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Atrial stretch may contribute to the mechanism of atrial fibrillation (AF) recurrence after

atrial fibrillation catheter ablation (AFCA). We tested whether the left atrial (LA) wall

stress (LAW-stress[measured]) could be predicted by artificial intelligence (AI) using non-

invasive parameters (LAW-stress[AI]) and whether rhythm outcome after AFCA could be

predicted by LAW-stress[AI] in an independent cohort. Cohort 1 included 2223 patients,

and cohort 2 included 658 patients who underwent AFCA. LAW-stress[measured]

was calculated using the Law of Laplace using LA diameter by echocardiography,

peak LA pressure measured during procedure, and LA wall thickness measured by

customized software (AMBER) using computed tomography. The highest quartile (Q4)

LAW-stress[measured] was predicted and validated by AI using non-invasive clinical

parameters, including non-paroxysmal type of AF, age, presence of hypertension,

diabetes, vascular disease, and heart failure, left ventricular ejection fraction, and the

ratio of the peak mitral flow velocity of the early rapid filling to the early diastolic velocity

of the mitral annulus (E/Em). We tested the AF/atrial tachycardia recurrence 3 months

after the blanking period after AFCA using the LAW-stress[measured] and LAW-stress[AI]

in cohort 1 and LAW-stress[AI] in cohort 2. LAW-stress[measured] was independently

associated with non-paroxysmal AF (p < 0.001), diabetes (p = 0.012), vascular disease

(p = 0.002), body mass index (p < 0.001), E/Em (p < 0.001), and mean LA voltage

measured by electrogram voltage mapping (p < 0.001). The best-performing AI model

had acceptable prediction power for predicting Q4-LAW-stress[measured] (area under

the receiver operating characteristic curve 0.734). During 26.0 (12.0–52.0) months

of follow-up, AF recurrence was significantly higher in the Q4-LAW-stress[measured]

group [log-rank p = 0.001, hazard ratio 2.43 (1.21–4.90), p = 0.013] and Q4-LAW-

stress[AI] group (log-rank p = 0.039) in cohort 1. In cohort 2, the Q4-LAW-stress[AI]

group consistently showed worse rhythm outcomes (log-rank p < 0.001). A higher

LAW-stress was associated with poorer rhythm outcomes after AFCA. AI was able to

predict this complex but useful prognostic parameter using non-invasive parameters

with moderate accuracy.
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INTRODUCTION

Atrial fibrillation (AF) is a prevalent arrhythmia that significantly
increases morbidity, mortality, and economic burden (Kim
et al., 2018). However, current rhythm management approaches
still have limited efficacy and have inspired substantial efforts
to investigate the mechanism of AF (Nattel, 2002). Among
the complex mechanisms of AF, chronic atrial stretch causes
atrial dilatation and is thought to contribute toward AF
progression and atrial remodeling (Nattel et al., 2008). Although
left atrial (LA) size is a widely used parameter that reflects
the degree of structural remodeling and prognosis of AF
rhythm control, some studies have reported inconsistent results
(Marchese et al., 2012; Zhuang et al., 2012). Similar to
ventricular wall stress or wall tension, LA wall stress (LAW-
stress) is a parameter that reflects the tensile stress and
strain of the atrial wall (Augustin et al., 2020). Since LAW-
stress reflects not only anatomical but also functional aspects
of AF, it is expected to provide useful insights into AF
mechanisms. However, this physiologic parameter has not
yet become popular because it requires variables that are
complex and difficult to obtain, such as LA pressure and
LA wall thickness, for the calculation (Wang et al., 2011).
Recently, new clinical studies utilizing the predictive power of
artificial intelligence (AI) have actively increased in the fields
of cardiology and electrophysiology (Krittanawong et al., 2017;
Kwon J. M. et al., 2020).

In this study, we hypothesized that the complex and invasive
variables required to calculate LAW-stress can be replaced with
non-invasive common variables using AI among patients who
underwent AF catheter ablation (AFCA). We first evaluated the
clinical usefulness of LAW-stress in cohort 1, which included data
on LA pressure and LA wall thickness measured by customized
software. We then evaluated whether the high LAW-stress group
estimated by AI in an independent cohort 2 without LA pressure
and LA wall thickness had similar clinical outcomes.

MATERIALS AND METHODS

Study Population
The study protocol adhered to the principles of the Declaration
of Helsinki and was approved by the institutional review boards
of the Yonsei University Health System and Korea University
Cardiovascular Center. All patients provided written informed
consent for inclusion in the Yonsei AF Ablation cohort (cohort
1, registered at clinicaltrials.gov as NCT02138695) and the
Korea university AF ablation cohort (cohort 2). Cohort 1
included 2223 consecutive patients who underwent de novo
AFCA. LAW-stress[measured] was retrospectively measured in the
subjects in cohort 1, and the patients were divided into four
groups according to their quartile value of LAW-stress[measured].
Cohort 2 included 658 patients who underwent de novo AFCA
(Figure 1). The exclusion criteria were as follows: (1) AF
refractory to electrical cardioversion; (2) LA size >55 mm as
measured with echocardiography (Verma et al., 2011); (3) AF
with rheumatic valvular disease; (4) AFCA using energy sources

other than radiofrequency energy; and (5) prior AF ablation or
cardiac surgery. All patients stopped all anti-arrhythmic drugs
for a period corresponding to at least five half-lives before the
catheter ablation.

