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Abstract

How are oil revenues shared throughout society? We combine high-resolution
geo-coded data on night-time lights and population to construct global measures of
rural poverty from 2000-2013. We find that oil booms, due either to high prices or
new discoveries, increase light intensity and GDP. However, the increase in output is
limited to cities and towns, with no evidence that it benefits the rural poor. We also
find that while urbanization is occurring throughout the developing world, there is
no evidence that it is hastened by oil wealth.
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1 Introduction

The view that oil and other natural resources “curse” the countries that own them is widely
held in academic and policy circles. It comes from early work employing cross-country
regressions (Sachs and Warner, 1995; 2001; survey by van der Ploeg, 2011). More recent
studies have challenged this view (Brunnschweiler and Bulte, 2008; Alexeev and Conrad,
2009; Smith, 2015; James, 2015). Most of this research is concerned with oil’s impact on
aggregate economic activity. However, if we are concerned with living standards, then
it is important to look beyond country-level measures to study how oil income is shared
throughout society. This has largely been ignored by the literature. We aim to fill that
gap.

The challenge with studying inequality and poverty in developing countries is mostly one
of data. According to the World Bank’s definition, 76% of the world’s poor live in rural
areas (World Bank, 2013). Data on income and wealth in rural areas is collected infre-
quently, if at all. When the data is collected, it is rarely comparable across countries.
The global standard for poverty data comes from the World Bank, which has done a re-
markable job collecting and aggregating a huge number of detailed surveys and national
accounts (Chen and Ravallion, 2010). However the coverage of this data remains below
30% of countries in any given year (see Figure 1.1), making cross-country causal ana-
lysis and urban/rural comparisons difficult. Furthermore, in the words of Ross (2007),
“Surprisingly little is known about the relationship between mineral wealth and vertical
income inequality... data on income inequality are missing for most of the world’s oil-
dependent countries. In fact... there is a strong negative relationship between a country’s
dependence on mineral rents and the amount of data we have about its inequality levels”.

This paper presents a global panel study of inequality and extreme poverty rates by con-
structing a novel measure of rural poverty. We do this using two detailed and geographic-
ally disaggregated datasets, on night-time lights and population (see Figure 1.2). The first
records the amount of light emitted at night around the globe at a 1km2 resolution, which
is a useful geographic proxy for economic activity (Henderson et al., 2011; 2012). This
has been used in studies covering institutions (Michalopoulos and Papaioannou, 2013),
political favoritism (Hodler and Raschky, 2014), and infrastructure investment (Jedwab
and Moradi, 2015; Jedwab et al., 2015) amongst others. The second is from LandScan and
uses several spatial data inputs to measure population, also at a 1km2 resolution. After
aggregating the data to 10km2, our final sample includes information from 1.04 million
cells each year for 2000-2013. The LandScan data has not received much attention in
economics research, but it reveals an important point: that many people live in areas not
illuminated at night (see for example Figure 1.3). They are the rural poor.

Our poverty measure is constructed by recording the population share of each country
living in unlit rural areas. While this is a somewhat crude proxy for rural poverty, it
correlates well with World Bank poverty estimates (shown in Section 3.1). As an altern-
ative we also create a calibrated poverty rate that uses the relationship between lights
and poverty rates at the national level to assign poverty rates at local levels (adapting
the work of Elvidge et al., 2009). This yields what is to our knowledge the first global
balanced panel data set of severe poverty at the national (and sub-national) level.

Why is illumination related to poverty? Illumination is essentially a measure of electri-
fication. Poverty is the state of being unable to meet one’s basic needs. As we move
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Figure 1.1: Share of countries with data available on people living below US$2 per day
(World Bank WDI).

up Maslow’s hierarchy from food and shelter we soon need electrification. Not only does
it increase productivity during the working day, it extends the day, improving access to
healthcare, safety and education. Thus, while illumination is only one element of the
poor’s consumption bundle, there are reasons for it to be an accurate proxy for poverty.

There are two mechanisms for improving rural illumination: public or private investment.
Public investment involves connecting rural areas to a wider electrical grid, or providing
off-grid electricity through diesel, solar or hydro generators. Private investment is mainly
spent on off-grid solutions. The path from typically government-owned oil revenues to
illumination therefore depends heavily on policy. If the government prioritises rural over
urban infrastructure then rural illumination will improve. If the government instead
provides direct cash transfers then private investment might achieve the same, while tax
cuts would instead benefit wealthier urban areas. So, by investigating how oil booms
affect the rural poor we are by proxy studying government spending priorities in oil rich
countries.

To start we outline a few stylised facts about rural poverty and urbanisation around the
world. First, GDP is steadily rising in both oil dependent and non-dependent countries.
Second, the share of people living in unlit rural areas is steadily falling. This occurs
because both lights are being switched on and people are moving to towns and cities.

We then assess how oil booms affect the rural poor and to do so we need a well-identified
oil shock. We approach this in two ways, covering both prices and quantities. The first
uses the sharp rise in oil prices after 2003 as an exogenous, demand-driven shock to
oil revenues. According to Kilian (2009), “the surge in the price of oil after 2003 was
driven primarily by the cumulative effects of positive global demand shocks”. However,
illumination during this period might also be due to higher global demand for all goods
which could possibly affect oil-dependent countries differentially. To overcome this, and
to distinguish between a price and a production shock, we also use data on exogenous
giant oil and gas field discoveries (which has also been used as a well-identified income
shock by Lei and Michaels, 2014; Arezki et al., 2015; Smith, 2015 and Wills, 2015).

Our analysis offers three main results. First, the decade of high oil prices from 2003
saw night-time illumination grow significantly faster in oil dependent countries than non-
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ii.

Figure 1.2: i) Night-time lights and ii) population around the world.

dependent ones. By the end of the decade the price boom was responsible for approx-
imately a .29 log point increase in total illumination, with similar effects for GDP. Fur-
thermore, illumination grew significantly in countries that had made giant oil discoveries,
starting with a six year lag (consistent with Arezki et al., 2015). We find that an oil
discovery with a net present value worth 100% of GDP increases illumination by .07 log
points after ten years.

