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1. Introduction

The generalized Drazin inverse for operators arises naturally in the context
of isolated spectral points and becomes a theoretical and practical tool in
algebra and analysis (Markov chains, singular differential and difference
equations, iterative methods...), see [3, 4, 13, 15, 16] and the references
therein. The Drazin inverse was originally defined in 1958 for semigroups
([6]). When B(X) is the Banach algebra of all bounded linear operators
acting on an infinite-dimensional complex Banach space X, then S ∈ B(X)
is the Drazin inverse of T ∈ B(X) if

ST = TS STS = S and TST = T + U where U is a nilpotent operator.
(1.1)

The concept of Drazin invertible operators has been generalized by
Koliha ([14]) by replacing the nilpotent operator U in defDrazin by a
quasinilpotent operator. In this case, S is called a generalized Drazin
inverse of T . Note that this extension was anticipated by Harte in [10].
Recently, in [20], the authors introduced the left and the right generalized
Drazin invertible operators. These two classes of operators are a contin-
uation and refinement of the research treatment of the Drazin inverse in
Banach space operators theory. It proved that an operator T ∈ B(X) is left
(resp. right) generalized Drazin invertible if and only if T = T1⊕ T2 where
T1 is bounded below (resp. surjective) and T2 is quasinilpotent operator.
Furthermore, these operators are characterized via the isolated points of
the approximate point spectrum (resp. surjective spectrum) [20, Theorem
3.8; Theorem 3.10].

The purpose of this paper is to study the relationship between local
spectral properties of a bounded operator and its left and right general-
ized inverses. In Section 2, we give some preliminary results which our
investigation will be need. In Section 3, we present many new and in-
teresting characterizations of the left (resp. the right) generalized Drazin
invertible operators in terms of the generalized Kato decomposition and
the single-valued extension property. We also show that an operator ad-
mits a generalized Kato decomposition and has the SVEP at 0 is precisely
left generalized Drazin invertible and conversely. Similarly, an operator T
is right generalized Drazin invertible if and only if T admits a generalized
Kato decomposition and its adjoint T ∗ has the SVEP at 0. In particular,
we prove that the left generalized Drazin spectrum and right generalized
Drazin spectrum of a bounded operator are invariant under commuting fi-
nite rank perturbations. In section 4, we study the relationships between
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Left and right generalized Drazin invertible operators and local ... 931

the local spectral properties of an operator and the local spectral properties
of its generalized Drazin inverse, if this exists. In particular, a reciprocal
relationship analogous to spectrum of invertible operator and its inverse,
is established between the nonzero points of the local spectrum of a gen-
eralized Drazin invertible operator having SVEP and the nonzero points
of the local spectrum of its generalized Drazin inverse. We also show that
many local spectral properties, as SVEP, Dunford property (C), property
(β), property (Q) and decomposability, are transferred from a generalized
Drazin invertible operator to its generalized Drazin inverse. This section
extends the results of [2] from the case of Drazin invertible operators to case
of the generalized Drazin invertible operators. Finally, by a counterexam-
ple we show that these local spectral properties are not transferred in the
case of the left (resp. the right) generalized Drazin invertible operators.

2. Preliminaries

Let B(X) be the Banach algebra of all bounded linear operators acting on
an infinite-dimensional complex Banach space X.

For T ∈ B(X) write N(T ), R(T ), σ(T ) and ρ(T ) respectively, the null
space, the range, the spectrum and the resolvent set of T . The nullity
and the deficiency of T are defined respectively by α(T ) = dimN(T ) and
β(T ) = dimX/R(T ). Here I denote the identity operator in X. By isoσ(T )
and accσ(T ) we define the set of all isolated and accumulation spectral
points of T .

If M is a subspace of X then TM denotes the restriction of T in M .
Assume thatM and N are two closed subspaces of X such that X =M⊕N
(that is, X =M+N andM∩N = 0). We say that T is completely reduced
by the pair (M,N), denoted as (M,N) ∈ Red(T ), if T (M) ⊂M , T (N) ⊂ N
and T = TM ⊕ TN . In such case we have N(T ) = N(TM) ⊕ N(TN),
R(T ) = R(TM) ⊕ R(TN), and Tn = Tn

M ⊕ Tn
N for all n ∈ N. An operator

is said to be bounded below if it is injective with closed range.

Recall that (see, e.g. [11]) the ascent a(T ) of an operator T ∈ B(X) is
defined as the smallest nonnegative integer p such that N(T p) = N(T p+1).
If no such integer exists, we set a(T ) = ∞. Analogously, the smallest
nonnegative integer q such that R(T q) = R(T q+1) is called the descent of T
and denoted by d(T ). We set d(T ) =∞ if for each q, R(T q+1) is a proper
subspace of R(T q). It is well known that if the ascent and the descent of
an operator are finite, then they are equal.

Associated with an operator T ∈ B(X) there are two (not necessarily
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932 M. Benharrat, K. Miloud Hocine and B. Messirdi

closed) linear subspaces of X invariant by T , played an important role in
the development of the generalized Drazin inverse for T , the quasinilpotent
part H0(T ) of T :

H0(T ) =
n
x ∈ x : lim

n→∞ kT
nxk

1

n = 0
o
,

and the analytical core K(T ) of T :

K(T ) = {x ∈ X : there exist a sequence (xn) in X and a constant δ > 0

such that Tx1 = x, Txn+1 = xn and kxnk ≤ δnkxk for all n ∈N}.
It is well-known that necessary and sufficient condition for T ∈ B(X) to be
generalized Drazin invertible is that 0/∈accσ(T ). Equivalently, K(T ) and
H0(T ) are both closed, X = H0(T )⊕K(T ), the restriction of T to H0(T )
is a quasinilpotent operator, and the restriction of T to K(T ) is invertible,

Recently, by the use of this two subspaces, in [20], the authors defined
and studied a new class of operators called left and right generalized Drazin
invertible operators as a generalization of left and right Drazin invertible
operators.

