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L E F S C H E T Z P E N C I L S O N S Y M P L E C T I C 

M A N I F O L D S 

S. K. DONALDSON 

This paper is a sequel to [3], in which techniques from complex 
geometry were adapted to prove a general existence theorem for sym-
plectic submanifolds of compact symplectic manifolds. These submani-
folds were obtained as the zero-sets of suitable sections of complex line 
bundles. In the present paper we take the ideas further, developing the 
symplectic analogue of "pencils", generated by a pair of sections of a line 
bundle. Our main results are a general existence theorem for topolog-
ical Lefschetz pencils (Theorem 2 below), together with an asymptotic 
uniqueness statement (Theorem 20). These results, along with recent 
work of R. Gompf ([4, Theorem 10.2.18]), go some way towards giving 
a topological characterisation of symplectic manifolds; more generally 
they, along with various further extensions, give a means of translating 
many questions in symplectic topology into questions about the "mon-
odromy" of the pencil. We will leave the discussion of these further 
topics for future papers, and concentrate here on the proofs of the main 
existence theorems. 

The techniques of [3] were developed further by D. Auroux [1], [2]. 
In particular, Auroux proved the asymptotic uniqueness of the subman-
ifolds constructed in [3], and there are many areas of overlap between 
Auroux' work and that in this paper. Our approach to the proofs is to 
throw the main burden of work onto a transversality result (Theorem 
12) for holomorphic maps, extending the corresponding result in [3]. 
With this result to hand, the rest of the proof is a fairly straightforward 
extension of the argument in [3]. It is probably possible to arrange the 
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proof differently, avoiding the use of the local Theorem f 2 at the cost 
of a more complicated global construction, but the author hopes that 
the local result may have interest in its own right. There are a number 
of natural further generalisations of these ideas which one may contem-
plate; the symplectic analogues of other "linear systems" in complex 
geometry, and it is possible that the local transversality result in this 
paper could be useful in treating these in a systematic way. 

1. T h e ex i s tence t h e o r e m 

Let (V,UJ) be a compact symplectic manifold, of dimension In. We 
say that a system of local complex coordinates (z\,..., z n) centred at a 
point x of V is compatible with u> if the symplectic form at the origin 
of the coordinates is a positive form of type (1,1). 

Def ini t ion 1. A topological Lefschetz pencil on V consists of the 
following data, 

1. a codimension-4 submanifold A C V, 

2. a finite set of points fb\g C V n A, 

3. a smooth map f : V n A —> S2 whose restriction to V n A n fb\g is 
a submersion, and with f(b\) ^ f{bß) for X ^ u. 

This data is required to conform to the following standard local models. 
At a point a G A there are compatible local complex co-ordinates 

such that A is given by z\ = z ̂  = 0 and, on the complement of A in a 
neighbourhood of a in V, f is given by 

(z1,...,z n)^z1/z2eCP1^S2. 

At a point b\ there are compatible local complex co-ordinates in 
which f is represented by the non-degenerate quadratic form 

(zi,..., z n) ^ f(b\) +z2^ Yz2n. 

Suppose we have such a topological Lefschetz pencil (V,A,f). For 
a point c G S2 the fibre f~l(c) is, strictly, a subset of V n A, but from 
the local model around a point of A it follows that the closure of the 
fibre in V is a manifold in a neighbourhood of A. For simplicity we will 
just call these closures the fibres of f. Then by the definition the fibre 
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over c is a compact submanifold of V if b does not lie in the finite set 
of critical values c\ = f(b\). If c is equal to a critical value c\ then the 
fibre has precisely one singular point, modelled on the singular complex 
hypersurface P z^ = 0 in C n. 

The main result of this paper is 

T h e o r e m 2. Suppose that [LO] G H2(V;R) is the reduction of an 

integral class h. For a sufficiently large integer k there is a topological 

Lefschetz pencil on V whose fibres are symplectic subvarieties, homolo-

gous to k times the Poincaré dual of h. 

(Here the statement that the fibres are symplectic subvarieties can 
be taken to mean that the restriction of the symplectic form to the set 
of smooth points of each fibre is non-degenerate.) 

Of course the paradigm for this result is that case where (V, to) is 
a complex Kahler manifold. In this case it is a standard fact that V 

admits a (holomorphic) Lefschetz pencil—a meromorphic function with 
nondegenerate critical points. The purpose of Definition I is to abstract 
the main topological content of this classical set-up, and the overall 
strategy of the proof of Theorem 2 is to adapt the standard arguments 
from complex geometry to the framework of almost-complex structures. 

2. A p p r o x i m a t e l y ho lomorphic sect ions , and transversal i ty 

We adopt the same set-up as in [3], which we will now review. 
Choose a fixed Hermitian line bundle L —> V with c\(L) = h and 
with a unitary connection on L having curvature — iu>. We will consider 
sections of L k, where k is a parameter throughout the discussion which 
will eventually be chosen to be sufficiently large. Fix an almost-complex 
structure J on V, compatible with LO. This differential-geometric data 
gives us a way to define the (0,1) and (1,0) parts ds, ds of the covari-
ant derivative of a section s of L k. Of course in the classical case of 
a complex Kahler manifold the line bundle L is holomorphic and the 
sections with ds = 0 are just the holomorphic sections. Let g k be the 
Riemannian metric on V associated to the almost-complex structure 
and the form kto. Thus the diameter of (V,g k) is O(k1'2). In stan-
dard local co-ordinates on balls of g k-diameter O(1) the almost-complex 
structure differs from the flat model by O(k~1'2). We can define the 
CV-norms kskcr , kôsk r in the usual way, using the metric g k, and its 
Levi-Civita connection. Since the geometry of the data (V,L k,g k) is 
locally bounded—in fact close to the standard model as k —> oo—we 
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get equivalent norms (uniformly with respect to k) by working with 
representations of the section in terms of standard local co-ordinates on 
V, and local trivialisations of L k. The crux of our work is the interplay 
between the notions of "approximate holomorphicity" and "controlled 
transversality" which we pin down with the following definitions. 

First, for C > 0, we say that a section s of L k is C-bounded if 

(3) ksk C3 < C , k9sk C2 < Ck~1/2. 

The C-bounded sections, for a suitable constant C, will serve as our 
substitute for the holomorphic sections in the classical case. 

The discussion of transversality requires a little more space (cf. [1]). 
Consider a linear map T : R —> R q. Define u(T) > 0 to be the square 
root of the least positive eigenvalue of TT* : R q —> R q, so u(T) = 0 if 
and and only if T fails to be surjective. If T is surjective then v{T)~l 

is the minimal operator norm of a left-inverse to T. Let 0 be a smooth 
map from a neighbourhood of a set K C R p to R q, and y be a point in 
R q. We say that 4> is e-transverse to y over K if there is no point x in 
K where 

(4) I^Ox) — y\ < e and u(d(px) < e. 

Notice that we retain a control of transversality under perturbations 
that are small in C 1 : if 0 is e-transverse to y and kip — (j>k C ̂  < e/10 
(say), then ip is e/2-tranverse to y. The notion generalises in an obvious 
way to sections of a bundle, given a conection on the bundle and metrics 
on the base and fibre. We say that a section a is e-transverse to 0 if 
there is no point where \a\ < e and u(Va) < e. 

Defini t ion 5. For e > 0 we say that a pair (so)si) of sections of 
L k —> V satisfies the e-transversality conditions if the following hold: 

1. the section sQ of L k is e-transverse to 0, 

2. the section (sQ, s I ) of L k © L k is e-transverse to 0, 

3. the (1,0) derivative dF of the complex-valued function F = s\/sQ, 

defined on the complement in V of the zero-set W ̂  of so, is 
e-transverse to 0 over V n W ^. 

The main result of this section is 
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Propos i t i on 6. For any C, e > 0 ; if k is sufficiently large, and 

(so,si) are C-bounded sections of L k satisfying the e-transversality con-

ditions of Definition 5, then there is a topological Lefschetz pencil on V 

(with this value of k) satisfying the conditions of Theorem 2. 

