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Avant-Propos

When studying any physical problem in Applied Mathematics,three es- 1

sential stage are involved.

1. Modelling: An appropriate mathematical model, based on the
physics or the engineering of the sitution, must be found. Usu-
alluy these models are givena pariori by the physicists or the
engineers themselves. However, mathematicians can also play an
important role in this process especially considering the increas-
ing emphasis on non - linear models of physical problems.

2. Mathematical study of the model: A model usally involves aset of
ordinary’ or partial differential equations or an (energy) functional
to be minimized. One of the first tasks is to find a suitable func-
tional space in which to study the problem. Then comes the study
of existence and uniqueness or non -uniqueness of solutions. An
important feature of linear theories is the existence of unique so-
lutions depending continuoussly on the data (Hadamard’s defini-
tion of well - posed problems). But with non-linear problems,
non-uniqueness is a prevealent phenomenon. For instance, bifu-
racation of solutions is of special interest.

3. Numerical analysis of the model: By this is meant the descrip-
tion of, and the mathematical analysis of, approximation schemes,
whichcanbe run on a computer in a ‘reasonable’ time to get ‘rea-
sonably accurate’ answers.

In the following set of lectures the first two of the above aspects will
be studied with reference to the theory of elasticity in three dimensions.
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In the first chapter a non-linear system of partial differential equa-2

tions will be established as a mathematical model of elasticity. The
non-linearity will appear in the highest order terms and this is an impor-
tant source of difficulties. An energy functional will be established and
it will be seen that the equations of equilibrium can be obtained as the
Euler equations starting from the energy functional.

Existence results will be studied in the second chapter. Thetwo
important tools will be the use of the implicit function theorem and the
theory of J. BALL.
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Chapter 1

Description of Three -
Dimensional Elasticity

THIS CHAPTER WILL be divided into four sections. In the first sec- 3

tion some preliminaries on deformations inR3 will be discussed; the
second will be devoted to the equations of eqilibrium and thethird to
constitutive equations. These together will give rise to the boundary
value problem which will serve as the model for three - dimensional
elasticity. The last section will describe the energy functional and the
associated Euler equations will be seen to give the equations of equilin-
rium and the constitutive equations.

1.1 Geometrical Preliminaries

Let Ω ⊂ R3 be a bounded open set. LetBR = Ω̄, the closure ofΩ in
R

3, stand for thereference configuration. (The subsriptR will always
stand for the reference configuration.) LetXR be a generic point inBR.
If {e1, e2, e3} is the standard orthonormal basis forR3,

(1.1-1) OXR = XRi ei

whereOXR stands for the position vector ofXR. (In the above relation 4

and in all that follows, the summation convention for repeated indices
will always be adopted.)

1



2 1. Description of Three - Dimensional Elasticity

Figure 1.1.1:

Let φ : BR→ R3 be a sufficiently regular mapping. It is said to be a
deformationif

(1.1-2) det(∇φ) > 0

where∇φ is called thedeformation gradientand is a matrix given by
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φi being the components ofφ.

Remark 1.1.1.From (1.1-2) it follows thatφ is locally one - one, though5

it may not be globally so.

The image setB = φ(BR) is called thedeformed configuration. Note
that the mappingφ can be written as

(1.1-3) φ = Id + u

and the mappingu : BR→ R3 is called thedisplacment. It is also seen
that

(1.1-4) ∇φ = I + ∇u
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whereI is the identity matrix and∇u is thedisplacement gradient.
The deformation gradient defines the deformation atX = φ(XR) up

to first order. Ifdt e1 is a line segment parallel toe1 at XR, it is trans-
formed into a curve atX whose tangent isdt ∂1φ, where∂1φ is the first
colums vector of∇φ. The magnitude dt is now ‘streched’ by dt|∂1φ|,
where|.| stands for the Euclidean norm. The three vectors∂1φ, ∂2φ, ∂3φ

are independent and, owing to the relation (1.1-2), preserve the orienta-
tion of {e1, e2, e3}.

It will now be seen how volume, area and line elements are trans-
formed under the defomationφ.

(i) Volume elements:The change from a volume elementdXR to dX
in the deformed confirguration comes from the familiar change of
variable formula in interation theory:

(1.1-5) dx= det(∇φ(XR))dXR.

(ii) Surface elements:If dAR is a surface element onBR deformed
onto a surface elemmentdA onB, then

(1.1-6) dA= det(∇φ(XR))|(∇φ(XR))−tnR|dAR

wherenR is the unit outer normal. (IfF is any matrix,FT stands 6

for its transpose,F−1 for its inverse andF−T = (F−1)T).

The formula (1.1-6) will now be proved . This needs some prelim-
inaries. LetM3 stand for the set of all 3×3 matrices. A tensor will
be understood simply to be an element ofM3.

Let T : B→ M3 be a tensor field. Then itsdivergence(assumingT
to be smooth snough) is defined by

(1.1-7) DIVT =
∂Ti j

∂X j
ei .

Thus each component ofDIV T is the divergence (in the usual
sence) of the correspondingrow vector ofT. By a standard application
of Green’s formula it follows that

(1.1-8)
∫

B

DIVTdX=





















∫

B

∂Ti j

∂X j
dX





















ei =





















∫

∂B

Ti j n jdA





















ej =

∫

∂B

TndA
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wheren is the units outer normal toB. In the same veinDIVR(TR) on
tensor fields onBR can be defined and the analogue of (1.1-8) can be
obtained.

Let T : B → M3 be a tensor field. ItsPiola Transformis a tensor
field TR : BR→ M3 given by

(1.1-9) TR(XR) = det(∇φ(XR))T(X)(∇φ(XR))−T

wereX = φ(XR).
This is a very useful transformation. The following theoremwill

establish the formula (1.1-6).

Theorem 1.1.1. (i) TR(XR)nRdAR = T(X)ndA7

(ii) det(Vφ(XR))(Vφ(XR))−TnRdAR = ndA

(iii) det(∇φ(XR))|(∇φ(XR))−TnR|dAR = dA.

Proof. It can be shown that (cf. Exercise 1.1-1). �

(1.1-10) DIVRTR(XR) = det(Vφ(XR))DIVT(X)

If vR is any arbitrary volume inBR andϑ = φ(vR), then
∫

∂vR

TR(XR)nRdAR =

∫

∂vR

DIVRTR(XR)dXR

=

∫

vR

det(∇φ(XR))DIVT(XR))dXR

=

∫

vR

DIVT(X)dX =
∫

∂v

T(X)ndA

which, asv was arbritrary, proves (i). The assertion (ii) follows by set-
ting T = I . This is a vector relation and taking the Euclidean norm on
both sides gives (iii).
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Remark 1.1.2.The matrix det(∇φ)(∇φ)−T = (adj∇φ)−T is the matrix of
cofactors of∇φ.

(iii) Line elements: Ifφ is smooth enough,φ(XR + δXR) − φ(XR) =
∇φ(XR)δXR+ o(δXR).

Thus

(1.1-11) |φ(XR+δXR)−φ(XR)|2 = δXT
R∇φ(XR)T∇φ(XR)δXR+o(|δXR|2)

which gives the change in length. The matrix

(1.1-12) C = ∇φT∇φ

is called the(right) Cauchy - Green strain tensorand will play an im- 8

portant role in the theory. It is used to compute the length ofan arc. If
f (I ) is a curveℓR in BR, whereI ⊂ R is an interval, andℓ = φ(ℓR) is its
image inB, then the length ofℓ is given by

∫

I

|(φo f)′(t)|dt =
∫

I

√

ci j ( f (t)) f ′i (t) f ′j (t)dt

whereCi j are the components of the matrixC defined above.

Remark 1.1.3.The matrix

(1.1-13) B = ∇φ∇φT

called the(left) Cauchy-Green strain tensorwill be introduced later and
will play an important role in the constitutive equations.

Remark 1.1.4.The change in volume depends on a scalar det∇φ. The
change is surface elements depends on a matrix, (adj∇φ) and the change
in line elements on a matrix,C = ∇φT∇φ. All these will figure in the
integral representing the energy (cf. Sect. 2.6).

To conclude this section, it will now be examined to what extent the
strain tensorC is a measure of the deformation. The word ‘deformation’
can be interpreted in two ways - first the formal sense as defined earlier
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in this section; secondly, in an intuitive way which can be described as
follows. If φ were merely to consist of a translation and then a rotation
about a point in space, while it is a deformation in the strictsense, yet
distances between points are not altered. So intuitively the body has not
been ‘deformed’, Such a transformation is called a rigid deformation.

Thus,φ is said to be arigid deformationif

(1.1-14) φ(XR) = a+ Q(OXR),

where a∈ R3 andQ is an orthogonal matrix whose determinant is+1.9

The vector a above represents a translation and the matrixQ a rota-
tion. The following notation will used for various classes of matrices:

M
3
+ = {F ∈ M3|det(F) > 0}
O

3 = {F ∈ M3|FTF = FFT = I }
O

3
+ = {F ∈ O3|det(F) = +1}
S

3 = {F ∈ M3|FT = F}
S

3
> = {F ∈ S3|Fis positive definite}.

ThusQ ∈ O3
+ . Observe that ifφ is rigid thenC = QTQ = I . In fact,

under suitable hypotheses, the converse is also true.

Theorem 1.1.2. Let Ω be an open connected subset ofR3. Let φ ∈
C1(Ω;R3) such that for all x∈ Ω,

(1.1-15) ∇φ(x)T∇φ(x) = I

Then, there exists a vector a∈ R3 and a matrix Q∈ O3 such that,
for all x ∈ Ω

(1.1-16) φ(x) = a+ Q(0x).

Proof. Cf. Exercise 1.1-2 �

Theorem 1.1.3.LetΩ be an open connected subset ofR3 and letφ, ψ ∈
C1(Ω;R3) such that for all x∈ Ω

(1.1-17) ∇φ(x)T∇ψ(x) = ∇ψ(x)T∇φ(x).
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Assume further thatψ is one - one and thatdet(∇ψ(x)) , 0 for all10

x ∈ Ω. Then there exists a∈ R3 and Q∈ O3 such that for all x∈ Ω

(1.1-18) φ(x) = a+ Qψ(x).

Proof. Consider the mappingθ = φoψ−1 onψ(Ω). Clearlyψ(Ω) is con-
nected. Also, under the given conditions, it is open by the theorem of
invariance of domain. Further,θ ∈ C1(ψ(Ω);R3). Now from (1.1-17) it
follows thatθ satisfies (1.1-15) and so the previous theorem applies toθ

and the result follows. �

Thus if two deformations have the same strain tensor then, upto a
rigid deformation, they are the same. ThusC ‘measures’ the ‘deforma-
tion’ upto a rigid transformation. Naturally, a measure of the deviation
from a rigid deformation is obtained fromC − I . The Green-St Venant
strain tensor, E, is defined by the relation

(1.1-19) C − I = 2E

In terms of the displacement gradient,

I + 2E = C = ∇φT∇φ = I + ∇uT + ∇u+ ∇uT∇u

or, componentwise,

(1.1-20) Ei j =
1
2

(∂iu j + ∂ jui + ∂ium∂ jum)

where∂i stands for
∂

∂XRi

Exercises

1.1-1 Prove thePiola identity 11

DIVR(det(∇φ(XR))(∇φ((XR))−T) = 0.

Deduce the relation (1.1-10) from this.
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1.1-2. Prove Theorem 1.1.2 (Hint: First show that at least locally,φ is
an isometry; then show∇φ is locally contant and use the con-
nectendness ofΩ.)

1.1-3. Let φ : Rn→ Rn, n ≥ 2, be continuous. Assume that there exists
ℓ > 0 such that for allx, y ∈ Rn with |x− y| = ℓ, |φ(x) − φ(y)| = ℓ.
Show thatφ is an isometry, i.e. there existsa ∈ Rn andQ ∈ On

such that for allx ∈ Rn

φ(x) = a+ Qx.

1.1-4. Given a tensor fieldΓ : Ω → S3, find necessary and sufficient
conditions such that there exists a mappingφ : Ω→ Rn with

Γ = ∇φT∇φ

1.2 Euilibrium Equations

The equilibrium equations give the relationship between the given forces
acting on a body and the state of “stress” (to be defined below)which
results as a consequence of these forces.

Let the mass density asX ∈ B be given byρ(X) while that atXR ∈
BR is given byρR(XR). The applied forces inB are of two kinds.

Figure 1.2.1:
12
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(i) Body (or volumic) forces: b: B → R3. The elementary force on
a volume elementdX will thus beρ(X)b(X)dX. An example of a
body force is gravity and in this caseb = (o, o,−g).

(ii) Applied surface forces: t1 : ∂B1 → R3, where∂B1 is a portion of
the boundary∂B. If dA is a surface element, the applied force on
it will be t1dA. An example of a surface force is a pressure load
wheret1 = −pn, p ∈ R, n the normal todA.

A system of forcesin B consists ofbody forces(identical to (i)
above) andsurface forces t: B × Σ1 → R3 whereΣ1 is the unit sphere
in R3, i.e.,

Σ1 = {x ∈ R3||x| = 1}.
If ϑ is any subvolume ofB, dA a surface element of∂ϑ andn the

normal to it, the surface forcet(X, n)dA acts in it. Note that this is inde-
pendent ofϑ, i.e. if ϑ1 were another subvolume anddA lay on∂v1 with
the samen as normal, the force acting on it will remain ast(X, n)dA. 13

Further ifdA⊂ ∂B andn were also normal to∂B, it is required that

(1.2-1) t(X, n) = t1(X).

The vectort(X, n) is called theCauchy stress vector.
The following axiom is the basis of Continuum Mechanics in gen-

eral, and consequently of the theory of elasticity in particular.

AXIOM OF STATIC EQUILIBRIUM. LetB be a deformed configu-
ration in static equilibrium. There exists a system of forces such that for
any subdomainϑ ⊂ B,the corresponding system of forces is equivalent
to zero (in the sense of torsors). Thus

∫

ϑ

ρ(X) b(X) dX +
∫

∂ϑ

t(X, n) dA= o.(1.2-2)

∫

ϑ

OXΛρ(X)b(X)dX+
∫

∂ϑ

OXΛt(x, n)dA= o.(1.2-3)

The wedgeΛ stands for the usual cross product of vectors inR3.
The following notation will be useful in manipulating crossproducts.
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For indicesi, j, k taking values 1, 2, 3 the tensor of rank 3, ǫi jk , is
defined by

(1.2-4) ǫi jk =



























+1 if(i, j, k)is an even permutation of(1, 2, 3),

−1 if it is an odd permutation of(1, 2, 3),

0 otherwise.

Then for vectora, bǫR3,

(1.2-5) aΛb = ǫi jka jbkei .

The following consequence of the axiom of static equilibrium is of14

paramount importance.

Theorem 1.2.1(Cauchy’s Theorem). Let ρǫC◦(B ; R), bǫC◦(B;R3),
t(., n) ǫC1(B;R3) and t(X, .)ǫC◦(

∑

1;R3). Then there exists a tensor field
TǫC1 (B; M3) such that

t(X, n) = T(X)n, for all XǫB, nǫΣ1,(1.2-6)

DIVT(X) + ρ(X) b(X) = 0, for all XǫB,(1.2-7)

T(X) = TT(X), for all XǫB.(1.2-8)

Proof. Let X0 be any point inB. Consider a tetrahedronϑ with vertices
X0,V1,V2,V3 as shown in Fig. 1.2.2. �

Figure 1.2.2:

Let n0ǫ
∑

1 be the normal to the planeV1V2V3 and keepn◦ fixed to
begin with. Let the distance ofX◦ to the plane beδ, let Si(i = 1, 2, 3) be
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the surface opposite the vertexVi(i = 1, 2, 3) andS the surface opposite
X0. Sinceρ, b are continuous onB, they are bounded. Thus by (1.2.2),

|
∫

∂ϑ

t(x, n)dA| ≤ KVol(ϑ)

K being a constant independent ofδ. Since Vol(ϑ) = K1δ
3, A(δ) = Area 15

of S = K2δ
2,K1,K2 being independent ofδ, it follows that

(1.2-9) lim
δ→O

1
A(δ)

∫

∂ϑ

t(X, n)dA= 0

Now,

lim
δ→O

1
A(δ)

∫

S

t(X, n) dA= t(XO, nO)

and

lim δ→ 0
1

A(δ)

∫

Si

t(X, n)dA= (nO.ei)t(XO,−ei)

using the continuity of the given functions. Hence by (1.2-9),

(1.2-10) t(X◦, n◦) = −(n◦.ei)t(X◦,−e◦).

If n◦ → ej , again by continuity oft it follows that

t(X◦, ej) = −t(X◦,−ej).

Thus, on substituting this in (1.2-10),

(1.2-11) t(XO, nO) = t(XO, ej)n j .

Setting
t(X◦, ej) = Ti j (X◦)ei

the equation (1.2-6) follows. The smoothness ofT results from that oft
w.r.t. X.
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Using (1.2-6) in (1.2-2), for any volumeϑ,

0 =
∫

ϑ

ρ(X)b(X)dX+
∫

∂ϑ

T(X)ndA

=

∫

ϑ

ρ(X)b(X) + DIV(T)dX,

from which (1.2-7) follows asϑ was aribitrary.16

Finally by (1.2-3) and (1.2-5)

0 =
∫

L

ǫi jk X jρ(X)bk(X)dX+
∫

∂ϑ

ǫi jk X jTkℓnℓdA

= −
∫

ϑ

ǫi jk X j
∂Tkℓ

∂Xℓ
dX+

∫

∂ϑ

ǫi jk X jTkℓnℓdA

=

∫

ϑ

ǫi jk
∂X j

∂Xℓ
TkℓdX =

∫

ϑ

ǫiℓkTkℓ,

using (1.2-7). Sinceϑ was arbitrary,

ǫiℓkTkℓ = 0

which is just a restatement of (1.2-8).

Remark 1.2.1.Given a tensor fieldT : B → M3 satisfying (1.2-7) and
(1.2-8), the vector fieldt(X, n) = T(X)n satisfies (1.2-2) and (1.2-3).

The tensorT(X) obtained in the above theorem is called theCauchy
stress tensorat the pointXǫB.

Figure 1.2.3:
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Remark 1.2.2.The components ofT can be interpreted as follows. If 17

an elementdA has normale1 then the Cauchy stress vector acting on it,
t(X, e1) has componentsT11,T21 andT31 and so on.

The Cauchy stress tensor thus satisfies a boundary value problem:

DIVT + ρb = 0

T = TT















in B

Tn = t1 on∂B1

Let u.v stand for the usual scalar product inR3, i.e. v.v = uivi . If
A, BǫM3, denote

(1.2-12) A : B = Ai j Bi j = tr(ABT).

This is an inner product inM3 with the associated norm

(1.2-13) ‖A‖ =
√

Ai j Ai j .

Using Green’s formula, a variational form of the boundary value
problem can be obtained.

If T is a tensor field andHO is a vector field onB then
∫

B

DIV T.HOdX =
∫

B

∂Ti j

∂X j
HOidX

= −
∫

B

Ti j
∂HOi

∂X j
dX+

∫

∂B

Ti j HOin jdA

= −
∫

B

T : GRADHOdX+
∫

∂B

Tn.HOdA.

In particular, ifT is a solution of the above boundary value problem18

and if HO vanishes on∂B0 = ∂B\∂B1, then Green’s formula above gives

0 =
∫

B

(DIVT + ρb).HOdX
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=

∫

B

(−T : GRADHO + ρb.HO)dX+
∫

∂B1

t1.HOdA.

Conversely if the above relation is satisfied for allHO vanishing on
∂B0 thenT is a solution of the boundary value problem. Thus

Theorem 1.2.2.The following are equivalent:

(i)















DIVT + ρb = 0, inB

Tn = t1 in ∂B1

(ii) For all HO : B→ R3, HO vanishing on∂BO,

(1.2-14)
∫

B

T : GRADHOdX =
∫

ρb.HOdX+
∫

∂B1

t1.HOdA.

The equations (1.2-14) form the so-calledvariantional formulation
of the boundary value problelm (i). In Mechanics, it is also known as
thePrinciple of Virtual Work in the deformed configuration.

The equations of equilibrium were established in theEulerian vari-
able, X, in the deformed configuration. However, this is of no use for
computation as the deformationφ is unknown. So, the equations must
be written in the reference configuration, which is afixed domaingiven
a priori, in terms of theLagrangian variable, XR. In doing this, it is
desirable to retain as much of thedivergence formof the equations as
possible so that a similar variational formulation can be obtained in the
reference configuration. It is here that the merit of the Piola transform
is seem.

The Piola transform of the Cauchy stress tensorT, called thefirst19

Piola-Kirchhoff stress tensor, is denoted byTR. Thus surya

TR = det(∇φ)T(∇φ)−T .
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Figure 1.2.4:

By the principle of conservation of mass, it is known that

ρR(XR)dXR = ρ(X)dX.

By defining

(1.2-15) bR(XR) = b(X), orbR = boφ

it follows that
ρRbRdXR = ρbdX.

Note that,a priori, bR depends onφ.

Remark 1.2.3.Since it is known thatdX = det(∇φ)dXR, it follows that

(1.2-16) ρ(X) =
ρR(XR)

det∇φ(XR)
.

Since the density at any point (in either configuration) has to be 20

finite and positive, this, if not any other, is a necessary reason for a
deformation to satisfy. det(∇φ) , 0.

Multiplying equation (1.2-7) by det (∇φ) on both sides, it follows
that

(1.2-17) DIVRTR + ρRbR = 0 inBR

Thus the divergence form is preserved. Note however thatTR is not
symemetric. Asymmetrictensor toTR can be defined. It is thesecond
Piola-Kirchhoff stress tensor,

∑

R, given by

(1.2-18)
∑

R

= det(∇φ)(∇φ)−1T(∇φ)−T
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It is related toTR by

(1.2-19)
∑

R

= (∇φ)−1TR.

Remark 1.2.4.It is understandable thatTR is not symmetric as it be-
longs partly to the reference configuration and partly to thedeformed
configuration and symmetry does not make much sense in such a situa-
tion.

