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1. Introduction

The generalized Drazin inverse for operators arises naturally in the context
of isolated spectral points and becomes a theoretical and practical tool in
algebra and analysis (Markov chains, singular differential and difference
equations, iterative methods...), see [3, 4, 13, 15, 16] and the references
therein. The Drazin inverse was originally defined in 1958 for semigroups
([6]). When B(X) is the Banach algebra of all bounded linear operators
acting on an infinite-dimensional complex Banach space X, then S € B(X)
is the Drazin inverse of T' € B(X) if

ST =TS STS=S5and TST =T + U where U is a nilpotent operator.
(1.1)

The concept of Drazin invertible operators has been generalized by
Koliha ([14]) by replacing the nilpotent operator U in defDrazin by a
quasinilpotent operator. In this case, S is called a generalized Drazin
inverse of T. Note that this extension was anticipated by Harte in [10].
Recently, in [20], the authors introduced the left and the right generalized
Drazin invertible operators. These two classes of operators are a contin-
uation and refinement of the research treatment of the Drazin inverse in
Banach space operators theory. It proved that an operator T € B(X) is left
(resp. right) generalized Drazin invertible if and only if 7" = T} & T5 where
T) is bounded below (resp. surjective) and T is quasinilpotent operator.
Furthermore, these operators are characterized via the isolated points of
the approximate point spectrum (resp. surjective spectrum) [20, Theorem
3.8; Theorem 3.10].

The purpose of this paper is to study the relationship between local
spectral properties of a bounded operator and its left and right general-
ized inverses. In Section 2, we give some preliminary results which our
investigation will be need. In Section 3, we present many new and in-
teresting characterizations of the left (resp. the right) generalized Drazin
invertible operators in terms of the generalized Kato decomposition and
the single-valued extension property. We also show that an operator ad-
mits a generalized Kato decomposition and has the SVEP at 0 is precisely
left generalized Drazin invertible and conversely. Similarly, an operator T'
is right generalized Drazin invertible if and only if 7" admits a generalized
Kato decomposition and its adjoint T has the SVEP at 0. In particular,
we prove that the left generalized Drazin spectrum and right generalized
Drazin spectrum of a bounded operator are invariant under commuting fi-
nite rank perturbations. In section 4, we study the relationships between
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the local spectral properties of an operator and the local spectral properties
of its generalized Drazin inverse, if this exists. In particular, a reciprocal
relationship analogous to spectrum of invertible operator and its inverse,
is established between the nonzero points of the local spectrum of a gen-
eralized Drazin invertible operator having SVEP and the nonzero points
of the local spectrum of its generalized Drazin inverse. We also show that
many local spectral properties, as SVEP, Dunford property (C'), property
(8), property (@) and decomposability, are transferred from a generalized
Drazin invertible operator to its generalized Drazin inverse. This section
extends the results of [2] from the case of Drazin invertible operators to case
of the generalized Drazin invertible operators. Finally, by a counterexam-
ple we show that these local spectral properties are not transferred in the
case of the left (resp. the right) generalized Drazin invertible operators.

2. Preliminaries

Let B(X) be the Banach algebra of all bounded linear operators acting on
an infinite-dimensional complex Banach space X.

For T € B(X) write N(T'), R(T), o(T') and p(T') respectively, the null
space, the range, the spectrum and the resolvent set of 7. The nullity
and the deficiency of T are defined respectively by a(7T') = dimN(T') and
B(T) = dimX/R(T'). Here I denote the identity operator in X. By isoo(T)
and acco(T) we define the set of all isolated and accumulation spectral
points of T'.

If M is a subspace of X then T); denotes the restriction of 1" in M.
Assume that M and N are two closed subspaces of X such that X = M &N
(that is, X = M+ N and MNN = 0). We say that T is completely reduced
by the pair (M, N'), denoted as (M, N) € Red(T),ifT'(M) C M, T(N) C N
and T = Ty @ Tnv. In such case we have N(T) = N(Ty) ® N(Ty),
R(T) = R(Ty) @ R(Tn), and T™ = T3, @ TR for all n € N. An operator
is said to be bounded below if it is injective with closed range.

Recall that (see, e.g. [11]) the ascent a(T') of an operator T' € B(X) is
defined as the smallest nonnegative integer p such that N(7?) = N(TP*+1),
If no such integer exists, we set a(T) = oo. Analogously, the smallest
nonnegative integer q such that R(T%) = R(T9"!) is called the descent of T
and denoted by d(T"). We set d(T') = oo if for each ¢, R(T9) is a proper
subspace of R(T?). It is well known that if the ascent and the descent of
an operator are finite, then they are equal.

Associated with an operator T' € B(X) there are two (not necessarily
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closed) linear subspaces of X invariant by T, played an important role in
the development of the generalized Drazin inverse for T', the quasinilpotent
part Ho(T) of T

Hy(T) = {z €z : lim [T =0},
and the analytical core K (7T') of T
K(T)={x € X : there exist a sequence (z,) in X and a constant 6 > 0

such that Tx; = x, Txp 1 = x, and ||z, || < 0"||z|| for all n € N}.

It is well-known that necessary and sufficient condition for 7' € B(X) to be
generalized Drazin invertible is that O¢acco(T'). Equivalently, K(T') and
Hy(T) are both closed, X = Ho(T) ® K(T), the restriction of T to Ho(T)
is a quasinilpotent operator, and the restriction of 7" to K (7') is invertible,

Recently, by the use of this two subspaces, in [20], the authors defined
and studied a new class of operators called left and right generalized Drazin
invertible operators as a generalization of left and right Drazin invertible
operators.

Definition 2.1. An operator T' € B(X) is said to be right generalized
Drazin invertible if K(T') is closed and complemented with a subspace N
in X such that T(N) C N C Ho(T).