Electrophysiological Studies and AFCA
The electrophysiological mapping method and the AFCA
technique/strategy used during the study period were
consistently performed as described in a previous study
(Yu et al., 2017). In brief, an open irrigated-tip catheter
[Celsius, ThermoCool SF (Johnson & Johnson Inc., Diamond
Bar, CA, United States) or Cool Flex (St. Jude Medical Inc.,
Minnetonka, MN, United States); 30–35 W, 45◦C] was
used to deliver radiofrequency energy for ablation under
3D electroanatomical mapping [NavX (St Jude Medical,
Minnetonka, MN, United States) or CARTO3 (Johnson &
Johnson Inc.)] merged with 3D spiral computed tomography
(CT). LA electrogram voltage maps were generated during
high right atrial pacing at 500 ms before circumferential
pulmonary vein (PV) isolation. However, in minority of patients
with recurrent AF at the beginning of the procedure, we
acquired voltage maps during sinus rhythm after completion
of PV isolation. We obtained the peak-to-peak amplitude of
contact bipolar electrograms from 350 to 500 points on the
LA endocardium, and the mean LA electrogram voltage was
calculated. If frequently recurring AF persisted after three
attempts at cardioversion, no further efforts were made to
generate an LA voltage map.

All patients initially underwent a circumferential PV isolation.
For patients with persistent AF, roof line, posterior inferior line,
anterior line, cavotricuspid isthmus line, superior vena cava to
septal line, or complex fractionated atrial electrogram-guided
ablation were added at the operator’s discretion. The procedure
was considered complete when there was no immediate
recurrence of AF after cardioversion with an isoproterenol
infusion (5–10 µg/min; target heart rate, 120 bpm). In the
case of mappable AF triggers or premature atrial beats, non-
PV foci were mapped and ablated as much as possible.
Systemic anticoagulation was achieved with intravenous heparin
while maintaining an activated clotting time of 350–400 s
during the procedure.

Measurement of the LA Pressure, LA
Wall Thickness, and LAW-Stress[measured]

During the AFCA procedure, LA pressure was measured during
sinus rhythm and AF immediately after trans-septal puncture
as described in previous studies (Park et al., 2014, 2019). If the
initial rhythm was AF, we measured LA pressure during sinus
rhythm after terminating AF by internal cardioversion, followed
by at least 3 min waiting period to allow for recovery from atrial
stunning from the cardioversion. We excluded those patients in
whom LA pressure during sinus rhythm could not be measured
due to frequent re-initiations of AF after electrical cardioversion.

We developed a customized software (AMBER, Laonmed
Inc., Seoul, South Korea) that measured the LA wall thickness
by applying Laplace’s equation in the cardiac CT images
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FIGURE 1 | Flow chart of the study analysis. AF, atrial fibrillation; AFCA, atrial fibrillation catheter ablation; AI, artificial intelligence; LAW-stress, left atrial wall stress.

(Kwon O. S. et al., 2020; Lee et al., 2021). The number of rows
and columns of CT image pixels were 512, and the number
of slices was approximately 320 at the z-axis. The spatial
resolutions of the CT images were within 0.3–0.55 mm for
the x- and y-axis, and the slice thickness of the z-axis was
0.5 mm (no overlaps and gaps). The spatial resolution of CT
was set to the normalized vector in 3D Euclidean space. The
methods and principles of the customized software (AMBER)
were previously described in detail, and the results have been
well validated with a 3D printed phantom and in 120 patients
(Kwon O. S. et al., 2020; Lee et al., 2021). In brief, the
endocardium of the LA was semi-automatically divided on
the cardiac CT by using the edge detector. Then, the LA
wall was extracted with an overlapped area by morphology
operations after separation from other tissues using the multi-
Otsu threshold algorithm in the histogram of the Hounsfield
units. The LA wall thickness was calculated as a numerical
streamline connecting the endocardium and epicardium using
the Euler method after solving the vector field with Laplace’s
equation, the partial differential equation in the 3D space.
Then, the mean LA wall thickness was used as a parameter to
calculate the LAW-stress.

LAW-stress[measured] (dyne/cm2) was calculated using
the Law of Laplace [σ = (P × r)/2 h (σ, wall stress; P,
pressure; r, radius; h, wall thickness)] (Falsetti et al., 1970;
Wang et al., 2011). Peak LA pressure during sinus rhythm
was directly measured during AF procedure and LA radius
was defined as half of the LA anterior–posterior (AP)
diameter by transthoracic echocardiography. Therefore,
LAW-stress[measured] was calculated using the following
equation: LAW-stress[measured] = (peak LA pressure × LA AP
diameter)/(4 × LA wall thickness). LAW-stress was expressed as
dyn/cm2 (1 mmHg = 1333 dyn/cm2).