Now we turn to the transformation of the surface forces. Thefirst
Piola-Kirchhoff stress vectoris defined so that

(1.2-20) tR(XR, nR) = TR(XR)nR.

Figure 1.2.5:

Recall thatTR(XR)nRdAR = T(X)ndAand so21

tR(XR, nR)dAR = t(X, n)dA.

If ∂B1R is the portion of∂BR mapped byφ onto ∂B1, definet1R :
∂B1R → R3 by t1RdAR = t1dA. Again, a priori, t1R depends onφ.
Explicitly, by Theorem 1.1.1,

(1.2-21) t1R(XR) = det(∇φ(XR))|(∇φ(XR))−TnR|t1(φ(XR)).

The following result is easy to establish.

Theorem 1.2.3.The equilibrium equations in the reference configura-
tion are given by

DIVRTR+ ρRbR = o inBR(1.2-22)



1.2. Euilibrium Equations 17

(∇φ)TT
R = TR(∇φ)T inBR(1.2-23)

TRnR = tRon∂BR.(1.2-24)

Equivalently, in terms of
∑

R

DIVR(∇φ
∑

R

) + ρRbR = 0 in BR(1.2-25)

∑

R

=

T
∑

R

in BR(1.2-26)

∇φ
∑

R

nR = t1R on∂B1R.(1.2-27)

Again, this is equivalent to the variational equations

(1.2-28)
∫

BR

TR : ∇θdXR =

∫

BR

ρRbR.θdXR+

∫

∂B1R

t1R.θdAR

for all θ : BR→ R3 vanishing on∂BoR = ∂BR\∂B1R.

Remark 1.2.5.Equations (1.2-28) go under the name of the principle of22

virtual work in the reference configuration.

To conclude this section, some classes of applied forces areconsid-
ered. Recall that whileρR is completely known,bR and t1R depend in
general onφ which is unknown.

A body force (resp. applied surfaces force) is adead loadif bR (resp.
t1R) is a function ofXR only, independent ofφ.

An example of a body force which is a dead load is gravity which
is constant;b = (o, o,−g). A trivial example of an applied surface force
which is a dead load ist1 = 0! The pressure is an example of an applied
surface force which isnot a dead load:

(1.2-29) t1 = −pn

wherep > o indicates an inward directed force (pressure) andp < 0
indicates one which is directed outward (traction). Now

t1R = −pdet(∇φ)(∇φ)−TnR on∂BR
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which clearly depends onφ!
A body force is said to beconservativeif there exists a function

β : R3 ×BR→ β(φ,XR)ǫR, such that

(1.2-30) bR(XR) = ∇φβ(φ(XR),XR),

for all XRǫBR and all deformationsφ. If which is the case then

(1.2-31)
∫

BR

ρRbR.θdXR = B(φ)(θ)

where

(1.2-32) B(ψ) =
∫

BR

ρR(XR)β(ψ(XR),XR)dXR.

A body force which is a deal load is conservative, β(Φ,XR) = bR(XR).23

Φ.
An applied surface force isconservativeif there exists a function

τ1 : R3 × ∂B1R→ τ1(φ,XR)ǫR such that

(1.2-33) t1R(XR) = ∇Φτ1(φ(XR),XR).

Then again

(1.2-34)
∫

∂B1R

t1R.θdAR = T′1(φ)(θ)

where

(1.2-35) T1(ψ) =
∫

∂B1R

τ1(ψ(XR),XR)dAR.

An applied surface force which is a deal load is conservative;
τ1(φ,XR) = t1R(XR).Φ. A pressure load is conservative (Exercise 1.2-3).

Exercises
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1.2-1 . (Da Silva’s Theorem). Given any system of applied forces (with
∂B1 = ∂B) show that there existsQǫO3 such that

∫

B

ρ(X)OXΛQb(X)dX+
∫

∂B

OXΛQt(X)dA= o

∫

B

ρ(X)QT(OX)Λb(X)dX+
∫

∂B

QT(OX)Λt(X)dA= o.

How many solutions exist?

1.2-2. Show that the fundamental axiom of static equilibrium is equiv-
alent to

∫

ϑ

ρ(X)b(X).v(X)dX+
∫

∂ϑ

t(X, n).v(X)dX = 0

for every volumeϑ ⊂ B and for everyinfinitesimal rigid dis- 24

placement v, i.e.,

v(x) = a+ bΛOx, a, bǫR3.

This is sometimes also called the principle of virtual work.1.2−3.

1.2-3 Show that a pressure load is conservative.

1.3 Constitutive Equations

Given a body acted on by a system of forces, one’s main objective is
to compute the deformationφ which has 3 component functions. As
a naturalintermediary, the stress tensorT has come in which has 6
components (taking into account its symmetry). But so far, the boundary
value problem obtained via the equilibrium equations has yielded only
3 equations (cf. (1.2-7)). Thus 6 more equations must be found.

From the physical point of view, observe that in obtaining the equi-
librium equations, no property of the material under consideration has



20 1. Description of Three - Dimensional Elasticity

been used. Since different materials react differently to the same forces,
obviously these equations alone cannot describe the response of the ma-
terial.

Thus one is led to finding more equations to complete the system. A
material is said to beelasticif there exists a mapping

T̂ : FǫM3
+ → T̂(F)ǫS3

such that for any deformed configuration and any pointX = φ(XR),25

(1.3-1) T(X) = T̂(∇Φ(XR)).

The mapT̂ is called theresponse functionand (1.3-1) is called a
constitutive equation.

Remark 1.3.1.The mapT̂ above does not depends explicitly onXR.
Such that a material is calledhomogeneous.If it were that

T(X) = T̂(XR,∇Φ(XR))

the material would be called anon-homogeneouselastic material.

If TR is the Piola transform ofT then it follows that

(1.3-2) TR = det(∇φ)T̂(∇φ)(∇φ)−1 def
= T̂R(∇φ)

which gives a reponse fucntion̂TR : M3
+ → M3 for TR. Similarly it is

possible to write one forΣR in terms of a response function̂ΣR : M3
+ →

S
3.

Theorem 1.3.1(Polar Factorisation). Let F be an invertible matrix.
Then there exist an orthogonal matrix R and symmetric, positive defi-
nite matrices U and V such that

(1.3-3) F = RU = VR.

Such a factorization is unique.

Proof. Cf. Exircise 1.3-1. �
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Remark 1.3.1′. If F ∈ M3
+ thenR ∈,O3

+. If G ∈ S3
> there exists a unique

matrix H ∈ S3
> such thatH2 = G. It is usual to writeH = G1/2. It can be

seen thatU = (FTF)1/2 andV = (FFT )1/2, in the above theorem. Since26

V = RURT,U andV are similar. Then so areB = FFT andC = FTF.

The constitutive equation (1.3-1) can be written componentwise as

Tll (X) = T̂ll

(

∂φ1

∂XR1

(XR), . . . ,
∂φ3

∂XR3

(XR)

)

and so on. So knowinĝT is the same as knowing the functionsT̂i j . How-
ever, the functionŝTi j cannot be chosen arbitrarily. They must somehow
reflect anintrinsic property of the material in equation, irrespective of
the coordinate system chosen. This is the idea embodying the

AXIOM OF MATERIAL FRAME INDIFFERENCE. The Cauchy stress
vector t(X, n) = T(X)n should be independent of the particular basis in
which the constitutive equation is expressed.

Theorem 1.3.2.The following are equivalent.

(i) A response function̂T : M3
+ → S3 satisfies the axiom of material

frame indifference.

(ii) For every Q∈ O3
+ and for every F∈ M3

+,

(1.3-4) T̂(QF) = QT̂(F)QT .

(iii) For every F∈ M3
+ if F = RU is its polar factorisation then

(1.3-5) T̂(F) = RT̂(U)RT

(iv) There exists a map̃ΣR : S3
> → S3 such that

(1.3-6) Σ̃R(F) = Σ̃R(FTF)

for every F∈ M3
+. 27

Proof. (i) ⇔ (ii) Instead of rotating the coordinate axes the same effect
can be achived by rotating the deformed configuration. �
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Figure 1.3.1:

RotatingB by a mapQ ∈ O3
+, let X map intoX′. The normaln at

any goes toQnandt(X, n) goes toQt(X, n). Thus

t(X′,Qn) = T′(X′)Qn

t(X′,Qn) = Qt(X, n) = QT(X)n.

Sincen is arbitrary, it follows that28

(1.3-7) T′(X′) = QT(x)QT

Thus
T̂(Q∇φ(XR)) = QT̂(∇φ(XR))QT

for any Q ∈ O3
+ and anyF = ∇φ ∈ M3

+. This shown that (i)⇒ (ii)
Simply retracting the argument proves the converse.

(ii) ⇔ (iii). If F = RU, then by (ii), sinceR ∈ O3
+

T̂(RU) = RT̂(U)RT

which is (iii). Conversely, assuming (iii), ifF = RU then the polar
factorizationQF is (QR)U for Q ∈ O3

+, as the factorization is unique.
Thus

T̂(QF) = QRT̂(U)RTQT = QT̂(F)QT .
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(ii) ⇔ (vi). SinceF = RU impliesU = (FTF)1/2,

T̂(F) = RT̂(U)RT

= FU−1T̂(U)U−1FT

= FS̃(FTF)FT

whereS̃ : S3
> → S3. Conversely, ifT̂(F) is of the above form, then if

F = RU,
T̂(U) = US̃(U2)U

and 29

T̂(F) = FS̃(FTF)FT

= FS̃(U2)FT

= FU−1T̂(U)U−1FT

= RT̂(U)RT .

Now

ΣR(F) = det(F)F−1T̂(F)F−T

= (det(FT F))1/2S̃(FT F) = Σ̃R(FTF).

Remark 1.3.2.If one of the response functions, sayΓ, can be written of
either variablesF, FTF = C, FFT = B or E ( whereC = I + 2E), the
following notation will be employed when the different dependences are
expressed:

Γ = Γ̂(F) = Γ̃(FTF) = Γ̄(FFT) = Γ∗(E)

In the above theorem it has been proved that it is enough to know
the action ofT̂ on a relatively small class of matrices likeS3

>.
A material or response function is said to beisotropic if the Cauchy

strees tensor (or vector) computed at a given point in the deformed con-
figuration is the same if the same if the reference configuration is rotated
by any rigid defomation.
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While the axiom of material frame indifference is anaxiom to ver-
ified by any response fucntion, isotropy is aproperty of a particular
material. There can be materials which are non-isotropic; for instance,
a body up of layers of different materials.

Theorem 1.3.3.The following are equivalent.30

(i) A response function̂T : M3
+ → S3 is isotropic.

(ii) For every F∈ M3
+ and for every Q∈ O3

+,

(1.3-8) T̂(F) = T̂(FQ).

(iii) There exists a map̄T : S3
> → S3 such that for every F∈ M3

+,

(1.3-9) T̂(F) = T̄(FFT ).

Proof. (i) ⇔ (ii). Let Q ∈ O3
+. Rotate the reference configuration about

a pointX̄R so that ifXR ∈ BR then

(2) θ(XR) = X̄R+ QT(X̄RXR).

Then
φ∗ = φoθ−1.

Figure 1.3.2:

The response function is isotropic if and only if

T̂(X̄) = T̂(∇φ(X̃R)) = T̂(∇φ∗(X̃R))
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i.e., T̃(∇φ(X̃R)) = T̂(∇φ(X̄R)Q).

(ii) ⇔ (iii). Let FFT = GGT , F,G ∈ M3
+. ThenG−1F ∈ O3

+. Hence by31

(ii)
T̂(G) = T̂(G(G−1F)) = T̂(F).

So it is clear that̂T(F) depends only onFFT . Conversely ifT̂(F) =
T̄(FFT) then forQ ∈ O3

+,

T̂(FQ) = T̄(FQQTFT ) = T̄(FFT ) = T̂(F).

�

Remark 1.3.3.By the axiom of material frame indifference, the consti-
tutive equation could be expreesed in terms of a function ofC = FTF
and this involved rotating thedeformedconfigurationB. By isotropy,
the same could be expressed in terms of a function ofB = FFT and
this involved rotating thereferenceconfigurationBR. Thus these two
nations seem to be ‘dual’ ot each other.

Remark 1.3.4.For non-isotropic materials it can be shown that

T̂(F) = T̂(FQ)

for all F ∈ M3
+ but Q variying over a subgroup ofO3

+.

In what follows, the material will allways be assumed to be isotropic.
Before proving a very powerful and elgent result on the structure of

a reponse function which is isotrophic and material frame-indifferent,
the following definition is needed.

Let A ∈ M3. Define ıA to be the triple (ı1(A), ı2(A), ı3(A)) where
ı1(A), ı2(A) andı3(A) are the principal invariants of A, and

det(A− λI ) = −λ3 + ı1(A)λ2 − ı2(A)λ + ı3(A).(1.3-10)

If A = (ai j ) andλ1, λ2, λ3 are its eigenvalues, then

ı1(A) = aii = tr(A) = λ1 + λ2 + λ3.

(1.3-11)
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ı2(A) =
1
2

(aii a j j − a j j ai j ) =
1
2

((tr(A))2 − tr(A2))

= tr(adjA) = λ1λ
2 + λ2λ3 + λ3λ1.(1.3-12)

ı3(A) = det(A) =
1
6

((tr(A))3 − 3tr(A)tr(A2) + 2tr(A3)) = λ1λ2λ3.

(1.3-13)

32

Further, ifA is invertible,

(1.3-14) ı2(A) = (detA)tr(A−1).

The following theorem is one of the most important results inthe
theorey of elasticity.

Theorem 1.3.4(Rivlin-Ericksen Theorem). A response function̂T :
M

3
+ → S3 is isotropic and material frame indifferent if, and only if,

it is of theT̂(F) = T̄(FFT) where the mappinḡT : S3
> → S3 is of the

form

(1.3-15) T̄(B) = βo(ıB)I + β1(ıB)B+ β2(ıB)B2

for all B ∈ S3
>. whereβo, β1, β2 are real valued functions.

Proof. (i) Let T̂ : M3
+ → S3 be material frame indifferent and isotropic.

Then by isotropyT̂(F) = T̄(FFT ) for some mappinḡT : S3
> → S3. Let

Q ∈ O3
+ andB ∈ S3

>. On one hand , by isotrophy

T̂(QB1/2) = T̄(QB1/2B1/2QT) = T̄(QBQT).

On the other hand, by the material frame indifference,

T̂(QB1/2) = QT̂(B1/2)QT

= QT̄(B1/2B1/2)QT = QT̄(B)Q.

33

ThusT̄ satisfies , for allQ ∈ O3
+, andB ∈ S3

>

(1.3-16) T̄(QBQT) = QT̄(B)QT .
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Conversly, letT̄ : S3
> → S3 satisfy (1.3-16) and let̂T(F) = T̄(FTF).

Then clearly,T̂ is isotrophic. IfQ ∈ O3
+, then

T̂(QF) = T̄(QFFTQT) = QT̄(FFT)QT.

= QT̂(F)QT

and soT̂ is material frame indefferent.
Thus it is now enough to check that a mappingT̄ : S3

> → S3 sat-
isfying (1.3-16) is of the form (1.3-15). (The converse is immediate to
varify).

(ii) Let T̄ : S3
> → S3 varify (1.3-16). It will now be shown that

any matrix which diagonalizesB ∈ S3
> also diagnalizes̄T(B), i.e., any

eigenvector ofB is an eigenvector of̄T(B).
Let B ∈ S3

> andQ ∈ O3
+ (we can always assume that) such that

QT BQ= diag (λi)

whereλ1, λ2, λ3 are the eigenvalue ofB. Define

Q1 = diag (1,−1,−1),Q2 = diag (−1, 1,−1),Q3 = diag (−1,−1, 1).

ThenQk ∈ O3
+, k = 1, 2, 3.

Also, 34

QT
k QT BQQk = diagλi = QT BQ.

So,

QT
k QT T̄(B)QQk = T̄(QT

k QT BQQk)

= T̄(QT BQ)

= QT T̄(B)Q.

If D = QT T̄(B)Q, then

QT
k DQk = D, k = 1, 2, 3.

If the diagonal entries ofQk areqk
i (= 1 if i = k,−1 if i , k), then it

follows that
Di j = qk

i Di j q
k
j for all 1 ≤ i, j, k ≤ 3.
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Thus if i = k , j, then

Dk j = −Dk j or Dk j = o.

HenceD is diagonal and this proves the claim.

(iii) It will now be a shown that ifT̄ satisfies (1.3-16) then, for all
B ∈ S3

>,

(1.3-17) T̄(B) = bo(B)I + b1(B)B+ b2(B)B2,

bα, α = 0, 1, 2 being real valued functions onS3
>. �

Case 1.B has 3 distanct eigenvaluesλ1, λ2, λ3 with corresponding or-35

thonormal eigenvectorsp1, p2, p3. Then

I = p1pT
1 + p1pT

2 + p3pT
3(1.3-18)

B = λ1p1pT
1 + λ2p2pT

2 + λ3p3pT
3(1.3-19)

B2 = λ2
1p1pT

1 + λ
2
2p2pT

2 + λ
2
3p3pT

3(1.3-20)

Since theλi are distinct, the Vandermonde determinant

det





















1 1 1
λ1 λ2 λ3

λ2
1 λ2

2 λ2
3





















is non-zero and so inS3, the span ofpi pT
i , i = 1, 2, 3 is equal to that of

I , B, B2. But T̄(B), by step (ii) above, has the same eigenvectors asB.
So

(1.3-21) T̄(B) = µ1p1pT
1 + µ2p2pT

2 + µ3p3pT
3

which implies thatT̄(B) ∈ span{I , B, B2}.

Case 2.λ1 , λ2 = λ3. Again one can write (1.3-18) and (1.3-19). Then
the span ofp1pT

1 andp2pT
2 + p3pT

3 is that ofI andB. By step (ii), it can
be seen thatµ2 = µ3, since any non-zero vector spanned byp2 andp3 is
also an eigenvector for̄T(B). Thus in (1.3-21)

T̄(B) = µ1p1pT
1 + µ2(p2pT

2 + p3pT
3 )

which showsT̄(B) ∈ span (I , B).
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Case 3.λ1 = λ2 = λ3. In this case, one can similarly see thatB, T̄(B)36

are both scalar multiples ofI .

(iv) Case. 1.λ1, λ2, λ3 are distinct eigenvalues ofB ∈ S3
>, .

Let Q ∈ O3
+.

T̄(QBQT) = bo(QBQT)I + b1(QBQT)QBQT + b2(QBQT)QB2QT

= Q(bo(QBQT)I + b1(QBQT)B+ b2(QBQT)B2)QT

But

T̄(QBQT) = QT̄(B)QT = Q(bo(B)I + b1(B)B+ b2(B)B2)QT .

Thusbα : S3
> → R, α = 0, 1, 2 satisfy the functional identity

(1.3-22) bα(QBQT) = bα(B)

for all B ∈ S3
> and for allQ ∈ O3

+. Thus if Q diagnalizesB, it is seen
that such a functionbα must be a function of the eigenvalues ofB only.
Now choosingQi ∈ O3

+, i = 1, 2, 3 as

Q1 =





















0 1 0
1 0 0
0 0 −1





















,Q2 =





















−1 0 0
0 0 1
0 1 0





















,Q3 =





















0 0 1
0 −1 0
1 0 0





















it is seen from (1.3-22) thatbα is a symmetric function ofλ1, λ2, λ3. i.e,.
bα(B) = βα(tB).

This proves the theorem completely.

Theorem 1.3.5. (a) GivenBR and an isotropic material frame indif-
ferent material, then in any deformed configurationB = φ(BR), the
Cauchy stress tensor is given by

(1.3-23) T(X) = T̂(∇φ(XR)) = T̄(∇φ(XR)∇φ(XR)T),

37

T̄ : S3
> → S3 satisfying(1.3-15).

(b) The second Piola-Kirchhoff stress tensor is given by

(1.3-24) ΣR(XR) = Σ̂R(∇φ(XR)) = Σ̃R(∇φ(XR)T∇φ(XR))
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whereΣ̃R : S3
> → S3 satisfies, for all C∈ S3

>,

(1.3-25) Σ̃R(C) = γo(ıc)I + γ1(ıc)C + γ2(ıc)C
2.

Proof. Observe that

Σ̂R(F) = det(F)F−1T̂(F)F−T

= (det(FTF))1/2F−1T̄(FFT)F−T

= (detC)1/2F−1[βO(ıB)I + β1(wrB)B+ B2(ıB)B2]F−T

whereC = FTF, B = FFT . But these are similar. SoıB = ıc.
Further

F−1F−T = C−1

F−1BF−T = I

F−1B2F−T = C.

By the Cayley-Hamilton theorem,

−C3 + ı1(C)C2 − ı2(C)C + ı3(C)I = 0

or C−1 =
1

ı3(C)
(C2 − ı1(C)C + ı2(C)I )

whereı3(C) = detC , 0. Thus it is clear from these considerations that38

ΣR can be expressed in terms ofC as in (1.3-24) - (1.3-25). �

It was seen in Section 1.1 that the Green-St Venant strain tensor
E, given byC = I + 2E, ‘measures’ the actual deformation. If̃ΣR

is sufficiently smooth it is possible to express it in terms ofE. More
precisely, the following result is true.

