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Lefschetz Fibration Structures
on Knot Surgery 4-Manifolds
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1. Introduction

Since Seiberg–Witten theory was introduced in 1994, many techniques in 4-
dimensional topology have been developed to show that a large class of simply
connected smooth 4-manifolds admit infinitely many distinct smooth structures.
Among them, a knot surgery technique introduced by R. Fintushel and R. Stern
turned out to be one of the most powerful tools for changing the smooth structure
on a given 4-manifold [4]. The knot surgery construction is as follows. Suppose
that X is a simply connected smooth 4-manifold containing an embedded torus
T of square 0. Then, for any knot K ⊂ S3, one can construct a new 4-manifold,
called a knot surgery 4-manifold,

XK = X�T=Tm(S
1 ×MK)

by taking a fiber sum along a torus T in X and Tm = S1 ×m in S1 ×MK , where
MK is the 3-manifold obtained by doing 0-framed surgery along K and m is the
meridian of K. Then Fintushel and Stern proved that, under a mild condition on
X and T, the knot surgery 4-manifold XK is homeomorphic, but not diffeomor-
phic, to a given X [4]. Furthermore, if X is a simply connected elliptic surface
E(2), T is the elliptic fiber, and K is a fibered knot, then it is also known that the
knot surgery 4-manifold E(2)K admits not only a symplectic structure but also a
genus 2g(K) + 1 Lefschetz fibration structure [6; 23]. Note that there are only
two inequivalent genus 1 fibered knots, but there are infinitely many inequivalent
genus g fibered knots for g ≥ 2. So one may dig out some interesting properties
of E(2)K by carefully investigating genus 2 fibered knots and related Lefschetz
fibration structures.

On the one hand, Fintushel and Stern [5] conjectured that the set of all knot
surgery 4-manifolds of the formE(2)K up to diffeomorphism is in one-to-one cor-
respondence with the set of all knots in S3 up to knot equivalence. Some progress
related to the conjecture has been made by S. Akbulut [2] and M. Akaho [1]. How-
ever, a complete answer to the conjecture for prime knots up to mirror image is
not known yet. Furthermore, Fintushel and Stern [6] also questioned whether or
not any two in the following 4-manifolds,
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{Y(2;K1,K2) := E(2)K1�id :�2g+1→�2g+1E(2)K2 |
K1,K2 are genus g fibered knots},

are mutually diffeomorphic. The second author obtained a partial result related to
this question under the constraint that one of Ki (i = 1, 2) be fixed [23].

In this paper we investigate Lefschetz fibration structures on the knot surgery
4-manifold E(2)K , where K ranges over a family of Kanenobu knots. Recall that
Kanenobu [13; 14] found an interesting family of inequivalent genus 2 fibered
prime knots

{Kp,q | (p, q)∈ R} for R = {(p, q)∈ Z
2 | p ∈ Z

+, −p ≤ q ≤ p},
where no two of the knots are in mirror relation and all of them have the same
Alexander polynomials. In Section 3 we consider the following family of simply
connected symplectic 4-manifolds that have the same Seiberg–Witten invariants:

{Y(2;Kp,q ,Kr,s) := E(2)Kp,q �id :�5→�5E(2)Kr,s | (p, q), (r, s)∈ R}.
By investigating the monodromy factorization expression corresponding to the
Lefschetz fibration structure on Y(2;Kp,q ,Kr,s), we answer the question raised
in [6].

Theorem 1.1. Any two symplectic 4-manifolds in

{Y(2;Kp,q ,Kp+1,q) | p, q ∈ Z}
are mutually diffeomorphic. Similarly, any two symplectic 4-manifolds in

{Y(2;Kp,q ,Kp,q+1) | p, q ∈ Z}
are mutually diffeomorphic.

In Section 4 we also study nonisomorphic Lefschetz fibration structures on simply
connected symplectic 4-manifolds that share the same Seiberg–Witten invariants.

Let ξp,q be the monodromy factorization of a genus 5 Lefschetz fibration struc-
ture on E(2)Kp,q corresponding to the fixed generic fiber (as in Theorem 2.8) and
the specified monodromy �Kp,q of the fibered knot Kp,q (as in Section 3). Then,
by investigating the monodromy group GF(ξp,q) of ξp,q , we get the following
theorem.

Theorem 1.2. ξp,q is not equivalent to ξr,s if (p, q) �≡ (r, s) (mod 2).

Remark 1.3. For any (p, q) ∈ Z
2, Kp,q is equivalent to Kq,p and therefore

E(2)Kp,q is diffeomorphic to E(2)Kq,p . Since Kp,q and Kq,p are equivalent fibered
knots, their monodromy can be conjugated, which means that we can select a pair
of isomorphic Lefschetz fibration structures from E(2)Kp,q and E(2)Kq,p . But this
does not imply that the Lefschetz fibration structure on E(2)Kp,q ≈ E(2)Kq,p is
unique (see Remark 2.9 for details). In fact, Theorem 1.2 implies that, if p �≡ q

(mod 2), then we can select a pair of inequivalent special monodromy factoriza-
tions ξp,q of E(2)Kp,q and ξq,p of E(2)Kq,p .
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2. Preliminaries

In this section we briefly review some well-known facts about Lefschetz fibrations
on 4-manifolds and surface mapping class groups (refer to [8] for details).

Definition 2.1. Let X be a compact, oriented smooth 4-manifold. A Lefschetz
fibration is a proper smooth map π : X → B, where B is a compact connected
oriented surface and π−1(∂B) = ∂X such that:

(1) the set of critical points C = {p1,p2, . . . ,pn} of π is nonempty and lies in
int(X), and π is injective on C;

(2) for each pi and bi := π(pi), there are local complex coordinate charts
agreeing with the orientations of X and B such that π can be expressed as
π(z1, z2) = z2

1 + z2
2.

