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Abstract. We study the difference between the left and right total
pathlengths in a random binary tree. The results include exact and as-
ymptotic formulas for moments and an asymptotic distribution that can
be expressed in terms of either the Brownian snake or ISE. The proofs
are based on computing expectations for a subcritical binary Galton–
Watson tree, and studying asymptotics as the Galton–Watson process
approaches a critical one.

1. Introduction

A binary tree consists of either only a root or a root with two subtrees,
one left and one right, both being binary trees. Each node thus has 0 or 2
children; nodes without children (i.e. leaves) are called external and nodes
with 2 children are called internal. A binary tree with n ≥ 0 internal nodes
has n+1 external nodes and thus 2n+1 nodes in total. (See e.g. [12, Section
2.3], but note that there and in many other papers, including several of the
present author, binary trees are defined slightly differently, corresponding to
the internal nodes only in the definition used in this paper; cf. [12, Exercise
2.3.20]. The trees considered in this paper are sometimes called full binary
trees.)

The depth of a node is the length of the path from the root to it, and
the total pathlength P (T ) of a tree T is the sum of the depths of all nodes.
Summing over internal or external nodes only, we get the internal pathlength
Pi(T ) and the external pathlength Pe(T ). Clearly,

P (T ) = Pi(T ) + Pe(T ).

It is further well-known that, for a binary tree with n internal nodes,

P (T ) = 2Pi(T ) + 2n, (1.1)

because every internal node has exactly two children, and thus

Pe(T ) = Pi(T ) + 2n. (1.2)

The quantities Pi, Pe and P are thus equivalent when the number of nodes
is fixed.

In applications of binary trees, left and right links often have different
meanings. A typical example is the correspondence between binary trees
and ordered trees [12, Section 2.3.2], where a left link corresponds to a child
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in the ordered tree but a right link corresponds to a sibling. It is therefore of
interest to study also the left depth and right depth of a node, defined as the
number of left [right] links in the path from the root to the node; summing
over all nodes we obtain the left total pathlength L and right total pathlength
R. We similarly define the left and right internal and external pathlengths
Li, Ri, Le, Re by summing over internal or external nodes only. The simple
argument yielding (1.2) shows that if T has n internal nodes, then

Le(T ) = Li(T ) + n Re(T ) = Ri(T ) + n,

so again it is equivalent to study any of these versions.
We define the imbalance D(T ) by

D(T ) := Le(T )−Re(T ) = Li(T )−Ri(T ) =
1
2
(
L(T )−R(T )

)
. (1.3)

Let Tn denote a random binary tree with n internal nodes (and thus 2n+1
nodes in total); as usual with the uniform distribution over all such trees. It
is well-known that the pathlengths P (Tn), Pi(Tn), Pe(Tn) are of order n3/2,
more precisely, by Aldous [1], [2] and (1.2), (1.1),

n−3/2P (Tn) d−→ 23/2ξ, n−3/2Pi(Tn) d−→ 21/2ξ, n−3/2Pe(Tn) d−→ 21/2ξ,

where the random variable ξ is twice the area
∫ 1
0 Bex(t) dt under a normalized

Brownian excursion Bex. (This is sometimes called the Airy distribution,
see e.g. [8] for much more information.)

It has been shown by Marckert [15] that the imbalance D(Tn) is of the
smaller order n5/4. More precisely, it is implicit in [15, Theorem 5] that
n−5/4D(Tn) d−→ 21/4S, where S can be described as the center of mass of the
integrated superbrownian excursion defined by Aldous [3], or, equivalently,
as the integral of the head of the Brownian snake; see Section 4 for definitions
and details. An immediate corollary is that n−3/2L(Tn) d−→ 21/2ξ, and
similarly for Li, Le, and R, Ri, Re.