Theorem 1.3.6.LetBR be the reference configuration of an isotropic,
material frame indifferent elastic material. Assume that the functions
γα, a = 0, 1, 2 of (1.3-25)are differentiable atıI = (3, 3, 1). Then

(1.3-26) ΣR = Σ̃R(I + 2E) = −pI + (λ(trE)I + 2µE) +O(E),

where p, λ andµ are constants.
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Proof. Using the relations

tr(C) = 3+ 2 tr(E)

tr(C2) = 3+ 4 tr(E) + o(E)

tr(C3) = 3+ 6 tr(E) + o(E)

and the relations (1.3-11) - (1.3-13), it follows that

ı1(C) = 3+ 2 tr(E)

ı2(C) = 3+ 4 tr(E) + o(E)

ı3(C) = 1+ 2 tr(E) + o(E)

so that

γ(ıC) = γ(ıI ) + (2
∂γ

∂ıI
(ıI ) + 4

∂γ

∂ı2
(ıI ) + 2

∂γ

∂ı3
(ıI )) tr(E) +O(E)

whereγ = (γO, γ1, γ2). This yields (1.3-26). In particular 39

p = −(γ1(ıI ) + γ1(ı1) + γ2(ı1)).(1.3-27)

λ =

2
∑

α=0

(

2
∂γα

∂ı1
(ı1) + 4

∂γα

∂ı2
(ıI ) + 2

∂γα

∂ı3
(ıI )

)

.(1.3-28)

µ = γ1(ı1) + 2γ2(ı1).(1.3-29)

�

A reference configuration is anatural stateif ‘there is no stress in
it’, i.e., p = 0. In this case

(1.3-30) ΣR = Σ
∗
R(E) = λ tr(E)I + 2µE + o(E)

andλ andµ are calledLamé’s constants. It is possible to obtaina priori
some information on the nature of the Lamé’s constants.

LetBR be a natural state and have a ‘simple form’. Letφ∈ : BR→
R

3 be of the form

(1.3-31) φ∈(XR) = XR+ ∈ u(XR) + o(∈; XR),
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where∈> o is a small parameter, and where∇u(XR) = G, aconstantma-
trix. Such a deformation is a special case of the so-calledhomogeneous
deformationswhere∇φ is a constant vector. Then

T∈(X) = T̂(I+ ∈ G+ o(∈; X))

= T̂(I+ ∈ G) + 0(∈; X),X = φ(XR).

ThusDIVT∈(X) = o(∈; X) i. e. to within first order in∈, there can
be no body force: such deformations can only be produced by applied
surface forces. Now it can be seen that

(1.3-32) T∈(X) =∈ (λ(tr G)I + µ(GT +G)) + o(∈; X)

using the fact thatBR is a natural state. For particularφ∈ considered40

the correspondingT∈ is of some simple form. This can be substituted in
(1.3-32) and it is thus possible to obtain inequalities forλ andµ.

Experiment 1. LetBR be a rectangular block. Choose

(1.3-33) u∈(XR)
def
= ∈ u(XR) =∈





















XR2

0
0





















.

Thus the body deforms as shown in figure 1.3.3.

Figure 1.3.3:
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Then it is logical to assumeT∈12 =∈ T12 + o(∈) whereT12 > o. This
follows from the interpretation of the components of the stress tensor
(cf. Remark 1.2.2). Comparing this form with (1.3-32) if follows that

(1.3-34) µ > 0.

41

Experiment 2. Let BR be a sphere which is contracted by means of a
normal pressure. Thus

(1.3-35) u∈(XR) =∈





















−XR1

−XR2

−XR3





















+ o(∈; XR).

Thus

(1.3-36) T∈(X) = −p ∈ I + o(∈; X), p > 0.

Figure 1.3.4:

It can then be shown that 42

(1.3-37) −p ∈ I = − ∈ (3λ + 2µ)I + 0(∈)
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from which it follows that

(1.3-38) 3λ + 2µ > 0.

Remark 1.3.5.This precludesincompressible materials!An example
of an incompressible material is rubber.

Experiment 3. LetBR be a cylinder which is stretched as in figure 1.3.5.

Figure 1.3.5:

Now43

(1.3-39) u∈(XR) =∈





















−νXR1

−νXR2

XR3





















+ 0(∈; XR), ν > 0

and

(1.3-40) T∈(X) =∈





















0 0 0
0 0 0
0 0 E





















+ 0(∈; X).
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It can now be shown that

(1.3-41) ν =
λ

2(λ + µ)
,E =

µ(3λ + 2µ)
λ + µ

Sinceµ > 0 and 3λ + 2µ > 0, it follows thatλ + µ > 0. Sinceν > 0
it follows that

(1.3-42) λ > 0.

Thusλ > o andµ > 0. (This does not make sense for incompress-
ible materials). The numberν is known asPoisson’s ratioand E as
Young’s modulus. The Lame’s constants can be expressed in terms of
these quantities:

(1.3-43) λ =
Eν

(1+ ν)(1− 2ν)
, µ =

E
2(1+ ν)

.

Thusλ > O andµ > O is equivalent to

(1.3-44) 0< ν < 1/2,E > 0.

(For an incompressible material,ν = 1/2).
An elastic material is said to be aSt Venant-Kirchhoff material if 44

(1.3-45) Σ∗R(E) = λ(tr E)I + 2µE.

It is also expressible in terms ofC:

(1.3-46) Σ̃R(C) =
{

λ

2
(ı1(C) − 3)− µ

}

I + µC.

Then the Cauchy stress tensor can be written as

(1.3-47) T = T̄(B) = (ı3(B))1/2
{

λ

2
(ı1(B) − 3)− µ

}

B+ µ(ı1(B))1/2B2.

Thus such a material is isotropic and material frame indifferent (cf.
Theorem 1.3.4).
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Remark 1.3.6.While the relation (1.3-45) betweenΣR andE is linear,
as a function ofu,ER is non-linearsince the dependence ofE onu non-
linear (cf. (1.1-20)).

The relation (1.3-45) can be written componentwise as follows:

ΣRi j = λEkkδi j + 2µEi j

def
= ai jkℓEkℓ(1.3-48)

where theelasticity coefficients ai jkℓ are defined by

(1.3-49) ai jkℓ = λδi jδkℓ + 2µδikδ jℓ.

The mappingE→ λ(tr E)I + 2µE is invertible if and only ifµ(3λ +
2µ) , o (and we know thatµ(3λ + 2µ) > O from above). Thus givenΣR

there corresponds a uniqueΣ. However, this is not always true in actual
experiments for large deformations. This model can be expected to be
acceptable only for small strainsE.

Exercises45

1.3-1. Given a matrixA ∈ S3
> show thatA1/2 is uniquely defined inS3

>.
If F is an invertible matrix andF = RU = VS,U = (FT F)1/2,
V = (FFT )1/2 show thatR = FU−1,S = V−1F are orthogonal.
Show also thatS = R, thus proving theorem 1.3.1.

1.3-2. If BR is any reference configuration of an isotropic, material
frame-indifferent material, explain whỹΣR(I ) is just a multiple
of I as shown in Theorem 1.3.6.

1.3-3. Complete the details in the proof thatλ, µ > O for a natural
state. In particular, prove relations (1.3-32), (1.3-34),(1.3-37),
and (1.3-41).
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1.4 Hyperelasticity

If the constitutive equation is taken into account, the equilibrium equa-
tions in the reference configuration reduce to a system of three equa-
tions, for the three components of the deformationφ, along with bound-
ary conditions:

DIVRT̂R(∇φ) + ρRbR = O in BR(1.4-1)

T̂R(∇φ)nR = t1R on∂B1R(1.4-2)

φ = φ0 on∂B0R.(1.4-3)

This is equivalent to the variational equations

(1.4-4)
∫

BR

T̂R(∇φ) : ∇θdXR =

∫

BR

ρRbR.θdXR +

∫

∂B1R

t1R.θdAR

for all θ : BR→ R3, vanishing on∂BoR.
It was seen in section 1.2 that if the body forces and applied surfaces 46

were conservative, then (1.4-4) could be written in the form

(1.4-5)
∫

BR

T̂R(∇φ) : ∇φdXR = B′(φ)θ + T′1(φ)θ

for real-valued functionalsB andT1 (cf. (1.2-32) and (1.2-35).
If it were possible to write

∫

BR

T̂R(∇φ) : ∇θdXR

asW′(φ)θ for some functionalW, then the problem (1.4-4) would reduce
to finding the stationary points of the functionalW− (B+ T1).

Note that upto now, the equations which give the symmetry ofΣR =

(∇φ)−1TR have not been mentioned; it will be seen later (cf. Theorem
1.4.3) that for materials under consideration in this section, these equa-
tions will automatically be satisfied.

The above considerations lead to the following definition:
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A homogeneous elastic material is said to behyperelasticif there
exists a differentiable functionW : M3

+ → R such that

(1.4-6) T̂R(F) =
∂W

∂F
(F)

for all F ∈ M3
+, or componentwise,

(1.4-7) T̂Ri j (F) =
∂W

∂Fi j
(F).

A word on notation: theFrechet derivtiveW ′(F) : M3 → R is a47

continuous linear operator such that forF, andF +G inM3
+,

W(F +G) =W(F) +W′(F)G + o(G)

=W(F) +
∂W
∂Fi j

(F)Gi j + o(G).

The term
∂W
∂Fi j

(F)Gi j will also be written as

∂W
∂F

(F) : G
def
=
∂W
∂Fi j

(F)Gi j ,

where thematrix
∂W
∂F

(F) has components
∂W
∂Fi j

(F).

Theorem 1.4.1. Consider a homogeneous hyperlastio material acted
on by body and applied surface forces which are conservative. Then the
boundary value problem with respect toφ is formally equivalent to

(1.4-8) I ′(φ)θ = 0

for all θ : BR → R3, vanishing on∂BoR where, for allψ : BR→ R3,

(1.4-9) I (ψ) =
∫

BR

W(∇ψ(XR))dXR − (B(ψ) + T1(ψ)).
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Proof. Givenψ : BR → R3 andW : M3
+ → R, let

W(ψ)
def
=

∫

BR

W(∇φ)dXR.

Then givenψ andθ,

W(ψ + θ) −W(ψ) =
∫

BR

(W(∇(Ψθ)(XR)) −W(∇ψ(XR)))dxR

=

∫

BR

[

∂W
∂F

(∇ψ(XR)) : ∇θ(XR) + o(|vθ(XR)|; XR)

]

dXR

=

∫

BR

T̂R(∇ψ) : ∇θdXR + o(||θ||).

Thus, at least formally, 48

(1.4-10) W′(ψ)θ =
∫

R
T̂R(∇ψ) : ∇θdXR

and the result follows. �

Remark 1.4.1.It must be verified in each circumstance thetW is Fréchet
differentiable and that the right hand side of (1.4-10) does indeed give
the Fréchet derivative. If theC1-uniform norm is chosen for the space of
differentiable vector functions onBR and if the first partial derivatives
of T̂Ri j are Lipschitz Continuous it can be it can be seen that is indeed
the case.

The functionalW is called thestrain energyandI is called thetotal
energy. The functionW : M3

+ → R is called thestored energy function.

Notice that the boundary value problerm is precisely theEuler equa-
tions associatedto the total energy.

If φo on∂BoR is extended to the whole ofBR andIo defined by

Io(ψ) = I (ψ + φo)
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then one looks forφ − φo vanishing on∂BoR such that

I ′o(φ − φo)θ = o

for all θ : BR → R3 vanishing on∂BoR. Thus particular solutions are49

thoseφ which satisfy

(1.4-11) I (φ) =



























inf

ψ : BR→ R3

ψ = φ0 on∂BoR

I (ψ).

In the next chapter, it will be seen that the formulation in terms of
the boundary value problem will be the basis for proving existence of
solutions via the implicit function theorem while (1.4-11)will be the
basis for the approach due to J. BALL.

A stored energy functionW : M3
+ → R will be said to be mate-

rial frame indifferent (resp isotropic) if̂TR =
∂W
∂F

is material frame

imdifferent (resp. isotropic).
Now necessary and sufficient conditions for a stored energy function

to be material frame indifferent or/and isotropic will be examined.

Theorem 1.4.2.The stored energy functionW : M3
+ → R is material

frame indifferent if and only if, for all FǫM3
+ and for all QǫO3

+

(1.4-12) W(QF) =W(F).

Equivalently, it is material frame indifferent if and only if there exists
a functionW : S3

> → R such that for all FǫM3
+

(1.4-13) W(F) = W̃(FTF)

(cf. Equation(1.3-6)).

Proof. Since material frame indifference is equivalent to50

T̂(QF) = QT̂(F)QT



1.4. Hyperelasticity 41

for all FǫM3
+ and for allQǫO3

+, and since

T̂R(F) = detFT̂(F)F−T

it follows that material frame indifference is equivalent to

(1.4-14) T̂R(QF) = QT̂R(F)

for all FǫM3
+ andQǫO3

+, i.e.,

(1.4-15)
∂W
∂F

(QF) = Q
∂W
∂F

(F)

in case of hyperelastic materials. Define

(1.4-16) WQ(F) =W(QF),QǫO3
+, FǫM

3
+.

Now if F +G ǫ M3
+,

WQ(F +G) =W(QF + QG) =
∂W
∂F

(QF) : QG+ o(QG)

= QT ∂W
∂F

(QF) : G+ o(G)

where the relationA : BC = BTC has been used (cf. Remark 1.4.2).
Thus

∂WQ

∂F
(F) = QT ∂W

∂F
(QF).

Thus material frame indifference is equivalent to

(1.4-17)
∂

∂F
(WQ(F) −W(F)) = 0.

�

NowM3
+ is connected inM3(cf,. Exercise 1.4-2 and so the above is51

equivalent to)

(1.4-18) W(QF) =W(F) +C(Q),
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for all FǫM3
+,QǫO

3
+. SettingF = I ,Q,Q2, . . . successively, it follows

that

W(Q) =W(I ) +C(Q)

W(Q2) =W(Q) +C(Q)

. . . .

Thus fo any integerp ≥ 1,

(1.4-19) W(QP) =W(I ) + pC(Q).

Then
|W(QP)| ≥ p|C(Q)| − |W(I )|.

Thus ifC(Q) , 0, then|W(QP)| → +∞ asp→ ∞. But the setO3
+

is compact inM3
+ andW is continuous since it is differentiable. Hence

C(Q) = 0 and the first assertion is proved.
To prove the second equivalence, letF = RU be the polar factoriza-

tion of F (cf. Theorem 1.3.1). ForCǫS3
>, set

(1.4-20) W̃(C) =W(C1/2).

Then

W(F) =W(RU) =W(U) = W̃(U2) = W̃(FTF)

sinceU2 = FTF. Conversely, if (1.4-13) is true, then forFǫM3
+ and52

QǫO3
+,

W(QF) = W̃(FTQTQF) = W̃(FT F) =W(F).

It can be show that (cf. Exercise 1.4-4) ifW is differentiable, so is

W̃. Without loss of generality, it may be assumed that the matrix
∂W̄
∂C

is symetric. For

W̃(C) = W̃(
C +CT

2
),CǫS3

>.
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Remark 1.4.2.The following identities involving the scalar product : in
M

3 are useful.

A : BC = ṫr(ACT BT) = tr(BT−ACT) = BTA : C(1.4-21)

A : BC = ACT : B = B : ACT = tr(BCAT) = tr(CATB) = CAT : BT .

(1.4-22)

The identity (1.4-21) was used in the proof of the above theorem.

The following theorem says that in case of frame indifferent hy-
perelastic materials, the symmetry of the second Piola-Kirchhoff stress
tensor is automatically verified.

Theorem 1.4.3. Let the material be hyperelastic and material frame
indifferent. Then

(1.4-23) ΣR = Σ̂R(F) = Σ̃R(FT F) = 2
∂W̃
∂C

(C),C = FTF.

Thus the second Piola-Kirchhoff stress tensor is automatically sym-
metric. Conversely, if there exists a mappingW̃ : S3

> → R such that

(1.4-24) Σ̂R(F) = 2
∂W̃
∂C

(FTF)

then the material is hyperelastic with 53

(1.4-25) W(F) = W̃(FTF)

and consequently is material frame indifferent.

Proof. Σ̂R(F) = F−1T̂R(F) = F−1∂W̄
∂F

(F).

AlsoW(F) = W̃(FT F). Now if F, F +GǫM3
+,

W(F +G) −W(F) = W̃(FTF + FTG+GTF +GTG) − W̃(FTF)

=
∂W̃
∂C

(FT F) : (FTG+GTF) + o(G)

= F
∂W̃
∂C

(FT F) : G+ F(
∂W̃
∂C

(FT F))T : G+ o(G)
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by (1.4-21) - (1.4-22). But
∂W̃
∂C

is symmetric. Thus

W(F +G) −W(F) = 2F(
∂W̃
∂C

(FT F)) : G+ o(G).

Hence54

∂W
∂F

(F) = 2F
∂W̃
∂C

(FTF)

or Σ̂R(F) = F−1∂W
∂F

(F) = 2
∂W̃
∂C

(FTF).

Conversely, ifW(F) = W̃(FT F) then consider the mappingF →
FTF fromM3

+ into S3
+. One has

W′(F)G = W̃′(FTF)(FTG+GTF)

or

∂W
∂F

(F) : G =
∂W̃
∂C

(FTF) : (FTG+GTF)

= 2F
∂W̃
∂C

(FT F) : G as before.

Hence
∂W
∂F

(F) = FΣ̂R(F) = T̂R(F)

and the result follows. �

Now the effect of isotropy on a stored energy function can be simi-
larly examined.

Theorem 1.4.4.A stored energy functionW : M3
+ → R is isotropic if,

and only if, for every FǫM3
+ and for every QǫO3

+,

(1.4-26) W(F) =W(FQ).

Proof. The argument runs along the same lines of that of Theorem 1.4.2
and is left as an exercise (cf. Exercise 1.4-5). �



1.4. Hyperelasticity 45

Theorem 1.4.5. A stored energy functionW : M3
+ → R is material

frame indiffernt and isotropic if, and only if, there exists a function

φ = ( ]0,+∞[ )3→ R
such that W(F) = φ(ıFT F) = φ(ıFFT ) (1.4− 27)

for every FǫM3
+.

Proof. By the material frame indifference, there exists a functioñW :
S

3
> → R such that

W(F) = W̃(FT F).

By the isotropy, ifQǫO3
+, then

W(F) =W(FQ) = W̃(QT FTFQ).

55

ThusW̃ : S3
> → R satisfies

W̃(C) = W̃(QTCQ)

for every C ǫ S3
> and for everyQ ǫ O3

+ (since for everyCǫS3
> there

correspondsF = C1/2ǫ M3
+ with C = FTF). Now it was shown in

the proof of the Rivlin-Ericksen Theorem (Theorem 1.3.4) that such a
function must be a function of the principal invariants

Cnversely, ifW(F) = φ(1FT F), let QǫO3
+.

Then

ı(FQ)T FQ = ıQT FT FQ = ıFT F

ı(QF)T QF = ıFT F

and so
W(F) =W(QF) =W(FQ)

and the thoerem is proved. �

The next result expresses the Piola-Kirchhoff stress tensors in terms
of the functionφ of the above theorem.
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Theorem 1.4.6. Given a functionφ : (]0,+∞[)3 → R and a stored
energy function

W(F) = φ(ı1(C), ı2(C), ı3(C)),C = FT F,

then

(1.4-28)
1
2

T̂R(F) =
∂φ

∂ı1
F +

∂φ

∂ı2
(ı1I − FFTF) +

∂φ

∂ı3
ı3F−T

where56

ık = ık(F
TF) and

∂φ

∂ık
=
∂φ

∂ık
(ıFT F), k = 1, 2, 3.

Furthere

1
2
Σ̃R(C) =

∂φ

∂ı1
I +

∂φ

∂ı2
(ı1I −C) +

∂φ

∂ı3
ı3C
−1(1.4-29)

=

(

∂φ

∂ı1
+
∂φ

∂ı2
ı1 +

∂φ

∂ı3
ı2

)

I

−
(

∂φ

∂ı2
+
∂φ

∂ı3
ı1

)

C +
∂φ

∂ı3
C2.

Proof. Let Γ be the mapΓ : M3
+ → S3

> given byΓ(F) = FTF. Now

T̂R(F) =
∂W
∂F

(F) where

∂W
∂F

(F) : G =
∂φ

∂ık
(ıC)Γ′(F)G.

Now ı1(C) = tr C and so

ı1′(C)D = tr(D),(1.4-30)

ı3(C) =
1
6

[

3(trC)3 − 3(trC) tr(C2) + 2 tr(C3)
]

and so

ı′3(C)D =
1
6

[

3(trC)2(tr D) − 3(tr D) tr(C2) − 6(trC) tr(CD) + 6 tr(C2D)
]
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=
1
2

[

(tr C)2 − tr(C2)
]

tr(D) + tr(C2D) − tr(C) tr(CD)

= ı2(C) tr(D) + tr(C2D) − tr(C) tr(CD).

Now

tr(C2D) − tr(C) tr(CD) = tr((C2 − ı1(C)C)D)

= tr(ı3(C)C−1D − ı2D

using the Cayley-Hamilton theorem. Thus 57

(1.4-31) ı3′(C)D = ı3(C) tr(C−1D).

Finally

ı2(C) =
1
2

[

(tr C)2 − tr(C2)
]

ı2′(C)D = tr(C) tr D − tr(CD)

= tr((ı1(C)I −C)D)

= tr((ı2(C)C−1 − ı3(C)C2)D)

again using the Cayley-Hamilton theorem. This may be again written as

(1.4-32) ı2′(C)D = ı3(C) tr(C=1) tr(C−1D) − ı3(C) tr(C−2D).

Also, Γ′(F)G = FTG+GTF. Thus’

∂W
∂F

(F) : G =
∂φ

∂ı1
tr(FTG+GTF)

+
∂φ

∂i2
i3 tr(C−1) tr(C−1(FTG+GTF))

+
∂φ

∂i2
i3 tr(C−2)(FTG+GTF))

+
∂φ

∂i2
i3 tr(C−1)(FTG+GTF))

Now, tr(FTG+GTF) = 2F : G

tr(C−1(FTG+GTF)) = C−T : (FTG+GTF)
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= F−1F−T : (FTG+GTF)

= 2F−T : G(Using(1.4-21)− −(1.4-22))

tr(C−2(FTG+GTF)) = C−2T : (FTG+GTF)

= C−2 : (FTG+GTF)

= F−1F−TF−1F−T : (FTG+GTF)

= 2F−T F−1FT : G

58

Hence

1
2
∂W
∂F

(F) : G =
∂Φ

∂ı1
ı3 tr(C−1)F−T : G

− ∂Φ
∂ı2

ı3F−T F−1F−T : G+
∂Φ

∂ı3
ı3F−T : G

Now, consider

ı3 tr (C−1)F−1 − ı3F−TF−1F−T

= ı3
[

tr(C−1)F−T F−1 − F−TF−1F−TF−1
]

F

= ı3
[

tr(B−1)B−1 − B−2
]

F, B = FFT

= (ı2B−1 − ı3B−2)F

since B and C are similar. Againık = ık(B). Now by the Cayley-
Hamilton theorem,

ı2B−1 − ı3B−2 = ı1I − B = ı1I − FFT .