Two Lefschetz fibrations f1 : X1 → B1 and f2 : X2 → B2 are called isomorphic if
there are orientation-preserving diffeomorphisms H : X1 → X2 and h : B1 → B2

such that the following diagram commutes:

X1
H−−−−→ X2

f1

� �f2

B1
h−−−−→ B2 .

(2.1)

Monodromy factorization of a Lefschetz fibration is an ordered sequence of right-
handed Dehn twists along simple closed curves on the fixed generic fiber F of the
Lefschetz fibration whose composition becomes the identity element in the map-
ping class group of F.

Two monodromy factorizationsW1 and W2 are referred to as a Hurwitz equiv-
alence if W1 can be changed to W2 in finitely many steps of the following two
operations:

(1) Hurwitz move: tcn · · · tci+1 · tci · · · tc1 ∼ tcn · · · tci+1(tci ) · tci+1 · · · tc1;
(2) inverse Hurwitz move: tcn · · · tci+1 · tci · · · tc1 ∼ tcn · · · tci · t−1

ci
(tci+1) · · · tc1.

Here ta(tb) = tta(b), and ta(tb) = ta � tb � t−1
a as an element of mapping class group.

This relation comes from the choice of Hurwitz system, a set of mutually disjoint
arcs that connect b0 to bi but exclude the base point b0.

A choice of generic fiber also gives another equivalence relation. Two mon-
odromy factorizationsW1 and W2 are called a simultaneous conjugation equiva-
lence ifW2 = f(W1) for some element f of the mapping class group of the chosen
generic fiber of the Lefschetz fibrationW1.
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It is well known that monodromy factorizations of two isomorphic Lefschetz
fibrations are related by a finite sequence of Hurwitz equivalences and simultane-
ous conjugation equivalences [8; 15;18]. Therefore, in this paper we do not distin-
guish a monodromy factorization from the corresponding Lefschetz fibration up
to isomorphism.

Terminology. In order to emphasize that a chosen generic fiber is fixed, we
sometimes use the term marked Lefschetz fibration to refer to a Lefschetz fibra-
tion whose chosen generic fiber is fixed. Two monodromy factorizations are also
called marked equivalent if they are equivalent under a chosen fixed generic fiber.

Notation. We writeW1
∼= W2 if two monodromy factorizationsW1 andW2 give

the isomorphic Lefschetz fibration. When two manifolds X1 and X2 are diffeo-
morphic, we write this as X1 ≈ X2.

Definition 2.2. Let π : X → S 2 be a Lefschetz fibration and let F be a fixed
generic fiber of the Lefschetz fibration. LetW = wn · · ·w2 ·w1 be a monodromy
factorization of the Lefschetz fibration corresponding to F. Then the monodromy
group GF(W ) is a subgroup of the mapping class group MF = π0(Diff +(F ))
generated byw1,w2, . . . ,wn.We will simply writeG(W )when the generic fiberF
is clear from the context. The elementwn � · · · �w2 �w1 in MF is denoted by λW .

Lemma 2.3. If two monodromy factorizations W1 and W2 give isomorphic Lef-
schetz fibrations over S 2 with respect to chosen generic fibers F1 and F2 (respec-
tively) that are homeomorphic to F, then the monodromy groups GF1(W1) and
GF2(W2)are isomorphic as a subgroup of the mapping class group MF .Moreover,
if a generic fiber F = F1 = F2 is fixed then GF(W1) = GF(W2).

Remark 2.4. As mentioned previously, the role of simultaneous conjugation
equivalence is in the choice of a generic fiber. If we use the same fixed generic
fiber forW1 and W2 (i.e., if F1 = F = F2), then the global conjugation cannot
occur. Therefore we get GF(W1) = GF(W2).

A monodromy factorization of a Lefschetz fibration structure on E(n)K was stud-
ied by Fintushel and Stern [6]. We were able to find an explicit monodromy fac-
torization of E(n)K [23] with the help of factorizations of the identity element in
the mapping class group that were discovered by Y. Matsumoto [18], M. Kork-
maz [17], and Y. Gurtas [9].

Definition 2.5. Let M(n, g) be the desingularization of the double cover of
�g × S 2 branched over 2n({point} × S 2) ∪ 2(�g × {point}).
Lemma 2.6 [17; 22]. M(2, g) has a monodromy factorization η2

1,g , where

η1,g = tB0 · tB1 · tB2 · · · tB2g · tB2g+1 · t 2bg+1
· t 2
b ′
g+1

and {Bj , bg+1, b ′
g+1} are simple closed curves on �2g+1 as in Figure 1.



Lefschetz Fibration Structures on Knot Surgery 4-Manifolds 529

Figure 1 Vanishing cycles ofM(2, g) with g = 2

Remark 2.7. In this paper we assume that we have already fixed a reference
generic fiber as in Figure 1 and read the monodromy factorization with respect to
the chosen generic fiber. From now on we use the monodromy factorization η2

1,g
in Lemma 2.6 for M(2, g) as a genus 2g + 1 Lefschetz fibration with respect to
the given fixed generic fiber.

Theorem 2.8 [6; 23]. LetK ⊂ S3 be a fibered knot of genus g. Then E(2)K , as
a genus 2g + 1 Lefschetz fibration, has a monodromy factorization of the form

�K(η1,g) ·�K(η1,g) · η1,g · η1,g ,

where η2
1,g is a monodromy factorization ofM(2, g) and

�K = ϕK ⊕ id ⊕ id: �g��1��g → �g��1��g

is a diffeomorphism obtained by using a (geometric) monodromy ϕK of K de-
fined by

S3 \ ν(K) = (I ×�1
g)/((1, x) ∼ (0,ϕK(x))),

where �1
g is an oriented surface of genus g with one boundary component.