First, we define A C V to be the common zero-set of s\,sQ\ this 
is a codimension 4-submanifold by the transversality condition (2) of 
Definition 5. The map f required in the definition of a topological 
Lefschetz pencil will be obtained as a small perturbation of the map 
F : V n A —> C P 1 defined by the ratio F = s i / so , which we also 
think of as a complex-valued function on V n W ̂ . It follows from the 
transversality condition (1) of Definition 5 that F is a submersion on 
a neighbourhood of Woo, and moreover that , when k is large, W ̂  is 
a symplectic submanifold—just as in [3]. Let r C V n W ̂  be the set 
of points where jdFj < jdFj so that , as in [3], F is a submersion with 
symplectic fibres away from I \ 

L e m m a 7. There is a constant x > 0, depending only on C and e, 

such that if k is sufficiently large, then jsoj >x onT. 

In fact we can take x = min (e /p2 , e 2 / p 2 C ) . 

Proof of Lemma 7. Suppose that x G T and jsOOx)j p / p 2 - There 
are two cases to consider. First suppose that jsi(x)j < e / / 2 ; so we are 
in the regime where the e-transversality of (s0)si) comes into play. By 
condition (2) of Definition 5 there is a right inverse R to the linear map 
r s o f f i r s i : TV x —> L k © L k with norm less that e _ 1 . Then we can write 

s0dF = s()dsi — s\dso, 

s0dF = s()dsi — s\dso, 

so the definition of T gives, at the point x, 

jsç)dsi — siosoj < jsç)dsi — siosoj-

Now fix a Hermitian isomorphism of the fibre L k with C and let £ G TV x 

be the tangent vector R ( l , 0 ) . Then, writing r s = ds + 9s, we have 

ds0(0+ ds0(0 = h 

ösi(£) + ös1(e)=0. 
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Then we get 

sl = sidsoiO + sids0(O 

= soôsi(C) + (sidso - s0dsi)(Ç) + sids0(C) 

= -s0dsi(£) + (sidso - s0dsi)(Ç) + sids0(O-

Hence 

jsij < ( j s 0 ös i j + js0dsi - siosoj + jsiôsoj)j£j 

< ( js 0 ös i j + js0dsi - siosoj + jsi<9s0j)j£j. 

Now, from the bound on the norm of R, we have j£j < e _ 1 , and we 
also know that jds{j < Ck-1'2. Put t ing this together, we get 

j s i j < 2 e - 1 C k - 1 / 2 ( j s o j + js i j ) . 

When k is sufficiently large, more precisely if 2frlCk~ll2 < 1/2, we 
deduce from this that jsij < jsoj. But symmetrically we can also show 
that jsoj < jsij, thus giving a contradiction. So in sum we see that when 
k is sufficiently large, there are no points of T with jsoj, jsij < e /p2-

So now suppose that x is a point in r at which jsQj < e/p2 but 
jsij > e/p2. We are in the regime where the transversality condition 
(1) of Definition 5 comes into play. We write the defining condition for 
r in the form 

jdso dsij < jdso dsij. 
s i s i 

This gives 

jdsoj < j — j j<9sij + j9s0 j + j — j j9s i j 
s i s i 

< ^ C e - ^ soj + C k " 1 / 2 + p ^Ce^k-1/2jsj 

and so 

j r s 0 j < 2p2Ce- 1 j so j + 2 C k - 1 / 2 . 

But we know by the condition (1) of Definition 5 that j rsoj > e, so we 
get 

j s 0 j > ^ = -1/2. 
- 2 p 2 C ^ 

Thus if k is sufficiently large, so that ^ > ek-1'2 say, we get a lower 

bound, jsQj > p . In conclusion we have shown that , when k is 
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sufficiently large, jsoj is bounded below on V by the minimum of e/p2 

and p -

With this value of x = x(C?e)? define Qx to be the set of points 
in V where jsoj > x/2- Thus if p < x/2C, the p-neighbourhood of 
r is contained in Qx, hence T is compact. The lower bound on the 
denominator so gives uniform estimates 

kFk C» <C',kdFk C2 <C'k~
l
/
r
\ 

over Qx, for some C depending on C, e. Let A be the set of zeros of dF: 

these form a discrete subset of V n A by the transversality condition (3) 
of Definition 5. From the definition, A is a subset of the compact set 
r , so A is finite. We know that if p < x/2C, the p-balls centred on the 
points of A are contained in Qx. We want to show that for small enough 
p (and when k is sufficiently large, as usual) these balls are disjoint and 
the set r is contained in their union. The point here is that p should 
be independent of k. The main tool we need is an explicit form of the 
Inverse Function Theorem. 

Lemma 8. Let cj) : B n —> R n be a C2 map with 4>k C2 < c. Suppose 

that the derivative depo is invertible, with u{d(f>o) > k. Then if j0(O)j < 
e2/10c there is a unique x G B n with jxj < e/'Ac and cj)(x) = 0. 

Proof. This is just a matter of reviewing the ordinary proof of the 
Inverse Function Theorem, keeping track of the constants. We leave the 
reader to fill in the details. 

We apply this result to the maps <f> given by the derivative dF, 

written in standard local trivialisations over p-balls centred on points 
of T. At a point x of T we have 

jdFj < jdFj < C'k'1/2, 

so we may suppose first that k is large enough for jdFj < e. Thus 
the transversality condition (3) of Definition 5 on the e-transversality 
of dF comes into force. We may further suppose that k is so large that 
j9Fj < ce - 2 , where c is the constant derived from C", depending on 
the C2-norm of dF in the standard trivialisation. Then we can apply 
Lemma 8 to find a zero of df close to x. In sum we have 
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Proposition 9. 

1. There is a constant po, independent of k, such that the balls of 

radius po centred on points of A are disjoint and are contained in 

\lx. 

2. For any p < po, once k > k(p) is sufficiently large, the set Y is 

contained in the union of the balls of radius p centred on the points 

of A. 

We can now move on to the last stage of the proof. In this we 
modify the map F over the p-balls, and over a tubular neighbourhood 
of A, to get a new map f which satisfies all the hypotheses of Theorem 2. 
Consider first the points of A. There are two issues to address: first we 
want to obtain a map given by the standard quadratic model near each 
of these points. Second, and less substantial, we want to arrange that 
the images of these points are distinct in C. Choose standard complex 
co-ordinates za centred on a point x of A. Let ßp be a standard cut-off 
function, with 

ßp(x') = I if d(x,x') < p/2, ßp{x') = 0 if d(x,x') > p, 

so we may suppose that jV/3Pj = O{p~l). The derivative V(dF) of dF 

at x decomposes into complex-linear and anti-linear parts 

V(&F) = r{dF)+ r (dF) . 

The "complex Hessian" H = ^r(dF) is a complex quadratic form on 
the tangent space of V at x. So, using the local coordinates, we may 
regard it complex valued function 

Hiz) = ^2 H»ßz»zß 

on a neighbourhood of x, and in particular on the p-ball Bp. Let w = 

F(x) G C. We modify F, near x to 

f(z) = ßp(w' + H(z)) + (l-ßp)F(z), 

where w' G C. 

Lemma 10. If p is sufficiently small, k > k(p) is sufficiently large, 

and jw — w'j is sufficiently small compared with p, then x is the only 

point in Bp where jdfj < jdfj. 
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Proof. There are two cases; first consider a point x' with d(x, x') < 

p/2 , so ßp{x') = 1. Near to x' we can write f = w' + H, whence 

df = dH df = dH. 

Recall (see the discussion in [3]) that in our local complex coordi-
nates we can write 

d = d0 + /loo , d = d0 + /iô0 , 

where do, do are the standard operators defined by the complex coordi-
nates and \n{z)\ < c\z\k~xl2. Now, since H is a holomorphic function 
in these co-ordinates, we have doH = 0. The e-transversality condition 
for dF (applied at the origin of the coordinate system) tells us that 

\dH(z)\ >e\z\-\r{dF)z=Q\\z\. 

Now the term rdF(0) is controlled by the C 1 norm of dF (note that 
(dd + r d ) = 0 on functions, even in the non- integrable case). Hence 
we have 

\d0H(z)\ >e\z\ -C'k-ll2\z\. 

Thus if \dH(z)\ < \dH(z)\ we have 

e\z\ -C'k-ll2\z\ < \dH{z)\ < \dH{z)\ < C"\z\2k-^2, 

for a suitable constant C", and once k is suffiently large we can deduce 
that z = 0. 