The purpose of the present paper is to present an alternative approach,
where we study the moments of D(Tn). Our method is based on studying ex-
pectations for a subcritical Galton–Watson tree. More precisely, we consider
the family tree of a binary Galton–Watson process with expected number of
offspring 1 − δ, and study this as a function of δ > 0. This is algebraically
equivalent to the study of generating functions, but the version here seems to
be convenient in order to obtain recursion formulas. Our method yields both
exact and asymptotic formulas for moments of D(Tn). (The exact formulas
are obtained recursively, and quickly become complicated. The asymptotic
formulas are obtained by studing asymptotics as δ → 0, i.e. when the pro-
cess approaches the critical binary Galton–Watson process.) See Section 2
for statements and Section 3 for proofs. The asymptotic formulas give, by
the method of moments, another proof that n−5/4D(Tn) converges in dis-
tribution; the limit variable is now characterized by its moments which are
given by a recursion formula. A comparison with [6], where the moments
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of S above are computed, shows that this limit indeed equals 21/4S, thus
yielding another proof of Marckert’s result.

In related work, the difference between left and right depths of individual
nodes has been studied from a different point of view by Bousquet-Mélou
[5]. She considers the generating function of the number of nodes with a
given difference and obtains limit results on the distribution of this number.

In another related work, Jim Fill [7] has found a limiting distribution for
the imbalance D(T ) for binary search trees.

Personal remark. I often work with Brownian limits of discrete structures
and I have sometimes given new “Brownian” proofs of results first proved
using generating functions. This time I do the opposite. I regard this as
an illustration of the fact that many different methods are useful and valu-
able, even for the same type of problems, and should be employed without
prejudice.

Acknowledgement. This research was mainly done during the workshop
Analysis of Algorithms at MSRI, Berkeley, CA, USA, in June 2004, where
Donald Knuth asked about properties of the left and right pathlengths of
binary trees. (His question was about properties of their joint generating
function, so the present work represents only an indirect and partial answer.)

I further thank Mireille Bousquet-Mélou and Jean-François Marckert for
helpful discussions.

2. Results

We begin with exact formulas for the second and fourth moments of
D(Tn). Note that all odd moments E D(Tn)2k+1 vanish by symmetry. Proofs
are given in Section 3.

Theorem 2.1. Let

γn :=
√

π
Γ(n + 1)

Γ(n + 1/2)
=

2nn!
(2n− 1)!!

= 22n

(
2n

n

)−1

.

Then

E D(Tn)2 =
Γ(1/2)Γ(n + 3)
2 Γ(n + 1/2)

− (2n + 1)(n + 1)

=
(n + 1)(n + 2)

2
γn − (2n + 1)(n + 1);

E D(Tn)4 =
14
5

n5 +
171
5

n4 +
468
5

n3 +
539
5

n2 +
283
5

n + 11

−
√

π
(
121 n2 + 199 n + 88

)
Γ (n + 3)

16 Γ (n + 1/2)

=
(2 n + 1) (n + 1)

(
7 n3 + 75 n2 + 118 n + 55

)
5

−
(n + 1) (n + 2)

(
121 n2 + 199 n + 88

)
16

γn.
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As n →∞, γn ∼
√

πn1/2, and thus E D(Tn)2 ∼
√

π
2 n5/2 and E D(Tn)4 ∼

14
5 n5.

We can recursively find exact expressions for higher moments too by the
same method, see Section 3, but no simple or general formula is apparent,
and we see no reason to give further exact formulas here. The asymptotical
results generalize more easily.

Theorem 2.2. The odd moments E D(Tn)2k+1, k ≥ 0, vanish, while the
even moments have asymptotics, as n →∞,

E D(Tn)2k ∼ 2
√

π

Γ
(
(5k − 1)/2

)ckn
5k/2,

where ck is defined recursively by c1 = 1
4 and, for k ≥ 2,

ck =
2k(2k − 1)

8
(5k − 6)(5k − 4)ck−1 + 1

2

k−1∑
i=1

(
2k

2i

)
cick−i. (2.1)

Corollary 2.3. As n →∞, n−5/4D(Tn) d−→ Z, where Z is a symmetric
random variable Z with moments E Z2k+1 = 0, k ≥ 0, and

E Z2k =
2
√

π

Γ
(
(5k − 1)/2

) ck, k ≥ 1, (2.2)

with ck as in Theorem 2.2.