Second, economic growth from oil booms is not shared with the rural poor. While rural
poverty is falling around the world, this is not hastened by oil booms. Price booms have
an insignificant effect on the rural poverty rates of oil dependent countries, while giant
discoveries cause a small (1 percentage point) but significant fall in rural poverty after
ten years. For both the period of high prices and the giant oil discoveries, the entire
additional rise in illumination occurred in towns and cities where lights already existed.
There is no evidence of unlit rural areas becoming illuminated at a higher rate in either
case. Declining rural poverty after a giant discovery is due to the population of unlit
rural areas falling, and that of towns rising, most likely due to migration. This invites
a different interpretation to that of Aragon and Rud (2013), who find that the benefits
from a Peruvian gold mine are shared evenly across the income distribution, though they
focus only on areas close to mines.

Third, oil booms do not change the rate of urbanization, countering the view that natural
resources promote urbanization without industrialization (Gollin et al., 2013; Cavalcanti
et al., 2014). To determine why total illumination increases but poverty remains unaf-
fected, we divide our data into three areas: cities (or urban areas), towns and unlit but
inhabited rural areas. Consistent with Gollin et al (2013), non-OECD countries with oil
have higher levels of urbanization than those without. Urbanization also increases for
both groups during the sample period. However, we find no evidence that either the rise
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in oil prices or giant oil discoveries hastened the pace of urbanization. This differs from
the work by Gollin et al. (2013) because we explicitly identify exogenous oil shocks. The
oil price shock also did not alter population shares in unlit rural areas or towns, while oil
discoveries encourage some relocation from the former to the latter.

To further understand these main results, we zoom in to the grid cell level and attempt to
identify the mechanisms behind falling poverty around the world. Estimating the hazard
rate of unlit cells switching on during our sample, we find that cells are more likely to
switch on if they are adjacent to other lit cells (and therefore the existing grid), are
near the capital city or have higher population density. This is true for both dependent
and non-dependent countries. Furthermore, cells in countries that have benefited from
higher overall growth in illumination in the past are more likely to switch on in the
present. However, the effect of past growth on illumination is significantly dampened in
oil-dependent countries, further implying that the extra growth from oil shocks does not
benefit the poor.

This paper contributes to a number of strands of literature. The first is on the measure-
ment of income, poverty and inequality, which has a long and distinguished history (for
example Kuznets 1937, 1941, 1953; Stone 1959, 1961; Atkinson, 1970; Deaton 1980, 1997).
Much of this combines aggregate national accounts data with household survey data to ap-
proximate income distributions (Sala-i-Martin, 2006; Pinkovskiy and Sala-i-Martin, 2009;
Chen and Ravallion, 2010). There is a conflict between household and aggregate meas-
ures of income (Ravallion, 2003), partly because aggregate measures exclude services that
are not exchanged in a market (Deaton, 2005). Pinkovskiy and Sala-i-Martin (2014) use
night-time lights data to reconcile this conflict, finding in favour of aggregate measures.
The advantage of surveys is that they offer detailed, targeted measures of poverty that
take into account consumption bundles and price levels, quality (Deaton, 1988), calor-
ific demands (Subramanian and Deaton, 1996), life expectancy (Pfeffermann and Webb,
1983), within-household distributions (Deaton and Muellbauer, 1986) and a host of other
factors. Compared to this we offer a relatively crude measure of poverty, though it covers
the entire world, at fine resolution and regular intervals, and is relatively cheap to collect.

The second is the literature on how growth generally affects poverty and inequality.
Kuznets (1955) famously observed that inequality widened as workers moved from ag-
riculture to industry, up to a point where the trend reversed. Recent groundbreaking
work on top income shares shows that they peaked in the inter-war years, fell until the
1970s-90s, and started rising again since (see survey by Atkinson et al., 2009). They
were initially dominated by capital income, but in recent years labour income dominates.
These studies focus only on the top of the income distribution, but this is correlated
with relative poverty at the bottom (Leigh, 2009). Collectively this body of work uses
up to three centuries of top income data, covering over 20 mostly developed countries.
In contrast our study focuses directly on the bottom of the income distribution. We are
limited by satellite data availability to 2000-2013, though we cover the whole world at
high resolution.

The third is the resource curse. This literature has generally been concerned with how
resource wealth affects aggregate income and growth. Little has been done on the dis-
tribution of income, poverty and inequality. One of the few studies which does notes
that “the empirical literature on the inequality and resource boom connection is relat-
ively thin” (Bhattacharyya and Williamson, 2013). This study analyses the effect of
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Figure 1.3: i) Night-time lights and ii) population for the region surrounding Sokoto in
north-west Nigeria.

commodity price shocks on top income shares in Australia, building on data collected by
Atkinson and Leigh (2007). They find that the richest benefit disproportionately from
resource booms, but not agricultural booms, and attribute this to the initial distribution
of assets. Resource booms have also been found to increase inequality using cross-section
data (Gylfason and Zoega, 2003), a 90 country panel (Goderis and Malone, 2011) and
inter-regional variation in Russia (Buccellato and Mickiewicz, 2009).

The paper proceeds as follows. Section 2 introduces our data and Section 3 the meth-
odology. Section 4 presents and discusses our findings and a range of robustness checks.
Section 5 concludes.

2 Data

2.1 Night-time lights

Satellites from the Defense Meteorological Satellite Program’s Operational Linescan Sys-
tem (DMSP-OLS) have recorded average annual night-time light intensity around the
world since 1992. The data is provided at a resolution of 30x30 arcseconds, or about 1
square kilometer near the equator, and ranges from 0 to 63. The data is constructed by
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Figure 2.1: PPP-adjusted real GDP vs Night-time lights (in logs)

overlaying all daily images over the course of a year, discarding those that are obfuscated
by cloud cover, lightning, aurora, etc. for a given pixel.