Remark 2.9. If two fibered knots K1 and K2 are equivalent with fiber surface
�1
g , then there is a homeomorphism φ : �1

g →�1
g such that

S3 \ ν(K1) = (I ×�1
g)/∼ϕK1

≈ (I ×�1
g)/∼φ◦ϕK1◦φ−1 = S3 \ ν(K2).

So if we select a generic fiber F ′ ≈ �2g+1 ofM(2, g) such that�(η2
1,g) is a mon-

odromy factorization ofM(2, g) as a genus 2g + 1 Lefschetz fibration, then

�(η2
1,g) ·�K2(�(η

2
1,g)) = �(η2

1,g) · (� ��K1 ��−1)(�(η2
1,g))

= �(η2
1,g ·�K1(η

2
1,g))

∼= η2
1,g ·�K1(η

2
1,g);

this implies that we can select a pair of isomorphic Lefschetz fibration structures
from E(2)K1 and E(2)K2 .

On the other hand, for a given fibered knotK and its fiber surface�1
K , we iden-

tify�1
K and�1

g = �g − int(D2) ⊂ �g��1��g by a fixed homeomorphism. Even
though we fix a generic fiber �2g+1 of M(2, g) and fix an identification between
�1
K and�1

g , there is still some ambiguity regarding the choice of monodromy fac-
torization. For a given homeomorphism φ : �1

g → �1
g that fixes ∂�1

g pointwise,
there is a fiber-preserving homeomorphism
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(I ×�1
g)/∼ϕK → (I ×�1

g)/∼φ◦ϕK◦φ−1 .

[3, 5.B]. Hence we do not change the fixed generic fiber and corresponding mon-
odromy factorizationη2

1,g ofM(2, g), but the gluing map is changed to���K��−1,
where� is the extension of the homeomorphism φ to�2g+1. We can interpret this
phenomenon as a change of chosen generic fiber inM(2, g) so that the monodromy
factorization becomes �−1(η2

1,g). But it does not mean that �K(η2
1,g) · η2

1,g is iso-
morphic to (� � �K � �−1)(η2

1,g) · η2
1,g as a marked Lefschetz fibration. We will

consider this phenomenon in Section 4.

3. Isomorphic Lefschetz Fibrations

In this section we construct examples of simply connected isomorphic symplec-
tic Lefschetz fibrations with the same generic fiber but coming from a pair of
inequivalent fibered knots. In [6], Fintushel and Stern constructed families of sim-
ply connected symplectic 4-manifolds with the same Seiberg–Witten invariants.
Among them, they considered a set of the following symplectic 4-manifolds,

{Y(2;K1,K2) := E(2)K1�id :�2g+1→�2g+1E(2)K2 |
K1,K2 are genus g fibered knots},

and they showed that
SWY(2;K1,K2 ) = tL + t−1

L

because the only basic classes of Y(2;K1,K2) are ±L, where L is the canoni-
cal class of Y(2;K1,K2). In [23] we found examples such that Y(2;K,K1) and
Y(2;K,K2) are diffeomorphic even though K1 is not equivalent to K2. In this
section we will generalize such a construction. That is, we will construct infi-
nitely many pairs (K,K ′) of inequivalent genus 2 fibered knots such that all the
Y(2;K,K ′) are mutually diffeomorphic.

A family of inequivalent knots with the same Alexander polynomials has been
constructed by several authors. Among them, Kinoshita and Terasaka [16] con-
structed a nontrivial knot with the trivial Alexander polynomial by using a knot
union operation. Thereafter, Kanenobu constructed infinitely many inequivalent
knots Kp,q (p, q ∈ Z) with the same Alexander polynomials [13; 14]. These ex-
amples were constructed from the ribbon fibered knot 41#(−4∗

1) by repeatedly
applying the Stallings’ twist [21] at two different locations where K∗ is the mirror
image of K.

The following lemma was cited by Kanenobu.

Lemma 3.1 [13]. Let Kp,q be a Kanenobu knot as in Figure 2. Then

(1) K0,0 = 41#(−4∗
1),

(2) the Alexander matrix of Kp,q is
(
t 2−3t+1 (p−q)t

0 t 2−3t+1

)
,

(3) 2Kp,q
(t)

.= (t − 3 + t−1)2,
(4) Kp,q is a fibered ribbon knot,
(5) Kp,q ∼ Kr,s if and only if (p, q) = (r, s) or (s, r),
(6) K∗

p,q ∼ K−q,−p, and
(7) Kp,q is a prime knot if (p, q) �= (0, 0).
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Figure 2 A Kanenobu knot Kp,q

It is not hard to see [10] that the monodromy map�Kp,q of a Kanenobu knotKp,q is

�Kp,q = t
q

d � tpc2
� ta2 � t−1

b2
� t−1
a1

� tb1,

where {ai, bi, ci, d} are the simple closed curves shown in Figure 3. The reason
is that we first perform Hopf plumbings of right-handed Hopf bands along the
arc b1 and of left-handed Hopf bands along b2 and then perform Hopf plumbings
of left-handed Hopf bands along arcs a1 and of right-handed Hopf bands along
a2; see Figure 4. After that, we repeatedly perform Stallings’ twists along simple
closed curves c2 and d as in Figure 4. The result is a monodromy of the fibered
knotKp,q corresponding to the fiber surface, as in the right-hand side of Figure 4.
We can naturally identify the simple closed curves a1, b1, a2, b2, c2, and d in Fig-
ure 4 with the same lettered curves on the surface �5 in Figure 3. We will read
the monodromy factorization ξp,q of E(2)Kp,q as a genus 5 Lefschetz fibration by
using this identification.