Now consider the points x! in the annulus containing the support of 
Vßp. We can write 

df = d(ßp)(w' + H-F)+ ßpdH + (1 - ß)dF. 

The Taylor expansion of F about the origin, up to terms of quadratic 
order, has the form 

F(z) = wV^laza+^Haßzaz+^maßzazß+^naßzazß+O{\z\i). 

The remainder term is uniformly controlled by the C2 bound on F and 
the co-efficients la-,maß->naß are all O(k~1'2) from the C2 bound on dF. 

So we have 

\w' + H -F\< c{p3 + pk~1/2 + \w- w'\). 
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Since jrßpj = O(p l) this gives 

jdfj < c(p2 + k'1/2 + jw- w'jp-1), 

since jdHj < jpjjdHj < ck-1/2. 

On the other hand in the corresponding calculation for df, 

df = dß(w' + H-F)+ ßdH + (1 - ß)dF, 

we can write ßdH + (1 - ß)dF = dH + (1 - ß){dF - dH). We know 
that jdHj > ^ while jdF — dHj < c(pk~ll2 + p2). Put t ing everything 
together we have, on the annulus containing the support of r / 3 P , 

jdfj - jdfj > | - c(p2 + k-V2 + jw _ w ' jp - i ) . 

If p is sufficiently small, k sufficiently large and jw — w'j sufficiently small 
compared with p, then the lower bound is strictly positive. 

We use this lemma to modify the function F over each of the p-balls 
centred on the points of A to obtain a new function f. By construction f 
is a submersion with symplectic fibres away from the finite set of points 
A, and the function conforms to the local model required around these 
points (using the fact that the nondegenerate quadratic form H can be 
diagonalised). We can make the critical values f(x),x G A distinct 
using the parameter w' in the construction above. 

The only further issue is to modify the function to conform to the 
standard model of Definition f around a point x G A. We will do 
this modification in a tubular neighbourhood of A contained in the 
complement of the set ilx C VnW0O, so there is no interaction with the 
modifications we have discussed above. 

Consider the linear algebra of the situation around a point x G A. 

The tangent space TA x is the kernel of the R-linear map 

D x = r s 0 © r s i : TV x ->• L k x © L k x. 

Suppose that TA x is a symplectic subspace of TV. Then its anhilliator 
TA x with respect to the symplectic form is a complementary subspace, 
TV x = TA x © TA°x, and D x gives an R,-linear isomorphism from TA ^ x 

to the complex vector space L x ®L x. Another way of saying this is that 
D x induces a complex structure on TA x. (Notice that , at this stage, 
the construction has nothing to do with the almost complex structure 
o n V . ) 
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Lemma 11. For a point x in A, F = si/so can be represented in the 

standard model of Definition 1 at x if and only if TA x is a symplectic 

subspace, and the restriction of co to TA x is a positive form of type (1,1) 
with respect to the complex structure on TA®x induced by D x. 

Proof. In one direction it is clear by inspection that if a standard 
co-ordinate system centred at x exists, then D x has the property stated. 
In the other direction, suppose that A is a symplectic submanifold near 
to x. We can choose complex co-ordinates z2, • • •, z n-\ for A centred on 
x, so that 

WA = ^(dz2dz2 + ••• dz n-idz n-i) 

at the origin. Now extend the functions z2, • • • z n-\ to a neighbourhood 
of x in V, in such a way that their derivatives vanish in the direction 
of the complementary subspace TA°. Next choose a local trivialisation 
of L k by a section a and define functions zQ,z\ by s i = z ia. Then 
zo,..., z n-i define local co-ordinates on V in which, by construction, 
the symplectic form at the origin has the shape 

y~^ üaßdzadzß + dz2dz2 H 1- dz n-idz n-i, 
a,ß=0,l 

where (£laß) is positive, while F = z\/zQ. 

The original map F = s\/sQ will not normally satisfy the hypothesis 
of Lemma 11 along A, since there is no reason why LO should have type 
(1,1) on TA x. However from the e-transversality of (so,si), and the 
usual bound on dso, dsi it follows that this is approximately true, in the 
sense that there is a smooth family of linear maps D x : TV x —> L k x © L k x 

with 
\(D x - D x)i\ < ck-ll2\D x(i)\ 

and such that the hypothesis of the lemma holds with D x in place ofD x. 

Now it is straightforward to modify (so, si) in a tubular neighboorhood 
of width T of A, for some r independent of k, to get a new pair of 
sections (so)si) with derivatives D x. Then we define f in this tubular 
neighbourhood to be the ratio si/so-

We call a map f obtained by following the steps described above a 
modification of F. 

3. Construction of the sections 

Our task now is to construct sections sQ,s\ of L k satisfying the 
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conditions of Proposition 6. We will make use of the following version 
of Sard's Theorem for holomorphic maps, which is proved in the second 
half of the paper. We consider a holomorphic map f from the unit ball 
in C n to the unit ball in C m. Given 77, e > 0 and a point w G C m we 
define the subset U(f,w,r],e) of the ball Bn{w) of radius r\ centred on 
w to consist of the points w' such that f is e-transverse to w' over the 
interior ball 2B2n ^ B2n C C n. As in [3] for ô > 0, and an integer p we 
write 

Q p(6)=log(6-1)-p. 

T h e o r e m 12. For any n,m and 7 with 0 < 7 < 1 there is a p = 

p(m, n, 7) such that for all maps f as above, w G C m and 0 < r\ < 1/2; 
if e = i]Q p(r]) then there is a connected component ofU(f,w,r),e) whose 

volume is at least 7 times the volume of Bn(w). 

To put this in context, one knows that the set of critical values of 
a holomorphic map form a proper complex subvariety, so their comple-
ment is connected. Theorem 12 is an extension of this principle to the 
"near-critical values". Our proof of the existence of the Lefschetz pencils 
uses only the fact that U(f, w, 77, e) is non-empty, the refinement involv-
ing the "large" connected component is used later in the discussion of 
asymptotic uniqueness. In the case where m = 1 the first assertion is 
Proposition 26 of [3], and the refinement is proved by Auroux in [1]. 
The result for the case where n < m is proved by Auroux in [2]. The 
case we will need in the present paper is that where n = m. 

Of the three transversality conditions in Definition 6 that we need 
to achieve the third one, involving the transversality of the derivative, 
is the most significant. The first conditions can be achieved by applying 
the main theorem of [3]. The second condition can be obtained from [1], 
or by copying the argument we give below for condition (3). We will now 
review the basic construction of "approximately holomorphic" sections 
in [3], which we need to extend slightly in the present paper. For any 
point q G V we defined in [3] an approximately holomorphic section 
aq of L k suported in a ball of g k-radius O(k1'6). We work in standard 
complex co-ordinates za centred at q and a standard local trivialisation 
of the bundle L , in which the connection form is 

A = 4V/, , zadza zadza). 

In this trivialisation, the section aq is the product 

oq{z)=ßk e-\z\2'\ 



l e f s c h e t z p e n c i l s o n s y m p l e c t i c m a n i f o l d s 217 

where ßk is a cut-off function, whose derivative is supported on an annu-
lus of radius O(k1'6). Now—going beyond the discussion in [3]— given 
a linear form n(z) = P naza on C n we may consider the section given, 
in these trivialisations, by 

(13) q^{z) = n(z)aq(z) = X z e ^ ^ ßk{z) • 

We extend oq^ by zero over the remainder of V, in the fashion of [3]. 
The point of the construction is that the derivative daq>7T evaluated at 
the origin is n. (Here we are identifying the fibre lk with C; more 
invariantly we should think of ir as an element of T*V q ® c L q.) For 
points x,yinV write 

E k(x,y) = e x p ( - d ( x , y ) 2 / 5 ) if d k{x,y) < k 1 / 4 

= 0 if d k(x,y)>k^4, 

where d k is the distance function of the metric g k. 

L e m m a 14. There is a constant M, depending only on (V,UJ,J), 

such that 

jaq(x)j + jr3aq(x)j <ME k(x,q), 

q A x ) j + jr3<Tqj7r(x)j < MjnjE k(x,q), 

jdaq(x)j + jr2daq(x)j < Mk-^2E k(x,q), 

jdaq^{x)j + jr2daqyW(x) < Mk-^2jTrjE k(x,q). 

