LEFT CENTRALIZERS OF AN H*-ALGEBRA

GREGORY F. BACHELIS AND JAMES W. McCOY

ABSTRACT. An explicit characterization is given of the left centralizers of a proper H^* -algebra A. Each left centralizer is seen to correspond to a bounded family of bounded operators, where each operator acts on a Hilbert space associated with a minimal-closed two-sided ideal of A.

Introduction. Let A be a semisimple Banach algebra. As in [3], we call a linear operator T on A a left centralizer if

$$T(xy) = T(x)y, \qquad x, y \in A.$$

In this note we give an explicit characterization of the left centralizers on A when A is a proper H^* -algebra. Centralizers on H^* -algebras have been considered in [1], [6], and [9]. The same characterization holds when A is a dual B^* -algebra, and has been given by Malviya and Tomiuk in [7]. Our proof is similar to that in [7]. We include most details for the sake of completeness.

Use will be made of the structure theory of H^* -algebras (see e.g. [8]), which we shall review here briefly, after introducing some notation.

Given a family of Banach algebras, $\{A_{\gamma}\}_{\gamma\in\Gamma}$, and numbers $k_{\gamma} \ge 1$, we denote by $l^{p}(\{A_{\gamma}, k_{\gamma}\})$, $1 \le p < \infty$, the set of functions x on Γ with $x(\gamma) \in A_{\gamma}$ and

$$\|x\|_{p} = \left(\sum_{\gamma} k_{\gamma}^{p} \|x(\gamma)\|^{p}\right)^{1/p} < \infty.$$

We denote by $l^{\infty}(\{A_{\gamma}\})$ the set of functions x on Γ with $x(\gamma) \in A_{\gamma}$ and

$$\|x\|_{\infty} = \sup_{\gamma} \|x(\gamma)\| < \infty.$$

With the usual operations for functions and the norm $||x||_p$, the above sets become Banach algebras. We denote by $c_0(\{A_\gamma\})$ the closed subalgebra of $l^{\infty}(\{A_\gamma\})$ consisting of those functions x for which $\{\gamma: ||x(\gamma)|| \ge \varepsilon\}$ is finite for all $\varepsilon > 0$.

Given a Hilbert space H, B(H) denotes the algebra of bounded linear operators on H, endowed with the operator norm, $\|\|_{0}$; $B_{c}(H)$ denotes

© American Mathematical Society 1974

Received by the editors January 20, 1973 and, in revised form, June 27, 1973. AMS (MOS) subject classifications (1970). Primary 46H05; Secondary 47B10.

the closed two-sided ideal of compact operators. We denote by $B_s(H)$ the two-sided ideal of Hilbert-Schmidt operators, endowed with the Hilbert-Schmidt norm, $\|\|_s$. With this latter norm, $B_s(H)$ is a Banach algebra (see [8] or [11]).

If A is a proper H^* -algebra, let $\{A_{\gamma}\}_{\gamma\in\Gamma}$ denote its collection of minimalclosed two-sided ideals. For each γ , let H_{γ} be some minimal left ideal of A_{γ} . Then, under the left regular representation, A_{γ} is isomorphic to $B_s(H_{\gamma})$, and there exist $k_{\gamma} \ge 1$ such that A is isometrically isomorphic to $l^2(\{B_s(H_{\gamma}), k_{\gamma}\})$. We denote this isomorphism by $a \rightarrow \hat{a}$. For $S \subseteq A$, let $\hat{S} = \{\hat{a} : a \in S\}$. Then $\hat{A}_{\gamma} = \{x \in l^2(\{B_s(H_{\beta}), k_{\beta}\}) : x(\beta) = 0, \beta \neq \gamma\}$.

The main result. If A is a semisimple Banach algebra, we denote the left centralizers on A by $\mathcal{L}(A)$. A theorem of Johnson and Sinclair states that any left centralizer on A is continuous [4]. When endowed with the operator norm, $\mathcal{L}(A)$ is a Banach algebra. We denote this norm simply by $\| \|$. When A is a left ideal in a Banach algebra B, then, for $y \in B$, L_y is the left multiplication operator defined on $A: L_y x = yx, x \in A$. We note that $y \rightarrow L_y$ is a homomorphism of B into $\mathcal{L}(A)$. Finally, we denote by $\mathcal{C}(A)$ the closure in $\mathcal{L}(A)$ of $\{L_x: x \in A\}$.

Our characterization is as follows:

THEOREM. Let A be a proper H^* -algebra, with $\hat{A} = l^2(\{B_s(H_\gamma), k_\gamma\})$. For $y \in l^{\infty}(\{B(H_\gamma)\})$, define T_y on A by

$$(T_y x)^{\hat{}} = L_y \hat{x}, \qquad x \in A.$$

Then (i) $y \to T_y$ is an isometric isomorphism of $l^{\infty}(\{B(H_{\gamma})\})$ and $\mathcal{L}(A)$ and (ii) under this isomorphism, $c_0(\{B_c(H_{\gamma})\})$ corresponds to $\mathcal{C}(A)$.