AI Model Implementation
We developed a convolutional neural network-based model
to classify the risk of LAW-stress[measured], as shown in
Supplementary Figure 1. The input dimension (8 × 1)
was composed of eight non-invasive clinical features [non-
paroxysmal type of AF, hypertension, diabetes mellitus, vascular
disease, heart failure, left ventricular ejection fraction (LVEF),
and the ratio of the peak mitral flow velocity of the early
rapid filling to the early diastolic velocity of the mitral annulus
(E/Em)], and pre-normalization was performed. The population
was randomly divided in a 7:1:2 ratio (training set:validation
set:test set). The test and validation sets were scaled with the
normalization coefficient (e.g., minimum and maximum) for the
training set. Since clinically significant variables were selected as
the input variables, only the convolution kernel was considered
to avoid the clinical features from being discarded by the pooling
operation. The network stream was designed with a typical
structure after a convolution filter (3 × 1) to connect with
batch normalization and dropout layers and fully connected
(FC) layers. The normalized input was performed using batch
normalization to reflect the mean and variance of the mini-
batch after eight convolution filter operations. The activation
function adopted Leaky Rectified Linear Unit (ReLU) to consider
the gradient vanishing, and the tensor was serialized (flatten)
and then connected with the FC layer. The FC layer consisted
of batch normalization, ReLU activation function, and dropout
layer, and was recursively connected. The FC layer was a multi-
layer perceptron of a two-layer structure, consisting of 16 neurons
in the first layer and four neurons in the second layer. The
number of convolution filters and number of nodes in the FC
layer were selected using amanual search. The output layer used a
sigmoid function, and the predicted value ranged from 0 to 1. The
whole sample was randomly shuffled, and hyperparameters were
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TABLE 1 | Baseline characteristics according to the quartile value of LA wall stress in cohort 1.

Overall

(n = 2223)

Q1 (<97.4 × 103 dyn/cm2)

(n = 556)

Q2 (97.4 to

139.8 × 103 dyn/cm2)

(n = 556)

Q3 (139.8 to

197.9 × 103 dyn/cm2)

(n = 555)

Q4

(≥197.9 × 103 dyn/cm2)

(n = 556)

P

Paroxysmal AF, n (%) 1576 (71.3) 445 (80.8)a 414 (75.1) 406 (73.3) 311 (56.1)b <0.001

Age (years) 59.0 (52.0–67.0) 59.0 (50.0–65.0)a 58.0 (50.0–66.0)a 59.0 (52.0–67.0)a 62.0 (54.0–68.0)b <0.001

Male sex, n (%) 1619 (72.8) 417 (75.0) 405 (72.8) 409 (73.7) 388 (69.8) 0.247

Comorbidities, n (%)

Hypertension 1046 (47.1) 234 (42.1)a 256 (46.0) 254 (45.8) 302 (54.3)b <0.001

Diabetes mellitus 332 (14.9) 61 (11.0)a 75 (13.5) 74 (13.3) 122 (21.9)b <0.001

Stroke/TIA 250 (11.2) 48 (8.6)a 60 (10.8) 64 (11.5) 78 (14.0)b 0.041

Vascular disease 248 (11.2) 45 (8.1)a 56 (10.1) 56 (10.1) 91 (16.4)b <0.001

Heart failure 263 (11.8) 55 (9.9) 65 (11.7) 50 (9.0)a 93 (16.7)b <0.001

Body mass index (kg/m2) 24.7 (23.0–26.7) 24.2 (22.6–25.9)a 24.6 (22.8–26.8)b 24.8 (23.3–26.9)b,c 25.2 (23.4–27.4)c <0.001

CHA2DS2-VASc score 1.0 (1.0–3.0) 1.0 (0–2.0)a 1.0 (0–2.0)a 1.0 (0–3.0)a 2.0 (1.0–3.0)b <0.001

Echocardiographic parameters

LA dimension (mm) 41.0 (37.0–45.0) 38.0 (34.0–41.0)a 40.0 (36.0–44.0)b 41.0 (38.0–45.0)c 45.0 (41.0–49.0)d <0.001

LA volume index (ml/m2) 34.8 (28.0–43.5) 30.3 (25.1–36.9)a 33.6 (27.0–40.6)b 35.5 (28.8–43.7)c 41.2 (33.6–52.3)d <0.001

LV ejection fraction (%) 64.0 (59.0–68.0) 64.0 (60.0–69.0)a 64.0 (59.0–69.0) 64.0 (60.0–69.0)a 63.0 (58.0–68.0)b 0.028

E/Em 9.0 (7.2–12.0) 8.3 (7.0–11.0)a 9.0 (7.0–11.0)a,b 9.0 (7.9–12.0)b 10.3 (8.0–14.0)c <0.001

Mean LA wall thickness (mm) 1.95 (1.75–2.15) 2.06 (1.89–2.27)a 2.01 (1.82–2.20)b 1.91 (1.73–2.08)c 1.80 (1.57–2.01)d <0.001

Mean LA voltage (mV) 1.33 (0.84–1.83) 1.52 (1.06–2.02)a 1.43 (0.90–1.91)a 1.33 (0.84–1.82)b 1.01 (0.65–1.48)c <0.001