Definition 2.2. An operator T € B(X) is said to be left generalized
Drazin invertible if Ho(T) is closed and complemented with a subspace
M in X such that T(M) C M and T (M) is closed.

We have,

Proposition 2.3. Let T' € B(X) . Then T is left generalized Drazin in-
vertible if and only if T' = 11 ® T, such that 17 is bounded below and T5 is
quasinilpotent.

Proof. Let T € B(X) be left generalized Drazin invertible, then Hy(T')
is closed and complemented with a subspace M in X such that T'(M) is
closed. Then T' = Ty @® Ty (1), it is clear that Ty, (1) is quasinilpotent.
Furthermore, we have N(Tas) = MNN(T) C MNHy(T) = {0}, this means
that Ty is injective and since T'(M) is closed it follows that T/ is bounded
below. We obtain the result by taking 77 = Ty and Tz = Ty (1)-
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Now, we prove the inverse. Suppose that T = T7 @ T5 such that 77 is
left invertible and 15 is quasinilpotent, then there are two subspaces X3
and X3 of X such that (X7, X2) € Red(T) with X3 is closed. Let T} = Tk,
and Tp = Tx,. Since T3 is quasinilpotent clearly Ho(Tx,) = X2. On the
other hand, T, is bounded below then Hy(Tx,) = {0}, hence Hy(T') =
HO(TXl) ©® HO(TXQ) = H()(TX2) = Xo, this shows that X = X; ® Ho(T)
with Ho(7) and T'(X1) are closed in X.

Proposition 2.4. Let T € B(X) . Then T is right generalized Drazin
invertible if and only if T = T1 ® 15 such that T is surjective and T3 is
quasinilpotent.

Proof. If T' € B(X) is right generalized Drazin invertible, then K (T')
is closed and complemented in X with a subspace N C Hy(T'). Let T} =
Ty () and Ty = Ty, then T'=T1 © T. We have R(T1) = R(T) N K(T) =
K(T), it follows that T} is surjective. Also, we have Hyo(T2) = Ho(T)NN =
N, thus T3 is quasinilpotent.

Conversely, if T'= T} @ T» with T} is surjective and T is quasinilpotent,
then there are two subspaces X and Xz of X such that (X7, X2) € Red(T).
By [1, Theorem 1.41], we deduce that K(Tx,) = K(T) is closed. Since T,
is surjective, T'(X1) = Xj, hence X7 C K(T). On the other hand, we have
K(T) = K(Tx,) C T(X1) = X; which implies that K(T') = X3, it follows
that X = K(T') @ Xs. The inclusion X9 C Hy(T') follows by the the fact
that T, is quasinilpotent.

As a corollary, in the Hilbert space, we have the following result.

Corollary 2.5. T € B(X) and X is an Hilbert space, we have

1. T is left generalized Drazin invertible if and only if T' = T1 ® T, such
that T is left invertible and 15 is quasinilpotent.

2. T is right generalized Drazin invertible if and only if T' = T, &1, such
that T is right invertible and T, is quasinilpotent.

Examples of left generalized Drazin invertible operators are the opera-
tors of the following classes:

e Left invertible operators on Hibert space.

e Left Drazin invertible operators such that Ho(7T) = N(T?) (a(T) =
p < 00) is complemented with a T-invariant subspace M for which
T (M) is closed.
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e Drazin invertible operators.

e A bounded paranormal operator T on Hilbert space X such that
R(T) + Ho(T) and Ho(T) are closed (see [20, Proposition 3.15]).

Examples of right generalized Drazin invertible operators are the oper-
ators of the following classes:

e Right invertible operators on Hilbert space.

e Right Drazin invertible operators, such that K(T') = R(T?) (with
d(T) = q < o0) is complemented by a closed T-invariant subspace N
with N C Ho(T).

e Drazin invertible operators.

According to the Definitions 2.1 and 2.2, we also have

Invertible operator = Generalized Drazin invertible operator = Right
(resp. Left) generalized Drazin invertible operator.

In the sequel the terms left (resp. right) generalized Drazin invertible
operator is used for the nontrivial case of the bounded below (resp. surjec-
tive) operators.

The left Drazin spectrum, the right Drazin spectrum, the Drazin spec-
trum, the generalized Drazin spectrum, the left generalized Drazin spec-
trum and the right generalized Drazin spectrum of 71" are, respectively,
defined by

oip(T) :=={A € C: AI — T is not left Drazin invertible},

orp(T) :={\ € C: Al — T is not right generalized Drazin invertible},
op(T) ={A € C: Al — T is not Drazin invertible},

ogp(T) ={X € C: A\ — T is not generalized Drazin invertible},
ogp(T) :=={X € C: A — T is not left generalized Drazin invertible},
and

orgn(T) :={X € C: A =T is not right generalized Drazin invertible}.
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It is well known that these spectra are compact sets in the complex
plane, and we have,

040(T) = 0190 (T) Urgn(T) C op(T) = 01p(T) U o,p(T),

OlgD (T) - Uap(T)v

and
orgn(T) C o5 (T),
where
0ap(T) :=={X € C: A — T is not bounded below }
and

osu(T) :={X € C: AI — T is not surjective},

are respectively the approximate point spectrum and the surjective spec-
trum of 7.

An operator T € B(X), T is said to be semi-regular if R(T") is closed
and N(T™) C R(T), for all n € N. An important class of operators which
involves the concept of semi-regularity is the class of operators admits a
generalized Kato decomposition.

Definition 2.6. (see [1]) T' € B(X) is said to admit a generalized Kato
decomposition, abbreviated as GKD, if there exists a pair of closed sub-
spaces (M, N) such that (M, N) € Red(T) with Thy is semi-regular and Ty
is quasinilpotent.

