensional symplectic
subspace. As the bifurcation parameter is varied, generically the eigenvalues
go from purely imaginary to real, or vice-versa.

In Case 2, the sum of the eigenspaces of the eigenvalues ±i can be written
as the sum of two ω-orthogonal two-dimensional symplectic subspaces. This
time, generically the eigenvalues go from purely imaginary into the right
and left hand complex plane, or vice versa. In each of these cases we say
that the eigenvalues split , (see Figure 10.2.1). The one-to-one resonance
with splitting is often called the Hamiltonian Hopf bifurcation (see
van der Meer [1985]).

(a)

(b)
i

-i

i

-i

i

-i

Figure 10.2.1. The splitting case; (a) for the steady state bifurcation, (b) for the
one-to-one resonance.

In some applications the eigenvalues do not split at 0 or ±i, but rather,
they remain on the imaginary axis and pass, as in Figure 10.2.2.

Symmetry can influence the above generic behavior (see Golubitsky,
Stewart, and Schaeffer [1988]). Indeed, for certain symmetry groups (such
as the circle group S1), the passing of eigenvalues may be generic in a one
parameter family. Galin [1982] shows that without symmetry, the generic
situation is splitting and one would require three parameters to see passing.
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(a)

(b)
i

-i

i

-i

i

-i

Figure 10.2.2. The passing case; (a) for the steady state bifurcation, (b) for the
one-to-one resonance.

In the steady state case, the dichotomy in eigenvalue movements can be
understood using definiteness properties of the Hamiltonian, that is, by
energetics, or group theoretically . The group theoretic approach was
discussed in Golubitsky and Stewart [1987]. The energetics method has a
complex history, going back to at least Cartan [1922]—a modern reference
is Oh [1987]. For example, one can sometimes say that a S1 symmetry
forces the eigenvalues to stay on the imaginary axis, or one can say that
eigenvalues must split because the second variation changes from positive
definite to indefinite with just one eigenvalue crossing through zero. These
methods have also been used extensively in the study of solitons; see Pego
and Weinstein [1992] and references therein.

Here are some simple observations about the method of energetics. Start
with a linear (or linearized) Hamiltonian system and write it in the form
XH = JB where B is a symmetric matrix whose associated quadratic form
is the Hamiltonian H and where J =

[
0 1
−1 0

]
is the Poisson tensor. If H is

positive (or negative) definite, then the spectrum of XH is on the imaginary
axis—this follows because the system is necessarily stable, and the spec-
trum of XH is symmetric under reflection in the two axis of the complex
plane, so the spectrum must be confined to the imaginary axis. If H has an
odd number of eigenvalues that are negative, then taking the determinant,
we see that since J has determinant one, XH has a negative determinant.
Thus in this case, it must have at least one pair of real eigenvalues, and
therefore be linearly unstable. If H has the standard form of kinetic plus
potential energy, and the kinetic term is positive definite, and the potential
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energy has at least one negative eigenvalue, then again XH has real eigen-
values, and so is linearly unstable. However, for gyroscopic systems, such
as those that arise in reduction, the situation is not so simple, and deeper
insight is needed.

An example relevant to the above remarks concerns bifurcations of rel-
ative equilibria of a rotating liquid drop: the system consists of the two
dimensional Euler equations for an ideal fluid with a free boundary. A
rigidly rotating circular drop is an equilibrium solution (in the spatially
reduced equations). The energy–Casimir method shows stability, provided

Ω2

12R3τ
< 1. (10.2.1)

Here Ω is the angular velocity of the circular drop, R is its radius and τ is
the surface tension, a constant. As Ω increases and (10.2.1) is violated, the
stability of the circular solution is lost and is picked up by elliptical-like
solutions with Z2 × Z2 symmetry. (The bifurcation is actually subcritical
relative to Ω and is supercritical relative to the angular momentum.) This
is proved in Lewis, Marsden, and Ratiu [1987] and Lewis [1989], where
other references may also be found (see Figure 10.2.3).

circular stable solutions uniformly rotating elliptical-like solutions

increasing

angular

momentum
R

Figure 10.2.3. The bifurcation of the rotating planar liquid drop.

During this transition, the eigenvalues stay on the imaginary axis—they
are forced to because of the symmetry. This is consistent with the energetics
approach since an even number of eigenvalues of the second variation cross
through zero, namely two. The situation for the ball in the hoop and the
liquid drop examples is presented in Figure 10.2.4.

Energetics or group theory alone is not sufficient to characterize the
movement of eigenvalues in the one-to-one resonance. The work of Dellnitz,
Melbourne, and Marsden [1992] uses a combination of group theory and
energetics that gives a particularly clean characterization of the splitting
and passing cases. We summarize some relevant notation to explain these
results.

Assume that the quadratic Hamiltonian is invariant under a compact Lie
group Γ that preserves the symplectic structure. A Γ-invariant subspace V
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(a) with symmetry (b) without symmetry

Figure 10.2.4. Eigenvalue evolution for the liquid drop and the ball in the hoop.

is called absolutely Γ-irreducible if the only linear mappings V → V
that commute with the action of Γ are real multiples of the identity. An
Γ-irreducible subspace that is not absolutely Γ-irreducible is called non-

absolutely Γ-irreducible . For example, the rotation group SO(2) acting
on the plane is nonabsolutely irreducible since any rotation commutes with
this action, but nevertheless, the action is irreducible (has no nontrivial
invariant subspaces). On the other hand, the rotation group SO(3) acting
in the usual way on three space is absolutely Γ-irreducible, as is easy to
check.

Golubitsky and Stewart [1987] show that for steady-state bifurcation,
generically the generalized zero eigenspace E0 is either nonabsolutely Γ-
irreducible or the direct sum of two isomorphic absolutely Γ-irreducible
subspaces. These two possibilities correspond respectively to the passing
or splitting of eigenvalues. In terms of energetics, the Hamiltonian changes
from definite to indefinite in the splitting case, but remains definite in the
passing case.

In the case of one-to-one resonance, generically the sum of the general-
ized eigenspaces of ±i, E±i, can be written as the sum of two symplectic
ω-orthogonal subspaces U1 and U2, where each of the Uj is either non-
absolutely Γ-irreducible or the direct sum of two isomorphic absolutely
Γ-irreducible subspaces.

The main result of Dellnitz, Melbourne, and Marsden [1992] concerns
the generic movement of eigenvalues in this situation. The most difficult
cases are when U1 and U2 are isomorphic. In fact,

if U1 and U2 carry distinct representations of Γ then the reso-
nance decouples and the eigenvalues move independently along
the imaginary axis (independent passing).
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To understand the cases where U1 and U2 are isomorphic, one uses the
results of Montaldi, Roberts, and Stewart [1988,1990] on the relationship
between the symmetry and the symplectic structure. At this stage it be-
comes necessary to distinguish between the two types of nonabsolutely
Γ-irreducible representations: complex and quaternionic. Here, one uses
the fact that for a Γ-irreducible representation, the space of linear map-
pings that commute with Γ is isomorphic to the reals, complexes, or to the
quaternions. The real case corresponds to the absolutely irreducible case,
and in the nonabsolutely irreducible case, one has either the complexes or
the quaternions. If the Uj are isomorphic complex irreducibles, then in the
terminology of Montaldi, Roberts, and Stewart [1988], they are either of
the same type or dual . When they are of the same type, one has a sym-
plectic form that can be written as J = [ i 0

0 i ] and in the case of duals, the
symplectic form can be written as J =

[
i 0
0 −i

]
.

There are three cases:

1. Provided U1 and U2 are not complex irreducibles, generically the
eigenvalues split and H is indefinite.

2. If U1 and U2 are complex of the same type, then generically the
eigenvalues pass and H is indefinite.

3. In the case of complex duals the eigenvalues can generically pass
or split and these possibilities correspond precisely to definiteness
and indefiniteness of the quadratic form induced on U1 ⊕ U2 by the
linearization.

10.3 The One-to-One Resonance and Dual
Pairs

An interesting discussion of the one-to-one resonance is given in Cushman
and Rod [1982] and Marsden [1987]. Consider a family of Hamiltonians
depending on a parameter λ near one of the form

H =
1

2
(q21 + p2

1) +
λ

2
(q22 + p2

2) + higher order terms. (10.3.1)

Notice that the quadratic part of this Hamiltonian has a S1×S1 symmetry
acting separately on both factors and so we have, in the terminology of the
preceding section, independent passing. Notice that H is definite in this
case. The oscillators have the same frequency when λ = 1, corresponding
to the one-to-one resonance. To analyze the dynamics of H, it is important
to utilize a good geometric picture for the critical case when λ = 1 and we
get the unperturbed Hamiltonian

H0 =
1

2
(q21 + p2

1 + q22 + p2
2). (10.3.2)
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The energy level H0 = constant is the three sphere S3 ⊂ R4. If we think of
H0 as a function on C2 by letting

z1 = q1 + ip1 and z2 = q2 + ip2,

then H0 = (|z1|2+|z2|2)/2 and so H0 is invariant under the action of SU(2),
the complex 2× 2 unitary matrices of determinant one. The corresponding
conserved quantities are

W1 = 2(q1q2 + p1p2)

W2 = 2(q2p1 − q1p2) (10.3.3)

W3 = q21 + p2
1 − q22 − p2

2

which comprise the components of a (momentum) map for the action of
SU(2) on C2:

J : C
2 ∼= R

4 → su(2)∗ ∼= R
3. (10.3.4)

From the relation 4H2
0 = W 2

1 +W 2
2 +W 2

3 , one finds that J restricted to S3

gives a map
j : S3 → S2. (10.3.5)

The fibers j−1(point) are circles and the dynamics of H0 moves along these
circles. The map j is the Hopf fibration which describes S3 as a topologi-
cally nontrivial circle bundle over S2. (The reduction of R4 by the action by
the flow of H0 is S2.) Apparently the role of the Hopf fibration in mechanics
was already known to Reeb around 1950.