Definition 2.1. An operator T ∈ B(X) is said to be right generalized
Drazin invertible if K(T ) is closed and complemented with a subspace N
in X such that T (N) ⊂ N ⊆ H0(T ).

Definition 2.2. An operator T ∈ B(X) is said to be left generalized
Drazin invertible if H0(T ) is closed and complemented with a subspace
M in X such that T (M) ⊂M and T (M) is closed.

We have,

Proposition 2.3. Let T ∈ B(X) . Then T is left generalized Drazin in-
vertible if and only if T = T1⊕T2 such that T1 is bounded below and T2 is
quasinilpotent.

Proof. Let T ∈ B(X) be left generalized Drazin invertible, then H0(T )
is closed and complemented with a subspace M in X such that T (M) is
closed. Then T = TM ⊕ TH0(T ), it is clear that TH0(T ) is quasinilpotent.
Furthermore, we have N(TM) =M∩N(T ) ⊆M∩H0(T ) = {0}, this means
that TM is injective and since T (M) is closed it follows that TM is bounded
below. We obtain the result by taking T1 = TM and T2 = TH0(T ).
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Left and right generalized Drazin invertible operators and local ... 933

Now, we prove the inverse. Suppose that T = T1 ⊕ T2 such that T1 is
left invertible and T2 is quasinilpotent, then there are two subspaces X1
and X2 of X such that (X1,X2) ∈ Red(T ) with X2 is closed. Let T1 = TX1

and T2 = TX2
. Since T2 is quasinilpotent clearly H0(TX2

) = X2. On the
other hand, TX1

is bounded below then H0(TX1
) = {0}, hence H0(T ) =

H0(TX1
) ⊕ H0(TX2

) = H0(TX2
) = X2, this shows that X = X1 ⊕ H0(T )

with H0(T ) and T (X1) are closed in X. 2

Proposition 2.4. Let T ∈ B(X) . Then T is right generalized Drazin
invertible if and only if T = T1 ⊕ T2 such that T1 is surjective and T2 is
quasinilpotent.

Proof. If T ∈ B(X) is right generalized Drazin invertible, then K(T )
is closed and complemented in X with a subspace N ⊆ H0(T ). Let T1 =
TK(T ) and T2 = TN , then T = T1 ⊕ T2. We have R(T1) = R(T ) ∩K(T ) =
K(T ), it follows that T1 is surjective. Also, we have H0(T2) = H0(T )∩N =
N , thus T2 is quasinilpotent.

Conversely, if T = T1⊕T2 with T1 is surjective and T2 is quasinilpotent,
then there are two subspaces X1 andX2 of X such that (X1,X2) ∈ Red(T ).
By [1, Theorem 1.41], we deduce that K(TX1

) = K(T ) is closed. Since TX1

is surjective, T (X1) = X1, hence X1 ⊂ K(T ). On the other hand, we have
K(T ) = K(TX1

) ⊂ T (X1) = X1 which implies that K(T ) = X1, it follows
that X = K(T ) ⊕X2. The inclusion X2 ⊆ H0(T ) follows by the the fact
that TX2

is quasinilpotent. 2
As a corollary, in the Hilbert space, we have the following result.

Corollary 2.5. T ∈ B(X) and X is an Hilbert space, we have

1. T is left generalized Drazin invertible if and only if T = T1 ⊕ T2 such
that T1 is left invertible and T2 is quasinilpotent.

2. T is right generalized Drazin invertible if and only if T = T1⊕T2 such
that T1 is right invertible and T2 is quasinilpotent.

Examples of left generalized Drazin invertible operators are the opera-
tors of the following classes:

� Left invertible operators on Hibert space.

� Left Drazin invertible operators such that H0(T ) = N(T p) (a(T ) =
p < ∞) is complemented with a T -invariant subspace M for which
T (M) is closed.
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934 M. Benharrat, K. Miloud Hocine and B. Messirdi

� Drazin invertible operators.

� A bounded paranormal operator T on Hilbert space X such that
R(T ) +H0(T ) and H0(T ) are closed (see [20, Proposition 3.15]).

Examples of right generalized Drazin invertible operators are the oper-
ators of the following classes:

� Right invertible operators on Hilbert space.

� Right Drazin invertible operators, such that K(T ) = R(T q) (with
d(T ) = q <∞) is complemented by a closed T -invariant subspace N
with N ⊆ H0(T ).

� Drazin invertible operators.

According to the Definitions 2.1 and 2.2, we also have
Invertible operator =⇒Generalized Drazin invertible operator =⇒Right

(resp. Left) generalized Drazin invertible operator.
In the sequel the terms left (resp. right) generalized Drazin invertible

operator is used for the nontrivial case of the bounded below (resp. surjec-
tive) operators.