The proof is a straightforward extension of that in [3] which we omit. 

Now suppose, following [1], [3], that we have constants C,ë and 
C-bounded sections s0)si which satisfy the transversality conditions 
(1),(2) of Definition 5, with ê in place of e. We can now get on to the 
main issue, modifying the sections to achieve the e-transversality of the 
derivative for a suitable e. In fact we will only need to modify the section 
s i , so so is fixed from now on. Write F = s\/so, as usual. 

L e m m a 15. For a suitable x = x{C-,e), and sufficiently large k, 

any point x where jdFj < 2ë lies in the set Qx where jsoj > x-

The proof is almost identical to that of Lemma 7. (The value of x 

here will be somewhat different from that in Lemma 7, but for simplicity 
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we keep the same symbol. Note that, as far as the ê-dependence goes, 
X is O(ë2).) 

Now let x b e a point in Qx/2, r be a small number and p be a large 
integer (r and p will be specified below). Given a C-bounded section s\ 

and a vector IT in thefibreofT*V<g>L k at x we obtain a complex-valued 
function 

FIT = (si +cx ) 7 r)/s0 , 

over V n Woe. For ö,r > 0 let U(x,si,ö) be the subset of the <5-ball 
in (T*V (g> L k)x consisting of the vectors ir such that dF„ is <5Q p(<5)-
transverse to zero over the r-ball in V centred on x. 

Proposition 16. For small r and a suitable choice of p, for any 

ö < è and for sufficiently large k > k(ö,C), the set U(x,si,ö) has a 

connected component of volume at least 3/4 the volume of the 6-ball in 

TV* ®L k. 

Proof. As usual we work in standard co-ordinates around the point 
x. Let ea be the corresponding orthonormal basis for T*V (g> L k and 
write oa for (7x>ea. Thus ax>7T = P f a ^ , where 7ra are the components 
of the vector n = P 7raea. Let ha be the complex-valued function aa/so-

Thus ha vanishes at p and the derivative of ha at x is ea/so(x). So the 
derivatives dha form a basis for the cotangent space at x. It follows 
that if we choose r small enough (where the bound depends only on the 
section so) then the same is true over the 4r-ball centred on x. More 
precisely, we may suppose that the n x n complex matrix [dha] formed 
from these partial derivatives has inverse of norm less that 10, say, over 
the 4r-ball. We may also suppose that jsoj > x/2, say, on this 4r-ball. 

Now write 

G(z, n) = dFw(z) = dF + X Kadha. 

We are regarding this as a map from a neighbourhood of (0, 0) in C n x C n 
to C n, using our local co-ordinates. We can also think of this as a family 
of maps with n as a parameter G(z,ir) = G7T(z). Our task is to choose 
7T to make Gn transverse to zero by a controlled amount. To do this 
we follow the standard strategy to put the problem into the framework 
of Theorem 12. (That is, we are mimicking a standard procedure by 
which one deduces transversality theorems from Sard's Theorem.) Since 
the dha form a basis for the cotangent spaces (by the discussion of the 
previous paragraph) the equation G(z,ir) = 0 defines n implicitly as a 
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function 7T = 4>{z) of z, for jzj < 4r. We get a smooth map 4>{z) on 
the smaller 3r-ball which is uniformly bounded in C 3 . Moreover (f> is 
approximately holomorphic, 

||3o0||Ci < ck" 1 / 2 . 

Here the constant c depends on C, but is independent of k. Thus, using 
the argument in Lemma 28 of [3], we can find a holomorphic map (f) 

with 

(17) Ù-<p\\C*<ck-ll\ 

over the 2r-ball. Now, rescaling the balls, we can obviously deduce 
from Theorem 12 that there is a p such that for any 9 > 0 the set 
U((fi, 0, 0, 0Q p(9)) has a component of volume larger than 3/4-the volume 
of the 9 ball. Now once k is large—depending on 9—and at the expense 
of re-choosing p, the same statement holds with (f> in place of (f> by (17). 

The final step is to go from the transversality of 4> to that of Gn, 

with appropriate estimates. 

L e m m a 17. For a suitable constant c and all a > 0, if (f> is a 

transverse to n over the r-ball, then Gw is ca-transverse to 0 over the 

same ball. 

Suppose z is a point in the r-ball with jG7r(z)j = jG(z, vr) j < ß. Then 
there is a nearby parameter value n' with G(z,ir') = 0 and jvr — vr'j < 
10/3: this follows from the fact that G is linear in the n variable and 
our assumption on the inverse of the matrix [9hQ]. Now by definition 
7T' = <f>{z), so j4>(z) — 7Tj < 10/3. If 10/3 < a above, we know that 
the derivative of (f> at z has an inverse of norm at most a~l. Let us 
write A z>7T, B z>7T for the partial derivatives of the map G in the z and n 

variables respectively, evaluated at a point n, z. Then the derivative of 
4> at z is the linear map 

D4>z = -B-l,A zy. 

Thus the operator norm ||A~^/|| is bounded by 

D z1 II WB-lMKcWD^WKca-1. 

The derivative of the map G ̂  at z is given by A z>7T, so we need to 
compare the two points (z,n),(z,ir'). By the usual estimate on the 
norm of an inverse we see that if \\A z7T — A z7T>\\ < h\\A~ J l - 1 , then 

\\A-l\\<2\\A z i , \ \ < 2 c a - 1 . 



220 s. k . d o n a l d s o n 

(To see this, write 

A z^ = [1 + A zy{A z^ — A zJ7TI)J A zy, 

and then use the series expansion for the inverse of 1 + a.) Now the 
map G is bounded in C2 so that 

WA^ - A zy\\ <c | |7T-7r ' | | < 10c/3. 

In sum we see that Gw is /3-transverse to 0 where ß = min(o!/10, a /20c 2 ) . 
Now Proposition 16 follows from Lemma 17 and the preceding dis-

cussion (we can change the parameter p to absorb the constant c'). 

Given Proposition 16, the remainder of the proof of Theorem 2, the 
"local to global argument" follows the lines of [3]. With r fixed as in 
Proposition 16 we choose for each k and any D > 0 a covering of V by 
balls B i, i G I , of g - r ad iu s r, centred on points x i ̂  such that 

1. any ball which meets ilx lies in ^X/2Î 

2. P i E k{x, Xi is bounded by some fixed constant independent of k; 

3. there is a partit ion of the index set I into N = N(D) subsets 
I i , . . . , I N(D) such that the distance between balls belonging to 
the same subset is at least D. 

To each index i G I we associate n sections <i)0,, a = 1 , . . . , n of L k 

with 

1. if the ball B i has non-empty intersection with Çix, then i)Q = 
c"x i ,e a where e i j a is arbitrary orthonormal basis for the fibre of 
T*V'®L k at x i. 

2. if B i does not intersect ilx, then we let i a be identically zero. 

R e m a r k 18. Of course the sections i a corresponding to the balls 
which do not meet Qx play no role in the construction. The point of 
setting up the construction in this way is that the covering by balls need 
not depend on the section sQ- Lemma 15 gives automatic transversality 
outside ilx. 

We now proceed to modify the section s\ by adding linear com-
binations of the aia, following the scheme of [3]. At stage j in the 
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construction we add suitable multiples of the sections corresponding to 
the set I j , and we achieve control of the transversality over the balls 
centred on the points x i,i G I j . The upshot is that , with an arbitrarily 
small perturbation in the section si, we achieve control of the transver-
sality over all balls which meet ilx. Using Lemma 15 we obtain sections 
satisfying condition (3) of Definition 5, for a suitable e. 

4. A s y m p t o t i c uniqueness 

We will now formulate the uniqueness property of our Lefschetz 
fibrations. Given a compatible almost-complex structure J on (V, u>), 
real constants C, e and a positive integer k let L k(J, C,e) be the set 
of pairs of C-bounded sections (so,si) satisfying the e-transversality 
hypotheses of Definition 5. So far we have seen that , if k is sufficiently 
large, the set L k(J,C,e) is non-empty and any element in it yields a 
topological Lefschetz pencil f : V n A —> S12, a modification of the ratio 
si/s0. 