Combining all these relation (1.4-28) follows. To obtain (1.4-29)
note that ˆ

∑

R(F) = F−1T̂R(F). Hence

1
2
Σ̂R(F) =

∂Φ

∂ı1
I +

∂Φ

∂ı2
(ı1I − FT F) +

∂Φ

∂ı3
ı3F−1F−T

which gives the first relation. To get the second, by the Cayley- Hamil-
ton theorem,

ı3C
−1 = C2 − ı1C + ı2I

and the result follows. �59
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Remark 1.4.3.Compare the last relation in (1.4-29) with the statement
of Rivlin- Ericksen theorem (Theorem 1.3.4)

Theorem 1.4.7.Consider a St venant- Kirohhoff material with

(1.4-33) Σ∗R(E) = λ tr (E) + 2µE

It is hyperlastic with

W∗ (E) =
λ

2
(tr E)2 + µ tr(E2)(1.4-34)

=
(λ + 2µ)

8
(ı1 − 3)2 + µ(ı1 − 3)− µ

2
(ı2 − 3) = Φ(ıC)

where
ık = ık(C), k = 1, 2, 3.

Proof. Set
W̃(C) =W(I + 2E) =W∗ (E).

Now

W∗ (E + H) =W∗ (E) + λ tr E tr H + 2µ tr (EH) + o(H)

=W∗ (E) + (λ(tr E)I + 2µE) : H + o(H).

Hence
∂W∗
∂E

(E) =
∗

∑

R

(E).

This implies that

˜∑

R
(C) = 2

∂W̃
∂C

(C)

and hence the material is hyperelastic. The verification of the expression
for Φ is left as an exercise to the reader. �

Remark 1.4.4.The above result gives another proof (cf. equation60

(1.3-47)) that St Venat-Kirchhoff materials are isotropic and material
frame indifferent.
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Remark 1.4.5.Other examples of hyperelastic materials will be seen in
Chapter 2 (Ogden’s materials)

Theorem 1.4.8.LetBR be a natural state of a material which is isotro-
pic and material frame indiffrent. Then ifWǫC1(M3

+; R)

(1.4-35) W∗ (E) =
λ

2
(tr E)2 + µ tr(E2) + o(|E|2).

Proof. Let

W∗ (E) =
λ

2
(tr(E))2 + µ tr(E2) + δW∗ (E)

∂W∗
∂E

E = λ(tr E)I + 2µE +
∂δW∗
∂E

(E)

= Σ∗R(E) = λ tr E) + 2µE + o(E).

Thus,
∂δW∗
∂E

(E) = o(E).

Since subtracting a constant inW∗ does not change the stress ten-
sors, it can be assumed, without loss of generaliry, thatδW ∗ (o) = o.
Hence

δW∗)(E) =

1
∫

0

∂δW∗
∂E

(E) : dt = o(|E|2).

�

Exercises61

1.4-1 For a non-homogeneous hyperelastic material,

T̂R(XR, F) =
∂W
∂F

(XR, F)

for everyXRǫBR, and for everyFǫM3
+. Extend the analyisi of this

section to such materials.
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1.4-2 (i) Show thatM3
+ is a connected subset ofM3.

(ii) Show by an example thatM3
+ is not convex.

(iii) Identify its convex hull inM3.

1.4-3 Assume that (cf. Proof of Theorem 1.4.2)

W(QF) =W(F) +C(Q)

For all FǫM3
+ and QǫO3

+. Show thatC(Q) = o without using the
continuity ofW.

1.4-4 (i) Show thatS3
> is an open subset ofS3.

(ii) Show that ifW is differentiable, so isW.

1.4-5 Prove Theorem 1.4.4: show that isotropy is equivalent to

T̂R(FQ) = T̂R(F)Qfor allFǫM3
+

andQǫO3
+, which is in turn equivalent to

∂W
∂F

(F) =
∂W
∂F

(FQ)QT =
∂W
∂F

(F),W(FQ).(FQ).

1.4-6 Check the second relation in equation (1.4-34).

1.4-7 Consider an elastic matrial with

T̄(B) = Bo(ıB)I + B1(ıB)B+ B2(ıB)B2.

Find necessary and sufficient conditions on 62

βα : (]o,+∞[)3 → R, α = 0, 1, 2

for the material to be hyperelastic.

1.4-8 In Theorem 1.4.8, compute the terms of order 2 in
∑∗

R(E) and
terms of order 3 inW∗(E). Explain the discrepancy in the number
of terms obtained in each case.
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Chapter 2

Some Mathematical Aspects
of Three-Dimensional
Elasticity

63
IN THIS CHAPTER, questions of existence of solutions to the bound-
ary value of three-dimensional elasticity will be examined. In the first
section, some general considerations about these boundaryvalue prob-
lems will be mentioned. The problems will be classified with respect
to boundary conditions. As good models of elasticity must preclude
uniqueness of solution, several examples of non-uniqueness will be pre-
sented.

The first tool for the study of existence of solutions is the implicit
function theorem. As this requires a knowledge of the linearized prob-
lem, the second section will briefly present linear elasticity and the third
section will prove existence, albeit for a very narrow classof boundary
conditions. The fourth section will study incremental methods, whose
analysis follows closely related lines.

The last two sections will present results on polyconvexityand ex-
istence of solutions to the problem of minimizing the energyusing the
approach of J. BALL. Though several types of boundary conditions can
be studied here, the main drawback is the lack of regularity of solutions
and so it is not known if the solutions satisfy the equilibrium equations.

53
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2.1 General Considerations About the Boundary
Value Problems of Three-Dimensional Elasticity

64
Given a respones function̂TR : M3

+ → M3 satisfying

(2.1-1) F(T̂R(F))T = T̂R(F)FT

for every FǫM3
+ and given the denstiyρR : BR → R and dead loads

bR : BR→ R3, ıR : ∂B1R→ R3, the boundary value problem arising out
of the equilibrium equations amounts to finding a deformation Φ which
satisfies

DIVRT̂R(∇φ) + ρRbR = 0 inBR(2.1-2)

T̂R(∇φ)nR = t1R on∂B1R(2.1-3)

φ = φo (given) on∂BoR(2.1-4)

The boundary conditionφ = φo on ∂BoR is called aboundary con-
dition of place. The boundary condition (2.1-3) on∂B1R is called a
boundary condition of traction(and this defnition implies it is a dead
load).

If ∂BoR = φ the problem is apure tractionboundary value prob-
lem.If ∂B1R the problem is apure displacementproblem. If both∂BoR

and ∂B1R have strictly positivedAR- measure, then the problem is a
mixed displacement-tranctionproblem.

Recall that

ˆ∑

R
(∇φ) = (∇φ)−1T̂R(∇Φ)

where
ˆ∑

R
: M3
+ → S3

and the boundary value problem (2.1-2)–(2.1-4) can be rewritten in65

terms of this tensor. If the material is hyperelastic (cf. Section 1.4), then

(2.1-5) T̂R(F) =
∂W
∂F

(F)
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for a stored energy functionW : M3
+ → R and the problem is equivalent

to finding the sationary points of an energy functional,

(2.1-6) I (ψ) =
∫

BR

W(∇ψ)dXR −























∫

BR

ρRbR.ψdXR +

∫

∂B1R

t1R.ψdAR























The partial differentail equations (2.1-2) are nonliner with respect to
φ since the mappinĝTR : M3

+ → M3 is non-linear, and of the second
order. The non-linearity occurs in the highest order terms and this is a
source of difficulty. Another source of difficulty is that the solutionφ
must satisfy det (∇φ) > o. Thus for instance in (2.1-6)ψ must vary over
M

3
+ which is clearly not a vector sapce; in fact it is not even a convex

subset ofM3 (cf. Exercise 1.4-2).
The boundary condition of traction could be replaced by the so-

called boundary condition of pressure(which is not a dead load, but
it is conservative). Again it is possible to have apure pressurebound-
ary value problem (for instance, a soap bubble or a submarine) or mixed
displacement-pressureboundary value problems.

These boundary condition, though being the only ones to be con-
sidered here, are far from exhaustive. Other types of conditions are
possible.

In practice one can haveunilateral conditions. For instance, if the 66

body must remain in above the plane spanned bye1, e2 the boundary
condition isX3 ≥ o or φ3(XR) ≥ o

Figure 2.1.1:

It is also possible to have a mixture of displacement and stress boun-
dary conditions. ConsiderBR to be a plate with a pressurep compress-
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ing the lateral surface (fig 2.1.2) and given only by itshorizantal aver-
age. Then the conditions are

(2.1-7)















u1, u2independent ofX3

u3 = 0

and

(2.1-8)
1
2ǫ

ǫ
∫

−ǫ

T(∇φ(XR)n dX3 = −pn.

Figure 2.1.2:
67

Apart from possibly the problem of bodies moving with constant
velocity in a fluid, the pure traction problems are less common. The
pure displacement problems are quite unrealistic.

In general, several deformed states are possible for the same sys-
tem of forces, though they may not all be physically feasibleor ‘sta-
ble’. Nevertheless the mathematical model cannot recognize the feasi-
ble or stable ones. Hence a good model will always account fornon-
uniqueness of solutions. Several examlpes of non-uniqueness will now
be given .

Example 2.1.1.A mixed displacement-traction problem. Consider a
long circular cylinder fixed at either end. The body force is just its
weight. On the lateral surfacet1R = o. Assume the body to be ex-
tremely pliable, and rotate one end by an angle of 2π and reglue it in its
original position. Then a line parallel to the axis on the lateral surface
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will deform into a curve and thus gives another solution other than the68

natural one, which will just be a slight bending of the cylinder under
its weight. It is theoretically possible to rotate the face by 2kπ for any
positive integerk. Thus the model must account for an infinite number
of solutions.

Figure 2.1.3:

Example 2.1.2(F. JHON). A pure displacement problem. Consider the
body to be betwen two concentric spheres. Assumeu ≡ 0 on both the
inner and outer surfaces. Apart from the trivial solution, it is possible to
have an infinite number of solutions by (theoretically) rotating the inner
sphere about an axis by an angle of 2kπ and re-glueing it to the body.

Figure 2.1.4:

69
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Example 2.1.3(C. ERICKSEN). A pure traction problem.A rectangular
lock is pulled normal to the upper and lower surfaces. Rotation of the
configuration byπ produces a (though urrealistic) solution where the
body is comprssed!

Figure 2.1.5:

Example 2.1.4.Consider a thin circular plate subjected to the boundary70

condition (2.1-7) - (2.1-8) withp = λp1. If λ < 0 (i.e the plate is pulled)
or if λ > o and small,u ≡ o is the only possible solution. Ifλ exceeds
a critical value, the plate can buckle upwards or downwards thus giving
two additional solutions (cf. 2.1.6) This is a buckling phenomenon

Example 2.1.5.Eversion problems. A cut tennis ball (borrowed from a
very good friend) can be made to exist in two diffrent states as shown in
fig 2.1.7. The everted state can be produced by pushing hard enough on71

the natural state.
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`unstable' solution

Figure 2.1.6:

Figure 2.1.7:

It is possible to do the same thing to a tube. These are examples of
multiple solutions to a pure traction problem.

Returning to the various restrictions on the model and its analysis,
the first is the taking into account of properties like isotropy, hypere-
lasticity and the axiom of material frame indifference. These are fairly
easy to handle. In sections 1.3 and 1.4 various necessary andsufficient
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conditions of the relevant functions were studied. The mainrestriction
is that the solutionφ must satisfy forces

det(∇φ) > o.

In using the implicit function theorem, this requirement isignored
at first and then shown to be satisfied for sufficiently small forces.

In the different approach of J. BALL, this is taken into account (a.e72

in BR) by imposing it on the setU of test functions over which the
energy is minimized. This precludes the convexity ofU which makes
minimization more difficult than usual. In this approach, it will be nicely
taken into account by imposing thatW(F) → +∞ when det (F)→ o+.

Even if det∇φ > o everywhere onBR, it does not ensure thatφ is a
one-one mapping, a property natural to expect in a deformation.Thus if
a body as in fig. 2.1.8(a) in contact with the horizontal planeis pushed
along the two ‘arms’, it must take a shape as in fig 2.1.8(b). But the
mathematical model will not preclude a situation as in fig 2.1.8(c) where
the material penetrates itself, still keeping det∇φ > 0

(a) (b) (c)

Figure 2.1.8:

In the case of incompressible materials, the energy is minimized73

over a set of functionψ (in a suitable function space) with

det(∇ψ) = 1 a.e.

Some of the noations used hitherto will be changed.BR will hence-
forth be denoted bȳΩ,Ω a bounded open subset ofR3 and its boundary
∂BR by Γ. The portions∂BoRand∂B1R will be denoted byΓo andΓ1

respectively.
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The generic pointXR will henceforth be labelledx anddXR anddAR

will be changed todx andda respectively. The derivatives
∂

∂XRi
will

be denoted by∂i andDIVR by div. The normalnR to ∂BR will now be
given byv = (vi), the unit outer normal toΓ.

The tensors
∑

R
= (

∑

Ri j

) andTR = (TRi j ) will be denoted by (σi j ) and

(ti j ) respectively. The vectorsρRbR andt1R will be denoted byf = ( fi)
andg = (gi) respectively. The symbols forφ, u, F = ∇φ, B = FFT ,C =

FT andE =
1
2

(C − I ) will remain unchanged.

Thus, for instance the equations of equilibrium im terms of
∑

R read
in the old natation as:

DIVR















∇φ
∑

R















+ σRbR = o in BR(2.1-9)

∇φ
∑

R

nR = t1R on∂B1R(2.1-10)

φ = φ0 on∂B0R(2.1-11)

These, when translated in to the new notations will read as 74

−∂ j(σk j∂kφi) = fi in Ω(2.1-12)

σk j∂kφiv j = gi onΓ1(2.1-13)

φi = φ0i onΓ0(2.1-14)

Exercises

2.1-1 . Assume that a pure traction problem has a solutionφ. Show that
∫

BR

ρRbRdXR+

∫

∂BR

t1RdAR = 0

and
∫

BR

φΛρRbRdXR+

∫

∂BR

φΛt1RdAR = 0.
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2.1-2 .Consider a hyperelastic incompressible material. In the con-
strained minimization problem

inf
ψǫU

I (ψ)

where U = {ψ | det(∇ψ) = 1a.e.},

show by a formal computation that the Lagrange multiplier isthe
pressure.

2.2 The Linearized System of Elasticity
75

Consider the boundary value problem (2.1-12)-(2.1-14). Interms of the
displacementu it can be rewritten as

−∂ j(σi j + σk j∂kui) = fi in Ω,(2.2-1)

(σi j + σk j∂kui)v j = gi onΓ1,(2.2-2)

ui = uoi onΓo,(2.2-3)

with the constitutive equation

(2.2-4) σi j = σ
∗
i j (E(u)) = λEkk(u)δi j + 2µEi j (u) + o(E)

where

(2.2-5) E(u) =
1
2

(

∇uT + ∇u+ ∇uT∇u
)

If u were defined in a suitable function space, whose functions van-
ish onΓ0, then symbolically one can write

(2.2-6) A(u) =

[

f
g

]

The linearised system of elasticity will then be formally defined as
(assumingA is differentiable)

A′(0)u =

[

f
g

]
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This can be derived as follows. The linearized strain tensoris

(2.2-7) ǫ(u) =
1
2

(

∇uT + ∇u
)

.

Thenσ will in turn be linearized as

(2.2-8) σi j = λǫkk(u)δi j + 2µǫi j (u).

76

Substituting this in (2.2-1)-(2.2-3) and keeping only the first order
terms, the linearized syatem elasticity turns out to be

−∂ jσi j = fi in Ω(2.2-9)

σi j v j = gi onΓ1(2.2-10)

ui = uoi onΓ0(2.2-11)

whereσ is given by (2.2-8). Note that such a syatem cannot be a model
for elasticity (of Exercise 2.2-1) but only approximation of a model.

Remark 2.2.1.If the equations were written in terms ofti j and then
linearized, the same linearized system of elasticity wouldhave been ob-
tained. This is becauseTR = (I + ∇u)

∑

R
and on linearizing this realtion

only the part coming fromI
∑

R
=

∑

R
will be retained.

Before the existence and regularity of solution to the linearized sys-
tem of elasticity can be studied the following notations forthe Sobolev
spaces will be needed.

Let m≥ 0 be an integer and 1≤ p ≤ +∞. Then

(2.2-12) Wm,p(Ω) = {vǫLp(Ω) | ∂αvǫLp(Ω)for all | α |≤ m}

whereα is a multi-index and∂αv is the corresponding partial derivative
( in the sense of distribution). This space is a Banach space with the
norm

(2.2-13) || v ||m,p.Ω=





















∫

Ω

∑

|α|≤m

| ∂αv |p dx





















1/p
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(with the standrad modification ifp = +∞). The semi-norm| . |m,p,Ω is 77

defined by

(2.2-14) || v ||m,p.Ω=





















∫

Ω

∑

|α|=m

| ∂αv |p dx





















1/p

If m = 0,W0,p(Ω) = Lp(Ω)and | . |0,p,Ω is the usualLp(Ω)- norm.
If D(Ω) is the space ofC∞ functions with compact support inΩ, its
closure inWm,p(Ω) will be denoted byWm,p

o (Ω).
If p = 2, it is customary to writeHm(Ω)andHm

0 (Ω) instead ofWm,

2(Ω) andWm,2
0 (Ω) respectively. The norms and semi-norms in this case

will be written as|| · ||m,Ω respectively| · |m,Ω is theL2(Ω)- norm.
By Poincarés inequality,| · |m,p,Ω is a norm onWm.p

0 (Ω) and is equiv-
alent to|| . ||m,pΩ, for1 ≤ p < ∞.

In case of vector valued or tensor valued functions, the symbols
Wm,p(Ω), LP(Ω) will be used to denote that each component is inWm,p

(Ω) or Lp(Ω) respectively. However the symbols for the norms and semi-
norms will not be altered.

The following result is fundamental.

Theorem 2.2.1(Korn’s Inequality). LetΓ be smooth enough. Then

(2.2-15) {v = (vi)ǫC
2(Ω) | ǫi j (v)ǫL2(Ω), 1 ≤ i, j ≤ 3} = H1(Ω)

Consequently, there exists constans C1 > 0andC2 > 0 such that78

(2.2-16)
C1 || v ||1,Ω≤ (| v |20,Ω + | ǫ(v) |20,Ω)1/2 ≤ C2 || v ||1,Ω for allvǫH1(Ω).

Proof. See DUVAUT and LIONS [1972] or NITSCHE [1981]. The
main difficulty is in proving (2.2-15). Since the second inquality of
(2.2-16) is obvious, the first follows from (2.2-15) and the closed graph
theorem. �

A consequence of the above result is

Theorem 2.2.2.LetV be defined by

(2.2-17) V = {vǫH1(Ω) | v = 0 onΓ0}
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where the da-measure ofΓ0 is strictly positive. Then the semi-norm
| ǫ(v) |0,Ω is a norm on V equivalent to the norm|| . ||1,Ω.

Proof. Cf. Exercise 2.2-2. �

Assume now thatu = 0 onΓ0. Let V be as in (2.2-17). Multiplying
(2.2-9) by a functionvǫV, integration by parts using Green’s formula,
and using (2.2-10), (2.2-11) and the symmetry ofσ, the following vari-
ational formulation of the problem (2.2-9) - (2.2-11) can beobtained.

FinduǫV such that, for allvǫV,

(2.2-18) a(u, v) = L(v)

where

(2.2-19) a(u, v) =
∫

Ω

(λǫkk(u)ǫℓℓ(v) + 2µǫi j (u)ǫi j (v)) dx

and

(2.2-20) L(v) =
∫

Ω

fividX+
∫

Γ1

givi da.

79

By a simple application of Schwarz’s inequality, it followsthata(., .)
is a continuous bilinear form onH1(Ω) andL is a continuous functional
onH1(Ω) (and hence onV as well).

The following existence result holds.

Theorem 2.2.3. Consider the variatiational formulation of the linea-
rized syatem of elasticity,(2.2-18), or, equivalently, the problem: Find
uǫV such that

(2.2-21) J(u) = inf
vǫV

J(v)

where

(2.2-22) J(v) =
1
2

a(v, v) − L(v)

if λ > 0 andµ > 0 then the problem has a unique solution.
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Proof. Observe that by Theorem 2.2.2 for allvǫV,

(2.2-23) a(v, v) ≥ 2µ | ǫ(v) |20,Ω≥ α || v ||
2
1,Ω

whereα > o (usingλ > o andµ > o). ThusJ : V → R is a convex, and
continuous functional. Hence it is weakly lower semi continuous. Let
{uk} be a minimizing sequence inV, i.e.

J(uk)→ inf
vǫV

J(v) < +∞.

SinceJ is coercive (i.e.,J(v)→ ∞as|| v ||→ ±∞) it follows that{uk}
is a bounded sequence and hence has a weakly convergent subsequence.80

Let u be the weakly limit of the subsequence (again indexed byk for
convenience). Then by the weak lower semi-continuity ofJ.

inf
vǫV

J(v) ≤ J(u) ≤ lim
k

inf
→∞

J(uk) = inf
v∈V

J(v).

Thus J attains its mimimum atu. It is easy to see that equations
(2.2-18) are simply equivalent to the equationJ′(u) = 0. Hence the
equivalencve of the two problems sinceJ is convex and the existence of
a solution.

If u1 andu2 are solutions inV thena(u1 − u2, v) = 0 for all vǫV.
Settingv = u1 − u2 and using (2.2-23), it follows thatu1 = u2, thus
proving the uniqueness of the solution. �

Remark 2.2.2.The existence of a unique solution to (2.2-18) also fol-
lows directly from (2.2-23) by applying theLax-Milgram Lemma.