Figure 3 Standard simple closed curves

Figure 4 A fiber surface of Kp,q
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Then we get that Y(2;Kp,q ,Kr,s) has a monodromy factorization of the form

�Kr,s (η
2
1,2) · η2

1,2 ·�Kp,q (η2
1,2) · η2

1,2.

Lemma 3.2. For any p, q ∈ Z and �Kp,q
= t

q

d � tpc2 � ta2 � t−1
b2

� t−1
a1

� tb1, we have

tc2 ∈GF(η2
1,2 · tc2(η

2
1,2)), td ∈GF(η2

1,2 · td(η2
1,2))

and

tc2 ∈GF(�Kp+1,q (η
2
1,2) ·�Kp,q

(η2
1,2)), td ∈GF(�Kp,q+1(η

2
1,2) ·�Kp,q

(η2
1,2)).

Proof. Since B2 and c2 meet at one point on �5, by the braid relation we get

tc2 � tB2 � tc2 = tB2 � tc2 � tB2 .

This implies that

tc2 = tB2 � tc2 � tB2 � t−1
c2

� t−1
B2

= tB2 � tc2(tB2) � t−1
B2
.

Since tB2 , tc2(tB2)∈GF(η2
1,2 · tc2(η

2
1,2)), we get

tc2 ∈GF(η2
1,2 · tc2(η

2
1,2)).

Each of B1,B2,B3,B4 meets at one point with the simple closed curve d. So by
the braid relation we get

td � tBi � td = tBi � td � tBi , i = 1, 2, 3, 4,
which implies

td = tBi � td(tBi ) � t−1
Bi

, i = 1, 2, 3, 4.

Since tBi , td(tBi )∈GF(η2
1,2 · td(η2

1,2)), we get

td ∈GF(η2
1,2 · td(η2

1,2)).

Observe that �K0,0(B3) meets with c2 at one point and �K0,0(B4) meets with d
at one point. Therefore,

t�K0,0(B3) � tc2 � t�K0,0(B3) = tc2 � t�K0,0(B3) � tc2 ,

t�K0,0(B4) � td � t�K0,0(B4) = td � t�K0,0(B4) � td .
This implies that

tc2 = t
q

d � tpc2
� tc2 � t−pc2

� t−qd
= t

q

d � tpc2
� (t�K0,0(B3) � tc2 � t�K0,0(B3) � t−1

c2
� t−1
�K0,0(B3)

) � t−pc2
� t−qd

= t
q

d � tpc2
� (�K0,0 � tB3 ��−1

K0,0
) � tc2 � (�K0,0 � tB3 ��−1

K0,0
)

� t−1
c2

� (�K0,0 � t−1
B3

��−1
K0,0
) � t−pc2

� t−qd
= t

q

d � tpc2
� (�K0,0 � tB3 ��−1

K0,0
) � (t−pc2

� t−qd � tp+1
c2

� t qd ) � (�K0,0 � tB3 ��−1
K0,0
)

� (t−p−1
c2

� t−qd � tpc2
� t qd ) � (�K0,0 � t−1

B3
��−1

K0,0
) � t−pc2

� t−qd
= (t

q

d � tpc2
��K0,0) � tB3 � (�−1

K0,0
� t−pc2

� t−qd ) � (tp+1
c2

� t qd ��K0,0) � tB3

� (�−1
K0,0

� t−p−1
c2

� t−qd ) � (tpc2
� t qd ��K0,0) � t−1

B3
� (�−1

K0,0
� t−pc2

� t−qd )
= t�Kp,q (B3) � t�Kp+1,q (B3) � t−1

�Kp,q (B3)
.
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By the same method we also get

td = t�Kp,q (B4) � t�Kp,q+1(B4) � t−1
�Kp,q (B4)

.

Since
�Kp,q (tB3),�Kp+1,q (tB3)∈GF(�Kp+1,q (η

2
1,2) ·�Kp,q (η2

1,2))

and
�Kp,q (tB4),�Kp,q+1(tB4)∈GF(�Kp,q+1(η

2
1,2) ·�Kp,q (η2

1,2)),

we obtain the conclusion

tc2 ∈GF(�Kp+1,q (η
2
1,2) ·�Kp,q (η2

1,2)), td ∈GF(�Kp,q+1(η
2
1,2) ·�Kp,q (η2

1,2)).

Lemma 3.3 [23]. Let Wi = wi,ni · · ·wi,2 · wi,1 be a sequence of right-handed
Dehn twists along a simple closed curves on�g such that λWi := wi,ni � · · ·�wi,1 =
id in MF for i = 1, 2. Then

W1 ·W2 ∼W2 ·W1.

Suppose f ∈G(W2); then

f(W1) ·W2 ∼W1 ·W2.

Theorem 3.4. For each pair p, q ∈ Z , we get diffeomorphisms

Y(2;Kp,q ,Kp+1,q) ≈ Y(2;Kp+1,q ,Kp+2,q)

and
Y(2;Kp,q ,Kp,q+1) ≈ Y(2;Kp,q+1,Kp,q+2).

Proof. Y(2;Kp,q ,Kp+1,q) has a monodromy factorization of the form

�Kp+1,q (η
2
1,2) · η2

1,2 ·�Kp,q (η2
1,2) · η2

1,2,

where �Kp,q = t
q

d � tpc2 � ta2 � t−1
b2

� t−1
a1

� tb1.

By Lemma 3.2, we have

tc2 ∈GF(�Kp+1,q (η
2
1,2) ·�Kp,q (η2

1,2)),

tc2 ∈GF(tc2(η
2
1,2) · η2

1,2).

