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For each simply connected three-dimensional Lie group we determine the automorphism group, classify the
left invariant Riemannian metrics up to automorphism, and study the extent to which curvature can be altered
by a change of metric. Thereby we obtain the principal Ricci curvatures, the scalar curvature and the sectional
curvatures as functions of left invariant metrics on the three-dimensional Lie groups. Our results improve a bit
of Milnor’s results of [7] in the three-dimensional case, and Kowalski and Nikv́cević’s results [6, Theorems 3.1
and 4.1].
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1 Introduction

This paper concerns itself with three main problems:

1. to determine the automorphisms of all 3-dimensional Lie algebras g,

2. for each simply connected 3-dimensional Lie group G to classify all the left invariant Riemannian metrics
on G up to automorphism of G, and

3. to study the extent to which curvature can be altered by a change of metric.

A non-zero Borel measure on G which is invariant under left multiplication is called a left Haar measure on G.
If G is a Lie group, then a left Haar measure always exists and any two left Haar measures on G are propositional.
The Lie group G is unimodular if every left Haar measure is a right Haar measure and vice versa. It is known
that G is unimodular if and only if | detAd(t)| = 1 for all t ∈ G if and only if the trace of ad(X) is zero for all
X in its Lie algebra g if and only if g is unimodular. The abelian, compact, semisimple, reductive, nilpotent Lie
groups are well-known examples of unimodular Lie groups.

There are six simply connected three-dimensional unimodular Lie groups: the abelian Lie group R3, the
nilpotent Lie group Nil, the special unitary group SU(2), the universal covering group P̃SL(2, R) of the special
linear group, the solvable Lie group Sol and the universal covering group Ẽ0(2) of the connected component
of the Euclidean group. Thus the Lie groups R3, Nil, SU(2), P̃SL(2, R) are unimodular. We note that the
two solvable Lie groups Sol and Ẽ0(2) are also unimodular. There are uncountably many nonisomorphic non-
unimodular three-dimensional Lie groups. These are all solvable and of the form R2 �ϕ R where R acts on R2

via a linear map ϕ.
The investigations described here are motivated by the paper [1] in which all left invariant metrics on the real

Heisenberg group are classified up to automorphisms. We establish the classification up to automorphism of the
left invariant metrics on all simply connected three-dimensional Lie groups. Since the Riemannian connection
is determined uniquely, due to the famous theorem of Levi–Civita, by the bracket product operation and the
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given metric, our classification of the left invariant metrics up to automorphism leads to the study of the left
invariant metrics which leave all the curvature properties invariant. Utilizing Milnor’s idea in [7] together with
our complete list of left invariant metrics on simply connected three-dimensional Lie groups up to automorphism,
we are able to understand completely the change of the signature of the Ricci transformation and the change of the
sign of the scalar curvature by a change of metric. Our results of Section 4 extend completely Milnor’s results of
[7] in the three-dimensional case, and Kowalski and Nikv́cević’s results [6, Theorems 3.1 and 4.1]. See Tables 1
and 2 for a summary.

All the calculations were done using the program Mathematica [8].

2 Automorphisms of three-dimensional Lie algebras

2.1 The three-dimensional Lie algebras

We list all the three dimensional Lie algebras. If {X, Y, Z} is a basis for a Lie algebra then the following
multiplication tables describe all the non-isomorphic Lie algebras of dimension 3 (for details see [5, I.4] and [7]).

(2.1.1) Abelian: [X, Y ] = [Y, Z] = [Z, X ] = 0.

(2.1.2) Nilpotent: [X, Y ] = Z, [Z, X ] = [Z, Y ] = 0.

(2.1.3) Unimodular Solvable: There are only two non-isomorphic unimodular solvable Lie algebras and a
basis may be chosen such that

(a) [X, Y ] = 0, [Z, X ] = X, [Z, Y ] = −Y , or
(b) [X, Y ] = 0, [Z, X ] = −Y, [Z, Y ] = X.

(2.1.4) Simple: There are only two non-isomorphic simple Lie algebras and a basis may be chosen such that

(a) [X, Y ] = 2Z, [Z, X ] = 2Y, [Z, Y ] = 2X , or
(b) [X, Y ] = Z, [Z, X ] = Y, [Z, Y ] = −X.