Values are presented as median (Q1–Q3 quartiles [25th and 75th percentiles]) or number (%).
a−dThere were significant differences between the groups with different alphabets. AF, atrial fibrillation; E/Em, ratio of the peak mitral flow velocity of the early rapid filling

to the early diastolic velocity of the mitral annulus; LA, left atrial; TIA, transient ischemic attack.

conducted by a Bayesian optimizer. The dropout rate was 0.2 and
the batch size was 35, and it consisted of stratified sampling to
keep the balance between the two classes. The neural network
model training was performed with supervised learning using
Adam Optimizer (Kingma and Ba, 2014), a backpropagation
algorithm, to minimize logit loss calculated by the sigmoid cross-
entropy function. The initial learning rate started at 9.36 × 10 −3

and was performed with the cosine annealing methods of a cycle
of 20 epochs, and the condition for early stopping was when the
logit loss of the validation set stopped improving for 10 epochs.
We implemented the software in a developmental environment
using Python (ver. 3.5) and TensorFlow (ver. 1.14.0) backend.

AI Prediction for LAW-Stress
We conducted a quartile analysis for LAW-stress[measured] and
attempted to detect the highest quartile (Q4) LAW-stress[measured]

using non-invasive parameters alone. The conventional logistic
regression model for the Q4-LAW-stress[measured] was derived
using a traditional statistical method. Among the variables that
had statistically significant associations with LAW-stress[measured]

in the univariate linear regression analysis, we selected the
non-invasive parameters to predict Q4-LAW-stress using AI
(Q4-LAW-stress[AI]). In the randomly selected training set,
five iterations were performed to identify the consistency and
robustness of the AI results. Among them, the best-performing
model was selected to investigate the association between LAW-
stress[AI] and rhythm outcome after AFCA in both cohort
1 and cohort 2. A summary of the study design is shown
in Figure 1.

Post-ablation Management and
Follow-Up
All patients visited the scheduled outpatient clinic at 1, 3, 6,
and 12 months after the AFCA and every 6 months thereafter
or whenever symptoms occurred. All patients underwent
electrocardiography at every visit, as well as 24-h Holter
recording at 3 and 6 months, then every 6 months for
2 years, annually for 2–5 years, and then biannually after
5 years, following the modified 2012 HRS/EHRA/ECAS expert
consensus statement guidelines (Calkins et al., 2012). Whenever
patients reported palpitations, Holter monitor or event monitor
recordings were obtained and evaluated to check for recurrence
of arrhythmias. AF/atrial tachycardia (AT) recurrence was
defined as any episode of AF or AT lasting for at least 30 s.
Any electrocardiographic documentation of AF/AT recurrence
3 months after the blanking period was diagnosed as a
clinical recurrence.

Statistical Analysis
Continuous variables were expressed as the mean ± standard
deviation for normally distributed variables and as the median
with the interquartile range for non-normally distributed
variables, and compared using the Student’s t-test and Wilcoxon
rank-sum test, respectively. Categorical variables were reported
as counts (percentages) and were compared using the chi-
square or Fisher’s exact test. Three or more groups were
compared using one-way analysis of variance, and a Bonferroni
method was used to account for multiple comparisons between
groups. A linear regression analysis was used to investigate
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TABLE 2 | Procedural characteristics and clinical rhythm outcomes according to the quartile value of LA wall stress in cohort 1.

Overall

(n = 2223)

Q1 (<97.4 × 103 dyn/cm2)

(n = 556)

Q2 (97.4 to

139.8 × 103 dyn/cm2)

(n = 556)

Q3 (139.8 to

197.9 × 103 dyn/cm2)

(n = 555)

Q4

(≥197.9 × 103 dyn/cm2)

(n = 556)

P

Procedure time (min) 170.0

(138.0–205.0)

159.0 (130.0–185.5)a 165.0 (137.0–197.5)b 173.0 (140.0–205.0)b 188.0 (151.0–228.0)c <0.001

Ablation time (min) 72.7 (53.5–92.0) 66.3 (47.8–80.7)a 67.0 (52.6–87.1)a 73.8 (54.8–92.3)b 83.3 (59.2–105.3)b <0.001

Ablation lesion, n (%)

CPVI 2223 (100.0) 556 (100.0) 556 (100.0) 555 (100.0) 556 (100.0)

SVC-right septal line 1430 (64.4) 339 (61.0) 367 (66.2) 351 (63.2) 373 (67.2) 0.116

Extra PV LA ablation 618 (27.9) 109 (19.7)a 105 (19.0)a 155 (28.2) 249 (44.8)b <0.001

Extra PV foci, n (%) 179 (12.0) 44 (11.7) 37 (9.7) 48 (13.0) 50 (13.5) 0.375

Complications, n (%) 80 (3.6) 24 (4.3) 18 (3.2) 21 (3.8) 17 (3.1) 0.661

Post-ABL medication, n (%)