The pair (M, N) is called the generalized Kato decomposition of T" and
denoted by GKD(M, N).

If we assume in the definition above that T is nilpotent, then there
exists d € N for which (Ti)? = 0. In this case T is said to be of Kato
type operator of degree d. Examples of operators admits a generalized
Kato decomposition, are Kato type operators, semi-regular operators, semi-
Fredholm operators, quasi-Fredholm operators and generalized Drazin in-
vertible operators, some other examples may be found in [17].

Let M be a subspace of X and let X* be the dual space of X. As it
is usual, M+ = {z* € X* : 2*(M) = 0}. Moreover, if M and N are closed
linear subspaces of X then (M + N)t = M+ N N*t. The dual relation
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M+ + Nt = (MNN)* is not always true, since (M N N)* is always closed
but M+ + N+t need not be closed. However, a classical theorem establishes
that M+ N N+ is closed in X* if and only if M + N is closed in X, (see
[12, Theorem 4.8, Chapter IV]).

Theorem 2.7 ([1]). Let T € B(X). If (M,N) is a GKD of T, then
(N+, M%) is a GKD of its adjoint T*. Furthermore, if T is of a Kato
type operator then T™ is also of a Kato type.

For every operator T' € B(X), let us define the semi-regular spectrum,
the Kato spectrum and the generalized Kato spectrum as follows:

0se(T) :={A € C: Al — T is not semi-regular}
oi(T) :={X € C: X\ — T is not of Kato type}
ogk(T) :={A € C: A\I-T does not admit a generalized Kato decomposition}

Recall that all the three sets defined above are always compact subsets
of the complex plane, (see [1], [7]) and ordered by :

04i(T) € ox(T) C 0e(T).

Furthermore, the generalized Kato spectrum of an operator differs from the
semi-regular spectrum on at most countably many isolated points, more
precisely the sets o5 (T) \ 0gi(T), 0se(T) \ 0x(T) and oy (T') \ ogr(T) are at
most countable (see [1] and [7]).

Note that o4 (T") (resp. ox(1")) is not necessarily non-empty. For ex-
ample, a quasinilpotent (resp. nilpotent) operator 7" has empty generalized
Kato spectrum (resp. Kato spectrum). Furthermore, the comparison be-
tween this spectra and the spectra defined by the Drazin inverses gives

Jgk(T) - UlgD(T) - O'ap(T)v
and
ogk(T) C 07gp(T) C 05u(T).

Definition 2.8. Let T' € B(X). The operator T is said to have the single-
valued extension property at \g € C, abbreviated T has the SVEP at Aq,
if for every neighborhood U of \g the only analytic function f : U — X
which satisfies the equation

(AL =T)f(A) =0
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is the constant function f = 0.
The operator T' is said to have the SVEP if T' has the SVEP at every A € C.

Trivially, an operator T" has the SVEP at every point of the resolvent set
p(T). Moreover, from the identity theorem for analytic functions it easily
follows that T" has the SVEP at every point of the boundary do(T') of the
spectrum. Hence, we have the implications:

1. Every operator T has the SVEP at an isolated point of the spectrum.
2. If X ¢ accoqp(T), then T has the SVEP at A.

3. If A ¢ accosy(T), then T has the SVEP at A

In particular, it has been showed that if Al — T admits a generalized Kato
decomposition, then implications (2) and (3) may be reversed. For more
properties of the SVEP, we can see [19].

3. Left and right generalized Drazin invertible operators and
the SVEP

Now we give a characterization of the left (resp. the right) generalized
Drazin invertible operators in terms of generalized Kato decomposition and
the single-valued extension property.

Theorem 3.1. An operator T' € B(X) is left generalized Drazin invertible
if and only if T admits a GKD (M, N) and Ty has the SVEP at 0.

Proof. By definition 2.1 a left generalized Drazin invertible operator T’
admits a GKD (M, N) with Hy(T) = N is closed, hence T has the SVEP
at 0. So, Ths has the SVEP at 0. Conversely, if 7' admits a GKD(M, N)
with Ths has the SVEP at 0. Then by [1, Theorem 3.14] T} is injective
and Ho(T) = N. Since R(T)y) is closed, Ty is bonded below. Hence T is
left generalized Drazin invertible.

Dually, by Definition 2.2 and [1, Theorem 3.15], we get the following
result,

Theorem 3.2. An operator T' € B(X) is right generalized Drazin invert-
ible if and only if T admits a GKD (M, N) and T* has the SVEP at 0.

Again by [1, Theorem 3.14], there are an equivalent properties to Ths
has the SVEP at 0 for operators admits a GKD, so we can say more about
the left generalized Drazin invertible operators.
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Theorem 3.3. An operator T' € B(X) is left generalized Drazin invertible
if and only if T admits a GKD (M, N) and satisfies one of the following
equivalent assertions:
(i) T has the SVEP at 0,

(ii)) Tas has the SVEP at 0,

(iii) Ty is injective,

(iv) Ho(T) = N,

(v) Ho(T) is closed,

(vi) K(T) N Ho(T) = {0},

(vii) K(T') N Hy(T) is closed.
Similarly, by [1, Theorem 3.15] we have:

Theorem 3.4. An operator T' € B(X) is right generalized Drazin invert-
ible if and only if T' admits a GKD (M, N) and satisfies one of the following
equivalent assertions:
(i) T* has the SVEP at 0,
(ii) Ty is surjective,
(iii) K(T) = M,
(iv) X = K(T) + Ho(T),

(v) K(T)+ Ho(T) is norm dense in X.

The following result expresses a characterization of the isolated points
of 04p(T') in terms of generalized Kato decomposition and the SVEP.