Finally, let us state the result on the regularity of solutions to the
above problem.

Theorem 2.2.4. SupposeΓ is smooth enough and for some p≥ 2,
f ǫCp(Ω). AssumeΓ1 = φ. Then the solution uǫV = Hı0(Ω) of the corre-
sponding linearized system of elasticity is in the spaceVp(Ω), where

(2.2-24) V
p(Ω) = {vǫW2,p(Ω) | v = 0 onΓ}.
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Proof. The casep = 2 has been proved by NEČAS [1967]. If p > 2,
the argument goes as follows. LetA′(0) : Vp(Ω) → C

p(Ω) repre-
sent the operator of the linearized system of elasticity. Then, if in-

dex (A′(0))
def
= dim(kerA′(0)) − dim(CokerA′(0)), it was proved by

GEYMONAT [1965] that for all p, 1 < p < ∞, the index was inde- 81

pendent ofp. Now, by the result of Necas above ifp = 2,A′(0) is
onto and so dim(Coker(A′(o)) = 0. By uniqueness of the solution,
dim(ker(A′(0)) = 0 for all p ≥ 2. Hence the index is zero for allp
and so dim(Coker(A′(o))) = 0 for all p ≥ 2, i.e., A′(0) is onto for all
p ≥ 2, which proves the theorem. �

Remark 2.2.3.The above result does not follow from those of AG-
MON, DOUGLIS and NIRENBERG [1964]. Their results state thatif
f ǫLp(Ω) implise uǫW2,p(Ω) then f ǫWm,p(Ω) implies uǫW2+m,p(Ω) for
our problem. The ’starting’ regularity result (m = 0) needs be know a
priori and Theorem 2.2.4 proves that in case of the linearized syatem of
elasticity.

Caution! TheW2,p regularity does not hold for the mixed displace-
ment-traction linearized syatem of elasticity.

Exercises

2.2-1 Show that ifǫ(u) =
1
2

(∇uT + ∇u), then a constitutive equation

of the formσ = σ∗(ǫ), with σ∗ a linear function ofǫ, does not
satisfy the axion of material frame indenfference.

2.2-2 Prove Theorem 2.2− 2. (Show first that|ǫ(v)|0Ω) is a norm onV.
Prove the equivalence of norms by contradiction: assume there
exists a sequencevkǫV with ||vk||1,Ω = 1 and|ǫ(vk)|0,Ω → 0.

2.2-3 Consider the linearized system of elasticity in variational form
with Γ0 = φ. Show that there exists a solution to the problem
provided

∫

Ω

f dx=
∫

Γ

dx,



68 2. Some Mathematical Aspects of Three-Dimensional.....

in the quotient spaceH1(Ω)W, where82

W = {vǫH1(Ω) | ǫ(v) = 0}.

Show also that

W = {vǫ|H1(Ω)|v = a+ bΛ ox}.

2.2-4 Extend the regularity result to the case 1< p < 2.

2.2-5 Show that ifµ > 0, there exists aλ0 < 0 such that ifλ0 < λ ≤ 0,
the linear forma(., .) given by (2.2-19) is coercive.

2.3 Existence Theorems via Implicit Function The-
orem

In this section, existence solutions to thepure displacement problemwill
be proved using the implict function theorem.

For simplicity, consider first a St Venabt-Kirchhoff marerial Recall
that the constitutive equation in this case can be written as

(2.3-1) σi j = ai jkℓ Ekℓ(u) = λEkk(u)δi j + 2µEi j (u),

with λ > 0 andµ > 0. Also

(2.3-2) Ei j (u) = ǫi j (u) +
1
2
∂ium∂ jum,

where

(2.3-3) ǫi j (u) =
1
2

(∂iu j + ∂ jui)

Then the boundary value problem (2.2-1)–(2.2-3) becomes (Γ1 = φ),

(2.3-4) − ∂ j(ai jpqǫpq+
1
2

aa jpq∂pum∂qum + ak jpq∂puq∂kui

+
1
2

ak jpq∂pum∂qum∂kui) = fi in Ω,
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83

(2.3-5) u = 0 on Γ.

This can be written as

(2.3-6) A(u) = f in Ω,

(2.3-7) u = 0 on Γ,

whereA(u) = (Ai(u)) and

(2.3-8) Ai(u) = −∂ j(ai jpqǫpq(u) +
1
2

ai jpq∂pum∂qum + ak jpq∂puq∂kui

+
1
2

ak jpq∂pum∂qum∂kui)

The following existence result holds.

Theorem 2.3.1.Assume thatΓ is smooth enough. Then for each p> 3
there exist a neighbourhoodF p of 0 in LpΩ and a neighbourhoodUp

of 0 in
V

p(Ω) = {vǫW2,p(Ω)|v = 0 on Γ}
such that for every fǫF p the boundary value problem(2.3-6)–(2.3-7)
has one, and only one, solution inUp.

Proof. SinceΩ ⊂ R3, if p > 3 the inclusion

W1,p(Ω)→ C0(Ω̄)

is continuous. FurtherW1,p(Ω) is an algebra (cf. ADAMS [1975]). Thus
if f , gǫW1,p(Ω), f gǫW1,p(Ω) and

(2.3-9) || f g||1,p,Ω ≤ C|| f ||1,pΩ||g||1,p.Ω

HenceA : Vp(Ω) ⊂ W2,p(Ω) → Cp(Ω) is well-defined and is in- 84

finitely Frechet differentiable. (In factD4A ≡ 0). SinceA(0) = 0, the
conclusions of the theorem will stand proved if it is shown that

A′(0)ǫI som(Vp(Ω),Lp(Ω))
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by virtue of the implicit function theorem. But the problem

(2.3-10) A′(0)u = f , uǫVp(Ω)

is none other that the linearized syatem of elasticity:

∂ jai jpqǫpq(u) = fi in Ω(2.3-11)

u = 0 on Γ(2.3-12)

A′(0) is continuous. It is one-one since the solution of the above system
unique forp ≥ 2. Also by the regularity theorem (cf. Theorem 2.2.4) it
is onto as well. Hence by the closed graph theoremA′(0) is an isomor-
phism form fromVp(Ω) in to Lp(Ω) and the theorem is proved. �

Remark 2.3.1.This proof breaks down in the case of the mixed-dis-
placement traction problem because of the lack ofW

2,p(Ω) regularity of
the associated linearized syatem.

Remark 2.3.2.One could think of solving the problem by definingA on85

W
1,q(Ω) taking values inW1,q(Ω) , thus avoiding the need of the regu-

larity theorem which is not valid for other boundary conditions. Unfor-
tunately, it has been proved by VALENT [1979] that on such spaces A
is not Frechet differentiable.

Remark 2.3.3.If ai jkℓ were replaced by smooth functionsai jkℓ(x) , the
result is still true, thus extending the result to non-homogeneous mate-
rials.

In case of St Venant-Kirchhoff materials, it turned out that ifu ∈
W

2,P(Ω), thenE(u) ∈W1,p(Ω) and sinceσ∗ was linear inE, σ∗(E(u)) ∈
W

1,p(Ω). For more general constitutive equations givenσ∗ : S3 → S3,
it must first be proved that ifE ∈W1,P(Ω), then

σ∗(E)(x)
def
= σ∗(E(x)), x ∈ Ω

is indeed inW1,p(Ω). The following result answers this question. It is
due to VALENT [1979].
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Theorem 2.3.2. Let p > 3. Given a tensor field E∈ W1,q(Ω) and a
mappingσ∗ ∈ C1(M3,M3), the matrix valued function

σ∗(E) : X ∈ Ω→ σ∗(E(x))

is also inW1,q(Ω) and

(2.3-13) ∂q(σ∗i j (E(x)) =
∂σ∗i j
∂Ekℓ

(E(x))∂qEkℓ(x).

If σ∗ is of class Cm+1,m ≥ 0, them the mappingσ∗ : W1,p(Ω) →
W

1,p(Ω) defined above is of class Cm and it is bounded in the sense

(2.3-14) sup
||E||1,p,Ω

≤ r ||D
mσ∗(E)||<+∞

for every r> 0. 86

Proof. Step(i). Let σ∗ ∈ C1(M3,M3). Let E ∈ W1,p(Ω). Then the
components ofE are all continuous and so

σ∗(E(x)) ∈ Co(Ω̄;M3) ֒→ LP(Ω).

Assume now that (2.3-13) has been proved. Then as

∂σ∗i j
∂Ekℓ

(E(x)) ∈ C0(Ω̄)and∂qEkℓ(x) ∈ Lp(Ω).

it follows that∂qσ
∗(E) ∈ LP(Ω). Henceσ∗(E) ∈W1,p(Ω).

Now (2.3-13) will be proved. It must be shown that for anyφ ∈
D(Ω),

(2.3-15)
∫

Ω

σ∗i j (E(x))∂qφ(x)dx= −
∫

Ω

∂σ∗i j
∂Ekℓ

(E(x))∂qEkℓ(x)φ(x)dx

Let φ ∈ D(Ω) be fixed. If E ∈ C1(Ω̄;M3) then (2.3-15) follows
by a direct application of Green’s formula for smooth functions. But
C1(Ω̄;M3) is dense inW1,p(Ω). Thus givenE ∈ W1,p(Ω), let En ∈
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C1(Ω̄;M3) such thatEn → E inW1,p(Ω). The relation (2.3-15) is valid
for eachEn.

Now En → E in C◦(Ω̄ : M3) as well, i.e. uniformly. ThusEn,E
are all uniformly bounded inΩ and so by Lebesuge’s Dominated cover-
gence theorem.

(2.3-16)
∫

Ω

σ∗i j (En(x))∂qφ(x)dx→
∫

Ω

σ∗i j (E(x))∂qφ(x)dx.

Now.
∂σ∗i j
∂EEℓ

(En(x))φ(x) →
∂σ∗i j
∂Ek

(E(x))φ(x)

uniformly and hence inLp′(Ω), p′ the conjugate exponent ofp. Since87

∂q(En)kℓ → ∂qEkℓ in Lp(Ω), it follows that
(2.3-17)

∫

Ω

∂σ∗i j
∂Ekℓ

(En(x))∂q(En)kℓ(x)φ/x)→
∫

Ω

∂σ∗i j
∂Ekℓ

(E(x))∂qEkℓ(x)dx

and thus (2.3-15) is established forE ∈W1,p(Ω).
Step(ii). It will be now shown thatσ : W1,p(Ω) → W1,p(Ω) is contin-
uous and bounded. LetEn → E in W1,p(Ω). Then as beforeEn → E
in Co(Ω̄;W3) as well. Henceσ∗i j (En) → σ∗i j (E) uniformly and also in
Lp(Ω). Similarly

∂σ∗i j
∂Ekℓ

(En)→
∂σ∗i j
∂Ekℓ

(E)

uniformly and∂q(En)kℓ → ∂qEkℓ in Lp(Ω). ‘Thus by (2.3-13),

∂q(σ∗i j (En))→ ∂q(σ∗i j (E)) in Lp(Ω),

thereby proving thatσ∗(En) → σ∗(E) inW1,p(Ω). Thus the mapping is
continuous.

If ||E||1,p,Ω ≤ r then |E|o,∞,Ω ≤ C(r). It then follows thatσ∗(E)
is bounded uniformly and hence inLp(Ω) by a constant (which is a

function r). Again
∂σ∗i j
∂Ekℓ

(E) is bounded uniformly by a constant and
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∂qEkℓ is bounded inLp(Ω) by a constant which depends only onr. These
obsersvations lead us to the relation

(2.3-18) sup
||E||1,p,Ω

≤ r ||σ
∗(E)||1,p,Ω<+∞

for everyr > 0.
Step(iii). Let σ∗ ∈ C2(M3;M3). It will be shown thatσ∗ : W1,p(Ω) is 88

of classC1 and that

(2.3-19) Dσ∗i j (E)G =
∂σ∗i j
∂Ekℓ

(E)Gkℓ.

for anyG ∈W1,p(Ω).

By step (i), as
∂σ∗i j
∂Ekℓ

is in C1, it follows that for

E ∈W1,p(Ω),
∂σ∗i j
∂Ekℓ

(E) ∈W1,p(Ω).

SinceW1,p(Ω) is an algebra

∂σ∗i j
∂Ekℓ

(E)Gkℓ ∈W1,p(Ω)

and hence the right hand side of (2.3-19) defines a continuouslinear
operator onW1,p(Ω). To show that it does indeed define the Fréchet
derivative , consider forx ∈ Ω fixed,

(σ ∗i j (E +G) − σ∗i j (E) −
∂σ∗i j
∂Ekℓ

(E)Gkℓ)(x)

= Gkℓ(x)

1
∫

0













∂σ∗i j
∂Ekℓ

(E + tG)(x) −
∂σ∗i j
∂Ekℓ

(E)(x)













dt.

For (E,G) ∈ M3 ×M3, let

∈kℓ
i j (E,G)

def
=

1
∫

0

(

∂σ∗i j
∂Ekℓ

(E + tG) −
∂σ∗i j
∂Ekℓ

(E)

)

dt.



74 2. Some Mathematical Aspects of Three-Dimensional.....

The mapping∈kℓ
i j : M3 ×M3 → R defined in this fashion is of class

C1, sinceσ∗ is now assumed to be of classC2. Thus by the result of
steps (i) and (ii), the associated mapping

∈kℓ
i j : (E,G) ∈ (W1,p(Ω) ×W1,p(Ω))→∈kℓ

i j (E,G) ∈W1,p(Ω)

is well- defined and continuouis, so that in particular , for afixed E ∈
W

1,p(Ω),

∈kℓ
i j (E,G)→∈i j (E, 0) = 0

inW1,p(Ω) asG→ 0 inW1,p(Ω). Since89

σ∗i j (E +G) − σ∗i j (E) −
∂σ∗i j
∂Ekℓ

(E)Gkℓ = Gkl ∈kℓ
i j (E,G),

it has thus been proved that

Dσ∗i j (E) =
∂σ∗si j

∂Ekℓ
(E)GKℓ.

The continutiy ofDσ∗i j follows form that of the partial derivatives
∂σ∗i j
∂Ekℓ

, which is again a consequence of step (ii).
Step (iv). To show the boundedness ofDσ ∗ (E). Now,

||Dσ∗i j (E)|| = sup
||G||1,p,Ω≤1

||
∂σ∗i j
∂Ekℓ

(E)Gkℓ ||1,p,Ω

which is readily seen to be bounded by a constant depending onr where
||E||1,p,Ω ≤ r. Thus it follows that

(2.3-20) sup
||E||1,p,Ω≤r

||Dσ ∗ (E)|| < +∞

for everyr > 0.
The assertions forσ∗ ∈ Cm+1(M3;M3) follow by iterating the above

arguments. �
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Let u ∈ Vp(Ω). TheA : Vp(Ω)→ Lp(Ω) is defined by

(2.3-21) A(u) = − ÷ div ((I + ∇u)σ ∗ (E(u))).

That this indeed mapsW2,p(Ω) into Lp(Ω) is a consequence of The-
orem 2.3.2. Ifu ∈ W2,p(Ω), then∇u ∈ W1,p(Ω)E(u) ∈ W1,p(Ω)
(since this space is an algebra). Now by the above mentioned theorem,
σ ∗ (E(u)) ∈ W1,p(Ω) and as it is an algebra, (I + ∇u)σ ∗ (E(u)) is in 90

W
1,p(Ω) and its divergence is inLp(Ω). It is also as regular as the map

σ∗ : W1,p(Ω) → W1,p(Ω) as the other mapping found in the mapA are
linear or bilinear.

The boundary value problem for the pure displacement problem re-
duces to: givenf ∈ Lp(Ω), find u ∈ Vp(Ω) such that

(2.3-22) A(u) = f .

Theorem 2.3.3. Let Γ be smooth enough, (i) Let p> 3 and σ∗ ∈
C2(M3,M3). Then A mapW2,p(Ω) into Lp(Ω) and is of class C1. If
in addition

(2.3-23) σ∗(E) = λ tr(E)I + 2µE + o(E)

with λ > 0 andµ > 0, then A′(o) ∈ Isom(Vp(Ω),Lp(Ω)).
(ii) If σ∗ ∈ C3(M3,M3) and if A′(0) ∈ Isom (Vp(Ω),Lp(Ω)), then

there existsρP
0 > 0 such that for all 0≤ ρ < ρP

0 and for all

v ∈ BP
ρ

def
= {v ∈ VP(Ω)| ||v||2,P,Ω≤ρ}

A′(ν) ∈ Isom(VP(Ω),LP(Ω)). Further

(2.3-24) γP
ρ

def
= sup

v∈BP
ρ

||(A′(v))−1|| < +∞.

Also, the map v→ (A′(v))−1 is Lipschits continuous on BPρ i.e.,

(2.3-25) LP
ρ

def
= sup

v,w∈BP
ρ

v,w

||(A′(v))−1 − (A′(w))−1||
||v− w||2,p,Ω

< +∞.
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Proof. (i) That A mapsW2,p(Ω) in LP(Ω) and is of classC1 follows
from obsevations made above. A simple computation shows that

A′i (o)v = −∂ j(Dσ
∗
i j (o)

(

∇v|∇vT

2

)

+ σ∗k j(o)∂kvi).

91

If σ∗ is of the form (2.3-23), this reduces to

(2.3-26) A′i (o)v = −∂ j(λ ∈kk (v)δi j + 2µ ∈i j (v))

sinceσ∗(o) = o and

Dσ∗i j (o)G = λGkkδi j + 2µGi j

But (2.3-26) is just the linearized system of elasticty (cf.Section
2.2) and by Theorem 2.2.3 and 2.2.4, is an isomorphism as was
shown in Theorem 2.3.1.

(ii) Let σ∗ ∈ C3(M3,M3). ThenA ∈ C2(W2,p(Ω);Lp(Ω)). Since all
mappings occurring inA have bounded second derivatives,

Mp(ρ)
def
= sup
||v||2,p,Ω≤ρ

||A′′(v)|| < +∞.

Note thatMP(ρ) is a non-decreasing functing ofρ. Now,

(2.3-27) sup
||v||2,p,Ω≤ρ

||A′(v) − A′(o)| ≤ ρMP(ρ).

If v ∈ BP
ρ , then

(2.3-28) A′(v) = A′(o)[I + (A′(o))−1(A′(v) − A′(o))]

But

(2.3-29) ||(A′(o))−1(A′(v) − A′(o))|| ≤ γP
oρMP(ρ)

where

(2.3-30) γP
0

def
= ||(A′(o))−1||.
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If ρ < ρP
0 whereρp

o is such that

(2.3-31) ρP
o MP(ρP

o ) < (γP
o )−1

then it follows from (2.3-28) and (2.3-29) thatA′(v) is an isomorphism.92

Further

||(A′(v))−1|| ≤ ||A′(o)||
1− γP

oρMP(ρ)
= γP

ρ

where

(2.3-31) γP
ρ

def
=

γP
o

1− γP
oρMP(ρ)

.

Finally if v,w ∈ BP
ρ , then

(A′(v))−1 − (A′(w))−1 = (A′(v))−1(A′(w) − A′(v))(A′(w))−1

and (2.3-25) follows with

(2.3-33) LP
ρ

def
= MP(ρ)(γP

ρ )2.

�

The latter part of the above theorem will be needed in the study of
incremental methods (cf. Section 2.4) . The former part leads directly
to the following existence theorem.

Theorem 2.3.4. Let Γ be smooth enough andσ∗ ∈ C2(M3,M3). Let
σ∗(E) be as in (2.3-23) withλ > 0 and µ > 0. Then for any p> 3,
there exists neighbourhoodsK p of 0 in Lp(Ω) andU p of 0 in Vp(Ω)
such that for each f∈ K p there exists one and only solution u∈ U p to
equation(2.3-22).

Proof. By the previous theorem ,A′(o) is an isomorphism and the result
follows, as in Theorem 2.3.1, from the implicit function theorem. �

Remark 2.3.4.Theorem 2.3.1 is contained in Theorem 2.3.4. 93



78 2. Some Mathematical Aspects of Three-Dimensional.....

The following result compares the solution as guaranteed bythe
above theorem and the solution of the linearized problem. Itwill thus
be seen that for‘small’ forces the linearized system is indeed a good
approximation of the original model.

Theorem 2.3.5.Let the assumptions of the previous theorem hold with
σ∗ ∈ C3

M
3;M3. For f ∈ F P ⊂ LP(Ω), letu( f ) ∈ U P ⊂ VP(Ω) denote

the solution to the problem(2.3-22). Let uℓin( f ) ∈ VP(Ω) denote the
solution of the equation

(2.3-34) A′(o)uℓin( f ) = f .

Then

(2.3-35) ||u( f ) − uℓin( f )||2,p,Ω = 0(| f |20,p,Ω).

Proof. By the implicit function theorem, it follows thatu is also differ-
entialbe as a functions off . Thus

A′(u( f ))u′( f ) = I in LP(Ω).

In particular, takingf = 0, it follows that

(2.3-36) u′(o) = (A′(o))−1.

Now
u( f ) = u(o) + u′(o) f + o(| f |2o,p,Ω)

asA is of classC2. But u(o) = o. The result now follows from (2.3-34)
and (2.3-36). �

A major open problemin elasticity is to prove the existence of a94

solution ‘close to zero’when f is ‘small’ , for themixed displacement-
traction problem. One could then compare the solutions ofA(u) = f
andA′(o)u = f .

It was remarked in the beginning of this chapter (cf. Section2.1)
that even if we solved the problem, the solution must furthersatisfy the
condition det(∇φ) > o, and in additionm be one-one. Hitherto these cri-
teria have been ignored. The following result assures that if f is ‘small
enough’ then these conditions are met.
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Theorem 2.3.6. Let the assumptions of theorem 2.3.4 hold. Further
let Γ be connected. Then if| f |o,p,Ω is sufficiently small, the mapping
φ = Id + u satisfies det(∇φ) > o and is one-one.