With P = C2, we have a basic example of a dual pair determined by the
above momentum maps (see Example A of §8.3 and the Example in §8.5).
See Figure 10.3.1.

C2

J H0

su(2)∗ R

❅
❅

❅
❅❘

�
�

�
�✠

Figure 10.3.1. The dual pair of the harmonic oscillator.

Normal form theory allows one (up to finite order) to change coordinates
by averaging over the S1 action determined by the flow of H0. In this way
one gets a new Hamiltonian H from H that is S1 invariant. Since we have
a dual pair, such an H can be written as

H = h ◦ J. (10.3.6)

In other words, a function invariant on one side collectivizes on the other .
In particular, since J is a Poisson map, the dynamics of H can be reduced
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to dynamics on su(2)∗ ∼= R3 with the rigid body Lie–Poisson structure.
This proves one of the results of Cushman and Rod [1982]. This procedure
can be of help in locating interesting bifurcations, as in David, Holm, and
Tratnik [1990].

The Hopf fibration occurs in a number of other interesting mechanical
systems. One of these is the free rigid body. When doing reduction for the
rigid body, we construct the reduced space J−1(µ)/Gµ = J−1(µ)/S1, which
is the sphere S2. Also, J−1(µ) is topologically the same as the rotation
group SO(3), which in turn is the same as S3/Z2. Thus, the reduction
map is a map of SO(3) to S2. Such a map is given explicitly by taking an
orthogonal matrix A and mapping it to the vector on the sphere given by
Ak, where k is the unit vector along the z-axis. This map that does the
projection is in fact a restriction of a momentum map and, when composed
with the map of S3 ∼= SU(2) to SO(3), is just the Hopf fibration again.
Thus, not only does the Hopf fibration occur in the one-to-one resonance,
it occurs in the rigid body in a natural way as the reduction map from
material to body representation!

10.4 Bifurcations in the Double Spherical
Pendulum

In §5.5 we wrote the equations for the linearized solutions of the double
spherical pendulum at a relative equilibrium in the form

Mq̈ + Sq̇ + Λq = 0 (10.4.1)

for certain 3×3 matricesM,S and Λ. These equations have the Hamiltonian
form Ḟ = {F,H} where p = Mq̇,

H =
1

2
pM−1P +

1

2
qΛq (10.4.2)

and

{F,K} =
∂F

∂qi

∂K

∂pi
− ∂K

∂qi

∂F

∂pi
− Sij

∂F

∂pi

∂K

∂pj
; (10.4.3)

that is,
q̇ = M−1p

ṗ = −Sq̇ − Λq = −SM−1p− Λq.
(10.4.4)

The following is a standard useful observation:

10.4.1 Proposition. The eigenvalues λ of the linear system (10.4.4) are
given by the roots of

det[λ2M + λS + Λ] = 0. (10.4.5)
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Proof. Let (u, v) be an eigenvector of (10.4.4) with eigenvalue λ; then

M−1v = λu and − SM−1v − Λu = λv

that is, −Sλu−Λu = λ2Mu, so u is an eigenvector of λ2M + λS + Λ. �

For the double spherical pendulum, we call the eigenvalue γ (since λ is
already used for something else in this example) and note that the polyno-
mial

p(γ) = det[γ2M + γS + Λ] (10.4.6)

is cubic in γ2, as it must be, consistent with the symmetry of the spec-
trum of Hamiltonian systems. This polynomial can be analyzed for specific
system parameter values. In particular, for r = 1 and m = 2, one finds
a Hamiltonian Hopf bifurcation along the cowboy branch as we go up the
branch in Figure 4.3.1 with increasing λ starting at α = −

√
2.

The situation before the bifurcation (for smaller λ and µ), is one where
the energetics method and the spectral method disagree in their conclusions
about stability. The situation will be resolved in §10.7.

Perhaps more interesting is the fact that for certain system parameters,
the Hamiltonian Hopf point can converge to the straight down singular(!)
state with λ = 0 = µ. Here, (10.4.1) does not make sense, and must be regu-
larized . After this is done, one finds (with still two parameters left) that one
has a system in which both passing and splitting can generically occur. One
can hope that the ideas of §10.2 with the inclusion of an antisymplectic re-
versibility type of symmetry will help to explain this observed phenomenon.
We refer to Dellnitz, Marsden, Melbourne, and Scheurle [1992] for further
details.

10.5 Continuous Symmetry Groups and
Solution Space Singularities

Recall that singular points of J are points with symmetry . This turns out to
be a profound observation with far reaching implications. The level sets of J
typically have quadratic singularities at its singular (= symmetric) points,
as was shown by Arms, Marsden, and Moncrief [1981]. In the Abelian case,
the images of these symmetric points are the vertices, edges and faces of
the convex polyhedron J(P ) in the Atiyah–Guillemin–Sternberg convexity
theory. (See Atiyah [1982] and Guillemin and Sternberg [1984].) As one
leaves this singular point, heading for a generic one with no singularities,
one passes through the lattice of isotropy subgroups of G. Arms, Marsden,
and Moncrief [1981] describe how these symmetry groups break.

These ideas apply in a remarkable way to solution spaces of relativis-
tic field theories, such as Einstein’s equations of general relativity and
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the Yang–Mills equations on space time. Here the theories have symme-
try groups and, appropriately interpreted, corresponding momentum maps.
The relativistic field equations split into two parts—Hamiltonian hyper-
bolic evolution equations and elliptic constraint equations. The solution
space structure is determined by the elliptic constraint equations, which in
turn say exactly that the momentum map vanishes.

A fairly long story of both geometry and analysis is needed to establish
this, but the result can be simply stated: the solution space has a quadratic
singularity precisely at those field points that have symmetry . For further
details, see Fischer, Marsden, and Moncrief [1980] and Arms, Marsden, and
Moncrief [1982].

While these results were motivated by perturbation theory of classical
solutions (gravitational waves as solutions of the linearized Einstein equa-
tions etc.), there is some evidence that these singularities have quantum
implications. For example, there appears to be evidence that in the Yang–
Mills case, wave functions tend to concentrate near singular points (see, for
example, Emmrich and Römer [1990]).

For bifurcation theory, as we have indicated in the preceding sections, a
start has been made on how to tackle the problem when there is a continu-
ous isotropy group and some examples have been worked out. One of these
is the bifurcations in a rotating liquid drop, already mentioned above, where
the isotropy group is the whole symmetry group S1. Here the problems with
the singular structure of the momentum map are obviated by working with
the spatially reduced system, and the energy–Casimir method. Here, the
symmetry is dealt with by directly factoring it out “by hand”, using ap-
propriately defined polar coordinates. Another case that is dealt with is
the heavy top in Lewis, Ratiu, Simo, and Marsden [1992]. Here, bifurca-
tions emanate from the upright position, which has a nondiscrete symmetry
group S1. That paper and Lewis [1992] indicate how a general theory of
stability might go in the presence of general isotropy groups. Presumably
the general bifurcation theory will follow.

10.6 The Poincaré–Melnikov Method

To begin with a simple example, consider the equation of a forced pendulum

φ̈+ sinφ = ǫ cosωt. (10.6.1)

Here ω is a constant angular forcing frequency, and ǫ is a small parameter.
For ǫ = 0 this has the phase portrait of a simple pendulum. For ǫ small
but non-zero, (10.6.1) possesses no analytic integrals of the motion. In fact,
it possesses transversal intersecting stable and unstable manifolds (separa-
trices); that is, the Poincaré maps Pt0 : R2 → R2 that advance solutions
by one period T = 2π/ω starting at time t0 possess transversal homoclinic
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points. This type of dynamic behavior has several consequences, besides
precluding the existence of analytic integrals, that lead one to use the term
“chaotic”. For example, Equation (10.6.1) has infinitely many periodic so-
lutions of arbitrarily high period. Using the shadowing lemma, one sees that
given any bi-infinite sequence of zeros and ones (for example, use the binary
expansion of e or π), there exists a corresponding solution of (10.6.1) that
successively crosses the plane φ = 0 (the pendulum’s vertically downward
configuration) with φ > 0 corresponding to a zero and φ < 0 corresponding
to a one. The origin of this chaos on an intuitive level lies in the motion of
the pendulum near its unperturbed homoclinic orbit—the orbit that does
one revolution in infinite time. Near the top of its motion (where φ = ±π)
small nudges from the forcing term can cause the pendulum to fall to the
left or right in a temporally complex way.

The Poincaré–Melnikov method is as follows: First, write the dynamical
equation to be studied in abstract form as

ẋ = X0(x) + ǫX1(x, t) (10.6.2)

where x ∈ R2, X0 is a Hamiltonian vector field with energy H0, X1 is
Hamiltonian with energy a T -periodic function H1. Assume that X0 has a
homoclinic orbit x̄(t) so x̄(t)→ x0, a hyperbolic saddle point, as t→ ±∞.
Second, compute the Poincaré–Melnikov function defined by

M(t0) =

∫ ∞

−∞
{H0, H1}(x̄(t− t0), t)dt (10.6.3)

where { , } denotes the Poisson bracket.

10.6.1 Theorem (Poincaré–Melnikov). If M(t0) has simple zeros as a
function of t0, then (10.6.2) has, for sufficiently small ǫ, homoclinic chaos
in the sense of transversal intersecting separatrices.

We shall give a proof of this result below and in the course of the proof,
we shall clarify what it means to have transverse separatrices.