Proposition 3.5. Let T' € B(X) and 0 € o4,(T). Then 0 is an isolated
point in o4,(T) if and only if T admits a GKD(M,N) and Ty has the
SVEP at 0.
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Proof. Suppose that 0 is an isolated point in o4,(7), then T has the
SVEP at 0 and by [9, Proposition 9.], Ho(T") and K (T") are closed subspaces
of X with K(T') # X, Ho(T) # {0} and K(T') N Ho(T) = {0}. If K(T) ®
Ho(T) = X, then 0 is also isolated point in o(7") and clearly 7' admits
a GKD(K(T'),Ho(T)). Now, assume that K(T') & Ho(T)X. Let Xy =
K(T) ® Ho(T) and Ty : Xo — Xo the operator induced by T on Xj.
We have Xy is a Banach space and (K (Tp), Ho(1p)) = (K(T'), Ho(T)) is
a GKD of T on Xg. So by Theorem 2.7 (Ho(T)*, K(T)") is also a GKD
of T* over X§ = Ho(T)* @ K(T)*. Here, Ho(T)* and K(T)* are the
annihilators of Hy(T) and K(T) in X{, respectively. In the other hand,
we know that the adjoint of the inclusion map ¢ : Xg — X is a map from
X* onto X with kernel Xg. This implies that 7% admits a GKD over
X*. Again by Theorem 2.7 T admits a GKD(M, N) viewed as a restriction
of the adjoint of T* on X. Further, Ths has the SVEP at 0 because the
SVEP is inherited by the restrictions on invariant subspaces. Conversely, if
T admits a GKD(M, N) and Ty, has the SVEP at 0. Then by [1, Theorem
3.14] Ty is injective and Ho(T') = N. Since R(T}y) is closed, Ths is bonded
below. Hence T is left generalized Drazin invertible. By Proposition 2.3 0
is an isolated point in o, (T).

Proposition 3.6. Let T € B(X) and 0 € 04,(T"). Then 0 is an isolated
point in 04, (T) if and only if T' admits a GKD(M, N) and T%,, has the
SVEP at 0.

Proof.  Since 04, (T") = 04p(T™), we apply Proposition 3.5 to the operator
T*; we obtain that 0 is an isolated point in o4, (7™) if and only if 7* admits a
GKD(N*, M+) and T}, 1 has the SVEP at 0, for some two closed subspaces
of X. Now by Theorem 2.7, we get the desired result.

The basic existence results of generalized Drazin inverses and their re-
lation to the SVEP, the quasinilpotent part and the analytical core are
summarized in the following theorems.

Theorem 3.7. Assume that T € B(X). The following assertions are
equivalent:

(i) T is left generalized Drazin invertible,

(ii) T = Ty @ Ty, with T} = Ty; is bounded below operator and Ty =
T'ro(T) 18 quasinilpotent operator,

(iii) 0 is at most an isolated point in o4,(T'),
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(iv) T admits a GKD(M, N) and Ty has the SVEP at 0,

(v) T admits a GKD(M, N) and verified one of the equivalent conditions
of the Theorem 3.3,

(vi) there exists a bounded projection P on X such that TP = PT, T+ P
is bounded below, T'P is quasinilpotent and R(P) = Hy(T).

Proof. The equivalence (i)<=-(vi) has been proved in [8, Theorem
3.1]. By Theorems 3.1 and 3.3, we have (i)<=(v) <= (iv) and (iv)<=>(iii)
follows from Proposition 3.5. By what we assert that (i)<=(vi)<=(v)
<= (iv)<=(iii). Finally, (i)<=>(ii) follows from Proposition 2.3.

We know that the properties to be right generalized Drazin invertible
or to be left generalized Drazin invertible are dual to each other, (see [20,
Proposition 3.9]), then we have,

Theorem 3.8. Let T € B(X). The following assertions are equivalent:

(i) T is right generalized Drazin invertible,

(ii) T =Th © Tz, with Ty = Ty () is surjective operator and Ty = Ty is
quasinilpotent operator,

(iii) 0 is at most an isolated point in g, (T),
(iv) T admits a GKD(M, N) and T* has the SVEP at 0,

(v) T admits a GKD(M, N) and satisfied one of the equivalent conditions
of the Theorem 3.4,

(vi) there exists a bounded projection P on X such that TP = PT, T+ P
is surjective, T'P is quasinilpotent and N(P) = K(T).

Proof. Similarly, The equivalence (i)<=>(vi) has been proved in [8,
Theorem 3.2]. By Theorems 3.2 and 3.4, we have (i)<=(v) <=(iv) and

(iv)<=(iii) follows from Proposition 3.6. Thus, (i)<=(vi)<=(v) <= (iv)<=(iii).

Finally, (i)<=>(ii) follows from Proposition 2.4.

Remark 3.9. Theorems 3.7 and 3.8 are improvement of [20, Theorem 3.8,
Theorem 3.10].

A direct consequence of Theorem 3.7, Theorem 3.8 and [1, Lemma 3.13]:
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Corollary 3.10. Let T € B(X).
e IfT is left generalized Drazin invetible, then Ho(T)+ = K (T*).
e If T is right generalized Drazin invetible, then K (T*) = Ho(T*)*.

o IfT is left generalized Drazin invetible, then T™ is a right generalized
Drazin invetible with N(P*) = K(T*) = Ho(T*)* = R(P)*, where
P is the bounded projection given in Theorem 3.7-(vi).

Denote by
S(T) ={\ € C: T does not have the SVEP at \}.

Corollary 3.11. Let T € B(X).
o 0. (T)US(T) = 01yp(T).
o 09 (T) US(T*) = 01y (T)
o IfT* has SVEP, then 01yp(T") = oyp(T') and o4 (T) = orgp(T).
o If T has SVEP, then 0,¢yp(T) = o4p(T') and og,(T) = o14p(T).

o If X is a Hilbert space and T' is a self-adjoint operator, then o;;p(T") =
orgn(T) = ogp(T).