The pioneering work of Henderson et al (2012) established a strong link between country-
level GDP growth and growth in mean light intensity. Doll et al (2006) and Michalopoulos
& Papaioannou (2014) have also performed cross-validation work for GDP levels. While
we refer to those papers for a more detailed analysis, in Figure 2.1 we plot the log of the
sum of light readings by country against the log of PPP-adjusted real GDP (expenditure
based) in 2003. The corresponding regression yields an adjusted r-squared of .82. Given
its high resolution, lights data has been used in several studies for sub-national analysis
of GDP levels and growth rates. While this study is primarily at the country level, we
leverage the fine spatial nature of the data to construct our poverty measures (described
in Section 3.1) by combining it with spatial population data and identifying populated
areas with no light activity.

Lights data are subject to a few confounding issues important to this study. First, “top-
coding” refers to pixels assigned a max-value of 63, such that we cannot distinguish levels
of economic activity above this value, and occurs in especially dense or economically
active areas. According to Michalopoulos & Papaioannou (2014) this problem is far more
prevalent in developed countries, but it does create difficulties in estimating urban poverty
rates (see Section 3.1). Lights data also include significant luminosity readings resulting
from gas flares, which do not reflect comparable economic activity. This is an especially
important issue for this paper since our treatment group mostly includes significant gas-
producing countries. While this problem is mitigated to the extent that the flares are
similar over time by the inclusion of country fixed effects, in all analysis we drop grid cells
that include gas flare activity according to spatial data provided by the Earth Observation
Group (which also oversees the lights data).

2.2 Population Data

The Oak Ridge National Laboratory produces a data set called LandScan covering each
year from 2000-2013, which provides spatial population counts at a 30x30 arcsecond resol-
ution.1 This is similar to NASA’s Socioeconomic Data and Applications Center (SEDAC),

1This is the same resolution as the lights data, although the pixels are not aligned. The grid cells
described in Section 3.1 are aligned with the lights rasters but not the population rasters. The Zonal
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Figure 2.2: Annual Brent crude oil prices (1990-2013).

which also measures population at a 30x30 arcsecond resolution and has been used by
Dell (2010) and Alesina et al. (2015) amongst others. However, the SEDAC data only
covers the years 1990, 1995 and 2000. LandScan provides estimates of “ambient” popu-
lation, which is a count for a given area over a 24-hour average, rather than just where
people sleep. The data are generated by distributing known national and sub-national
population counts throughout the grid according to a likelihood model that uses inputs
including land cover data, roads data, and high resolution satellite imagery, among other
sources.2

2.3 Urban and Rural Classifications

SEDAC also provides an “Urban Extents Grid”, which uses 1995 population count estim-
ates to classify each square of a 30x30 arcsecond global grid as either urban or non-urban.
The classification is based on contiguous lighted squares (as of 1995) and squares known
to hold at least 5000 people.

2.4 Oil Prices and Discoveries

We study two types of oil shocks: to prices and to the quantity of ultimately recoverable
reserves. The oil price shock exploits the period of high prices from 2003 and 2013, and
its differential effect on oil dependent and non-dependent countries (see Figure 2.2).

The classification of oil dependence comes from Baunsgaard et al (2012), which categorises
countries as resource-dependent based on resource exports and revenues as a percentage
of GDP for the years 2006-2010. We include countries that are classified as resource-
dependent and where oil and/or gas is listed as the main commodity in Appendix 1 of
Baunsgaard et al (2012). See Appendix A for the list of dependent countries.3

Statistics tool used in ArcGIS to find grid cell light and population counts addresses this by internally
resampling the raster files so that they are aligned.

2For further detail http://web.ornl.gov/sci/landscan/landscan_documentation.shtml)
3As mentioned below in Section 3.4, Iraq and Syria are dependent countries that are excluded from

this study, since both experienced devastating wars during the sample period.
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Figure 2.3: Count of giant oil discoveries by region included in our sample (excluding
OECD countries).

The oil quantity shock uses data on giant oil discoveries from the American Association
of Petroleum Geologists. This is an updated version of the dataset by Horn (2003, 2004),
which builds on that of Halbouty et al. (1970), and it has been used in studies by Lei
and Michaels (2014), and Arezki et al. (2015) amongst others. The data records the field
name, location, date of discovery, type, and estimates of ultimate recoverable reserves
- which must exceed 500 million barrels of oil equivalent (MMOBE) to be considered a
“giant” discovery. In total the data covers 1019 discoveries, 245 of which occur between
1990-2013. We take discoveries as far back as 1990 to study their effect on lights up to 10
years after the discovery (as population data begins in 2000). Dropping the OECD and
aggregating multiple discoveries for particular countries in a given year leaves 139 unique
discovery-years in our sample (see Figure 2.3).

We account for the size of each discovery by constructing a measure of its Net Present
Value (NPV ) divided by GDP (following Arezki et al., 2015),

NPVi,t =

∑J
j=5 qi,t+joilpricet(1 + ri)

j

GDPi,t

× 100

where the NPV of country i at the time of discovery, t is the discounted sum of total rev-
enue based on an approximate production profile, qi,t+j, from the fifth year after discovery
to the exhaustion date, J , valued at the oil price at the time of discovery. Revenue is
discounted using country-specific, risk-adjusted discount rates to account for differences
in political risk. This assumes a riskless rate of 5 per cent, and predicted premia based
on the past relationship between bond spreads (41 countries in the Emerging Markets
Bond Index) and political risk (133 countries in the International Country Risk Guide),
to account for the limited data on bond spreads. For more detail see Arezki et al. (2015).
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Figure 3.1: Less than $2 per day percentage (World Bank) vs 2011 Unlit rural percentage

3 Empirical Methodology

3.1 Constructing Poverty Measures

We construct and analyze a novel measure for rural poverty by combining the spatial
lights and population data. For robustness we also use a second, calibrated measure.
Both calculate poverty at a local level and can then be aggregated to a national level.