To apply this method to equation (10.6.1), let x = (φ, φ̇) so (10.6.1)
becomes

d

dt

[
φ

φ̇

]
=

[
φ̇

− sinφ

]
+ ǫ

[
0

cosωt

]
. (10.6.4)

The homoclinic orbits for ǫ = 0 are computed to be given by

x̄(t) =

[
φ(t)

φ̇(t)

]
=

[
±2 tan−1(sinh t)
±2 sech t

]

and one has

H0(φ, φ̇) =
1

2
φ̇2 − cosφ and H1(φ, φ̇, t) = φ cosωt.
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Hence (10.6.3) gives

M(t0) =

∫ ∞

−∞

(
∂H0

∂φ

∂H1

∂φ̇
− ∂H0

∂φ̇

∂H1

∂φ

)
(x̄(t− t0), t)dt

= −
∫ ∞

−∞
φ̇(t− t0) cosωtdt

= ∓
∫ ∞

−∞
[2 sech (t− t0) cosωt]dt. (10.6.5)

Changing variables and using the fact that sech is even and sin is odd, we
get

M(t0) = ∓2

(∫ ∞

−∞
sech t cosωtdt

)
cos(ωt0).

The integral is evaluated by residues:

M(t0) = ∓2π sech
(πω

2

)
cos(ωt0),

which clearly has simple zeros. Thus, this equation has chaos for ǫ small
enough.

Now we turn to a proof of the Poincaré–Melnikov theorem.

Proof. There are two convenient ways of visualizing the dynamics of
(10.6.2). Introduce the Poincaré map P s

ǫ : R2 → R2, which is the time
T map for (10.6.2) starting at time s. For ǫ = 0, the point x0 and the
homoclinic orbit are invariant under P s

0 , which is independent of s. The
hyperbolic saddle x0 persists as a nearby family of saddles xǫ for ǫ > 0,
small, and we are interested in whether or not the stable and unstable
manifolds of the point xǫ for the map P s

ǫ intersect transversally (if this
holds for one s, it holds for all s). If so, we say (10.6.2) admits horseshoes

for ǫ > 0.
The second way to study (10.6.2) is to look directly at the suspended

system on R2 × S1:

ẋ = X0(x) + ǫX1(x, θ), (10.6.6)

θ̇ = 1. (10.6.7)

From this point of view, the curve

γ0(t) = (x0, t)

is a periodic orbit for (10.6.2), whose stable and unstable manifolds W s
0 (γ0)

and Wu
0 (γ0) are coincident. For ǫ > 0 the hyperbolic closed orbit γ0 per-

turbs to a nearby hyperbolic closed orbit which has stable and unstable
manifolds W s

ǫ (γǫ) and Wu
ǫ (γǫ). If W s

ǫ (γǫ) and Wu
ǫ (γǫ) intersect transver-

sally, we again say that (10.6.2) admits horseshoes. These two definitions
of admitting horseshoes are equivalent.
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We use the energy function H0 to measure the first order movement
of W s

ǫ (γǫ) at x̄(0) at time t0 as ǫ is varied. Note that points of x̄(t) are
regular points for H0 since H0 is constant on x̄(t) and x̄(0) is not a fixed
point. Thus, the values of H0 can be used to measure the distance from the
homoclinic orbit. If (xs

ǫ(t, t0), t) is the curve on W s
ǫ (γǫ) that is an integral

curve of the suspended system in xt-space, and has an initial condition
xs(t0, t0) which is the perturbation of W s

0 (γ0) ∩ { the plane t = t0} in the
normal direction to the homoclinic orbit, then H0(x

s
ǫ(t0, t0)) measures the

normal distance. But

H0(x
s
ǫ(T, t0))−H0(x

s
ǫ(t0, t0)) =

∫ T

t0

d

dt
H0(x

s
ǫ(t, t0))dt, (10.6.8)

and so

H0(x
s
ǫ(T, t0))−H0(x

s
ǫ(t0, t0)) =

∫ T

t0

{H0, H0+ǫH1}(xs
ǫ(t, t0), t)dt. (10.6.9)

Since xs
ǫ(T, t0) is ǫ-close to x̄(t− t0) (uniformly as T → +∞),

d(H0 + ǫH1)(xs
ǫ(t, t0), t)→ 0

exponentially as t→ +∞, and {H0, H0} = 0, so (10.6.9) becomes

H0(x
s
ǫ(T, t0))−H0(x

s
ǫ(t0, t0)) = ǫ

∫ T

t0

{H0, H1}(x̄(t− t0, t))dt+O(ǫ2).

(10.6.10)
Similarly,

H0(x
u
ǫ (t0, t0))−H0(x

u
ǫ (−S, t0)) = ǫ

∫ t0

−S

{H0, H1}(x̄(t− t0, t))dt+O(ǫ2).

(10.6.11)
Since xs

ǫ(T, t0)→ γǫ, a periodic orbit for the perturbed system as T → +∞,
we can choose T and S such that H0(x

s
ǫ(T, t0)) − H0(x

u
ǫ (−S, t0)) → 0 as

T, S →∞. Thus, adding (10.6.10) and (10.6.11), and letting T, S →∞, we
get

H0(x
u
ǫ (t0, t0))−H0(x

s
ǫ(t0, t0)) = ǫ

∫ ∞

−∞
{H0, H1}(x̄(t− t0, t))dt+O(ǫ2).

(10.6.12)
It follows that if M(t0) has a simple zero at time t0, then xu

ǫ (t0, t0) and
xs

ǫ(t0, t0) intersect transversally near the point x̄(0) at time t0. (Since
dH0 → 0 exponentially at the saddle points, the integrals involved in this
criterion are automatically convergent.) �

We now describe a few of the extensions and applications of this tech-
nique. The literature in this area is growing very quickly and we make no
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claim to be comprehensive (the reader can track down many additional
references by consulting Wiggins [1988] and the references cited below).

If in (10.6.2), X0 only is a Hamiltonian vector field, the same conclusion
holds if (10.6.3) is replaced by

M(t0) =

∫ ∞

−∞
(X0 ×X1)(x̄(t− t0), t)dt, (10.6.13)

where X0×X1 is the (scalar) cross product for planar vector fields. In fact,
X0 need not even be Hamiltonian if an area expansion factor is inserted.
For example, (10.6.13) applies to the forced damped Duffing equation

ü− βu+ αu3 = ǫ(γ cosωt− xu̇). (10.6.14)

Here the homoclinic orbits are given by

ü(t) = ±
√
β

α
sech (β

1

2 t) (10.6.15)

and (10.6.13) becomes, after a residue calculation,

M(t0) = 2γπω

√
2

α
sech

(
πω

2
√
β

)
sin(ωt0) +

4δβ
3

2

3α
(10.6.16)

so one has simple zeros and hence chaos of the horseshoe type if

γ

δ
>

√
2β

3

2

3ω
√
α

cosh

(
πω

2
√
β

)
(10.6.17)

and ǫ is small.
Another interesting example, due to Montgomery, concerns the equations

for superfluid 3He. These are the Leggett equations and we shall confine
ourselves to the A phase for simplicity. The equations are

ṡ = −1

2

(
χΩ2

γ2

)
sin 2θ and θ̇ =

(
γ2

χ

)
s− ǫ(γB sinωt+

1

2
Γ sin 2θ).

(10.6.18)
Here s is the spin, θ an angle (describing the order parameter) and γ, χ, . . .
are physical constants. The homoclinic orbits for ǫ = 0 are given by

θ̄± = 2 tan−1(e±Ωt)− π/2 and s̄± = ±2
Ωe±2Ωt

1 + e±2Ωt
. (10.6.19)

One calculates, after substituting (10.6.19) and (10.6.20) in (10.6.13) that

M±(t0) = ∓πχωB
8γ

sech
(ωπ

2Ω

)
cosωt− 2

3

χ

γ2
ΩΓ (10.6.20)
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so that (10.6.18) has chaos in the sense of horseshoes if

γB

Γ
>

16

3π

Ω

ω
cosh

(πω
2Ω

)
(10.6.21)

and if ǫ is small.
A version of the Poincaré–Melnikov theorem applicable to PDE’s (due

to Holmes and Marsden [1981]). One basically still uses formula (10.6.13)
where X0 ×X1 is replaced by the symplectic pairing between X0 and X1.
However, there are two new difficulties in addition to standard technical
analytic problems that arise with PDEs. The first is that there is a se-
rious problem with resonances. These can be dealt with using the aid of
damping—the undamped case would need an infinite dimensional version
of Arnold diffusion. Secondly, the problem is not reducible to two dimen-
sions; the horseshoe involves all the modes. Indeed, the higher modes do
seem to be involved in the physical buckling processes for the beam model
discussed next.

A PDE model for a buckled forced beam is

ẅ + w′′′′ + Γw′ −K
(∫ 1

0

[w′]2dz

)
w′′ = ǫ(f cosωt− δẇ) (10.6.22)

where w(z, t), 0 ≤ z ≤ 1 describes the deflection of the beam, ˙ = ∂/∂t,
′ = ∂/∂z and Γ,K, . . . are physical constants. For this case, the theory
shows that if

1. π2 < Γ < 4ρ3 (first mode is buckled),

2. j2π2(j2π2 − Γ) 6= ω2, j = 2, 3, . . . (resonance condition),

3.
f

δ
>
π(Γ− π2)

2ω
√
K

cosh

(
ω

2
√

Γ− ω2

)
(transversal zeros for M(t0)),

4. δ > 0,

and ǫ is small, then (10.6.22) has horseshoes. Experiments (see Moon and
Holmes [1979]) showing chaos in a forced buckled beam provided the mo-
tivation which lead to the study of (10.6.22).

This kind of result can also be used for a study of chaos in a van der Waal
fluid ( Slemrod and Marsden [1985]) and there is a growing literature using
these methods for forced and damped soliton equations. For example, in the
damped, forced Sine–Gordon equation one has chaotic transitions between
breathers and kink-antikink pairs and in the Benjamin–Ono equation one
can have chaotic transitions between solutions with different numbers of
poles.