The left Drazin spectrum, the right Drazin spectrum, the Drazin spec-
trum, the generalized Drazin spectrum, the left generalized Drazin spec-
trum and the right generalized Drazin spectrum of T are, respectively,
defined by

σlD(T ) := {λ ∈ C : λI − T is not left Drazin invertible},

σrD(T ) := {λ ∈ C : λI − T is not right generalized Drazin invertible},

σD(T ) = {λ ∈ C : λI − T is not Drazin invertible},

σgD(T ) = {λ ∈ C : λI − T is not generalized Drazin invertible},

σlgD(T ) := {λ ∈ C : λI − T is not left generalized Drazin invertible},

and

σrgD(T ) := {λ ∈ C : λI −T is not right generalized Drazin invertible}.
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Left and right generalized Drazin invertible operators and local ... 935

It is well known that these spectra are compact sets in the complex
plane, and we have,

σgD(T ) = σlgD(T ) ∪ σrgD(T ) ⊂ σD(T ) = σlD(T ) ∪ σrD(T ),

σlgD(T ) ⊂ σap(T ),

and

σrgD(T ) ⊂ σsu(T ),

where

σap(T ) := {λ ∈ C : λI − T is not bounded below }

and

σsu(T ) := {λ ∈ C : λI − T is not surjective},

are respectively the approximate point spectrum and the surjective spec-
trum of T .

An operator T ∈ B(X), T is said to be semi-regular if R(T ) is closed
and N(Tn) ⊆ R(T ), for all n ∈ N. An important class of operators which
involves the concept of semi-regularity is the class of operators admits a
generalized Kato decomposition.

Definition 2.6. (see [1]) T ∈ B(X) is said to admit a generalized Kato
decomposition, abbreviated as GKD, if there exists a pair of closed sub-
spaces (M,N) such that (M,N) ∈ Red(T ) with TM is semi-regular and TN
is quasinilpotent.

The pair (M,N) is called the generalized Kato decomposition of T and
denoted by GKD(M,N).

If we assume in the definition above that TN is nilpotent, then there
exists d ∈ N for which (TN)

d = 0. In this case T is said to be of Kato
type operator of degree d. Examples of operators admits a generalized
Kato decomposition, are Kato type operators, semi-regular operators, semi-
Fredholm operators, quasi-Fredholm operators and generalized Drazin in-
vertible operators, some other examples may be found in [17].

Let M be a subspace of X and let X∗ be the dual space of X. As it
is usual, M⊥ = {x∗ ∈ X∗ : x∗(M) = 0}. Moreover, if M and N are closed
linear subspaces of X then (M + N)⊥ = M⊥ ∩ N⊥. The dual relation
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936 M. Benharrat, K. Miloud Hocine and B. Messirdi

M⊥+N⊥ = (M ∩N)⊥ is not always true, since (M ∩N)⊥ is always closed
butM⊥+N⊥ need not be closed. However, a classical theorem establishes
that M⊥ ∩ N⊥ is closed in X∗ if and only if M + N is closed in X, (see
[12, Theorem 4.8, Chapter IV]).

Theorem 2.7 ([1]). Let T ∈ B(X). If (M,N) is a GKD of T , then
(N⊥,M⊥) is a GKD of its adjoint T ∗. Furthermore, if T is of a Kato
type operator then T ∗ is also of a Kato type.

For every operator T ∈ B(X), let us define the semi-regular spectrum,
the Kato spectrum and the generalized Kato spectrum as follows:

σse(T ) := {λ ∈ C : λI − T is not semi-regular}

σk(T ) := {λ ∈ C : λI − T is not of Kato type}

σgk(T ) := {λ ∈ C : λI−T does not admit a generalized Kato decomposition}

Recall that all the three sets defined above are always compact subsets
of the complex plane, (see [1], [7]) and ordered by :

σgk(T ) ⊆ σk(T ) ⊆ σse(T ).

Furthermore, the generalized Kato spectrum of an operator differs from the
semi-regular spectrum on at most countably many isolated points, more
precisely the sets σse(T ) \σgk(T ), σse(T ) \σk(T ) and σk(T ) \σgk(T ) are at
most countable (see [1] and [7]).

Note that σgk(T ) (resp. σk(T )) is not necessarily non-empty. For ex-
ample, a quasinilpotent (resp. nilpotent) operator T has empty generalized
Kato spectrum (resp. Kato spectrum). Furthermore, the comparison be-
tween this spectra and the spectra defined by the Drazin inverses gives

σgk(T ) ⊂ σlgD(T ) ⊂ σap(T ),

and
σgk(T ) ⊂ σrgD(T ) ⊂ σsu(T ).

Definition 2.8. Let T ∈ B(X). The operator T is said to have the single-
valued extension property at λ0 ∈ C, abbreviated T has the SVEP at λ0,
if for every neighborhood U of λ0 the only analytic function f : U → X
which satisfies the equation

(λI − T )f(λ) = 0
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is the constant function f ≡ 0.
The operator T is said to have the SVEP if T has the SVEP at every λ ∈ C.

Trivially, an operator T has the SVEP at every point of the resolvent set
ρ(T ). Moreover, from the identity theorem for analytic functions it easily
follows that T has the SVEP at every point of the boundary ∂σ(T ) of the
spectrum. Hence, we have the implications:

1. Every operator T has the SVEP at an isolated point of the spectrum.

2. If λ /∈ accσap(T ), then T has the SVEP at λ.

3. If λ /∈ accσsu(T ), then T ∗ has the SVEP at λ
In particular, it has been showed that if λI − T admits a generalized Kato
decomposition, then implications (2) and (3) may be reversed. For more
properties of the SVEP, we can see [19].

3. Left and right generalized Drazin invertible operators and

the SVEP

Now we give a characterization of the left (resp. the right) generalized
Drazin invertible operators in terms of generalized Kato decomposition and
the single-valued extension property.