Similarity, for operators of Kato type we have,

Corollary 3.12. Let T € B(X).

Uk(T) U S(T) = O'ZD(T).

ou(T) U S(T*) = 0,1(T).

If T* has SVEP, then o1p(T) = op(T') and o (T) = o,.p(T).

If T has SVEP, then o,p(T) = op(T') and o(T') = o1p(T).

In the following, we show that both o0;4p(T") and o,4p(T) are stable
under additive commuting finite rank operators.

Proposition 3.13. Let T' € B(X) and F is a finite rank operator on X
such that TF = FT. Then o1,p(T + F) = 014p(T).
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Proof.  From [18, Lemma 2.3] we know that accoq,(T'+ F') = accoqy(T).
Then A ¢ accoqy(T + F) if and only if X ¢ accoqy(T'). Hence Al — (T'+ F)
is left generalized Drazin invertible if and only if AI — 7" is left generalized
Drazin invertible. So oyqp(T' + F) = 014p(T).

As a consequence of Proposition 3.13 we have

Proposition 3.14. Let T' € B(X) and F is a finite rank operator on X
such that TF = FT. Then o,yp(T + F) = 0r¢p(T).

Proposition 3.15. Let T' € B(X) and 0 € p(T). Then X € 014p(T) if and
only if X # 0 and A\™! € oy,p(T71).

Proof. we have
M—T=-\X\T-THT

Since 0 € p(T) and T commute with (A\~* — T1), it follows that (A~ —
T~1)s is bounded below if and only if (Al — T)j; is bounded below and
(AT —T1)y is quasinilpotent if and only if (A — Ty is quasinilpotent.
This is equivalent to the statement of the Theorem.

Theorem 3.16. Let T, S € B(X). If0 € p(T)Np(S), such that T—* —S~1
is finite rank operator commuting with 1" or S, then

o1gp(T) = o1 (S).

Proof.  Proposition 3.13 implies that oj;p(T7!) = 05,p(S™1) , and by
Proposition 3.15 we have 01,p(T") = o14p(5).

Proposition 3.17. Let T' € B(X) and 0 € p(T"). Then A € 0,4p(T) if and
only if X # 0 and A € o,gp(T71).

Theorem 3.18. Let T, S € B(X). If0 € p(T)Np(S), such that T~ — S~1
is a finite rank operator commuting with T or S, then

orgp(T) = 0rgp(5).

Theorem 3.19. Let R,T,U € B(X) be such that TRT = TUT. Then
019p(TR) = 014p(UT).
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Proof.  Since 04,(TR)\{0} = 04p(UT)\{0}, from [5, Theorem 1], then
it is enough to show that TR is left generalized Drazin invertible if anf
only if UT is. Assume that 0 ¢ o;yp(T'R), then 0 € isooq,(TR). Therefore
TR — pl is bounded below for all small 4 # 0. Hence UT — pl is bounded
below for all small 12 # 0. So 0 € i5004,(UT). Hence UT is left generalized
Drazin invertible if and only if T'R is left generalized Drazin invertible.

By duality, we have:

Theorem 3.20. Let R,T,U € B(X) be such that TRT = TUT. Then
orgp(TR) = 0r4p(UT).

In particular if R = U we get

Corollary 3.21. Let R,T € B(X) then o1yp(TR) = 01gp(RT) ando,¢p(TR) =
orgp(RT).

Example 3.22. Let R,T € B(X) and A be the operator defined on X & X

by
0 T
(ko)

TR0 = TR & RT. Thus oyyp(A?) = o1,p(TR) U

0 RT
01gp(RT') which equals to o14p(T'R) from Corollary 3.21. Therefore o14p(A) =
(0140(TR))'/2. Similarly we have o,4p(A) = (0,4p(TR))"/2.

then A? =

4. Generalized Drazin inverse and local spectral theory

We know that if 7" € B(X) is not invertible then 7" is generalized Drazin in-

vertible if and only if X = K(T') ® Ho(T) and, with respect tho this decom-

position, T=T1®T5, with T} = T () is invertible and 75 = T, (1) is quasinilpotent.
Note that the generalized Drazin inverse TP of T, if it exists, is uniquely
determined and represented, with respect of the same decomposition, as

the direct sum TP = T7 @0, with 77! is the inverse of Ty, Further-

more, the nonzero part of the spectrum of TP is given by the reciprocals

of the nonzero points of the spectrum of T, i.e.,

(4.1) o(TP)\ {0} = {i A€ o(T)\ {0}}.

Since the spectral mapping theorem holds for the approximate spectrum
and the surjective spectrum, we have 0,4,(T7)\{0} = {3 : A € 04,p(T)\{0}}
and o4, (TP)\ {0} = {% t A€ 0g(T)\ {0}}.
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An interesting question given in [2] is that there is a reciprocal relation-
ship between the nonzero part of the local spectrum of a Drazin invertible
operator and the nonzero part of the local spectrum of its Drazin inverse.
In the sequel we study this question in the case of the generalized Drazin
invertible operators.

Before this down, we shall give the relevant definitions concerning the
local spectral theory. Given a bounded linear operator T' € B(X) , the local
resolvent set pp(x) of T at a point x € X is defined as the union of all open
subsets U of C such that there exists an analytic function f : U — X
satisfying

M -T)f(A\) ==z forall \eU.

The local spectrum or(z) of T' at z is the set defined by or(z) :=
C\ pr(x). Obviously, or(x) C o(T).