For Hamiltonian systems with two degrees of freedom, Holmes and Mars-
den [1982a] show how the Melnikov method may be used to prove the ex-
istence of horseshoes on energy surfaces in nearly integrable systems. The
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class of systems studied have a Hamiltonian of the form

H(q, p, θ, I) = F (q, p) +G(I) + ǫH1(q, p, θ, I) +O(ǫ2) (10.6.23)

where (θ, I) are action-angle coordinates for the oscillator G; G(0) = 0,
G′ > 0. It is assumed that F has a homoclinic orbit x̄(t) = (q̄(t), p̄(t)) and
that

M(t0) =

∫ ∞

−∞
{F,H1}dt, (10.6.24)

the integral taken along (x̄(t− t0),Ωt, I), has simple zeros. Then (10.6.23)
has horseshoes on energy surfaces near the surface corresponding to the
homoclinic orbit and small I; the horseshoes are taken relative to a Poincaré
map strobed to the oscillator G. The paper Holmes and Marsden [1982a]
also studies the effect of positive and negative damping. These results are
related to those for forced one degree of freedom systems since one can
often reduce a two degrees of freedom Hamiltonian system to a one degree
of freedom forced system.

For some systems in which the variables do not split as in (10.6.23),
such as a nearly symmetric heavy top, one can exploit symmetry of the
system and make use of reduction ideas. The general theory for this is
given in Holmes and Marsden [1983] and was applied to show the existence
of horseshoes in the nearly symmetric heavy top; see also some closely
related results of Ziglin [1981].

The Poincaré–Melnikov theory has been used by Ziglin [1980] in vortex
dynamics, for example to give a proof of the non-integrability of the re-
stricted four vortex problem. There have also been recent applications to
the dynamics of general relativity showing the existence of horseshoes in
Bianchi IX models. See Oh, Sreenath, Krishnaprasad, and Marsden [1989]
for applications to the dynamics of coupled planar rigid bodies and to
David, Holm, and Tratnik [1990] to the study of polarization laser dynam-
ics.

Arnold [1964] extended the Poincaré–Melnikov theory to systems with
several degrees of freedom. In this case the transverse homoclinic man-
ifolds are based on KAM tori and allow the possibility of chaotic drift
from one torus to another. This drift, now known as Arnold diffusion

is a basic ingredient in the study of chaos in Hamiltonian systems (see
for instance, Chirikov [1979] and Lichtenberg and Liebermann [1983] and
references therein). Instead of a single Melnikov function, one now has a
Melnikov vector given schematically by

→
M=





∫∞
−∞{H0, H1}dt
∫∞
−∞{Ik, H1}dt



 (10.6.25)

where Ik are integrals for the unperturbed (completely integrable) system

and where
→
M depends on t0 and on angles conjugate to I1, . . . , In. One
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requires
→
M to have transversal zeros in the vector sense. This result was

given by Arnold for forced systems and was extended to the autonomous
case by Holmes and Marsden [1982b, 1983]; see also Robinson [1988]. These
results apply to systems such as pendulum coupled to several oscillators
and the many vortex problems. It has also been used in power systems by
Salam, Marsden, and Varaiya [1983], building on the horseshoe case treated
by Kopell and R. B. Washburn [1982]. There have been a number of other
directions of research on these techniques. For example, Grundler devel-
oped a multidimensional version applicable to the spherical pendulum and
Greenspan and Holmes showed how it can be used to study subharmonic
bifurcations. See Wiggins [1988] references and for more information.

In Poincaré’s celebrated memoir (Poincaré [1890]) on the three-body
problem, he introduced the mechanism of transversal intersection of separa-
trices which obstructs the integrability of the equations and the attendant
convergence of series expansions for the solutions. This idea was subse-
quently developed by Birkhoff and Smale using the horseshoe construction
to describe the resulting chaotic dynamics. However, in the region of phase
space studied by Poincaré, it has never been proved (except in some generic
sense that is not easy to interpret in specific cases) that the equations really
are nonintegrable. In fact Poincaré himself traced the difficulty to the pres-
ence of terms in the separatrix splitting which are exponentially small. A
crucial component of the measure of the splitting is given by the following
formula of Poincaré [1890, p. 223]:

J =
−8πi

exp
(

π√
2µ

)
+ exp

(
− π√

2µ

)

which is exponentially small (or beyond all orders) in µ. Poincaré was well
aware of the difficulties that this exponentially small behavior causes; on
p. 224 of his article, he states: “En d’autres termes, si on regarde µ comme
un infiniment petit du premier ordre, la distance BB′ sans être nulle, est
un infiniment petit d’ordre infini. C’est ainsi que la fonction e−1/µ est un
infiniment petit d’ordre infini sans ètre nulle . . . Dans l’example particulier
que nous avons traité plus haut, la distance BB′ est du mème ordre de
grandeur que l’integral J , c’est à dire que exp(−π/√2µ).”

This is a serious difficulty that arises when one uses the Melnikov method
near an elliptic fixed point in a Hamiltonian system or in bifurcation prob-
lems giving birth to homoclinic orbits. The difficulty is related to those
described by Poincaré (see Sanders [1982]). Near elliptic points, one sees
homoclinic orbits in normal forms and after a temporal rescaling, this leads
to a rapidly oscillatory perturbation that is modelled by the following vari-
ation of (10.6.1):

φ̈+ sinφ = ǫ cos

(
ωt

ǫ

)
. (10.6.26)
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If one formally computes M(t0) one finds from (10.6.3):

M(t0, ǫ) = ±2π sech
(πω

2ǫ

)
cos

(
ωt0
ǫ

)
. (10.6.27)

While this has simple zeros, the proof of the Poincaré–Melnikov theorem is
no longer valid since M(t0, ǫ) is now of order e−π/2ǫ and the error analysis
in the proof only gives errors of order ǫ2. In fact, no expansion in powers
of ǫ can detect exponentially small terms like e−π/2ǫ.

Holmes, Marsden, and Scheurle [1988], Scheurle [1989], Scheurle, Mars-
den, and Holmes [1991] and Delshams and Seara [1991] show that (10.6.26)
has chaos that is, in appropriate sense exponentially small in ǫ. Not only
that, examples show how truly subtle this situation is, and one has to be
extremely careful with hidden assumptions in the literature (like a priori
hypotheses about the order of magnitude of the splitting being of the form
ǫke−c/ǫ for some k and ǫ) that can be false in some examples. To get such
estimates, the extension of the system to complex time plays a crucial role.
One can hope that if sharp enough such results for (10.6.26) can really
be proven, then it may be possible to return to Poincaré’s 1890 work and
complete the arguments he left unfinished.

To illustrate how exponentially small phenomena enter bifurcation prob-
lems, consider the problem of a Hamiltonian saddle node bifurcation

ẍ+ µx+ x2 = 0 (10.6.28)

with the addition of higher order terms and forcing:

ẍ+ µx+ x2 + h.o.t. = δf(t). (10.6.29)

The phase portrait of (10.6.28) is shown in Figure 10.6.1.
The system (10.6.28) is Hamiltonian with

H(x, p) =
1

2
p2 +

1

2
µx2 +

1

3
x3. (10.6.30)

Let us first consider the system without higher order terms:

ẍ+ µx+ x2 = δf(t). (10.6.31)

To study it, we rescale to blow up the singularity:

x(t) = λξ(t) (10.6.32)

where λ = ‖µ‖ and t = t
√
λ. We get

ξ̈ − ξ + ξ2 =
δ

µ2
f

(
τ√−µ

)
, µ < 0,

ξ̈ − ξ + ξ2 =
δ

µ2
f

(
τ√
µ

)
, µ > 0.

(10.6.33)
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x x

Figure 10.6.1. The evolution of the phase portrait of (10.6.27) as µ increases.

The exponentially small estimates of Holmes, Marsden, and Scheurle
[1988] apply to (10.6.33). One gets upper and lower estimates in certain
algebraic sectors of the (δ, µ) plane.

Now we consider
ẍ+ µx+ x2 + x3 = δf(t). (10.6.34)

With δ = 0, there are equilibria at

x = 0, −r, or − µ

r
and ẋ = 0, (10.6.35)

where

r =
1 +
√

1− 4µ

2
, (10.6.36)

which is approximately 1 when µ ≈ 0. The phase portrait of (10.6.34) with
δ = 0 and µ = − 1

2 is shown in Figure 10.6.2. As µ passes through 0, the
small lobe undergoes the same bifurcation as in Figure 10.6.1, with the
large lobe changing only slightly.

Again we rescale by (10.6.36) to give

ξ̈ − ξ + ξ2 − µξ3 =
δ

µ2
f

(
τ√−µ

)
, µ < 0,

ξ̈ − ξ + ξ2 + µξ3 =
δ

µ2
f

(
τ√
µ

)
, µ > 0.

(10.6.37)

Notice that for δ = 0, the phase portrait is µ-dependent. The homoclinic
orbit surrounding the small lobe for µ < 0 is given explicitly in terms of ξ
by

ξ(τ) =
4eτ

(
eτ + 2

3

)2 − 2µ
, (10.6.38)
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x

Figure 10.6.2. The phase portrait of 10.6.31 with δ = 0.

which is µ-dependent. An interesting technicality is that without the cubic
term, we get µ-independent double poles at τ = ±iπ + log 2− log 3 in the
complex τ -plane, while (10.6.38) has a pair of simple poles that splits these
double poles to the pairs of simple poles at

τ = ±iπ + log

(
2

3
± i
√

2λ

)
(10.6.39)

where again λ = ‖µ‖. (There is no particular significance to the real part,
such as log 2− log 3 in the case of no cubic term; this can always be gotten
rid of by a shift in the base point ξ(0).)

If a quartic term x4 is added, these pairs of simple poles will split into
quartets of branch points and so on. Thus, while the analysis of higher order
terms has this interesting µ-dependence, it seems that the basic exponential
part of the estimates,

exp

(
− π√
‖µ‖

)
, (10.6.40)

remains intact.

