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CIE
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CIE colour coordinates for a LED

axial particle number (the number of particles intercepted by a straight line

drawn through a TRIMM-doped light guide, parallel to the optic axis)
charge coupled device

colour correlated temperature

Commission Internationale de L'Eclairage

colour rendering index

1-ethoxy-2-propyl acetate

environmental scanning electron microscope

exponential decrease of side-scattered output light with distance along a

TRIMM-doped light guide
the probability density distribution of the deviation J(h)
impact ratio, 7 = H/r. h is independent of sphere radius.

perpendicular separation distance (of a ray impacting a sphere) from the par-

allel ray passing through a sphere's centre (H = r-A at the geometric limit)
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liquid crystal display

light-emitting diode
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the following particle is reached

relative refractive index (usually the ratio of particle refractive index to that of
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numerical aperture (of a light guide)
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red, green, blue
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spectral power distribution (of a LED)
spectral power distribution

source radial fraction (position of a LED at the entrance end of a mixing rod,

relative to the optical axis the rod)

transmittance

total internal reflection

transparent refractive index matched micro-particles
University of Technology Sydney

ultraviolet

volume fraction (of particles in a matrix)

mean half-cone angular spread of light in the cross-sectional plane of a light
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direction of the ray

mean deviation angle of the probability density distribution of the deviation
19
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median deviation angle of the probability density distribution of the deviation
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general expression for deviation angle of a ray impacting a TRIMM sphere, in

terms of the impact ratio /

azimuth component of a ray deviation
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¢ component of a ray after angular deviation by a particle
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Abstract

This project involves the study of optical properties of polymers doped with TRIMM
(transparent refractive index matched micro-particles), and their uses in light guides. The
refractive index difference between dopant and host material is small (<0.02), so forward
transmittance is high, and losses due to backscattering are negligible. Flexible polymer
optical fibre (POF) and polymethylmethacrylate (PMMA) rods are being incorporated
into an increasing range of lighting and light mixing applications. For energy efficient
mixing of red, green and blue (RGB) light-emitting diodes (LEDs) to produce white light
and a range of other colours, light is transmitted from the end of a light guide (“end-
light”). A major problem here is solved, namely the achievement of uniform illumination,
simultaneously with low losses from scattering. Light output from RGB LEDs is shown
to be completely mixed by short TRIMM-doped light guides. Alternatively, long lengths
of TRIMM-doped POF can be used for “side-light”. The concentration of TRIMM for
these is chosen such that light is emitted from the side walls of the guide to give even illu-

mination along its length.

A geometrical method of ray tracing in particle-doped rectangular and cylindrical light
guides is derived, and Monte Carlo ray tracing simulations performed for undoped and
TRIMM-doped light guides. The evolution of the distribution of ray angles, internal and
external to a light guide, with propagation distance are studied. Computer simulations of
angular distribution of light emitted from the wall of POF agree with measurements per-

formed using a photogoniometer.

Simulations and measurements of light output intensity and colour from RGB LED arrays
when projected from the end of a mixing rod, are also presented. Colour calculations
agree with photometric measurements of RGB LED output from clear and TRIMM-
doped PMMA mixing rods. Results of transmittance measurements and computer simu-
lations show that light losses are almost entirely due to Fresnel reflectance from the

entrance and exit surfaces of the rods.

Photogoniometer measurements of the angular distribution of light from LEDs are used

as a basis for LED source models used in ray tracing simulations. Results of an investiga-
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tion comparing the effect of using a smoothed LED source model instead of measure-
ment-based models on simulated light output distributions are presented. The light output
from LEDs can have sudden peaks in intensity at certain angles, resulting in distinctive
patterns with clear colour separation, after mixing in clear polymer mixing rods. These
caustic patterns are eliminated by using TRIMM-doped mixing rods, with a transmittance

of ~90% after Fresnel losses, which can be readily reduced.
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