The SVEP for T is equivalent to saying that op(z) = 0 if and only if
x = 0, see [19, Proposition 1.2.16]. Note that if 7" has SVEP then a spectral
theorem holds for the local spectrum, i.e., if f is an analytic function defined
on an open neighborhood U of ¢(T") then

flor(z)) = opr)(x) forallz € X.

See also [21].
An important invariant subspace in local spectral theory is given by the
local spectral subspace of T associated at a subset {2 C C, defined as

Xr(Q)={z € X :0r(z) C Q}.
Obviously, for every closed set {2 C C we have
X7(Q) = Xr(QNa(T)).

For a closed subset 2 C C, the glocal subspace X7(€2) is defined as the set
of all z € X for which there exists an analytic function f : C\ Q — X
satisfying (Al —T)f(A\) =x on C\ Q.

Obviously, for Q a closed set, X7(2) C X7 (), and we have equality
when T satisfies the SVEP.

Definition 4.1. An operator T' € B(X) is said to have Dunford’s property
(C), shortly property (C), if Xp(Q) is closed for every closed set Q C C.

Definition 4.2. An operator T' € B(X) is said to have property (Q), if
Ho(M —T) is closed for every X\ € C.
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Another important property which plays a central role in local spectral
theory is the following one introduced by Bishop, see [19]:

Definition 4.3. An operator T € B(X) is said to have Bishop’s property
(8), shortly property (), if for every open set U of C and every sequence
of analytic functions f, : U — X for which (A —T) f,(\) — 0 uniformly
on all compact subsets of U; then also f,(\) — 0, again locally uniformly
onlU.

We have
property () = property (C') = property (Q) = the SVEP .

See the monograph [19] for a detailed study of these properties.
The next first result shows that the SVEP is transmitted from T to its
generalized Drazin inverse T,

Theorem 4.4. Let T' € B(X) be generalized Drazin invertible. Then T
has the SVEP if and only if TP has the SVEP.

Proof.  Suppose that 7" € B(X) is a generalized Drazin invertible. If
0 ¢ o(T). Then f(\) = } is analytic in any open neighborhood of o(T’)
which does not contains 0, so by [19, Theorem 3.3.6] T” = T—! = f(T)
has the property SVEP. Now if 0 € o(T"). Then T = Ty & T» with T} is
invertible and 75 is quasinilpotent. From the first case 17 has the property
SVEP, T5 has also the SVEP because it is quasinilpotent. So the Drazin
generalized inverse TP = T} 14 0 has the SVEP, from [1, Theorem 2.9].

Conversely; if TP = T; ' @ 0 has the SVEP then 77 * and T; have the
property SVEP. Consequently, again by [1, Theorem 2.9], T'= Ty & T» has
the property SVEP.

In the following result, we show that the relation equ:opinv holds also
in the local sens.

Theorem 4.5. Let T' € B(X) be generalized Drazin invertible with gen-
eralized Drazin inverse TP. If T has the SVEP, then for every x € X we
have

(4.2) oro(x) \ {0} = {% A€ or(z)\ {04}
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Proof.  Suppose that T has the SVEP. If 0 ¢ o(T) then TP = T~ and
the equality equ:locspec follows from the spectral mapping theorem [21, 1.6]
applied to the function f(\) = 3. Suppose that 0 € o(T'). According the
decomposition X = K(T')©Ho(T), Ty = Tk (r) is invertible and Ty = Ty (1)
is quasinilpotent, then the restrictions 77 and 75 have the SVEP. Now, let
z € X and write x = y + 2, with y € K(T) and z € Hyo(T). Then by [1,
Theorem 2.9] we have

or(z) = or, (y) Uorn,(2).

The generalized Drazin inverse TP = T} 14 0 has the SVEP, so always by
[1, Theorem 2.9] we have

070 () = 071 (4) Udo(2),

where 1
op-1(y) = {X A €on(y)} for all y € K(T).

1
In the case z = 0, o, (0) = 0 and hence op(z) = o7, (y) and, analogously,
orp(z) = JTfl(y). Thus equ:locspec. Now, if z # 0, op,(2) = {0} =
00(2), since both T, and the null operator are quasinilpotent operators.
Furthermore, 0 ¢ o7, (y) and 0 ¢ O'Tl—l(y), hence op(x) \ {0} = o, (y) and
oo \ {0}(z) = anl(y), from which we deduce,

oo (@)\ (0} = 071 (1) = {5 : A € W)} = {5+ A € o7(a) \ (0})

This complete the proof.
We establish now that also the property (C) is transferred to the gen-
eralized Drazin inverse.

Theorem 4.6. Let T' € B(X) be a generalized Drazin invertible. Then T
has the property (C) if and only if TP the property (C).

Proof. Suppose that 7' € B(X) is generalized Drazin invertible. If
0 ¢ o(T), then f(A) = % is analytic in any open neighborhood of o(T')
which does not contains 0, so by [19, Theorem 3.3.6] TP = T~! = f(T) has
the property (C). Now if 0 € ¢(T"). Then T admits a GKD (M, N), with
M = K(T) and N = Hy(T'), Ty is invertible and T}y is quasinilpotent. For
the Drazin generalized inverse TP = TA}l @ 0, we have

Xrp(Q) = Mp—1(92) ® No(2) for every closed set{2 C C.

M
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Since Ty is invertible, by the first case, Ths has the property (C) and
so the inverse T},* has the property (C) with MT;;(Q) is closed for every
closed set 2 C C. We know that No(Q) = {0} if 0 ¢ @ and No(Q) = N
if 0 € Q. Then, X;p(Q) = MTJ\?(Q) @ {0} if 0 ¢ Q and X;p(Q) =
M;-1(Q) @ N if 0 € Q. In both cases X7 () is closed, and consequently

M
TP has the property (C).