Definit ion 19. We say that two topological Lefschetz pencils f : 
V n A —> S2, f : V n A' —>• S2 are isotopic if there are smooth isotopies 
$t • V -> V, 4>t- S2 -> S2 for t G [0,1] such that 

1. $o is the identity map on V and (fio is the identity map on S2; 

2. ^1(A')=A; 

3. f o $ ! =(filof:VnA'^S2. 

T h e o r e m 20. Suppose we are given e, C > 0, a pair of compatible 

almost-complex structures J, J' and a sequence of integers 

k i —> oo. Suppose for each i we have topological Lefschetz pencils 

f i:VnA i—>S2,f ^:VnA'i ^S2 which are modifications of elements 

of L k i (J, C, e), L k i ( J ' , C, e) respectively. Then, for sufficiently large i, f i 

and f i are isotopic. 

A particularly notable case is the "classical" situation when J is in-
tegrable, so defines a Kahler structure. Then we may consider Lefschetz 
pencils in the usual sense, defined by a ratio of holomorphic sections. It 
is a standard fact that , for each k, any two such are isotopic (because 
the set of pencils is a complex Zariski-open subset of a Grassmannian). 
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Propos i t i on 21 . If J is a compatible complex structure on (V,LO), 

then there are constants C, e such that for large enough k there are 

holomorphic sections (so,s\) in £k(J , C,e). 

The proof of this follows closely that of Proposition 34 in [3]. One 
projects the approximately holomorphic sections ap, a I ]p to the space of 
genuine holomorphic sections of L , and then runs the whole construc-
tion above using these. We leave the details to the reader. Combining 
Theorem 20 with Proposition 21 we obtain one of the main results of this 
paper which asserts, roughly speaking, that the topology of Lefschetz 
pencils on complex algebraic varieties is a symplectic invariant: 

Corollary 22. Let Vi, V2 be compact complex manifolds, and L i —> 

V i be positive line bundles. Letuj\,io<i be Kahler metrics on Vi, V2 repre-

senting c i (Li ) ,c i (L2) . If there is a symplectomorphism f : (VI,UJI) —> 

(V2,^2) with f*(ci(L2)) = ci(L\), then for sufficiently large k the Lef-

schetz pencils defined by generic homolomorphic sections of L k , L k are 

isotopic. 

More precisely, we mean that if we regard L\ and f*{L<i) as two 
holomorphic line bundles over the same manifold V\, with respect to 
two different complex structures, then the pencils are isotopic in the 
sense of Definition 19. 

The essential step in the proof of Theorem 20 is a parametrised 
version of the main construction. 

Propos i t i on 23. Given C, e there are C, ë such that if k is suffi-

ciently large, and (so, s\), (s'0, s[) are pairs in Ck(J,C,e), then there is 

a continuous 1-parameter family (s0 , s\ ) in jCk(J, C , ë), for t G [0,1], 
running from (so, s i) at t = 0 to (s'0, s[) at t = 1. 

The argument is essentially the same as that of Auroux in the cor-
responding statements in [1], [2], but we will include the crucial step 
here for completeness. The full argument requires a number of stages, 
corresponding to the stages in the existence proof in Section 3. But in 
each case the construction is essentially the same, so we will focus on 
one of them. Suppose first then that 

1 . s 0 = s'0; 

2. we have constructed a path at such that for each t the pair (so,at) 

is C-bounded, and that (sQ, at) is è-transverse to 0, for some C, ë. 
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We want to change the path to achieve the third condition of Defi-
nition 5 (transversality of the derivative), with possibly different values 
of C, i. We construct the new path by following the overall scheme of 
Section 3, with t a s a parameter. Consider a single step in this con-
struction, over a fixed r-ball centred on x G V. For suitable ö > 0 and 
each t G [0,1] we want to choose a vector irt in the <5-ball Bg in the fibre 
of TV* (g> L k at x. We want to make this choice in such a way that the 
derivative of the ratio 

(ot + Vx,TTt)/so 

is <5Q p(<5)-transverse to zero over the half-sized ball. We get a family of 
subsets U t of the <5-ball, just as in Section 3, and write U = {(t, vr) : n G 
U t g C [0,1] x Bg. Now we use an elementary observation (in essence 
the argument of Auroux at the end of Section 2 of [1]): 

Lemma 24. Suppose U C [0, f] x Bg is a subset with the properties: 

1. U is open; 

2. For each t the "slice" U t has a connected component whose volume 

is at least 3/4 of the volume of Bg; 

3. The slices Uo,Ui at the ends are both the whole ball Bg. 

Then there is a continuous section nt G U t, with 7TO = 7TI = 0. 

Proof of Lemma 24- For each time t we can choose some arbitrary 
Pt in the "large" component of U t- Since U is open, there is a connected 
open neighbourhood I t of t G [0, f] such that I t x {pt g lies in U. Moreover 
we can suppose that for s G I t, pt lies in the large component of U s. (For 
we can choose a compact, connected, subset K of U t which contains pt 

and whose volume is at least 0.6 times the volume of Bg. Then if I t is 
sufficiently small the product I t x K lies in U.) Now take a finite cover 
of [0, f ] by a collection of these intervals. We achieve a finite subdivision 

0 = t0 < t < ••• < t N-i < t N = 1, 

and a collection of vectors po,... ,PN-I such that pi lies in U t for all 
parameters t in an open neighbourhood of [t i , i + i ] . At a parameter 
value t i, for i = 1 , . . . , N — I, we have two points i-\, pi in the large 
component of U t i and we join these by a path i : [—1, f] —> U t i Then 
for sufficiently small a the path [t i — a, t i + a] H- [0,1] x Bg defined by 
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t H- (t,7i((t — t i)/a) maps into U. We construct the desired section by 
piecing together these paths and the constant paths t —> (t,pi). 

We can apply this Lemma in our situation. The first hypothesis 
is satisfied by continuity in the t-parameter. The second follows from 
Prop. 16, for suitable choice of ö, and the third is achieved by choosing 
ô small compared with e. Then we may extend the whole argument of 
Section 3 to these 1-parameter families. 

We should now return to discuss the hypotheses (1),(2) we have as-
sumed above. In the case where so = s'o we can construct a path at 

satisfying (2) by repeating the discussion above to obtain the transver-
sality condition in the family (Indeed, this is precisely the situation 
considered by Auroux in the main result of [1], so we may quote this 
part of the construction directly from that reference.) If we have gen-
eral pairs (so, s\), (s'0, s[) we can first construct a path s0 from sQ to 
s'0 which is C-bounded and è-transverse. For each t we can construct 

a companion 7-t such that ( s f V t ) G Ck(C,e) once k is sufficiently 
large. The crucial thing here is that all constants are uniform in t; see 
Remark 18. The argument now is similar to the proof of Lemma 24. 
For each t there is, by continuity, a small neighbourhood I t such that 
(so(t'),T(t)) G Ck(C,e) for t' G I t- We choose a finite cover of [0,1] by 
these intervals. At a point t' of overlap between two of these intervals 
we have two pairs 

(sO ( t ), t- ), ( s 0 ( t ' ) , t i + i ), 

say. We can apply our result above to construct a path between these 
pairs and then construct a path si(t) by piecing these together. The 
main thing to note is that we can achieve a uniform estimate (s0 , s\ ) G 
Ck(J,C,e) for k > k(C,e), independent of the number of intervals 
needed to cover [0,1]. 

Proof of Theorem 20. Assume first that the almost-complex struc-
ture J ' is the same as J . We apply Prop. 23 to find a path (s0 ,s\) in 
some k(J, C , ë) joining (sQ, s\) to (s'0, s[). We want to construct a cor-
responding continuous family of modifications. Here "continuous" has 
the following meaning. The zero sets of s i define a codimension-4 sub-
manifold Ad [0,1] x V and we seek a map F : ([0,1] x V) nA -> S2 which 
restricts at each time t to a modification of s i /so- There are two issues 
involved here, corresponding to the similar two steps in Section 2 . At 
each time t we have a discrete, finite set At C Vn A t of zeros of dF t, and 
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the p-balls surrounding this set are disjoint for some fixed p = p(C, e) 

and large enough k. Let A C [0,1] x ([0, f] x V) nA be the correspond-
ing set, the union of a finite number of sections bi(t) , b2(t),..., b r(t)). 