ACEi or ARB 777 (35.0) 164 (29.6)a 198 (35.6) 189 (34.1) 226 (40.6)b 0.002

Beta blocker 838 (37.7) 176 (31.8)a 210 (37.8) 207 (37.3) 245 (44.1)b <0.001

Statin 756 (34.0) 169 (30.5)a 185 (33.3)a 180 (32.4)a 222 (39.9)b 0.006

Follow-up duration

(months)

26.0 (12.0–52.0) 23.0 (11.5–52.5) 26.0 (13.0–52.0) 30.0 (14.0–55.0) 25.0 (11.0–49.0) 0.087

Early recurrence, n (%) 666 (30.1) 159 (28.6)a 152 (27.4)a 160 (29.1)a 195 (35.5)b 0.015

Clinical recurrence, n

(%)

821 (37.2) 181 (32.6)a 196 (35.3) 190 (34.6) 254 (46.3)b <0.001

Recurrence as

paroxysmal type, n (%

in recur/% in overall)

610 (74.3/27.4) 131 (72.4/23.6) 149 (76.0/26.8) 149 (78.4/26.8) 181 (71.3/32.6) 0.311

AT recurrence, n (% in

recur/% in overall)

211 (25.7/9.9) 50 (27.6/9.0) 47 (24.0/8.5) 41 (21.6/7.4) 73 (28.7/13.1) 0.311

Cardioversion, n (% in

recur/% in overall)

301 (36.7/13.5) 45 (24.9/8.1) 66 (33.7/11.9) 74 (38.9/13.5) 116 (45.7/21.1) <0.001

Recur within 12 months 365 (16.5) 92 (16.5) 84 (15.1) 77 (14.0)a 112 (20.4)b 0.026

Recur after 12 months 456 (20.6) 89 (16.0)a 112 (20.2) 113 (20.6) 142 (25.9)b 0.001

Repeat AF ablation, n

(%)

153 (6.9) 16 (2.9)a 30 (5.4) 40 (7.2) 41 (7.4)b 0.004

No PV reconnections 33 (21.6) 2 (12.5) 8 (26.7) 11 (27.5) 8 (19.5) 0.032

Extra PV foci during

repeat AF ablation

29 (30.5) 1 (14.3) 10 (45.5) 6 (25.0) 9 (27.3) 0.295

Multiple procedure

success, overall

105 (64.7) 13 (78.6) 22 (71.4) 26 (63.2) 25 (54.3) 0.332

Values are presented as median (Q1–Q3 quartiles [25th and 75th percentiles]) or number (%).
a−cThere were significant differences between the groups with different alphabets. ACEi, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin II

receptor blocker; AT, atrial tachycardia; CPVI, circumferential pulmonary vein isolation; LA, left atrial; PV, pulmonary vein; SVC, superior vena cava.

the variables related to the LAW-stress[measured]. The Kaplan–
Meier analysis with log-rank test was used to analyze the
probability of freedom from AF/AT recurrences after AFCA.
A Cox regression analysis was used to identify predictors of
AF/AT recurrence after AFCA, and to estimate the hazard
ratios (HRs), 95% confidence intervals (CIs), and p-values. The
variables selected for the multivariate analysis were those with a
p-value < 0.05 on univariate analysis. Area under the receiver
operating characteristic curve (AUC) was used to investigate
the predictive power of the AI model and conventional logistic
regression model, and clinical outcomes were investigated
with Kaplan–Meier analysis. Statistical Package for the Social
Sciences version 25.0 for Windows (IBM Corporation, Armonk,
NY, United States) and R software version 3.6.2 (The R
Foundation for Statistical Computing, Vienna, Austria) were
used for data analysis.

RESULTS

LAW-Stress[measured] Associated Factors
A total of 2223 patients were included in cohort 1 [72.8%
male, 59.0 (52.0–67.0) years old, 71.3% with paroxysmal AF
(PAF), Table 1] and 658 patients were included in cohort
2 [79.2% male, 57.0 (50.0–65.0) years old, 59.7% with PAF,
Supplementary Table 1]. Compared to cohort 1, the patient
population included in cohort 2 were younger [59.0 (52.0–
67.0) vs. 57.0 (50.0–65.0) years old, p < 0.001], had higher
proportion of male (72.8% vs. 79.2%, p = 0.001), non-paroxysmal
AF (28.7% vs. 40.3%, p < 0.001), and lower proportion of
hypertension (47.1% vs.37.1%, p < 0.001) and diabetes (14.9%
vs. 8.5%, p < 0.001). We obtained LAW-stress based on LA
wall thickness, peak LA pressure, and LA diameter in cohort
1; however, the data on LA wall thickness and invasive LA
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TABLE 3 | Linear regression analysis for the clinical variables predictive of LA wall

stress (103 dyn/cm2) in cohort 1.