Theorem 3.1. An operator T ∈ B(X) is left generalized Drazin invertible
if and only if T admits a GKD (M,N) and TM has the SVEP at 0.

Proof. By definition 2.1 a left generalized Drazin invertible operator T
admits a GKD (M,N) with H0(T ) = N is closed, hence T has the SVEP
at 0. So, TM has the SVEP at 0. Conversely, if T admits a GKD(M,N)
with TM has the SVEP at 0. Then by [1, Theorem 3.14] TM is injective
and H0(T ) = N . Since R(TM) is closed, TM is bonded below. Hence T is
left generalized Drazin invertible. 2

Dually, by Definition 2.2 and [1, Theorem 3.15], we get the following
result,

Theorem 3.2. An operator T ∈ B(X) is right generalized Drazin invert-
ible if and only if T admits a GKD (M,N) and T ∗ has the SVEP at 0.

Again by [1, Theorem 3.14], there are an equivalent properties to TM
has the SVEP at 0 for operators admits a GKD, so we can say more about
the left generalized Drazin invertible operators.
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938 M. Benharrat, K. Miloud Hocine and B. Messirdi

Theorem 3.3. An operator T ∈ B(X) is left generalized Drazin invertible
if and only if T admits a GKD (M,N) and satisfies one of the following
equivalent assertions:

(i) T has the SVEP at 0,

(ii) TM has the SVEP at 0,

(iii) TM is injective,

(iv) H0(T ) = N ,

(v) H0(T ) is closed,

(vi) K(T ) ∩H0(T ) = {0},

(vii) K(T ) ∩H0(T ) is closed.

Similarly, by [1, Theorem 3.15] we have:

Theorem 3.4. An operator T ∈ B(X) is right generalized Drazin invert-
ible if and only if T admits a GKD (M,N) and satisfies one of the following
equivalent assertions:

(i) T ∗ has the SVEP at 0,

(ii) TM is surjective,

(iii) K(T ) =M ,

(iv) X = K(T ) +H0(T ),

(v) K(T ) +H0(T ) is norm dense in X.

The following result expresses a characterization of the isolated points
of σap(T ) in terms of generalized Kato decomposition and the SVEP.

Proposition 3.5. Let T ∈ B(X) and 0 ∈ σap(T ). Then 0 is an isolated
point in σap(T ) if and only if T admits a GKD(M,N) and TM has the
SVEP at 0.
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Proof. Suppose that 0 is an isolated point in σap(T ), then T has the
SVEP at 0 and by [9, Proposition 9.], H0(T ) andK(T ) are closed subspaces
of X with K(T ) 6= X, H0(T ) 6= {0} and K(T ) ∩H0(T ) = {0}. If K(T )⊕
H0(T ) = X, then 0 is also isolated point in σ(T ) and clearly T admits
a GKD(K(T ),H0(T )). Now, assume that K(T ) ⊕ H0(T )X. Let X0 =
K(T ) ⊕ H0(T ) and T0 : X0 −→ X0 the operator induced by T on X0.
We have X0 is a Banach space and (K(T0),H0(T0)) = (K(T ),H0(T )) is
a GKD of T on X0. So by Theorem 2.7 (H0(T )

⊥,K(T )⊥) is also a GKD
of T ∗ over X∗

0 = H0(T )
⊥ ⊕ K(T )⊥. Here, H0(T )⊥ and K(T )⊥ are the

annihilators of H0(T ) and K(T ) in X∗
0 , respectively. In the other hand,

we know that the adjoint of the inclusion map i : X0 → X is a map from
X∗ onto X∗

0 with kernel X
⊥
0 . This implies that T

∗ admits a GKD over
X∗. Again by Theorem 2.7 T admits a GKD(M,N) viewed as a restriction
of the adjoint of T ∗ on X. Further, TM has the SVEP at 0 because the
SVEP is inherited by the restrictions on invariant subspaces. Conversely, if
T admits a GKD(M,N) and TM has the SVEP at 0. Then by [1, Theorem
3.14] TM is injective and H0(T ) = N . Since R(TM) is closed, TM is bonded
below. Hence T is left generalized Drazin invertible. By Proposition 2.3 0
is an isolated point in σap(T ). 2

Proposition 3.6. Let T ∈ B(X) and 0 ∈ σsu(T ). Then 0 is an isolated
point in σsu(T ) if and only if T admits a GKD(M,N) and T ∗N⊥ has the
SVEP at 0.

Proof. Since σsu(T ) = σap(T
∗), we apply Proposition 3.5 to the operator

T ∗; we obtain that 0 is an isolated point in σap(T ∗) if and only if T ∗ admits a
GKD(N⊥,M⊥) and T ∗

N⊥ has the SVEP at 0, for some two closed subspaces
of X. Now by Theorem 2.7, we get the desired result. 2

The basic existence results of generalized Drazin inverses and their re-
lation to the SVEP, the quasinilpotent part and the analytical core are
summarized in the following theorems.

Theorem 3.7. Assume that T ∈ B(X). The following assertions are
equivalent:

(i) T is left generalized Drazin invertible,

(ii) T = T1 ⊕ T2, with T1 = TM is bounded below operator and T2 =
TH0(T ) is quasinilpotent operator,

(iii) 0 is at most an isolated point in σap(T ),
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(iv) T admits a GKD(M,N) and TM has the SVEP at 0,

(v) T admits a GKD(M,N) and verified one of the equivalent conditions
of the Theorem 3.3,

(vi) there exists a bounded projection P on X such that TP = PT , T +P
is bounded below, TP is quasinilpotent and R(P ) = H0(T ).