(2.1.5) Non-unimodular Solvable: There are uncountably many nonisomorphic non-unimodular solvable Lie
algebras and a basis may be chosen such that

(a) [X, Y ] = 0, [Z, X ] = X, [Z, Y ] = Y , or
(b) [X, Y ] = 0, [Z, X ] = Y, [Z, Y ] = −cX + 2Y,

where c ∈ R. Note that ad(Z) =
[

0 −c
1 2

]
has trace 2 and determinant c.

2.2 The automorphisms of a Lie algebra

In this subsection we find all the automorphisms of each three dimensional Lie algebra. This results in finding
all the automorphisms of the corresponding simply connected three-dimensional Lie group. For this purpose, we
will use the ordered bases {X, Y, Z} given in Section 2.1 for the three-dimensional Lie algebras.

2.2.1 The abelian Lie algebra R3

In the abelian case the Lie algebra is isomorphic to R3.

Proposition 2.1 The Lie group Aut
(
R3
)

is isomorphic to GL(3, R).

2.2.2 The Heisenberg Lie algebra n

In the nilpotent case the Lie algebra is isomorphic to the Heisenberg Lie algebra n of all 3 × 3 strictly upper
triangular real matrices. Choose the canonical basis {X1, X2, X3} in n where

X1 =

⎡⎣0 1 0
0 0 0
0 0 0

⎤⎦ , X2 =

⎡⎣0 0 0
0 0 1
0 0 0

⎤⎦ , X3 =

⎡⎣0 0 1
0 0 0
0 0 0

⎤⎦ .

Then [X1, X2] = X3 and [X3, X1] = [X3, X2] = 0.
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Proposition 2.2 The Lie group Aut(n) is isomorphic to⎧⎨⎩
⎡⎣a c 0

b d 0
∗ ∗ ad − bc

⎤⎦ ∣∣∣ a, b, c, d, ∗ ∈ R, ad − bc �= 0

⎫⎬⎭ .

P r o o f. An automorphism on n must map the center Z(n) = 〈X3〉 ∼= R1 onto itself. Hence it maps the basis
{X1, X2, X3} of n as follows:

X1 �−→ aX1 + bX2 + kX3,

X2 �−→ cX1 + dX2 + �X3,

X3 �−→ rX3.

Thus we obtain that ϕ[Xi, Xj ] = [ϕXi, ϕXj ] if and only if r = ad − bc �= 0.

2.2.3 The unimodular solvable Lie algebra R2 �σ R

In the unimodular solvable case the Lie algebra of (2.1.3) (a) is isomorphic to the semidirect product R2 �σ R,
where σ(t) =

[
t 0
0 −t

]
. We can choose a basis {X1, X2, X3} of R2 �σ R where

X1 =
([

1
0

]
, 0
)

, X2 =
([

0
1

]
, 0
)

, X3 =
([

0
0

]
, 1
)

.

Then [X1, X2] = 0, [X3, X1] = X1, [X3, X2] = −X2.

Proposition 2.3 The Lie group Aut
(
R2 �σ R

)
is isomorphic to

S1 ∪ S1

⎡⎣ 0 1 0
1 0 0
0 0 −1

⎤⎦ , where S1 =

⎧⎨⎩
⎡⎣ α 0 ∗

0 β ∗
0 0 1

⎤⎦ ∣∣∣ α, β, ∗ ∈ R, αβ �= 0

⎫⎬⎭ .

P r o o f. Let ϕ ∈ Aut
(
R2 �σ R

)
. Then ϕ[Xi, Xj ] = [ϕXi, ϕXj ] if and only if with respect to the basis

{X1, X2, X3}, [ϕ] is of the form

[ϕ] =

⎡⎣ α 0 γ
0 β δ
0 0 1

⎤⎦ or

⎡⎣ α 0 γ
0 β δ
0 0 1

⎤⎦⎡⎣ 0 1 0
1 0 0
0 0 −1

⎤⎦
where α, β, γ, δ are real numbers with αβ �= 0.