10.7 The Role of Dissipation

If ze is an equilibrium point of a Hamiltonian vector field XH , then there
are two methodologies for studying stability, as we already saw in the in-
troductory chapter.

(a) Energetics — determine if δ2H(ze) = Q is a definite quadratic form
(Lagrange–Dirichlet).
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(b) Spectral methods — determine if the spectrum of the linearized oper-
ator dXH(ze) = L is on the imaginary axis.

The energetics method can, via reduction, be applied to relative equilib-
ria too and is the basis of the energy–momentum method that we studied
in Chapter 5.

For general (not necessarily Hamiltonian) vector fields, the classical Li-
apunov theorem states that if the spectrum of the linearized equations lies
strictly in the left half plane, then the equilibrium is stable and even asymp-
totically stable (trajectories starting close to the equilibrium converge to it
exponentially as t → ∞). Also, if any eigenvalue is in the strict right half
plane, the equilibrium is unstable. This result, however, cannot apply to
the purely Hamiltonian case since the spectrum of L is invariant under re-
flection in the real and imaginary coordinate axes. Thus, the only possible
spectral configuration for a stable point of a Hamiltonian system is if the
spectrum is on the imaginary axis.

The relation between a and b is, in general, complicated, but one can
make some useful elementary observations.

Remarks.

1. Definiteness of Q implies spectral stability (i.e., the spectrum of L
is on the imaginary axis). This is because spectral instability implies
(linear and nonlinear) instability, while definiteness of Q implies sta-
bility.

2. Spectral stability need not imply stability, even linear stability. This
is shown by the unstable linear system q̇ = p, ṗ = 0 with a pair of
eigenvalues at zero.

3. If Q has odd index (an odd number of negative eigenvalues), then
L has a real positive eigenvalue; see Oh [1987]. Indeed, in canonical
coordinates, and identifyingQ with its corresponding matrix, we have
L = JQ. Thus, detL = detQ is negative. Since detL is the product
of the eigenvalues of L and they come in conjugate pairs, there must
be at least one real pair of eigenvalues, and in fact an odd number of
positive real eigenvalues.

4. If P = T ∗Q with the standard symplectic structure (no magnetic
terms) and if H is of the form kinetic plus potential so that an equi-
librium has the form (qe, 0), and if δ2V (qe) has negative index, then
again L must have real eigenvalues. This is because one can diago-
nalize δ2V (qe) with respect to the kinetic energy inner product, in
which case the eigenvalues are evident. �
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To get more interesting effects than those covered by the above remarks,
we consider gyroscopic systems; that is, linear systems of the form

Mq̈ + Sq̇ + Λq = 0 (10.7.1)

where M is a positive definite symmetric n × n matrix, S is skew, and Λ
is symmetric. The term with S is the gyroscopic, or magnetic term. As we
observed earlier, this system is verified to be Hamiltonian with p = Mq̇,
energy function

H(q, p) =
1

2
pM−1p+

1

2
qΛq (10.7.2)

and the bracket

{F,K} =
∂F

∂qi

∂K

∂pi
− ∂K

∂qi

∂F

∂pi
− Sij

∂F

∂pi

∂K

∂pj
. (10.7.3)

If the index of V is even (see Remark 3) one can get situations where
δ2H is indefinite and yet spectrally stable. Roughly, this is a situation
that is capable of undergoing a Hamiltonian Hopf bifurcation, so includes
examples like the “cowboy” solution for the double spherical pendulum and
certain regimes of the heavy top.

10.7.1 Theorem (Dissipation induced instabilities). If the system (10.7.1)
is modified to

Mq̈ + (S + ǫR)q̇ + Λq = 0 (10.7.4)

for small ǫ > 0 and R symmetric and positive definite, then the perturbed
linearized equations ż = Lǫz are spectrally unstable, that is, at least one
pair of eigenvalues of Lǫ is in the right half plane.

This result, due to Bloch, Krishnaprasad, Marsden, and Ratiu [1994]
builds on basic work of Chetayev [1961, 1989] and Hahn [1967]. The argu-
ment proceeds in two steps.

Step 1. Construct the Chetayev functional

W (q, p) = H(q, p) + βp · (Λq) (10.7.5)

for small β.
This function has the beautiful property that for β small enough, W

has the same index as H, yet Ẇ is negative definite, where the overdot is
taken in the dynamics of (10.7.4). This alone is enough to prove Liapunov
instability, as is seen by studying the equation

W (q(T ), p(T )) = W (q0, p0) +

∫ T

0

Ẇ (q(t), p(t))dt (10.7.6)

and choosing (q0, p0) in the sector where W is negative, but arbitrarily
close to the origin.
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Step 2. Employing an argument of Hahn [1967] to show spectral insta-
bility.

Here one uses the fact that ǫ is small and the original system is Hamilto-
nian. Indeed, the only nontrivial possibility to exclude for the eigenvalues
on the imaginary axis is that they all stay there and are not zero for ǫ 6= 0.
Indeed, they cannot all move left by Step 1 and Lǫ cannot have zero eigen-
values since Lǫz = 0 implies Ẇ (z, z) = 0. However, in this case, Hahn
[1967] shows the existence of at least one periodic orbit, which cannot exist
in view of (10.7.6) and the fact that Ẇ is negative definite.

This argument generalizes in two significant ways. First, it is valid in
infinite dimensional systems, where M , S, R, and Λ are replaced by linear
operators. One of course needs some technical conditions to ensure that
W has the requisite properties and that the evolution equations generate
a semi-group on an appropriate Banach space. For Step 2 one requires, for
example, that the spectrum at ǫ = 0 be discrete with all eigenvalues having
finite multiplicity.

The second generalization is to systems in block diagonal form but with
a non-Abelian group. The system (10.7.4) is the form that block diagonal-
ization gives with an Abelian symmetry group. For a non-Abelian group,
one gets, roughly speaking, a system consisting of (10.7.4) coupled with a
Lie–Poisson (generalized rigid body) system. The main step needed in this
case is a generalization of the Chetayev functional.

This formulation is attractive because of the interesting conclusions that
can be obtained essentially from energetics alone. If one is willing to make
additional assumptions, then there is a formula giving the amount by which
simple eigenvalues move off the imaginary axis. One version of this formula,
due to MacKay [1991] states that

Reλǫ =
ξ̄(JB)antiξ

ξ̄T Jξ
ǫ+O(ǫ2) (10.7.7)

where we write the linearized equations in the form

ż = Lǫz = (JQ+ ǫB)z. (10.7.8)

λǫ is the perturbed eigenvalue associated with a simple eigenvalue λ0 = iω0

on the imaginary axis at ǫ = 0, ξ is a (complex) eigenvector for L0 with
eigenvalue λ0, and (JB)anti is the antisymmetric part of JB.

In fact, the ratio of quadratic functions in (10.7.7) can be replaced by
a ratio involving energy-like functions and their time derivatives including
the energy itself or the Chetayev function. To actually work out (10.7.7)
for examples like (10.7.1) can involve considerable calculation.

Here is a simple example in which one can carry out the entire analysis
directly. We hasten to add that problems like the double spherical pendu-
lum are considerably more complex algebraically and a direct analysis of
the eigenvalue movement would not be so simple.
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Consider the system (see Chetayev [1961, 1989] )

ẍ− gẏ + γẋ+ αx = 0,

ÿ + gẋ+ δẏ + βy = 0,
(10.7.9)

which is a special case of (10.7.4). Assume γ ≥ 0 and δ ≥ 0. For γ = δ = 0
this system is Hamiltonian with symplectic form

Ω = dx ∧ dẋ+ dy ∧ dẏ − gdx ∧ dy (10.7.10)

and Hamiltonian

H =
1

2
(ẋ2 + ẏ2) +

1

2
(αx2 + βy2). (10.7.11)

(Note that for α = β, angular momentum is conserved.)
The characteristic polynomial is computed to be

p(λ) = λ4 + (γ+ δ)λ3 + (g2 +α+ β+ γδ)λ2 + (γβ+ δα)λ+αβ. (10.7.12)

Let
p0(λ) = λ4 + (g2 + α+ β)λ2 + αβ. (10.7.13)

Since p0 is a quadratic in λ2, its roots are easily found. One gets:

(i) If α > 0, β > 0, then H is positive definite and the eigenvalues are on
the imaginary axis; they are coincident in a one-to-one resonance for
α = β.

(ii) If α and β have opposite signs, then H has index 1 and there is one
eigenvalue pair on the real axis and one pair on the imaginary axis.

(iii) If α < 0 and β < 0 then H has index 2. Here the eigenvalues may or
may not be on the imaginary axis.

To determine the cases, let

D = (g2 + α+ β)2 − 4αβ = g4 + 2g2(α+ β) + (α− β)2

be the discriminant. Then the roots of (10.7.13) are given by

λ2 =
1

2
[−(g2 + α+ β)±

√
D].

Thus we arrive at

(a) If D < 0, then there are two roots in the right half plane and two in
the left.

(b) If D = 0 and g2 + α + β > 0, there are coincident roots on the
imaginary axis, and if g2 + α + β < 0, there are coincident roots on
the real axis.
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(c) If D > 0 and g2 +α+β > 0, the roots are on the imaginary axis and
if g2 + α+ β < 0, they are on the real axis.

Thus the case in which D ≥ 0 and g2+α+β > 0 (i.e., if g2+α+β ≥ 2
√
αβ),

is one to which the dissipation induced instabilities theorem applies.
Note that for g2 +α+β > 0, if D decreases through zero, a Hamiltonian

Hopf bifurcation occurs. For example, as g increases and the eigenvalues
move onto the imaginary axis, one speaks of the process as gyroscopic

stabilization .
Now we add damping and get

10.7.2 Proposition. If α < 0, β < 0, D > 0, g2 + α + β > 0 and least
one of γ, δ is strictly positive, then for (10.7.9), there is exactly one pair of
eigenvalues in the strict right half plane.

