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Avant-Propos

When studying any physical problem in Applied Mathematiosse es- 1
sential stage are involved.

1. Modelling: An appropriate mathematical model, based fen t
physics or the engineering of the sitution, must be foundu-Us
alluy these models are givempariori by the physicists or the
engineers themselves. However, mathematicians can agapl
important role in this process especially considering tioegas-
ing emphasis on non - linear models of physical problems.

2. Mathematical study of the model: A model usally involvesgof
ordinary’ or partial diferential equations or an (energy) functional
to be minimized. One of the first tasks is to find a suitable func
tional space in which to study the problem. Then comes thaystu
of existence and unigqueness or non -uniqueness of solutikms
important feature of linear theories is the existence ofjuaiso-
lutions depending continuoussly on the data (Hadamardiside
tion of well - posed problems). But with non-linear problems
non-unigueness is a prevealent phenomenon. For instaifice, b
racation of solutions is of special interest.

3. Numerical analysis of the model: By this is meant the dpscr
tion of, and the mathematical analysis of, approximatidrestes,
whichcanbe run on a computer in a ‘reasonable’ time to get ‘rea-
sonably accurate’ answers.

In the following set of lectures the first two of the above aspevill
be studied with reference to the theory of elasticity in¢hdanensions.
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In the first chapter a non-linear system of partidfatiential equa-
tions will be established as a mathematical model of eiasticThe
non-linearity will appear in the highest order terms and thian impor-
tant source of diiculties. An energy functional will be established and
it will be seen that the equations of equilibrium can be ofetdias the
Euler equations starting from the energy functional.

Existence results will be studied in the second chapter. tioe
important tools will be the use of the implicit function thhem and the
theory of J. BALL.
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Chapter 1

Description of Three -
Dimensional Elasticity

THIS CHAPTER WILL be divided into four sections. In the firgcs 3
tion some preliminaries on deformations & will be discussed; the
second will be devoted to the equations of eqilibrium andtkiivel to
constitutive equations. These together will give rise t® bHoundary
value problem which will serve as the model for three - dinneme
elasticity. The last section will describe the energy fioral and the
associated Euler equations will be seen to give the equatibequilin-
rium and the constitutive equations.

1.1 Geometrical Preliminaries

Let Q c R3 be a bounded open set. LBk = Q, the closure of2 in
R3, stand for theeference configuratian(The subsripR will always
stand for the reference configuration.) R&t be a generic point ifBg.
If {e1, &, &3} is the standard orthonormal basis fot,

(1.1-1) OXr = Xr &

whereOXg stands for the position vector &k. (In the above relation 4
and in all that follows, the summation convention for repdandices
will always be adopted.)



2 1. Description of Three - Dimensional Elasticity

€1

Figure 1.1.1:

Let¢ : Br — R3 be a siiciently regular mapping. It is said to be a
deformationif

(1.1-2) dety¢) > 0
whereVg is called thedeformation gradienaind is a matrix given by

dp1  0¢1 O
X, OXm, OXm,
Vo dpo  O0¢2  O¢2

e, 0Xr, OXmy
dp3  0¢3  O¢3
X, OXm, OXr,

¢i being the components @t

Remark 1.1.1.From [T.I=2) it follows thap is locally one - one, though
it may not be globally so.

The image seB = ¢(BR) is called thedeformed configuratianNote
that the mapping can be written as

(1.1-3) é=1d+u

and the mapping : 8r — R3 s called thedisplacment It is also seen
that

(1.1-4) Vo =1+ Vu
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wherel is the identity matrix an&u is thedisplacement gradient

The deformation gradient defines the deformatioiX at ¢(Xg) up
to first order. Ifdt g is a line segment parallel ® at Xg, it is trans-
formed into a curve aX whose tangent idt 91¢, whered1 ¢ is the first
colums vector oV¢. The magnitude dt is now ‘streched’ by @t ¢|,
where|.| stands for the Euclidean norm. The three vecfats d2¢, 03¢
are independent and, owing to the relatiobn (1.1-2), prestm® orienta-
tion of {eq, &, €3).

It will now be seen how volume, area and line elements arestran
formed under the defomatiam

(i) Volume elementsThe change from a volume elemaiXg to dX
in the deformed confirguration comes from the familiar cleaafy
variable formula in interation theory:

(1.1-5) dx = det(Ve(Xr))dXx.

(i) Surface elementstf dAg is a surface element a#r deformed
onto a surface elemmediA on B, then

(1.1-6) dA = det(Ve(Xg))I(Vo(Xr)) 'NrIdAR
whereng is the unit outer normal. (IF is any matrix,F' stands 6
for its transposeF ! for its inverse and T = (F~H)T).

The formula[T136) will now be proved . This needs some preli
inaries. LetV® stand for the set of all 83 matrices. A tensor will
be understood simply to be an elemenivbi.

LetT : 8 — MS be atensor field. Then itlivergencgassumingr
to be smooth snough) is defined by

(1.1-7) pivT = 2T
' T
Thus each component @IV T is the divergence (in the usual
sence) of the correspondimgw vector of T. By a standard application
of Green’s formula it follows that

aTi;
(1.1-8) fDIVTdX:[fa—X';dX]a :LfTi,-njdA]ej :andA
B

B B 0B



4 1. Description of Three - Dimensional Elasticity

wheren is the units outer normal t&. In the same veiDIVR(TR) on
tensor fields o8 can be defined and the analogue [6f (1.1-8) can be
obtained.

Let T : 8 — MS be a tensor field. IRiola Transformis a tensor
field Tr : Br — M given by

(1.1-9) TR(XR) = detVe(Xr)T (X)(Vo(XR)) "

wereX = ¢(Xg).
This is a very useful transformation. The following theoreriti
establish the formuld{1.7-6).

Theorem 1.1.1. (i) Tr(XR)NRAAR = T(X)ndA
(i) detVo(XR))(Vo(XR)) TnrdAr = ndA
(iii) det(Ve(Xr))I(VH(Xr))™ " nrIdAR = dA.

Proof. It can be shown that (cf. Exercise 1.1-1). m|

(1.1-10) DIVRTR(XR) = detVa(Xg))DIVT(X)

If vris any arbitrary volume ifBg andd = ¢(vr), then

fTR(XR)anAR = DlVRTR(XR)dXR
OVR OVR

_ f det(Vo(Xe))DIV T (Xe))dXg

= fDIVT(X)dX = fT(X)ndA
VR ov
which, asv was arbritrary, proves (i). The assertion (ii) follows by-se

ting T = |. This is a vector relation and taking the Euclidean norm on
both sides gives (iii).
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Remark 1.1.2.The matrix det¥¢)(Ve)~T = (adjVe)~T is the matrix of
cofactors ofv¢.

(iii) Line elements: Ifg is smooth enoughp(Xr + 6XR) — ¢(XR) =
V¢(XR)5XR + O(5XR).
Thus

(1.1-11) [¢(Xr + 6Xr) — ¢(XR)I* = SXEVH(XR)T Ve(Xr)oXR +0(15XRI?)
which gives the change in length. The matrix
(1.1-12) C=Vep'Vo

is called the(right) Cauchy - Green strain tens@nd will play an im-
portant role in the theory. Itis used to compute the lengthroérc. If
f(1) is a curvefr in B, wherel c R is an interval, and = ¢(¢R) is its
image in®B, then the length of is given by

[ w0y @iat= [ o (FO)T O et
| |

whereC;j; are the components of the matfixdefined above.
Remark 1.1.3.The matrix
(1.1-13) B=V¢Ve'

called the(left) Cauchy-Green strain tensevill be introduced later and
will play an important role in the constitutive equations.

Remark 1.1.4.The change in volume depends on a scalaVgetThe
change is surface elements depends on a matrixVg@dind the change
in line elements on a matrix; = Vo' Vg. All these will figure in the
integral representing the energy (cf. SEcil 2.6).

To conclude this section, it will now be examined to what aktbe

8

strain tensof is a measure of the deformation. The word ‘deformation’

can be interpreted in two ways - first the formal sense as dkéndier
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in this section; secondly, in an intuitive way which can bealibed as

follows. If ¢ were merely to consist of a translation and then a rotation

about a point in space, while it is a deformation in the ss@tse, yet

distances between points are not altered. So intuitiveyotidy has not

been ‘deformed’, Such a transformation is called a rigicbdeition.
Thus,¢ is said to be aigid deformationif

(1.1-14) $(Xr) = a+ Q(OXr),

where a R3 andQ is an orthogonal matrix whose determinant-is
The vector a above represents a translation and the n@aixota-
tion. The following notation will used for various classdsmatrices:

M3 = {F € M| detfF) > 0}
0*={FeM}FTF=FF =1}
03 = {F € 0% detF) = +1)
S*={FeM}F" =F)

s2 = (F e S¥Fis positive definitg

ThusQ € O3 . Observe that i is rigid thenC = Q" Q = I. In fact,
under suitable hypotheses, the converse is also true.

Theorem 1.1.2. Let Q be an open connected subsetR5t Let¢ e
CY(Q; R3) such that for all xe Q,

(1.1-15) Vo(X) T Ve(X) = |

Then, there exists a vectoraR® and a matrix Qe 0° such that,
forall x e Q

(1.1-16) #(X) = a+ Q(0x).
Proof. Cf. Exercise 1.1-2 O

Theorem 1.1.3.LetQ be an open connected subseRdfand letg, y €
C(Q; R3) such that for all x Q

(1.1-17) Vo(x) " Vi(x) = Vi(x)" V(x).
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Assume further that is one - one and thadet(Vy/(x)) # O for all
x € Q. Then there exists @aR? and Qe O° such that for all xe Q

(1.1-18) #(X) = a+ QU(X).

Proof. Consider the mapping = ¢oy~t ony(Q). Clearlyy(Q) is con-
nected. Also, under the given conditions, it is open by tlemtem of
invariance of domain. Furthef,e C1(y(Q); R%). Now from [II=1¥) it
follows thatd satisfies[[T.I-15) and so the previous theorem appliés to
and the result follows. O

Thus if two deformations have the same strain tensor theto, aip
rigid deformation, they are the same. Tiidneasures’ the ‘deforma-
tion’ upto a rigid transformation. Naturally, a measurelod teviation
from a rigid deformation is obtained fro@ — I. The Green-St Venant
strain tensoy E, is defined by the relation

(1.1-19) C-1=2E
In terms of the displacement gradient,
| +2E=C=Vp'Vp=1+Vu +Vu+Vu'vu

or, componentwise,

1
(1.1-20) Eij = E(ain +ajui + 8iumajum)

0
whered; stands for—
OXR,

Exercises
1.1-1 Prove thePiola identity 11
DIVR(def(V¢(Xr))(V4((Xr)) ") = O.

Deduce the relatiol I TI10) from this.
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1.1-2. Prove TheoreriI1l.2 (Hint: First show that at least locallis
an isometry; then showe is locally contant and use the con-
nectendness ad.)

1.1-3. Let¢ : R" —» R", n > 2, be continuous. Assume that there exists
¢ > 0 such that for alk,y € R" with |[x — y| = £, |¢(X) — ¢(y)| = ¢.
Show thatg is an isometry, i.e. there existsse R" andQ € O"
such that for allk € R"

$(x) =a+Qx

1.1-4. Given a tensor field : Q — §3, find necessary and ficient
conditions such that there exists a mappng® — R" with

[=V$ Ve

1.2 Euilibrium Equations

The equilibrium equations give the relationship betweergikien forces
acting on a body and the state of “stress” (to be defined beldvigh
results as a consequence of these forces.

Let the mass density & € B be given byp(X) while that atXg €
Bris given bypr(Xgr). The applied forces ifB are of two kinds.

Figure 1.2.1:
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() Body pr volumic) forces: br 8 — R3. The elementary force on
a volume elemend X will thus bep(X)b(X)dX. An example of a
body force is gravity and in this cake= (0, 0, —Q).

(i) Applied surface forces; t 981 — R3, whered®, is a portion of
the boundany®. If dAis a surface element, the applied force on
it will be t;dA. An example of a surface force is a pressure load
wheret; = —pn, p € R, nthe normal tadA

A system of forcegn B consists ofbody forces(identical to (i)
above) andsurface forces t 8 x £; — R3 whereX is the unit sphere
inR3, i.e.,

¥ = {xe R¥x = 1}.

If ¥ is any subvolume o3, dA a surface element a@f$ andn the
normal to it, the surface foragX, n)dA acts in it. Note that this is inde-
pendent of, i.e. if #1; were another subvolume add lay ondv; with
the samen as normal, the force acting on it will remain #§X,n)JdA. 13
Further ifdA c 98 andn were also normal td%, it is required that

(1.2-1) t(X,n) = ty(X).

The vectort(X, n) is called theCauchy stress vector
The following axiom is the basis of Continuum Mechanics imge
eral, and consequently of the theory of elasticity in paftic

AXIOM OF STATIC EQUILIBRIUM. LeB be a deformed configu-
ration in static equilibrium. There exists a system of fersach that for
any subdomaif c B,the corresponding system of forces is equivalent
to zero (in the sense of torsors). Thus

(1.2-2) p(X) b(X) dX + t(X,n)dA=o.
/ )
(1.2-3) OXAp(X)b(X)dX + | OXAt(x,n)dA=o.
/ J

The wedgeA stands for the usual cross product of vector®
The following notation will be useful in manipulating crggsoducts.
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For indicesi, j, k taking values 1, 2, 3 the tensor of ranke, is
defined by

+1 if(i, j,K)is an even permutation of(2, 3),
(1.2-4) &k =+1-1 ifitis an odd permutation of(2, 3),
0 otherwise

Then for vectom, beR3,
(1.2-5) aAb = €jkQ, byg .

The following consequence of the axiom of static equilibriis of
paramount importance.

Theorem 1.2.1(Cauchy’s Theorem)Let peC°(B ; R), beC°(B;R3),
t(., n) eC1(B; R3) and (X, .)eC°(31; R3). Then there exists a tensor field
TeCt (B8; M) such that

(1.2-6) t(X,n) = T(X)n, for all XeB, nexq,
(1.2-7) DIVT(X) + p(X) b(X) = 0, for all X3,
(1.2-8) T(X) = T'(X), for all XeB.
Proof. Let Xp be any point i3. Consider a tetrahedrahwith vertices
Xo, V1, Vo, V3 as shown in Fid—T.212. O
Vs
€3 no
Va
€2
€1 4
Figure 1.2.2:

Let nge 1 be the normal to the plané;V,V3; and keem, fixed to
begin with. Let the distance o, to the plane bé, letS;(i = 1,2, 3) be
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the surface opposite the verteyi = 1, 2, 3) andS the surface opposite
Xo. Sincep, b are continuous oM, they are bounded. Thus Hy (1R.2),

| | t(x,n)dA < KVol(#)
)

K being a constant independentsofSince Vol@) = K163, A(6) = Area 15
of S = K»62, K1, K» being independent @, it follows that

(1.2-9) lim % f t(X. n)dA = 0
a0
Now,
(!i_r)no % f t(X,n) dA = t(Xo, No)
S
and

limé — Oﬁ t(X, n)dA = (no.e)t(Xo, —€)
Si

using the continuity of the given functions. Hence by (1)2-9
(1.2-10) t(Xs, No) = —(No.€)t(Xo, —6,).
If n, — e, again by continuity of it follows that
(X, &) = —t(Xs, —€y).
Thus, on substituting this if.(1.2310),
(1.2-11) t(Xo, No) = t(Xo, €))n;.

Setting
t(Xo, ej) =Tijj X.)e

the equation[{L.216) follows. The smoothnesd atsults from that of
w.r.t. X.
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Using [1.Z=6) in[[T.ZR), for any volum#,
0= fp(X)b(X)dX+fT(X)ndA

9 a0
= fp(X)b(X) + DIV(T)dX

?
16 from which [I.2=Y) follows a$ was aribitrary.

Finally by (Z=B) and[{1.215)

0:ffijkxjp(x)bk(x)dx+ffiijkat’n[dA
L o

oT
=—feiijja—;:dX+feiijkagngdA

3 09

X,
:fﬂjk%Tkt’dxszit’ka&

9 9
using [I.2-F7). Sinc& was arbitrary,

€ickTke = 0
which is just a restatement di (1.2-8).

Remark 1.2.1.Given a tensor field : 8 — M? satisfying [T.27) and
[@TZ=8), the vector field(X, n) = T(X)n satisfies[[T.242) and{1.2-3).

The tensofT (X) obtained in the above theorem is called @euchy
stress tensoat the pointXeB.

€3

~T1€2

€1 i

..t(X, e1) = Tiie;

Figure 1.2.3:
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Remark 1.2.2.The components of can be interpreted as follows. If 17
an elementdA has normak; then the Cauchy stress vector acting on it,
t(X, e;) has component$;1, T»1 andTs3; and so on.

The Cauchy stress tensor thus satisfies a boundary valukeprob
DIVT +pb=0 |.
in
T=T"
Th =t 0ndB,

Let u.v stand for the usual scalar productRy, i.e. v.v = uyv;. If
A, BeM?3, denote

(1.2-12) A: B= AjBjj = tr(AB').

This is an inner product iivi® with the associated norm

(1.2-13) 1Al = VAA;.

Using Green’s formula, a variational form of the boundarjuea
problem can be obtained.
If T is atensor field and is a vector field o8 then

piv Tadx = [ Jigdx
f ' J oo
B B
0B f
—— [ & dx+ [ Ti@ndA
f 1] axj 1821
B 0B
:—fT:GRAD@dX+an.@dA

B 0B

In particular, if T is a solution of the above boundary value problems
and if®& vanishes 0By = 0B\90B1, then Green’s formula above gives

0= | (DIVT + pb).6BdX
/
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= f (-T : GRADD + pb.®)dX + f t1.6dA
B

0B1

Conversely if the above relation is satisfied for @llvanishing on
0B thenT is a solution of the boundary value problem. Thus

Theorem 1.2.2. The following are equivalent:

o [PV +pb =0,in®B
Tn =1, in 0B,

(i) Foral®: B — R3, @ vanishing omBo,

(1.2-14) f T : GRADHAX = f pb.EdX + f tr.BdA

B 081

The equationd{1.2-14) form the so-calleatiantional formulation
of the boundary value problelm (i). In Mechanics, it is alsmWn as
the Principle of Virtual Work in the deformed configuration.

The equations of equilibrium were established inEuderian vari-
able, X in the deformed configuration. However, this is of no use for
computation as the deformatignis unknown. So, the equations must
be written in the reference configuration, which ifixed domairgiven
a priori, in terms of theLagrangian variable Xg. In doing this, it is
desirable to retain as much of thivergence forrmof the equations as
possible so that a similar variational formulation can b&aited in the
reference configuration. It is here that the merit of the @tchnsform
is seem.

19 The Piola transform of the Cauchy stress teriBpcalled thefirst
Piola-Kirchhgf stress tensqris denoted byf'r. Thus surya

Tr = det(Ve)T (Vo).
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prRd R

Figure 1.2.4:

By the principle of conservation of mass, it is known that
PRIXR)AXR = p(X)dX
By defining
(1.2-15) br(XR) = b(X), orbr = bog
it follows that
PRORAXR = pbdX
Note that,a priori, bgr depends ow.