The first step is to create a global grid consisting of 10x10 pixel cells, which is approxim-
ately 10km x 10km near the equator. Cells are divided at the border so no cell occupies
more than one country. Therefore not all cells are 10km x 10km, though the vast majority
are.

Our primary measure is the unlit rural percentage. It is constructed by summing the
population that that live in cells with zero light readings anywhere in the cell, and dividing
by the total country population (excluding those cells dropped due to gas flare activity).
We reason that people in cells containing moderate population density with no light
activity, indicating little economic activity beyond agriculture, are among the extreme
poor. Of course, there are presumably cells with non-poor residents with sufficiently
low population density to render lights readings of zero. By definition these cells will
contribute little to the overall unlit percentage.

Figure 3.1 plots the unlit rural percentage by country in 2011 against the World Bank’s
most updated estimates of percentage of people living on less than $2 per day.4 While
there are some countries for which the unlit percentage is a poor predictor,5 there is a
strong correlation, and the corresponding regression yields an adjusted r-squared of .74.

We also construct a second poverty measure from a calibration procedure adapted from
Elvidge et al. (2009). That paper constructed a global map of poverty for the year 2008,

4These rates are not all from 2011-they are taken in various years. We use only World Bank estimates
that have been made since 2005.

5Figure 3.1 shows a cluster of countries in the top left of the graph - i.e. countries with low unlit rural
percentages and high World Bank poverty estimates. These six countries are Indonesia, the Phillipines,
Swaziland, Bangladesh, India and Pakistan. With the exception of Swaziland, these are high-density poor
countries with presumably high rates of urban poverty, which the unlit rural percentage does not capture.
The calibrated poverty measure described below performs much better for these particular countries.
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but did not study its determinants as we do. In short, this procedure relates observed
lights per capita to world bank poverty rate estimates at the country level, then applies
this relation to the grid cell level to obtain a poverty percentage estimate for each cell,
then making various adjustments to address issues with the spatial data. Since we use
the World Bank’s measure of people living on less than $2 per day, we end up with an
estimate of this at the cell level, which of course can then be re-aggregated to a national
or sub-national level.

The calibration procedure works as follows: for a given year, we calculate the ratio of total
lights to total population for each country that has a World Bank poverty rate estimate
made in or after 2005 (103 countries). We then rank the countries and assign them to a
decile. We then regress the World Bank poverty rate, which is the percentage of people
living on less than $2 per day, on the indicator for each decile, effectively calculating the
mean World Bank poverty rate for each decile.6 We then apply these regression estimates
to the cell level based on each cell’s lights per capita to obtain a cell-level poverty rate
estimate.

We then make adjustments to certain types of cells. First, because the calibration pro-
cedure does not apply to cells with zero lights, we make the assumption that 90% of the
population of such cells is living on under $2 per day. This is higher than the lowest
decile (which is 76% in 2011), but specifying 100% as in Elvidge et al (2009) consistently
overestimates poverty in very poor countries. Second, we specify that poverty rates are
zero if the average light reading in a cell exceeds 50 (recall that the max value for a pixel
is 63). In such cells the lights per capita value can be significantly biased downwards
because of top-coding as discussed in the previous section, and while top-coding is rare
in developing countries in terms of pixel percentage, it occurs in densely populated areas
so can be significant in terms of population affected. Hence without this adjustment we
consistently overestimate poverty in highly urbanized countries. Third, since the previous
step does not completely solve the problem of overestimating poverty in more urbanized
countries, we specify that for cells coded as urban the final poverty rate is 60% of the rate
specified by the calibration procedure. Again, this is likely necessary due to top-coding,
even if the problem is not as severe as in the case of mean luminosity exceeding 50.

Following all these steps we have a cell-level poverty measure we call the Calibrated
Poverty Rate (CPR). While the adjustments described above involve somewhat arbitrary
assumptions about poverty rates, they yield a close relationship between World Bank
poverty rates and national CPR, as shown in Figure 3.2. The regression line is close to
the ideal of a 45 degree line passing through the origin, and the adjusted r-squared is .86.

Because the CPR is more accurate but involves arbitrary assumptions, particularly in
urban areas, we use both measures to estimate the effects of oil shocks, with a preference
for the unlit rural percentage due to its simplicity, transparency and intuitiveness.

3.2 Urban and Rural Classifications

Since we are interested in the differential effects of oil booms on cities, towns and rural
areas, we need to classify each cell as such. We base our classification on SEDAC’s Urban

6The non-parametric decile-based approach was found to perform better than a linear specification as
used in Elvidge et al (2009).
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Figure 3.2: Less than $2 per day percentage (World Bank) vs 2011 Calibrated Poverty
Rate (CPR)

Extents Grid, which as described above classifies each pixel as urban or non-urban. Since
cells will then contain a mix of urban and non-urban pixels, we must specify a cutoff to be
considered an urban cell. We classify a cell as urban if at least 33% of the pixels contained
are urban. While necessarily arbitrary, this definition yields a global urban population
very close to that estimated by the World Bank as of 2000. Cities are then defined as
urban cells, towns as non-urban cells with lights, and unlit rural areas as non-urban cells
without lights but with non-zero population.

3.3 Oil Prices and Discoveries

To study the effect of oil booms on rural poverty we exploit exogenous variation in oil
prices and giant oil discoveries. Kilian (2009) argues that the increase in oil prices from
2003 was almost exclusively due to an exogenous global demand shock. This is done in a
VAR framework using a structural decomposition to identify shocks to global oil supply,
global industrial demand and oil-specific precautionary demand. Based on this we treat
the increase in oil prices from 2003 as shock to global demand that is exogenous to oil-
dependent countries. For robustness we also exclude OPEC countries and find that our
results do not appreciably change.