Proof. We use the Routh–Hurwitz criterion (see Gantmacher [1959, Vol-
ume 2]), which states that the number of strict right half plane roots of the
polynomial

λ4 + ρ1λ
3 + ρ2λ

2 + ρ3λ+ ρ4

equals the number of sign changes in the sequence

{
1, ρ1,

ρ1ρ2 − ρ3

ρ1
,
ρ3(ρ1ρ2 − ρ3)− ρ1ρ4

ρ1ρ2 − ρ3
, ρ4

}
. (10.7.14)

For our case, ρ1 = γ + δ > 0, ρ2 = g2 + α+ β + γδ > 0, ρ3 = γβ + αδ < 0,
and ρ4 = αβ > 0, so the sign sequence (10.7.14) is

{+,+,+,−,+}.

Thus, there are two roots in the right half plane. �

It is interesting to speculate on the effect of damping on the Hamiltonian
Hopf bifurcation in view of these general results and in particular, this
example.

For instance, suppose g2 + α + β > 0 and we allow D to increase so
a Hamiltonian Hopf bifurcation occurs in the undamped system. Then
the above sign sequence does not change, so no bifurcation occurs in the
damped system; the system is unstable and the Hamiltonian Hopf bifurca-
tion just enhances it. However, if we simulate forcing or control by allowing
one of γ or δ to be negative, but still small, then the sign sequence is more
complex and one can get, for example, the Hamiltonian Hopf bifurcation
breaking up into two nearly coincident Hopf bifurcations. This is consistent
with the results of van Gils, Krupa, and Langford [1990].
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10.8 Double Bracket Dissipation

Bloch, Krishnaprasad, Marsden, and Ratiu [1996] study the phenomenon
of dissipation induced instabilities for Euler–Poincaré systems on Lie alge-
bras or equivalently, for Lie–Poisson systems on the duals of Lie algebras.
In the previous section, we indicated that if a mechanical system with sym-
metry has an indefinite second variation of the augmented Hamiltonian at
a relative equilibrium, as determined by the energy–momentum method,
then the system becomes spectrally unstable with the addition of a small
amount of dissipation. That dissipation was of Rayleigh dissipation type,
and was added to the internal variables of the system and the methods
that were used to prove this were essentially those of linear analysis.

For systems on Lie algebras, or equivalently, for invariant systems on
Lie groups, one cannot have linear dissipative terms of Rayleigh dissipa-
tion type in the equations in the naive sense. However, when restricted to
coadjoint orbits, these dissipation terms can be obtained from a gradient
structure that is similar in spirit to the way one gets dissipative terms from
the gradient of a Rayleigh dissipation function. In this context, one gets
dissipation induced instabilities, similar to what one has in the case of in-
ternal dissipation. This means that the addition of dissipation to a state
that is not formally stable forces at least one pair of eigenvalues into the
right half plane, which of course implies nonlinear instability.

One of the interesting features is the method of construction of the non-
linear dissipative terms. This is done by utilizing the double bracket equa-
tion of Brockett (see Brockett [1988, 1993]) to the present context. In fact,
this form is well adapted to the study of dissipation on Lie groups since
it was originally constructed as a gradient system and it is well known in
other contexts that this formalism plays an important role in the study of
integrable systems (see, for example, Bloch, Flaschka, and Ratiu [1990] and
Bloch, Brockett, and Ratiu [1992]).

We will also show that this type of dissipation can be described in terms
of a symmetric Poisson bracket. Symmetric brackets for dissipative sys-
tems have been considered by Kaufman and Dewar [1984], Kaufman [1985],
Grmela [1984a, 1984b, 1986], Morrison [1986]. It is not clear how the brack-
ets of the present paper are related to those. Our brackets are more directly
motivated by those in Vallis, Carnevale, and Young [1989], Shepherd [1992]
and references therein.

We present a class of symmetric brackets that are systematically con-
structed in a general Lie algebraic context. We hope that our construction
might shed light on possible general properties that these brackets might
have. The general equations of motion that we consider have the following
form:

Ḟ = {F,H}skew − {F,H}sym
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where H is the total energy. In many cases however, especially those in-
volving thermodynamics, one replaces H in the second bracket by S, the
entropy. We refer to the above references for this aspect; it remains for the
future to link that work more closely with the present context and to see in
what sense, if any, the combined bracket satisfies a graded form of Jacobi’s
identity.

It is interesting that the type of dissipation described here is of con-
siderable physical interest. For example, as we shall point out below, the
Landau–Lifschitz (or Gilbert) dissipative mechanism in ferromagnetics is
exactly of the type we describe and this dissipative mechanism is well ac-
cepted and studied (see O’Dell [1981] for example). In geophysical situa-
tions, one would like a dissipative mechanism that separates the different
time scales of decay of the energy and the enstrophy. That is, one would
like a dissipative mechanism for which the energy decays but the enstro-
phy remains preserved. This is exactly the sort of dissipative mechanism
described here and that was described in Vallis, Carnevale, and Young
[1989], Shepherd [1992] and references therein. Also, in plasma physics and
stellar dynamics, one would like to have a dissipative mechanism that pre-
serves the underlying conservation of particle number, yet has energy decay.
Again, the general mechanism here satisfies these properties (see Kandrup
[1991] and Kandrup and Morrison [1992]). We will discuss all of these ex-
amples in the body of the paper.

To get a concrete idea of the type of dissipative mechanism we have in
mind, we now give a simple example of it for perhaps the most basic of
Euler–Poincaré, or Lie–Poisson systems, namely the rigid body. Here, the
Lie algebra in question is that of the rotation group; that is, Euclidean three
space R3 interpreted as the space of body angular velocities Ω equipped
with the cross product as the Lie bracket. On this space, we put the stan-
dard kinetic energy Lagrangian L(Ω) = 1

2 (IΩ) · Ω (where I is the moment
of inertia tensor) so that the general Euler–Poincaré equations (discussed
below in §4) become the standard rigid body equations for a freely spinning What does §4

refer to?rigid body:
IΩ̇ = (IΩ)× Ω, (10.8.1)

or, in terms of the body angular momentum M = IΩ,

Ṁ = M × Ω.

In this case, the energy equals the Lagrangian; E(Ω) = L(Ω) and energy
is conserved by the solutions of (10.8.1). Now we modify the equations by
adding a term cubic in the angular velocity:

Ṁ = M × Ω + αM × (M × Ω), (10.8.2)

where α is a positive constant.
A related example is the 1935 Landau-Lifschitz equations for the mag-

netization vector M in a given magnetic field B (see, for example, O’Dell
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[1981, p. 41]):

Ṁ = γM ×B +
λ

‖M‖2 (M × (M ×B)), (10.8.3)

where γ is the magneto-mechanical ratio (so that γ‖B‖ is the Larmour
frequency) and λ is the damping coefficient due to domain walls.

In each case, it is well known that the equations without damping can
be written in either Euler–Poincaré form or in Lie–Poisson (Hamiltonian)
form. The equations are Hamiltonian with the rigid body Poisson bracket:

{F,K}rb(M) = M · [∇F (M)×∇K(M)]

with Hamiltonians given respectively by H(M) = (M · Ω)/2 and H(M) =
γM ·B.

One checks in each case that the addition of the dissipative term has a
number of interesting properties. First of all, this dissipation is derivable
from an SO(3)-invariant force field, but it is not induced by any Rayleigh
dissipation function in the literal sense. However, it is induced by a Rayleigh
dissipation function in the following restricted sense: It is a gradient when
restricted to each momentum sphere (coadjoint orbit) and each sphere car-
ries a special metric (later to be called the normal metric). Namely, the
extra dissipative term in (10.8.2) equals the negative gradient of the Hamil-
tonian with respect to the following metric on the sphere. Take a vector
v in R3 and orthogonally decompose it in the standard metric on R3 into
components tangent to the sphere ‖M‖2 = c2 and vectors orthogonal to
this sphere:

v =
M · v
c2

M − 1

c2
[M × (M × v)]. (10.8.4)

The metric on the sphere is chosen to be ‖M‖−2α times the standard
inner product of the components tangent to the sphere in the case of the
rigid body model and just λ times the standard metric in the case of the
Landau–Lifschitz equations.

Secondly, the dissipation added to the equations has the obvious form of
a repeated Lie bracket, that is, a double bracket, and it has the properties
that the conservation law

d

dt
‖M‖2 = 0 (10.8.5)

is preserved by the dissipation (since the extra force is orthogonal to M)
and the energy is strictly monotone except at relative equilibria. In fact,
we have

d

dt
E = −α‖M × Ω‖2, (10.8.6)

for the rigid body and

d

dt
E = − λ

‖M‖2 ‖M ×B‖
2, (10.8.7)
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in the case of the Landau–Lifschitz equations, so that trajectories on the
angular momentum sphere converge to the minimum (for α and λ positive)
of the energy restricted to the sphere, apart from the set of measure zero
consisting of orbits that are relative equilibria or are the stable manifolds
of the perturbed saddle point.

Another interesting feature of these dissipation terms is that they can be
derived from a symmetric bracket in much the same way that the Hamil-
tonian equations can be derived from a skew symmetric Poisson bracket.
For the case of the rigid body, this bracket is

{F,K} = α(M ×∇F ) · (M ×∇K). (10.8.8)

As we have already indicated, the same formalism can be applied to
other systems as well. In fact, later in the paper we develop an abstract
construction for dissipative terms with the same general properties as the
above examples. When this method is applied to fluids one gets a dissipa-
tive mechanism related to that of Vallis, Carnevale, and Young [1989] and
Shepherd [1992] as follows. One modifies the Euler equations for a perfect
fluid, namely

∂v

∂t
+ v · ∇v = −∇p (10.8.9)

where v is the velocity field, assumed divergence free and parallel to the
boundary of the fluid container, and where p is the pressure. With dissipa-
tion, the equations become:

∂v

∂t
+ v · ∇v = −∇p+ αP

((
£u(v)v

♭
)♯
)

(10.8.10)

where α is a positive constant, P is the Hodge projection onto the diver-
gence free part, and where

u(v) = P

((
£vv

♭
)♯
)
.