Remark 1.2.3.Since it is known that X = det(V@)dXg, it follows that

_ pr(XR)
(1.2-16) o(X) = JetVo0R)”

Since the density at any point (in either configuration) habd¢ 20
finite and positive, this, if not any other, is a necessangsoador a
deformation to satisfy. defg) + O.

Multiplying equation [I.237) by detVMg) on both sides, it follows
that

(12-17) DlVRTR +prR =0in Br

Thus the divergence form is preserved. Note howeverTthas not
symemetric. Asymmetridensor toTr can be defined. It is theecond
Piola-Kirchhgf stress tensory g, given by

(1.2-18) > = det(Ve)(Ve) T(Ve) T

R
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It is related toTR by
(1.2-19) Z = (V¢) k.
R

Remark 1.2.4.It is understandable thatg is not symmetric as it be-
longs partly to the reference configuration and partly todbéormed
configuration and symmetry does not make much sense in suttraa s
tion.

Now we turn to the transformation of the surface forces. fiitse
Piola-Kirchhgf stress vectors defined so that

(1.2-20) tR(XRr, NR) = TR(XR)NR.

fleAR ...................... t1dA

Figure 1.2.5:

Recall thafTr(Xgr)NrdAr = T(X)ndAand so
tr(XRr, NR)dAR = t(X, N)dA

If 0B1R is the portion ofdBr mapped by onto 9B,, definetyr :
dB1r — R3 by tirdAr = t;dA Again, a priori, tiz depends onp.
Explicitly, by TheoreniZL.TI1,

(1.2-21) tiree) = AetTA(XR)I(VA(XR)) ™" NRitL(B(XR)).
The following result is easy to establish.

Theorem 1.2.3. The equilibrium equations in the reference configura-
tion are given by

(1.2-22) DIVRTR +prR =0inBr
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(1.2-23) (Vo) Tg = Tr(Ve)T inBg
(1.2—24) TrNR = trONOBR.
Equivalently, in terms o} g
(1.2-25) DIVR(V$ »') + prbr = 0in Br
R
.

(1.2-26) D= in%g

R R
(1.2-27) Ve > Nk = tig 0N 9Bz

R

Again, this is equivalent to the variational equations

(1.2-28) fTRZVHdXR: prbR.HdXR+ fth.QdAR

Br Br 0B1R
for all 6 : Br — R3 vanishing 0mMBr = IBR\IB1x.

Remark 1.2.5.Equations[(1.2-48) go under the name of the principle a2
virtual work in the reference configuration.

To conclude this section, some classes of applied forcesomsd-
ered. Recall that whileg is completely knownpgr andtiz depend in
general onp which is unknown.

A body force (resp. applied surfaces force) dead loadf bg (resp.
t1r) is a function ofXg only, independent op.

An example of a body force which is a dead load is gravity which
is constanth = (0, 0, —g). A trivial example of an applied surface force
which is a dead load iig = 0! The pressure is an example of an applied
surface force which iaot a dead load:

(1.2-29) t1 = —pn

wherep > o indicates an inward directed force (pressure) and 0
indicates one which is directed outward (traction). Now

tir = —pdet(Vg)(Vp) " ng 0N 9B
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which clearly depends afi
A body force is said to beonservativeif there exists a function
B R3x Br — B¢, Xr)eR, such that

(1.2-30) br(XR) = VgB(#(XR), XR),

for all XgreBr and all deformationsg. If which is the case then

(1.2-31) f PROR.OAXR = B(¢)(6)
Br
where
(1.2-32) B(Y) = f PRORIBWXR). X)dXe.
Br

A body force which is a deal load is conservatigéd, Xg) = br(Xgr).
O,

An applied surface force isonservativef there exists a function
71 R X 0B1r — 11(0, XR)€R such that

(1.2-33) t1r(XR) = Vot1(¢(XR), XR).
Then again
(1.2-34) f t1r.0dAR = T1(¢)(6)
0B1R
where
(1.2-35) W) = [ 0w, XA
0B1R

An applied surface force which is a deal load is conservative
t1(h, XR) = tir (XR).®@. A pressure load is conservative (Exercise 1.2-3).

Exercises
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1.2-1 . (Da Silva’s Theorem). Given any system of applied forceh(w
4B, = 0B) show that there exist®e0® such that

f P(X)OXAQB(X)dX + f OXAQUX)dA =0

B 0B
f p(X)QT (OX)Ab(X)dX + f QT (OX)At(X)dA = o.
B 0B

How many solutions exist?

1.2-2. Show that the fundamental axiom of static equilibrium isiequ
alent to

f O)BX).V(X)dX + f t(X, n).v(X)dX = 0

3 oY

for every volume c B and for everyinfinitesimal rigid dis- 24
placement yi.e.,

V(X) = a+ bAOX a, beR>.

This is sometimes also called the principle of virtual wdkl2— 3.

1.2-3 Show that a pressure load is conservative.

1.3 Constitutive Equations

Given a body acted on by a system of forces, one’s main obgedi
to compute the deformatiop which has 3 component functions. As
a naturalintermediary the stress tensoF has come in which has 6
components (taking into account its symmetry). But so ferdoundary
value problem obtained via the equilibrium equations hatdgid only
3 equations (cf.[I.2}7)). Thus 6 more equations must bedfoun

From the physical point of view, observe that in obtaining ¢gui-
librium equations, no property of the material under cosisition has
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been used. Sincefiierent materials reactfiierently to the same forces,
obviously these equations alone cannot describe the resmdithe ma-
terial.

Thus one is led to finding more equations to complete the isyste
material is said to belasticif there exists a mapping

T:FeM3 - T(F)es®
such that for any deformed configuration and any p&iat ¢(Xg),
(1.3-1) T(X) = T(VO(XR)).

The mapT is called theresponse functiomnd [I.31) is called a
constitutive equation.

Remark 1.3.1.The mapT above does not depends explicitly .
Such that a material is callddbmogeneoudf it were that

T(X) = T(Xr, VO(XR))
the material would be calledreon-homogeneousastic material.

If Tris the Piola transform of then it follows that

(1.3-2) Tr = det(e)T (Vo) (V9) L & Tr(Vg)

which gives a reponse fucntiofk : M2 — M for Tg. Similarly it is
possible to write one faEg in terms of a response functidik : M —
s3.

Theorem 1.3.1(Polar Factorisation)Let F be an invertible matrix.
Then there exist an orthogonal matrix R and symmetric, pesdefi-
nite matrices U and V such that

(1.3-3) F=RU=VR
Such a factorization is unique.

Proof. Cf. Exircise 1.3-1. O
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Remark 1.3.2. If F € M2 thenR €, 0. If G € S2 there exists a unique
matrix H € S2 such thaH? = G. Itis usual to writeH = G/2. It can be
seen that) = (FTF)Y2 andV = (FFT)Y2, in the above theorem. Since
V = RUR', U andV are similar. Then so al@ = FF"T andC = FTF.

The constitutive equatiof {1.3-1) can be written componesa as

o1 O3
Xg),....
ale( R) X,

Tu(X) =Ty ( (XR))

and so on. So knowing is the same as knowing the functioﬁg How-
ever, the functions; j cannot be chosen arbitrarily. They must somehow
reflect anintrinsic property of the material in equation, irrespective of
the coordinate system chosen. This is the idea embodying the

AXIOM OF MATERIAL FRAME INDIFFERENCHhe Cauchy stress
vector {X, n) = T(X)n should be independent of the particular basis in
which the constitutive equation is expressed.

Theorem 1.3.2.The following are equivalent.

() A response functiof : M3 — S° satisfies the axiom of material
frame indjference.

(i) For every Qe 02 and for every Fe M3,
(1.3-4) T(QF) = QT(FQ".
(iii) For every Fe M2 if F = RU is its polar factorisation then

(1.3-5) T(F) = RT(U)R"

(iv) There exists a mapg : S3 — $3 such that
(1.3-6) Sr(F) = Er(FTF)
for every Fe M3. 27

Proof. (i) & (ii) Instead of rotating the coordinate axes the safffiece
can be achived by rotating the deformed configuration. O
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Figure 1.3.1:

Rotating8 by a mapQ € 03, let X map intoX’. The normaln at
any goes ta@Qnandt(X, n) goes toQt(X, n). Thus

t(X’,Qn) = T"(X")Qn
t(X’, Qn) = Qt(X,n) = QT(X)n.

28 Sincenis arbitrary, it follows that
(1.3-7) T(X) = QT(XQ"

Thus A A
T(QV4(XR)) = QT (Vo(Xr)Q'
for anyQ € 02 and anyF = V¢ € M3. This shown that (i}= (ii)
Simply retracting the argument proves the converse.
(i) & (iii). If F = RU, then by (ii), sinceR € 03

T(RU) = RT(U)R'

which is (iii). Conversely, assuming (iii), iIF = RU then the polar
factorizationQF is (QRU for Q € 032, as the factorization is unique.
Thus

T(QF) = QRT(U)R'Q" = QT(F)Q".
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(i) & (vi). SinceF = RUimpliesU = (FTF)/2,

T(F) = RT(U)R"
= FUTIT(U)UFT
= FS(FTF)FT

whereS : s3 — s3. Conversely, iff (F) is of the above form, then if
F =RU,
T(U) = USUAU

and 29

T(F) = FS(FTF)FT
= FS(UHFT
= FUTMT(U)UFT
= RT(U)R".

Now

3r(F) = detF)F 1T (F)F T
= (detFTF)Y2S(FTF) = Er(FTF).

Remark 1.3.2.1f one of the response functions, dBycan be written of
either variables, FTF = C,FFT = Bor E (whereC = | + 2E), the
following notation will be employed when theftBrent dependences are
expressed:

I =0(F) =T(F'F) =I(FF") = T'*(E)

In the above theorem it has been proved that it is enough tav kno
the action off on a relatively small class of matrices liké.

A material or response function is said toibetropicif the Cauchy
strees tensor (or vector) computed at a given point in therdefd con-
figuration is the same if the same if the reference configumas rotated
by any rigid defomation.
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While the axiom of material frame inflerence is amxiomto ver-
ified by any response fucntion, isotropy ispeoperty of a particular
material. There can be materials which are non-isotrojicjrfstance,
a body up of layers of dlierent materials.

Theorem 1.3.3.The following are equivalent.
(i) A response functiof : M3 — $3 is isotropic.
(ii) For every Fe M2 and for every Qe 03,
(1.3-8) T(F) = T(FQ).
(iiiy There exists amap : S — S such that for every F M3,
(1.3-9) T(F) = T(FF).

Proof. (i) < (ii). Let Q € O3. Rotate the reference configuration about
a pointXg so that ifXg € B then

(o) O(Xr) = Xg + Q" (XgXR).

Then

¢ = poo L.

¢(Xr) = ¢"(XR)

¢(Xr) = ¢*(Xr)

Figure 1.3.2:

The response function is isotropic if and only if

T(X) = T(V(XR)) = T(v¢(XR))
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e, T(Vo(XR)) = T(Vo(XR)Q).
(i) & (iii). Let FFT = GG',F,G e M3. ThenG™'F € 03. Hence by
W T(G) = T(G(G™F)) = T(F).
_ Soitis clear thaf (F) depends only off FT. Conversely iff (F) =
T(FFT) then forQ € 03,

T(FQ) =T(FQQ'FN) = T(FF") = T(F).

O

Remark 1.3.3.By the axiom of material frame infference, the consti-
tutive equation could be expreesed in terms of a functio@ ef FTF
and this involved rotating thdeformedonfiguration®. By isotropy,
the same could be expressed in terms of a functioB ef FF' and
this involved rotating theeferenceconfiguration®g. Thus these two
nations seem to be ‘dual’ ot each other.

Remark 1.3.4.For non-isotropic materials it can be shown that
T(F) =T(FQ
for all F e M2 but Q variying over a subgroup ab3.

In what follows, the material will allways be assumed to logrigpic.

Before proving a very powerful and elgent result on the stmacof
a reponse function which is isotrophic and material frandifierent,
the following definition is needed.

Let A € M3. Defineia to be the triple £(A), 12(A), 13(A)) where
11(A), 12(A) andi3(A) are the principal invariants of Aand

(1.3-10) det(d — A1) = =23 + 11(A) 2% = 12(A)A + 13(A).
If A= (aj)anday, 12, A3 are its eigenvalues, then
(1.3-11)
11(A) = aj =tr(A) = 41 + A2 + 3.
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o) = S@ay; - aja) = (A ~tr(A?)
(1.3-12) = tr(adjA) = 114° + A3 + A31.
(1.3-13)
13(A) = det(d) = é((tr(A))3 — 3tr(A)tr(A?) + 2tr(A3%) = 11513

Further, ifAis invertible,
(1.3-14) 12(A) = (detA)tr(A™Y).

The following theorem is one of the most important resultshie
theorey of elasticity.

Theorem 1.3.4(Rivlin-Ericksen Theorem)A response functioff :
Mﬁ — S3is isotropic and material frame ingierent if, and only if,
it is of the T(F) = T(FFT) where the mapping : 3 — $3is of the
form

(1.3-15) T(B) = Bo(ie)! +B1(18)B + Ba(1)B®
for all B € S2. whereg,, 81, 82 are real valued functions.

Proof. (i) Let T : M$ — §° be material frame indiierent and isotropic.
Then by isotropyT (F) = T(FFT) for some mapping : 3 — S3. Let
Q< 0% andB € S3. On one hand , by isotrophy

T(QBY?) = T(QBY?BY2Q") = T(QBQ").
On the other hand, by the material frame fiiglience,
T(QBY?) = QT(BY)QT
= QT(BY?BY%)Q" = QT(B)Q.
ThusT satisfies , for alQ € 03, andB € §3

(1.3-16) T(QBQ") = QT(B)Q".
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Conversly, lefl : §3 — §° satisfy [3=IB) and I6f (F) = T(FTF).
Then clearly T is isotrophic. IfQ € 03, then
T(QF) = T(QFFTQT) = QT(FFT)QT.
= QT(FQ’
and sof is material frame ind&erent.

Thus it is now enough to check that a mappihg S3 — $3 sat-
isfying (I.3=I8) is of the form[{1.3-15). (The converse isnediate to

varify).

(i) Let T : s3 — s8varify (L3=16). It will now be shown that
any matrix which diagonalizeB € S2 also diagnalized (B), i.e., any
eigenvector oB is an eigenvector of (B).

LetB e S2 andQ € 02 (we can always assume that) such that

Q'BQ-= diag (1)
whereds, 15, A3 are the eigenvalue d&. Define
Q: = diag (1 -1, -1), Q; = diag (-1, 1, -1), Qs = diag (-1, -1, 1).
ThenQy € 03,k =1,2,3.

Also,
QrQ"BQQ = diag 4 = Q"BQ.
So,
QrQ'T(B)QQ = T(QFQ"BQQY)
=T(Q"BQ
=Q'T(B)Q.

If D= QTT(B)Q, then
QiDQk=D,k=1,23.

If the diagonal entries oy areq!‘(: lifi =k —21ifi # k), then it
follows that
Dij = qfDyjaf forall 1 <i, .k < 3,
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Thus ifi = k # j, then
ij = —ij or ij =0.
HenceD is diagonal and this proves the claim.

(iii) It will now be a shown that ifT satisfies[[I.3=16) then, for all
Be s,

(1.3-17) T(B) = bo(B)! + by(B)B + by(B)B?,
be.a = 0,1,2 being real valued functions 7. o

Case 1.B has 3 distanct eigenvaluas, 1», A3 with corresponding or-
thonormal eigenvectorgy, pz, p3. Then

(1.3-18) | = pLp; + PP} + PPy
(1.3-19) B =A1p1p] + L2P2p) + A3psp}
(1.3-20) B? = A2p1p] + A3p2py + A3papy
Since they; are distinct, the Vandermonde determinant
1 1 1
detl1; A, A3
234

is non-zero and so ifi®, the span of; piT,i = 1,2, 3 is equal to that of
|, B, B2 But T(B), by step (ii) above, has the same eigenvectorB.as
So

(1.3-21) T(B) = u1papj + p2p2P + p3pspy

which implies thafl (B) € span(l, B, B2}.

Case 2.1; # A2 = 3. Again one can writd (1.3-18) and (1.3}19). Then
the span of p] andpp] + psp; is that ofl andB. By step (ii), it can

be seen that, = u3, since any non-zero vector spanneddyand ps is
also an eigenvector far(B). Thus in [1.3-211)

T(B) = u1papj + p2(P2py + Papy)
which showsT (B) € span (, B).
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Case 3.1; = A2 = 3. In this case, one can similarly see tt&fF(B)
are both scalar multiples of

(iv) Caselll A4, A5, A3 are distinct eigenvalues & € SE, .
LetQ e 03.

T(QBQ') = by(QBQ")! + b1 (QBQN)QBQ" + b,(QBQ")QB*Q’
= Q(bo(QBQ")! + by (QBQ")B + b,(QBQ")B)Q"
But
T(QBQ") = QT(B)Q" = Q(bo(B)! + b1 (B)B + bx(B)BI)Q".
Thush, : 2 - R, = 0, 1, 2 satisfy the functional identity
(1.3-22) b.(QBQ") = b,(B)

for all B € $3 and for allQ € 03. Thus if Q diagnalizesB, it is seen
that such a functioln, must be a function of the eigenvaluesi®bnly.
Now choosingQ; € 03,i = 1,2,3 as

01 0 -1 00 0 0 1
Q=1 0 0 |[,Q=(0 0 1,Q03=|0 -1 0
0 0 -1 0 10 1 0 0

it is seen from[[1.3=22) thdt, is a symmetric function afy, Ao, A3. i.e,.

b (B) = Ba(ts).
This proves the theorem completely.

Theorem 1.3.5.(a) Given®Bgr and an isotropic material frame indif-
ferent material, then in any deformed configuratin= ¢(BR), the
Cauchy stress tensor is given by

(1.3-23) T(X) = T(V(XR)) = T(V(XRIVe(XR)"),
T : s3 - S8 satisfying(3-15)
(b) The second Piola-Kirchlgbstress tensor is given by

(1.3-24) SROXR) = ZR(VE(XR)) = Zr(VO(XR)" Vo(XR))
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wheresg : §3 — §3 satisfies, for all Ce S3,
(1.3-25) ZR(C) = ¥olio)! +71(:c)C + 72(1c)C.
Proof. Observe that

Yr(F) = detF)F T (F)F T

= (detFTF)YV2FIT(FFT)F T
= (detC)"*F [Bo(is)! + B1(Wrg)B + By(1g)BF "

whereC = FTF,B = FFT. But these are similar. S@ = 1.
Further

Flg-T_-ct
FIBFT =1
FIB?’FT =C.

By the Cayley-Hamilton theorem,

—C3+11(C)C? - 1,(C)C +13(C)l =0

1
or C 1= ——(C?-1(C)C +(C))
13(C)
wherei3(C) = detC # 0. Thus it is clear from these considerations that
¥R can be expressed in terms®fas in [I.3-21) -[(1.3-25). i

It was seen in Section.1 that the Green-St Venant stragoten
E, given byC = | + 2E, ‘measures’ the actual deformation. 3k
is suficiently smooth it is possible to express it in termskof More
precisely, the following result is true.