There is no difficulty in carrying out the construction of Section 2 in 
this family, so we may deform s\/sQ : ([0,1] x V) n A ^ S2 over a p-

neighbourhood of A to get a map f which conforms to the standard 
quadratic model at all critical points b i(t). The other issue is that we 
want the critical values f(t,b i(t)) to be a set of r distinct points in C, 
for each time t. By an ordinary transversality argument we can choose 
further generic small perturbations to achieve this. Notice that this last 
step depends crucially on the fact that we are considering a 1-parameter 
family so that generically the critical values will be distinct throughout 
the family. 

L e m m a 25. Let f t : V n A t —>• S2,t G [0, f] be a continuous 1-
parameter family of topological Lefschetz pencils. Then the f t are iso-

topic for all t. 

Since isotopy is an equivalence relation, it suffices to prove this for 
sufficiently small t. The proof is almost routine. First we can choose 
isotopies of V moving A t to AQ, so without loss of generality we may 
suppose that A t = AQ for all t. Similarly we may suppose that the 
critical set At is independent of t, and—by applying an isotopy—of S2 

that the same is true of the critical values. (Here we use the hypothesis 
that the critical values are distinct.) Now around each critical point 
the map f t is given in a suitable complex co-ordinate system by the 
standard quadratic model. But these co-ordinate systems differ by a 
local isotopy, so we may reduce to the case where the maps f t are 
fixed (independent of t) near the critical points. Similarly for each t we 
can choose an identification of a tubular neighbourhood of AQ with its 
normal bundle, and a complex structure on the normal bundle, so that 
in this neighbourhood the map f t is given by the fibration of the normal 
bundle minus its zero section over the projectivised normal bundle. By 
the uniqueness of tubular neighbourhoods, up to isotopy, we may reduce 
to the case where the f t are fixed (independent of t) in a neighbourhood 
of AQ. We come then to consider the case where f t = fo outside a set 
U C V n (AQ U A O ) , and f t is a submersion on U. The time-derivative 
-f is a section of the pull-back f t ( T S 2 ) . We can use the orthogonal 
complement to the fibre to identify this with a subspace of TV, thus 
getting a time-dependent vector field on V, supported in U. The integral 
curves of this time-dependent vector field yield the desired isotopy $ t . 
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Lemma 25 and the preceding discussion completes the proof of The-
orem 20 in the case where J = J'. Finally we go on to the general case, 
with different almost-complex structures. Any two compatible almost-
complex structures can be joined by a 1-parameter family J t,t G [0,1] 
with Jo = J, J\ = J'. By compactness of the family we can find C, e 
such that Ck(J t, C, e) is non-empty for all k > ko and all t 6 [0,1]. It 
suffices to show that for t sufficiently close to 0 the pencil defined by a 
modification of any pair in Ck(J t,C,e) is isotopic to fo- But if a pair 
(so, s\) lies in £k(Jo, C, e), it also lies in £k(J t, C, e) for small enough t, 

and it is clear that the modifications required for the different complex 
structures J t can be joined by a continuous family for small t. So our 
result follows by applying Lemma 25 again. 

5. T h e local t h e o r e m 

The remainder of this paper is taken up with the proof of Theo-
rem 12. The proof depends upon various subsidiary results which we 
obtain in this section and the next: these are put together in Section 
7 to give the proof of Theorem 12. The overall strategy is as follows. 
First, by truncating the Taylor series, we reduce to the case where the 
holomorphic map f has components which are polynomials. As the pa-
rameter t] in Theorem 12 is made smaller, we need to take polynomials 
of higher and higher degree. Thus the main focus of the work is to 
obtain estimates which take account of the dependence on the degree. 
We show first, in this Section 5, that the set of "near critical" values 
of such a polynomial map is contained in a small neighbourhood of a 
codimension-2 real algebraic variety, whose degree we can estimate. In 
Section 6 we study small neighbourhoods of such varieties, and show 
that their complement, in a standard ball, has a component of large 
volume. 

Consider a map F : C n —> C m whose components are polynomial 
functions of degree at most d. Given e > 0, let E e C C n be the set 

S e = {x G B2n C C n : v{dF x) < e}, 

and let Ae be the image F(T.e). Thus Ae is the set of near-critical values 
of F, and the entire thrust of the work is to show that Ae is "small" in 
a suitable sense. The main result of the present section is 

T h e o r e m 26. There is a p > 0, depending only on the dimensions 

m, n, such that for any F, e as above, there is a real-algebraic subvariety 
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A C C m of real codimension 2 and degree D such that Ae is contained 

in the Ce-neighbourhood of A, where C,D < (d + l)p. 

In the case where m = 1, the set A is a finite set of D points in C, 
and the result is just what is used in [3] (page 689). The statement for 
larger values of m will be proved by induction, but to make the induction 
work we need to formulate a more general statement involving families 
of maps. Let G : C n x C r -> C s and $ : C n x C r ->• C m be polynomial 
maps, with all components of degree at most d. Here we think of C r as 
a parameter space. For r G C r let ZT be the complex algebraic variety 

ZT = {xeC n :G{xJT) = 0 } . 

We suppose that there is a non-empty, Zariski-open set T C C r such 
that the partial derivative of G with respect to x is surjective for all 
points in ZT,T G T. Hence Zr is smooth for r in T. Define, for each 
T, a map F T : ZT -> C m by FT(x) = $(x, r ) . For e > 0, and each fixed 
parameter value r in T, let AT)(E be the set of near-critical values defined 
as above, for the map FT : ZT —>• C m. That is: 

AT,e = FT({x eZTn B2n C C n : ^ ( 0 F ) x < e}), 

where dFT is regarded as a linear map from the Zariski tangent space 
of ZT to C m. (To make the definition precise we must take account of 
possible singular points in ZT—although in fact these will not play any 
real role in our results.) Now define 

Ae = {(r, w ) E T x C m : w G AT)£} C C r x C m. 

Propos i t i on 27. With notation as above, there is a codimension-2 

real-algebraic subset A C C r x C m of degree D_ such that Ae is con-

tained in the Cß-neighbourhood of A, where C_^D_< (d + l)p, for some 

p depending only on m,n,r,s. 

We will now prove Prop. 27, by induction on m. The first step 
is to establish the case where m = 1, with any value of r. This is a 
refinement of the argument on page 689 of [3], so we need to review 
that argument briefly. First, fix a parameter value T G T. We are then 
in just the position considered in [3], except that our map FT is being 
considered to have domain the intersection of the ball B2n with the 
smooth algebraic variety ZT, whereas in [3] the domain of the map is 
simply a ball. We consider the real-valued function P = jdFTj2 on ZT, 
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and suppose for the moment that e2 is a regular value of this function 
and of the restriction of P to the boundary ZT n S2n~l. Thus the open 
set in ZT 

Me(r) = {xeZTn B2n : P{x) < e2g 

is the interior of a manifold-with-corners. On each path-connected com-
ponent of Me(r) we have a path-length metric: the distance between 
two points is the infimum of the lengths of paths in Me(r) which connect 
them. 

L e m m a 28. There is a number q, depending only on the dimension 

n, such that the number of connected components of Me(r) and the 

diameters of the components in the path-length metric are bounded by 

(d+1)q. 

In the case where ZT = C n this is deduced from Proposition 29 in [3]. 
The proof in this slightly more general situation is a simple modification 
of the proof of that Proposition, and we leave the details to the reader. 

Now consider the function \x\2 on ZT n B2n and on dMe. Let B(j) 

be the union of the sets of critical points for the two cases. We expect 
that generically this is a finite set. In any event, each component of 
Me(r) contains a point of B(T) in its closure (since we may minimise 
\x\2 over the closure of the component). Integrating the derivative of FT 

along a path and using the defining condition of M€(T) we see that the 
near-critical set AT)£ is contained in the Ce-neighbourhood of the image 
A(j) = F(B(T)), where C is bounded by a polymomial in d by Lemma 
28. Now let T vary over the Zariski-open set T C C r. Assume for the 
moment that the transversality assumptions we have made are satisfied 
for each parameter value. We define A C C x C r to be the closure of 

{(w,T) G C X T : w £A(T)g. 

In follows immediately from the discussion above that A is contained 
in the Ce-neighbourhood of A. 

The next task is to see that A is a codimension-2 real-algebraic sub-
variety of degree D_ where D_ is bounded by a polynomial function of d. 