Proof. The equivalence (i)⇐⇒(vi) has been proved in [8, Theorem
3.1]. By Theorems 3.1 and 3.3, we have (i)⇐⇒(v)⇐⇒(iv) and (iv)⇐⇒(iii)
follows from Proposition 3.5. By what we assert that (i)⇐⇒(vi)⇐⇒(v)
⇐⇒(iv)⇐⇒(iii). Finally, (i)⇐⇒(ii) follows from Proposition 2.3. 2

We know that the properties to be right generalized Drazin invertible
or to be left generalized Drazin invertible are dual to each other, (see [20,
Proposition 3.9]), then we have,

Theorem 3.8. Let T ∈ B(X). The following assertions are equivalent:

(i) T is right generalized Drazin invertible,

(ii) T = T1 ⊕ T2, with T1 = TK(T ) is surjective operator and T2 = TN is
quasinilpotent operator,

(iii) 0 is at most an isolated point in σsu(T ),

(iv) T admits a GKD(M,N) and T ∗ has the SVEP at 0,

(v) T admits a GKD(M,N) and satisfied one of the equivalent conditions
of the Theorem 3.4,

(vi) there exists a bounded projection P on X such that TP = PT , T +P
is surjective, TP is quasinilpotent and N(P ) = K(T ).

Proof. Similarly, The equivalence (i)⇐⇒(vi) has been proved in [8,
Theorem 3.2]. By Theorems 3.2 and 3.4, we have (i)⇐⇒(v) ⇐⇒(iv) and
(iv)⇐⇒(iii) follows from Proposition 3.6. Thus, (i)⇐⇒(vi)⇐⇒(v)⇐⇒(iv)⇐⇒(iii).
Finally, (i)⇐⇒(ii) follows from Proposition 2.4. 2

Remark 3.9. Theorems 3.7 and 3.8 are improvement of [20, Theorem 3.8,
Theorem 3.10].

A direct consequence of Theorem 3.7, Theorem 3.8 and [1, Lemma 3.13]:
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Corollary 3.10. Let T ∈ B(X).

� If T is left generalized Drazin invetible, then H0(T )
⊥ = K(T ∗).

� If T is right generalized Drazin invetible, then K(T ∗) = H0(T
∗)⊥.

� If T is left generalized Drazin invetible, then T ∗ is a right generalized
Drazin invetible with N(P ∗) = K(T ∗) = H0(T

∗)⊥ = R(P )⊥, where
P is the bounded projection given in Theorem 3.7-(vi).

Denote by

S(T ) = {λ ∈ C : T does not have the SVEP at λ}.

Corollary 3.11. Let T ∈ B(X).

� σgk(T ) ∪ S(T ) = σlgD(T ).

� σgk(T ) ∪ S(T ∗) = σrgD(T ).

� If T ∗ has SVEP, then σlgD(T ) = σgD(T ) and σgk(T ) = σrgD(T ).

� If T has SVEP, then σrgD(T ) = σgD(T ) and σgk(T ) = σlgD(T ).

� IfX is a Hilbert space and T is a self-adjoint operator, then σlgD(T ) =
σrgD(T ) = σgD(T ).

Similarity, for operators of Kato type we have,

Corollary 3.12. Let T ∈ B(X).

� σk(T ) ∪ S(T ) = σlD(T ).

� σk(T ) ∪ S(T ∗) = σrD(T ).

� If T ∗ has SVEP, then σlD(T ) = σD(T ) and σk(T ) = σrD(T ).

� If T has SVEP, then σrD(T ) = σD(T ) and σk(T ) = σlD(T ).

In the following, we show that both σlgD(T ) and σrgD(T ) are stable
under additive commuting finite rank operators.

Proposition 3.13. Let T ∈ B(X) and F is a finite rank operator on X
such that TF = FT . Then σlgD(T + F ) = σlgD(T ).
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Proof. From [18, Lemma 2.3] we know that accσap(T +F ) = accσap(T ).
Then λ /∈ accσap(T +F ) if and only if λ /∈ accσap(T ). Hence λI − (T + F )
is left generalized Drazin invertible if and only if λI − T is left generalized
Drazin invertible. So σlgD(T + F ) = σlgD(T ). 2

As a consequence of Proposition 3.13 we have

Proposition 3.14. Let T ∈ B(X) and F is a finite rank operator on X
such that TF = FT . Then σrgD(T + F ) = σrgD(T ).

Proposition 3.15. Let T ∈ B(X) and 0 ∈ ρ(T ). Then λ ∈ σlgD(T ) if and
only if λ 6= 0 and λ−1 ∈ σlgD(T

−1).

Proof. we have

λI − T = −λ(λ−1I − T−1)T.

Since 0 ∈ ρ(T ) and T commute with (λ−1 − T−1), it follows that (λ−1I −
T−1)M is bounded below if and only if (λI − T )M is bounded below and
(λ−1I −T−1)N is quasinilpotent if and only if (λI −T )N is quasinilpotent.
This is equivalent to the statement of the Theorem. 2

Theorem 3.16. Let T, S ∈ B(X). If 0 ∈ ρ(T )∩ρ(S), such that T−1−S−1
is finite rank operator commuting with T or S, then

σlgD(T ) = σlgD(S).

Proof. Proposition 3.13 implies that σlgD(T
−1) = σlgD(S

−1) , and by
Proposition 3.15 we have σlgD(T ) = σlgD(S). 2

Proposition 3.17. Let T ∈ B(X) and 0 ∈ ρ(T ). Then λ ∈ σrgD(T ) if and
only if λ 6= 0 and λ−1 ∈ σrgD(T

−1).