Therefore,

�Kp+1,q (η
2
1,2) · η2

1,2 ·�Kp,q (η2
1,2) · η2

1,2 (3.1)

∼ η2
1,2 ·�Kp+1,q (η

2
1,2) ·�Kp,q (η2

1,2) · η2
1,2 (3.2)

∼ tc2(η
2
1,2) ·�Kp+1,q (η

2
1,2) ·�Kp,q (η2

1,2) · η2
1,2 (3.3)

∼ �Kp+1,q (η
2
1,2) ·�Kp,q (η2

1,2) · tc2(η
2
1,2) · η2

1,2 (3.4)

∼ �Kp,q (η
2
1,2) ·�Kp−1,q (η

2
1,2) · tc2(η

2
1,2) · η2

1,2 (3.5)

∼ tc2(η
2
1,2) ·�Kp,q (η2

1,2) ·�Kp−1,q (η
2
1,2) · η2

1,2 (3.6)

∼ η2
1,2 ·�Kp,q (η2

1,2) ·�Kp−1,q (η
2
1,2) · η2

1,2 (3.7)

∼ �Kp,q (η
2
1,2) · η2

1,2 ·�Kp−1,q (η
2
1,2) · η2

1,2. (3.8)
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In particular:

• since λη2
1,2

= id, we get (3.1) to (3.2), (3.3) to (3.4), (3.5) to (3.6), and (3.7)

to (3.8);
• Lemma 3.2 and Lemma 3.3 together imply (3.2) to (3.3), (3.4) to (3.5), and (3.6)

to (3.7).

This implies that, for each fixed q, Y(2;Kp,q ,Kp+1,q) and Y(2;Kp−1,q ,Kp,q) have
isomorphic Lefschetz fibration structure; hence they are diffeomorphic.

Similarly, by using

td ∈GF(�Kp,q+1(η
2
1,2) ·�Kp,q (η2

1,2)),

td ∈GF(td(η2
1,2) · η2

1,2)

in Lemma 3.2 we obtain

Y(2;Kp,q ,Kp,q+1) ≈ Y(2;Kp,q+1,Kp,q+2).

4. Nonisomorphic Lefschetz Fibrations

In this section we investigate some algebraic and graph-theoretic properties of
ξp,q = �Kp,q (η

2
1,2) · η2

1,2 and its monodromy group G�5(ξp,q) corresponding to
the fixed generic fiber�5. In [11], Humphries showed that the minimal number of
Dehn twist generators of the mapping class group Mg or M1

g is 2g + 1; he did
this by using symplectic transvection and the Euler number (mod 2) of a graph.

Definition 4.1 [11]. Let {γ1, γ2, . . . , γ2g} be a set of simple closed curves on
�g that generate H1(�g; Z2). Let 5(γ1, γ2, . . . , γ2g) be a graph defined by:

• a vertex for each homology class [γi] of simple closed curves γi, i = 1, 2, . . . , 2g;
• an edge between γi and γj if i2(γi, γj ) = 1, where i2(γi, γj ) is the modulo 2

algebraic intersection between [γi] and [γj ]; and
• no intersections between any two edges.

Let γ be a simple closed curve on�g such that [γ ] = ∑2g
i=1 εi[γi] (εi = 0 or 1) as

an element of H1(�g; Z2). We define γ := ⋃
εi=1 γi , where γi is the union of all

closures of half-edges with one end vertex γi. We define χ5(γ ) := χ(γ ) (mod 2),
where χ(γ ) is the Euler number of the graph γ .

Lemma 4.2 [11]. Let 5(γ1, . . . , γ2g) be the graph of simple closed curves
{γ1, . . . , γ2g} that generate the Z2 vector space H1(�g; Z2). Let G5,g be the sub-
group of Mg that is generated by

{tα | α is a nonseparating simple closed curve on �g such that χ5(α) = 1}.
Then G5,g is a nontrivial proper subgroup of Mg. Moreover, if β is a nonsepa-
rating simple closed curve on �g with χ5(β) = 0, then tβ /∈G5,g.
Proof. Let us prove that G5,g is a nontrivial proper subgroup of Mg.

The mapping class group Mg acts transitively onH1(�g; Z2) \{0}. The action
is defined by
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tc : H1(�g; Z2) → H1(�g; Z2), tc(x) = i2(c, x)[c] + x,

where c is a simple closed curve on �g , x ∈H1(�g; Z2), and i2(c, x) is the mod-
ulo 2 algebraic intersection number between [c] and x.

If c is a nonseparating simple closed curve on �g such that χ5(c) = 1, then in
H1(�g; Z2) we have

tc([γ ]) =
{

[γ ] if i2(c, γ ) = 0,

[c] + [γ ] if i2(c, γ ) = 1.

For the i2(c, γ ) = 0 case, it is clear that χ5(tc(γ )) = χ5(γ ). For the i2(c, γ ) = 1
case, if [c] = ∑2g

i=1 εc,i[γi] and [γ ] = ∑2g
i=1 εγ,i[γi] in H1(�g; Z2), then

tc(γ ) =
⋃

εc,i+εγ,i=1

γi.

Let
A =

∑
εc,i=1,εγ,i=1

[γi],

B =
∑

εc,i=1,εγ,i=0

[γi],

C =
∑

εc,i=0,εγ,i=1

[γi].

Then
χ(c) = χ(A ∪ B) = χ(A)+ χ(B)+ i2(A,B) (mod 2),

χ(γ ) = χ(A ∪ C) = χ(A)+ χ(C)+ i2(A,C) (mod 2),

χ(tc(γ )) = χ(B ∪ C) = χ(B)+ χ(C)+ i2(B,C) (mod 2),

and i2(c, γ ) = i2(A+B,A+C) = i2(A,A)+ i2(A,B)+ i2(A,C)+ i2(B,C) =
i2(A,B)+ i2(A,C)+ i2(B,C) (mod 2) because i2(A,A) = 0. Therefore,

χ5(tc(γ )) = χ(tc(γ )) = χ(c)+ χ(γ )+ i2(c, γ ) = χ(γ ) = χ5(γ ) (mod 2).