2.2.4 The unimodular solvable Lie algebra R2 � so(2)

In the unimodular solvable case the Lie algebra of (2.1.3) (b) is isomorphic to the Lie algebra R2 � so(2). We
choose a basis {X1, X2, X3} of R2 � so(2), where

X1 =
([

1
0

]
,

[
0 0
0 0

])
, X2 =

([
0
1

]
,

[
0 0
0 0

])
, X3 =

([
0
0

]
,

[
0 1

−1 0

])
.

Then [X1, X2] = 0, [X3, X1] = −X2, [X3, X2] = X1.

Proposition 2.4 The Lie group Aut
(
R2 � so(2)

)
is isomorphic to

S2 ∪ S2

⎡⎣ 1 0 0
0 −1 0
0 0 −1

⎤⎦ , where S2 =

⎧⎨⎩
⎡⎣ C∗ γ

δ
0 0 1

⎤⎦ ∣∣∣ γ, δ ∈ R

⎫⎬⎭ .
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P r o o f. Let ϕ ∈ Aut
(
R2 � so(2)

)
. Then ϕ[Xi, Xj ] = [ϕXi, ϕXj ] if and only if with respect to the basis

{X1, X2, X3}, [ϕ] is of the form

[ϕ] =

⎡⎣ α β γ
−β α δ

0 0 1

⎤⎦ or

⎡⎣ α β γ
−β α δ

0 0 1

⎤⎦⎡⎣ 1 0 0
0 −1 0
0 0 −1

⎤⎦
where α, β, γ, δ are real numbers with (α, β) �= (0, 0).

2.2.5 The simple Lie algebra sl(2, R)

In the simple case the Lie algebra of (2.1.4) (a) is isomorphic to the Lie algebra sl(2, R) of all 2 × 2 matrices of
trace 0. We choose a basis {X1, X2, X3}, where

X1 =
[

0 1
−1 0

]
, X2 =

[
0 1
1 0

]
, X3 =

[
1 0
0 −1

]
.

Then [X1, X2] = 2X3, [X3, X1] = 2X2, [X3, X2] = 2X1.

Proposition 2.5 The Lie group Aut(sl(2, R)) is isomorphic to SO(1, 2).

P r o o f. Let ϕ ∈ Aut(sl(2, R)). With respect to the basis {X1, X2, X3},

ϕXj = a1jX1 + a2jX2 + a3jX3

for some aij . Observe that ϕ[Xi, Xj ] = [ϕXi, ϕXj ] if and only if the classical adjoint adj [ϕ] of [ϕ] is

adj [ϕ] =

⎡⎣ a11 −a21 −a31

−a12 a22 a32

−a13 a23 a33

⎤⎦ = I1,2 [ϕ]t I1,2, where I1,2 =

⎡⎣ −1 0 0
0 1 0
0 0 1

⎤⎦ .

Since (det[ϕ])I3 = [ϕ](adj [ϕ]) = [ϕ] I1,2[ϕ]t I1,2, we have det[ϕ] = 1 and [ϕ]t I1,2 [ϕ] = I1,2. Hence
ϕ ∈ Aut(sl(2, R)) if and only if [ϕ] ∈ SO(1, 2).

Remark 2.6 Note that the identity component SO0(1, 2) is isomorphic to PSL(2, R). The adjoint represen-
tation of SL(2, R) preserves the Cartan–Killing form which is a quadratic form of signature (−,−, +). See also
3.2.5.

2.2.6 The split simple Lie algebra so(3)

The simple Lie algebra of (2.1.4) (b) is isomorphic to the Lie algebra so(3) of all 3× 3 skew symmetric matrices.
We choose the following basis {X1, X2, X3}, where

X1 =

⎡⎣ 0 0 1
0 0 0

−1 0 0

⎤⎦ , X2 =

⎡⎣ 0 1 0
−1 0 0

0 0 0

⎤⎦ , X3 =

⎡⎣ 0 0 0
0 0 1
0 −1 0

⎤⎦ .

Then [X1, X2] = X3, [X3, X1] = X2, [X3, X2] = −X1.

Proposition 2.7 The Lie group Aut(so(3)) is isomorphic to SO(3).