The random variable S described in the introduction and in Section 4 was
studied in [6], where it was shown that

E S2k =
(2k)!

√
π

2(9k−4)/2Γ
(
(5k − 1)/2

) ak, k ≥ 1, (2.3)

where a1 = 1, and, for k ≥ 2,

ak = 2(5k − 4)(5k − 6)ak−1 +
k−1∑
i=1

aiak−i. (2.4)

(Note that ak equals ω∗0k in [9, Theorem 3.3], see [6].)
By comparing (2.1) and (2.4), we see that ck = 21−4k(2k)! ak. It now

follows from Corollary 2.3 and (2.3) that E Z2k = 2k/2 E S2k, k ≥ 1. Conse-
quently:

Corollary 2.4. The limit Z in Corollary 2.3 equals 21/4S.

Remark 2.5. The moments of Z or S are thus described by the quadratic
recurrence (2.1) or (2.4). It is well-known that the moments of the Brownian
excursion area (Airy distribution) ξ/2 can be described by a similar formula
and a similar quadratic recurrence, see e.g. [9, Theorem 3.3]; in that case
there is also a linear recurrence, see e.g. [10, Section 8]; the cr there are
related to the moments of ξ by E ξk = 21−k/23π1/2k! (k − 1)ck−1/Γ((3k −
1)/2). We do not know any similar linear recurrence for the moments of S.
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3. Proofs

We will use the method of [9, Section 5] and consider the random binary
Galton–Watson tree Tδ defined by starting with the root and, recursively,
letting each node be a leaf with probability (1 + δ)/2 and an internal node
with two new nodes as offspring with probability (1 − δ)/2, where δ is a
fixed number with 0 < δ < 1. We let Pδ and Eδ denote probability and
expectation for this subcritical Galton–Watson tree Tδ. Note that the tree
Tδ is finite a.s.

We begin with some general results on the expectations Eδ as functions
of δ; some of these results are stated in [9] and repeated here for complete-
ness. We consider an arbitrary functional Z = Z(T ) of binary trees, and
first observe that studying the expectations Eδ Z can be seen as studying a
generating function; note that the left hand side of (3.2) is the generating
function

∑
Z(T )xNi(T ), summing over all binary trees T , where Ni is the

number of internal nodes.

Lemma 3.1. Let bn be the number of binary trees with n internal nodes.
Assume either that Eδ |Z| < ∞ for 0 < δ < 1, or that Z ≥ 0, and let
zn := E Z(Tn). Then

Eδ Z =
1 + δ

2

∞∑
n=0

bnzn

(1− δ2

4

)n
. (3.1)

Equivalently, if 0 < x < 1/4 and δ =
√

1− 4x, then
∞∑

n=0

bnznxn =
2

1 + δ
Eδ Z. (3.2)

Proof. If t is a binary tree with n internal nodes, and thus n + 1 external
nodes, then

P(Tδ = t) =
(1− δ

2

)n(1 + δ

2

)n+1
=

1 + δ

2

(1− δ2

4

)n
.

Consequently, if Bn is the set of the bn binary trees with n internal nodes,
then

Eδ Z =
∞∑

n=0

∑
t∈Bn

P(Tδ = t)Z(t) =
1 + δ

2

∞∑
n=0

(1− δ2

4

)n ∑
t∈Bn

Z(t),

and (3.1) follows because
∑

t∈Bn
Z(t) = bn E Z(Tn) = bnzn. �

In particular, taking Z = 1, we obtain by (3.2), with δ =
√

1− 4x,
∞∑

n=0

bnxn =
2

1 + δ
Eδ 1 =

2
1 +

√
1− 4x

=
1−

√
1− 4x

2x
, 0 < x < 1/4,

which yields the well-known generating function for bn [12, 2.3.4.4-(13)].
This gives another proof of the well-known fact that bn is the Catalan number

1
n+1

(
2n
n

)
[17, Exercise 6.19d].
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We let N = N(T ) := |T |, the total number of nodes in a binary tree T ;
thus T has (N − 1)/2 internal and (N + 1)/2 external nodes. (This is in
accordance with the notation in [9]; note however that Tn here is denoted
T2n+1 there.) In particular, N(Tn) = 2n + 1.