Proof. If | f |o,p,Ω is small, then||u( f )||2,p,Ω is small. SinceW2,p(Ω) ֒→
C1(Ω̄), it follows that ||u||1,∞,Ω is small. Hence, as the determinant is a
continuous function of components of a matrix. it follows that

det(∇φ)(x) = det(I + ∇u)(x) > 0, for all x ∈ Ω̄

Sinceφ ∈W2,p(Ω), it can be extended to a functionφ ∈W2,p(O) ֒→
C1(O), whereO ⊃ Ω̄ (cf. NEČAS [1967]). Nowφ = Id, which is
one-one, onΓ. If follows from a result of DE LA VALLÉE POUSSIN
or MEISTERS and OLECH [1963]((cf. Remark 2.3.4) below) thatφ is
one-oneΩ̄. �

Remark 2.3.5.The result of MEISTERS and OLECH states that ifφ ∈
C1(O;Rn),O ⊂ Rn an open subset, ifK is a compact subset ofO with
∂K connected and, finally ifφ is such that det(∇φ) > 0 on K andφ is 95

one-one on∂K, thenφ is one-one on∂K. This result can be strengthened

by allowing det∇φ(x) = o on a finite subset of
o
k and an infinite proper

subset of∂K.

Remark 2.3.6.It is not quite necessary to resort to the use of the fairly
deep result of MEISTERS and OLECH. If| f |o,p,Ω is small ||u||1,∞,Ω
small, so without loss of generality it can be assumed that||∇u(x)|| < 1
for some matrix norm induced by a vector norm, for allx ∈ Ω. Now if
φ ∈ Co(Ω̄) ∩C1(Ω) and ifΩ is convex, then

||φ(x1) − φ(x2) − (x1 − x2)|| = ||u(x1) − u(x1) − u(x2)||
≤ sup

x∈]x1,x2[
||∇u(x)||||x1 − x2||

< ||x1 − x2||.

Thus if x1 , x2, then necessarilyφ(x1) , φ(x2).
If u is ‘small’ then the strain tensor

E =
1
2

(∇uT + ∇u+ ∇uT∇u)
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is also ‘small’. An open prolem is to study under what sufficient condi-
tions the converse is true.

Exercises

2.3-1 Prove the analoge of Theorem 2.3.4 with the conditionu = 0 on
Γ repalced byu = u0 onΓ.

2.3-2 Prove the analouge of Theorem 2.3.4 using the function spaces
Cm,α instead of the spacesWm,p(Ω).

2.3-3 Prove the result of MEISTERS and OLECH using the topological
degre. Show also that in Theorem 2.3.6φ(Ω̄ = Ω̄).

2.3-4 Give a counter example to the result of MEISERS and OLECH96

when∂k is not connected.

2.3-5 If µ > 0, show that there existsλ0 < o such that ifλ0 < λ ≤ 0, the
existence result of Theorem 2.3.4 still holds.

2.3-5 (LE DRET (1982)) Examine the existence of a solution to the
pure displacement problem in the incompressible case, i.e., det(I+
∇u) = 1.

2.4 Convergence of Semi-Discrete Incremental
Methods

Consider again the pure displacement problem:

− div ((I |∇u)σ∗(E(u)) = f in Ω(2.4-1)

u = o onΓ.(2.4-2)

It was shown in Section 2.3 that for small forcesf , the problem had
at least one solution which was also small. Considering thatapproach
via the implicit function theorem as a ‘direct’ approach to the existence
theory, by contrast the incremental methods provide a ‘ constructive’



2.4. Convergence of Semi-Discrete... 81

approach to the same. Because of its constructive nature, itcould be of
use for numerical approximation of the solution.

The basic idea is the following. Let

0 ≤ λo < λ1 < . . . < λn < λn+1 < . . . < λN = 1

be a partition of the interval [0, 1]. Let f be a given sufficiently small
force inF p (cf. Theorem 2.3.4). LetUn be the solution of

(2.4-3) A(Un) = λn f ,

Un belonging toUp sinceλn f ∈ F p if f ǫF p andF p is a ball. Note 97

Uo = o. Let un be an approximation ofUn. The idea is to constructun+1

knowingun, via a simpler problem, namely a linear problem. Now

A(Un+1) − A(Un) = (λn+1 − λn) f .

If A(Un+1) is expanded aboutA(Un),

A(Un+1) = A(Un) + A′(Un)(Un+1 − Un) + o(|Un+1 − Un|).

This inspires the equations defining the approximationsun. Thus
one tries to solve the sequence of problems

A(un)(un+1 − un) = (λn+1λn) f , 0 ≤ n ≤ N − 1,(2.4-4)

uo = o.(2.4-5)

Of course, it is necessary that at each stageA′(un) be an isomor-
phism fromVp(Ω) ontoLp(Ω).

The following simple, yet crucial, observation is basic to the analy-
sis of the above method. The equations (2.4-4) - (2.4-5) can be rewritten
as

un+1 − un

λn+1 − λn
= (A′(un))−1 f(2.4-6)

uo = o(2.4-7)

which is none other than Euler’s method for approximating the ordinary
differential equation

(2.4-8) u′(λ) = (A′(u(λ)))−1 f , u(o) = o.
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Theorem 2.4.1.Letσ∗ be of class C3(M3,M3). Let p> 3 and o< σ ≤ 98

ρ
p
o (cf. Theorem 2.3.3). Let fǫLp(Ω) be such that

(2.4-9) | f |o,p,Ω ≤ ρ(γp
ρ )−1

Then the ordinary differential equation (2.4-8) foro ≤ λ ≤ 1 has a
unique solution ¯u(λ) in the ballBp

ρ. Besides

(2.4-10) ū(λ) = u(λ f ).

Proof. The existence of a unique solution of the ordinary differential
equation is classical. It is converted into an integral equation and using
the estimates of Theorem 2.3.3 regarding the uniform houndedness of
(A′(v))−1 and the Lipschitz continuity of the mapv→ (A′(v))−1 on Bp

ρ,
the result follows by a use of the contraction mapping theorem.

Now,
u′(λ) = (A′(u(λ)))−1 f

or
(A′(u(λ)))u′(λ) = f

or, again
d
dλ

(A(u(λ)) − λ f ) = 0.

Thus
(A(u(λ)) = λ f +C,

and asu(0) = 0, C = 0. This proves the theorem. �

Remark 2.4.1.The equationA(u) = f has been imbedded in a one pa-
rameter family of problems (A(u(λ)) = λ f , whereu(1) = u. Knowing
a solution for one value ofλ, here,λ = 0, u(0) = 0, one tries to go99

continuously toλ = 1. This is the basis of the so - called continuation
methods. (cf. RHEINBOLDT [1974]).

Remark 2.4.2.The condition (2.4-9) makes precise the neighbourhood
F p of o in L p(Ω) for which a solution ’close to zero’ was guaranteed
by Theorem 2.3.4.
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The following theorem proves the convergence of the incremental
method desribed above when the ’mash size’ max

0≤n≤N−1
(λn+1 − λn) ap-

proaches zero. The assumption that the applied forces should be small
enough is also corroborated by numerical evidence: Otherwise it is often
observed that the approximate solutions ’blow up’ for a certain critical
value of the parameter, corresponding for example to a phenomenon of
‘buckling’.

Theorem 2.4.2.Letσ∗ǫC3(M3,M3). Let p> 3 and0 < ρ < ρp
0. If

| f |o,p,Ω ≤ ρ(γp
ρ )−1,

then given any partition

o = λ◦ < λ1 < . . . < λN = 1

of [0, 1], Euler’s method; Find un, 0 ≤ n ≤ N, unǫBp, such that

(2.4-11) A′(un)(un+1 − un) = (λn+1 − λn) f

with u◦ = o, is well defined and

(2.4-12) max
0≤n≤N

‖un − u(λn f )‖2,p,Ω ≤ C max
0≤n≤N−1

(λn+1λn)

where
C = C(ρ,P, | f |0,P,Ω) > 0.

100

Proof. The proof is classical and again relies on the uniform bounded-
ness and the Lipschitz continuity of the mapV → (A′(V))−1 on Bp

ρ.
If ∆λ = max

0≤n≤N−1
(λn+1 − λn), then

(2.4-13) ||uN − u( f )||2,p,Ω = 0(∆λ).

If σN andσ were defined by

(2.4-14) σN = σ∗(E(uN))
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and

(2.4-15) σ = σ∗(E(u( f )))

then it is easy to see that

(2.4-16) ||σN − σ||1,p,Ω = 0(∆λ).

To conclude, two open problems will now be stated.
The first is to analyse thefully discreteincremental method by add-

ing the effect of finite element methods.
Secondly, one can construct formally a semi - discrete (or fully dis-

crete) incremental method for the mixed displacement-traction problem.
If it can be shown that the approximantsun exist uniquely and that they
converge in some sense asΛλ → 0, this could provide a valuable exis-
tence theorem for this class of problems. �

Exercises101

2.4-1 (DESTUYNDER AND GALBE (1978)). For a St Venant - Kirch-
hoff meterial show that the mapλ → ũ(λ) (cf. equation (2.4-10))
is analytic in a neighbourhood of 0.

2.4-2 Apply Newton’s method to the equationA(u) = f , uǫVp(Ω) and
study its convergence to a solution of the equation

2.5 An Existence Theorem for Minimizing Functio-
nals and Outline of its Application to Nonlinear
Elasticity

In this section, an existence theorem for minimizing a functional will
be proved. The functional considered will resemble the total energy
functional of elasticity described in Section 1.4. Unfornately, however,
the energy functionals of elasticity will not satisfy all the hypotheses of
the theorem. But it will provide an insight as to what properties of the
functional are to be considered and how to modify the theoremto suit
such functionals. This will be done in the next section.
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Theorem 2.5.1.Let n andν be integers≥ 1. LetΩ ⊂ Rn be an open
subset and let aǫR. (If ,measΩ =+ ∞, assume a= 0). Let

g : Ω × Rν → [a,+∞]

be a mapping such that

g(x, .) : Rν → [a,+∞]

is convex and continuous for almost all xǫΩ;,

g(., q) : Ω→ [a,+∞]

is measurable for all qǫRν. Then, if qk → q weaklyL1(Ω)

(2.5-1)
∫

Ω

g(x, q(x))dx ≤ lim inf
k→∞

∫

Ω

g(x, qk(x))dx.

102

In other words, the mapping

q→
∫

Ω

g(x, q(x))dx

is weakly lower semi - continuous onL1(Ω).

Proof. First of all, without loss generality, it can be assumed thatg ≥ 0.
(If measΩ < +∞, replaceg by g − a meas (Ω)). The continuity inq
for almost allx and the measurability inx for all q implies thatg is a
Caratheodory function and so ifq(x) is measurable inx, so isg(x, q(x)).
Since nowg > 0, the integral

∫

Ω

g(x, q(x))dx

makes sense.
Let qn → q in L1(Ω) strongly. Let{qnk} be any subsequence such

that the sequence
∫

Ω

q(x, qnk(x))dx
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is convergent. Now there exists a further subsequence (again denoted
by qnk for convenience) such thaqnk(x)→ q(x) for almost allx. Hence

g(x, qnk(x))→ g(x, q(x))

for almost allx. Thus by Fatou’s lemma

∫

Ω

g(x, q(x))dx ≤ lim inf
k→∞

∫

Ω

g(x, qnk(x))dx

= lim
k→∞

∫

Ω

g(x, qnk(x))dx.

Then as the subsequence{qnk} was chosen arbitrarilv subject to the103

condition that the integrals converge the relation (2.5-1)follows, when
qn→ q strongly inL1(Ω). Thus the functional

(2.5-2) J(q)
def
=

∫

Ω

g(x, q(x))dx

is strongly lower semi - continuous. It is also easy to see that J is convex.
Now if αǫR, then

{qǫL1(Ω)|J(c) ≤ α}

is strongly closed and convex and hence weakly closed (Mazur’s Theo-
rem). Thus it follows thatJ is weakly lower semi - continuous which is
equivalent to (2.5-1). �

Remark 2.5.1.If g is independent ofx, then it suffices to assume thatg
is convex and continuous.

Remark 2.5.2.The above result conuld be applied as follows: Ifg(x, q)
≥ c+ b|q|P, b > 0, p > 1 then a minimizing sequence will be bounded in
L

p(Ω). Sincep > 1, a weakly convergent subsequence inLp(Ω) can be
extracted. IfΩ is bounded, this implies weak convergence inL1(Ω) and
an application of the above result would show that at the limit, J attains
its minimum.
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Remark 2.5.3.If g did not take the value+∞, the convexity inq also
implies continuity. However, ifg assumed the value+∞ continuity no
longer follows from convexity. The inclusion of the value+∞ in the
range ofg is necessary for applications. It will be needed (as was men-
tioned in Section 2.1) that the energy tends to+∞ as det (F) approches
0 through positive values.

Theorem 2.5.2.LetΩ ⊂ Rn be a bounded open set. LetW : Ω ×Rν → 104

[a,+∞] be such that

W(x, .) : Rν → [a,+∞]

is convex and continuous for almost all xǫΩ,

W(., q) : Ω→ [a,+∞]

is measurable for all qǫRν. Let there exist c, b, p such that

(2.5-3) b > 0, p > 1, andW(x, q) ≥ c+ b|q|p

for all qǫRν and almost all xǫΩ. Letℓ :W1,p(Ω)→ R be a continuous
linear functional. LetΓ0 ⊂ Γ be of strictly positive da - measure and let
U be a weakly closed subset of

(2.5-4) V =
{

vǫW1,p(Ω)|v = 0 onΓ0

}

.

Define

(2.5-5) I (v) =
∫

Ω

W(x,∇v(x))dx− ℓ(v)

for vǫV. Assume
inf
vǫU

I (v) < +∞.

Then the problem: Find uǫU such that

(2.5-6) I (u) = inf
vǫU

I (v)

has atleast one solution.
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Proof. Let vk be a minimizing sequence inU, i.e.vkǫU and

I (vk)→ inf
vǫU

I (v) < +∞.

Now, 105

I (v) ≥ Cmeas(Ω) + b|v|p1,p,Ω − ‖ℓ‖‖v‖1,p,Ω
≥ Cmeas(Ω) + b′|v|p−1,p,Ω − ‖ℓ‖‖v‖1,p,Ω

whereb′ > 0, using Poincare’s inequality. Sincep > 1, it follows that
I (v)→ +∞ as‖v‖1,p,Ω → +∞. Hence

sup
k
‖vk‖1,p,Ω < +∞.

As p > 1,V1,p(Ω) is reflexive and a weakly convergent subsquence
can be extracted. Denoting this subsequence again byvk, let vk → u
weakly inW1,p(Ω). SinceU is weakly closed,uǫU.

Now clearlyℓ(vk) → ℓ(u). Also ∇vk → ∇u weakly inLp(Ω) and
hence (Ω is bounded, inL1(Ω). Then by Theorem 2.5.1, it follows that

inf
vǫU

I (v) ≤ I (u) ≤ lim inf
k→∞

I (vk) = inf
vǫU

I (v).

�

Remark 2.5.4.The application of this result to the linearized elasticity
system is easy (cf. Exercise 2.5-1. But unfortunately, it isnot directly
applicable to non - linear elasticity.

The assumptions to be satisfied are firstly,p > 1, which leads to the
choice of the appropriate spaceG1,p(Ω), and, secondly, the convexity of
the functionW.

If the fuctional I were strictly convex, this would imply uniquer-
ess of solutions which is not physically acceptable (cf. Section 2.1).
However,it is not even possible to have F→ W(F) convex inthree -106

demensional elasticity (cf. Exercise 2.5-4). Note that in the linearized
elasticity system, it is true thatW is convex, but then one can show (cf.
Exerise 2.2-1) that a linear model also contradicts the axiom of material
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frame indifference. Finally, to showU to be weakly closed inW1,p(Ω),
it is usually shown that it is strongly closed and convex. Buttypically,U
will be non - conver with constraints like det (∇ψ) > 0 or det (∇ψ) = 1

Thus to overcome these two difficulties, the notions ofpolyconvexity
andcompactness by compensationwill be introduced in the next section.

Exercises

2.5-1 Show that in the linearized system of elasticity, unilateral condi-
tions can also be taken into account (apply Theorem 2.5.2 with

U = {vǫV|u3 ≥ 0 onΓ′0 ⊂ Γ − Γ0},

where

V = {vǫH1(Ω)|v = 0 onΓ′0}, da measΓ0 > 0).

2.5-2 For a St Venant-Kirchoff material,

W(∇v) =
λ

2
tr(E)2 + µ tr(E2), λ > 0, µ > 0

where

E = E(v) =
1
2

(∇vT + ∇v+ ∇vT∇v).

Show that the corresponding energy is coercive on the space

V =
{

vǫW1,4(Ω); v = 0 onΓo

}

, da -measΓ0 > 0.

2.5-3 If E =
1
2

(FTF − I ), show in the above case thatF → W(F) is 107

convex.

2.5-4 Show that the convexity of the functionF →W(F) is physically
unrealistic (cf. TRUESDELL and NOLL [1955]).

2.5-5 For a St Venant-Kirchhoffmaterial, show that the solution u ob-
tained via the implicit function theorem minimizes locallythe en-
ergy inW1∞(Ω) but not necessarily inW1,4(Ω).
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2.6 J. BALL’S Polyconvexity and Existence Theo-
rems in Three Dimensional Elasticity

In the last section, it was seen that the lack of convexity of the stored
energy function was an obstacle to the application of the existence the-
orem (cf. Theorem 2.5.2). Now, an extension of the notion of convexity
following J. BALL will be introduced.

Recall that ifA is a matrix, then adj(A) stands for the transpose of
the matrix of cofactors ofA. The following identity holds:

(2.6-1) A(adjA) = (adjA)A = det(A)I .

Thus, ifA is invertible

(2.6-2) adj(A) = det(A)A−1.

Also,

(2.6-3) adj(AB) = adj(B) adj(A).

and

(2.6-4) (adjA)T = adj(AT)

In the study of deformations (cf. Section 1.1), it was seen that
lengths were modified by a function ofF(= ∇φ) via C = FTF. Sur-
face areas were changed in terms of adj(F) and volume elements were108

altered by a factor of det(F). Since it is natural to expect that a stored
energy function somehow takes these into account, it is reasonable to
assume that

(2.6-5) W(F) = G(F, adj(F), det(F))

for all FǫM3
+, where

G : M3
+ ×M3

+×]0,∞[→ R

is a given function (since forFǫM3
+, adj(F)ǫM3

+). While it not true that
W as a function ofF is convex (cf. Exercise 2.5-4), it is no longer
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impossible to expectG to be a convex function of its three arguments,
F, adj(F) and detF (of course, the domain of definition ofG is not a con-
vex set, but that is easily handled as will be seen below). Forinstance,
W(F) = detF is not a convex function butG(δ) = δ is convex!

Let V be a vector space andU ⊂ V ary subset. LetJ : U → R be
a function. It is said to beconvexif there existsJ̄ : co(U) → R, where
co(U) is the convex hull ofU, such that

(2.6-6) J̄(v) = J(v)

for everyvǫU.
LetU be a non - empty suset ofM3 and let

(2.6-7) U = {(F, adj(F), detF)|FǫU}.

ThusU ⊂ M3 × M3 × R. A functionW : U → R is said to
be polyconvex if there exists a convex functionG : U → R such that
(2.6-5) holds for everyFǫU

If U = M3
+ thenco(U) = M3 andU = M3

+ ×M3
+×]o,+∞[ while co 109

(U ) = M3×M3×]o,+∞[. Thus a stored energy functionW : M3
+ → R

is polyconvex if there exists a convex function

G : M3 ×M3×]o,+∞[→ R

such that (2.6-5) holds for allFǫM3
+.

The condition of polyconvexity on the stored energy function leads
to a class of hyperelastic materials known asOGDEN’S materials
(which we now define for the compressible case: for the incompress-
ible case, see Exercise 2.6-8).

As a simplest possible example, leta > o, b > o andΓ :]o,+∞[→ R
be a convex function. Define

(2.6-8) W(F) = a||F ||2 + b||adjF ||2 + Γ(detF)

where

(2.6-9) ||F ||2 = tr(FT F) = F : F.
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Clearly as||.||2 is a convex function, and asΓ is also convex, it fol-
lows thatW defined by (2.6-8) is polyconvex with

(2.6-10) G(F,H, δ) = a||F ||2 + b||H||2 + Γ(δ).

Remark 2.6.1.It will later be assumed thatΓ(δ)→ +∞ asδ→ o+.

Let FǫM3
+. Let U = (FTF)1/2 with eigenvaluesv1, v2, v3. These are

called theprincipal stretchesof F. Then it is easy to see that

||F ||2 = v2
1 + v2

2 + v2
3(2.6-11)

||adjF ||2 = v2
1v2

2 + v2
2v2

3 + v2
3v2

1.(2.6-12)

110

Hence (2.6-8) will now read as

(2.6-13)W(F) = a
(

v2
1 + v2

2 + v2
3

)

+b
(

v2
1v2

2 + v2
2v2

3 + v2
3v2

1

)

+Γ(v1v2v3).

This can be generalized to get anOGDEN Materialas follows. Let
Γ :]o,+∞[→ R be a convex function. Letai > o, 1 ≤ i ≤ M, b j > o, 1 ≤
j ≤ N. Further let,

(2.6-14)















1 ≤ α1 < · · · < αM

1 ≤ β1 < · · · < βN.

Now, if C = FTF,

(2.6-15)















tr(Cα/2) = vα1 + vα2 + vα3
tr((adjC)β/2) = (v1v2)β + (v2v3)β + (v3v1)β.

Now define forFǫM3
+,

(2.6-16) W(F) =
M
∑

i=1

ai tr(Cαi/2) +
N

∑

j=1

b j tr(adjC)βi/2 + Γ(det(F)).

Theorem 2.6.1. (i) An Ogden’s Material is polyconvex.
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(ii) It satisfies the following coerciveness inequality.

(2.6-17) W(F) ≥ Co +C1||F ||αM +C2||adj(F)||βN + Γ(det(F)).