P r o o f. Let ϕ ∈ Aut(so(3)). With respect to the basis {X1, X2, X3}
ϕXj = a1jX1 + a2jX2 + a3jX3

for some aij . Observe that ϕ[Xi, Xj ] = [ϕXi, ϕXj ] if and only if aij = (−1)i+j det[ϕ(i|j)], the (i, j) cofactor
of [ϕ] for all i, j = 1, 2, 3 if and only if [ϕ]t = adj [ϕ], the classical adjoint of [ϕ].

Since [ϕ][ϕ]t = [ϕ](adj [ϕ]) = (det[ϕ])I3, we have det[ϕ] = 1 and [ϕ][ϕ]t = I . Hence ϕ ∈ Aut(so(3)) if
and only if [ϕ] ∈ SO(3).

www.mn-journal.com c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2.2.7 The non-unimodular solvable Lie algebras

All the three-dimensional non-unimodular Lie algebras are solvable. By (2.1.5), such a Lie algebras is isomorphic
to either gI or gc for some c ∈ R where gI is the Lie algebra of (2.1.5) (a) and gc is the Lie algebra of (2.1.5) (b).
In fact,

gI
∼= R2 �σ

I
R, where σ

I
(t) =

[
t 0
0 t

]
;

gc
∼= R2 �σc

R, where σ
c
(t) =

[
0 −ct
t 2t

]
with a basis

X =
([

1
0

]
, 0
)

, Y =
([

0
1

]
, 0
)

, Z =
([

0
0

]
, 1
)

satisfying

(a) [X, Y ] = 0, [Z, X ] = X, [Z, Y ] = Y , or

(b) [X, Y ] = 0, [Z, X ] = Y, [Z, Y ] = −cX + 2Y .

Proposition 2.8 (1) The Lie group Aut(gI) is isomorphic to{[
GL(2, R) ∗

0 1

] ∣∣∣∣ ∗ ∈ R2

}
.

(2) For each c ∈ R, the Lie group Aut(gc) is isomorphic to⎧⎨⎩
⎡⎣β − α −cα ∗

α β + α ∗
0 0 1

⎤⎦ ∣∣∣∣ α, β, ∗ ∈ R,
β2 + (c − 1)α2 �= 0

⎫⎬⎭ .

P r o o f. (1) It is easy to see that ϕ ∈ Aut(g) if and only if with respect to the basis {X, Y, Z}, [ϕ] is of the
form

[
GL(2,R) ∗

0 1

]
where ∗ ∈ R2.

(2) Let ϕ ∈ Aut(gc). Suppose that, with respect to the basis {X, Y, Z}, [ϕ] =
[

a11 a12 a13
a21 a22 a23
a31 a32 a33

]
. Note that

ϕ ∈ Aut(gc) if and only if

a32 = 0, (a12 + 2a22)a31 = 0,
ca31 = 0, (a12 + 2a22)a33 = 2a22 − ca21,
c (a11 − a22a33) = 2a12, (a11 + 2a21)a33 − (a13 + 2a23)a31 = a22,
c (a23a31 − a21a33) = a12.

If a33 = 1 or c = 0, then the above equations yield that a31 = a32 = 0, a33 = 1, a12 = −ca21 and
a22 = a11 + 2a21.

Suppose that a33 �= 1 and c �= 0. Then the above equations yield that

a12 = −ca21a33, a33a11 − a22 = −2a21a33,

a22 =
1
2
ca21(a33 + 1), a11 − a33a22 = −2a21a33.

Thus a33 �= −1, −a11 = 2a21a33
a33+1 = a22 = ca21(a33+1)

2 and c = 4a33
(a33+1)2 . Now consider the automorphism ϕ2

and let
[
ϕ2
]

=
[
bij

]
with respect to the basis {X, Y, Z}. Then since b33 = a2

33 and b33 �= 1, we obtain that

c = 4b33
(b33+1)2 . Thus 4a33

(a33+1)2 = c = 4a2
33

(a2
33+1)2

and so a33 = 0 or a33 = 1, a contradiction.

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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3 Left invariant metrics on three-dimensional Lie groups

For each finite dimensional Lie algebra g there is, up to isomorphism, a unique simply connected Lie group whose
Lie algebra is isomorphic to g. In this section, we list all the three-dimensional simply connected Lie groups, and
for each such G we classify all the left invariant Riemannian metrics on G up to automorphism of G and in the
next section, we will study the extent to which curvature can be altered by a change of metric.