Univariate Multivariate

β (95% CI) P β (95% CI) P

Non-paroxysmal AF 40.93

(32.52–49.34)

<0.001 31.08

(21.77–40.39)

<0.001

Age 0.83

(0.48–1.18)

<0.001 0.08 (−0.35 to

0.52)

0.713

Male sex −10.33

(−19.02 to

−1.65)

0.020 7.81 (−2.64 to

18.26)

0.143

Hypertension 16.62

(8.90–24.34)

<0.001 3.03 (−6.02 to

12.08)

0.511

Diabetes mellitus 30.17

(19.39–40.94)

<0.001 15.36 (3.35 to

27.38)

0.012

Stroke/TIA 19.16

(6.94–31.37)

0.002 3.00 (−10.6 to

16.59)

0.665

Vascular disease 31.62

(19.41–43.83)

<0.001 22.27

(8.4–36.14)

0.002

Heart failure 34.14

(22.25–46.02)

<.001 −4.79 (−19.99

to 10.40)

0.536

Body mass index 3.71

(2.49–4.92)

<0.001 2.91

(1.53–4.29)

<0.001

Body surface area 14.85 (−5.45

to 35.15)

0.151

LV ejection fraction −1.09 (−1.55

to −0.63)

<0.001 −0.07 (−0.66

to 0.51)

0.803

E/Em 5.83

(4.98–6.69)

<0.001 4.95

(3.87–6.02)

<0.001

LVEDD 2.07

(1.20–2.94)

<0.001 0.52 (−0.54 to

1.58)

0.337

Mean LA voltage −29.36

(−34.94 to

−23.78)

<0.001 −22.24

(−27.96 to

−16.52)

<0.001

AF, atrial fibrillation; CI, confidence interval; E/Em, ratio of the peak mitral flow

velocity of the early rapid filling to the early diastolic velocity of the mitral annulus; LA,

left atrial; TIA, transient ischemic attack; LV, left ventricular; LVEDD, left ventricular

end diastolic dimension.

pressure were not available in cohort 2. As shown in Table 1,
we divided cohort 1 into four groups based on the quartile
values of LAW-stress[measured]. In the higher quartile LAW-
stress[measured] group, the patients were older (p < 0.001), had
a higher proportion of non-paroxysmal AF (p < 0.001), body
mass index (BMI) (p < 0.001), and CHA2DS2-VASc score
(p < 0.001), and higher prevalence of hypertension (p < 0.001),
diabetes mellitus (p < 0.001), history of stroke or transient
ischemic attack (p = 0.041), vascular disease (p < 0.001), or
heart failure (p < 0.001). The LA volume index (p < 0.001),
LVEF (p = 0.028), and E/Em (p < 0.001) were higher, and
mean LA voltage (p < 0.001) was lower in the higher quartile
LAW-stress[measured] group (Table 1). Procedure-related factors
were compared according to the quartiles of LAW-stress[measured]

in Table 2.
In the multivariate linear regression analysis, LAW-

stress[measured] was independently associated with
non-paroxysmal AF [β = 31.08 (21.77–40.39), p < 0.001],
BMI [β = 2.91 (1.53–4.29), p < 0.001], diabetes [β = 15.36

(3.35–27.38), p = 0.012], vascular disease [β = 22.27 (8.40–36.14),
p = 0.002], E/Em [β = 4.95 (3.87–6.02), p < 0.001], and mean LA
voltage [β = −22.24 (−27.96 to −16.52), p < 0.001, Table 3].

LAW-Stress Prediction by the AI Model
To predict Q4-LAW-stress[measured], which is a complex
parameter requiring an invasive measurement of LA pressure
and LA wall thickness for the calculation, we tested the AI
prediction accuracy by using common non-invasive clinical
variables. Among the variables that were associated with
LAW-stress[measured] in the univariate linear regression analysis
(Table 3), non-paroxysmal type of AF, age, presence of
hypertension, diabetes, vascular disease, and heart failure, LVEF,
and E/Em were selected for the machine learning algorithm to
predict the Q4 of LAW-stress[measured] in cohort 1. We excluded
the invasive parameter, mean LA voltage, because cohort 2 did
not have this invasive variable.

The training time required for the model was approximately
26 min to learn the eight variables from 2223 subjects
and the time required to predict the Q4-LAW-stress was
approximately 1.8 min. The training, validation, and test sets
consisted of randomly selected samples, and all tests were
repeated five times. Supplementary Table 2 shows the mean
performance results for the Q4-LAW-stress[measured] predictions
in the training, validation, and test sets. To determine the Q4-
LAW-stress[AI] in the independent cohort 2, we applied the
best-performing model from cohort 1 (AUC 0.734, sensitivity
65.3, specificity 72.1, Gini 0.470, log-loss 0.655, and mean
squared error 0.256, Figure 2A). Utilizing the same non-
invasive variables, the conventional statistical logistic regression
model predicted Q4-LAW-stress[measured] with an AUC value
of 0.687 (sensitivity 71.8, specificity 58.2, Figure 2B). When
we added the invasive parameter, mean LA voltage, the
conventional statistical model predicted Q4-LAW-stress[measured]

with an AUC value of 0.718 (sensitivity 65.6, specificity
68.0, Figure 2C).