Theorem 3.18. Let T, S ∈ B(X). If 0 ∈ ρ(T )∩ρ(S), such that T−1−S−1
is a finite rank operator commuting with T or S, then

σrgD(T ) = σrgD(S).

Theorem 3.19. Let R,T,U ∈ B(X) be such that TRT = TUT . Then
σlgD(TR) = σlgD(UT ).
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Proof. Since σap(TR)\{0} = σap(UT )\{0}, from [5, Theorem 1], then
it is enough to show that TR is left generalized Drazin invertible if anf
only if UT is. Assume that 0 /∈ σlgD(TR), then 0 ∈ isoσap(TR). Therefore
TR− µI is bounded below for all small µ 6= 0. Hence UT − µI is bounded
below for all small µ 6= 0. So 0 ∈ isoσap(UT ). Hence UT is left generalized
Drazin invertible if and only if TR is left generalized Drazin invertible. 2

By duality, we have:

Theorem 3.20. Let R,T,U ∈ B(X) be such that TRT = TUT . Then
σrgD(TR) = σrgD(UT ).

In particular if R = U we get

Corollary 3.21. LetR,T ∈ B(X) then σlgD(TR) = σlgD(RT ) and σrgD(TR) =
σrgD(RT ).

Example 3.22. Let R,T ∈ B(X) and A be the operator defined on X⊕X
by

A =

Ã
0 T
R 0

!

,

then A2 =

Ã
TR 0
0 RT

!

= TR ⊕ RT . Thus σlgD(A
2) = σlgD(TR) ∪

σlgD(RT ) which equals to σlgD(TR) from Corollary 3.21. Therefore σlgD(A) =
(σlgD(TR))

1/2. Similarly we have σrgD(A) = (σrgD(TR))
1/2.

4. Generalized Drazin inverse and local spectral theory

We know that if T ∈ B(X) is not invertible then T is generalized Drazin in-
vertible if and only if X = K(T )⊕H0(T ) and, with respect tho this decom-
position, T=T1⊕T2, with T1 = TK(T ) is invertible and T2 = TH0(T ) is quasinilpotent.

Note that the generalized Drazin inverse TD of T , if it exists, is uniquely
determined and represented, with respect of the same decomposition, as
the direct sum TD = T−11 ⊕ 0, with T−11 is the inverse of T1, Further-
more, the nonzero part of the spectrum of TD is given by the reciprocals
of the nonzero points of the spectrum of T , i.e.,

σ(TD) \ {0} = {
1

λ
: λ ∈ σ(T ) \ {0}}.(4.1)

Since the spectral mapping theorem holds for the approximate spectrum
and the surjective spectrum, we have σap(T

D)\{0} = { 1λ : λ ∈ σap(T )\{0}}
and σsu(T

D) \ {0} = { 1λ : λ ∈ σsu(T ) \ {0}}.
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An interesting question given in [2] is that there is a reciprocal relation-
ship between the nonzero part of the local spectrum of a Drazin invertible
operator and the nonzero part of the local spectrum of its Drazin inverse.
In the sequel we study this question in the case of the generalized Drazin
invertible operators.

Before this down, we shall give the relevant definitions concerning the
local spectral theory. Given a bounded linear operator T ∈ B(X) , the local
resolvent set ρT (x) of T at a point x ∈ X is defined as the union of all open
subsets U of C such that there exists an analytic function f : U −→ X
satisfying

(λI − T )f(λ) = x for all λ ∈ U.

The local spectrum σT (x) of T at x is the set defined by σT (x) :=
C \ ρT (x). Obviously, σT (x) ⊆ σ(T ).

The SVEP for T is equivalent to saying that σT (x) = ∅ if and only if
x = 0, see [19, Proposition 1.2.16]. Note that if T has SVEP then a spectral
theorem holds for the local spectrum, i.e., if f is an analytic function defined
on an open neighborhood U of σ(T ) then

f(σT (x)) = σf(T )(x) for all x ∈ X.

See also [21].
An important invariant subspace in local spectral theory is given by the

local spectral subspace of T associated at a subset Ω ⊆ C, defined as

XT (Ω) = {x ∈ X : σT (x) ⊂ Ω}.

Obviously, for every closed set Ω ⊆ C we have

XT (Ω) = XT (Ω ∩ σ(T )).

For a closed subset Ω ⊆ C, the glocal subspace XT (Ω) is defined as the set
of all x ∈ X for which there exists an analytic function f : C \ Ω −→ X
satisfying (λI − T )f(λ) = x on C \ Ω.

Obviously, for Ω a closed set, XT (Ω) ⊂ XT (Ω), and we have equality
when T satisfies the SVEP.

Definition 4.1. An operator T ∈ B(X) is said to have Dunford’s property
(C), shortly property (C), if XT (Ω) is closed for every closed set Ω ⊆ C.

Definition 4.2. An operator T ∈ B(X) is said to have property (Q), if
H0(λI − T ) is closed for every λ ∈ C.
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Another important property which plays a central role in local spectral
theory is the following one introduced by Bishop, see [19]:

Definition 4.3. An operator T ∈ B(X) is said to have Bishop’s property
(β), shortly property (β), if for every open set U of C and every sequence
of analytic functions fn : U −→ X for which (λI − T )fn(λ)→ 0 uniformly
on all compact subsets of U ; then also fn(λ) → 0, again locally uniformly
on U .