When we refer to left invariant metrics in this paper we mean left invariant Riemannian metrics.

3.1 Three-dimensional Lie groups

The simply connected unimodular three-dimensional Lie groups are well-known. We list them below together
with the simply connected non-unimodular three-dimensional Lie groups for convenience.

3.1.1 The abelian Lie group R3

In the abelian case the corresponding Lie group is the abelian Lie group R3.

3.1.2 The Heisenberg group Nil

In the nilpotent case the corresponding Lie group is the Heisenberg group Nil of all 3 × 3 real matrices of the
form ⎡⎣1 x z

0 1 y
0 0 1

⎤⎦ .

3.1.3 The solvable group Sol

The Lie group of the solvable Lie algebra R2 �σ R is the 2-step solvable Lie group Sol, which is the semidirect

product R2 �ϕ R where t ∈ R acts on R2 by ϕ(t) =
[

et 0
0 e−t

]
.

3.1.4 The solvable group Ẽ0(2)

The solvable Lie algebra R2 � so(2) is the Lie algebra of the Lie group E0(2) = R2 � SO(2). The group E0(2)
is not simply connected. The unique simply connected Lie group corresponding to the Lie algebra R2 � so(2) is
the universal covering group Ẽ0(2) of E0(2). The group Ẽ0(2) = C � R, (c, r)(d, s) =

(
c + e2πird, r + s

)
has

a faithful matrix representation in GL(3, C)

(c, r) �−→
⎡⎣e2πir c 0

0 1 0
0 0 er

⎤⎦ , r ∈ R, c ∈ C.

3.1.5 The simple Lie groups P̃SL(2, R) and SU(2)

There are two distinct simple Lie algebras of dimension 3: sl(2, R) and so(3). The Lie algebra sl(2, R) is the
Lie algebra of the Lie group SL(2, R). The unique simply connected Lie group corresponding to the Lie algebra
sl(2, R) is the universal covering group P̃SL(2, R) of SL(2, R). The two fold covering group SU(2) of SO(3) is
the unique simply connected Lie group corresponding to the Lie algebra so(3).

3.1.6 The non-unimodular solvable Lie groups

The three-dimensional non-unimodular Lie algebra gI or gc is the Lie algebra of the three-dimensional simply
connected Lie group

GI
∼= R2 �ϕ

I
R, where ϕ

I
(t) =

[
et 0
0 et

]
, or

www.mn-journal.com c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Gc
∼= R2 �ϕc

R, where

ϕc(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
et ezt+e−zt

2

[
1 0
0 1

]
+ et ezt−e−zt

2z

[
−1 −c

1 1

]
if z =

√
1 − c �= 0,

et

[
1 0
0 1

]
+ ett

[
−1 −1

1 1

]
if c = 1.

Remark 3.1 The group SU(2) is isomorphic to the group S3 of unit quaternions and therefore lives on the
3-sphere. Hence the groups discussed in this paper are topologically either R3 or S3.

3.2 Left invariant metrics on three-dimensional Lie groups

Let g be a Riemannian metric on a connected Lie group G, and let θ : G → G be a diffeomorphism on G. Then
θ induces a metric on G by gθ(X, Y ) = g

(
θ−1
∗ X, θ−1

∗ Y
)
. If g is a left invariant metric on G, the induced metric

gθ is not necessarily left invariant.
Now to describe all the left invariant metrics on an n-dimensional connected Lie group, we fix a basis

{X1, X2, . . . , Xn} for the Lie algebra of G and let {ω1, ω2, . . . , ωn} be its dual basis. Then every left invariant
metric on G is of the form

g =
∑

gij ωi ⊗ ωj.