For any f ∈G5,g , f is of the form t εkck � t εk−1
ck−1 � · · · � t ε2

c2
� t ε1
c1

, where each ci is
a nonseparating simple closed curve with χ5(ci) = 1 and εi ∈ {±1}. This implies
that χ5(f(γ )) ≡ χ5(γ ) (mod 2). Therefore, ifG5,g = Mg then, for any nonsep-
arating simple closed curves γ on�g , we must have χ5(γ ) = 1—which is clearly
impossible. Hence G5,g is a nontrivial proper subgroup of Mg.

Let β be a nonseparating simple closed curve with χ5(β) = 0. Then, for a sim-
ple closed curve γ on�g with i2(β, γ ) = 1, we have χ5(tβ(γ )) �≡ χ5(γ ) (mod 2).
Therefore, tβ /∈G5,g.
Remark 4.3. By Lemma 4.2, we know that:

• if χ5(c) = 1 then, for any γ,

χ5(tc(γ )) = χ5(γ );
• if χ5(c) = 0 then, for any γ,

χ5(tc(γ )) = χ5(γ )+ i2(c, γ ).
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Lemma 4.4. For each pair of integers (p, q) there is a basis Bi for H1(�5; Z2)

(depending only on (p, q) modulo 2) with the property that

GF(ξp,q) ≤ G5i,5

but with χ5i (c2) = χ5i (d ) = 0, where 5i is the corresponding graph to a basis Bi .
Proof. We will prove this in four cases.

Case 1: p and q are even integers. Let us consider a basis

B1 = {c1, a1, a2, b2, a3, b3, a4, a5,B2,B4}
of H1(�5; Z2), where {ai, bi, ci, di,Bi} are simple closed curves on �5 as in Fig-
ure 1 and Figure 3. Then the graph of B1,

51 = 5({c1, a1, a2, b2, a3, b3, a4, a5,B2,B4}),
is as given in Figure 5.

Figure 5 Graph 51

We can easily obtain the following relations in H1(�5; Z2):

B0 = a1 + a2 + a3 + a4 + a5,

B1 = B2 + a1 + a5,

B3 = B4 + a2 + a4,

B5 = a3 = �K0,0(B5);
�K0,0(B4) = B4 + a2,

�K0,0(B3) = B4 + a2 + a4 + b2,

�K0,0(B2) = B2 + a1 + b2 + a2,

�K0,0(B1) = B2 + a1 + a2 + a5 + c1 + b2,

�K0,0(B0) = a3 + a4 + a5 + c1 + b2.

Hence the graph yields

χ51(ai) = χ51(Bi) = χ51(�K0,0(Bi)) = 1 for i = 0,1, 2, 3, 4, 5

and χ51(c1) = χ51(c6) = 1. So we have

{tBi ,�K0,0(tBi ), taj , tb3 , tb ′
3
, tc1, tc6 | i = 0,1, 2, 3, 4, 5, j = 1, 2, 3, 4, 5}

⊂ G51,5,
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and each generator of the groupGF(�K0,0(η
2
1,2) ·η2

1,2) is an element ofG51,5. This
implies that GF(�K0,0(η

2
1,2) · η2

1,2) ≤ G51,5.

But we have
χ51(cj ) = χ51(d ) = 0

for j = 2, 3, 4, 5 and therefore

tc2 , tc3 , tc4 , tc5 , td /∈G51,5.

This implies that tc2 , td /∈GF(�K0,0(η
2
1,2) · η2

1,2).

Since the Z2-homology class of�K2p,2q (Bi) and�K0,0(Bi) are the same for any
p, q ∈ Z , we get

χ51(�K2p,2q (Bi)) = χ51(�K0,0(Bi))

for i = 0,1, 2, 3, 4, 5. This implies that GF(�K2p,2q (η
2
1,2) · η2

1,2) ≤ G51,5, so we
have tc2 , td /∈GF(�K2p,2q (η

2
1,2) · η2

1,2).

Case 2: p is an odd integer and q is an even integer. Let us consider a basis
B2 = {a3, b3,B1,B2,B3,B4, d1, d2, d3, d4} of Z2-vector space H1(�5; Z2) and
its graph

52 = 5({a3, b3,B1,B2,B3,B4, d1, d2, d3, d4});
here {ai, bi, ci, di,Bi} are simple closed curves on �5 as in Figure 1, Figure 3, and
Figure 6. Then the graph 52 is as in Figure 7.

Figure 6 Simple closed curves di

Figure 7 Graph 52
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Since�K1,0 = tc2�ta2�t−1
b2

�t−1
a1

�tb1, we get the following relations inH1(�5; Z2):

B0 = B1 + B2 + B3 + B4 + a3;
�K1,0(B0) = B1 + B2 + B4 + b3 + d1 + d2 + d4,

�K1,0(B1) = B1 + B3 + B4 + a3 + d2,

�K1,0(B2) = B2 + B3 + B4 + b3 + d1 + d2 + d3,

�K1,0(B3) = B3 + b3 + d3,

�K1,0(B4) = B3 + B4 + b3 + d2 + d4,

�K1,0(B5) = B5 = a3;
c2 = a3 + b3 + d4 + B4,

d = B3 + B4 + d1 + d2.

A computation of χ52 shows that

χ52(Bi) = χ52(�K1,0(Bi)) = χ52(b3) = χ52(b
′
3) = χ52(a3) = 1 (4.1)

for each i = 0,1, 2, 3, 4, 5 and that

χ52(c1) = χ52(c2) = χ52(a1) = χ52(a2) = χ52(b2) = χ52(d ) = 0. (4.2)

Hence GF(�K1,0(η
2
1,2) · η2

1,2) ≤ G52,5 and, since tc2 , td /∈G52,5, we get

tc2 , td /∈GF(�K1,0(η
2
1,2) · η2

1,2).