We have

property (β)⇒ property (C)⇒ property (Q)⇒ the SVEP .

See the monograph [19] for a detailed study of these properties.

The next first result shows that the SVEP is transmitted from T to its
generalized Drazin inverse TD,

Theorem 4.4. Let T ∈ B(X) be generalized Drazin invertible. Then T
has the SVEP if and only if TD has the SVEP.

Proof. Suppose that T ∈ B(X) is a generalized Drazin invertible. If
0 /∈ σ(T ). Then f(λ) = 1

λ is analytic in any open neighborhood of σ(T )
which does not contains 0, so by [19, Theorem 3.3.6] TD = T−1 = f(T )
has the property SVEP. Now if 0 ∈ σ(T ). Then T = T1 ⊕ T2 with T1 is
invertible and T2 is quasinilpotent. From the first case T1 has the property
SVEP, T2 has also the SVEP because it is quasinilpotent. So the Drazin
generalized inverse TD = T−11 ⊕ 0 has the SVEP, from [1, Theorem 2.9].

Conversely; if TD = T−11 ⊕ 0 has the SVEP then T−11 and T1 have the
property SVEP. Consequently, again by [1, Theorem 2.9], T = T1 ⊕ T2 has
the property SVEP. 2

In the following result, we show that the relation equ:opinv holds also
in the local sens.

Theorem 4.5. Let T ∈ B(X) be generalized Drazin invertible with gen-
eralized Drazin inverse TD. If T has the SVEP, then for every x ∈ X we
have

σTD(x) \ {0} = {
1

λ
: λ ∈ σT (x) \ {0}}.(4.2)
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Proof. Suppose that T has the SVEP. If 0 /∈ σ(T ) then TD = T−1 and
the equality equ:locspec follows from the spectral mapping theorem [21, 1.6]
applied to the function f(λ) = 1

λ . Suppose that 0 ∈ σ(T ). According the
decompositionX = K(T )⊕H0(T ), T1 = TK(T ) is invertible and T2 = TH0(T )

is quasinilpotent, then the restrictions T1 and T2 have the SVEP. Now, let
x ∈ X and write x = y + z, with y ∈ K(T ) and z ∈ H0(T ). Then by [1,
Theorem 2.9] we have

σT (x) = σT1(y) ∪ σT2(z).

The generalized Drazin inverse TD = T−11 ⊕ 0 has the SVEP, so always by
[1, Theorem 2.9] we have

σTD(x) = σT−1
1

(y) ∪ σ0(z),

where

σT−1
1

(y) = {
1

λ
: λ ∈ σT1(y)} for all y ∈ K(T ).

In the case z = 0, σT2(0) = ∅ and hence σT (x) = σT1(y) and, analogously,
σTD(x) = σT−1

1

(y). Thus equ:locspec. Now, if z 6= 0, σT2(z) = {0} =

σ0(z), since both T2 and the null operator are quasinilpotent operators.
Furthermore, 0 /∈ σT1(y) and 0 /∈ σT−1

1

(y), hence σT (x) \ {0} = σT1(y) and

σTD \ {0}(x) = σT−1
1

(y), from which we deduce,

σTD(x) \ {0} = σT−1
1

(y) = {
1

λ
: λ ∈ σT1(y)} = {

1

λ
: λ ∈ σT (x) \ {0}}.

This complete the proof. 2
We establish now that also the property (C) is transferred to the gen-

eralized Drazin inverse.

Theorem 4.6. Let T ∈ B(X) be a generalized Drazin invertible. Then T
has the property (C) if and only if TD the property (C).

Proof. Suppose that T ∈ B(X) is generalized Drazin invertible. If
0 /∈ σ(T ), then f(λ) = 1

λ is analytic in any open neighborhood of σ(T )
which does not contains 0, so by [19, Theorem 3.3.6] TD = T−1 = f(T ) has
the property (C). Now if 0 ∈ σ(T ). Then T admits a GKD (M,N), with
M = K(T ) and N = H0(T ), TM is invertible and TN is quasinilpotent. For
the Drazin generalized inverse TD = T−1M ⊕ 0, we have

XTD(Ω) =MT−1M
(Ω)⊕N0(Ω) for every closed setΩ ⊆ C.
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Since TM is invertible, by the first case, TM has the property (C) and
so the inverse T−1M has the property (C) with MT−1M

(Ω) is closed for every

closed set Ω ⊆ C. We know that N0(Ω) = {0} if 0 /∈ Ω and N0(Ω) = N
if 0 ∈ Ω. Then, XTD(Ω) = MT−1M

(Ω) ⊕ {0} if 0 /∈ Ω and XTD(Ω) =

MT−1M
(Ω)⊕N if 0 ∈ Ω. In both cases XTD(Ω) is closed, and consequently

TD has the property (C).

Conversely; if TD = T−1M ⊕ 0 has the property (C) and as above
XTD(Ω) =MT−1M

(Ω)⊕ {0} if 0 /∈ Ω and XTD(Ω) =MT−1M
(Ω)⊕N if 0 ∈ Ω.

This implies that MT−1M
(Ω) is closed and hence T−1M has the property (C).

Thus TM has the property (C). Since XT (Ω) = MTM (Ω) ⊕ NTN (Ω), and
TN is quasinilpotent it then follows that XT (Ω) =MTM (Ω)⊕ {0} if 0 /∈ Ω,
or XT (Ω) = MTM (Ω) ⊕ N if 0 ∈ Ω. Therefore XT (Ω) is closed for every
closed set Ω ⊆ C. Thus T has the property (C). 2

Since for operator having property (Q) we have

H0(λI − T ) = XT ({λ}) = XT ({λ}) for all λ ∈ C,

we can deduce from Theorem 4.6 that

Corollary 4.7. Let T ∈ B(X) be generalized Drazin invertible. Then T
has the property (Q) if and only if TD has the property (Q).