This yields a symmetric, positive definite matrix [g] = [gij ] and satisfies

g(X, Y ) = [X ]t[g][Y ]

where [X ] is the column vector [a1 a2 . . . an]t if and only if X = a1X1 + a2X2 + · · · + anXn.
Let ϕ ∈ Aut(g) and let g be a left invariant metric on G. Define gϕ by gϕ(X, Y ) = g

(
ϕ−1X, ϕ−1Y

)
for all

X, Y ∈ g. Then gϕ is a left invariant metric on G, because

gϕ(X, Y ) = g
(
ϕ−1X, ϕ−1Y

)
= g

(
ϕ−1

(
�−1
p

)
∗X, ϕ−1

(
�−1
p

)
∗Y
)

=
(
�p

)∗
gϕ(X, Y ).

Further [gϕ] =
[
ϕ−1

]t[g]
[
ϕ−1

]
. Therefore Aut(g) acts on the set of all left invariant metrics on G by the rule

(ϕ, g) �→ gϕ or equivalently ([ϕ], [g]) �→ [gϕ].
A left invariant metric g′ on G is equivalent up to automorphism to a left invariant metric g, written g′ ∼ g,

if there exists ϕ ∈ Aut(g) such that [g′] = [ϕ]t[g][ϕ]. In this case we often say that [g′] is equivalent up to
automorphism to [g] or [g′] is cogredient to [g] by [ϕ].

Let [g] = [gij ] be a positive definite matrix. Then for any (x1, x2, x3) �= (0, 0, 0), g11x
2
1 + g22x

2
2 + g33x

2
3 +

2(g12x1x2 + g13x1x3 + g23x2x3) > 0. This implies that

g11, g22, g33 > 0, giigjj > g 2
ij .

In particular, gii + gjj > 2|gij |.
In this section we will classify all the left invariant metrics up to automorphism on the three-dimensional

simply connected Lie groups. For this purpose, we will use the bases {X, Y, Z} given in Section 2.1 for the
three-dimensional Lie algebras. Let {ω1, ω2, ω3} be its dual basis. Then every left invariant metric g is of the
form g =

∑
gijωi ⊗ ωj . If {X ′

1, X
′
2, X

′
3} is another basis with its dual basis {ω′

1, ω
′
2, ω

′
3}, then the left invariant

metric g will be of the form g =
∑

g′ij ω′
i⊗ω′

j so that [g′ij ] = [pij ]t[gij ][pij ] where X ′
i = pi1X1+pi2X2+pi3X3.

We must note that it is not necessarily true that [pij ] ∈ Aut(g).

3.2.1 The abelian Lie group R3

Recalling that Aut(R3) ∼= GL(3, R) we obtain

Theorem 3.2 Any left invariant metric on R3 is equivalent up to automorphism to the metric whose associated
matrix is the identity matrix.

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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P r o o f. Let [g] = [gij ] be a symmetric and positive definite 3 × 3 real matrix. Since [g] is symmetric, there
is T ∈ O(3) such that T t[g]T = D, a diagonal matrix. Since [g] is positive definite, the diagonal entries are all
positive and hence there is S ∈ GL(3, R) such that St[g]S = I .

3.2.2 The Heisenberg group Nil

Recalling Proposition 2.2, we obtain

Theorem 3.3 Any left invariant metric on Nil is equivalent up to automorphism to a metric whose associated
matrix is of the form⎡⎣λ 0 0

0 λ 0
0 0 1

⎤⎦
where λ > 0.

P r o o f. Let [g] = [gij ] be a symmetric and positive definite real 3 × 3 matrix. Let B =
[

1 0 0
0 1 0

− g13
g33

− g23
g33

1

]
∈

Aut(n). Then Bt[g]B =
[

[g1] 0
0

0 0 1

]
where [g1] is a symmetric and positive definite matrix. Since [g1] is symmetric

and positive definite and
[

SO(2) 0
0

0 0 1

]
⊂ Aut(n), we may assume that Bt[g]B = diag{d1, d2, 1}where d1, d2 > 0.

Let D =

⎡⎢⎢⎣
4
√

d2
d1

0 0

0 4
√

d1
d2

0

0 0 1

⎤⎥⎥⎦ ∈ Aut(n). Then DtBt[g]BD = diag
{√

d1d2,
√

d1d2, 1
}

.

Therefore [g] is equivalent up to automorphism to a diagonal matrix diag{λ, λ, 1} with λ > 0. Finally it is
easy to see that any two such distinct diagonal matrices are not equivalent.