Proof. Each summand in (2.6-16) is a symmetric function of the eigen-
valuesvk(resp. vkvk+1) and is convex and non-decreasing with respect111

to each variable on ]o,+∞[3. Such a function is convex with respect to
F (resp. adjF) and thusW is polyconvex. (cf. Exercise 2.6-1). �

To prove the coerciveness notice that

tr(Cα/2) = vα1 + vα2 + vα3
≥ C(α)((v2

1 + v2
2 + v2

3)1/2)α

= C(α)||F ||α

for any α ≥ 1, by the equivalence of norms inR3. The inequality
(2.6-17) follows directly from this observation.

The stored energy function of a St Venant-Kirchhoff material:

(2.6-18) W(F) = −
(

3λ + 2µ
4

)

tr(C) +

(

λ + 2µ
8

)

tr(C2) +
λ

4
tr(adj(C))

+

(

6µ + 9λ
8

)

,

is not polyconvex (Exercise 2.6-2). This stems from the factthat the
coefficient of tr(C) is < 0.

Remark 2.6.2.In the incompressible case, det(F) = 1. ThusW(F)
has no dependence on det(F). Such Ogden’s materials comprise the
so-calledMOONEY-RIVLIN materials.

To fix ideas, consider an Ogden’s material described by

(2.6-19) W(F) =
M
∑

i=1

ai tr(Cαi/2) +
N

∑

j=1

b j(tr(adjC)β j/2) + Γ(detF)

with a1 > o, 1 ≤ i ≤ M, b j > o, 1 ≤ j ≤ N andΓ(δ) ≥ Cδr + d, c > o.
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Then by Theorem 2.6.1, the following coerciveness condition holds:

(2.6-20) W(F) ≥ a+ b(||F ||p + ||adjF ||q + (detF)r ), p

= max
i
αi , q = max

j
×β j .

Since it is natural to desire that112
∫

Ω

W(F)dx < +∞,

the set of admissible deformations will typically be of the form

(2.6-21) U =
{

ψǫW1,p(Ω)|adj(∇ψ) ǫLq(Ω), det(∇ψ) ǫLr (Ω) det

(∇ψ) > o a.e., ψ = φo onΓo} .

Such sets are ‘highly’ non-convex (cf. Exercise 2.6-3). It will not
be shown thatU is weakly closed (in fact that is not true in general) but
it will be shown that weakly convergent subsequences can be extracted
which suit the purpose of minimizing the energy.

In order to do this, the mappingsφ → adj(∇φ) andφ → det(∇φ)
have to be looked at more closely.

Counting indices modulo 3, the matrix adj(∇φ) can be defined by

(2.6-22) (adj(∇φ))i j = (∂i+1φ j+1∂i+2φ j+2 − ∂i+2φ j+1∂i+1φ j+2).

If φǫW1,p(Ω), p ≥ 2, then it is easy to see that adj(∇φ)ǫLp/2(Ω).
The mapping defined in this fashion betweenW1,P(Ω) andLP/2(Ω) is
non-linear and continuous. We denote weak convergence by⇀.

Theorem 2.6.2. If φǫW1,P(Ω), p ≥ 2, thenadj(∇φ)ǫLP/2(Ω) Further

(2.6-23)
φn ⇀ φinW1,P(Ω), p ≥ 2

adj(∇φn) ⇀ H in Lg(Ω), q ≥ 1















impliesH = adj(∇φ).

Proof. (1) First an alternative definition of adj(∇φ) will be established113

in the sense of distributions. LetφǫC∞(Ω̄). Then a simple computation
yields

(2.6-24) (adj(∇φ))i j = ∂i+2(φ j+2∂i+1φ j+1) − ∂i+1(φ j+2∂i+2φ j+1)
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(with no summation oni and j). If θǫD(Ω), then
∫

Ω

(adj(∇φ))i j θdx= −
∫

Ω

φ j+1∂ j+2φ j+1∂i+2θdx(2.6-25)

+

∫

Ω

φ j+2∂ j+2φ j+1∂i+1θdx

For fixedθǫD(Ω), a simple application of Holder’s inequality shows
that each term in (2.6-25) is a continuous function ifφǫH1(Ω) (where if
φǫW1,P(Ω), p ≥ 2). SinceC∞(Ω̄) is dense in each of these spaces, it
follows that (2.6-25) is true forφǫW1,P(Ω), p ≥ 2. Thus (2.6-24) holds
for φǫW1,P(Ω) in the sense of distributions.

(ii) Let φn ⇀ φ inW1,P(Ω). Let θ = (θi j ), θi j ǫD(Ω) . Let p∗ = +∞
if p ≥ 3 and be given by

(2.6-26)
1
p∗
=

1
p
− 1

3

for p < 3. Then for 1≤ q < p∗,

(2.6-27) W
1,P(Ω) ֒→ Lq(Ω),

i.e., the above inclusion is compact. Now ifχǫD(Ω) is fixed andψn ⇀ ψ

in W1,P(Ω) andφn ⇀ φ in W1,P(Ω), then

ψn ⇀ ψ in Lq(Ω)

∂kφ
n→ ∂kφinLq(Ω).

114

If further
1
p
+

1
q
≤ 1, it will then follow that

∫

Ω

ψn∂kφ
nXdx→

∫

Ω

ψ∂kφXdx.

From this observation and from (2.6-25), it follows that

(2.6-28)
∫

Ω

(

adj
(∇φn)) : θdx→

∫

Ω

(

adj
(∇φn)) : θdx
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provided thatq < p∗ and
1
q
+

1
p
≤ 1. It is easy to see that this is

equivalent top > 3/2, which is satisfied anyway.

(iii) Let φn ⇀ φ in W1,P(Ω) and adj(∇φn) ⇀ H in Lq(Ω). By (ii)
above for anyθ = (θi j ), ǫD(Ω), (2.6-28) holds and also

∫

Ω

(

adj
(∇φn)) : θdx→

∫

Ω

H : θdx.

Thus

(2.6-29)
∫

Ω

(

adj
(∇φn)) − H) : θ = o

for all θ = (θi j ), θi j ǫD(Ω) and since (adj(∇φn))−H)ǫL1(Ω) andD(Ω) is
dense inL1(Ω), it follows that

H = adj(∇φ)

thus proving the theorem. �

Remark 2.6.3.If p∗ is as in (2.6-26), ifφ jǫLp∗ (Ω) and∂iφkǫLp(Ω), and

if
1
p
+

1
p∗
≤ 1 (which is equivalent top ≥ 3/2). the productφ j∂iφk

belongs toL1(Ω).
Now using (2.6-25), the adjugate of∇φ for φǫW1,p(Ω) can be de-115

fined in the sense of distributions. This definition of the adjugate of∇φ,
extended top ≥ 3/2 is denoted by

Adj (∇φ) .

The step (ii) of the proof of the above theorem goes through for
p > 3/2 as remarked in the proof itself. Hence forp > 3/2, if φn ⇀ φ

inW1,P(Ω), thenAd j(∇φn) ⇀ (∇φ) in the sense of distributions.

Remark 2.6.4.The above theorem implies that the set

U =
{

(φ,H)ǫW1,P(Ω) × Lq(Ω)|H = adj(∇φ)
}
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is weakly closed inW1,P(Ω) × Lq(Ω) for p ≥ 2, q ≥ 1. But the set
{

φǫW1,P(Ω)|adj(∇φ) ǫLq(Ω)
}

is not necessarily weakly closed inW1,P(Ω). (cf. Exercise 2.6-4).

Now consider the mappingφ→ det(∇φ). In the first place

(2.6-30) det(∇φ) =
∑

σǫP3

sgn (σ)∂1φσ(1)∂2φσ(2)∂3φσ(3)

whereP3 is the set of all permutations of (1,2,3). Now det(∇φ) will
be in L1(Ω) if φǫW1,P(Ω), p ≥ 3. But one use the integrability of the
adjugate and improve on this by noting that

(2.6-31) det(∇φ) = ∂iφ1
(

adj(∇φ)
)

i1

(summation with respect to i). Now, if∂iφ1 ∈ Lp(Ω) and (adj(∇φ))i1 ∈
Lp(Ω) and if 1/p + 1/q ≤ 1, then det(∇φ)ǫL1(Ω). Thus (2.6-31) will
be used to define det(∇φ), for if p < 3, the formula (2.6-30) makes no
sense.

Theorem 2.6.3.Let p≥ 2, φǫW1,P(Ω) such thatadj(∇φ)ǫLP′(Ω), where 116
1
p
+

1
p′
= 1. Thendet(∇φ) given by(2.6-31)is in L1(Ω). Further

(2.6-32)
φn ⇀ φinW1,P(Ω), p ≥ 2

adj
(∇φn) ⇀ H in Lq(Ω),

1
p
+

1
q
≤ 1

det
(∇φn) ⇀ δ in Lr (Ω), r ≥ 1



































implies















H = adj(∇φ)

δ = det(∇φ) .

Proof. (i) The main difficulty in the proof is to give an alternative def-
inition of the determinant in the sense of distributions. Let φǫC∞(Ω̄).
Then

det(∇φ) = ∂iφ1(adj(∇φ))i1

= ∂i(φ1(adj(∇φ))i1)
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using the Piola identity (cf. Exercise 1.1-1). So, forθǫD(Ω)

(2.6-33)
∫

Ω

det(∇φ)θdx = −
∫

Ω

φ1(adj(∇φ))i1∂iθdx.

It will be shown that (2.6-33) is valid forφ ∈ W1,P(Ω) with adj(∇φ)

∈ LP′ , where
1
p
+

1
p′
= 1.

Now by the Piola identity, for smoothφ, ∂i(adj(∇φ))i1 = o or for
θǫD(Ω)

(2.6-34)
∫

Ω

(adj(∇φ))i1∂iθdx= o.

By the density of smooth functions inW1,P(Ω), it follows that
(2.6-34) is true for allφǫW1,P(Ω), p ≥ 2.

For expository convenience, setφ = φ1, Wi = (adj((∇φ))i1. Then

φǫw1,P(Ω) andwiǫLP′(Ω),
1
p
+

1
p′
= 1.

Let ρǫD(R3), ρ ≥ o and
∫

R3

ρ = 1. Define117

(2.6-35) ρk(x) = k3ρ(kx)

so thatρk has the same properties asρ together with the property that
supp (ρk) skrinks to zero ask→ ∞. Let wi be extended byo outsideΩ
and define

(2.6-36) (ρk ∗ wi)(x) =
∫

R3

ρ(k)(x− y)wi(y)dy.

Then the functionρk ∗ wi is smooth and converges towi in LP′(Ω)
Let θǫD(Ω) be fixed. Then there existsko = ko(θ) such that the

support of the mapy→ ρk(x− y) is contained inΩ for all k ≥ ko and for
all xǫ supp(θ). then fork ≥ ko,

(2.6-37) div(ρk ∗ w)(X) =
∫

Ω

∂

∂xi
ρk(x− y)wi(y)dy= o



2.6. J. BALL’S Polyconvexity and Existence Theorems..... 99

using (2.6-34), forxǫ supp(θ). Now if φkǫC∞(Ω̄) and φk → φ in
W

1,P(Ω), it follows that

−
∫

Ω

φk(ρk ∗ wi)∂iθdx=
∫

Ω

∂iφ
k(ρk ∗ wi)θdx+

∫

supp(θ)

φk∂i(ρk ∗ wi)θdx.

By (2.6-37) the second integral on the right-hand side vanishes.
Now passing to the limit in each of the integrals ask→ ∞,

−
∫

Ω

φwi∂iθdx=
∫

Ω

∂iφwiθdx.

from which (2.6-33) follows.

(ii) If φn ⇀ φ in W1,P(Ω) and adj(∇φn) ⇀ adj(∇φ)in Lq(Ω), with

p ≥ 2 and
1
p
+

1
q
≤ 1, then using the same type of compactness argument118

as in the proof of theorem 2.6.2, it can be shown that forθǫD(Ω),
∫

Ω

det(∇φn) θdx→
∫

Ω

det(∇φ) θdx.

(iii) Using the previous step, the conclusions of the theorem can be
drawn exactly as in Theorem 2.6.2. �

Remark 2.6.5.As in the case of adj(∇φ), if p ≥ 3/2 the determinant can
also be defined inD′(Ω) using the fact thatφ1(adj(∇φ))i1ǫL1(Ω). The
distribution obtained is denoted by Det (∇φ).

Remark 2.6.6.The above theorem shows that the set
{

(φ,H, δ)ǫW1,P(Ω) × Lq(Ω) × Lr (Ω)|H = adj(∇φ) , δ = det(∇φ)
}

is weakly closed inW1,P(Ω) × Lr (Ω). But the set
{

φǫW1,P(Ω)|adj(∇φ) ǫLq(Ω), det(∇φ) ǫLr (Ω)
}

is not necessarily weakly closed inW1,P(Ω).
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The following existence theorem can now be proved.

Theorem 2.6.4(J. BALL). LetW : M3
+ → R be a stored energy func-

tion, such that

(i) (Polyconvexity) there existsG : M3 ×M3×]o,+∞[→ R which is
convex and such that for all FǫM3

+,

(2.6-38) W(F) = G(F, adj(F), det(F));

(ii) (Continuity at+∞ if Fn→ F inM3
+,Hn→ H inM3

+ andδn→ o+,
then

(2.6-39) lim
n→∞
G(Fn,Hn, δn) = +∞;

119

(iii) (Conerciveness) There exist aǫR, b > o, p ≥ 2, qǫR with
1
p
+

1
q
≤

1, and r > 1, and r > 1, such that and for all(F,H, δ)ǫM3 ×
M

3×]o,+∞[,

(2.6-40) G(F,H, δ) ≥ a+ b(||F ||p + ||H||q + δr ).

LetΩ ⊂ R3 be a bounded open subset with boundaryΓ = Γo ∪ Γ1

where the da-measure ofΓo is > 0.

Let fǫLρ(Ω), gǫLσ(Γ1) such that the maps

ψǫW1,P(Ω)→
∫

Ω

f · ψdx andψǫW1,P(Ω)→
∫

Γ1

g.ψda

are continuous.

Let I :W1,P(Ω)→ R be given by

(2.6-41) I (ψ) =
∫

Ω

W (∇ψ) dx−























∫

Ω

f .ψdx+
∫

Γ1

g.ψda
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andU ⊂W1,P(Ω)be defined by

(2.6-42) U =
{

ψǫW1,p(Ω)|adj(∇φ) ǫLq(Ω), det(∇ψ) ǫLr (Ω), det

(∇ψ) > o a.e.,ψ = φo onΓo} ,

with φoǫW
1,P(Ω). Assume thatU = φ and that

inf
ψǫU

I (ψ) < +∞

Then the problem: FindφǫU such that

(2.6-43) I (φ) = inf
ψǫU

I (ψ)

has at least one solution.

Proof. Step (i). Transformation of the problem. DefineḠ : M3 ×M3 × 120

R→ RU{+∞} by

(2.6-44) Ḡ(F,H, δ) =















G(F,H, δ) if δ > o

+∞ if δ ≤ o.

ThenḠ is easily seen to be convex and continuous into [a,+∞].
Thus the functional

(2.6-45) Ī (ψ) =
∫

Ω

Ḡ (∇ψ, adj(∇ψ) , det(∇ψ)
)

dx

−























∫

Ω

f .ψdx+
∫

Γ1

g.ψda























is well-defined.
Let ψǫW1,P(Ω) with adj(∇ψ)ǫLq(Ω) and det(∇ψ)ǫLr (Ω). If Ī (ψ) <

∞, then it follows that det(∇ψ) > o a.e.
If ψǫU thenI (ψ) = Ī (ψ). Thus the original problem is equivalent to

minimizing Ī (ψ) overU.
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Step (ii). It can be shown that (cf. Exercise 2.6-5) for allψǫW1,P(Ω)
with ψ = φo onΓo,

(2.6-46)
∫

Ω

|ψ|pdx≤ d























∫

Ω

|∇ψ|pdx+























∫

Γo

|φo|da























p




















whered > 0. Hence forψǫU,

Ī (ψ) ≥ a measΩ + b′
∫

Ω

||∇ψ||pdx+ b
∫

Ω

||adj(∇ψ) ||qdx

+ b
∫

Ω

(det(∇ψ))r −C||ψ||1,p,Ω

with b′ > o, or

(2.6-47) Ī (ψ) ≥ C0+C1‖ψ‖p1,p,Ω+C2|adj(∇ψ) |qo,q,Ω+C3|det(∇ψ) |ro,r,Ω
with C1,C2,C3 > 0. (cf. Remark 2.6.7)121

Step (iii). Let φn ∈ U be a minimizing sequence forI . From the coer-
civeness (2.6-47), it follows thatφn, adj(∇φn) and det(∇φn) are bounded
inW1,p(Ω),Lq(Ω) andLr (Ω) respectively. Since these spaces are reflex-
ive, a subsequenceφn can be found such that

φn ⇀ φW1,p(Ω)

adj(∇φn) ⇀ H in Lq(Ω)

det(∇φn) ⇀ δ in Lr(Ω).

But by the previous theoremH = adj(∇φ) andδ = det(∇φ). Thus
by the convexity and contnuity of̄G, Ī is weakly lower semi-continuous
(cf. Theorem 2.5.1) and so

Ī (φ) ≤ lim
n→

inf
∞

Ī (φn) < +∞.

Hence det(∇φ) > o. It can be show thatφ|Γo = φo (cf. Exercise
2.6-6) and soφ ∈ U and it follows thatĪ and henceI attains a minimum
atφ. �
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Remark 2.6.7.The coerciveness condition (2.6-47) can be obtained
only onU and not on the whole space. It uses the fact thatφ = φo

onΓo for all the functions under consideration.

Several comments on the above result are in order here. Firstof all,
unlike the approach based on the implicit function theorem,the result 122

is applicable to “all” forces(not just “small” ones)and toall boundary
conditions. Of course, in case of the pure traction problem, the forces
must satisfy certain compatibility conditions. It is also applicable to the
mixed displacement-pressure problem(cf. Exercise 2.6-7).

A shortcoming of this approach is thelack of regularity of the solu-
tion. Here it is not know if the minimizing function satisfiesthe equilib-
rium equationseven in a weak sense. Further even thought it is true that
the solution satisfies det(∇φ) > 0 a. e. , additional conditios are needed
to insure thatφ is one-one (see BALL [1981c]).

It is possible to extend this approach to cover the incompressible
case where det(∇φ) = 1. (cf. Exercise 2.6-8).

Consider a St Venant-Kirchhoff material. If the forces are ‘small
enough’ it was shown that there exists a ’small’ solution to the pure dis-
placement problem (Theorem 2.3.1). However, in the pure displacement
or mixed displacement traction problem, owing to the non-polyconve-
xity, it cannot be shown that the energy is minimized. Anopen prob-
lem is to prove existence of ‘small’ solutions for small forces the mixed
problem such materials.

To conclude this section, it will now be examined how to choose
a stored energy function given a compressible material. Consider a
compressible material (steel, for instance!). Around a natural state it
is known that the stress tensorΣR can be written as

(2.6-48) Σ∗R(E) = λ(tr E)I + 2µE + o(E),

whereE is the Green-St Venant strain tensor. The constantsλ andµ are 123

strictly positive and can be determined form experiments, albeit approx-
imately. It has been shown that (cf. Section 1.4)

(2.6-49) W(F) =
λ

2
(tr(E))2 + µ tr(E2) + o(|E|2).
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The foillowing theorem due to CIARLET and GEYMONAT [1982]
says that it is possible to express such a material as a simpleOgden’s
material.

Theorem 2.6.5.Givenλ > 0, µ > 0, it is possible to find a> 0, b > 0
and a functionΓ :]0, +∞[→ R which is convex satisfying

(2.6-50) Γ(δ) ≥ Cδ2 + d,C > o

such that the corresponding stored energy function

(2.6-51) W(F) = a‖F‖2 + b‖adjF‖2 + Γ(detF)

agrees toλ/2(tr(E))2 + µ tr(E2) upto o(|E|2).

Proof. (Sketch). SettingC = FTF = I + 2E, then

‖F‖2 = tr C = tr(I + 2E)

‖adjF‖2 = tr(adj(I + 2E))

det(F) =
√

(det(I + 2E)).

Expanding these about I, it it follows that

W(F) = 3a+ 3b+ Γ(1)+ (2a+ 4b+ Γ′(1)) tr(E) − (2b+ Γ′(1)) tr(E2)

+ (2b+
1
2

(Γ′(1)+ Γ′′(1)))(tr(E))2 + o(|E|2).

Comparing with (2.6-49), it follows that

2a+ 4b+ Γ′1 = 0,(2.6-52)

−(2b+ Γ′(1)) = µ.(2.6-53)

2b+
1
2

(Γ′(1)+ Γ′′(1)) =
λ

2
.(2.6-54)

124

These equation must be solved such thata > o, b > o andΓ′′(1) ≤ o
(Γ is convex). (By (2.6-52)) it follows thatΓ′(1) < o). It is easy to
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see that any point (Γ′(1)), Γ′′(1)) on the open line-segment shown in
Fig. 2.6.1 givea > o, b > o satisfying the above equations.

Figure 2.6.1:

Now to choose a convex functionΓ :]0,+∞[→ R satisfying (2.6-50).
One can findα ≥ 0, β > 0 such that

(2.6-55) Γ(δ) = αδ2 − β logδ.

This function also is such thatΓ(δ)→ +∞ asδ→ o+. �

It follows now that the associated minimization problem hasat least
one solution by J. BALL’s theorem. Here

(2.6-56) U = {ψ ∈ H1(Ω)|adj(∇ψ) ∈ L2(Ω), det(∇ψ) ∈ L2(Ω), det(∇ψ)

> 0a.e. andψ = φ0 onΓ0}

Remark 2.6.8.In (2.6-50), the termCδ2 could have been replaced by125

Cδr , for r > 1. The definition foU would be modified accordingly.

Remark 2.6.9.It is also possible to chooseX(F) in the form

(2.6-57) H (F) = a1‖F‖2 + a2‖F‖4 + b‖adjF‖2 + Γ(detF)

wherea1 > 0, a2 > 0, b > 0 andΓ convex. (The St Venant-Kirchhoff
stored energy function resembles this, onlya1 < 0.). In this case, it can
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be seen that the admissible range of values (Γ′(1), Γ′′(1)) lies in the open
triangle of Fig. 2.6.2. (Exercise 2.6-9).