Now before to study the property (β), we need some preliminary results.
Let H(U,X) denote the space of all analytic functions from U intoX. With
respect to pointwise vector space operations and the topology of locally
uniform convergence, H(U,X) is a Fréchet space. For every T ∈ B(X) and
every open set U ⊆ C, define TU : H(U,X) −→ H(U,X) by

(TUf)(λ) := (λI − T )f(λ) for all f ∈ H(U,X) and λ ∈ U.

From [19, Proposition 3.3.5], T has the property (β) if and only if for every
open set U ⊆ C, the operator TU has closed range in H(U,X). Evidently,
the property (β) is inherited by the restrictions on invariant closed sub-
spaces. Furthermore, the following theorem shows that the property (β) is
transmitted reciprocally form a generalized Drazin invertible operator to
its generalized Drazin inverse.

Theorem 4.8. Let T ∈ B(X) a generalized Drazin invertible. Then T has
the property (β) if and only if TD has the property (β).
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Proof. Suppose that T ∈ B(X) is generalized Drazin invertible and
0 ∈ σ(T ). Then T = T1 ⊕ T2 with T1 is invertible and T2 is quasinilpotent.
From [19, Proposition 2.1.6], we can identify H(U,X) with the direct sum
H(U,K(T ))⊕H(U,H0(T )). T1 has the property (β) and hence its inverse
T−11 has the property (β). Now TDU [H(U,X)] = (T

−1
1 ⊕ 0U )[H(U,K(T ))⊕

H(U,H0(T ))]
= (T−11 )U [H(U,K(T ))]⊕ 0U [H(U,H0(T ))].

.

Clearly TD
U has closed range in H(U,X), so TD has the property (β).

Conversely; if TD = T−11 ⊕0 has the property (β). Then as above T1 has
the property (C). Since the quasinilpotent operator T2 has the property
(β) and the fact that

TU [H(U,X)] = (T1 ⊕ T2)U [H(U,K(T ))⊕H(U,H0(T ))]
= T1U [H(U,K(T ))]⊕ T2U [H(U,H0(T ))],

we conclude that TD
U has closed range in H(U,X), so TD has the property

(β). 2

An operator T ∈ B(X) is said to have the decomposition property (δ)
if the decomposition

X = XT (U) +XT (V )

holds for every open cover {U, V } of C. Note that T ∈ B(X) has prop-
erty (δ) (respectively, property (β) ) if and only if T ∗ has property (β)
(respectively, property (δ)), see [19, Theorem 2.5.5]. If T ∈ B(X) has both
property (β) and property (δ) then T is said to be decomposable.

Corollary 4.9. Suppose that T is generalized Drazin invertible. If T has
property (δ) then TD has property (δ), and analogously, if T is decompos-
able then TD is decomposable.

Proof. Clearly, from the definition of the generalized Drazin invertibility
it follows that if T is generalized Drazin invertible then its adjoint T ∗ is also
generalized Drazin invertible, with Drazin inverse TD∗. If T has property
(δ) then T ∗ has property (β) and hence, by Theorem 4.8, also TD∗ has
property (β). By duality this implies that TD has property (δ). The
second assertion is clear: if T is decomposable then TD has both properties
(δ) and (β) and the same holds for TD, again by Theorem 4.8 and the first
part of the proof. Hence TD is decomposable. 2
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A natural question suggested by all the results of this section is whether
the local spectral properties are transmitted from a left (resp. right) gener-
alized Drazin invertible operator to its left (resp. right) generalized Drazin
inverse. The next example shows that the answer to this question is nega-
tive.

Example 4.10. Let X = c2 be the Hilbert space of all square summable
complex sequences

x = (xn)n = (x1, x2, . . .),

indexed by the a nonnegative integers. We define the right shift operator
R and the left shift operator L in c2 by

R(x1, x2, . . .) = (0, x1, x2, . . .)

and
L(x1, x2, . . .) = (x2, x3, . . .).

We know that σ(R) = σ(L) = D = {λ ∈ C; |λ| ≤ 1} and L = R∗.
Furthermore, R is injective with colsed range and L is surjective. So R is
left invertible with L its left inverse. Similarity, L is right invertible with
R its right inverse.

Now, from [19, Example 1.2.8], it follows that the unilateral right shift
R has the property (β) (hence has the property (C), the property (Q) and
has the SVEP), while L fails to have the SVEP, see [19, Proposition 1.2.10].

We also have
σR(x) = σ(R),

for every x ∈ X, so σR(x)\{0} is the punctured discD\{0}. Consequently,
the points of σL(x) \ {0}, for any left inverse L, cannot be the reciprocals
of σR(x) \ {0}, otherwise σL(x), and hence σ(L), would be unbounded.

By the same notations of the definitions 2.1 and 2.2 and from [19, Propo-
sition 1.2.10] we deduce that:

Proposition 4.11. Let T ∈ B(X). We have

� If T is right generalized Drazin invertible and TK(T ) has the SVEP
(respectively, property (C), property (Q), property (β)), then T is
generalized Drazin invertible.

� If T is left generalized Drazin invertible and T ∗K(T∗) has the SVEP
(respectively, property (C), property (Q), property (β)), then T is
generalized Drazin invertible.
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