3.2.3 The solvable Lie group Sol

Recalling Proposition 2.3, we obtain

Theorem 3.4 Any left invariant metric on Sol is equivalent up to automorphism to a metric whose associated
matrix is of the form⎡⎣1 0 0

0 1 0
0 0 ν

⎤⎦ or

⎡⎣1 1 0
1 μ 0
0 0 ν

⎤⎦
where μ > 1 and ν > 0.

P r o o f. Let [g] = [gij ] be a symmetric and positive definite 3 × 3 real matrix. Suppose g12 = 0 and let

B =

[ 1√
g11

0 − g13
g11

0 1√
g22

− g23
g22

0 0 1

]
∈ Aut

(
R2 �σ R

)
. Then Bt[g]B =

⎡⎣1 0 0
0 1 0
0 0 ν

⎤⎦. Next suppose g12 �= 0. Since

g11g22 > g2
12, B =

⎡⎢⎢⎣
1√
g11

0 g13g22−g12g23
g2
12−g11g22

0
√

g11
g12

g11g23−g12g13
g2
12−g11g22

0 0 1

⎤⎥⎥⎦ ∈ Aut
(
R2 �σ R

)
and then Bt[g]B =

⎡⎣1 1 0
1 μ 0
0 0 ν

⎤⎦ with μ > 1.

Finally, inspection shows that any two matrices of the form

⎡⎣1 1 0
1 μ 0
0 0 ν

⎤⎦ or

⎡⎣1 0 0
0 1 0
0 0 ν

⎤⎦ are equivalent if and only

if they are equal.
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3.2.4 The solvable Lie group Ẽ0(2)

Recalling Proposition 2.4, we have

Theorem 3.5 Any left invariant metric on Ẽ0(2) is equivalent up to automorphism to a metric whose associ-
ated matrix is of the form⎡⎣1 0 0

0 μ 0
0 0 ν

⎤⎦
where 0 < μ ≤ 1 and ν > 0.

P r o o f. Let [g] = [gij ] be a symmetric and positive definite 3 × 3 real matrix. Since
[
SO(2) 0

0 1

]
⊂

Aut
(
R2 � so(2)

)
, we may assume that g12 = 0. Let B =

⎡⎢⎣
1√
g11

0 − g13
g11

0 1√
g11

− g23
g22

0 0 1

⎤⎥⎦ ∈ Aut
(
R2 � so(2)

)
.

Then Bt[g]B =

⎡⎣ 1 0 0
0 μ 0
0 0 ν

⎤⎦ where μ, ν > 0. If μ > 1, then C =

⎡⎢⎣ 0 1√
μ

0

− 1√
μ

0 0

0 0 1

⎤⎥⎦ ∈ Aut
(
R2 � so(2)

)
and

CtBt[g]BCt = diag
{
1, 1

μ , ν
}

. Thus we may assume that μ ≤ 1. Therefore [g] is equivalent up to automorphism
to a matrix diag{1, μ, ν} where 0 < μ ≤ 1 and ν > 0.

Inspection shows that any two matrices of the form

⎡⎣1 0 0
0 μ 0
0 0 ν

⎤⎦ where 0 < μ ≤ 1 and ν > 0 are equivalent if

and only if they are equal.

3.2.5 The simple Lie group P̃SL(2, R)

Since SL(2, R) is a simple Lie group with center {±I}, by [2, Corollaries II.5.2 and II.6.5], SL(2, R)/{±I} ∼=
Int(sl(2, R)) = Aut0(sl(2, R)) = SO0(1, 2). Here Int(sl(2, R)) is the adjoint group of sl(2, R). In fact, the
map SL(2, R) → SO0(1, 2) is given by

[
a b
c d

]
�−→

⎡⎢⎢⎢⎢⎣
1
2
(
a2 + b2 + c2 + d2

) 1
2
(
a2 − b2 + c2 − d2

) −ab − cd

1
2
(
a2 + b2 − c2 − d2

) 1
2
(
a2 − b2 − c2 + d2

) −ab + cd

−ac − bd −ac + bd ad + bc

⎤⎥⎥⎥⎥⎦ .