The second type of shock is the discovery of giant oil fields, which we also treat as
exogenous after controlling for time and country fixed-effects. Oil discoveries are a type
of quasi-natural experiment. Some might argue that these discoveries are endogenous,
depending on past discoveries or the quality of political institutions in a country. However,
we are concerned specifically with the timing of the discovery, which is less predictable.
We also only focus on giant discoveries, which are less predictable again. Finally, we
control for time-invariant country-specific characteristics using country fixed-effects.

3.4 Estimating Equations

The effects of oil price shocks on spatial outcomes aggregated to the country level are
estimated as follows:
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Yi,t =α +
2013∑

t=2000

βt(❧t × Di) +
2013∑

t=2000

(❧t × Yi,2000) + ❧t + ϕi + +regioni ∗ t + ǫi,t (3.1)

where Yit is the outcome of interest for country i in year t, Di is an indicator variable
equal to one if classified as an oil or gas-dependent country and zero otherwise, Yi,2000 is
the outcome variable at the beginning of the sample to control for convergence effects,
regioni ∗ t are regional linear trends,7λt is year fixed effects and ❋i is country fixed
effects. Each coefficient βt then measures the average conditional difference in Y between
dependent and non-dependent countries in year t relative to the difference in the reference
year 2002, which is the year before oil prices began to rise.

We estimate the effect of giant oil and gas field discoveries as follows:

Yi,t =α +
10∑

j=0

βjSizej +
2013∑

t=2000

(❧t × Yi,2000) + ❧t + ϕi + +regioni ∗ t + ǫi,t (3.2)

Where Sizej is the NPV relative to GDP of a discovery made in year t− j. Thus βj is the
effect of a discovery made j years ago equal to 100% of GDP. This specification allows us
to measure the dynamic effect of discoveries over time and to analyze multiple discoveries
made within countries. The delay between discovery and production is typically 4-6 years,
so we hypothesize positive effects on economic activity following this lag, but there may
also be anticipation effects observed during the lag period. See Arezki et al. (2015) for a
full discussion of these effects.

Since we are interested in effects on rural poverty and are thus focused on the developing
world, we drop all OECD countries as well as countries with an unlit rural percentage of
less than 5%8 as of 2000 from all specifications. We also drop three countries that exper-
ienced large-scale wars during the sample period, including two that would be treatment
countries: Iraq, Syria and Afghanistan. This leaves a sample of 105 countries in the main
specification.

4 Results

To understand how oil booms affect rural poverty we study both increases in prices,
using the high oil prices of the 2000s, and increases in quantities, using data on giant oil
discoveries. As our data is geographically disaggregated we are able to isolate the regions
that benefit from each type of boom. Overall we find that both price and quantity booms
stimulate economic growth in the short to medium term. In both instances these booms
do not benefit the rural poor. There is some evidence that oil discoveries cause a small
amount of migration from unlit rural areas to towns, though not to cities.

7Regional classifications are adapted from World Bank classifications. The main sample includes the
following regions: Central Asia, East Asia and Pacific, Eastern Europe, Latin America and the Caribbean,
Middle East and North Africa, South Asia and Sub-Saharan Africa.

8Results are robust to a threshold of 10%.
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Figure 4.1: Unconditional trends in the i) unlit rural percentage and ii) switch-on per-
centage.

Figure 4.2: Breakdown of population share by area classification as of 2000.

4.1 Broad trends

To begin with let us examine the trends in the raw data. The first headline is that GDP is
growing in both oil dependent and non-dependent countries. We know this from a broad
range of sources, but it is best not to use the unconditional lights data to illustrate it
because of year-to-year changes in light sensitivity and the introduction of new satellites
in 2000, 2004 and 2010. In the main analysis we control for these changes using time fixed
effects.

The second headline is that our poverty measure - the share of people living in unlit rural
areas - is generally falling in both oil dependent and non-dependent countries (Figure 4.1).
This is consistent with broad evidence that progress is being made in the fight against
global poverty (e.g. Pinkovskiy and Sala-i-Martin, 2009; Chen and Ravallion, 2010).
There are two reasons why the unlit rural percentage may fall: unlit areas are becoming
illuminated or people are leaving these areas for towns and cities. We find evidence for
both. Figure 4.1 introduces the “Rural switch percentage”, which records whether areas
that were populated but unlit in 2000 became lit in subsequent years. As such it is a
cumulative measure of rising economic activity in rural areas. We see that initially rural
areas are steadily becoming illuminated during our sample, with the jumps in the data
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Figure 4.3: Effect of the 2000s oil price boom on i) aggregate lights (estimates and 95%
confidence bands), ii) aggregate lights per capita and iii) PPP-adjusted real GDP/capita.

partially attributed to changes in satellite sensitivity. Figure 4.2 shows that there is also
a general trend around the world for people to leave unlit rural areas for towns and cities.

4.2 Price booms: the 2000’s

4.2.1 High oil prices stimulate economic growth in oil-dependent countries

During the period of high oil prices in the 2000s, night-time illumination in non-OECD
oil-dependent countries increased significantly relative to non-dependent countries. This
is illustrated in Figure 4.3, which shows the log difference in aggregate night-time lights
between oil dependent and non-dependent countries, relative to the omitted year of 2002
(coefficient βt in equation 3.1). The results show that this difference increased steadily
during the oil boom, and by the end of the sample the effect on lights in dependent
countries is .29 log points. The effect on lights per capita9 is slightly smaller but still
statistically significant, though only at a 10% level at the end of the sample. There was
a similar and strongly significant effect on PPP-adjusted real GDP/capita (expenditure
based).

9Since the elasticity between lights growth and actual economic activity is unknown, comparing lights
growth to known population growth may give misleading estimates to the extent that the elasticity differs
from 1. We present the results for both lights and lights per capita for completeness.
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Figure 4.4: Effect of the 2000s price boom on i) the population share living in unlit rural
areas, and ii) the Calibrated Poverty Rate.