Theorem 1.3.6. Let B be the reference configuration of an isotropic,
material frame indfferent elastic material. Assume that the functions
Ye.a=0,1,2of (L32%)are diferentiable at; = (3,3,1). Then

(1.3-26)  Ip=3g(l + 2E) = —pl + (AMrE)l + 2uE) + O(E),

where pA andu are constants.
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Proof. Using the relations
tr(C) = 3 + 2tr(E)
tr(C?) = 3+ 4tr(E) + o(E)
tr(C%) = 3+ 6tr(E) + o(E)
and the relationd (1.3-111) E{1.3113), it follows that

ll(C) =3+ ZU(E)
12(C) = 3+ 4tr(E) + o(E)
13(C) = 1+ 2tr(E) + o(E)

so that

Vi) = V() + (257 () + 452 (1) + 257 (1)) 1(E) + O(E)
I 12 13

wherey = (yo.y1. v2). This yields [I3=26). In particular
(1.3-27) = —(71(l|) +v1(12) + v2(12))-

(1.3-28) A= Z (2‘97“( D)+ 4‘97“ 0) + 2‘97“ (z|))
(1.3-29) B= 71(11) + 2y2(12).

O

A reference configuration is @atural stateif ‘there is no stress in
it’, i.e., p = 0. In this case

(1.3-30) Sk = Z5(E) = Atr(E)l + 2uE + o(E)

andA andu are called_amé’s constantdt is possible to obtaim priori
some information on the nature of the Lamé’s constants.

Let Br be a natural state and have a ‘simple form’. ket Br —
R be of the form

(1.3-31) ¢€(XR) = Xrt+ € U(XR) + O(E; XR),

39
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wheree> o0is a small parameter, and whéfa(Xgr) = G, aconstanima-
trix. Such a deformation is a special case of the so-célt@dogeneous
deformationswvhereVe is a constant vector. Then

TE(X) = T(1+ € G + o(€; X))
=TI+ € G) + 0(€; X), X = ¢(Xr).
ThusDIVTE(X) = o(€; X) i. e. to within first order ing, there can

be no body forcesuch deformations can only be produced by applied
surface forces. Now it can be seen that

(1.3-32) TE(X) =€ (A(trG)l + u(G" + G)) + o(€; X)

40 using the fact thaB3r is a natural state. For particulaf considered
the corresponding € is of some simple form. This can be substituted in
([3=32) and it is thus possible to obtain inequalitiesfand.

Experiment 1. Let 8r be a rectangular block. Choose

Xr,
0
0

(1.3-33) UE(XR) E'e u(Xgr) =€

Thus the body deforms as shown in figlire71.3.3.

/t6 (Xa 62)
,// ,//X : Tt,e1
. | NPTy
XRl u ( R) hEh
Br/ 3 9

€2

€3

Figure 1.3.3:
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Then it is logical to assumey, =€ T12 + 0o(€) whereT;, > 0. This
follows from the interpretation of the components of theessértensor
(cf. RemarZL.ZI?). Comparing this form wili 1.3} 32) ifltks that
(1.3-34) u>0.

41
Experiment 2. Let Br be a sphere which is contracted by means of a
normal pressure. Thus

—Xr1
(1.3-35) UE(XR) =€ [-Xrz| + 0(€; XR).
_XK’;
Thus
(1.3-36)

T(X)=-pel +0(g; X),p>0.

vl
iy
13
1
|
1

]

1
!

Figure 1.3.4:
It can then be shown that
(1.3-37)

42
—pel =-€(BA+2u)l +0()
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from which it follows that
(1.3-38) 3N +2u>0.

Remark 1.3.5.This precludesncompressible materialsAn example
of an incompressible material is rubber.

Experiment 3. Let B be a cylinder which is stretched as in figlire1.3.5.

<o
N

=
—"’

<o
N

w > hR h = (1 + E)hR
_______ !_______—‘
Figure 1.3.5:
43 Now
—VXRl
(1.3-39) US(XR) =€ |-vXgr2| + 0(€; XRr),v > 0
XRr3
and
0 0O
(1.3-40) T(X)=€ |0 0 Of+0(€; X).
0 0 E
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It can now be shown that

A E_,u(3/l+2,u)

1.3-41 = JE =
( ) Y 2(2 + ) A+

Sinceu > 0 and 3 + 2u > 0, it follows thatA + u > 0. Sincev > 0
it follows that

(1.3-42) A> 0.

ThusA > oandu > 0. (This does not make sense for incompress-
ible materials). The number is known asPoisson’s ratioand E as
Young’s modulus The Lame’s constants can be expressed in terms of
these quantities:

Ev E

(1.3-43) = Tas T 2aey)

ThusA > O andu > O is equivalent to
(1.3-44) O<v<1/2,E>0.

(For an incompressible material= 1/2).
An elastic material is said to beSt Venant-Kirchhg material if 44

(1.3-45) 35(E) = A(tr E)I + 2uE.
It is also expressible in terms Gf.
(1.3-46) Sr(C) = { %(11(0) _3)- u} | + uC.
Then the Cauchy stress tensor can be written as
(1.347) T =T(®) = (3B { 5(1(8) - 3~ 1| B+ (8282

Thus such a material is isotropic and material frameffedent (cf.
TheorenZ1.314).



45

36 1. Description of Three - Dimensional Elasticity

Remark 1.3.6.While the relation[[1.3-45) betweeix andE is linear,
as a function ofy, Eg is non-linearsince the dependence Bfon u non-

linear (cf. [L.I=2D)).

The relation[1:3-45) can be written componentwise asvalo

ZR”. = /lEkkéij + 2/JEij

def
(1.3-48) = & jkeEke

where theelasticity cogficients ay, are defined by
(1.3-49) aijk¢ = A0ijOke + 26O je-

The mappingg — A(tr E)I + 2uE is invertible if and only ifu(32 +
2u) # o (and we know that(31 + 2u) > O from above). Thus giveBgr
there corresponds a uniqdie However, this is not always true in actual
experiments for large deformations. This model can be drpgeio be
acceptable only for small straifis

Exercises

1.3-1. Given a matrixA € S2 show thatA'/? is uniquely defined 3.
If F is an invertible matrix andF = RU = VS,U = (FTF)Y/2,
V = (FFT)Y2 show thatR = FU™1,S = V~1F are orthogonal.
Show also tha$ = R, thus proving theorefm1.3.1.

1.3-2. If Bg is any reference configuration of an isotropic, material
frame-indiferent material, explain wh¥g(l) is just a multiple
of I as shown in Theorein—1.3.6.

1.3-3. Complete the details in the proof thatu > O for a natural

state. In particular, prove relations {1.3-32), (1.B-3@)13-31),
and [1.3-21).
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1.4 Hyperelasticity

If the constitutive equation is taken into account, the iopiiim equa-
tions in the reference configuration reduce to a system ektequa-
tions, for the three components of the deformatipalong with bound-
ary conditions:

(1.4-1) DIVRTR(Ve) + prbr = O in Br
(1.4-2) 'fR(V¢)nR =tir ONIBIR
(1.4-3) ¢ = ¢o ON IBoRr.

This is equivalent to the variational equations

(1.4-4) f Tr(Ve) : VOdXg = f PROR.OAXR + f t1r.0dAR
Br

Br 0B1R

for all 6 : Br — R3, vanishing omBgr.
It was seen in sectidn 1.2 that if the body forces and appli€dces
were conservative, thel {1.3-4) could be written in the form

(1.4-5) f Tr(V9) : VodXr = B'(¢)6 + T1(¢)0

Br

for real-valued functional8 andT; (cf. (1.2=32) and[{1.2-35).
If it were possible to write

f Tr(Ve) : VOdX

BRr

asW’(¢)6 for some functionaWV, then the problenf{1.2+4) would reduce

to finding the stationary points of the function®— (B + T1).
Note that upto now, the equations which give the symmet®rof

46

(V¢)"1Tr have not been mentioned; it will be seen later (cf. Theorem

[LZ3) that for materials under consideration in this segtthese equa-
tions will automatically be satisfied.
The above considerations lead to the following definition:
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A homogeneous elastic material is said toHyperelasticif there
exists a dferentiable functior?” : M3 — R such that

(1.4-6) Te(F) = 22(F)

for all F € M3, or componentwise,
+

sy

(1.4-7) Tr,(F) = oF:

A word on notation: thérechet derivtive#’(F) : M® — R is a
continuous linear operator such that farandF + G in Mf’_

W(F +G) = W(F) + W (F)G + o(G)

=W(F)+ a(—W(F)Gij + 0(G).
aF”
The termg%)v(F)Gij will also be written as
ij
oW _ . . def OW )
G_F(F) G = aFij (F)Glja

where thematrix %(F) has componentgg—i:(lz)-

Theorem 1.4.1. Consider a homogeneous hyperlastio material acted
on by body and applied surface forces which are conservafiien the
boundary value problem with respectdas formally equivalent to

(1.4-8) I(#)8 = 0

forall 6: B — R3, vanishing oroB,r where, for ally : Br — R3,

(1.4-9) W) = f WS (XR)dXR — (BW) + Ta(v).

BRr
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Proof. Giveny : 8z — R3andW : M3 — R, let

def

W) f W(V6)dXe
BRr

Then giveny ando,

W +6) — W(w) = f (W(V(0)(XR)) — WV (XR)))dxg
BRr

- f [(zllz/(wf(xR)) 1 VO(XR) + o(IVO(XR)I; XR) | dXR

Br

- fB Tr(Vy) 1 VodXe + o(61).
Thus, at least formally, 48
(1.4-10) W' ()0 = f Tr(VY) : VOdXg
R

and the result follows. O

Remark 1.4.1.1t must be verified in each circumstance tiééis Fréchet
differentiable and that the right hand side [0f {T.#-10) doescithdgve
the Fréchet derivative. If th@-uniform norm is chosen for the space of
differentiable vector functions aBir and if the first partial derivatives
of 'IA'Rj are Lipschitz Continuous it can be it can be seen that is thdee
the case.

The functionalV is called thestrain energyandl is called thetotal
energy The functionW : M3 — R is called thestored energy function.

Notice that the boundary value problerm is preciselygEhker equa-
tions associatedo the total energy.
If ¢o 0N OBRis extended to the whole @ andl, defined by

lo(W) = 1(¢ + o)
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then one looks fop — ¢, vanishing omiBqr such that

lo(¢ — do)0 = 0

for all 6 : Bg — RS vanishing or¥Byr. Thus particular solutions are
those¢ which satisfy

inf
(1.4-11) I(#) =3y : Br — R3 | ().
W = ¢o ONO0HBoR

In the next chapter, it will be seen that the formulation inrte of
the boundary value problem will be the basis for proving texise of
solutions via the implicit function theorem whilEZTT. 2} 1)l be the
basis for the approach due to J. BALL.

A stored energy functio : M3 — R will be said to be mate-

rial frame indiferent (resp isotropic) ifir = %—(:f is material frame
imdifferent (resp. isotropic).

Now necessary and ficient conditions for a stored energy function
to be material frame infierent ofand isotropic will be examined.

Theorem 1.4.2. The stored energy functioh’ : M3 — R is material
frame indfferent if and only if, for all M2 and for all Q03

(1.4-12) W(QF) = W(F).

Equivalently, it is material frame ingierent if and only if there exists
a function'W : 2 — R such that for all FeM3

(1.4-13) W(F) = W(F'F)

(cf. Equation(T.3:8).

Proof. Since material frame inflierence is equivalent to

T(QF) = QT(F)Q"
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for all FeM2 and for allQe0?2, and since

Tr(F) = detFT(F)FT
it follows that material frame indlierence is equivalent to
(1.4-14) TR(QF) = QTR(F)

for all FeM® andQe03, i.e.,
ow ow
(1.4-15) G_F(QF) = QG_F(F)
in case of hyperelastic materials. Define
(1.4-16) Wo(F) = W(QF), Qe03, FeM?.
Now if F + G e M2,

Wo(F +G) = W(QF + Q8) = Z(QF) : QG+ o(QG)

LW

- Q'S (QF) 1 G +0(©)

where the relatior : BC = B'C has been used (cf. Rem4rk114.2).

Thus oW ow
Q _ QT Q
oF (F) = oF (QF).

Thus material frame inffierence is equivalent to
0
(1.4-17) a_F((WQ(F) -W(F))=0.
m]

Now M2 is connected inM3(cf,. Exercise 1.4-2 and so the above is1
equivalent to)

(1.4-18) W(QF) = W(F) + C(Q),



52

42 1. Description of Three - Dimensional Elasticity

for all FeM3, Qe03. SettingF = 1,Q, Q... successively, it follows
that

W(Q) =W()+C(Q
W(Q?) = W(Q) +C(Q)

Thus fo any integep > 1,
(1.4-19) W(QP) = W() + pC(Q).

Then
W@ > pIC(Q)l - IW().
Thus ifC(Q) # 0, then|W(QF)| — +c asp — co. But the setd?
is compact inVi3 andW is continuous since it is fierentiable. Hence
C(Q) = 0 and the first assertion is proved.

To prove the second equivalence, fet RU be the polar factoriza-
tion of F (cf. TheorenZL3]1). Fa€eS3, set

(1.4-20) W(C) = W(CY?).
Then
W(F) = W(RU) = W(U) = W(U?) = W(FETF)

sinceU? = FTF. Conversely, if [TZ=13) is true, then féreMS and
Qe03,

W(QF) = W(FTQ'QF) = W(F'F) = W(F).

It can be show that (cf. Exercise 1.4-4)W is differentiable, so is

W. Without loss of generality, it may be assumed that the m%%—/

is symetric. For
C+CT

W(C) = W( 5

), CeS3.
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Remark 1.4.2.The following identities involving the scalar product : in
M2 are useful.

(1.4-21) A:BC=1tr(AC'B") =tr(B" AC")=BTA:C
(1.4-22)
A:BC=AC":B=B:AC' =tr(BCA") = tr(CA'B) = CA" : B'.
The identity [T.2-211) was used in the proof of the above teor

The following theorem says that in case of frame ffatent hy-
perelastic materials, the symmetry of the second PiolatKidT stress
tensor is automatically verified.

Theorem 1.4.3. Let the material be hyperelastic and material frame
indifferent. Then

0

(1.4-23) Tk = 3r(F) = SR(FTF) = W(C) C=F'F.

Thus the second Piola-Kirchjfcstress tensor is automatically sym-
metric. Conversely, if there exists a mappmg S — R such that

(1.4-24) Sr(F) = aW(FTF)
then the material is hyperelastic with 53
(1.4-25) W(F) = W(FTF)

and consequently is material frame iffdrent.

Proof. Sg(F) = F1Tr(F) = F~ 1@(9

Also W(F) = W(FTF). Now |f F,F +GeM?3,
WEF+G)-WF)=WF F+F G+G'F+G'G) - W(FTF)

a(W(FTF) (FTG+G' F) +0(G)

—Fﬂ(FTF) G+ F( (FTF))T G + o(G)
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by (CZ:21) - [1T.2=21). BU% is symmetric. Thus

W +G) - W(F) = 2F(—(FTF)) G+ 0(G).

Hence

@(F) =2F G(W(FTF)

- 1aw oW

or ER(F) = F == (F) = 2= (FTF).

Conversely, ifW(F) = (W(FTF) then consider the mappirfg —
FTF from M2 into S3. One has

W (F)G =W (F F)F'G+G'F)

or
—( ):G= —(FTF) (FTG+G'F)
= ZFGl(FTF) G  as before
Hence oW
—(F) = F2g(F) = Tr(F)
and the result follows. m|

Now the dfect of isotropy on a stored energy function can be simi-
larly examined.

Theorem 1.4.4. A stored energy functio : M3 — R is isotropic if,
and only if, for every M2 and for every Q03,

(1.4-26) W(F) = W(FQ).

Proof. The argument runs along the same lines of that of Thebrer@ 1.4.
and is left as an exercise (cf. Exercise 1.4-5). m|



1.4. Hyperelasticity 45

Theorem 1.4.5. A stored energy functiodd : M3 — R is material
frame indjfernt and isotropic if, and only if, there exists a function

¢ = (Jo,+[)® > R
SUCh that (W(F) = ¢(l|:T |:) = ¢(l|:|:T) (14 - 27)
for every FeM?3.

Proof. By the material frame indlierence, there exists a function’ :
$3 — R such that )
W(F) = W(ETF).

By the isotropy, ifQe03, then
W(F) = W(FQ = WQ'FTFQ).

ThusW : S2 - R satisfies
W(C)=WQ'CQ

for everyC € S2 and for everyQ € 02 (since for everyCeS2 there
corresponds = CY2e¢ M3 with C = FTF). Now it was shown in
the proof of the Rivlin-Ericksen Theorem (Theor€m_l.3.4tthuch a
function must be a function of the principal invariants

Cnversely, ifW(F) = ¢(1erg), let Qe03.

Then
Z(FQ)TFQ = lQTFTFQ = l|:T|:
YQF)TQF = IFTF
and so
W(F) = W(QF) = W(FQ)
and the thoerem is proved. O

The next result expresses the Piola-Kircfilstress tensors in terms
of the functiong of the above theorem.

55
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Theorem 1.4.6. Given a functiony : (Jo, +o[)® — R and a stored
energy function

W(F) = ¢(11(C),12(C), 13(C)),C = F'F,

then
(1.4-28) —TR(F) = a—¢F + —( | —FFTF) + ¢z FT
where 5 5
4 = 1(FTF) and a¢ ¢(1FTF) k=123
Furthere
(1.4-29) —ZR(C) - ‘9"’ s P 0i-0)+ 2
1 612 (913
= —¢ 6—¢l + 6—¢l |
o O ! Oi3 2
_(%¢ . 9¢ 99 2
(812 "o 813 )C * 813C '
Proof. Let T be the mag” : M3 — S2 given byI'(F) = FTF. Now
Tr(F) = W(F) where
TFR) 6= L Ee

Now 11(C) = tr C and so
(1.4-30) 12(C)D = tr(D),

13(C) = é [3(trC)® - 3(trC) tr(C?) + 21r(C3)]
and so

4(C)D = % [3(tr C)?(tr D) — 3(tr D) tr(C?) — 6(tr C) tr(CD) + 6 tr(C*D)|
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= % |tr C)? - tr(C?)] tr(D) + tr(CD) - tr(C) tr(CD)
= 15(C) tr(D) + tr(C°D) — tr(C) tr(CD).
Now
tr(C2D) — tr(C) tr(CD) = tr((C? — 12(C)C)D)
= tr(13(C)C ™D - D
using the Cayley-Hamilton theorem. Thus 57
(1.4-31) 13(C)D = 13(C) tr(C™1D).

Finally

12(C) = % |(trC)? - tr(C?)]