Furthermore, since �K2p+1,2q (Bi) and �K1,0(Bi) represent the same element in
H1(�2; Z2), we get χ52(�K2p+1,2q (Bi)) = χ52(�K1,0(Bi)) = 1; this implies that

tc2 , td /∈GF(�K2p+1,2q (η
2
1,2) · η2

1,2)

for any p, q ∈ Z because GF(�K2p+1,2q (η
2
1,2) · η2

1,2) ≤ G52,5.

Case 3: p is an even integer and q is an odd integer. We want to find a graph

53 = 5({γ1, γ2, . . . , γ10})
satisfying

χ53(Bi) = χ53(�K0,1(Bi)) = χ53(b3) = χ53(b
′
3) = χ53(a3) = 1 (4.3)

for i = 0,1, 2, 3, 4, 5 and
χ53(c2) = χ53(d ) = 0. (4.4)

Note that we observe the following relations in H1(�5; Z2).

�K0,0 (Bi) �K0,1(Bi)

B0 B0 + a1 + b1 + a2 + b2 B0 + a1 + b1 + a2 + b2

B1 B1 + b1 + b2 + a2 B1 + b1 + a2 + b2 + d
B2 B2 + a1 + b2 + a2 B2 + a1 + b2 + a2

B3 B3 + b2 B3 + b2

B4 B4 + a2 B4 + a2 + d
B5 B5 B5

(4.5)
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From equation (4.3), we may assume that Bi (i = 1, 2, 3, 4), b3, and a3 are in
the generating set, which we will extend to a basis of H1(�5; Z2). For each
i = 0,1, 2, 3, 4, 5, Bi and �K0,1(Bi) are elements of G53,5 at the same time.
Since i2(�K0,0(B0), d) = 0, we get χ53(�K0,1(B0)) = χ53(�K0,0(B0)). We also
know that

i2(B0, b1) = i2(tb1(B0), a1) = i2(t
−1
a1
(tb1(B0)), b2)

= i2(t
−1
b2
(t−1
a1
(tb1(B0))), a2) = 1.

So by Lemma 4.2 and Remark 4.3 it follows that

χ53(�K0,0(B0)) = χ53(B0)+ |{a1, b1, a2, b2} −G53,5| = χ53(B0).

Therefore, ifB0 and�K0,1(B0) are elements ofG53,5 at the same time, then an even
number of elements in {a1, b1, a2, b2} must have χ53 = 0. By the same method,
we derive the following statements:

• an even number of elements in {b1, b2, a2, d} must have χ53 = 0 because
χ53(�K0,1(B1)) = χ53(B1);

• an even number of elements in {a1, b2, a2} must have χ53 = 0 because
χ53(�K0,1(B2)) = χ53(B2);

• an even number of elements in {b2} must have χ53 = 0 because
χ53(�K0,1(B3)) = χ53(B3);

• an even number of elements in {a2, d} must have χ53 = 0 because
χ53(�K0,1(B4)) = χ53(B4).

When combined with these constraints, equation (4.4) yields

χ53(a1) = χ53(a2) = 0,

χ53(b1) = χ53(b2) = 1.

Hence {B1,B2,B3,B4, b1, b2, b3, a3} might be a subset of G53,5, and we will
extend it to a basis ofH1(�5; Z2) by adding two simple closed curves d1, d2 as in
Figure 6. Let

53 = 5({B1,B2,B3,B4, b1, b2, b3, a3, d1, d2});
then 53 is the graph in Figure 8 and satisfies equations (4.3) and (4.4).

Figure 8 Graph 53
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Therefore, GF(�K0,1(η
2
1,2) · η2

1,2) ≤ G53,5 and, since tc2 , td /∈G53,5, we get

tc2 , td /∈GF(�K0,1(η
2
1,2) · η2

1,2)

and
tc2 , td /∈GF(�K2p,2q+1(η

2
1,2) · η2

1,2)

for any p, q ∈ Z.

Case 4: p and q are odd integers. We want to find a graph

54 = 5({γ1, γ2, . . . , γ10})
satisfying

χ54(Bi) = χ54(�K1,1(Bi)) = χ54(b3) = χ54(b
′
3) = χ54(a3) = 1 (4.6)

for i = 0,1, 2, 3, 4, 5 and

χ54(c2) = χ54(d ) = 0. (4.7)

We may assume that each element of {B1,B2,B3,B4, a3, b3} is in the generating
set, and we will extend it to a basis of H1(�5; Z2).

Note that we observe the following relations in H1(�5; Z2).

�K0,0 (Bi) �K1,1(Bi)

B0 B0 + a1 + b1 + a2 + b2 B0 + a1 + b1 + a2 + b2

B1 B1 + b1 + b2 + a2 B1 + b1 + a2 + b2 + c2 + d
B2 B2 + a1 + b2 + a2 B2 + a1 + b2 + a2 + c2

B3 B3 + b2 B3 + b2 + c2

B4 B4 + a2 B4 + a2 + c2 + d
B5 B5 B5

(4.8)

Hence, by Lemma 4.2 and (4.6)–(4.8), we have the following statements:

• an even number of elements in {a1, b1, a2, b2} must have χ54 = 0 because
χ53(�K1,1(B0)) = χ53(B0);

• an even number of elements in {a2, b1, b2, c2, d} must have χ54 = 0 because
χ53(�K1,1(B1)) = χ53(B1);

• an even number of elements in {a1, a2, b2, c2} must have χ54 = 0 because
χ53(�K1,1(B2)) = χ53(B2);

• an even number of elements in {b2, c2} must have χ54 = 0 because
χ53(�K1,1(B3)) = χ53(B3);

• an even number of elements in {a2, c2, d} must have χ54 = 0 because
χ53(�K1,1(B4)) = χ53(B4).