The above characterization when A is a dual B^* -algebra is given in the proof of Theorem 3.1 of [7]. (Strictly speaking, the characterization in [7] is given for right centralizers.)

Before proceeding to the proof of the theorem, we establish the following lemma.

LEMMA. (Cf. [3, Theorem 18].) Let H be a Hilbert space. Then $y \rightarrow L_y$ is an isometric isomorphism of B(H) and $\mathcal{L}(B_s(H))$.

PROOF. If $y \in B(H)$, $x \in B_s(H)$, then $||yx||_s \leq ||y||_0 ||x||_s$, so $y \to L_y$ is norm decreasing.

For η , $\xi \in H$, define the operator $\eta \otimes \xi$ on H by $\eta \otimes \xi(\mu) = \langle \mu, \xi \rangle \eta$, where \langle , \rangle denotes the inner product in H. Then $\|\eta \otimes \xi\|_s = \|\eta\| \|\xi\|$. Choose $\xi \in H$ with $\|\xi\| = 1$.

Now, let $T \in \mathscr{L}(B_s(H))$. Define y on H by

$$y(\eta) = T(\eta \otimes \xi)(\xi), \quad \eta \in H.$$

Then $y \in B(H)$ and $||y||_0 \leq ||T||$. If $\eta \in H$, $z \in B_s(H)$, then

$$L_{y}(z)(\eta) = y(z(\eta)) = T(z(\eta) \otimes \xi)(\xi)$$

= $T(z(\eta \otimes \xi))(\xi) = T(z)(\eta \otimes \xi)(\xi)$
= $T(z)(\eta),$

so that $T = L_y$. Q.E.D.

PROOF OF THEOREM. In view of the isomorphism $a \rightarrow \hat{a}$, it is sufficient to show that

(i)' $y \rightarrow L_y$ is an isometric isomorphism of $l^{\infty}(\{B(H_y)\})$ and $\mathscr{L}(\hat{A})$, and

(ii)' under this isomorphism $c_0(\{B_c(H_{\gamma})\})$ corresponds to $\mathscr{C}(\hat{A})$.

(i)' First suppose that $y \in l^{\infty}(\{B(H_{\gamma})\})$. If $x \in \hat{A}$, then

$$yx(\gamma) = y(\gamma)x(\gamma)$$

and

$$\|y(\gamma)x(\gamma)\|_{s} \leq \|y(\gamma)\|_{0} \|x(\gamma)\|_{s}.$$

Hence $||yx||_2^2 = \sum_{\gamma} k_{\gamma}^2 ||y(\gamma)x(\gamma)||_s^2 \leq ||y||_{\infty}^2 ||x||_2^2$. Thus \hat{A} is a left ideal in $l^{\infty}(\{B(H_{\gamma})\})$ and $y \rightarrow L_y$ is a norm decreasing homomorphism of $l^{\infty}(\{B(H_{\gamma})\})$ into $\mathscr{L}(\hat{A})$.

It remains to show that $y \to L_y$ is an isometry onto $\mathscr{L}(\hat{A})$. To this end, suppose that $T \in \mathscr{L}(\hat{A})$. For $\gamma \in \Gamma$ let $T_{\gamma} = T | \hat{A}_{\gamma}$. Since \hat{A}_{γ}^2 is dense in \hat{A}_{γ} and $T(\hat{A}_{\gamma}^2) \subset \hat{A}_{\gamma}$, we have that $T_{\gamma} \in \mathscr{L}(\hat{A}_{\gamma})$. Now $||x||_2 = k_{\gamma} ||x(\gamma)||_s$, $x \in \hat{A}_{\gamma}$. Thus T_{γ} induces an element $\tilde{T}_{\gamma} \in \mathscr{L}(B_s(H_{\gamma}))$ given by $\tilde{T}_{\gamma}(x(\gamma)) = (T_{\gamma}x)(\gamma)$, $x \in \hat{A}_{\gamma}$, and $||T_{\gamma}|| = ||\tilde{T}_{\gamma}||$.

By the lemma, there exists $y(\gamma) \in B(H_{\gamma})$ with $\tilde{T}_{\gamma} = L_{y(\gamma)}$ and

$$\|y(\gamma)\|_{0} = \|\widetilde{T}_{\gamma}\| = \|T_{\gamma}\| \leq \|T\|, \qquad \gamma \in \Gamma.$$

Thus $y \in l^{\infty}(\{B(H_{\gamma})\})$ and $||y||_{\infty} \leq ||T||$.