Figure 2.6.2:

Exercises

2.6-1 Let H : M3→ R be a function such that

H(F) = φ(v1, v2, v3), F ∈ M3
+

wherevi , i = 1, 2, 3 are the principal stretches ofF. If φ is a sy-
metric function which is convex on (]o,+∞[)3 and non-decreasing
in each variable, show thatW is convex.

2.6-2 Show that the stored energy functionW for a St Venant-Kirchhoff126

matrial (cf. (2.6-18)) is not polyconvex.

2.6-3 Show that the set

{ψ ∈W1,p(Ω)|adj(∇ψ) ∈ Lq(Ω), q ≥ 1}

is not convex (p ≥ 2).

2.6-4 If p > 2 andq ≤ p/2 show thatφn ⇀ φ in W1,p(Ω) implies
adj(∇φn) ⇀ adj(∇φ) in Lq(Ω).
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2.6-5 Show that there exists a constantd > 0 such that for allψ ∈
W

1,p(Ω), ψ = ψ0 onΓ0,

∫

Ω

|ψ|pdx≤ d























∫

Ω

|∇ψ|pdx+























∫

Γo

|φo|da























p




















.

2.6-6 If φn ⇀ φ inW1,p(Ω) andφn = φo onΓo, show thatφ = φo onΓo.

2.6-7 Apply J. BALL’s theorem to the mixed diaplacement-pressure
problem.

2.6-8 . Let Ũ be defined by

Ū = {(φ,H) ∈ H1(Ω) × L2(Ω)|H = adj(∇φ), φ = φo onΓ0,

det(∇φ) = 1a.e}

(incompressible case). AssumeŨ = D . (i) Show thatŨ is weakly
closed in the product spaceH1(Ω) × L2(Ω). (ii) Consider

W(F) = a‖F‖2 + b‖adjF‖2, a > o, b > o,

I (ψ) =
∫

Ω

W(∇ψ)dx− (
∫

Ω

f .ψdx+
∫

Γ1

g.ψda).

Show that the problem: Findφ ∈ U such that

U = {φ ∈ H1(Ω); adj∇φ ∈ L2(Ω), φ = φo) on Γ0, det∇φ = 1a.e.}
I (φ) = inf

ψ∈U
I (ψ)

has at least one solution. (iii) Ifφ is smooth, show that theLa- 127

grange multiplierarising out of equality constraint det(∇φ) = 1,
is the pressure. (cf. Exercise 2.1-2).

2.6-9. Check the assertion made in Remark 2.6.9.
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Bibliography, Comments and some Open Problems128

No attempthas been made to give an exhaustive list of pertinent
references.

The first chapter of these lecture notes gave a description ofelastic-
ity in three demensions. For further refrences, one may alsoconsult
GERMAIN [1972], GREEN and ZERNA [1968], GREEN and AD-
KINS [1970], GURTIN [1981a, 1981 b], MARSDEN and HUGHES
[1978,1983], STOKER [1968], TRUESDELL and NOLL [1956],
VALID [1977], WANG and TRUESDELL [1973], ERINGEN [1962]
and WASHING [1975].

The second chapter discussed some methods for proving the exis-
tence of solution to the boundary value problem of non-linear elasticity
and to the associated variational problem, in the case of hyperelastic
materials.

For references about the linearized system of elasticity, see DU-
VAUT and LIONS [1972], FICHERA [1972] and GURTIN [1972].

The key result in proving existence via theimplicit function theorem
is theW2,p(Ω)-regularity of the linearized system of elasticity. The case
p = 2 was proved by NECAS [1967] and the regularity for otherp was
proved by GEYMONAT [1965]. From this regularity result, (proved
however only for the puredisplacement problem) the existence theorem
was independently proved by CIARLET and DESTUYNDER [1979b],
MARSDEN and HUGHES [1978], VALENT [1979]. The basic idea,
however, goes back to SPOPPELLI [1954] and VAN BUREN [1968].
The extension of this result to more general constutive equations was
particularly studied by VALENT [1979]. See also VALENT [1978a,
1978b].

The necessity of theW2,p(Ω)-regularity of the linearized problem re-129

stricts the application of this method topure displacement problems.It
is also possible to treat thepure traction problem,which is more compli-
cated owing to the compability conditions which the given forces must
satisfy. For details see CHILLINGWORTH, MARSDEN and WAN
[1982].

The increment method described in Section 2.4 is none other than
Euler’s method for approximating an appropriate differential equation
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in a Solbolev space. In other words, this method appears as aninfi-
nite demensional version of the so calledcontinuation by differentiation
approach as described, for instance, in RHEINBOLDT [1974].

To the best of the author’s Knowledge, the convergence of increment
methods for non-linear elasticity problems has been analysed so far only
in some special cases, such as the one demensional model of a thin shal-
low spherical shell, by ANSELONE and MOORE [1966] or some finite
dimensional structural problems by RHEINBOLDT [1981]. Theresults
presented in these lecture can be found in BERNADOU, CIARLETand
HU [1982].

For a decription of incremental methods in non-linear elasticity see
MASON [1980], ODEN [1972] and WASHIZU [1975].

The variation approach is based on the famous article of BALL
[1977]. In addition to the notion ofpolycomvexityanother essential
contribution of J. BALL is that one can pass to the weak limit in cer-
tain non-convex sets as was seen in Section 2.6. This idea of compact-
ness by compensation was also developed by MURAT [1978, 1979] and
TARTAR [1979]. See also AUBERT and TAHRAOUI [1982].

Other important refrences are BALL [1981a,1981b, 1981c], BALL, 130

CURRIE and OLIVER [1981], BALL, KNOPS and MARSDEN [1978].
See also EKELAND and TEMAN [1974] for the general problem of
minimizing functionals.

The notion of polyconvexity led to the definition of anOgden’s ma-
terial (cf. OGDEN [1972]). ASt Venant-Kirchhoff material is not Og-
den’s material and the existence of a solution to the corresponding mixed
displacement-traction problem is open. In this connectionsee also AT-
TEIA and DEDIEU [1981] and DACOROGNA [1982a, 1982b]. For yet
another approach, see ODEN [1979].

One of the drawbacks of J. BALL’s approach is the lack of regularity
of the solution and so one does not know if the solution thus obtained
satisfies theequilibrium equationeven in a weak sense. In this contex,
see the results of LE TALLEC [1981] and LE TALLEC and ODEN
[1981] for incompressible materials.

To conclude, we present a list of some of the open problems in non-
linear elasticity. Some of them have been mentioned in the text before.
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1. LetC = ∇φT∇φ. If C − I is ’small’, in a sense to be made precise,
can it be said thatφ is close to a rigid deformation? If some boundary
conditions are imposed, can it be shown thatφ is one-one?

In this context cf. KOHN [1982], ALEXANDER and ANTHAN
[1982], ANTMAN [1979].

2. The standard implicit function theorem approach fails for mixed131

problems. Could “hard” implicit function theorem like thatof NASH
and MOSER be used? In case of special domains like a thin plate, the
singularities are know explicity. Could this be used, and the implicit
function theorem used only on the “regular” part of the solution?

3. Study of incremental methods taking into account the finite element
methods.

4. An incremental method can beformally written down for the mixed
problem. If it can be shown to be convergent, this would provide an
existence theorem for the mixed problem.

5. The minimization procedure of J BALL does not imply that the so-
lution is small if the forces are small. How can one “distinguish”
the expected small solution in this case? (In the case of the pure
displacement problem, the solution via the implicit function theorem
does not seem to be a local minimum of the energy in the “right”
space).

6. A study plasticity has been taken up by TEMAN and STRANG-
[1980a, 1980b]. They use the linear theory in the part corresponding
to elasticity. Can one obtain better results by incorporating the non-
linear theory, using J. BALL’s approach?

7. A study of ‘non local’ constotutive equations. Here the comstitutive
equation is of the form

T(x) =
∫

B

ρk(x− y)T̂(∇φ(y))dy

whereρk is amollifier.
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8. One of thehardestopen problems of the study of theevolution prob- 132

lem which is a non-linear hyperbolic problem. The only available
results are in the one-demensional case due to DIPERNA [1983].
See also HUGHES, KATO and MARSDEN [1976].

9. Plate theory. A plate can be thought of as a domainΩ∈ = ω×]− ∈
,+ ∈ [, whereω ⊂ R2 is a bounded open set and∈> o is a small
parameter. (cf. Fig.1)

Figure 1

By methods of asymptotic expansions, the solution (u∈, σ∈) can be
formally expanded as

(u∈, σ∈) = (u0, σ0) + (u1, σ1) + · · ·

where (u0, σ0) satisfies a well-known two-dimensional plate model.
In the linearized theory CIARLET and DESTUYNDER [1980a],
CIARLET and KESAVAN [1980], DESTUYNDER [1980] have stu-
died the problems extensively. One can compare the three dimen-
sional and two dimensional problems and show that (for example)

‖u∈3d − u∈2d‖1,Ω∈
‖u∈3d‖1,Ω∈

→ o as ∈→ 0.

The problem is tonumericallyverify this. Computing by the finite
element method, one getsu∈3d,h andu∈2d,h approximatingu∈3d andu∈2d
respectively. Since∈ is small, unlessh is of the same order, the linear 133

systems become very ill-conditioned. But ifh is of the same order
of ǫ, the solutionuǫ3d,h is not very accurate. Thus to find a better
method of approximating these solutions and verify the convergence
described above.
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10. In the nonlinear case CIARLET [1980] (see also CIARLET and-
DESTUYNDER [1979], CIARLET and RABIER [1980]) has shown
that with certain boundary conditions the three dimensional plate
model for a St Venant -Kirchhoffmaterial is approximated (formally)
by the well-known two-dimensional von Karman model. While the
latter has a satisfactory existence theorey, the former hasnone. If at
least forǫ small enough it can be shown that the three dimensional
problem has a solution converging to a given solution of the dimen-
sional problem, an existance theorem for such special domains can
be obtained.
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List of Notations141

General Conventions: (1) Unless otherwise indicated, Latin indices
take their values in the set{1, 2, 3}, and the repeated index convention
for summation is systematically used in conjunction with this rule.

(2) If a quantity is denotedX in the deformed configuration, the
corresponding quantity in the reference configuration is denotedXR.

Vectors and Matrices

(ei) : orthonormal basis inR3

v = (vi) : vectorv with componentsvi

A = (Ai j ) : matrix A with elementsAi j (i : row index,
j : column index)

u · v = uivi : Euclidean inner product
|u| =

√
u · u : Euclidean vector norm

Ei jk =



















































+1 if (i, j, k) is an even permutation of

(1, 2, 3)

−1 if (i, j, k) is an odd permutation of

(1, 2, 3)

0 otherwise
uΛv = Ei jku jbkei : cross product inR3

A : B = Ai j Bi j = tr(ABT) : matrix inner product
||A|| =

√
A : A : matrix norm associated with the matrix

inner product
A−T : (A−1)T (A−1: inverse matrix;

AT : transposed matrix).
ad jA : adjugate of a matrix (transpose of the

cofactor matrix)
lA = (l1(A); l2(A), l3(A)) : set of the principal invariants of a matrix of

order 3
l1(A) = aii = tr(A)
l2(A) = 1

2(aii a j j − ai j ai j )(= detA tr A−1 if A is
invertible)

l3(A) = detA
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M
3 : set of all matrices of order 3
M

3
+ = {F ∈ M3|detF > 0}
O

3 = {F ∈ M3|FT F = FFT = I }
O

3
+ = O

3 ∩ M3
+ = {F ∈ O3|detF = 1}

S
3 = {F ∈ M3|F = FT}
S

3
> = {F ∈ S3|F is positive definite}

F = RU = VR : polar factorization of an invertible
matrix (R ∈ O3; U,V ∈ S3

>)
C1/2 : square root of a matrixC ∈ S3

>

142

Functions and Function Spaces

Id : identity mapping
v′(a) : Fréchet derivative of the mappingv at the

point a

∂αv =
∂|α|v

∂xα1
1 . . . ∂xαn

n
, |α| = α1 + · · · + αn

(multi-index notation for partial
derivatives)

∂W

∂F
(F) =

(

∂W

∂Fi j
(F)

)

∈ M3 (for a mapping

W : M3→ R)
X ֒→ Y : the canonical injection fromX into Y is

continuous

X
c
֒→Y : the canonical injection fromX into Y is

compact
⇀ : weak convergence

C0(X,Y) : set of all continuous mappings fromX
into Y

Cm(X; Y) : space of allm times continuously
differentiable mappings fromX into
Y(1 ≤ m≤ ∞)

Cm(X) = Cm(X;R), 0 ≤ m≤ ∞.
Wm,p(Ω) = {v ∈ Lp(Ω); ∂αv ∈ Lp(Ω) for all |α| ≤ m}

(W0,p(Ω) = Lp(Ω))
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Hm(Ω) =Wm,2(Ω)
L

p(Ω),Wm,p(Ω),Hm(Ω) : corresponding spaces of vector-valued, or
matrix-valued, functions

|v|0,p,Ω : norm of the spaceLp(Ω), 1≤ p ≤ ∞.
||v||m,p,Ω = {

∫

Ω

∑

|α|≤m
|∂αv|pdx}1/p: norm of the space

Wm,p(Ω), 1 ≤ p ≤ ∞
||v||m,∞,Ω = max

|α|≤m
|∂αv|0,∞,Ω: norm of the space

Wm,∞(Ω)
|v|m,p,Ω = {

∫

Ω

∑

|α|=m
|∂αv|pdx}1/p, 1≤ p ≤ ∞

|v|m,∞,Ω = max
|α|=m
|∂αv|0,∞,Ω

D(Ω) = {v ∈ C∞(Ω); suppv is a compact subset of
Ω}

Wm,p
0 (Ω) : closure ofD(Ω) in Wm,p(Ω)
Hm

0 (Ω) =Wm,2
0 (Ω)

143

Miscellaneous

[a,+∞] = [a,+∞[∪{+∞}, a ∈ R

f (x) = 0(x) : lim
x→0
x,0

| f (x)|
||x|| = 0

c ◦ U : convex hull ofU (smallest convex set
containingU)

Notations in the Deformed Configuration144

B = φ(BR) : deformed configuration
X = φ(XR) : generic point ofB

∂B : boundary ofB
∂B = ∂B0 ∪ ∂B1 : dA-measurable partition of∂B

n : unit outer normal along∂B
dX : volume element inB
dA : surface element on∂B
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GRADΘ =

(

∂Θi

∂X j

)

∈ M3 (for a mappingΘ : B → R3)

DIV T =
∂Ti j

∂X j
ei ∈ R3 : divergence of a tensor fieldT : B → M3

∂(X) ∈ R : density per unit mass atX ∈ B

b(X) ∈ R3 : body force density per unit mass atX ∈ B

t1(X) ∈ R3 : applied surface force density per unit area
of ∂B at X ∈ ∂B

t(X, n),X ∈ B, |n| = 1 : Cauchy stress vector inB
T(X) : Cauchy stress tensor atX ∈ B

T̂,T : response function forT = T̂(F) = T(B),
with F ∈ M3

+, B = FFT .

Notations in the Reference Configuration 145

BR, orΩ : reference configuration
XR, or x : generic point ofBR

∂BR, or Γ : boundary ofBR

∂BR = ∂B0R∪ ∂B1R, or Γ = Γ0 ∪ Γ1 : dAR-measurable partition of
∂BR

nR, or ν : unit outer normal along∂BR

dXR, or dx : volume element inBR

dAR, or da : surface element on∂BR

φ, ψ : BR→ R3 : deformation ofBR (smooth
maps with det· > 0)

u, v : BR→ R3 : displacement
(φ = Id+u, ψ = Id+v)

∂i =
∂

∂XRi

DIVRTR =
∂TRi j

∂XRj
ei ∈ R3 : divergence of a tensor field

TR : BR→ M3

∇φ =
(

∂φi
∂XRj

)

∈ M3
+ : deformation gradient

∇u =

(

∂ui
∂XRj

)

∈ M3 : displacement gradient

C = ∇T
φ∇φ ∈ S3

> : right Cauchy-Green strain
tensor
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B = ∇φ∇T
φ ∈ S3

> : left Cauchy-Green strain
tensor

E = E(u) = 1
2(C − I ) =

1
2

(∇uT + ∇u+ ∇uT∇u):

Green-St Venant strain
tensor

ǫ(u) =
1
2

(∇uT + ∇u) : linearized strain tensor

ρR(XR) ∈ R : density per unit mass at
XR ∈ BR

bR(XR) ∈ R3 : body force density per unit
mass atXR ∈ BR

f = ρRbR : Ω→ R3

t1R(XR) ∈ R3 : applied surface force density
per unit area of∂BR at
XR ∈ ∂BR

g = t1R : Γ1→ R3

tR(XR, nR),XR ∈ BR, |nR| = 1 : first Piola-Kirchhoff stress
vector inBR

TR(XR) : first Piola-Kirchhoff stress
tensor atXR ∈ BR

(ti j ) = TR : Ω→ M3

T̂R : response functions for
TR = T̂R(F), F ∈ M3

+
∑

R(XR) = ∇φ(XR)−1TR(XR) : second Piola-Kirchhoff
stress tensor atXR ∈ BR

(σi j ) =
∑

R : Ω→ S3

ˆ∑
R,

∑

R,
∑∗

R : response functions for
∑

R =
ˆ∑

R(F) =
∑

R(C) =
∑∗

R(E),
with F ∈ M3

+,
C = FTF = I + 2E

σ∗(E) :
∑∗

R(E) =
λ(tr E)I + 2µE + 0(E)

λ, µ : Lamé’s constants

ν =
λ

2(λ + µ)
: Poisson’s ratio
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E =
µ(3λ + 2µ)
λ + µ

: Young’s modulus

ai jkℓ = λδi jδkℓ + 2µδikδ jℓ : elasticity coefficients for
isotropic materials

W : stored energy function
(

∂W

∂F
(R) = T̂R(F), F ∈ M3

+

)

W : stored energy function in
terms of
C = FTF(W (F) = W (C))

W ∗ : stored energy function in
terms ofE(W (F) =
W (I + 2E) = W ∗(E))

φ : stored energy function in
terms of
lc : W (F) = φ(lc),C = FTF

W(ψ) =
∫

BR

W (∇ψ)dXR =
∫

Ω

W (∇ψ)dx : strain energy

I (ψ) =W(ψ) − {B(ψ) + T1(ψ)} : total energy
B(ψ) =

∫

BR

ρRbR · ψdXR =
∫

Ω

f · ψdx (for dead loads)

Tl(ψ) =
∫

∂BlR

tlR · ψdAR =
∫

Γ1

g · ψda (for dead loads)
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A
applied surface force, 9
applied surface force, 18
axiom of material frame indifference, 21
axiom of static equilibrium, 9, 19

B
body force, 9
body force, 17
boundary condition of traction, 54
boundary condition of pressure, 55
boundary condition of place, 54

C
Cauchy stress vector, 13
Cauchy stress tensor, 12, 29
Cauchy stress vector, 9, 21
Cauchy’s Theorem, 10
Cauchy-Green strain tensors, 5
conservative applied surface force, 18
conservative body force, 18
constitutive equation, 20

D
Da Silva’s Theorem, 19
dead load, 17
deformation, 2, 32
deformation gradient, 2
deformed configuration, 2
displacement, 2
displacement gradient, 3
divergence of a tensor, 3

E
elastic material, 20
elasticity coefficient, 36

energy, 39
equilibrium equations, 16, 37
Euler equation, 39
Euler’s method, 81
Eulerian variable, 14

F
force: applied surface, 9, 18

body, 9, 17
surface, 9
system of, 9

G
Green-St Venant strain tensor, 7
Green-St Venant strain tensor, 30

H
homogeneous material, 20
homogeneous deformation, 32
hyperelastic material, 38

I
incompressible material, 34
incompressible material, 107
incompressible material, 62
incremental method, 80
infinitesimal rigid displacement, 19
isotropic response function, 26
isotropic material, 23
isotropic response function, 23
isotropic stored energy function, 40, 44

K
Korn’s inequality, 64

L
Lagrangian variable, 14
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LAM É’s constants, 31, 50, 103
linearized strain tensor, 63
linearized system of elasticity, 62, 78, 89

M
material

elastic, 20
homogeneous, 20
hyperelastic, 38
incompressible, 34, 62, 107
isotropic, 23
MOONEY-RIVLIN, 93
non-homogeneous, 20
OGDEN’s, 92, 104
St Venant-Kirchhoff, 35, 49, 68, 84,

89, 93, 106
material frame indifference, 21, 26, 29,

40, 43, 89
mixed displacement-pressure problem,

55, 107
mixed displacement-tranction problem,

54, 78, 84, 103
MOONEY-RIVLIN material, 93

N
natural state, 31
non-homogeneous material, 20

O
OGDEN’s material, 92, 104

P
Piola identity, 7, 98
Piola transform, 4, 14
Piola-Kirchhoff stress tensors, 14, 15, 29,

43, 45
Piola-Kirchhoff stress vector, 16
Poisson’s ratio, 35
polar factorisation of a matrix, 20
polyconvix stored energy function, 91,

92, 100
pressure, 17, 19, 33, 107
principal invariants of a matrix, 25
principal stretch, 92, 106
principle of virtual work, 14, 17, 19
pure displacement problem, 54, 68, 80

pure pressure problem, 55
pure traction problem, 54

R
reference configuration, 1
response function, 20
rigid deformation, 6
Rivlin-Ericksen Theorem, 26

S
St Venant-Kirchhoff material, 35, 49, 68,

84, 89, 93, 106
stored energy function, 39
strain

- energy, 39
CAUCHY-GREEN-tensors, 5
Green-St Venant-tensor, 7, 30
linearized -tensor, 63

stress
CAUCHY - tensor, 12, 29
CAUCHY - vector, 9, 13, 21
PIOLA-KIRCHHOFF - tensors, 14,

15, 29, 43, 45
PIOLA-KIRCHHOFF - vector, 16

surface force, 9
system of forces, 9

T
total energy, 39

U
unilateral boundary condition, 55

Y
YOUNG’s modulus, 35
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