12(C)D =tr(C)tr D — tr(CD)
= tr((u(C)I - C)D)
= tr((=2(C)C™* - 13(C)C?)D)

again using the Cayley-Hamilton theorem. This may be agaitbemn as
(1.4-32) 12(C)D = 13(C) tr(C™) tr(C™1D) - 13(C) tr(C~2D).
Also,I"(F)G = FTG + G'F. Thus’

oW .~ 9P T T
= (F):G=Lu(F'G+G'F)

g—i¢i3 tr(CHtr(CYFTG+G'F))
2
+ g—i¢i3 tr(C2)(F'G +G'F))
2
+ g—i¢i3 tr(CH)F'G+G"F))
2

Now, trF'TG+G'F) = 2F : G

+

tr(CYF'G+G'F)=CT:(F'G+G'F)
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=F'FT:(FTG+G'F)

= 2F T : G(Using[IZ=21)- —(Z=22))
tr(C2(FTG+G'F)=C? : (F'G+G"F)

=C2:(F'"G+G'F)

=F Y TF¥F T (FTG+G'F)

=2FTFIFT: G
58
Hence

1W oD

S (F):G= —t(CHFT:G

> aF( ) '3 r(C—)
@ @

- a—ng‘TF‘lF‘T G+ 5—13F—T :G

iy O3

Now, consider
i3tr (CHF - iF TEIET
=i|r(CHF TF - F TR TR F
=13[tr(B)B™' - B?|F,B=FF'
= (lzB_l - 13B_2)F

since B and C are similar. Againi = (B). Now by the Cayley-
Hamilton theorem,
1Bt —13B2 =13l —B=yl - FF'.
Combining all these relatio {1.4428) follows. To obtain4cP9)

note that)x(F) = FTr(F). Hence

1. o0 o0 oo

SR(F) = —1 + — (@1l =FTF) + —iFtFT

2R =g+ a5 )+ 35"

which gives the first relation. To get the second, by the Gayttamil-
ton theorem,
13C‘1 =C?- 11C + 10l

59 and the result follows. O
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Remark 1.4.3.Compare the last relation ib{1.4329) with the statement
of Rivlin- Ericksen theorem (Theorein1.B.4)

Theorem 1.4.7.Consider a St venant- Kirohlfomaterial with
(1.4-33) IL(E) =atr (E) + 2uE

It is hyperlastic with

(1.4-34) W = (E) = %(tr E)? + u tr(E?)

A+
= 9P 4 -9 A 3) = alic)
where
i =i(C),k=1,23.
Proof. Set .
W(C) = W(l + 2E) = W x (E).
Now

Wsx(E+H)=Wsx(E)+AtrEtrH + 2utr (EH) + o(H)
=W (E) + (AMtr E)l + 2uE) : H + o(H).

Hence

*

OW'x
—g B = ;<E>.

This implies that

= oW
2.0 =2-=0©

0
and hence the material is hyperelastic. The verificatioh®&pression
for @ is left as an exercise to the reader. O

Remark 1.4.4.The above result gives another proof (cf. equationo
(@3=41)) that St Venat-Kirchib materials are isotropic and material
frame inditerent.
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Remark 1.4.5.0ther examples of hyperelastic materials will be seen in
ChaptefR (Ogden’s materials)

Theorem 1.4.8.Let Br be a natural state of a material which is isotro-
pic and material frame ingirent. Then ifWeC*(M3; R)

(1.4-35) W « (E) = %(tr E)? + utr(E?) + o(|E]°).
Proof. Let

W « (E) = %(tr(E))z + utr(E?) + W « (E)

OW OO W
= XR(E) = AtrE) + 2uE + o(E).
Thus,
00 W
—=—(E) = o(E).

Since subtracting a constant/= does not change the stress ten-
sors, it can be assumed, without loss of generaliry, dfi&t« (0) = o.

Hence
1

SW=)(E) = f %(E):dt:o(ﬁz).

0

61 Exercises

1.4-1 For a non-homogeneous hyperelastic material,
- ow
TrR(XRr,F) = —Xr, F
R(Xr, F) (9F( R F)

for everyXreBg, and for everyFeM?. Extend the analyisi of this
section to such materials.
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1.4-2 (i) Show thatM? is a connected subset B,
(i) Show by an example thatl3 is not convex.
(iii) 1dentify its convex hull inM3,

1.4-3 Assume that (cf. Proof of Theordm 1T.4.2)

W(QF) = W(F) + C(Q)

For all FeM2 and Qe03. Show thatC(Q) = o without using the
continuity of W.

1.4-4 (i) Show thatS? is an open subset 6f.
(i) Show that if'W is differentiable, so igV.

1.4-5 Prove TheoreriI.4.4: show that isotropy is equivalent to
fR(FQ) = fR(F)QfOI‘ allFeMi

andQe02, which is in turn equivalent to
ow . oW T_ 0w
—5 (F) = —=(FQQ" = —=(F). W(FQ.(FQ).

1.4-6 Check the second relation in equati@n (1.2-34).
1.4-7 Consider an elastic matrial with

T(B) = Bo(i)! + Bi(ig)B + By(15)B>.

Find necessary and Sicient conditions on 62
Ba: (0, +))° > R,a=0,1,2
for the material to be hyperelastic.

1.4-8 In Theorem 1,418, compute the terms of order 2JR(E) and
terms of order 3 iW=(E). Explain the discrepancy in the number
of terms obtained in each case.
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Chapter 2

Some Mathematical Aspects
of Three-Dimensional
Elasticity

IN THIS CHAPTER, questions of existence of solutions to tier-
ary value of three-dimensional elasticity will be examinéal the first
section, some general considerations about these bouwvalaey prob-
lems will be mentioned. The problems will be classified witlspect
to boundary conditions. As good models of elasticity mustclude
unigueness of solution, several examples of hon-unigqeendise pre-
sented.

The first tool for the study of existence of solutions is theliait
function theorem. As this requires a knowledge of the lirzear prob-
lem, the second section will briefly present linear elastiand the third
section will prove existence, albeit for a very narrow claboundary
conditions. The fourth section will study incremental noeth, whose
analysis follows closely related lines.

The last two sections will present results on polyconvesaitg ex-
istence of solutions to the problem of minimizing the eneuging the
approach of J. BALL. Though several types of boundary camutcan
be studied here, the main drawback is the lack of regulafisplutions
and so it is not known if the solutions satisfy the equilibniequations.

53
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2.1 General Considerations About the Boundary
Value Problems of Three-Dimensional Elasticity

Given a respones functiohy : M3 — M3 satisfying

(2.1-1) F(Tr(F))" = Tr(F)F"

for every FeM? and given the denstigr : 8r — R and dead loads
br : Br — R3, 1z : 081r — RS, the boundary value problem arising out

of the equilibrium equations amounts to finding a deformadowhich
satisfies

(2.1-2) DIVRTR(V¢) + prbr = 0in Br
(2.1-3) Tr(Vo)Ne = tir ONIB1R
(2.1-4) ¢ = ¢o (given) ondBoR

The boundary conditiog = ¢, on dBgr is called aboundary con-
dition of place The boundary conditiof{21-3) a#B;r is called a
boundary condition of tractiorfand this defnition implies it is a dead
load).

If 0Bor = ¢ the problem is gure tractionboundary value prob-
lem.If B3 the problem is gure displacemenproblem. If bothdB.r
and 981r have strictly positivedAz- measure, then the problem is a
mixed displacement-tranctigoroblem.

Recall that

D (V9) = (V) Tr(VD)
where ZR M - §3

and the boundary value problefm(Z11-£)=(2.1-4) can be t@nrin
terms of this tensor. If the material is hyperelastic (cfct®m[1.4), then

(2.1-5) Tr(F) = aai;/(F)
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for a stored energy functioh : M3 — R and the problem is equivalent
to finding the sationary points of an energy functional,

(2.1-6) (W)= | WEWAXR—| | prorydXr+ | tirydAr
o] famsone |

R 0B1rR

The partial diferentail equation§{2.1-2) are nonliner with respect to
¢ since the mappingr : M2 — M?2 is non-linear, and of the second
order. The non-linearity occurs in the highest order term$ tais is a
source of dificulty. Another source of dliculty is that the solutior
must satisfy det¥¢) > 0. Thus for instance if{2.1}&) must vary over
M2 which is clearly not a vector sapce; in fact it is not even avesn
subset oMM (cf. Exercise 1.4-2).

The boundary condition of traction could be replaced by the s
called boundary condition of pressur@vhich is not a dead load, but
it is conservative). Again it is possible to haveare pressurdound-
ary value problem (for instance, a soap bubble or a subnmasimaixed
displacement-pressutgoundary value problems.

These boundary condition, though being the only ones to be co
sidered here, are far from exhaustive. Other types of cionditare
possible.

In practice one can hawmnilateral conditions For instance, if the 66
body must remain in above the plane spannedbhg the boundary
condition isXz > 0 or ¢3(Xg) = 0

€3

€2

€1

Figure 2.1.1:

Itis also possible to have a mixture of displacement andstieun-
dary conditions. Consider to be a plate with a pressupecompress-
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ing the lateral surface (figZZ1.2) and given only byhtwizantal aver-
age Then the conditions are

2.1-7) Uy, eindependent of3
. Uz = 0
and
1 €
(2.1-8) > [ 00N ax = —pn

€3 n

g

.

Figure 2.1.2:

Apart from possibly the problem of bodies moving with consta
velocity in a fluid, the pure traction problems are less comm®he
pure displacement problems are quite unrealistic.

In general, several deformed states are possible for the sgs?
tem of forces, though they may not all be physically feasilésta-
ble’. Nevertheless the mathematical model cannot receghie feasi-
ble or stable ones. Hence a good model will always accountdor
uniqueness of solutions. Several examlpes of non-unigsewél now
be given .

Example 2.1.1.A mixed displacement-traction problem. Consider a
long circular cylinder fixed at either end. The body forceustjits
weight. On the lateral surfadger = 0. Assume the body to be ex-
tremely pliable, and rotate one end by an anglemf@d reglue it in its
original position. Then a line parallel to the axis on thestat surface



68

2.1. General Considerations. . . 57

will deform into a curve and thus gives another solution pthan the
natural one, which will just be a slight bending of the cylndinder

its weight. It is theoretically possible to rotate the fage2ar for any
positive integek. Thus the model must account for an infinite number
of solutions.

Figure 2.1.3:

Example 2.1.2(F. JHON) A pure displacement problem. Consider the
body to be betwen two concentric spheres. Assunze0 on both the
inner and outer surfaces. Apart from the trivial solutidrs possible to
have an infinite number of solutions by (theoretically) tioig the inner
sphere about an axis by an angle kk2nd re-glueing it to the body.

u=~0

Figure 2.1.4:
69
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Example 2.1.3(C. ERICKSEN) A pure traction problem.A rectangular
lock is pulled normal to the upper and lower surfaces. Ruoatif the
configuration byr produces a (though urrealistic) solution where the
body is comprssed!

| }
$1(A) »1(B)
| |
A s | )
5>(D) b2(¢)
o aon | |G wen | A
M)?(B) Mb(A)
¢ D
sr(op—2PU
|
Figure 2.1.5:

Example 2.1.4.Consider a thin circular plate subjected to the boundary
condition [Z1F) -[[Z.138) withp = Ap;. If 1 < 0O (i.e the plate is pulled)
orif 1 > oand smallu = ois the only possible solution. It exceeds

a critical value, the plate can buckle upwards or downwards giving
two additional solutions (cE—Z1.6) This is a buckling pberenon

Example 2.1.5.Eversion problems. A cut tennis ball (borrowed from a
very good friend) can be made to exist in twéfdint states as shown in
figlZZI1. The everted state can be produced by pushing hatdjeron
the natural state.
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y L
N
AN<0 <-— e em™ -
ke ) —
R
v
N s
0< A< M—[= == «—
-
A <A —> -

~unstable' solution

Figure 2.1.6:

Figure 2.1.7:

It is possible to do the same thing to a tube. These are exarople
multiple solutions to a pure traction problem.

Returning to the various restrictions on the model and itdyesis,
the first is the taking into account of properties like isptrohypere-
lasticity and the axiom of material frame ifidirence. These are fairly
easy to handle. In sectiohs1l.3 1.4 various necessarguiinient



72

73

60 2. Some Mathematical Aspects of Three-Dimensional.....

conditions of the relevant functions were studied. The nnegtriction
is that the solutioy must satisfy forces

det(Vg) > o.

In using the implicit function theorem, this requiremenigeored
at first and then shown to be satisfied foffsiently small forces.

In the ditferent approach of J. BALL, this is taken into account (a.e
in Br) by imposing it on the se?” of test functions over which the
energy is minimized. This precludes the convexityZofwhich makes
minimization more diicult than usual. In this approach, it will be nicely
taken into account by imposing th&/(F) — +co when det F) — o*.

Even if detV¢ > o everywhere orBg, it does not ensure thatis a
one-one mapping, a property natural to expect in a defoomathus if
a body as in figi_Z118(a) in contact with the horizontal planpushed
along the two ‘arms’, it must take a shape as in[fig2.1.8(b)t tBe
mathematical model will not preclude a situation as i ig&(d) where
the material penetrates itself, still keeping Set> 0

\ yd
N PN &
| Br !
(b) (c)

u_=_0_/(a)

Figure 2.1.8:

In the case of incompressible materials, the energy is niteith
over a set of functiony (in a suitable function space) with

detVy) =1l a.e

Some of the noations used hitherto will be changgd will hence-
forth be denoted bg, Q a bounded open subset®?f and its boundary
0BR by I'. The portionsdByrand®B1r Will be denoted by, and T’y
respectively.



2.1. General Considerations. . . 61

The generic poinKg will henceforth be labelled anddXg anddAR
will be changed tadx andda respectively. The derlvatlveg— will

be denoted by; andDIVR by div. The normahg to 0Bg will now be
given byv = (), the unit outer normal to.
The tensorsZ = (Z) andTr = (Tg,) will be denoted by ¢;;) and

(tij) respectlvely The vectoastR andtig will be denoted byf = (f;)
andg = (g;) respectively. The symbols fgr,u,F = V¢, B=FFT,C =

1 . .
FT andE = =(C - ) will remain unchanged.

Thus, for instance the equations of equilibrium im term§ afread
in the old natation as:

(2.1-9) DIVR(ng Z] +orbr = 0in BR
R
(2.1-10) V¢ Z NR = t1gr ONIB1R
R
(2.1-11) ¢ = ¢o ONIBR
These, when translated in to the new notations will read as
(2.1-12) —0j(okjokgi) = fiin Q
(2.1-13) okjokgiVj = g onI'y
(2.1-14) ¢i = ¢oi ol
Exercises

2.1-1 . Assume that a pure traction problem has a soluioBhow that
prdeXR + fthdAR =0
Br 0BR

and f¢AprRdXR+ f¢AthdAR 0.

O0BR

74
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2.1-2 .Consider a hyperelastic incompressible material. In the- c
strained minimization problem

JDL 1)
where U = {y | det(Vy) = la.e},
show by a formal computation that the Lagrange multiplig¢hés
pressure.

2.2 The Linearized System of Elasticity

Consider the boundary value probldm(Z1-12)-(Z11-14jeitms of the
displacement it can be rewritten as

(2.2-1) —(91'(0'”‘ + Ukjé)kui) = fiin Q,
(2.2—2) (O'ij + O’kjakui)Vj =g on I,

with the constitutive equation

(2.2-4) oij = O’i*j(E(U)) = /lEkk(U)(Sij + Z/JE”(U) + o(E)
where
(2.2-5) E(U) = % (Vu' + Vu + vu"vu)

If uwere defined in a suitable function space, whose functions va
ish onI'g, then symbolically one can write

(2.2-6) A(U) = [;]

The linearised system of elasticity will then be formallyfided as
(assumingA is differentiable)

, |f
A’ (O = [g]
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This can be derived as follows. The linearized strain terssor
1 T
(2.2-7) e =5 (Vu™ +vu).
Theno will in turn be linearized as
(2.2-8) oij = /lékk(u)5ij + 2,ueij (u).

76
Substituting this inMZZI11-(Z23) and keeping only thetforder
terms, the linearized syatem elasticity turns out to be

(2.2-9) —-0joij = fi InQ
(2.2-10) oijVj = g onIy
(2.2-11) Ui = U onTy

whereo is given by [Z2-B). Note that such a syatem cannot be a model
for elasticity (of Exercise 2.2-1) but only approximatiohaomodel.

Remark 2.2.1.1f the equations were written in terms §f and then

linearized, the same linearized system of elasticity winalde been ob-

tained. This is becausks = (I + Vu) >, and on linearizing this realtion
R

only the part coming fromh 3. = 3 will be retained.
R R

Before the existence and regularity of solution to the lireal sys-
tem of elasticity can be studied the following notationstfoe Sobolev
spaces will be needed.

Letm> 0 be an integer and4 p < +o0. Then

(2.2-12)  W™P(Q) = {veLP(Q) | §*veLP(Q)for all | @ |< m)

wherea is a multi-index and“v is the corresponding partial derivative
('in the sense of distribution). This space is a Banach spattetie
norm

1/p
(2.2-13) IV lImpo= [ Z | 9% |P dX]

o |ol<m
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(with the standrad modification ff = +c0). The semi-norm . |mpois 77
defined by

(2.2-14) IV limpa=

1/p
fz | 8%V |P dx]

Q la|l=m

If m=0,WOP(Q) = LP(Q)and| . |opq is the usuaLP(Q)- norm.

If 2(Q) is the space o€* functions with compact support i€, its
closure inW™P(Q) will be denoted byW,*P(Q).

If p=2,itis customary to writdd™(Q)andH7'(Q?) instead ofW™,
2(Q) andWS‘Z(Q) respectively. The norms and semi-norms in this case
will be written as|| - [Imq respectivelyl - |mq is theL2(Q)- norm.

By Poincarés inequality, Inpq is a norm onw;*(©) and is equiv-
alent tol| . |lmpq, forl < p < co.

In case of vector valued or tensor valued functions, the sysnb
W™MP(Q), LP(Q) will be used to denote that each component igfiP
() or LP(Q2) respectively. However the symbols for the norms and semi-
norms will not be altered.

The following result is fundamental.

Theorem 2.2.1(Korn’s Inequality) LetI" be smooth enough. Then
(22-15)  {v=(W)eC*(Q) | 6;(VeL?(Q), 1<, j < 3} = HY(Q)

Consequently, there exists constansandG, > 0 such that
(2.2-16)
CillViLas (Vg + 1 V) fo)"? < C2 |l VL for allveH(Q).

Proof. See DUVAUT and LIONS [1972] or NITSCHE [1981]. The
main difficulty is in proving [ZZ=1b6). Since the second inquality of
(Z2Z2=18) is obvious, the first follows frorh{2.2115) and thesed graph
theorem. i

A consequence of the above result is

Theorem 2.2.2.LetV be defined by

(2.2-17) V = {veH}(Q) | v= 0 onT}
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where the da-measure 0% is strictly positive. Then the semi-norm
| €(V) loq is @anorm on V equivalent to the notm [|1.q.

Proof. Cf. Exercise 2.2-2. m|

Assume now thati = 0 onI'g. LetV be as in[[Z2=17). Multiplying
Z2=9) by a functionveV, integration by parts using Green’s formula,
and using[[Z2-10)[12.2-111) and the symmetryothe following vari-
ational formulation of the probleni{Z.2-9)[=(Z.2}11) candixained.

Find ueV such that, for allveV,

(2.2-18) a(u,v) = L(v)

where

(2.2-19) a(uv) = f (aWere(v) + 2ua; (Wa; () dx
Q

and

(2.2-20) L(v):ffividX+fgivi da
Q I

By a simple application of Schwarz’s inequality, it followsata(., .)
is a continuous bilinear form di*(Q) andL is a continuous functional
onHY(Q) (and hence oi¥ as well).