If $x \in \hat{A}$, $\gamma \in \Gamma$, then

$$(L_{y}x)(\gamma) = y(\gamma)x(\gamma) = \tilde{T}_{\gamma}(x(\gamma)) = (T_{\gamma}x)(\gamma) = (Tx)(\gamma),$$

so $L_y = T$.

(ii)' If $x \in \hat{A}$, then $x \in c_0(\{B_s(H_\gamma)\}) \subset c_0(\{B_c(H_\gamma)\})$, and $c_0(\{B_c(H_\gamma)\})$ is closed in $l^{\infty}(\{B(H_\gamma)\})$. Now $\mathscr{C}(\hat{A})$ is the closure of $\{L_x: x \in \hat{A}\}$ in $\mathscr{L}(\hat{A})$, so every element of $\mathscr{C}(\hat{A})$ corresponds to an element of $c_0(\{B_c(H_\gamma)\})$.

Conversely, if $y \in c_0(\{B_c(H_\gamma)\})$, we want to show $L_y \in \mathscr{C}(\hat{A})$. Since the finitely supported functions are dense in $c_0(\{B_c(H_\gamma)\})$, it is enough to show, for each γ , that $L_y \in \mathscr{C}(\hat{A})$ when $y(\gamma) \in B_c(H_\gamma)$ and $y(\gamma')=0$, $\gamma' \neq \gamma$. But this is equivalent to showing that $L_{y(\gamma)} \in \mathscr{C}(B_s(H_\gamma))$ when $y(\gamma) \in B_c(H_\gamma)$, and this latter fact is true, using the lemma, since $B_s(H_\gamma)$ is dense in $B_c(H_\gamma)$. Q.E.D.

Conclusion. We conclude with several remarks. In (I)-(IV) we assume that A is a proper H*-algebra, with $\hat{A} = l^2(\{B_s(H_{\gamma}), k_{\gamma}\})$.

(I) When \hat{G} is a compact group and $A = L^2(G)$, with convolution for multiplication, then each H_γ is finite dimensional, $a \rightarrow \hat{a}$ is simply the Fourier transform, and $k_\gamma = d_\gamma^{1/2}$, where d_γ is the dimension of H_γ . As in [2], one calls a function y on Γ , with $y(\gamma) \in B(H_\gamma)$, a left (A, A) multiplier if $y\hat{x} \in \hat{A}$, $x \in A$. In this case it is known that $T \in \mathscr{L}(A)$ if and only if $(Tx)^* = y\hat{x}$ for some left (A, A) multiplier y, and that the left (A, A) multipliers coincide with $l^{\infty}(\{B(H_\gamma)\})$ [2, Theorem 35.4].

(II) If each H_{γ} is finite dimensional, then $\mathscr{C}(A)$ coincides with the set of compact left centralizers (cf. [1, Theorem 3]). Conversely, if each $T \in \mathscr{C}(A)$ is compact, then each H_{γ} is finite dimensional by [5, Lemma 4]. (III) Let $\mathscr{M}(A)$ denote the set of $T \in \mathscr{L}(A)$ such that

$$T(xy) = xT(y) = T(x)y, \qquad x, y \in A.$$

If $T \in \mathcal{M}(A)$, $\gamma \in \Gamma$, then, in the notation of the above proof, $\tilde{T}_{\gamma} = L_{y(\gamma)}$, where $y(\gamma) \in B(H_{\gamma})$ and $y(\gamma)$ commutes with every element of $B_s(H_{\gamma})$. Hence $y(\gamma)$ is a multiple of the identity on H_{γ} by [8, Lemma 2.4.4]. Thus $\mathcal{M}(A)$ corresponds to $l^{\infty}(\Gamma)$ (which is [1, Theorem 2]), and $\mathcal{M}(A) \cap \mathcal{C}(A)$ to $c_0(\Gamma)$.

(IV) Saworotnow and Friedell have defined the trace class of A, $\tau(A)$ [10]. A theorem of theirs [unpublished] states that $\tau(A)$ is isometrically isomorphic to $l^1(\{B_t(H_\gamma), k_\gamma\})$, where $B_t(H_\gamma)$ denotes the algebra of operators of trace class, endowed with the trace class norm.