Lemma 3.2. Assume that Eδ |Z| < ∞ for 0 < δ < 1. Then Eδ |NZ| < ∞
for 0 < δ < 1, and if f(δ) = Eδ Z, then

Eδ(NZ) = −
(1

δ
− δ

)
f ′(δ) +

1
δ
f(δ).

Proof. Since N(Tn) = 2n + 1, E
(
NZ(Tn)

)
= (2n + 1)zn. By Lemma 3.1,∑∞

n=0 bnznxn is absolutely convergent for |x| < 1/4, and thus analytic there;
it follows that

∑∞
n=0(2n+1)bnznxn too is absolutely convergent for |x| < 1/4,

and thus Eδ |NZ| < ∞ for 0 < δ < 1. Moreover, by (3.2) again,

2
1 + δ

Eδ(NZ) =
∞∑

n=0

(2n + 1)bnznxn =
(
2x

d

dx
+ 1

)( 2
1 + δ

f(δ)
)

and the result follows by simple calculations because

2x
d

dx
= 2x

dδ

dx

d

dδ
=

−4x√
1− 4x

d

dδ
= −1− δ2

δ

d

dδ
.

�

Lemma 3.2 shows, by induction, that Eδ Nk < ∞ for every k ≥ 0. (This
well-known fact can be shown in many other ways too.) Explicitly, we obtain
from Eδ N0 = 1 in the first two steps

Eδ N = δ−1, Eδ N2 = δ−3 + δ−2 − δ−1. (3.3)

In general, Eδ Nk is a polynomial in δ−1 of degree 2k − 1 for k ≥ 1.
Conversely, if Eδ Z is such a polynomial we can find E Z(Tn).

Lemma 3.3. Assume that Eδ Z =
∑m

j=0 ajδ
−j for 0 < δ < 1. Then, with

1/Γ(0) = 0 and am+1 = 0,

E Z(Tn) =
m∑

j=0

aj

(2Γ(1/2)Γ(n + (j + 2)/2)
Γ(j/2)Γ(n + 1/2)

− 2Γ(1/2)Γ(n + (j + 1)/2)
Γ((j − 1)/2)Γ(n + 1/2)

)
=

m∑
j=1

2Γ(1/2)
Γ(j/2)

(aj − aj+1)
Γ(n + (j + 2)/2)

Γ(n + 1/2)
+ a0.

(3.4)

In particular, if m ≥ 1,

E Z(Tn) = 2
Γ(1/2)
Γ(m/2)

amn(m+1)/2 + O
(
nm/2

)
as n →∞.

Proof. Consider first the case Eδ Z = δ−j . In this case we have by Lemma 3.1,
with zn := E Z(Tn),

∞∑
n=0

2−2n−1bnzn(1− δ2)n+1 = (1− δ) Eδ Z = δ−j − δ−(j−1)
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and thus, taking δ =
√

1− x,

2−2n−1bnzn = [xn+1]
(
(1− x)−j/2 − (1− x)−(j−1)/2

)
=

Γ(j/2 + n + 1)
Γ(j/2)(n + 1)!

− Γ((j − 1)/2 + n + 1)
Γ((j − 1)/2)(n + 1)!

. (3.5)

In particular, the choice Z = 1 is of this type with j = 0; hence (3.5) yields,
since 1/Γ(0) = 0,

2−2n−1bn = − Γ(n + 1/2)
Γ(−1/2)(n + 1)!