Conversely; if TP = TA}I @ 0 has the property (C) and as above
Xpo () = My 1(2) € {0} 0 ¢ © and Xo () = My () & N if 0 € 2
This implies that MTA—{l(Q) is closed and hence Tj\gl has the property (C).
Thus T has the property (C). Since X7 (Q2) = Mr,,(Q) & N, (Q), and
Ty is quasinilpotent it then follows that X7(Q) = Mr,, () & {0} if 0 ¢ Q,
or X7(2) = Mr,,(2) @ N if 0 € Q. Therefore X7(Q2) is closed for every
closed set 2 C C. Thus T has the property (C).

Since for operator having property (@) we have

Ho(M —T) = Xr({\}) = Xr({A\}) for all X € C,
we can deduce from Theorem 4.6 that

Corollary 4.7. Let T' € B(X) be generalized Drazin invertible. Then T
has the property (Q) if and only if TP has the property (Q).

Now before to study the property (3), we need some preliminary results.
Let H(U, X) denote the space of all analytic functions from U into X. With
respect to pointwise vector space operations and the topology of locally
uniform convergence, H(U, X) is a Fréchet space. For every T' € B(X) and
every open set U C C, define Ty : H(U, X) — H(U, X) by

(TufYAN) == =T)f(\) forall fe HU,X)and A € U.

From [19, Proposition 3.3.5], T has the property (3) if and only if for every
open set U C C, the operator Ty has closed range in H (U, X). Evidently,
the property (f) is inherited by the restrictions on invariant closed sub-
spaces. Furthermore, the following theorem shows that the property (3) is
transmitted reciprocally form a generalized Drazin invertible operator to
its generalized Drazin inverse.

Theorem 4.8. Let T € B(X) a generalized Drazin invertible. Then T has
the property (3) if and only if TP has the property (3).
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Proof. Suppose that T € B(X) is generalized Drazin invertible and
0 € o(T). Then T =Ty ® T, with T} is invertible and T» is quasinilpotent.
From [19, Proposition 2.1.6], we can identify H(U, X)) with the direct sum
H(U,K(T))® H(U,Hy(T)). Ty has the property () and hence its inverse
T; ! has the property (3). Now TE[H(U,X)] = (Ty ' @ 0y)[H(U, K(T)) @
— (T H(U, K (7)) & 0y [H(U, Ho(T))).

Clearly T/ has closed range in H(U, X), so TP has the property ().

Conversely; if TP = Tl_1 @0 has the property (3). Then as above T has
the property (C). Since the quasinilpotent operator 75 has the property
(B) and the fact that

TylH(U, X)] = (Ty & To)u[H(U, K(T)) & H(U, Ho(T))]
=Tw[HU,K(T))| & Tou[H(U, Ho(T))],
we conclude that TUD has closed range in H(U, X), so T” has the property
(8).

An operator T' € B(X) is said to have the decomposition property (J)
if the decomposition

X =Xrp(U)+ Xr(V)

holds for every open cover {U,V} of C. Note that T' € B(X) has prop-
erty (0) (respectively, property (8) ) if and only if T has property (f)
(respectively, property (8)), see [19, Theorem 2.5.5]. If T' € B(X) has both
property () and property () then T is said to be decomposable.

Corollary 4.9. Suppose that T is generalized Drazin invertible. If T has
property (&) then TP has property (), and analogously, if T is decompos-
able then TP is decomposable.

Proof. Clearly, from the definition of the generalized Drazin invertibility
it follows that if T" is generalized Drazin invertible then its adjoint 7™ is also
generalized Drazin invertible, with Drazin inverse TP*. If T has property
(8) then T* has property (3) and hence, by Theorem 4.8, also T°* has
property (3). By duality this implies that 77 has property (§). The
second assertion is clear: if 7" is decomposable then TP has both properties
(6) and () and the same holds for 7°, again by Theorem 4.8 and the first
part of the proof. Hence TP is decomposable.
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A natural question suggested by all the results of this section is whether
the local spectral properties are transmitted from a left (resp. right) gener-
alized Drazin invertible operator to its left (resp. right) generalized Drazin
inverse. The next example shows that the answer to this question is nega-
tive.

Example 4.10. Let X = (? be the Hilbert space of all square summable
complex sequences

T = ($n)n = ($1,$2, .. ‘)7
indexed by the a nonnegative integers. We define the right shift operator
R and the left shift operator L in ¢* by

R(l‘l,l‘g, . . ) = (0,:131,:132, .. )

and
L(.’L‘l,{L'Q, ‘e ) = (xg, T3, .. )

We know that o(R) = o(L) = D = {\ € C;|A\|] < 1} and L = R*.
Furthermore, R is injective with colsed range and L is surjective. So R is
left invertible with L its left inverse. Similarity, L is right invertible with
R its right inverse.

Now, from [19, Example 1.2.8], it follows that the unilateral right shift
R has the property () (hence has the property (C), the property (Q) and
has the SVEP), while L fails to have the SVEP, see [19, Proposition 1.2.10)].

We also have

O-R(x) = U(R)7

for every x € X, so or(x)\{0} is the punctured disc D\{0}. Consequently,
the points of or,(x) \ {0}, for any left inverse L, cannot be the reciprocals
of or(x) \ {0}, otherwise or,(x), and hence o(L), would be unbounded.

By the same notations of the definitions 2.1 and 2.2 and from [19, Propo-
sition 1.2.10] we deduce that:

Proposition 4.11. Let T € B(X). We have

e If T is right generalized Drazin invertible and Ty r) has the SVEP
(respectively, property (C), property (Q), property (3)), then T is
generalized Drazin invertible.

e If T is left generalized Drazin invertible and T}"((T*) has the SVEP

(respectively, property (C), property (Q), property (3)), then T is
generalized Drazin invertible.


rvidal
Cuadro de texto
917


918 M. Benharrat, K. Miloud Hocine and B. Messirdi

References

[1] P. Aiena, Fredholm and local spectral theory, with applications to multi-
pliers. Dordrecht: Springer, 2004, doi: 10.1007/1-4020-2525-4.