The flat and sharp symbols denote the index lowering and raising operators
induced by the metric; that is, the operators that convert vectors to one
forms and vice versa. Written in terms of the vorticity, these equations
become

d

dt
ω + £vω = α£u(v)ω.

This dissipative term preserves the coadjoint orbits, that is, the isovortical
surfaces (in either two or three dimensions, or in fact, on any Riemannian
manifold), and with it, the time derivative of the energy is strictly negative
(except at equilibria, where it is zero). As we shall see, there is a similar
dissipative term in the case of the Vlasov–Poisson equation for plasma
physics.
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menson infinie et ses applications à l’hydrodynamique des fluids parfaits,
Ann. Inst. Fourier, Grenoble 16, 319–361.

Arnold, V. I. [1969], One-dimensional cohomologies of Lie algebras of non-
divergent vectorfields and rotation number of dynamic systems, Funct.
Anal. Appl. 3, 319–321.

Arnold, V. I. [1978], Mathematical Methods of Classical Mechanics, vol-
ume 60 of Graduate Texts in Math. Springer-Verlag. Second Edition
(1989).

Arnold, V. I. [1988], Dynamical Systems III. Encyclopedia of Mathematics.
Springer-Verlag.

Arnold, V. I. [1989], Mathematical Methods of Classical Mechanics, vol-
ume 60 of Graduate Texts in Math. Springer-Verlag, second edition.

Arnold, V. I. and B. Khesin [1992], Topological methods in hydrodynamics,
Ann. Rev. Fluid Mech. 24, 145–166.

Ashbaugh, M. S., C. C. Chicone, and R. H. Cushman [1991], The twisting
tennis racket, J. Dyn. Diff. Eqns. 3, 67–85.

Atiyah, M. [1982], Convexity and commuting Hamiltonians, Bull. London
Math. Soc. 14, 1–15.

Austin, M., P. S. Krishnaprasad, and L. S. Wang [1993], Almost Poisson
integration of rigid body systems, J. Comput. Phys. 107, 105–117.

Baillieul, J. [1987], Equilibrium mechanics of rotating systems. In Proc.
CDC, volume 26, pages 1429–1434.

Ball, J. M. and J. E. Marsden [1984], Quasiconvexity at the boundary,
positivity of the second variation and elastic stability, Arch. Rat. Mech.
Anal. 86, 251–277.

Batt, J. and G. Rein [1993], A rigorous stability result for the Vlasov–
Poisson system in three dimensions, Ann. Mat. Pura Appl. 164, 133–154.



10.8 Double Bracket Dissipation 229

Benjamin, T. B. [1972], The stability of solitary waves, Proc. Roy. Soc. A
328, 153–183.

Berry, M. [1985], Classical adiabatic angles and quantal adiabatic phase,
J. Phys. A. Math. Gen. 18, 15–27.

Bloch, A. [2003], Nonholonomic Mechanics and Control, with the assis-
tance of J. Ballieul, P. Crouch, and J.Marsden. Interdisciplinary Applied
Mathematics, Springer-Verlag.

Bloch, A. M., R. W. Brockett, and T. S. Ratiu [1992], Completely integrable
gradient flows, Comm. Math. Phys. 147, 57–74.

Bloch, A. M., H. Flaschka, and T. S. Ratiu [1990], A convexity theorem for
isospectral manifolds of Jacobi matrices in a compact Lie algebra, Duke
Math. J. 61, 41–65.

Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden, and G. Sanchez de Al-
varez [1992], Stabilization of rigid body dynamics by internal and exter-
nal torques, Automatica 28, 745–756.

Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden, and R. Murray [1996],
Nonholonomic mechanical systems with symmetry, Arch. Rat. Mech. An.
136, 21–99.

Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu [1991],
Asymptotic stability, instability and stabilization of relative equilibria.
In Proc. ACC, pages 1120–1125, Boston. IEEE.

Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu [1994],
Dissipation Induced Instabilities, Ann. Inst. H. Poincaré, Analyse Non-
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Inst. Henri Poincaré, Phys. Th. 47, 199–219.

Iwai, T. [1990], On the Guichardet/Berry connection, Phys. Lett. A 149,
341–344.

Kandrup, H. E. [1991], The secular instability of axisymmetric collisionless
star cluster, Astrophy. J. 380, 511–514.

Kandrup, H. E. and P. Morrison [1992], Hamiltonian structure of the
Vlasov–Einstein system and the problem of stability for spherical rela-
tivistic star clusters, Preprint, ?

Kane, C, J.E. Marsden, and M. Ortiz [1999] Symplectic energy momentum
integrators, J. Math. Phys., 40, 3353–3371.

Kane, C, J.E. Marsden, M. Ortiz and M. West [1999] Variational Inte-
grators and the Newmark Algorithm for Conservative and Dissipative
Mechanical Systems (submitted for publication).

Kane, C, E.A. Repetto, M. Ortiz and J.E. Marsden [1998] Finite element
analysis of nonsmooth contact (Computer Meth. in Appl. Mech. and
Eng., to appear).

Kane, T. R. and M. Scher [1969], A dynamical explanation of the falling
cat phenomenon, Int. J. Solids Structures 5, 663–670.

Kaufman, A. N. [1985], Lorentz-covariant dissipative Lagrangian systems,
Phys. Lett. A 109, 87–89.

Kaufman, A. N. and R. L. Dewar [1984], Canonical derivation of the
Vlasov–Coulomb noncanonical Poisson structure, Cont. Math., AMS 28,
51–54.

Kazhdan, D., B. Kostant, and S. Sternberg [1978], Hamiltonian group ac-
tions and dynamical systems of Calogero type, Comm. Pure Appl. Math.
31, 481–508.

Kerner, R. [1968], Generalization of the Kaluza-Klein theory for an arbi-
trary non-abelian gauge group. Ann. Inst. H. Poincar Sect. A, 9, 143–
152.

Kirillov, A. A. [1976], Local Lie Algebras, Russian Math. Surveys 31, 55–
75.

Kirwan, F. C. [1984a], Cohomology Quotients in Symplectic and Algebraic
Geometry, volume 31 of Princeton Math. Notes. Princeton University
Press.



236 10. Hamiltonian Bifurcation

Kirwan, F. C. [1984b], Convexity properties of the moment map III, Invent.
Math. 77, 547–552.

Koiller, J. [1992], Reduction of some classical nonholonomic systems with
symmetry, Arch. Rat. Mech. Anal. 118, 113–148.

Koon, W. S. and J. E. Marsden [1997a], Optimal control for holonomic
and nonholonomic mechanical systems with symmetry and Lagrangian
reduction, SIAM J. Control and Optim. 35, 901–929.

Koon, W. S. and J. E. Marsden [1997b], The Geometric Structure of Non-
holonomic Mechanics. In Proc. CDC, volume 36, pages 4856–4862.

Koon, W. S. and J. E. Marsden [1997c], The Hamiltonian and Lagrangian
approaches to the dynamics of nonholonomic systems, Rep. Math. Phys.
40, 21–62.

Koon, W. S. and J. E. Marsden [1998], The Poisson reduction of nonholo-
nomic mechanical systems, Reports on Math. Phys. 42, 101–134.

Kopell, N. and J. R. B. Washburn [1982], Chaotic motions in the two
degree-of-freedom swing equations, IEEE Trans. Circuits Syst., 738–746.

Krein, M. G. [1950], A generalization of several investigations of A. M.
Liapunov on linear differential equations with periodic coefficients, Dokl.
Akad. Nauk. SSSR 73, 445–448.

Krishnaprasad, P. S. [1985], Lie–Poisson structures, dual-spin spacecraft
and asymptotic stability, Nonl. Anal. Th. Meth. and Appl. 9, 1011–1035.

Krishnaprasad, P. S. [1989], Eulerian many-body problems, Cont. Math.,
AMS 97, 187–208.

Krishnaprasad, P. S. and J. E. Marsden [1987], Hamiltonian structure and
stability for rigid bodies with flexible attachments, Arch. Rat. Mech.
Anal. 98, 137–158.

Krishnaprasad, P. S., R. Yang, and W. P. Dayawansa [1993], Chaplygin
dynamics and Lagrangian reduction. In W-Z. Chien, Z. G. . Y. G.,
editor, Proc. 2nd Int. Cong. on Nonlinear Mechanics, pages 745–749.
Peking University Press.

Kummer, M. [1981], On the construction of the reduced phase space of a
Hamiltonian system with symmetry, Indiana Univ. Math. J. 30, 281–291.

Levi, M. [1993], Geometric phases in the motion of rigid bodies, Arch. Rat.
Mech. Anal. 122, 213–229.

Lewis, D. [1989], Nonlinear stability of a rotating planar liquid drop, Arch.
Rat. Mech. Anal. 106, 287–333.



10.8 Double Bracket Dissipation 237

Lewis, D. [1992], Lagrangian block diagonalization, Dyn. Diff. Eqn’s 4,
1–42.

Lewis, D., J. E. Marsden, R. Montgomery, and T. Ratiu [1986], The Hamil-
tonian structure for dynamic free boundary problems, Physica D 18,
391–404.

Lewis, D., J. E. Marsden, and T. S. Ratiu [1987], Stability and bifurcation
of a rotating liquid drop, J. Math. Phys. 28, 2508–2515.