=
Γ(n + 1/2)

2Γ(1/2)(n + 1)!
. (3.6)

(This is equivalent to the standard formula for Catalan numbers.) Dividing
(3.5) by (3.6) we obtain

E Z(Tn) =
2Γ(1/2)Γ(n + (j + 2)/2)

Γ(j/2)Γ(n + 1/2)
− 2Γ(1/2)Γ(n + (j + 1)/2)

Γ((j − 1)/2)Γ(n + 1/2)
,

which gives (3.4) in the case Eδ Z = δ−j . The general case follows by
linearity. The asymptotic estimate now follows because Γ(n + b)/Γ(n) ∼ nb

as n →∞, for any fixed b. �

We now return to the imbalance D(T ). By definition, a binary tree T is
either just a root, and then D(T ) = 0, or it consists of a root with left and
right subtrees T ′ and T ′′; in the latter case

Li(T ) = Li(T ′) + 1
2

(
N(T ′)− 1

)
+ Li(T ′′),

Ri(T ) = Ri(T ′) + Ri(T ′′) + 1
2

(
N(T ′′)− 1

)
,

and thus

D(T ) = D(T ′) + D(T ′′) + 1
2N(T ′)− 1

2N(T ′′).

Now, let T be the random tree Tδ. Since the second case above occurs with
probability (1 − δ)/2, and then T ′ and T ′′ are independent and have the
same distribution as T , we have for every k ≥ 1

Eδ Dk = Eδ D(T )k =
1− δ

2
Eδ

(
D(T ′) + 1

2N(T ′) + D(T ′′)− 1
2N(T ′′)

)k

=
1− δ

2

k∑
j=0

(
k

j

)
Eδ

(
D(T ′) + 1

2N(T ′)
)j

Eδ

(
D(T ′′)− 1

2N(T ′′)
)k−j

=
1− δ

2

k∑
j=0

(
k

j

)
Eδ

(
D + 1

2N
)j Eδ

(
D − 1

2N
)k−j

. (3.7)

Note that all moments Eδ Dk are finite because |D(T )| ≤ N(T )2.
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Observing that all odd moments of D(Tδ) are 0 by symmetry, let us first
consider k = 2. Since Eδ D = Eδ(DN) = 0, (3.7) yields

Eδ D2 =
1− δ

2

(
Eδ

(
D + 1

2N
)2 + 2 Eδ

(
D + 1

2N
)

Eδ

(
D − 1

2N
)

+ Eδ

(
D − 1

2N
)2

)
=

1− δ

2

(
Eδ

(
D2 + 1

4N2
)
− 1

2

(
Eδ N

)2 + Eδ

(
D2 + 1

4N2
))

= (1− δ) Eδ D2 +
1− δ

4
(
Eδ N2 − (Eδ N)2

)
and thus

Eδ D2 =
1− δ

4δ

(
Eδ N2 − (Eδ N)2

)
. (3.8)

Using (3.3), we find

Eδ D2 =
1− δ

4δ

(
δ−3 − δ−1

)
= 1

4δ−4 − 1
4δ−3 − 1

4δ−2 + 1
4δ−1. (3.9)

The formula for E D(Tn)2 in Theorem 2.1 now follows from Lemma 3.3.
Similarly, one finds by taking k = 4 in (3.7), using Lemma 3.2, that

Eδ D4 =
147
16

δ−9 − 27
2

δ−8 − 57
4

y7 +
105
4

δ−6 +
27
8

δ−5 − 59
4

δ−4

+ 2 δ−3 + 2 δ−2 − 5
16

δ−1,

and the formula for E D(Tn)4 in Theorem 2.1 follows from Lemma 3.3. (We
used Maple for these calculations.) The asymptotic formulas in Theorem 2.1
follow immediately, which completes the proof of the theorem.

We can recursively find exact expressions for Eδ D6 = E D(Tδ)6 and
E D(Tn)6 and higher moments too by the same method, but as said in the
introduction, we do not give these expressions here; they can easily be found
by the reader and a computer. Instead we turn to asymptotics.