LAW-Stress and the Rhythm Outcome
After AFCA
During 26.0 (12.0–52.0) months of follow-up, AF/AT recurrence
was significantly higher in the Q4-LAW-stress[measured] group
(log-rank p < 0.001, Figure 3A) and Q4-LAW-stress[AI] group
(log-rank p = 0.039, Figure 3B) in cohort 1. In the multivariate
Cox regression analysis for clinical recurrence in cohort 1,
LAW-stress[measured] [HR 2.43 (1.21–4.90), p = 0.013], non-
paroxysmal AF [HR 1.61 (1.39–1.87), p < 0.001], and female
sex [HR 1.20 (1.03–1.40), p = 0.023] were independently
associated with clinical recurrence of AF after AFCA (Table 4).
In cohort 2, the Q4-LAW-stress[AI] group consistently had
worse rhythm outcome (log-rank p < 0.001, Figure 3C). In
the multivariate Cox regression analysis in cohort 2, Q4-LAW-
stress[AI] [HR 2.19 (1.54–3.11), p < 0.001], age [HR 0.97 (0.95–
0.98), p < 0.001], AF duration [HR 1.03 (1.00–1.06), p = 0.026],
and LA dimension [HR 1.05 (1.02–1.08), p = 0.001] were
independently associated with clinical recurrence of AF after
AFCA (Supplementary Table 3).
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FIGURE 2 | Predictive performance for Q4-LAW-stress[measured] in the AI model and conventional logistic regression models. ROC curve of the best-performing AI

model (A) utilizing non-invasive parameters. ROC curve of the conventional logistic regression model utilizing the same non-invasive parameters (B) and utilizing

variables including invasive parameters (C). AI, artificial intelligence; AUC, area under the receiver operating characteristic curve; Q4-LAW-stress, highest quartile

value of left atrial wall stress; ROC, receiver operating characteristic.

FIGURE 3 | Kaplan–Meier analysis of clinical recurrence of AF after AFCA according to LAW-stress. AF-free survival according to the quartile LAW-stress[measured] in

cohort 1 (A). AF-free survival according to AI-estimated Q4-LAW-stress[AI] in cohort 1 (B) and cohort 2 (C). AF, atrial fibrillation; AFCA, atrial fibrillation catheter

ablation; AI, artificial intelligence; LAW-stress, left atrial wall stress; Q4-LAW-stress, the highest quartile value of left atrial wall stress.

In the subgroup analyses, LAW-stress[measured] was
independently associated with post-AFCA recurrence, regardless
of AF type, sex, BMI, or presence of vascular disease (Figure 4).

DISCUSSION

Main Findings
In the present study, we calculated LAW-stress[measured] using
LA pressure, dimension, and wall thickness, and evaluated its
prognostic value in patients with AF after catheter ablation.
LAW-stress[measured] was independently related to non-
paroxysmal AF, diabetes, vascular disease, BMI, E/Em, and low
mean LA voltage. We also estimated this complicated parameter
(LAW-stress[AI]) based on non-invasive common clinical
variables using AI. AF recurrence was significantly higher in
both the higher LAW-stress[measured] and LAW-stress[AI] groups.

The high LAW-stress[AI] group consistently had worse rhythm
outcomes after AFCA in the independent cohort. AI was able
to predict this complex but useful prognostic parameter using
non-invasive variables with moderate accuracy.

Role of LAW-Stress in the Mechanism of
AF
Chronic atrial stretch causes atrial dilatation and heterogeneous
changes in atrial cellular structures (Takeuchi et al., 2006).
Although the association between cardiac wall tension and
ventricular remodeling is well known, direct comparisons of
LAW-stress and atrial remolding have been very limited (Pouleur
et al., 1993; Burchfield et al., 2013). This is because the atrial
structure is complex, LA pressure measurements require an
invasive procedure, and there is no standard for measuring thin
atrial wall thickness.
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TABLE 4 | Cox regression analysis for clinical recurrence of AF in cohort 1.

Univariate Multivariate

HR (95% CI) P HR (95% CI) P

Non-paroxysmal AF 1.68 (1.48–1.90) <0.001 1.61 (1.39–1.87) <0.001

Female sex 1.13 (0.99–1.29) 0.074 1.20 (1.03–1.40) 0.023

Age 1.00 (1.00–1.01) 0.323 1.00 (0.99–1.01) 0.663

Hypertension 1.09 (0.96–1.23) 0.178

Diabetes mellitus 1.10 (0.93–1.30) 0.256

Stroke/TIA 1.16 (0.96–1.39) 0.123

Heart failure 1.24 (1.03–1.50) 0.023 1.01 (0.80–1.28) 0.916

Vascular disease 1.05 (0.87–1.26) 0.626

Body mass index 1.01 (0.99–1.03) 0.362

LV ejection fraction 0.99 (0.99–1.00) 0.021 1.00 (0.99–1.01) 0.332

E/Em > 15 1.15 (0.95–1.39) 0.145

LVEDD 1.01 (1.00–1.03) 0.064

LA wall stress (per

dyn/cm2)

4.36 (2.27–8.38) <0.001 2.43 (1.21–4.90) 0.013

AF, atrial fibrillation; CI, confidence interval; E/Em, ratio of the peak mitral flow

velocity of the early rapid filling to the early diastolic velocity of the mitral annulus;

eGFR, estimated glomerular filtration rate; HR, hazard ratio; LA, left atrial; LV,

left ventricular; LVEDD, left ventricular end diastolic dimension; TIA, transient

ischemic attack.