This implies that

χ53(a1) = χ53(a2) = 1,

χ53(b1) = χ53(b2) = 0,
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so {B1,B2,B3,B4, a1, a2, b3, a3} might be a subset of G54,5. We will extend this
subset to a basis of H1(�5; Z2) by adding two simple closed curves d3, d4 as in
Figure 6. Let

54 = 5({B1,B2,B3,B4, a1, a2, a3, b3, d3, d4});
then 54 is graphed as in Figure 9 and satisfies equations (4.6) and (4.7).

Figure 9 Graph 54

Therefore, GF(�K1,1(η
2
1,2) · η2

1,2) ≤ G54,5 and, since tc2 , td /∈G54,5, we get

tc2 , td /∈GF(�K1,1(η
2
1,2) · η2

1,2)

and
tc2 , td /∈GF(�K2p+1,2q+1(η

2
1,2) · η2

1,2)

for any p, q ∈ Z.

Remark 4.5. We can double-check the preceding statements by using the rep-
resentation of a mapping class group in a symplectic group (this approach was
suggested by S. Humphries [12]). There is a natural map

ψn : M5
ψ−→ Sp(10, Z)

qn−→ Sp(10, Z/nZ)

where, for each tγ ∈ M5,

ψ(tγ ) : H1(�5, Z) → H1(�5, Z)

is an integral matrix representation of the mapping class group action on the inte-
gral first homology group. We then reduce the coefficient of the symplectic group
to Z/nZ by taking a quotient map qn. It is easy to check that

ψ2(t
2
c2
) = Id10×10 = ψ2(t

2
d ),

which implies that

ψ2(GF (ξp,q)) = ψ2(GF (ξr,s)) if (p, q) ≡ (r, s) (mod 2).

An explicit group order computation (using a computer algebra system such as
GAP [7] or Sagemath [20]) shows that
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Order(ψ2(GF (ξp,q))) = 50030759116800,

Order(〈ψ2(GF (ξp,q) ∪ {tc2})〉) = 24815256521932800,

Order(〈ψ2(GF (ξp,q) ∪ {td})〉) = 24815256521932800,

Order(ψ2(M5)) = 24815256521932800,

and this implies that

tc2 , td /∈GF(ξp,q) for any p, q ∈ Z.

Theorem 4.6. ξp,q is not marked equivalent to ξr,s if (p, q) �≡ (r, s) (mod 2).

Proof. Let us consider the 51 case, in which

i2(�K0,0(Bi), c2) =
{

1, i = 1, 2, 3, 4,

0, i = 0; i2(�K0,0(Bi), d) =
{

1, i = 1, 4,

0, i = 0, 2, 3.

Then, by Lemma 4.2, it follows that χ51(�K1,0(Bi)) = 0 for i = 1, 2, 3, 4,
χ51(�K0,1(Bi)) = 0 for i = 1, 4, and χ51(�K1,1(Bi)) = 0 for i = 2, 3; this gives
the result for 51. Other rows are obtained by the same method.

G5i,5 does not contain

51 t�K1,0(Bj )
(j = 1, 2, 3, 4), t�K0,1(B1), t�K0,1(B4), t�K1,1(B2 ), t�K1,1(B3)

52 t�K0,0(Bj )
(j = 1, 2, 3, 4), t�K0,1(B2 ), t�K0,1(B3), t�K1,1(B1), t�K1,1(B4)

53 t�K0,0(B1), t�K0,0(B4), t�K1,0(B2 ), t�K1,0(B3), t�K1,1(Bj )
(j = 1, 2, 3, 4)

54 t�K0,0(B2 ), t�K0,0(B3), t�K1,0(B1), t�K1,0(B4), t�K0,1(Bj )
(j = 1, 2, 3, 4)

It is clear that t�Kp,q(Bj )
is contained inG5i,5 if and only if t�Kεp,εq

(Bj ) is contained
in G5i,5, where εp, εq ∈ {0,1} such that p ≡ εp and q ≡ εq modulo 2. The reason
is that χ5i (�Kp,q(Bj )) = χ5i (�Kεp,εq

(Bj )), which implies that

ξp,q �∼= ξr,s if (p, q) �≡ (r, s) (mod 2).

For example, if (p, q) ≡ (0, 0) and (r, s) ≡ (1, 0) modulo 2, then

t�Kp,q(Bj )
/∈G52,5 (j = 1, 2, 3, 4)

andGF(ξr,s) ≤ G52,5. Hence t�Kp,q(Bj )
∈GF(ξp,q), but t�Kp,q(Bj )

/∈GF(ξr,s) for j =
1, 2, 3, 4. This implies that GF(ξp,q) �= GF(ξr,s) and ξp,q �∼= ξr,s .

Corollary 4.7. If p �≡ q modulo 2, then the knot surgery 4-manifold E(2)Kp,q

has at least two nonisomorphic genus 5 Lefschetz fibration structures.

Proof. This follows from Lemma 3.1. Since Kp,q is equivalent to Kq,p, we get a
diffeomorphism E(n)Kp,q ≈ E(n)Kq,p . However, by Theorem 4.6 we know that
ξp,q �∼= ξq,p.
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Remark 4.8. We are interested in the question of whether the knot surgery 4-
manifold E(2)K admits infinitely many nonisomorphic Lefschetz fibrations over
S 2 with the same generic fiber. In Theorem 3.4 we constructed a family of simply
connected genus 5 Lefschetz fibrations over S 2, all of whose underlying spaces
are diffeomorphic, from a pair of inequivalent prime fibered knots. We expect
that these knots are strong candidates for admitting infinitely many nonisomor-
phic Lefschetz fibrations. We leave this problem for a future research project.
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