The following existence result holds.

Theorem 2.2.3. Consider the variatiational formulation of the linea-
rized syatem of elasticitfZ.2=18) or, equivalently, the problem: Find
ueV such that

(2.2-21) J(u) = \i/n{; J(v)
where
(2.2-22) J(v) = %a(v, V) — L(v)

if 1 > 0andu > 0then the problem has a unique solution.
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Proof. Observe that by Theorel Z.P.2 for @V,
(2.2-23) a(v,V) > 2u | eV) Fo> a IVIEg

wherea > 0 (usingd > oandu > 0). ThusJ : V — R is a convex, and
continuous functional. Hence it is weakly lower semi comtins. Let
{ug} be a minimizing sequence W, i.e.

J(u) — inf J(V) < +co.
VeV

SincelJ s coercive (i.e.J(V) — ooas|| v ||— +o0) it follows that{uy}
is a bounded sequence and hence has a weakly convergertseise.
Let u be the weakly limit of the subsequence (again indexedk by
convenience). Then by the weak lower semi-continuity.of

\m J(v) < J(u) < I|En '_Qfo J(w) = \%f/ J(v).

Thus J attains its mimimum au. It is easy to see that equations
ZZ=1I3) are simply equivalent to the equatidifu) = 0. Hence the
equivalencve of the two problems singés convex and the existence of
a solution.

If u; andu, are solutions iV thena(u; — up,v) = 0 for all veV.
Settingv = u; — W and using [[Z2-23), it follows thai; = uy, thus
proving the uniqueness of the solution. m|

Remark 2.2.2.The existence of a unique solution fg {Z.2-18) also fol-
lows directly from [Z22=2B) by applying tHeax-Milgram Lemma.

Finally, let us state the result on the regularity of solusido the
above problem.

Theorem 2.2.4. Supposd” is smooth enough and for some > 2,
feCP(Q). Assumd’; = ¢. Then the solutiondalV = Hi(Q) of the corre-
sponding linearized system of elasticity is in the sp@Bg?), where

(2.2-24) VP(Q) = {veW?P(Q) | v=0onT}.



2.2. The Linearized System of Elasticity 67

Proof. The casep = 2 has been proved by NEAS [1967]. Ifp > 2,
the argument goes as follows. LAt(0) : VP(Q) — CP(Q) repre-

sent the operator of the linearized system of elasticity.enThf in-

dex @(0) %" dim(kerA'(0)) — dim(Coker&(0)), it was proved by

GEYMONAT [1965] that for allp,1 < p < oo, the index was inde- 81
pendent ofp. Now, by the result of Necas above gf = 2, A’(0) is
onto and so dimfoke(A’(0)) = 0. By unigueness of the solution,
dim(ker(A’(0)) = O for all p > 2. Hence the index is zero for gii

and so dimCokeA’(0))) = O for all p > 2, i.e.,A’(0) is onto for all

p > 2, which proves the theorem. ]

Remark 2.2.3.The above result does not follow from those of AG-
MON, DOUGLIS and NIRENBERG [1964]. Their results state that
feL.P(Q) implise ueW?P(Q) then feW™P(Q) implies ueW2mP(Q) for
our problem. The ’starting’ regularity resulin(= 0) needs be know a
priori and TheoreriiZ2.4 proves that in case of the linedrzatem of
elasticity.

Caution! TheW?P regularity does not hold for the mixed displace-
ment-traction linearized syatem of elasticity.

Exercises

. 1 - ,
2.2-1 Show that ife(u) = E(VUT + Vu), then a constitutive equation

of the formo = o*(e), with o* a linear function ofe, does not
satisfy the axion of material frame ind@&erence.

2.2-2 Prove Theorem .2 — 2. (Show first thate(Vv)lon) is @ norm onv.
Prove the equivalence of norms by contradiction: assume the
exists a sequencéeV with [V¥||Lq = 1 and|e(V)oq — O.

2.2-3 Consider the linearized system of elasticity in variatioftam
with Ty = ¢. Show that there exists a solution to the problem

provided
ffdx:fdx,
Q r
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in the quotient spacel}(Q)W, where

W = {veH(Q) | e(v) = O}.

Show also that

W = {ve[H}(Q)|v = a+ b A ox}.

2.2-4 Extend the regularity result to the case b < 2.

2.2-5 Show that ifu > 0, there exists dp < 0 such that iflg < 2 < 0,
the linear forma(., .) given by [Z2-IB) is coercive.

2.3 Existence Theorems via Implicit Function The-
orem

In this section, existence solutions to e displacement problewaill
be proved using the implict function theorem.

For simplicity, consider first a St Venabt-Kirchifionarerial Recall
that the constitutive equation in this case can be written as

(2.3-1) oij = aijke Exe(U) = ABk(U)dij + 2uEij(u),

with 4 > 0 andu > 0. Also

1
(2.3-2) Eij(u) = Eij(u) + Eai umajum,
where
1
(2.3-3) Gij(u) = E(ain +ajui)

Then the boundary value problem{Z12-1)=(2.2-3) becomies (),

1

(2.3-4) —5j(aiququ+2

8ajpgdpUmdgUm + 8kjpgdpUgdiUi

1 .
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(2.3-5) u=0onT.
This can be written as

(2.3-6) A(u) = finQ,

(2.3-7) u=0onT,

whereA(u) = (Ai(u)) and

1
2
1
The following existence result holds.

Theorem 2.3.1. Assume thaf is smooth enough. Then for each>3
there exist a neighbourhoo& P of 0 in LPQ and a neighbourhood/P
of0in

VP(Q) = {veW?P(Q)lv=0 on T}

such that for every %P the boundary value problef@.3-8)-2.3-1)
has one, and only one, solutionP.

Proof. SinceQ c R3, if p > 3 the inclusion
WLP(Q) — COQ)

is continuous. Furtha-P(Q) is an algebra (cf. ADAMS [1975]). Thus
if f,geW™P(Q), fgeW>P(Q) and

(2.3-9) IfallLpe < ClifllLpalldlLpo

HenceA : VP(Q) c W2P(Q) — CP(Q) is well-defined and is in- 84
finitely Frechet dferentiable. (In facD*A = 0). SinceA(0) = 0, the
conclusions of the theorem will stand proved if it is showatth

A (0)el som(VP(Q), LP(Q))
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by virtue of the implicit function theorem. But the problem
(2.3-10) A'(O)u = f,ueVP(Q)
is none other that the linearized syatem of elasticity:

(2.3-12) u=0onT

A’ (0) is continuous. It is one-one since the solution of thevalzystem
unique forp > 2. Also by the regularity theorem (cf. Theorém212.4) it
is onto as well. Hence by the closed graph theof(0) is an isomor-
phism form fromVP(Q) in to LP(Q) and the theorem is proved. O

Remark 2.3.1.This proof breaks down in the case of the mixed-dis-
placement traction problem because of the lack/é®(Q) regularity of
the associated linearized syatem.

Remark 2.3.2.0ne could think of solving the problem by definiAgpn
WL9(Q) taking values inWw>9(Q) , thus avoiding the need of the regu-
larity theorem which is not valid for other boundary conatits. Unfor-
tunately, it has been proved by VALENT [1979] that on suchcegaA

is not Frechet dferentiable.

Remark 2.3.3.1f ajjk, were replaced by smooth functioagk.(x) , the
result is still true, thus extending the result to non-hoarapus mate-
rials.

In case of St Venant-Kirchitb materials, it turned out that ifi €
W2P(Q), thenE(u) e WHP(Q) and sincer* was linear inE, o*(E(u)) €
WLP(Q). For more general constitutive equations given: S — S,
it must first be proved that & € W-P(Q), then

% def
o (BE)(¥) = 0" (E(x), x € Q
is indeed iNW1P(Q). The following result answers this question. It is
due to VALENT [1979].
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Theorem 2.3.2.Let p > 3. Given a tensor field EE W9(Q) and a
mappingo* € CY(M3, M3), the matrix valued function

*(E) : X € Q = o*(E(X)
is also inW9(Q) and

80
O0Ex,

(2.3-13) dq(oij (E(X¥) = (E(X))0gEke(X).

If o is of class C*1,m > 0, them the mapping™ : W*P(Q) —
WLP(Q) defined above is of class™@nd it is bounded in the sense

(2.3-14) sup < (I Bli<reo

[IEllLp.0
for every r> 0.

Proof. Step(i). Let o* € CY(M3,M?%). Let E € WP(Q). Then the
components oE are all continuous and so

o*(E(X)) € Co(Q; M3) — LP(Q).

Assume now thaf{Z:3-13) has been proved. Then as
o-i*j .
—(E(x)) € C*(Q)andd Ew(x) € LP(Q).
O0Eke

it follows thatdqo™(E) € LP(Q). Henceo*(E) € WLP(Q).
Now (Z3=IB) will be proved. It must be shown that for apye
2(Q),

BO'i*j
@315) [ o(E0009dx= - [ 7L ECMIEL(0x

Q Q

Let ¢ € 2(Q) be fixed. IfE e CL(Q;M3) then [Z3=1Ib) follows
by a direct application of Green’s formula for smooth fuons. But
Cl(; M3) is dense INWLP(Q). Thus givenE € WP(Q), let E, €

86
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cl(Q:; M®) such thatE,, — E in W-P(Q). The relation[Z-3=15) is valid
for eachEn. B

Now E, — E in C°(Q : M3) as well, i.e. uniformly. Thu&,, E
are all uniformly bounded i@ and so by Lebesuge’s Dominated cover-
gence theorem.

(2.3-16) fcr;‘j(En(x))(')q¢(x)dx—> fo-i*j(E(x))aq¢(x)dX
Q Q

Now.

*

a?Ef(En(X)M(X) - a—Ek(E(X)W(X)

uniformly and hence i (Q), p’ the conjugate exponent @f Since
9q(En)ke = 9qEke in LP(Q), it follows that
(2.3-17)

ot o,
fg G?M(En(x))aq(En)kf(X)¢/X)—> fg a?k[(E(x))aqug(x)dx

and thus[[Z.3-15) is established Bre WP(Q).

Step(ii). It will be now shown thatr : W3P(Q) — WLP(Q) is contin-
uous and bounded. L&, — E in WLP(Q). Then as befor&, — E

in C°(Q; W3) as well. Henceri*j(En) — ai*j(E) uniformly and also in
LP(Q). Similarly

# #

ZiEn e
OEx, OEx,

uniformly anddq(En)ke — 9qEke in LP(Q). ‘Thus by [Z3-1B),
dq(cj (En)) — dq(c;(E)) in LP(Q),

thereby proving that*(E,) — o*(E) in W-P(Q). Thus the mapping is
continuous.
If IEllLpe < r then|Elgewo < C(r). It then follows thato*(E)

is bounded uniformly and hence I’(Q2) by a constant (which is a

oo,
functionr). Again aE_”(E) is bounded uniformly by a constant and
ke
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0qExke is bounded in_P(Q) by a constant which depends onlyorThese
obsersvations lead us to the relation

(23-18) SUp < r”(r*(E)Hl,p,Q<+00

IEll2,p.00

for everyr > 0.
Step(iii). Let oc* € C?(M3; M3). It will be shown thatr* : WP(Q)is 88
of classC! and that

BO'i*j
(2.3-19) Dot (E)G = — - (E)Gi.
J OEx

for anyG e wt p(Q)

By step (i), asaE—J is in C, it follows that for

*

60’
Eewt p(Q) (E) e WHP(Q).

SinceWP(Q) is an algebra

i 1
—(E WhP(Q
S5 (E)Gw € WHP(0)
and hence the right hand side €I {2.3-19) defines a continlioear

operator onWP(Q). To show that it does indeed define the Fréchet
derivative , consider fox € Q fixed,

*

60’
(O- >kl] (E + G) 0-|J (E) (E)ka)(x)

oo
_ G f ( | (E +1G)(x) - (E)(x)]
For (E,G) € M3 x M3, let

“ (E,6) fl (‘9‘7 (E +1G) - (E))
0



89

74 2. Some Mathematical Aspects of Three-Dimensional.....

The mappinge!‘f: M2 x M3 — R defined in this fashion is of class
C!, sinceo= is now assumed to be of cla€%. Thus by the result of

steps (i) and (ii), the associated mapping
e (E.G) € (WHP(Q) x WHP(Q)) —elf (E.G) € WHP(Q)

is well- defined and continuouis, so that in particular , fdixad E €
WhP(Q),
e’ (E.G) —eij (E.0)=0

in WLP(Q) asG — 0 in WLP(Q). Since

do .
oij(E+G) - o (E) - a?l'(’[(E)er = Gy € (E,G),
it has thus been proved that
. A0 S
Do (E) = = (E)Gke.

The continutiy ofD(f;kj follows form that of the partial derivatives

BO'i*j . . . .
TEe which is again a consequence of step (ii).

Step (iv). To show the boundedness D « (E). Now,

k

o
IDo(E)l = sup  ll===(E)Gkell1pa
! IGllpost OEke "

which is readily seen to be bounded by a constant dependingvbere
lEll1po < r. Thus it follows that

(2.3-20) sup [IDo # (E)|| < +oo

IEll1,pa<r

for everyr > 0.
The assertions far* € C™1(M3; M3) follow by iterating the above
arguments. O
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Letu e VP(QQ). TheA: VP(Q) — LP(Q) is defined by
(2.3-21) A(u) = — = div ((I + Vu)o = (E(w))).

That this indeed map&2P(Q) into LP(Q) is a consequence of The-
orem[Z3D. Ifu € W?P(Q), thenVu € WLP(Q)E(U) € WLP(Q)
(since this space is an algebra). Now by the above mentidrestam,
o+ (E(U)) € WHP(Q) and as it is an algebral ¢ Vu)o = (E(u)) isin 90
WLP(Q) and its divergence is ihP(Q). Itis also as regular as the map
ox 1 WEP(Q) — WLP(Q) as the other mapping found in the mAgre
linear or bilinear.

The boundary value problem for the pure displacement pnolpée
duces to: giverf € LP(Q), find u € VP(Q) such that

(2.3-22) A(U) = f.

Theorem 2.3.3. LetI' be smooth enough, (i) Let p 3 and o* €
C?(M3,M®). Then A mapW2P(Q) into LP(Q) and is of class &. If
in addition

(2.3-23) o*(E) = Atr(E)l + 2uE + o(E)

with 2 > 0 andu > 0, then A(0) € Isom(VP(Q2), LP(Q)).
(i) If o e C3(M3,M3) and if X(0) € Isom(VP(Q),LP(Q)), then
there exists)g > 0 such that for all & p < pOP and for all

def
ve B) = (ve VP@Q)lIMizpos,)
A'(v) € Isom(VP(Q), LP(Q)). Further

(2.3-24) Y2 €' supli(A’ (V) I < +oo.

veBp
Also, the map v» (A’(v))"1 is Lipschits continuous on[F,B'.e.,
def

/ -1 _(pn -1
(2.3-25) LP %" sup A V) - (AW,
v,weBP IV — W2 po
vaw
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Proof. (i) That A mapsW2%P(Q) in LP(Q) and is of clas<! follows

(ii)

from obsevations made above. A simple computation shows tha

.
A (0)V = ~0;(Do; (0) (@) + 0 (0)M).

If o* is of the form [Z:3=2B), this reduces to
(2.3-26) Al (0)V = —9j(A ek (V)Gij + 2u €ij (V)
sincec™(0) = oand
Do} (0)G = AGdij + 2,Gij
But (Z.3-26) is just the linearized system of elasticty @&ction

Z2) and by Theorefi 2.2.3 ahd 2]2.4, is an isomorphism as was
shown in Theoreri Z3.1.

Let o € C3(MS3,M3). ThenA e CA(W?P(Q);LP(Q)). Since all
mappings occurring i\ have bounded second derivatives,

def

MP(o)

sup ||A” (V)| < +oo.
[IVlI2,p.0<p

Note thatMP(p) is a non-decreasing functing pf Now,

(2.3-27) sup [IA'(v) = A'(0)] < pM"(p).

IMI2,p.0<p

If ve BE, then

(2.3-28) A (V) = NI + (A Q) (A (V) - A(0)]
But

(2.3-29) 1A (@) M (A (V) — A ()l < v6oMP(0)

where

(2.3-30) yP €N o).
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If p < pf wherepf is such that

(2.3-31) PoMP(F) < (o)™

then it follows from [Z:3=2B) and{Z:3-P9) thAt(v) is an isomorphism.
Further

_ IA (o)l P
AM) Y < —ON
W)= e s =]
where
(2.3-31) yP & %
P 1-y5pMP(p)

Finally if v, w € BP, then
(A (W)™ = (A W) = (A(M)) HA W) — A(V)(A (W)™
and [Z:3-2b) follows with
(2.3-33) L E' MPo)()2.
o

The latter part of the above theorem will be needed in theystifid
incremental methods (cf. Sectibnl?.4) . The former partdedickctly
to the following existence theorem.

Theorem 2.3.4.LetT be smooth enough and* € C>(M3, M3). Let
o*(E) be as in (2.3-23) witlt > 0 andu > 0. Then for any p> 3,
there exists neighbourhood& P of 0 in LP(Q) and % P of 0 in VP(Q)
such that for each & _#P there exists one and only solutioreuz P to

equation(Z.3-22)

Proof. By the previous theoremA’(0) is an isomorphism and the result
follows, as in Theore2.3.1, from the implicit function tiem. O

Remark 2.3.4.TheorenIZ311 is contained in TheorEm4.3.4.
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The following result compares the solution as guaranteedhby
above theorem and the solution of the linearized problemwilltthus
be seen that foilsmall’ forces the linearized system is indeed a good
approximation of the original model.

Theorem 2.3.5. Let the assumptions of the previous theorem hold with
o e C3M3; M3, For f € ZP c LP(Q), letu(f) € P c VP(Q) denote
the solution to the problen23=22) Let win(f) € VP(Q) denote the
solution of the equation

(2.3-34) A (0)ugin(f) = f.
Then
(2.3-35) () = Usin(Fllzpa = OCFI5 5.0)-

Proof. By the implicit function theorem, it follows thatis also difer-
entialbe as a functions df. Thus

A (U (f) = 1in LP(Q).
In particular, takingf = 0, it follows that
(2.3-36) u'(0) = (A'(0)) 2.

Now
u(f) = u(0) + U () f + 0[5 ,)

asAis of classC?. Butu(o) = o. The result now follows fromi{Z:3-B4)
and [Z3-3b). i

A major open problenin elasticity is to prove the existence of a
solution‘close to zero'whenf is ‘small’ , for the mixed displacement-
traction problem One could then compare the solutionsAgt)) = f
andA’(o)u = f.

It was remarked in the beginning of this chapter (cf. SedHdh
that even if we solved the problem, the solution must furttaisfy the
condition detV¢) > o, and in additionm be one-one. Hitherto these cri-
teria have been ignored. The following result assures thiats ‘small
enough’ then these conditions are met.
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Theorem 2.3.6. Let the assumptions of theordm 213.4 hold. Further
let I" be connected. Then fif|,pq is syficiently small, the mapping
¢ = Id + u satisfies defV¢) > 0 and is one-one.