Lemma 3.4. For each k ≥ 1, Eδ D2k is a polynomial in δ−1 of degree 5k−1
with leading term ckδ

−5k+1, where ck is as in Theorem 2.2.
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Proof. We have already proved the case k = 1 in (3.9) and proceed by
induction. We rewrite (3.7) as

Eδ D2k =
1− δ

2

(
Eδ

(
D + 1

2N
)2k + Eδ

(
D − 1

2N
)2k

+
2k−1∑
j=1

(
2k

j

)
Eδ

(
D + 1

2N
)j Eδ

(
D − 1

2N
)2k−j

)

= (1− δ)
(

Eδ D2k +
k∑

j=1

(
2k

2j

)
2−2j Eδ

(
D2k−2jN2j

)
+

1
2

2k−1∑
j=1

(
2k

j

)
Eδ

(
D + 1

2N
)j Eδ

(
D − 1

2N
)2k−j

)
and thus

δ Eδ D2k = (1− δ)
( k∑

j=1

(
2k

2j

)
2−2j Eδ

(
D2k−2jN2j

)
+

1
2

2k−1∑
j=1

(
2k

j

)
Eδ

(
D + 1

2N
)j Eδ

(
D − 1

2N
)2k−j

)
. (3.10)

Let P denote the set of polynomials in δ−1, and note that Lemma 3.2
implies that if Eδ Z ∈ P, then Eδ(NZ) ∈ P, and thus Eδ(N iZ) ∈ P for
every i ≥ 0. By induction, and binomial expansion of Eδ

(
D ± 1

2N
)ν , we

thus see that the right hand side of (3.10) is (1 − δ) times a polynomial in
P, and thus Eδ D2k ∈ P.

To find the leading term, note that Lemma 3.2 further shows that if Eδ Z
is a polynomial of degree m ≥ 1 and leading term amδ−m, then Eδ(NZ) has
degree m+2 and leading term mamδ−(m+2). Thus, by induction, the degree
of Eδ

(
D2k−2jN2j

)
is 5(k − j) − 1 + 4j = 5k − 1 − j for 1 ≤ j < k; using

(3.3), this holds for j = k ≥ 1 too. Similarly, a binomial expansion yields,
for 1 ≤ ν < 2k,

Eδ

(
D ± 1

2N
)ν = Eδ Dν + O

(
δ−(5ν/2−3/2)

)
.

Hence, the right hand side of (3.10) is 1− δ times(
2k

2

)
2−2 Eδ

(
D2k−2N2

)
+

1
2

2k−1∑
j=1

(
2k

j

)
Eδ Dj Eδ D2k−j + O

(
δ−(5k−3)

)
=

2k(2k − 1)
8

(5k − 6)(5k − 4)ck−1δ
−(5k−2)

+
1
2

k−1∑
i=1

(
2k

2i

)
cick−iδ

−(5k−2) + O
(
δ−(5k−3)

)
.

The result follows by (3.10). �
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Remark 3.5. The argument further shows that the polynomial Eδ D2k in
δ−1 has rational coefficients and constant term 0.

Theorem 2.2 follows from Lemmas 3.4 and 3.3.
Finally, by Theorem 2.2, the moments of n−5/4D(Tn) converge to the

values in (2.2) for even moments (and 0 for odd), which by the argument in
Section 2 equal the moments of 21/4S. Since the distribution of S is uniquely
determined by its moments, as was shown in [6], this implies n−5/4D(Tn) d−→
21/4S, proving both corollaries.

4. The Brownian connection

4.1. The Brownian snake. We begin by recalling the definition of the
Brownian snake, see [13, Chapter IV] or [14] for further details. In general,
let ζ, the lifetime, be a non-negative stochastic process on some interval I,
and let for s, t ∈ I

m(s, t; ζ) := min{ζ(u) : u ∈ [s, t]}

when s ≤ t, and m(s, t; ζ) := m(t, s; ζ) when s > t. The Brownian snake
with lifetime ζ then can be defined as the stochastic process W (s, t) on
I × [0,∞) such that, conditioned on ζ, W is Gaussian with mean 0 and
covariances

Cov
(
W (s1, t1)W (s2, t2) | ζ

)
= min

(
t1, t2,m(s1, s2; ζ)

)
.