Lewis, D., J. E. Marsden, T. S. Ratiu, and J. C. Simo [1990], Normal-
izing connections and the energy–momentum method. In Harnad and
Marsden, editors, Proceedings of the CRM conference on Hamiltonian
systems, Transformation Groups and Spectral Transform Methods, pages
207–227. CRM Press.

Lewis, D., T. S. Ratiu, J. C. Simo, and J. E. Marsden [1992], The heavy
top: a geometric treatment, Nonlinearity 5, 1–48.

Lewis, D. and J. C. Simo [1990], Nonlinear stability of rotating pseudo-rigid
bodies, Proc. Roy. Soc. Lon. A 427, 281–319.

Li, Z., L. Xiao, and M. E. Kellman [1990], Phase space bifurcation struc-
ture and the generalized local-to-normal transition in resonantly coupled
vibrations, J. Chem. Phys. 92, 2251–2268.

Lichtenberg, A. J. and M. A. Liebermann [1983], Regular and stochastic
motion, volume 38 of Applied Math. Science. Springer-Verlag.

Lie, S. [1890], Theorie der Transformationsgruppen, Zweiter Abschnitt.
Teubner, Leipzig.

Lu, J.-H. and T. S. Ratiu [1991], On the nonlinear convexity theorem of
Kostant, Journ. Amer. Math. Soc. 4, 349–364.

MacKay, R. [1991], Movement of eigenvalues of Hamiltonian equilibria un-
der non-Hamiltonian perturbation, Phys. Lett. A 155, 266–268.

MacKay, R.S. [1992] Some aspects of the dynamics and numerics of Hamil-
tonian systems, in The Dynamics of Numerics and the Numerics of Dy-
namics (ed. D.S. Broomhead and A. Iserles), Oxford University Press,
137–193

Marle, C. M. [1976], Symplectic manifolds, dynamical groups and Hamil-
tonian mechanics. In Cahen, M. and M. Flato, editors, Differential Ge-
ometry and Relativity. D. Reidel, Boston.

Marsden, J., G. Misiolek, M. Perlmutter, and T. Ratiu [1998], Symplectic
reduction for semidirect products and central extensions, Diff. Geom.
and its Appl. 9, 173–212.



238 10. Hamiltonian Bifurcation

Marsden, J. E. [1981], Lectures on geometric methods in mathematical
physics, SIAM-CBMS 37.

Marsden, J. E. [1987], Appendix to Golubitsky and Stewart [1987].

Marsden, J. E. and T. J. R. Hughes [1983], Mathematical Foundations of
Elasticity. Prentice Hall. Reprinted by Dover Publications, NY, 1994.

Marsden, J. E., R. Montgomery, and T. S. Ratiu [1990], Reduction, sym-
metry and phases in mechanics, volume 436 of Memoirs. Amer. Math.
Soc.

Marsden, J. E., O. M. O’Reilly, F. J. Wicklin, and B. W. Zombro [1991],
Symmetry, stability, geometric phases and mechanical integrators, Non-
linear Science Today 1, 4–11. also 1, pp. 14–21.

Marsden, J. E., G. W. Patrick, and W. F. Shadwick [1996], Integration
Algorithms and Classical Mechanics, volume 10 of Fields Institute Com-
munications. Am. Math. Society.

Marsden, J. E., G. W. Patrick, and S. Shkoller [1998], Mulltisymplectic
Geometry, Variational Integrators and Nonlinear PDEs, Comm. Math.
Phys. 199, 351–395.

Marsden, J. E., S. Pekarsky, and S. Shkoller [1998], The discrete Euler–
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Hamiltonian pitchfork bifurcation,

197
Hamiltonian saddle node bifurca-

tion, 215
Hamiltonian vector field, 30
Hannay–Berry connection, 132
Hannay-Berry phase, 134
harmonic oscillators, 171
hinge angle, 121
holonomy, 19, 122
holonomy drive, 24
holonomy of a rigid body, 22
homoclinic chaos, 208
homoclinic orbit, 22
hoop, 132, 192
Hopf fibration, 21, 26, 47
Hopf map, 171

horizontal lift, 124
horizontal space, 57
horizontal-vertical decomposition,

59
Hyperion, 11
hyperregular, 34

I
ideal fluids, 51
implicit symplectic scheme, 175
independent passing, 202
inertia tensor, 97, 135
inertial frame, 134
integrable Hamiltonian systems,

168
internal modes, 19
internal-rigid interaction terms, 116
isotropy, 191
isotypic components, 157

J
Jacobi–Bertrand–Haretu coordinates,

53
Jacobi-Liouville theorem, 44

K
Kaluza–Klein configuration space,

146
Kaluza–Klein description, 145
Kaluza–Klein Lagrangian, 146
Kaluza-Klein construction, 75
kinetic energy, 6, 33
Kowalewski top, 153, 156
Krein collision, 194

L
Lagrange-Dirichlet Criterion, 16
Lagrangian, 33
Lagrangian reduction, 72
Legendre transform, 34
Leggett equations, 211
Liapunov’s theorem, 15
Lie–Poisson bracket, 13, 35
Lie–Poisson Hamilton–Jacobi equa-

tion, 184
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Lie–Poisson Reduction, 42
Lie–Poisson reduction, 35, 184
Lie–Trotter formula, 174
limitations on mechanical integra-

tors, 177
linearized oscillations, 197
liquid drop, 151, 167
locked inertia tensor, 18, 56, 135
Lorentz force law, 46

M
magnetic field, 46, 145, 146
magnetic resonance, 24
magnetic term, 62
magnetic terms, 147
magnetic two form, 72
mechanical connection, 18, 57
mechanical integrator, 173
Melnikov method, 207
Melnikov vector, 213
Melnikov’s method, 11
micromotors, 24
microorganisms, 24
mid point rule, 175
moment of inertia tensor, 7
momentum map, 14, 39, 45
momentum maps, 36
momentum-integrator, 174
Moncrief splitting, 112
monitor accuracy, 179
monopole, 47
moving systems, 130

N
Newton’s second law, 194
no-twist, 153
Noether’s theorem, 39
non-canonical bracket, 13
non-integrable, 11
nonsymmetric variations, 167
normal form, 109, 114
normalizer, 155

O
One-to-one resonance, 199

one-to-one resonance, 161, 171, 194
optimal control, 23, 148, 153
orbit reduction theorem, 44
orbit symplectic structure, 43

P
parallel transport, 19
particle in a magnetic field, 47
particle in a Yang–Mills, 145
passing, 200
pendulum equation, 196
phase shift, 141
phase space, 5
pitchfork, 197
planar coupled rigid bodies, 193
planar double pendulum, 162
planar liquid drop, 193
planar rigid bodies, 121
Poisson, 30
Poisson action, 39
Poisson bracket, 30
Poisson manifold, 29
Poisson reduction, 42
Poisson tensor, 50
potential energy, 33
principal axes, 7

Q
quadratic singularities, 45, 206
quaternionic, 203

R
reconstruction, 123, 124
reduced energy–momentum method,

113
reduced Hamilton–Jacobi equation,

184
reduced Hamiltonian, 64
reduced Hamiltonian system, 63
reduced phase space, 10
reduced principal bundle, 82
reduced space, 61
reduced system, 14
reduced variational principle, 76
reduction by stages, 63



250 Index

Reduction theorem, 43
reduction theorem, 14
reference configuration, 6, 96
regular point, 101
regular quadratic Lie algebra, 186
regularized, 206
relative equilibria, 10, 14
relative equilibrium, 17, 85
relative equilibrium theorem, 85
rigid bodies, 51
rigid body, 16, 21, 95, 135, 164,

187
rigid body bracket, 12
rigid body phases, 128
rigid body-rotor system, 141
rigid variations, 18
rigid-internal splitting, 109
rigid-rigid terms, 116
robot, 25
rotating earth, 131
rotating liquid drop, 151, 201
rotating waves, 86
rotation group, 26
rotational invariance, 13
rotors, 135
Routh-Hurwitz criterion, 222
Routhian, 72, 141

S
saddle node bifurcation, 215
satellite parking, 144
semi-direct product, 155
semi-direct product reduction the-

orem, 63
shape, 91
shape space, 23, 49, 62, 121
shape variations, 18
shifting construction, 45
shifting map, 59
simple mechanical G-system, 50
simple pendulum, 140, 176
singular points, 206
singularities, 45
solution symmetry breaking, 193
space telescope, 25

spatial angular momentum, 13
spatial angular velocity, 6
spectral methods, 218
spectral stability, 218
spectroscopy, 25
spherical pendulum, 51, 65, 90,

152, 156, 161
splitting, 199
stability, 15, 174
stabilization, 135, 140
standard map, 176
steady rotations, 10
steady state bifurcation, 193
steady-state bifurcation, 199
step size, 173
structure constants, 35
subblocking, 113, 157
subblocking property, 166
subblocking theorem, 165
superfluid 3He, 211
surface tension, 151
suspended system, 209
symmetric symplectic algorithms,

180
symmetric variations, 166
symmetry breaking parameter, 197
symmetry groups, 192
symplectic action, 42
symplectic form, 13
symplectic leaves, 33
symplectic manifold, 30
symplectic map, 13
symplectic reduction, 42
symplectic submanifold, 156
symplectic-integrator, 174
system parameters, 91
system symmetry breaking, 192

T
tangent coordinates, 33
The Poincaré–Melnikov method,

207
theta functions, 21
three body problem, 1
three-body problem, 214
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time dependent inertia tensor, 97
topologically non-trivial, 26
transversal intersecting separatri-

ces, 208
transversality property, 158

U
unit circle bundle, 26

V
variational principle, 72
velocity shift, 140
vortex algorithms, 186
vortex dipoles, 186

W
water molecule, 1, 52, 69, 93, 166
whirling masses, 162
whirling planar pendulum, 196
Wong kinetic term, 75
Wong’s equations, 23

Y
Yang–Mills equations, 207
Yang–Mills field, 24
Yang–Mills particles, 148
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