Proof. If |flopq is small, thenu(f)ll2pq is small. SinceW?P(Q) —
CY(Q), it follows that||ul|y..q is small. Hence, as the determinant is a
continuous function of components of a matrix. it followsatth

det(Ve)(x) = det + Vu)(X) > 0, forall xe Q

Sinceg € Wz’p(QL it can be extended to a functigne W2P(&) —s
CY(©), whered > Q (cf. NECAS [1967]). Nowg = Id, which is
one-one, of. If follows from a result of DE LA VALLEE POUSSIN
or MEISTERS and OLECH [1963]((cf. RemdlkZ13.4) below) thas
one-oneQ. m]

Remark 2.3.5.The result of MEISTERS and OLECH states thap i€
CY(0;R"), ¢ c R" an open subset, K is a compact subset @f with

0K connected and, finally i§ is such that de¥¢) > 0 onK and¢ is 95
one-one oK, theng is one-one oK. This result can be strengthened

by allowing detV¢(x) = 0 on a finite subset d% and an infinite proper
subset 0bK.

Remark 2.3.6.1t is not quite necessary to resort to the use of the fairly
deep result of MEISTERS and OLECH. [if|opo is small||ullyc.0
small, so without loss of generality it can be assumed |t¥afx)|| < 1

for some matrix norm induced by a vector norm, foralk Q. Now if

¢ € C°(Q) N CHQ) and ifQ is convexthen

llp(x1) — P(%2) — (%1 — X)II = llu(X1) — u(X1) — u(x)ll

< sup [[VUX)llIX1 = Xl
X€]xg, %[

<|[IX1 = Xo|l.

Thus if x; # Xp, then necessarily(x;) # ¢(x2).
If uis ‘'small’ then the strain tensor

1
E= E(VUT + Vu+ Vu'vu)
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is also ‘small’. An open prolem is to study under whaffimient condi-
tions the converse is true.

Exercises

2.3-1 Prove the analoge of Theordm 213.4 with the conditioa O on
I" repalced byu = ug onT.

2.3-2 Prove the analouge of Theordm2]13.4 using the function space
C™? instead of the spacé8™P(Q).

2.3-3 Prove the result of MEISTERS and OLECH using the topological
degre. Show also that in Theorém213(62 = Q).

2.3-4 Give a counter example to the result of MEISERS and OLECH
whengk is not connected.

2.3-5 If u > 0, show that there existly < o such that iflp < 2 < 0, the
existence result of Theordm 218.4 still holds.

2.3-5 (LE DRET (1982)) Examine the existence of a solution to the
pure displacement problem in the incompressible casegéet]. +
Vu) = 1.

2.4 Convergence of Semi-Discrete Incremental
Methods

Consider again the pure displacement problem:

(2.4-1) —div ((1IVu)o™(E(u)) = fin Q
(2.4-2) u=oonr.

It was shown in Section 2.3 that for small forceshe problem had
at least one solution which was also small. Considering dpatoach
via the implicit function theorem as a ‘direct’ approachhe existence
theory, by contrast the incremental methods provide a ‘ tcoctve’
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approach to the same. Because of its constructive natuwreylid be of
use for numerical approximation of the solution.
The basic idea is the following. Let

0< <A<, . <A"<a™ <. <AVN=1

be a partition of the interval [A]. Let f be a given sfiiciently small
force in.%#P (cf. TheorenZ2:314). Let" be the solution of

(2.4-3) AU™ = A,

U" belonging tolP sinceA"f € P if feZ#P and.%#P is a ball. Note
U° = o. Letu" be an approximation df". The idea is to construct'!
knowingu", via a simpler problem, namely a linear problem. Now

A(U n+1) _ A(U n) — (/ln+1 _ /ln) f.
If A(U™1)is expanded aboui(U"),
AU™) = A(U") + A (UMU™ - U") +o(U™E - UT).

This inspires the equations defining the approximatighs Thus
one tries to solve the sequence of problems

(2.4-4) AuMU™t —uM) = Q™A f,0<n< N -1,
(2.4-5) u’=o.

Of course, it is necessary that at each stAge") be an isomor-
phism fromVP(Q) ontoLP(Q).

The following simple, yet crucial, observation is basiche tinaly-
sis of the above method. The equatidns(2.4-A) - (P.4-5) eam\ritten
as

un+1 —u" I
(2.4-6) P (AU f
(2.4-7) WO=0

which is none other than Euler's method for approximatiregydrdinary
differential equation

(2.4-8) u'(2) = (A'(u())"*f,u(o) = o.

97



99

82 2. Some Mathematical Aspects of Three-Dimensional.....

Theorem 2.4.1.Leto* be of class M3, M3). Let p>3ando<o < 98
pb (cf. TheoreniZ313). LeteL.P(Q) be such that

(2.4-9) flopa < p(y)) ™t

Then the ordinary dierential equatio{2.4}8) fav < 1 < 1 has a
unique solutioru() in the baIIBf,’. Besides

(2.4-10) () = u(af).

Proof. The existence of a unique solution of the ordinarffediential
equation is classical. It is converted into an integral équnaand using
the estimates of Theoreln 2.18.3 regarding the uniform halmekss of
(A'(v))! and the Lipschitz continuity of the map— (A’(v))~* on B},

the result follows by a use of the contraction mapping thaore

Now,
U (2) = (A'(u()~*f
or
(A" (U’ () = f
or, again .
ﬁ(A(u(/l)) —af)=0.
Thus
(A(u(W) = Af +C,
and aau(0) = 0, C = 0. This proves the theorem. m|

Remark 2.4.1.The equatiomA(u) = f has been imbedded in a one pa-
rameter family of problemsA(u(1)) = Af, whereu(1) = u. Knowing

a solution for one value of, here,A = 0,u(0) = 0, one tries to go
continuously tal = 1. This is the basis of the so - called continuation
methods. (cf. RHEINBOLDT [1974]).

Remark 2.4.2.The condition[[Z.439) makes precise the neighbourhood
ZP of 0in £P(Q) for which a solution 'close to zero’ was guaranteed
by Theoreni:2314.
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The following theorem proves the convergence of the increate

method desribed above when the 'mash sioze' N Te/i@*l - A") ap-
<N<N-

proaches zero. The assumption that the applied forcesdheutmall
enough is also corroborated by numerical evidence: Otlseriwis often
observed that the approximate solutions 'blow up’ for aaiartritical
value of the parameter, corresponding for example to a phenon of
‘buckling’.

Theorem 2.4.2. Leto*eC3(M3, M3). Let p> 3and0 < p < p}. If
Iflo.po < p(p) Y,
then given any patrtition
o= <l<...<AN=1
of [0, 1], Euler's method; Find %4 0 < n < N, u"eBP, such that
(2.4-11) AWMU —u") = AT - f
with v = o, is well defined and

2.4-12 max||u” — u(A" f <C max (A™"
( ) oma I (A" F)ll2p0 < OSnSN_l( )

where
C =C(p,PIflopq) > 0.

100

Proof. The proof is classical and again relies on the uniform bodnde
ness and the Lipschitz continuity of the mép- (A’(V))™* on BE.
If A= max (11— A", then
0<n<N-1
(2.4-13) IuN = u(f)llzpe = 0(AR).
If N ando were defined by

(2.4-14) o = (E(U))
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and

(2.4-15) o = o (E(u(f)))
then it is easy to see that

(2.4-16) lo™ = rll1pa = 0(A).

To conclude, two open problems will now be stated.

The first is to analyse thilly discreteincremental method by add-
ing the dfect of finite element methods.

Secondly, one can construct formally a semi - discrete (ty €lis-
crete) incremental method for the mixed displacementitiagroblem.
If it can be shown that the approximantsexist uniquely and that they
converge in some sense A3 — 0, this could provide a valuable exis-
tence theorem for this class of problems. m|

Exercises

2.4-1 (DESTUYNDER AND GALBE (1978)). For a St Venant - Kirch-
hoff meterial show that the map— {i(2) (cf. equation[[Z.4-10))
is analytic in a neighbourhood of 0.

2.4-2 Apply Newton’s method to the equatigh(u) = f, ueVP(Q2) and
study its convergence to a solution of the equation

2.5 An Existence Theorem for Minimizing Functio-
nals and Outline of its Application to Nonlinear
Elasticity

In this section, an existence theorem for minimizing a fioma! will
be proved. The functional considered will resemble thel tetergy
functional of elasticity described in Sectibnll.4. Unfdetg however,
the energy functionals of elasticity will not satisfy alethypotheses of
the theorem. But it will provide an insight as to what projesrtof the
functional are to be considered and how to modify the thedesuit
such functionals. This will be done in the next section.
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Theorem 2.5.1.Let n andv be integers> 1. LetQ c R" be an open
subset and let&R. (If ,meas) =, oo, assume & 0). Let

0: QxR - [a +0]
be a mapping such that

g(x,.) : R” = [a,+0]
is convex and continuous for almost alcX,

9(. ) : Q — [a +e0]
is measurable for all gR”. Then, if ¢ — q weaklyL.}(Q)

(2.5-1) fg(x, q(x))dx < Ii[(rlior;lf fg(x, ak(X))dx
Q Q

102
In other words, the mapping

q- f o(x G(9)dx
Q

is weakly lower semi - continuous aA(Q).

Proof. First of all, without loss generality, it can be assumed thatO.
(If measQ < +oo, replaceg by g — a meas )). The continuity inq
for almost allx and the measurability ix for all g implies thatg is a
Caratheodory function and sod€x) is measurable i, so isg(x, q(X)).
Since nowg > 0, the integral

f 9% q09)dx
Q

makes sense.
Letg, — qin LY(Q) strongly. Let{q,} be any subsequence such
that the sequence

f 0%, Gy ()l
Q
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is convergent. Now there exists a further subsequencen(agaioted
by gn, for convenience) such thg, (X) — q(x) for almost allx. Hence

9(x. n, (X)) = 9(x. 9(x))

for almost allx. Thus by Fatou’s lemma

[ otx apayx < timinf [ g0 (el
Q Q
- im_ [ gt 6, (0)cx
Q

Then as the subsequeni@p, } was chosen arbitrarilv subject to the
condition that the integrals converge the relation (2.%ellpws, when
gn — qstrongly inLY(Q). Thus the functional

(2.5-2) 3% f 9% q0))dx
Q

is strongly lower semi - continuous. Itis also easy to sekllimconvex.
Now if aeR, then
(QeLH@)1I(O) < @)

is strongly closed and convex and hence weakly clobatz(r's Theo-
rem). Thus it follows that) is weakly lower semi - continuous which is
equivalent to[(Z.531). o

Remark 2.5.1.1f g is independent ok, then it sdfices to assume thgt
is convex and continuous.

Remark 2.5.2.The above result conuld be applied as followsy(l, q)

> c+DbjgP,b> 0, p > 1 then a minimizing sequence will be bounded in
LP(Q). Sincep > 1, a weakly convergent subsequencé&. i) can be
extracted. 1fQ is bounded, this implies weak convergencé&. i) and

an application of the above result would show that at thetJidhattains

its minimum.
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Remark 2.5.3.1f g did not take the value-, the convexity inq also
implies continuity. However, iy assumed the valueco continuity no
longer follows from convexity. The inclusion of the valdeo in the
range ofg is necessary for applications. It will be needed (as was men-
tioned in Sectiol 2Z]1) that the energy tends-to as det F) approches

0 through positive values.

Theorem 2.5.2.LetQ c R" be a bounded open set. L&t : Q xR” —» 104
[a, +0] be such that

W(x,.) R - [a +o0]
is convex and continuous for almost adc,

W(.q): Q- [a+]
is measurable for all gR”. Let there exist ¢, b, p such that
(2.5-3) b>0,p>1 andW(x,q) > c+bigP

for all geR” and almost all xQ. Let¢ : WLP(Q) — R be a continuous
linear functional. Lef’y c T" be of strictly positive da - measure and let
U be a weakly closed subset of

(2.5-4) V = {veWP(Q)lv = 0 onTo} .
Define
(2.5-5) I(v) = f W(X, VV(X))dxX — £(V)
Q

for veV. Assume
inf 1(v) < +oo.
Vel

Then the problem: FindelU such that

(2.5-6) () = inf 1(v)

has atleast one solution.
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Proof. Let ¥ be a minimizing sequence i, i.eV¥eU and
1 (V) — inf (V) < +oo.
veU
Now, 105

1(v) > CmeasQ) + b}, ~ I€llIMILpe

> Cmeas() + b’|v|f’_p’Q = ll€llvll1, p.o

whereb’ > 0, using Poincare’s inequality. Singe> 1, it follows that
I(V) > +o0 as||Vll,po — +o0. Hence

sgpnvknl,p,g < +o0.

As p > 1, VIP(Q) is reflexive and a weakly convergent subsquence
can be extracted. Denoting this subsequence agaif,bet v — u
weakly inWLP(Q). SinceU is weakly closeduel.

Now clearly £() — £(u). Also VW¢ — Vu weakly inLP(Q) and
hence Q is bounded, in.}(Q). Then by TheoreriZ3.1, it follows that

inf 1(v) < 1(u) < liminf 1(4) = inf 1(v).
O

Remark 2.5.4.The application of this result to the linearized elasticity
system is easy (cf. Exercise 2.5-1. But unfortunately, ndsdirectly
applicable to non - linear elasticity.

The assumptions to be satisfied are firgbly; 1, which leads to the
choice of the appropriate spa@éP(2), and, secondly, the convexity of
the function'W’.

If the fuctional | were strictly convex, this would imply uniquer-
ess of solutions which is not physically acceptable (cf. tisad1).
However,it is not even possible to have & W/(F) convex inthree -
demensional elasticity (cf. Exercise 2.5-4). Note thathim linearized
elasticity system, it is true tha#’ is convex, but then one can show (cf.
Exerise 2.2-1) that a linear model also contradicts theraxabmaterial
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frame indiference. Finally, to shoW to be weakly closed ifiv:P(Q),
itis usually shown that it is strongly closed and convex. §ptcally, U
will be non - conver with constraints like de¥) > 0 or det ¥Vy) = 1
Thus to overcome these twdiitulties, the notions gbolyconvexity
andcompactness by compensatigitl be introduced in the next section.

Exercises

2.5-1 Show that in the linearized system of elasticity, unildtemndi-
tions can also be taken into account (apply Thedreml2.5/2 wit

U = {veVluz > 0 onl; c I' — T},
where

V = {veH(Q)lv = 0 onT}), da mead > 0).
2.5-2 For a St Venant-Kirchi® material,
A 2 2
W) = Etr(E) + utr(E),A>0,u>0

where 1
E=EWV)= E(VvT +VV+ W V).

Show that the corresponding energy is coercive on the space

V= {V6W1’4(Q); v=0 onro}, da -mead’ > 0.

1 . .
2.5-31f E = Z(FTF — ), show in the above case that— ‘W(F)is 107
convex.

2.5-4 Show that the convexity of the functidh — W(F) is physically
unrealistic (cf. TRUESDELL and NOLL [1955]).

2.5-5 For a St Venant-Kirchh®material, show that the solution u ob-
tained via the implicit function theorem minimizes locathe en-
ergy inW1~(Q) but not necessarily ifiv>4(Q).
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2.6 J. BALL'S Polyconvexity and Existence Theo-
rems in Three Dimensional Elasticity

In the last section, it was seen that the lack of convexityhef gtored
energy function was an obstacle to the application of thetemce the-
orem (cf. TheorerhZ3.2). Now, an extension of the notionooi/exity
following J. BALL will be introduced.

Recall that ifA is a matrix, then adj) stands for the transpose of
the matrix of cofactors of. The following identity holds:

(2.6-1) A(adiA) = (adjA)A = det@)I.

Thus, ifAis invertible

(2.6-2) adj@) = det@)A1,
Also,

(2.6-3) adjA\B) = adj(B) adj(A).

and

(2.6-4) (adip)™ = adj(A")

In the study of deformations (cf. Secti@nll.1), it was seet th
lengths were modified by a function &(= V¢) viaC = FTF. Sur-
face areas were changed in terms of Bjiind volume elements were
altered by a factor of def(). Since it is natural to expect that a stored
energy function somehow takes these into account, it ioredde to
assume that

(2.6-5) W(F) = Gg(F, adjF), detF))
for all FeM3, where
G M3 x M3x]0, co[— R

is a given function (since foFeM?, adj(F)eM2). While it not true that
W as a function ofF is convex (cf. Exercise 2.5-4), it is no longer
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impossible to expegF to be a convex function of its three arguments,

F, adj(F) and de¥ (of course, the domain of definition gfis not a con-
vex set, but that is easily handled as will be seen below).ifance,
W(F) = detFis not a convex function bu(6) = ¢ is convex!

Let V be a vector space aidl c V ary subset. Led : U — R be
a function. It is said to beonvexif there exists] : colU) — R, where
co(V) is the convex hull ofJ, such that

(2.6-6) J(V) = J(V)

for everyveU.
Let U be a non - empty suset df° and let

(2.6-7) U = {(F, adj(F), detP)|F€U).

ThusU c M2 x M3 x R. A function W : U — R is said to
be polyconvex if there exists a convex functign: ¢4 — R such that
(Z86-3) holds for everyeU

If U =MS thenco(U) = M3 andU = M3 x M3x]o0, +co[ while co
(%) = M2 x M3x]o, +co[. Thus a stored energy functiow’ : M3 — R
is polyconvex if there exists a convex function

G M2 x M3x]o, +oo[—> R

such that[[Z615) holds for afteMS.

The condition of polyconvexity on the stored energy funttieads
to a class of hyperelastic materials known @QSDEN’S materials
(which we now define for the compressible case: for the indesy
ible case, see Exercise 2.6-8).

As a simplest possible example, &t 0, b > oandI :]o, +co[— R
be a convex function. Define

(2.6-8) W(F) = aF|” + bl adjF|* + T(detF)
where

(2.6-9) IFI>=tr(FTF)=F: F.

109
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Clearly as||.||? is a convex function, and dsis also convex, it fol-
lows that'W defined by[[2.638) is polyconvex with

(2.6-10) G(F. H,6) = al|F||? + blH|j?> + T(6).
Remark 2.6.1.It will later be assumed thdt(6) — +c0 asé — o".

Let FeM3. LetU = (FTF)Y? with eigenvaluesy, v», v3. These are
called theprincipal stretche®f F. Then it is easy to see that

(2.6-11) IFI? = V2 + V3 + V3
(2.6-12) lladjFI? = VAV3 + VaV3 + VaV2.

110
Hence [Z68B) will now read as

(2.6-13) W(F) = a(VZ + 3 + V3) + b(VA2 + V32 + VA2 + T (vavava).

This can be generalized to get @GDEN Materialas follows. Let
I" :]Jo, +oo[— R be a convex function. Led > 0,1 <i < M,b;>0,1<
j < N. Further let,

1<
(2.6-14) { S@1Ls s aM

1<pi<---<pBn.