It is easily verified that such a process exists; moreover, if ζ is (locally) Hölder
continuous with some positive exponent α, then the Kolmogorov–Chentsov
criterion [11, Theorem 3.23] shows that W has a continuous version, and
thus we may and will assume W to be continuous. The following properties
follow easily:

(i) W (s, t) = W (s, ζ(s)) when t ≥ ζ(s), so we only need to consider
t ≤ ζ(s).

(ii) For fixed s ∈ I, t 7→ W (s, t) is conditioned on ζ a Brownian motion
stopped at ζ(s).

(iii) W (s1, t) = W (s2, t) when 0 ≤ t ≤ m(s1, s2; ζ).
(iv) Let s1, s2 ∈ I. Conditioned on ζ, the two stopped Brownian motions

t 7→ W (s1, t) and t 7→ W (s2, t) coincide up to t = m(s1, s2; ζ) and
then evolve independently.

The stochastic process Ŵ (s) := W (s, ζ(s)) is called the head of the Brow-
nian snake. It is easily seen from (iii) that the pair (ζ, Ŵ ) determines W ;
see further [16]. Conditioned on ζ, Ŵ is a Gaussian process on I with mean
0 and covariances E

(
Ŵ (s)Ŵ (t) | ζ

)
= m(s, t; ζ).

From now on, we will take the lifetime ζ = 2Bex, a Brownian excursion
on I = [0, 1]. (In other contexts, the lifetime ζ is often taken to be reflected
Brownian motion on [0,∞) [13].) The factor 2 is a normalization factor only,
of no great importance.
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The integrated superbrownian excursion µISE introduced by Aldous [3] is
a random probability measure, and can be defined as the occupation measure
of the process Ŵ , see [13], [6], [14]. The random variable S mentioned in
the introduction thus has the two equivalent representations [6]:

S :=
∫

x dµISE =
∫ 1

0
Ŵ (s) ds.

4.2. Random trees. If v is a node (internal or external) in a binary tree T
with n internal nodes, let ∆(v) be the difference between the left and right
depths of v and let ∆̃(v) := ∆(v)/(2n)1/4. Further, let M̃(T ) := maxv |∆̃(v)|
and µ̃T := (2n+1)−1

∑
v δ(∆̃(v)), where δ(a) is the Dirac measure at a; thus

µ̃T is the probability measure giving the distribution of ∆̃ for a random node
in T . Note that, by (1.3),

2D(T ) =
∑
v∈T

∆(v) = (2n)1/4
∑
v∈T

∆̃(v) = (2n)1/4(2n + 1)
∫

x dµ̃T . (4.1)

We consider the random tree Tn; thus M̃(Tn) is a random variable and
µ̃Tn is a random probability measure. Marckert [15, Theorem 5] has proved
that these converge in distribution: M̃(Tn) d−→ W ∗ := maxs |Ŵ (s)| =
maxs,t |W (s, t)| and µ̃Tn

d−→ µISE. As said in the introduction, these re-

sults implies easily that n−5/4D(Tn) d−→ 21/4S. For completeness, we give
the details:

The fact that µ̃Tn

d−→ µISE implies by the continuous mapping theorem
[11, Theorem 4.27] that if h is a bounded continuous function on R, then∫

h dµ̃Tn

d−→
∫

h dµISE. (4.2)

If h is unbounded, we can apply (4.2) to hN := (h∧N)∨ (−N), h truncated
at ±N , and then let N → ∞. It is easily seen by [4, Proposition 4.2] and
the fact that M̃(Tn) is tight (because M̃(Tn) d−→ W ∗), that this yields that
(4.2) holds for any continuous h.

Taking h(x) = x, (4.1) and (4.2) show that, as asserted,

n−5/4D(Tn) = 21/4(1 + 1/2n)
∫

x dµ̃Tn

d−→ 21/4

∫
x dµISE = 21/4S.
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