For a Banach space X, let X^* denote its dual space. Our characterization enables us to give an alternate proof of the theorems of Saworotnow [9] that $\mathscr{C}(A)^*$ is isometrically isomorphic to $\tau(A)$ and $\tau(A)^*$ is isometrically isomorphic to $\mathscr{L}(A)$ (cf. [7, proof of Theorem 3.1]):

Since $B_c(H_\gamma)^*$ is isometrically isomorphic to $B_t(H_\gamma)$ and $B_t(H_\gamma)^*$ is isometrically isomorphic to $B(H_\gamma)$ [11], one can show that $c_0(\{B_c(H_\gamma)\})^*$ is isometrically isomorphic to $l^1(\{B_t(H_\gamma), k_\gamma\})$ and that $l^1(\{B_t(H_\gamma), k_\gamma\})^*$ is isometrically isomorphic to $l^{\infty}(\{B(H_\gamma)\})$. Using the identification of $\mathscr{C}(A)$ with $c_0(\{B_c(H_\gamma)\})$, $\tau(A)$ with $l^1(\{B_t(H_\gamma), k_\gamma\})$, and $\mathscr{L}(A)$ with $l^{\infty}(\{B(H_\gamma)\})$, one thus obtains Saworotnow's results.

(V) The lemma admits the following generalization: Suppose X is a Banach space and I is a left ideal of B(X) which is a Banach algebra in some norm dominating the operator norm. Then $y \rightarrow L_y$ is a bicontinuous isomorphism of B(X) onto $\mathcal{L}(I)$.

One first notes that, for some $f \in X^*$ with ||f|| = 1, I must contain the minimal left ideal $J = \{\eta \otimes f : \eta \in X\}$. Now $||\eta \otimes f||_I \ge ||\eta \otimes f||_0 = ||\eta||$, so it follows that $\eta \otimes f \leftrightarrow \eta$ gives a linear homeomorphism of J and X. Choose $\xi \in X$ with $f(\xi) = 1$. Then $y(\eta) = T(\eta \otimes f)(\xi)$, $\eta \in X$, defines a bounded linear operator on X, and, as in the proof of the lemma, one shows that $T=L_y$. The mapping $y \rightarrow L_y$ is then a continuous isomorphism of B(X) onto $\mathcal{L}(I)$, and hence bicontinuous.

(VI) Suppose that A is a semisimple annihilator Banach algebra, with $\{A_{\gamma}\}_{\gamma\in\Gamma}$ its collection of minimal closed two-sided ideals. If X_{γ} is a minimal left ideal of A_{γ} , let \hat{A}_{γ} denote the image of A_{γ} in $B(X_{\gamma})$ under the left regular representation. The norm in \hat{A}_{γ} transported from A_{γ} dominates the operator norm. If \hat{A}_{γ} is a left ideal in $B(X_{\gamma})$, then, using (V), one has that $\mathscr{L}(A_{\gamma})$ is bicontinuously isomorphic to $B(X_{\gamma})$.

If, in addition, A can be represented as $l^p(\{A_{\gamma}\})$, $1 \leq p < \infty$, or $c_0(\{A_{\gamma}\})$, and each \hat{A}_{γ} is a norm left ideal in $B(X_{\gamma})$ (i.e., the norm in \hat{A}_{γ} , $\| \|_{\gamma}$, is a cross norm and $\|y\hat{x}\|_{\gamma} \leq \|y\|_0 \|\hat{x}\|_{\gamma}$ for $y \in B(X_{\gamma})$, $x \in A_{\gamma}$), then one can show that $\mathscr{L}(A)$ is isometrically isomorphic to $l^{\infty}(\{B(X_{\gamma})\})$. The proof is virtually the same as that of the theorem.

References

1. W. M. Ching and J. S. W. Wong, *Multipliers and H*-algebras*, Pacific J. Math. 22 (1967), 387-395. MR 35 #5949.

2. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups; analysis on locally compact Abelian groups, Die Grundlehren der Math. Wissenschaften, Band 152, Springer-Verlag, New York and Berlin, 1970. MR 41 #7378.

3. B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. (3) 14 (1964), 299-320. MR 28 #2450.

4. B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067–1073. MR 39 #776.

5. I. Kaplansky, Dual rings, Ann. of Math. (2) 49 (1948), 689-701. MR 10, 7.

6. C. N. Kellogg, Centralizers and H*-algebras, Pacific J. Math. 17 (1966), 121-129. MR 33 #1749.

7. B. D. Malviya and B. J. Tomiuk, Multiplier operators on B*-algebras, Proc. Amer. Math. Soc. 31 (1972), 505-510.

8. C. E. Rickart, *General theory of Banach algebras*, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #5903.

9. P. P. Saworotnow, Trace class and centralizers of an H*-algebra, Proc. Amer. Math. Soc. 26 (1970), 101-104. MR 42 #2305.

10. P. P. Saworotnow and J. C. Friedell, *Trace class for an arbitrary H*-algebra*, Proc. Amer. Math. Soc. 26 (1970), 95-100. MR 42 #2304.

11. R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Math. und ihrer Grenzgebiete, Heft 27, Springer-Verlag, Berlin, 1960. MR 22 #9878.

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202 (Current address of G. F. Bachelis)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT 06268

Current address (J. W. McCoy): Department of Mathematics, Wagner College, Staten Island, New York 10301