4.2.2 Economic growth is not shared with the rural poor

While aggregate night-time illumination increased in oil dependent countries relative to
non-dependent ones, there is no evidence that it benefitted the rural poor. This is illus-
trated in Figure 4.4, which shows the share of oil-dependent countries’ population living
in unlit rural areas, relative to the 2002 base year. We find no significant change or trend
in the share of rural poor. A slightly larger though insignificant result is found when us-
ing the Calibrated Poverty Rate (which, recall, attempts to measure poverty in non-rural
areas as well). However, these results may mask some illumination and de-illumination
of cells and movement of people between them, which we address next.

The results shown in Figures 4.3 and 4.4 raise the question: how did light intensity increase
so much without significantly reducing rural poverty? To answer this question we define
three types of grid cells: A cell is classified as rural if it has a non-zero population but
no lights activity as of the initial year 2000. A cell is classified as a town if it is coded
as non-urban but has non-zero lights activity as of 2000, and as urban according to the
definition from Section 2.3. We then aggregate the lights and population of these three
types to the country level and analyze them with specification 3.1.

By the construction of our poverty measure, poverty can be reduced in two ways: lights
spreading to previously unlit cells, and population shifts from unlit to lit cells. We invest-
igate both mechanisms. Figure 4.5 shows that lights in initially rural cells (as of 2000) did
not grow any faster for oil-dependent than non-dependent countries, but those in towns
and cities did. To illustrate this we use two different measures. The first is the “Rural
switch percentage”, described in Section 4.1. We find no evidence that the oil price boom
caused lights to be turned on in rural areas, further confirming that the rural poor did
not benefit. The second is the log difference in town and city lights between oil dependent
and non-dependent countries, which is similar to the aggregate measure in Figure 4.3. We
find that economic activity in both the towns and the cities of oil dependent countries
grew faster than in their non-dependent counterparts during this period, with an effect
of .32 log points in 2013. In cities the difference was a more modest .14. For both towns
and cities the estimates at the end of the period are significant at a 10% level, though
when using lights per capita they are significant at a 5% level (not shown).
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Figure 4.5: Effects of the 2000s oil price boom on illumination in rural areas, towns and
cities, based on their 2000 classification.

4.2.3 Oil price spikes do not affect migration

We now consider how the 2000s oil price boom influenced migration between rural and
urban areas, and we find no evidence of an effect. While there has been a general trend for
people to leave unlit rural areas for towns and cities (see Figure 4.2), this has happened
at the same pace in both oil dependent and non-dependent countries. Figure 4.6 illus-
trates the difference in the population share in rural areas, towns and cities, between oil
dependent and non-dependent countries10. In all three instances this difference did not
significantly change.

4.3 Quantity booms: giant oil discoveries

4.3.1 Giant oil discoveries stimulate economic growth at a six year lag

When a giant oil field is discovered, aggregate night-time lights in the country increase
relative to other non-OECD countries after about six years. This is illustrated in Figure
4.7, which shows the effect on night-time lights for countries that discovered oil t years
ago, scaled for the size of the discovery relative to GDP. After nine years, discovering oil

10For population share regressions we do no control for initial population shares since these are not
theoretically subject to convergence as output measures are.
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Figure 4.6: Effect of the 2000s oil price boom on the population share in rural areas,
towns and cities, based on their 2000 classification.

with net present value of 100% of GDP increases lights and lights per capita by .06 log
points, with a similar effect on GDP/capita. The pattern of a slight decrease in lights
following discovery following a sharp rise roughly around the time production begins is
consistent with the GDP results found in Arezki et al (2015).

4.3.2 This growth is not shared with the rural poor

Figure 4.8 illustrates the population share living in unlit rural areas after an oil discovery
(like Figure 4.4). Unlike the 2000s price boom we find that oil discoveries do reduce
the share of the population living in unlit rural areas by around 1%, with a lag of nine
years. Discoveries have a similar effect on the CPR. However it is unclear whether this
is because previously unlit areas gain lights, or because people leave the unlit areas for
better opportunities elsewhere. We disentangle this next.

Figure 4.9 shows that while cities and towns gain illumination after an oil discovery, unlit
rural areas do not. We start by again classifying cells according to their city/town/rural
type as of the year 2000. For rural areas, we find no evidence that they become illuminated
after an oil discovery. If anything, rural lights switch on more in countries that don’t have
oil discoveries, though the effect is generally insignificant. It is important to note that
this result does not comment on the local effects of oil wells (see the review by Cust and
Poelhekke, 2014), as it is making cross-country rather than within-country comparisons.
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Figure 4.7: Effect of oil discoveries on i) aggregate (log) lights, ii) log aggregate
lights/capita and iii) PPP-adjusted real GDP/capita.

For towns and cities, both see illumination trend upwards six years after oil is discovered.
This trend becomes significant after eight years (though not in year 10 due to large increase
in the standard errors, although the trend remains consistent), confirming that the gain
in economic activity from oil discoveries is concentrated in towns and cities.

4.3.3 Oil discoveries cause some rural poor to move to towns but not cities

We have just established that the share of oil dependent countries’ populations living
in unlit rural areas falls after an oil discovery, but this is not due to unlit rural areas
becoming illuminated. The implication is that it must be because people migrate away
from rural areas. Figure 4.10 confirms this. It shows that the rural population share in
oil dependent countries trends downwards (relative to non-dependent countries) after an
oil discovery, and is approximately 0.6 percentage points lower after ten years. It also
shows that this migration leads to a similar increase in the population of towns, but not
cities. As with the price boom we don’t find evidence that quantity booms encourage
urbanization.