Therefore, we calculated this complex parameter, the
LAW-stress[measured], by using the direct LA pressure measured
during AFCA (Park et al., 2014, 2019) and CT-based mean LA

wall thickness measured using customized software (AMBER,
Laonmed, South Korea) (Kwon O. S. et al., 2020). LAW-
stress is a comprehensive parameter that reflects not only
LA size but also LA hemodynamic status and innate patient
characteristics, such as regional LA wall thickness. In this study,
LAW-stress[measured] had significant associations with chronic
atrial remodeling and left ventricular diastolic dysfunction,
such as persistent AF, low LA voltage, high BMI, and E/Em,
which have been reported to be related to poor rhythm
outcomes (Park et al., 2009; Kim I. S. et al., 2015; Baek et al.,
2016). A recent study also indicated that LA compliance at
baseline was associated with LA reverse remodeling after AFCA
(Tops et al., 2011).

LAW-Stress as a Predictive Marker of AF
Recurrence
Although AFCA is an effective but invasive rhythm control
strategy, the long-term recurrence rate is substantial,
especially in patients with longstanding persistent AF. LA
size reflects the degree of remodeling or progression of AF
and is known to be related to the risk of recurrence after
AFCA, but some studies have reported inconsistent results
(Zhuang et al., 2012; Njoku et al., 2018). This is because
LA size, which is a simple anatomical index, is affected by
various pathophysiological conditions, such as electrical
and structural remodeling, hemodynamic conditions, or

FIGURE 4 | Subgroup analysis for rhythm outcome after AFCA according to LAW-stress[measured]. LAW-stress[measured] was independently associated with

post-AFCA recurrence, regardless of AF type, sex, BMI, or associated vascular disease. BMI values were divided into two groups using a BMI of 25 kg/m2, which is

the cutoff value for being overweight. The LA dimension and LA voltage were divided by the median values. AF, atrial fibrillation; AFCA, atrial fibrillation catheter

ablation; BMI, body mass index; CI, confidence interval; DM, diabetes mellitus; HR, hazard ratio; LAW-stress, left atrial wall stress; PAF, paroxysmal atrial fibrillation;

PeAF, persistent atrial fibrillation.
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underlying pathophysiology. For example, successful rhythm
control by AFCA reduces LA size remarkably, while LA
hemodynamic unloading by mitral valve surgery also contributes
to successful AF rhythm control (John et al., 2010; Zhuang
et al., 2012; Kim et al., 2019). On the other hand, LAW-stress
is a complex and comprehensive prognostic factor with a
higher specificity for rhythm prognosis in consideration of
innate LA wall thickness, histopathological changes, and
hemodynamic burden.

Role of AI in the Prediction of High
LAW-Stress
Recently, AI has been applied to cardiovascular medicine in
various ways (Choi et al., 2017; Krittanawong et al., 2017).
AI has been tested for diagnosing cardiac diseases, and
its high prognostic predictive power in cardiac images and
electrocardiograms has already been verified (Arnar et al.,
2006; Betancur et al., 2018). We saw another potential for
AI in that it could be useful for predicting invasive and
complex parameters with a diagnostic and prognostic value
by substituting them with non-invasive common variables in
this study. Using AI, we predicted LAW-stress[AI], which,
despite having clinical value, was otherwise complex, difficult
to calculate, and included invasive parameters (Falsetti et al.,
1970; Wang et al., 2011), and validated its prognostic value in
an independent cohort. Further prospective studies with a large
sample size are warranted.

Study Limitations
There were several limitations to this study. First, as the left
atrium is not an exact sphere, the Law of Laplace may not
be definitely suited for LAW-stress. To calculate the global
LAW-stress, we assumed that there were no regional differences
of wall thickness in the left atrium. Second, although we
waited for LA pressure stabilization at least for 3 min in
each patient (Park et al., 2014, 2019; Kim T. H. et al., 2015;
Pak et al., 2021), the mechanical stunning of the LA after
cardioversion may affect the LA pressure. Third, although the
results were validated with other datasets, this study was mainly
performed using single center data. Therefore, generalization of
the results should be considered with circumspection. Fourth,
the number of patients may not be sufficient for developing
an AI model. To reduce this limitation, we selected training
and validation sets five times randomly from our cohort
data. Fifth, since the cohort 2 database did not have data
on LA pressure and LA wall thickness, validation of the AI
model for LAW-stress was performed indirectly by predicting
the rhythm outcome of the estimated LAW-stress groups.
In addition, due to the different time of enrollment and
follow-up duration between the development and independent
cohorts, differences in catheter type, ablation lesion set, and
AF recurrence between the two cohorts should be considered.
However, there were previous AI-related studies analyzing
results with data that have a time discrepancy of enrollment
in training cohort and validation cohort (Feeny et al., 2020;
Firouznia et al., 2021).

CONCLUSION

A higher LAW-stress was associated with poorer rhythm
outcomes after AFCA, and AI was able to predict this complex
but useful prognostic parameter using non-invasive parameters
with moderate accuracy.
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