Now, if C = FTF,

/2 —
(2.6-15) tr(C .) \2/‘1’ + Vg + Vg
tr((adjCy’/2) = (vivo)f + (Vava)f + (vava ).
Now define forFeM?,
M N
(2.6-16) W(F) = > atr(C™?) + )" bj tr(adjCy"/? + I(det(F)).
i—1 =1

Theorem 2.6.1. (i) An Ogden’s Material is polyconvex.
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(ii) It satisfies the following coerciveness inequality.
(2.6-17) ‘W(F) > Co + C4||IF||*™ + Cy|| adj(F)I’N + I'(det(F)).

Proof. Each summand if.{Z.6-116) is a symmetric function of the eigen
valuesvi(resp. WVk+1) and is convex and non-decreasing with respect
to each variable orp] +oo[3. Such a function is convex with respect to
F (resp. adF) and thusW is polyconvex. (cf. Exercise 2.6-1). O

To prove the coerciveness notice that

tr(C¥%) = f +V5 + 4
> C(a) (V5 + V5 +V3)2)"

= C()lIF|”
for any @ > 1, by the equivalence of norms k3. The inequality
(Z6-1T) follows directly from this observation.
The stored energy function of a St Venant-Kirchimmaterial:

(2.6-18) W(F) = — (& Z 2 ) r(C) + (%)tr(cz) + %tr(adj(C))
N (6/1 -g 9/1)’

is not polyconvex (Exercise 2.6-2). This stems from the fhat the
codficient oftr(C) is < 0.

Remark 2.6.2.In the incompressible case, dej(= 1. ThusW(F)
has no dependence on del( Such Ogden’s materials comprise the
so-calledVIOONEY-RIVLIN materials.

To fix ideas, consider an Ogden’s material described by
M N
(26-19) W(F) = > atr(C™?) + )" bj(tr(adiCy") + T(detF)
i=1 =1

witha; > 0,1<i <M,bj>0,1<j<NandI'(s) >Cé" +d,c>o.
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Then by Theorerfi Z.8.1, the following coerciveness conditiolds:

(2.6-20) W(F) = a+ b(|F|IP + ||adjF||9 + (detF)"), p
= maxaj, q = maxxg;.
I J

Since it is natural to desire that
fW(F)dx < +o00,
Q
the set of admissible deformations will typically be of tloerh

(2.6-21) U = {yeW"P(Q)|adj(Vy) eLY(Q), det(Vy) eL"(Q) det
(Vy) >0a.e, y = ¢poonT,}.

Such sets are ‘highly’ non-convex (cf. Exercise 2.6-3). ilt mot
be shown thaU is weakly closed (in fact that is not true in general) but
it will be shown that weakly convergent subsequences carnxioacted
which suit the purpose of minimizing the energy.

In order to do this, the mappings — adj(V¢) and¢ — det(Ve)
have to be looked at more closely.

Counting indices modulo 3, the matrix adif) can be defined by

(2-6'22) (adlvd’))ij = (ai+l¢j+1ai+2¢j+2 - Cr)i+2¢j+1(9i+1¢’j+2)-

If peWLP(Q),p > 2, then it is easy to see that a@i)elP/?(Q).
The mapping defined in this fashion betwedit(Q) andLP/3(Q) is
non-linear and continuous. We denote weak convergence .by

Theorem 2.6.2.1f peWP(Q), p > 2, thenadj(Ve)elLP/?(Q) Further

" — pinWiP(Q), p> 2

(2.6-23) _ _
adj(Vg¢") = HinL9(Q),q> 1

} impliesH = adj(Vg).

Proof. (1) First an alternative definition of adj¢) will be established
in the sense of distributions. LeeC>(Q2). Then a simple computation
yields

(2.6-24) (adiVe))ij = 0i+2(¢j+20i+10j+1) — 0i+1(Pj+20i420+1)
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(with no summation omand j). If 6eD(), then
@625 [ @@= [ 610210l

Q Q

+ f Gj+20j+20j+10i+10dX
Q

For fixedfeD(Q), a simple application of Holder’s inequality shows
that each term if{Z6-25) is a continuous functiondH(Q2) (where if
PeWLP(Q), p > 2). SinceC™(Q) is dense in each of these spaces, it
follows that [Z6-2b) is true fopeW-P(Q), p > 2. Thus [Z6-24) holds
for peWLP(Q) in the sense of distributions.

(i) Let ¢" — ¢ in WEP(Q). Letd = (6;)), ijeD(Q) . Let p* = +o0
if p> 3 and be given by

1 1 1
2.6-26 —=Z-Z
for p < 3. Then for 1< q < p*,
(2.6-27) WhP(Q) — LY(Q),

i.e., the above inclusion is compact. Now#D(Q) is fixed andy" —
in WXP(Q) andg" — ¢ in W-P(Q), then

Y = yin LYQ)
Od" — OkpinLI(Q).

114
If further —; + é < 1, it will then follow that

f "0k Xdx — f Yok Xdx
Q Q

From this observation and frofai {Z.6125), it follows that

(2.6-28) fg (adj(Vg") : 6dx — fg (adj(Ve")) : 6dx
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. 1 1 . ..
provided thatg < p* and= + — < 1. Itis easy to see that this is
equivalent top > 3/2, which is satisfied anyway.

(i) Let ¢" — ¢ in WHP(Q) and adj¥¢") — H in LYQ). By (ii)
above for anyd = (i), eD(Q), (Z5=2Z8) holds and also

fg (adi(V4") : odlx - fg H o
Thus
(2.6-29) f (adi(vVe") - H) : 6 = 0
Q

for all 6 = (6;;), 6;;eD(Q) and since (adN¢")) — H)eL(Q) andD(Q) is
dense irL(Q), it follows that

H = adj(Ve)
thus proving the theorem. m|

Remark 2.6.3.If p* is as in [Z6-26), ifpjeLP (Q) anddigkeLP(), and
if %) + é < 1 (which is equivalent tg > 3/2). the producip;di¢k

belongs td_1(Q).

115 Now using [Z6-25), the adjugate B for peW-P(Q) can be de-
fined in the sense of distributions. This definition of theugdite ofV¢,
extended t@ > 3/2 is denoted by

Adj (Vg) .

The step (ii) of the proof of the above theorem goes through fo
p > 3/2 as remarked in the proof itself. Hence for- 3/2, if " — ¢
in WHP(Q), thenAd j(V¢") — (V¢) in the sense of distributions.

Remark 2.6.4.The above theorem implies that the set

U = {(¢, H)eW"P(Q) x LYQ)H = adj(Ve)}
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is weakly closed ifv3P(Q) x LY(Q) for p > 2, g > 1. But the set
{peWP(Q)| adj(V¢) eLH(Q)}
is not necessarily weakly closedWiP(Q). (cf. Exercise 2.6-4).

Now consider the mapping — det(V¢). In the first place

(2.6-30) detVg) = Z SON ()9105(1)0205(2)030(3)
oePs3

wherePs is the set of all permutations of (1,2,3). Now détj will
be in LY(Q) if ¢eWLP(Q), p > 3. But one use the integrability of the
adjugate and improve on this by noting that

(2.6-31) de(V¢) = dig1 (adj(Ve))iy

(summation with respect to i). Now, di¢1 € LP(Q) and (adjV¢))i1 €
LP(Q) and if 1/p + 1/q < 1, then det{¢)eL1(Q). Thus [Z6=31) will
be used to define dét§), for if p < 3, the formulal(Z.6-30) makes no
sense.

Theorem 2.6.3.Let p> 2, peWLP(Q) such thaiadj(Ve)eL (), where 116

lp + % = 1. Thendet(V¢) given by@6-31)is in LY(Q). Further

(2.6-32)
" — pinWtP(Q), p>2
_ _ 1 1 .. |H=adj(Ve)
dj(Ve") = HinLY(Q), - +=-<1 [
adj(Vg") in LY(Q), 0 + 3 <1i;imp |es{6 _ det(Ve).
det(Vg") — sinL'(Q),r > 1

Proof. (i) The main dfficulty in the proof is to give an alternative def-
inition of the determinant in the sense of distributions.t $eC*(Q).
Then

det(Vg) = di¢1(adj(Ve))is
= di(¢1(adj(Ve))ir)
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using the Piola identity (cf. Exercise 1.1-1). So, fletO(Q2)

(2.6-33) Ldet(Vd»)OdX:—L¢1(adj(V¢))i18i9dx

It will be shown that[Z.6-33) is valid fap € W-P(Q) with adj(V¢)
elLP, wherel +—==1

Now by the Piola identity, for smooth, di(adj(V¢))i1 = o or for
0eD(QY)

(2.6-34) f (adj(Ve))i10;60dx = o.
Q

By the density of smooth functions iWP(Q), it follows that

@5-33) is true for albeWLP(Q), p > 2.
For expository convenience, set= ¢1, Wi = (adj((Vg))i1. Then

$eW-P(Q) andwieLP (Q), lp N % _q

117 LetpeD(R3),p > 0and [ p = 1. Define
RIS
(2.6-35) pr(¥) = Kp(kX)

so thatpx has the same properties @sogether with the property that
supp px) skrinks to zero ak — . Letw; be extended by outsideQ
and define

@636 e = [ pRx- yYw)dy
R3
Then the functiom = w; is smooth and converges o in LP (Q)
Let 0eD(Q) be fixed. Then there existg = ko(f) such that the

support of the mag — px(X-) is contained ir for all k > k, and for
all xe supp@). then fork > ko,

(2.6:37) divpr + w)(X) = f aixipk(x— ywi(y)dy = 0

Q
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using [Z6=31), forxesuppf). Now if ¢keC®(Q) and ¢k — ¢ in
WLP(Q), it follows that

—f¢k(pk*wi)6i9dx:fai¢k(pk*wi)9dx+ f ¢kai(pk*wi)9dx
Q

Q suppe)

By 2.6-37) the second integral on the right-hand side Verss
Now passing to the limit in each of the integralskas> o,

—f¢Wi3i9dX=f3i¢Wi9dX
Q Q

from which [Z.6-3B) follows.

(i) If " — ¢ in WLP(Q) and adj¥¢") — adj(Ve)in LIY(Q), with
p > 2and—+= < 1, then using the same type of compactness argumens
as in the proof of theorefn2.%.2, it can be shown thavéa(Q2),

f det(Ver) fdx — f det(Ve) ddx
Q Q

(iii) Using the previous step, the conclusions of the theooan be
drawn exactly as in Theorem 2.b.2. m|

Remark 2.6.5.As in the case of ady{g), if p > 3/2 the determinant can
also be defined i’ (Q) using the fact thap(adj(Ve))ireLX(Q). The
distribution obtained is denoted by D&if).

Remark 2.6.6.The above theorem shows that the set
{(9. H.6)eW"P(Q) x LYQ) x L"(Q)IH = adj(V¢) . 6 = det(V)}
is weakly closed ifv1-P(Q) x L"(Q). But the set
{eWP(Q)| adj(V¢) eLY(Q). det(V4) eL" ()}

is not necessarily weakly closed Wit"(Q).
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The following existence theorem can now be proved.

Theorem 2.6.4(J. BALL). Let'W : M3 — R be a stored energy func-
tion, such that

(i) (Polyconvexity) there exis§ : M3 x M3x]o, +oo[— R which is
convex and such that for alldf3,

(2.6-38) W(F) = G(F, adjF), det(F));

(ii) (Continuity at+ooif Fy — FinM3, Hy — Hin M2 ands, — o*,
then
(26'39) nllm Q(Fn, Hn, 6n) = +00,

119

(iii) (Conerciveness) There existR, b > 0, p > 2, geR with lp + é <

1, and r > 1, and r > 1, such that and for al(F, H, 6)eM® x
M3x]o, +o0],

(2.6-40) G(F,H,6) > a+b(|F|IP + [H||9 + &").
LetQ c RS be a bounded open subset with boundgey ', U T

where the da-measure B is > 0.
Let fell”(Q), gelL? (I'1) such that the maps

weWP(Q) — f f - ydx andyeWP(Q) — f g.yda
Q Iy

are continuous.
Let | : W-P(Q) — R be given by

(2.6-41) I(¢//)—f(W(Vw)dx—[ff.l//dx+fg.¢/da]
Q Q I
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andU c W1P(Q)be defined by

(2.6-42) U= {wewlﬁp(QN adj(Ve) eLY(Q), det(Vy) eL" (), det
(Vy) > 0a.e.y = ¢oonly},

with ¢oeWP(Q). Assume thatl = ¢ and that

;IE{J [(¥) < +o0

Then the problem: FingeU such that
(2.6-43) I(#) = inf 1)

has at least one solution.

Proof. Step (i). Transformation of the problenDefineG : M3 x M3 x 120
R — RU{+co} by

G(F,H,0)if6§>0
+ooif 6 < 0.

(2.6-44) G(F.H,6) = {

Theng is easily seen to be convex and continuous iata-fo].
Thus the functional

(2.6-45) i(y) = f G (Vw.adj(Vy) . det(Vy)) dx
Q

—[ff.¢dx+fg.wda]
Q 1
is well-defined.

Let yeW-P(Q) with adj(Vy)eL9(Q) and detfy)el" (Q). If 1(y) <
oo, then it follows that deNy) > o a.e.

If €U thenl(y) = I(y). Thus the original problem is equivalent to
minimizing 1 () overU.
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Step (ii). It can be shown that (cf. Exercise 2.6-5) for abWP(Q)

with ¥ = ¢o onT,
p
[ 1vupax [ | ¢o|da]
Q To

(2.6-46) f ly|Pdx < d
Q

whered > 0. Hence foryeU,

I_(w)Zameas(z+b’f||V¢||pdx+ bf||adj(V¢/)||qu
Q Q

‘b f (det(V))" - Cl¥llzpe
Q

with b’ > o, or

(2.6-47) 1() = Co+Callvl o, +Cal adi (V) 13, o + Cal det(Vy) Iy,

with Cq, C,, C3 > 0. (cf. RemarlZ817)

Step (iii). Let¢" € U be a minimizing sequence fér From the coer-
civeness[(2.6-47), it follows that", adj(V¢") and dety¢") are bounded

in WLP(Q), LY(Q) andL" (Q) respectively. Since these spaces are reflex-
ive, a subsequene®' can be found such that

¢" — ¢ WHP(Q)
adj(Ve") — Hin LY(Q)
detVg") — ¢in L"(Q).
But by the previous theoredd = adj(V¢) andé = det(Ve). Thus

by the convexity and contnuity @, | is weakly lower semi-continuous
(cf. TheoreniZ.5]1) and so

1(¢) < lim inf 1(¢") < +o0.

Hence det{¢) > o. It can be show thaplr, = ¢, (cf. Exercise
2.6-6) and s@ € U and it follows thatl and hence attains a minimum
at¢. |
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Remark 2.6.7.The coerciveness conditioi (Z.6}47) can be obtained
only onU and not on the whole spacelt uses the fact thap = ¢o
onT, for all the functions under consideration.

Several comments on the above result are in order here.ofFmdt
unlike the approach based on the implicit function theortra,result 122
is applicable to “all” forcegnot just “small” ones)and toall boundary
conditions Of course, in case of the pure traction problem, the forces
must satisfy certain compatibility conditions. It is alqupéicable to the
mixed displacement-pressure probléch Exercise 2.6-7).

A shortcoming of this approach is tiheck of regularity of the solu-
tion. Here it is not know if the minimizing function satisfite equilib-
rium equationgven in a weak sensgurther even thought it is true that
the solution satisfies dét§) > 0 a. e. , additional conditios are needed
to insure thap is one-one (see BALL [1981c]).

It is possible to extend this approach to cover the inconsiioks
case where defp) = 1. (cf. Exercise 2.6-8).

Consider a St Venant-Kirchffiomaterial. If the forces are ‘small
enough’ it was shown that there exists a 'small’ solutiorhi pure dis-
placement problem (Theordm2ZI3.1). However, in the pudatiement
or mixed displacement traction problem, owing to the nolyqanve-
Xity, it cannot be shown that the energy is minimized. @pen prob-
lemis to prove existence of ‘small’ solutions for small forche mixed
problem such materials.

To conclude this section, it will now be examined how to cleoos
a stored energy function given a compressible material. siden a
compressible material (steel, for instance!). Around arststate it
is known that the stress tensts can be written as

(2.6-48) S5(E) = A(tr E)l + 2uE + o(E),

whereE is the Green-St Venant strain tensor. The constamatsdu are 123
strictly positive and can be determined form experimenbgitapprox-
imately. It has been shown that (cf. Sectiod 1.4)

(2.6-49) W(F) = %(tr(E))z + utr(E?) + o(EP).
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The foillowing theorem due to CIARLET and GEYMONAT [1982]
says that it is possible to express such a material as a siogden’s
material.

Theorem 2.6.5.Givena > 0, u > 0, it is possible to find & 0, b > 0
and a functiorl" :]0, +co[— R which is convex satisfying

(2.6-50) I'(s) >Cs?+d,C>o0

such that the corresponding stored energy function
(2.6-51) W(F) = a|F|I? + bl adjF|[* + T(detF)
agrees tol/2(tr(E))? + u tr(E?) upto |EJ?).

Proof. (Sketch). SettingC = FTF = | + 2E, then

IFII? = trC = tr(I + 2E)
ladjF|I? = tr(adj( + 2E))
det(F) = +/(det( + 2E)).

Expanding these about |, it it follows that

W(F) = 3a+3b+I(1)+ (2a+ 4b+ I"(1)) tr(E) — (2b+ I"(1)) tr(E?)
+(2b+ %(F’(l) + I (1))(tr(E))? + o([E).

Comparing with[[2.6-49), it follows that

(2.6-52) 2a+4b+1"1=0,
(2.6-53) —(2b+T7(2)) = p.
(2.6-54) 2b + %(F’(l) +I"()) = %

124
These equation must be solved such thato,b > oandI™’(1) < o
(T is convex). (By[[Z6:=32)) it follows thaf’(1) < 0). It is easy to
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see that any pointl{(1)),I"’(1)) on the open line-segment shown in
Fig.[Z6.1 givea > 0,b > o satisfying the above equations.

F//(l)

D)\+M

Figure 2.6.1.:

Now to choose a convex functidh:]0, +oo[— R satisfying [Z.6-00).
One can findr > 0,8 > 0 such that

(2.6-55) ['(6) = a6® — Blogsé.
This function also is such tha{s) —» +o0 asé — o". O

It follows now that the associated minimization problem agleast
one solution by J. BALL's theorem. Here

(2.6-56) U = {y € HY(Q)|adj(Vy) € L¥(Q), det(Vy) € L2(Q), det(Vy)
> Oa.e. andy = ¢p onTp}

Remark 2.6.8.In (ZB-50), the ternCs?2 could have been replaced by125
Cé", forr > 1. The definition faU would be modified accordingly.

Remark 2.6.9.1t is also possible to choos¥(F) in the form
(2.6-57) H(F) = ag||F|I? + azl|F||* + b|| adjF||? + ['(detF)

wherea; > 0,a, > 0,b > 0 andI” convex. (The St Venant-Kirchlifio
stored energy function resembles this, oaly< 0.). In this case, it can
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be seen that the admissible range of valliggl], I’ (1)) lies in the open
triangle of Fig[Z.&P. (Exercise 2.6-9).