4.4 Illumination Mechanisms

The results so far have been for unlit rural areas in aggregate. We have shown that while
rural areas are illuminating around the world, they are not doing so any faster in oil-
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Figure 4.8: Effect of oil discoveries on i) the population share living in unlit rural areas
and ii) the Calibrated Poverty Rate (CPR).
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Figure 4.9: Effect of giant oil discoveries on the illumination of rural areas, towns and
cities, based on their 2000 classification.
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Figure 4.10: Effect of giant oil discoveries on the population share in rural areas, towns
and cities, based on their 2000 classification.

dependent countries. However, these average results might be hiding some details in the
darkness. To understand these details we use a hazard model to study what causes an
unlit but inhabited rural cell to become lit in any given year. We find that the probability
of illuminating is increased by: i) being adjacent to existing lit cells, ii) being close to
the capital, iii) having a high population density, and iv) being in a country with high
aggregate light growth since the start of the sample, as shown in Table 4.1. However, we do
not find evidence that the first three of these mechanisms are more active in oil-dependent
countries. We do find that oil-dependent countries are less efficient at converting growth
to poverty reduction.

We model the probability of unlit rural cells becoming lit in a given year using the following
hazard rate specification,

IRS
cit = α + β1Xcit + β2DiXcit + ❧t + ϕi + ǫc,i,t (4.1)

where IRS
cit is an indicator for whether a particular cell c switches on in year t (and is

dropped from the sample thereafter); Xcit is a vector of independent variables describing
adjacency to lit cells (indicator, measured as of 2000), being <100km from the capital
(indicator), population density (standard deviation units) and aggregate national light
growth since 2000 (continuous); Di is an indicator for being in an oil-dependent country;
and ❧t and ϕi are year and country fixed-effects. The coefficients in β2 therefore estimate
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(1)
switchon

Non-adjacent -0.031∗∗∗

(0.005)
Non-adjacent*dep -0.000

(0.005)
<100km from capital 0.006∗∗

(0.002)
(<100km from capital)*dep 0.004

(0.004)
Pop. Density 0.004∗

(0.002)
Pop. Density*dep -0.002

(0.002)
Lights growth since 2000 0.019∗∗∗

(0.005)
(Lights growth since 2000)*dep -0.007∗

(0.003)
N 7479895
R2 0.026

Notes: The dependent variable is an indicator for the cell
switching on in a given year. Regression includes country
and year fixed effects. Robust standard errors clustered at
the country level are reported in parenthesis. +,*,**,***
represent significance at 10%, 5%, 1%, .1%, respectively.

Table 4.1: Results for a model of the hazard rate of unlit rural areas switching on in a
given year.
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the differential effect of each variable on dependent relative to non-dependent countries.
The sample is restricted to cells that are unlit but inhabited as of 2000.

We hypothesize that being next to a lit cell generally represents being near an existing
electricity network, and such cells switching on represents public investment in the grid.
Therefore, being next to a lit cell should increase the probability of illumination, because
other cells would presumably require more expensive off-grid generators. We find that
being next to a lit cell does increase the probability of an unlit rural cell switching on by
3 percentage points. Appendix Figure C.1 shows the cumulative effect of this mechanism
(not controlling for the other three in equation 4.1).11 Over the decade from 2003 adjacent
cells became ~15 percentage points more illuminated than non-adjacent cells. However,
adjacency did not increase the probability of illumination in oil dependent relative to
non-dependent countries, suggesting that oil revenues were not systematically invested in
larger electricity networks.

Being within 100km of the capital, after controlling for adjacency to lit cells, can be
interpreted as a proxy for geographic and political connections. We find that proximity
to the capital raises the probability of becoming illuminated by 0.6 percentage points.
These cells cumulatively gained ~10 percentage points more illumination from 2003-2013
(Figure C.2). Again, being near to the capital did not increase the chance of illumination
in oil dependent vs. non-dependent countries, which suggests that oil revenues did not
change the connectedness of these areas.

Cells with a higher population density will benefit more from electrical infrastructure,
and may be more politically organised. We see that a 1 standard deviation increase in
population density increases the probability of illumination by 0.4 percentage points. Over
the decade of high oil prices from 2003, cells with 1 standard deviation more population
were 2 percentage points more likely to become lit (Figure C.3). As with the previous
mechanisms there was no evidence of oil-dependent countries investing more in areas with
high population density. This suggests that governments were not using oil revenues to
“pork barrel” high-population areas.

Finally, growth in aggregate national lights can be interpreted as a proxy for broader
economic growth since 2000. We find that a 1 log point increase in past aggregate light
growth raises the probability of a rural cell switching on by 1.9 percentage points. This
indicates that, in general, aggregate economic growth does reduce rural poverty. However
this effect is 0.7 percentage points smaller in oil dependent countries, again implying
that they are less effective at converting growth into rural poverty reduction than other
countries, even after controlling for spatial mechanisms at the grid-cell level.

4.5 Robustness

To check the robustness of our main results we try four alternative specifications, with the
results shown in Appendix B. Each focuses on the price boom specification in equation

11Graphs i and ii of this figure show the results of regressing the cumulative switch-on percentage on
indicators for adjacency to lit cells interacted with year fixed effects (also controlling for year and country
fixed effects). Graph iii shows the results of a triple-difference specification that evaluates if the effect
differs between dependent and non-dependent countries.
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3.1. The first uses the same specification but drops OPEC countries from the treatment
group, to further reduce the possibility that the oil price shock is endogenous due to
supply disruptions (Figure B.1). The estimates are more or less the same, but with larger
standard errors since we drop a large proportion of our treatment group. Total lights
grow by the same amount and the results are significant at the 10% (but not 5%) level.
The oil boom has no effect on either measure of poverty.