Consider the critical points on ZT, for fixed T G T. These critical points 
are defined by the usual Lagrange multiplier condition: the derivative 
of \x\2 should be a linear combination of the derivatives of the real and 
imaginary parts of the components of $(—, r ) . Since these latter deriva-
tives are lineary independent, by hypothesis, this is equivalent to saying 
that a certain 2n by 2s + 1 matrix of partial derivatives has rank 2s. 
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We may then cover ZT by a fixed number of open sets, on each of which 
the required condition is equivalent to the vanishing of the determinants 
of 2(n — s) minors of the matrix. Thus in each of these open sets the 
critical set is cut out by 2(n — s) real polynomial equations. Similarly 
for the critical points on dMT. Now if we let the parameter r vary, the 
critical points are described as the solutions of polynomial equations in 
the x and r variables. Thus if we define 

BJO = {{T,x) E C r x C " : T G T , x E B(T)}, 

then B_0 is a dense open subset of a real-algebraic variety B_. The set 
A is the image of B_ under a polynomial map, so is also an algebraic 
variety. Moreover it is easy to see that the degree of A is bounded by 
some polynomial in d, working through the construction to keep track 
of the equations involved. To finish the argument we just need some 
discussion of general position. Up to now we have assumed that the 
boundaries dMT are smooth. We can easily arrange this for a single 
value of T, by changing the parameter e slightly, but in a family we will 
generically be forced to allow singularities. Similarly, by changing the 
origin slightly, we can arrange that the critical points are nondegenerate 
for a single value of r , but not necessarily in a family. Thus we suppose 
that there is a (real) Zariski-open subset T ' C T C C r such that dMT 

is smooth and the critical points are non-degenerate for r in T". In 
particular the sets A(T) are finite, for r in T ' . We change the definition 
of B 0 above by restricting r to lie in T", and then take the closure of 
this to define an algebraic variety B_ with image Ac C r x C. The 
intersection of A with a generic slice { T } X C , r G T" is finite and it 
follows that A has real codimension 2. On the other hand, if cr is a point 
in T n T" we can choose a sequence r, in T" converging to a, and thus 
from the definition and an obvious continuity argument we see that the 
points (a,w),w G A£j(7 are still in the Ce-neighbourhood of A This 
completes the proof of Proposition 27 in the case where m = 1. 

We now come to the inductive step. Suppose we have proved Prop. 
27 for smaller values of m and all r. Begin by fixing a parameter value 
T, so we have a polynomial map FT : ZT —>• C m. At each point of ZT we 
have a linear map, the partial derivative dFT : TZT —> C m. Decompose 
this into components ( a i , . . . , a m) say, so the a, are elements of the 
cotangent space. We have 

j a p 2 j j 2 , , j j 2 
CF j — al H + a m 5 



230 s. k . d o n a l d s o n 

(i) j j ì j j 
so if we define open sets ZT ' C ZT by the condition that i > p 9 F r 

(i) (i) 

on Zi- , the sets ZT form an open cover of ZT. Now write C m = 
C x C m _ 1 , splitting off the first component. Let FT = ( f , g T ) , in this 
decomposition, and for u G C let ZT>u = f _ 1 ( u ) C ZT. Write gT>u for 
the restriction of gT to ZT>u 

L e m m a 29. If x G ZTju n Z\ and if at x 

jdfrj > e , v(dgTju) > e, 

then u(dFT) > ce where c = —7=—^ p - . 
v ' p 2 ( l + 2 / " i ) 

This just involves linear algebra at the point x. We consider right-
inverses R i , R 2 to the linear maps dfT,dgT>u respectively. So R% is 
right inverse to the restriction of dgT to the kernel of dfT = a\. The 
hypotheses state that we can choose R i with | | - i k < e _ 1 . Suppose (£,77) 
is a point in C m = C x C m _ 1 . Define 

R&v) = Ri(0 + R ' l - (dgr)(Ri(0))-

Then R is a right inverse to dFT = (dfT, dgT), and we need to estimate 
its norm. Using the hypotheses, we have 

kR(e^)k<e-1(jcj + ĵ j + j^rRi(e)j)-

Now we use the assumption that the point x lies in ZJ . We have 

k R i ^ k ^ j a j ' j e j , 

and jdgTj < jdFTj. So jdgTRi(£)j < 2 p mj£j. Hence 

jR(Ç,ri)j<e-l(l + 2p^Mj + j r i j ) < e - l p 2 ( l + 2pn~)j(Ç,ri)j. 

Now write A i £ = FT(ET ) £ n Z^), and A i = f(w,T) : w £ A £ £ so 
that 

A = A ^ U • • • U A(m) 

4 = A W U - U A m . 

It suffices to prove Prop. 27 with the A} in place of A e , so we may fix 

attention on AÈ . First apply the result with m = 1 to the family of 

maps fT : ZT —>• C, with the parameter e replaced by c _ 1e, where c is 
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the constant in Lemma 29. We get an algebraic variety A\ C C x C r 
such that the near-critical values for the fT are contained in a small 
neighbourhood of A\. Now consider C x C as a new parameter space, 
with a family of spaces ZTju and maps gT : ZT>u —> C m_1. For a dense set 
T C C x C r the ZT u are smooth so we are in the situation considered in 
Prop. 27 , with r,m replaced by r + l ,m — 1. By inductive hypothesis 
there is a codimension-2 real-algebraic variety A ̂  C C m_1 x C x C r 
such that the near critical values for this family are contained in a small 
neighbourhood of A<i- Again we want to change the parameter e to 
c_1e. To sum up we achieve the following. Suppose a point {u^v^T) G 
C x C m_1 x C r is not in the Ce neighbourhood of A2, and (u, r) is not 

in the Ce-neighbourhood of A\. Then we can apply Lemma 29 to any 
point x G ZT' with FT(x) = (u,v) to see that (u,v,T) is not in Ag '. 

Turning this around, the set A} is contained in the Ce-neighbourhood 
of the algebraic variety A = n~l(Ai) U A2, where -K is the projection 
7r(u, v,T) = (u,T). This completes the proof of Theorem 26. 

6. Neighbourhoods of real algebraic varieties 

The purpose of this Section is to prove the following result about 
real-algebraic sets. 

Proposition 30. For each integer N > 0 and real number K with 

0 < K < 1 there is a v = U(K,N) with the following property. For 

any codimension-2 real-algebraic variety A C R N of degree D and e < 
(D + l)~u, the complement of the e-neighbourhood Af in the ball B N 

has a conected component whose volume exceeds KVol {B N). 

This will be deduced from another result of a similar nature: 

Proposition 31. For each integer N and real number 6 > 0 there 

is a ß = /J,(6,N) with the following property. For any real-algebraic 

hypersurface A C R N of degree D and e < (D + l) - '* , 

Vol (B N n Ae) < 6. 

To deduce (30) from (31) we use 

Lemma 32. For each N there is a constant c N such that if Q.\ 

and O2 are disjoint open subsets of the ball B N C R N, then there is a 
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hyperplane H = R N l such that, if ITH is the orthogonal projection to 

H, then 

Vol(fii) Vol(Q2) <c N Vol (irH{B N n{niUn2)))-

Proof of Lemma 32. This is equivalent to a certain isoperimetric 
inequality and so could be considered as a standard result, but we give 
a proof for completeness. We identify the sphere S N~l with the set 
of (co-oriented) hyperplanes through the origin in R N and the tangent 
space TS N~l with pairs (x, H) where H is a co-oriented hyperplane and 
x is a point in H. Define a map 

* : TS N-X x R 2 4 R N x R N 

by ty((x,H), (a, b)) = (x + av H,x + bv H), where v H is the unit normal 
to H. This gives a 2-1 covering map from TS N~l x (R 2 AR) to 
R N x R N n AR N, where AR, AR N are the diagonals. Let n be the 
standard volume form on R N x R N, multiplied by the characteristic 
function of Q\ x Q2, and let p = ^*(po). So p is a bounded form on 
TS N~1 x R 2 and 

2Vol (Oi) Vol (fi2) = Z Po-
r s . N - i x R 2 

Now consider the projection map p : TS N~l x R 2 —>• TS N~l and the 
formp*(/9) obtained by integrating over the fibres. This form is bounded, 
because p is supported in the compact set TS N~1 x [0, l ] 2 C TS N~1 x R 2 , 
since fîj C B N. Thus we have p*(p) < ka , for some k depending only 
on N, where a is the standard volume form on TS N~1. (In fact a short 
calculation shows that we can take 

k = Z Z (a- b)N dadb.) 