1’\//(1)

—2u _/i —;/2|

Figure 2.6.2:

Exercises
2.6-1 Let.s# : M® — R be a function such that
H(F) = p(va, V2, Va), F € M3

wherevi,i = 1,2, 3 are the principal stretches Bf If ¢ is a sy-
metric function which is convex ond]+c[)® and non-decreasing
in each variable, show tha#’ is convex.

126  2.6-2 Show that the stored energy functio#i for a St Venant-Kirchhfy
matrial (cf. [Z86=IB)) is not polyconvex.

2.6-3 Show that the set
{y € WHP(Q)|adj(Vy) € LYQ).q > 1)
is not convex p > 2).

2.6-41f p > 2 andq < p/2 show thatp" — ¢ in WHP(Q) implies
adj(Vg") — adj(Ve) in LY(Q).
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2.6-5 Show that there exists a constaht> 0 such that for alky €

WP(Q), ¢ = yo onTy,
p
f |w|pdx+[ f ¢o|da] |
Q To

flwlpdxs d
Q

2.6-6 If ¢" — ¢ in WHP(Q) and¢" = ¢, onT,, show thatp = ¢, onT,.

2.6-7 Apply J. BALL's theorem to the mixed diaplacement-pressure
problem.

2.6-8 . LetU be defined by
U = {(¢. H) € HY(Q) x LA(Q)H = adj(V$). 4 = ¢, on Ty,
det(Vg) = la.e}

(incompressible case). Assutde= 2. (i) Show thatJ is weakly
closed in the product spa&g(Q) x L3(Q). (ii) Consider

W(F) = a||F||*> + bl|adjF||?>,a> 0,b > o,
I () :f(W(Vw)dx—(ff.wdx+fg.zﬁda).
Q Q I

Show that the problem: Fingl € U such that

U = {¢ € HY(Q); adjVe € L%(Q), ¢ = ¢o) on Iy, detV¢y = la.e}
1(¢) = Inf 1(¥)
has at least one solution. (iii) if is smooth, show that thea- 127

grange multiplierarising out of equality constraint d&) = 1,
is the pressure. (cf. Exercise 2.1-2).

2.6-9. Check the assertion made in Rem@ark3.6.9.
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Bibliography, Comments and some Open Problems

No attempthas been made to give an exhaustive list of pertinent
references.

The first chapter of these lecture notes gave a descriptietasfic-
ity in three demensions. For further refrences, one may etssult
GERMAIN [1972], GREEN and ZERNA [1968], GREEN and AD-
KINS [1970], GURTIN [1981a, 1981 b], MARSDEN and HUGHES
[1978,1983], STOKER [1968], TRUESDELL and NOLL [1956],
VALID [1977], WANG and TRUESDELL [1973], ERINGEN [1962]
and WASHING [1975].

The second chapter discussed some methods for proving ihe ex
tence of solution to the boundary value problem of non-lireasticity
and to the associated variational problem, in the case ofrajgstic
materials.

For references about the linearized system of elasticdg, BU-
VAUT and LIONS [1972], FICHERA [1972] and GURTIN [1972].

The key result in proving existence via timeplicit function theorem
is theW?P(Q)-regularity of the linearized system of elasticity. Theea
p = 2 was proved by NECAS [1967] and the regularity for otpevas
proved by GEYMONAT [1965]. From this regularity result, ¢ued
however only for the purdisplacement problejihe existence theorem
was independently proved by CIARLET and DESTUYNDER [1979b]
MARSDEN and HUGHES [1978], VALENT [1979]. The basic idea,
however, goes back to SPOPPELLI [1954] and VAN BUREN [1968].
The extension of this result to more general constutive w@ojug was
particularly studied by VALENT [1979]. See also VALENT [18],
1978Db].

The necessity of th&/%P(Q)-regularity of the linearized problem re-
stricts the application of this method paire displacement problem#.
is also possible to treat thmure traction problemyhich is more compli-
cated owing to the compability conditions which the givercés must
satisfy. For details see CHILLINGWORTH, MARSDEN and WAN
[1982].

The increment method described in Secfiof 2.4 is none oftfaer t
Euler's method for approximating an appropriat&eatiential equation
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in a Solbolev space. In other words, this method appears asfian
nite demensional version of the so caltahtinuation by dferentiation
approach as described, for instance, in RHEINBOLDT [1974].

To the best of the author’'s Knowledge, the convergence oément
methods for non-linear elasticity problems has been aedlge far only
in some special cases, such as the one demensional modeim&hal-
low spherical shell, by ANSELONE and MOORE [1966] or sometéini
dimensional structural problems by RHEINBOLDT [1981]. Tresults
presented in these lecture can be found in BERNADOU, CIARBERT
HU [1982].

For a decription of incremental methods in non-linear @agtsee
MASON [1980], ODEN [1972] and WASHIZU [1975].

The variation approach is based on the famous article of BALL
[1977]. In addition to the notion opolycomvexityanother essential
contribution of J. BALL is that one can pass to the weak limitcer-
tain non-convex sets as was seen in Section 2.6. This ideangbact-
ness by compensation was also developed by MURAT [1978,] 81D
TARTAR [1979]. See also AUBERT and TAHRAOUI [1982].

Other important refrences are BALL [1981a,1981b, 1981&]l.B, 130
CURRIE and OLIVER [1981], BALL, KNOPS and MARSDEN [1978].
See also EKELAND and TEMAN [1974] for the general problem of
minimizing functionals.

The notion of polyconvexity led to the definition of &gden’'s ma-
terial (cf. OGDEN [1972]). ASt Venant-Kirchhg materialis not Og-
den’s material and the existence of a solution to the conredipg mixed
displacement-traction problem is open. In this connectie@ also AT-
TEIA and DEDIEU [1981] and DACOROGNA [1982a, 1982b]. For yet
another approach, see ODEN [1979].

One of the drawbacks of J. BALL's approach is the lack of ragty
of the solution and so one does not know if the solution thuained
satisfies theequilibrium equatioreven in a weak sense. In this contex,
see the results of LE TALLEC [1981] and LE TALLEC and ODEN
[1981] for incompressible materials.

To conclude, we present a list of some of the open problemeria n
linear elasticity. Some of them have been mentioned in tktebifore.
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. LetC = V¢'Vg. If C— | is'small’, in a sense to be made precise,

can it be said that is close to a rigid deformation? If some boundary
conditions are imposed, can it be shown i one-one?

In this context cf. KOHN [1982], ALEXANDER and ANTHAN
[1982], ANTMAN [1979].

. The standard implicit function theorem approach fails riuixed

problems. Could “hard” implicit function theorem like thatNASH
and MOSER be used? In case of special domains like a thin pate
singularities are know explicity. Could this be used, aralithplicit
function theorem used only on the “regular” part of the dohf®

. Study of incremental methods taking into account theefieiement

methods.

. An incremental method can ermally written down for the mixed

problem. If it can be shown to be convergent, this would pievan
existence theorem for the mixed problem.

. The minimization procedure of J BALL does not imply that go-

lution is small if the forces are small. How can one “distirsii

the expected small solution in this case? (In the case of tine p
displacement problem, the solution via the implicit funottheorem
does not seem to be a local minimum of the energy in the “right”
space).

. A study plasticity has been taken up by TEMAN and STRANG-

[1980a, 1980b]. They use the linear theory in the part cpmeding
to elasticity. Can one obtain better results by incorpogathe non-
linear theory, using J. BALL's approach?

. A study of ‘non local’ constotutive equations. Here thenstitutive

equation is of the form

T = f p(x— )T (Voy)dy

B

wherepy is amollifier.
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8. One of théhardestopen problems of the study of tlegolution prob- 132
lem which is a non-linear hyperbolic problem. The only avaiabl
results are in the one-demensional case due to DIPERNA 1983
See also HUGHES, KATO and MARSDEN [1976].

9. Plate theory. A plate can be thought of as a don@in= wx]- €
,+ € [, wherew c R? is a bounded open set aad 0 is a small
parameter. (cf. Fig.1)

Figure 1

By methods of asymptotic expansions, the solutioh <) can be
formally expanded as

(UE’O-E) — (UO’ O_O) + (Ul,O'l) T

where (, ) satisfies a well-known two-dimensional plate model.
In the linearized theory CIARLET and DESTUYNDER [1980a],
CIARLET and KESAVAN [1980], DESTUYNDER [1980] have stu-

died the problems extensively. One can compare the threendim

sional and two dimensional problems and show that (for ex@mp

lluSy — Us4llnae
—__2 ,pase— 0.
lluyllL.o

The problem is tanumericallyverify this. Computing by the finite
element method, one gejlgd’h and u;d’h approximatingus, andus
respectively. Since is small, unles# is of the same order, the linear 133
systems become very ill-conditioned. Buthifis of the same order

of €, the solutionug h is not very accurate. Thus to find a better
method of approximating these solutions and verify the eayence

described above.
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10. In the nonlinear case CIARLET [1980] (see also CIARLEH-an
DESTUYNDER [1979], CIARLET and RABIER [1980]) has shown
that with certain boundary conditions the three dimendiqtate
model for a St Venant -Kirchifbmaterial is approximated (formally)
by the well-known two-dimensional von Karman model. White t
latter has a satisfactory existence theorey, the formenbas. If at
least fore small enough it can be shown that the three dimensional
problem has a solution converging to a given solution of tineed-
sional problem, an existance theorem for such special d@n
be obtained.
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141 List of Notations

General Conventions: (1) Unless otherwise indicated, Latin indices
take their values in the s¢t, 2, 3}, and the repeated index convention
for summation is systematically used in conjunction witis tlule.

(2) If a quantity is denoteX in the deformed configuration, the
corresponding quantity in the reference configuration reotked Xg.

Vectors and Matrices

(&) : orthonormal basis i3
v = (v) : vectorvwith components;
A = (Ajj) : matrix Awith elementsA;; (i : row index,
j : column index)
u-v=uyv; : Euclidean inner product
lul = vu-u : Euclidean vector norm
+1if (i, j,K) is an even permutation of
1,2,3)
&k = -1if (i, j, k) is an odd permutation of
(1,2,3)

0 otherwise
UAV = &jkujbxe : cross product iR3
A: B = AjjBjj = tr(ABT) : matrix inner product
1Al = VA : A : matrix norm associated with the matrix
inner product
AT (ADHT (AL inverse matrix;
AT: transposed matrix).
adjA : adjugate of a matrix (transpose of the
cofactor matrix)
a = (11(A); 12(A), I3(A)) : set of the principal invariants of a matrix of
order 3
11(A) = & = tr(A)
I(A) = L(aiajj — ajaj)(= detAtr AL if Alis
invertible)
I3(A) = detA
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M2 : set of all matrices of order 3

M3 = {F € M3|detF > 0}

0°={FeM3FTF =FFT =1}

03 = 0%N M3 = {F € 0% detF = 1)

S3={FeM3F =FT}

S8 = {F € S¥F is positive definité

F = RU = VR: polar factorization of an invertible

matrix R e 03U,V € $3)

CY/2 : square root of a matrig € S3

Functions and Function Spaces

Id : identity mapping

V'(a) : Fréchet derivative of the mappinat the

pointa
[
oV = ﬁ,lal =a1+---+ap
(multi-index notation for partial
derivatives)
oW oW 3 .
a_F(F) = (a?ij(F)) € M* (for a mapping
W M - R)
X < Y : the canonical injection fronX into Y is
continuous
X<5Y : the canonical injection fronX into Y is
compact

— . weak convergence

CO(X,Y) : set of all continuous mappings fro¥
into Y

C™M(X;Y) : space of almtimes continuously
differentiable mappings fro into
Y(1<m< o)

CM(X) =C™(X;R),0<m< 0.

WMP(Q) = {v e LP(Q); 9*v € LP(Q) for all || < m}

(WOP(Q) = LP(Q))

142
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H™(Q) = W™2(Q)
LP(Q), WMP(Q), H™(Q) : corresponding spaces of vector-valued, or
matrix-valued, functions
IVlo,p.o : norm of the spac&P(Q), 1 < p < co.

IMimpe ={f ¥ 16*vIPdx}*/P: norm of the space
Q lal<m

WMP(Q),1<p< o
[IVllmyco,0 = |rr?axlaf’vlo,c,o,gz norm of the space
a|l<m
WT=(Q)
VMimpa = {f 3 0eviPdXYP, 1 < p<oo

Q lal=m
|V|rTLc>o,Q = max|aa/v|0,oo,(2
lal=m

2(Q) = {ve €=(Q); suppv is a compact subset of
Q}
Wy P(©Q) closzure of2(Q) in W™P(Q)
HT(Q) = W™ (Q)
143
Miscellaneous

[a, +o0] = [a, +oo[U{+o0},a€ R

- F(X)]
f(x)=0(x) : lim——=0
() =0(x) = lim T
x#0
co U : convex hull ofU (smallest convex set
containingU)

144  Notations in the Deformed Configuration

B = ¢p(%Rr) : deformed configuration
X = ¢(Xr) : generic point of#
0% : boundary ot%
0% = 0%y U 0%, . dA-measurable partition &%
n : unit outer normal along.%#
dX : volume element i
dA : surface element oh#
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GRADO = (%) e M? (for a mapping® : Z — R3)
j

T..
DIVT = 6—):& e %3 : divergence of a tensor fielfl : 2 — M3
j
d(X) € R : density per unit mass at € #

b(X) € R : body force density per unit mass)te %
t1(X) € R® : applied surface force density per unit area
of 0.8 at X € 0%
t(X,n), X € #,In| = 1 : Cauchy stress vector i#
T(X) : Cauchy stress tensor ¥te %
T,T : response function fof = T(F) = T(B),
with F e M3, B= FFT.

Notations in the Reference Configuration 145

PBr, or Q : reference configuration
Xr, OF X : generic point of%r
0%R, orI' . boundary of%gr
0PBR = 0BoRU 0% 1R, OrT =ToUTI1 . dAg-measurable partition of
0PBR
Nr, Or v : unit outer normal along %r
dXg, ordx : volume element i8R
dAg, orda : surface element o %R
¢,y Br — R3 . deformation of%g (smooth
maps with det > 0)
uVv: %r — R3 : displacement
(¢ =1d+u,y = 1d +v)
0

B = ———
' 0Xg
DIVRTR = g;F:Ja e R3 : divergence of a tensor field
: TR . %R - M3
V= (a%) e M3 : deformation gradient

Vu = (a‘;—”R'J) e M3 : displacement gradient

C=V;V, €52 : right Cauchy-Green strain
tensor
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B=V,V; €53 : left Cauchy-Green strain
tensor

1
E=EW=3C-1)= E(VuT +Vu+ vu'vu):

Green-St Venant strain
tensor

1 . . .
e(u) = E(VUT + Vu) : linearized strain tensor

Ppr(XR) € R : density per unit mass at
XR € %R
br(XRr) € R® : body force density per unit
mass alXr € %r
f = prR Q- R3
t1r(Xr) € R® : applied surface force density
per unit area 00 %R at
XR (S &%’R
g=tir: 11— R3
tr(Xr, NR), XR € %R, INR| = 1 : first Piola-Kirchhdf stress
vector in%gr
Tr(XR) : first Piola-Kirchhdrf stress
tensor aiXg € %R
ti)=Tr: Q- M3
Tr : response functions for
Tr = Tr(F), F e M3
YROXR) = V4(Xr) 1 Tr(XR) : second Piola-Kirchh®
stress tensor R € Br
(Cij))=Xr : Q- s3
ER, SR 2R © response functions forg =
2Rr(F) = 2r(C) = Zr(E),
with F € M3,
C=F'F=1+2E
o(E) : Tr(E) =
Atr E)I + 2uE + O(E)
A, u : Lamé’s constants

: Poisson’s ratio

YT o0+ )



BIBLIOGRAPHY

£ _ KB+ )
A+ u
ajjke = AdijOke + 2udikdije

/2
W

W*

W) = [ #(Tg)dXe = [ #/(Vu)dx :
7 Q

Br
|(y¥) = W(Y) — {B(¥) + T1(¥)}
B(y) = [ prbr-ydXs =

Br

i) = [ tr-ydAr=

0AR

125

: Young’s modulus

. elasticity codicients for

isotropic materials

stored energy function
o = 3

(a_F(R) =Tr(F),F € M+)

stored energy function in

terms of

C=FTF(¥#(F) = #(C))

. stored energy function in

terms ofE(¥/'(F) =
#(l + 2E) = #*(E))

: stored energy function in

terms of
le: #(F)=¢(l),C=F'F
strain energy

. total energy

[ f - ydx (for dead loads)
Q

[ - yda(for dead loads)
Iy

146
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applied surface forcgl 9 equilibrium equation§ 1€ B7
applied surface forcE L8 Euler equatiorf—-39
axiom of material frame indierence[ZA1  Euler's method g1
axiom of static equilibriunf]€19 Eulerian variabld 14

B F
body force[P force: applied surfacg] E1L8
body force[[IV body,[® [TV
boundary condition of tractiofi, b4 surfaceP
boundary condition of pressufe]55 system of[P
boundary condition of placE. b4 G

C Green-St Venant strain tensl, 7
Cauchy stress vect@r.113 Green-St Venant strain tensirl 30
Cauchy stress tens@r]1Z] 29 H
g:ﬂgﬂzyztﬁseso\ggzl homogeneous materifi[[J20

homogeneous deformatidn]32

Cauchy-Green strain tensdi$, 5 hyperelastic materid B8

conservative applied surface forEel 18
conservative body forcE-1L8 |
constitutive equatiofi_20 incompressible materid[[ B4
D incompressible materid[_TID7
incompressible materid[ 62
Da Silva’s Theoren{ 19 .
incremental metho@—B0
dead load 7 PN o
X infinitesimal rigid displacemerff_1L9
deformation[P[32 . ; .
. . isotropic response functiofn. 126
deformation gradienf] 2 . . .
) . isotropic material-23
deformed configuratioi] 2 . . .
) isotropic response function. 123
displacemen(]2 isotropic stored energy functidn 40144
displacement gradierffl 3 P 9

divergence of a tensdd 3 K

E Korn’s inequality[ Gl
elastic materia[ 20 L
elasticity codicient,[3% Lagrangian variablg¢_14

126



INDEX

LAM E’s constantd_ 330103

linearized strain tensd.b3

linearized system of elasticifJAZIT8189

M
material
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isotropic [ZB
MOONEY-RIVLIN, B3
non-homogeneouE. R0
OGDEN's [92[TTK
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B3, [93 106
material frame indterence[21_2€29,
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mixed displacement-pressure problem,
B30y
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B4, 7381103
MOONEY-RIVLIN material [93

N
natural statd_31
non-homogeneous materigl] 20

O
OGDEN'’s materialC34_104

P
Piola identity[¥[9B
Piola transformi 414

Piola-Kirchhdft stress tensorE_ NE115]29,

B35
Piola-Kirchhdf stress vectof_16
Poisson’s ratid_35
polar factorisation of a matrik,_20
polyconvix stored energy functiof191,
032,100
pressurd AT 18, BE 07
principal invariants of a matrif 25
principal stretcH_ 94106
principle of virtual work CTH[TIA19
pure displacement problef.]$4] 80

127

pure pressure probleii,155
pure traction probleni 54

R
reference configuratiof] 1
response functiol_20
rigid deformation[b
Rivlin-Ericksen Theoreni_26
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