[2] P. Aiena and S. Triolo, “Local spectral theory for Drazin invertible ope-
rators”, Journal of mathematical analysis and applications, vol. 435, no.
1, pp- 414-424, Mar. 2016, doi: 10.1016/j.jmaa.2015.10.042.

[3] S. Campbell, Singular systems of differential equations, vol. 1. London:
Pitman, 1980.

[4] S. Campbell, Singular systems of differential equations, vol. 2. London:
Pitman, 1982.

[5] G. Corach, B. Duggal, and R. Harte, “Extensions of Jacobsons Lemma”,
Communications in algebra, vol. 41, no. 2, pp. 520-531, Feb. 2013, doi:
10.1080/00927872.2011.602274.

[6] M. Drazin, “Pseudo-inverses in associative rings and semiﬁroups", The
American mathematical monthly, vol. 65, no. 7, pp. 506-514, Sep. 1958,
doi: 10.1080/00029890.1958.11991949.

[7] Q. Jiang, H. Zhong, “Generalized Kato decomposition, single-valued ex-
tension property and approximate point spectrum”, Journal of mathe-
matical anag/sfs and applications, vol. 356, no. 1, pp. 322-327, Aug.
2009, doi: 10.1016/j.jmaa.2009.03.017.

[8] M. Cvetkovi¢, “On upper and lower generalized Drazin invertible opera-
tors”, Functional analysis, approximation and computation, vol. 7, no. 3,
pp. 67-74, 2015. [On line]. Available: https://bitly/2PoFRoe

[9] M. Gonzalez, M. Mbekhta and M. Oudghiri, “On the isolated points of the
surjective spectrum of bounded operator”, Proceedings of the American
mathematical sociegv, vol. 136, no. 10, pp. 3521-3528, May 2008, doi:
10.1090/S0002-9939-08-09549-X.

[10] R. Harte, “Spectral projections”, Irish mathematical societg/ newsletter,
vol. 11, pp- 10-15, Sep. 1984. [On line]. Available: https://bitly/36z8111

[11] M. Kaashoek and D. Lay, “Ascent, descent, and commuting perturba-
tions”, Transactions of the American mathematical society, vol. 169, pp.
35-47,1972, doi: 10.1090/S0002-9947-1972-0312299-8.

[12] '{éggto, Perturbation theory for linear operators, New York: Springer,

[13] N. Khaldi, M. Benharrat, B. Messirdi, “Linear boundary value problems
described by Drazin invertible operators”, Mathematical notes, vol.
101, no. 5-6, p. 994-999, Jun. 2017, doi:
10.1134/5S0001434617050261.


https://doi.org/10.1007/1-4020-2525-4
https://doi.org/10.1016/j.jmaa.2015.10.042
https://doi.org/10.1080/00927872.2011.602274
https://doi.org/10.1080/00029890.1958.11991949
https://doi.org/10.1016/j.jmaa.2009.03.017
https://bit.ly/2PoFRoe
https://doi.org/10.1090/S0002-9939-08-09549-X
https://bit.ly/36z8ll1
https://doi.org/10.1090/S0002-9947-1972-0312299-8
https://doi.org/10.1134/S0001434617050261

Left and right generalized Drazin invertible operators and local ... 919

[14] ]. Koliha, “A generalized Drazin inverse”, Glas(‘jgow mathematical journal,
vol. 38, no. 3, pp. 367-381, Sep. 1996, doi: 10.1017/50017089500031803.

[15] ]. Koliha and T. Tran, “Semistable operators and singularly perturbed di-
fferential equations”, Journal of mathematical analysis an agp(f!icatfons,
vol. 231, no. 2, pp. 446-458, Mar. 1999, doi: 10.1006/jmaa.1998.6235.

[16] ].Koliha and T. Tran, “The Drazin inverse for closed linear operators and
the asymptotic conver§ence of CO-semi%rOU{)s", Journal of operator
theory, vol. 46, no. 2, pp. 323-336, 2001. [On line]. Available:
https://bitly/2RVZx4u

[17] ]. Labrousse, “Les opérateurs quasi-Fredholm une généralisation des
opérateurs semi-Fredholm”, Rendiconti del circolo matematico di Paler-
mo, vol. 2, no. 29, pp. 161-258, May 1980, doi: 10.1007/BF02849344

[18] M. Lahrouz, M. Zohry “Weyl type theorems and the approximate point
sgectrum”, Bulletin - Irish mathematical society, no, 55, pp. 41-51,
(2005). [On line]. Available: https://bitly/2LY]qzg

[19] K. Laursen and M. Neumann, An introduction to local spectral theory.
Oxford: Clarendon Press, 2000.

[20] K. Hocine, M. Benharrat and B. Messirdi, “Left and right generalized
Drazin invertible osperators", Linear and multilinear algebra, vol. 63, no.
8, pp- 1635-1648, Sep. 2015, doi: 10.1080/03081087.2014.962534.

[21] P. Vrbova, “On local spectral properties of operators in Banach spaces”,
Czechoslovak mathematical journal, vol. 23, no. 3, pp. 483-492,1973.[On
line]. Available: https://bitly/2ZRXwVI7


https://doi.org/10.1017/S0017089500031803
https://doi.org/10.1006/jmaa.1998.6235
https://bit.ly/2RVZx4u
https://doi.org/10.1007/BF02849344
https://bit.ly/2LYJqzg
https://doi.org/10.1080/03081087.2014.962534
https://bit.ly/2RXwVI7