Suppose a point (x,H) G TS N~l lies in the support of p*(p). Then the 
line {x + tv H '• t G R } in R N meets both of the open sets Q\, H2 and so 
must meet the complement C = B N n (ii\ U ^2)- In other words, x lies 
in the image of -KH(C). Let A(H) be the (N — l)-dimensional volume 
of TTH(C). Then we have 

2Vol (fìi)Vol (fì2) = Z p*(p) < kVol (S N-1)Max H(A(H)), 
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which is the statement in the lemma, with C N = kVol (S N l)/2. 

Proof of Proposition 30 assuming Proposition 31. Let A C R N be 
a codimension-2 variety, as in the statement of Proposition 30. Without 
loss of generality suppose that K > 1/3, and choose 6 so that 

1. 20 < i ^ V o l (B N); 

2. c N6<£=f-Vol(B N). 

Let H be a hyperplane and A H be the projection TTH(A). This is a 
hypersurface of degree at most D = deg(A). Obviously the projection 
•KH(Af' n B N) is contained in the intersection of the neighbourhood A H 

and B N"1 , and Vol {AenB N) < 2Vol ( H ( ^ j n B N"1) . By Proposition 
31 (with N - 1 in place of N), if e < (1 + D)», then 

Vol (B N n A") > Vol (B N) - 2Vol {A H) > ^ - ^ Vol (B N), 

using condition (1). Suppose that B N n A€ does not have a component 
of volume at least KVol (B N). Either all components of B N n Ae have 
volume less than ^J_Vol {B N), or there is a component of volume at 
least ^±i Vol (B N). In the first case we can (by an elementary argument) 
choose a finite union of components whose total volume lies between 
^pVol (B N) and ^^-Vol (B N). In either case there is a decomposition 

B N nA = 0 i U Q 2 , 

into disjoint open sets with Vol (Oi) > ì^pVol (B N) and 

Vol (fi2) > m i n ( ^ , i ± ^ ) V o l (B N) = ^ V o l (B N 

(since K > 1/3). Then Vol (fix) Vol (fi2) > ^1^Vol (B N), but 

Vol (TTH(B N n (Oi u fi2))) < Vol (A H n B N-1) < e, 

so (2) and Lemma 32 give a contradiction. 

Proof of Proposition 31. The proof is by induction on the di-
mension N. The result is obviously true in the case where N = 1, 
and the inductive step will, in a sense, reduce to this 1-dimensional 
case. Let A C R N be a hypersurface of degree D and consider a fixed 
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projection ir : R N —> R N" 1 . Let S C R " - 1 be the discriminant lo-

cus of this projection. Explicitly, if A is the zero-set of a polynomial 
P(xi,..., x N), there is a resultant polynomial R(xi,..., x N - i ) which 
vanishes just when P , thought of as a polynomial in x N, has a multiple 
root, and S is the zero-set of R. So S is an algebraic hypersurface, and 
one sees from the explicit formula for the resultant that the degree of 
S is bounded by a polynomial function of D. Now introduce an integer 
parameter M, to be chosen later, and for integers i between — (M + 1) 
and (M + 1 ) let S i be the hypersurface in R N _ 1 defined by the equation 
P(xi,..., x N-I,i/M) = 0; so S i has degree at most D. Let X C R N " 1 

be the union of all the 2 M + 4 hypersurfaces S, So, S±i,... S ± ( M + I ) -
The main step in the proof is the following elementary Lemma. 

L e m m a 33 . Let U be a connected component of the open set 

R N " 1 n X in R N " 1 . If e < 1/M then 

Aen(Ux [-1,1]) C (X e x [-1,1]) U H J , 

where H U is the union of at most 3D of the regions 

U x ( i /M, (i + 1) /M) C U x [0,1]. 

Here, as earlier, Ae,Xe are the e-neighbourhoods in R , R re-
spectively. 

Proof of Lemma 33. Pick some point b in U. There are at most 
D points in 7r-1(b) C A, each lying in one of the regions 
U x (i/M,(i + 1 ) /M) . Let J U be the union of these regions. Now 
define H U to be the union of these regions plus the immediately adja-
cent ones. For example, if n~l(b) contains a point in U x (1/M, 2 /M) 
we include U x [0, 3/M] in the closure H U. Now let p be a point in 
Ae n (U x [—1,1], so there is a point q G A with |q — p | < e. Sup-
pose first that n(q) does not lie in U. Then the line segment joining 
n(p) to ir(q) must meet X, so 7r(p) lies in the e-neighourhood of X and 
p G X e x [—1,1]. Suppose on the other hand that ir(q) does lie in U. 

The projection n : n~l(U) —> U is a covering map, so if we choose a 
path 7 from n(q) to b in U, there is a lifting to a path 7 starting at 
q and ending at a point of 7r_1(b). By construction the path 7 does 
not cross any of the hyperplanes {x N = i/M}, so q lies in one of the 
same collection of regions determined by b: that is, q G J U. But, since 
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e < 1/M, the e-neighbourhood of J U is contained in Xe x R U H U. So 
we conclude that in either case p lies in Xe x [—1,1] U H U as required. 

We now complete the proof of Prop. 30. Let Ua , a = 1 , . . . be the 
components of R N _ 1 n X and write Va = Uar\ B N~l. Let 

Then 

Ka = H Uan(B N - i x R 

3D 
Vol (Ka) < —Vol (Va 

If e < 1/M, we get 

A n B N c A n (B N-1 x [-1, l]) e (Xe x [-1, l]) u (J Ka, 
a 

so 
Q D 

Vol (Ae n B N) < 2Vol (Xe) + -M Vol B N" 1 , 

since P Vol (Va) = Vol (B N"1) . 
Now, given 6 > 0 and the degree D, we first choose M so that 

M Vol (B N"1) < 0/2. Clearly we can do this with M = (D + l)n for 
some n = n(ö, N) . Once M is fixed the degree, D' say, of X is fixed: 

D' = (2M + 1)D + deg(S) < (d + l)n', 

for some n'. We apply the inductive hypothesis to say that there is a 
H' so that Vol (Xe n B N"1) < 0/4 if e < (D' + 1)-" ' . Then we have 
Vol (Ae n B N) < e once e < ((d + l)n' + l ) _ / i ' and this is plainly less 
than (d + l)~ß for a suitable /z. 

7. Proof of Theorem 12 

Let f : B2n —> B2m be a holomorphic map, as in the statement of 
Theorem 12. Given e > 0 we can approximate f by a polynomial map 
F, truncating the Taylor series of f, and as in Lemma 27 of [3] we can 
arrange that ||f — F\\Ci < e/10 over the interior ball \B2n with a map 
F of degree d < clog(e_1), for some constant c. Now it follows from the 
definition that for any 77 and w 

U(F,w,r],2e) cU(f,w,r],e). 

We now apply Theorem 26 to the map F, replacing e by 2e. This tells us 
that the complement of U(F, w, 77, e) in the ball Bn(w) is contained in the 
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intersection of Bn{w) with a (2C + l)e-neighbourhood of a codimension-
2 real-algebraic subvariety A of degree D, where C, D < (d+ l)q. Next 
we apply Proposition 30 to this subvariety, but rescaling the ball Bn{w) 

to the unit ball. Proposition 30 tells us that for any fixed 7 < 1 
there is a component of U(F, w, 77, 2e) whose volume exceeds 7 times 
Vol(Bv(w) provided (2C + l)e < (D + l ) - 1 ^ . Putting all this together, 
U(F, w, 77, e)—and so a fortiori U(f, w, i], e)—has the desired large com-
ponent so long as 

V>((d+l)q + l)v(2(d+l)q + l)e. 

Clearly we can choose a p so that this occurs if r\ > eQ p(e)~1. Finally, by 
the discussion of the inverse function to x/Q p(x) on page 689 of [3], we 
see that, with a suitable choice of p, for any small 77 the set U(f, w, i], e) 
has a large component with e = ì]Q p(r]). 
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