In the main specification we use a dependence dummy indicator because it yields a simple
and transparent graphical representation of effects, and does not rely on functional forms
of dependence. However, some information is lost in the binary classification. In Appendix
Figure B.2, we replace the dependence indicator variable Di in equation 3.1 with the
continuous variable Rentsi, which measures average oil rents as a share of GDP from
2000-2012. This specification implies a linear relationship with dependence. We also do
the same but drop Equatorial Guinea (EG), an outlier where rents account for 75% of
GDP during the period and may skew the results. As shown in Figure B.2, if oil rents
account for 100% of GDP, then the boom would have caused lights to increase by 1.34 log
points (with EG) or .92 log points (without), with smaller but significant effects for lights
per capita. Our poverty measures fall by .13 log points (again if oil is 100% of GDP) in
this specification, driven largely by Equatorial Guinea. Excluding that country we find
moderate but insignificant reductions in poverty. This reduction in turn is driven almost
entirely by Gabon and the Republic of Congo, two other very high-dependence countries
that saw substantial reductions in unlit percentage due to migration away from rural areas
in the early part of the sample, after which the unlit rural percentage is nearly trendless.
Continuous oil dependence has a small and insignificant impact on rural cells becoming
lit, with or without Equatorial Guinea (not shown), again indicating that oil revenues are
not reaching rural areas but may in somce cases encourage migration (similarly to the
results using discoveries).

The fourth robustness check replaces the year fixed effects and regional trends in equation
3.1 with region-year fixed effects. This controls for common shocks at the regional, rather
than global level. This is a more restrictive specification as identification is based strictly
on within-region comparisons, sometimes with small numbers of countries in a given
region. Still, results are similar to the main specification.

5 Conclusion

This paper offers an annual global panel study of extreme rural poverty. We construct a
world-wide measure of rural poverty using two high-resolution spatial datasets: on night-
time illumination as a proxy for economic activity, and population. We combine this with
data on oil prices and giant oil discoveries to answer the question, does the income from
oil booms benefit the very poor?

We start out by describing some stylised facts about rural poverty and urbanization. The
share of people living in rural darkness is falling world-wide, both because previously unlit
areas are gaining electricity and because people are moving from rural areas to existing
towns and cities. Electrification occurs faster in areas that are close to the existing grid,
close to the capital city, and have higher population.
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Then we present three main results, which are similar for both price and quantity booms.
First, oil booms do increase aggregate economic activity - proxied by night-time lights.
For periods of high oil prices this happens immediately, while for oil discoveries it begins
after a six year lag, corresponding to the typical lag between discovery and production.
Second, this activity is confined to cities and towns, and does not benefit the rural poor.
We find no evidence that unlit rural areas become more illuminated, whether close to the
grid or the capital, while lights in cities and towns rise significantly. Third, oil discoveries
encourage a small amount of migration from unlit rural areas to towns (though not cities),
but oil price booms do not. Thus, the evidence suggests that the only way the rural poor
benefit from oil discoveries is to leave these regions to pursue opportunities elsewhere.

This work suggests a wide range of extensions, exploiting both our new measure of rural
poverty and the global panel method we employ. Such work may include studying other
determinants of extreme poverty and the success of programs designed to alleviate it.
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Appendix

A Oil-dependent countries

Country

Resource Exports/
Total Exports
(2006-2010)

Commodity
Revenues/ GDP

(2006-2010)

Algeria 98 30
Angola 95 35
Azerbaijan 94 26
Bahrain 81 23
Bolivia 5 11
Brunei 96 45
Cameroon 47 6
Chad 89 15
Congo, Republic of 94 3
Ecuador 55 7
Equatorial Guinea 99 31
Gabon 83 18
Indonesia 10 5
Iran 79 17
Kazakhstan 60 11
Kuwait 93 62
Libya 97 56
Malaysia 8 8
Mexico 15 8
Nigeria 97 22
Oman 73 37
Papua New Guinea 80 10
Qatar 88 23
Russia 50 11
Saudi Arabia 87 42
Sudan 97 11
Trinidad & Tobago 38 17
Turkmenistan 91 11
United Arab Emirates 41 24
Venezuela 93 19
Vietnam 14 6
Yemen 82 22

Table A.1: List of oil dependent countries (Baunsgaard et al., 2013)
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Figure B.1: Effect of 2000s oil price boom on key variables, excluding OPEC.

C Illumination Mechanisms

In addition to the hazard rate model described in Section 4.4, which studies the marginal
effect of various variables on the probability of a rural cell becoming lit, we also study the
cumulative effect of each variable individually. To do this we run the following specification
at the grid-cell level,

RuralSwitch%c,i,t =α +
2013∑

t=2000

βt(❧t × Xc) + ❧t + ϕi + ǫc,i,t (C.1)

Where Xc is one of the dependent variables described in Section 4.4. The specification
therefore estimates, for example, the likelihood of unlit rural cells that are adjacent to
lit cells switching on relative to other unlit cells, controlling for country-level averages.
Standard errors are again clustered at the country level. We run this specification sep-
arately for dependent and non-dependent countries, and then assess whether the effect
differs between the two using a triple-difference specification.12

12This takes, for example, the difference in rural illumination between cells that are/are not adjacent
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Figure B.2: Effect of 2000s price boom on key variables, using a continuous measure of
resource dependence i) with and ii) without Equatorial Guinea.
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Figure B.3: Effect of 2000s oil price boom on key variables, using region-year instead of
year fixed effects.

to lit cells, relative to their difference in 2000, and assesses how much this differs between oil dependent
and non-dependent countries. The specification is run for all sample countries and includes dummies for
being in a dependent country and being adjacent to a lit cell, dependence-by-year interactions, adjacency-
by-year interactions, and triple interactions for which the coeffiecients are shown in Figure C.1, iii.
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Figure C.1: The difference in switch-on percentage for rural areas that are adjacent vs not-
adjacent to lit squares density in i) oil-dependent countries, ii) non-dependent countries
and iii) the difference between i) and ii).
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Figure C.2: The difference in switch-on percentage between rural areas that are near
(<100km) vs far (>100km) from the capital city in i) oil-dependent countries, ii) non-
dependent countries and iii) the difference between i) and ii).
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Figure C.3: The difference in rural switch-on percentage for a one standard-deviation
increase in population density in i) oil-dependent countries, ii) non-dependent countries
and iii) the difference between i) and ii).
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