The kernel of this homomorphism is {±I} and its image is SO0(1, 2). It thus implements the isomorphism
PSL(2, R) ∼= SO0(1, 2) mentioned in Remark 2.6. Note that the group SO(1, 2) has two components

SO0(1, 2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

1
2
(
a2 + b2 + c2 + d2

) 1
2
(
a2 − b2 + c2 − d2

) −ab − cd

1
2
(
a2 + b2 − c2 − d2

) 1
2
(
a2 − b2 − c2 + d2

) −ab + cd

−ac − bd −ac + bd ad + bc

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

SO0(1, 2)

⎡⎣ −1 0 0
0 −1 0
0 0 1

⎤⎦
where ad − bc = 1. Thus in particular each of these matrices can be connected by a (continuous) arc to that one
of the two matrices⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦ ,

⎡⎣ −1 0 0
0 −1 0
0 0 1

⎤⎦
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Math. Nachr. 282, No. 6 (2009) 877

in its component (but there is no arc connecting these two matrices). It is known that the group P̃SL(2, R) has no
faithful finite dimensional linear representation. It is the only simply connected three-dimensional real Lie group
with this property. (Nil has a not simply connected quotient with this property). A description of parametrization
of P̃SL(2, R) and its R3 geometry is given for instance in the book [3], notably pp. 414–434, and in [4], notably
p. 18.

Recalling from Proposition 2.5 that Aut(sl(2, R)) ∼= SO(1, 2) we obtain

Theorem 3.6 Any left invariant metric on P̃SL(2, R) is equivalent up to automorphism to a metric whose
associated matrix is of the form⎡⎣λ 0 0

0 μ 0
0 0 ν

⎤⎦
where λ > 0, μ ≥ ν > 0.

P r o o f. Let [g] = [gij ] be a symmetric and positive definite 3× 3 real matrix. Since
[
1 0
0 SO(2)

]
⊂ SO(1, 2),

we may assume that g23 = 0. Suppose that g22 = g33 or g13 = 0. Let t1 be a solution of the equation
g13 cos t + g12 sin t = 0. Then sin t1 = ∓ g13√

g2
12+g2

13

and cos t1 = ± g12√
g2
12+g2

13

and hence g12 cos t − g13 sin t =

±√g2
12 + g2

13. Taking B =

⎡⎣1 0 0
0 cos t1 sin t1
0 − sin t1 cos t1

⎤⎦ ∈ SO(1, 2), we get Bt[g]B = [g′] with g′12 = ±√g2
12 + g2

13

and g′13 = g′23 = 0. Hence we may assume that the matrix [g] has g23 = 0 and g13 = 0 (if g22 = g33). Next

we take C =

⎡⎣cosh t2 sinh t2 0
sinh t2 cosh t2 0

0 0 1

⎤⎦ ∈ SO(1, 2) where t2 is a solution of the equation (g11 + g22) sinh(2t) +

2g12 cosh(2t) = 0. Then Ct[g]C = diag{λ, μ, ν} for some λ, μ, ν > 0. Clearly we may assume further that
μ ≥ ν. If g12 = 0 then the matrix [g] is cogredient to a matrix [g′] with g′13 = g′23 = 0 and then, by the above
argument, [g′] and hence [g] is cogredient to the matrix of the form diag{λ, μ, ν} with λ > 0, μ ≥ ν > 0.

Suppose that g22 �= g33, g12 �= 0 and g13 �= 0. It suffices to show that [g] is cogredient to [g′] where g′23 = 0
and g′13 = 0. This follows by taking

a = 1,

b =
{

11g2
11g

6
12 − 44g11g

7
12 + 44g8

12 + 22g2
11g

4
12g

2
13 − 110g11g

5
12g

2
13 + 132g6

12g
2
13

+ 11g2
11g

2
12g

4
13 − 88g11g

3
12g

4
13 + 143g4

12g
4
13 − 22g11g12g

6
13 + 66g2

12g
6
13

+ 11g8
13 − 8g2

11g
4
12

(
g2
12 + g2

13

)
+ 32g11g

5
12

(
g2
12 + g2

13

)− 32g6
12

(
g2
12 + g2

13

)
− 8g2

11g
2
12g

2
13

(
g2
12 + g2

13

)
+ 48g11g

3
12g

2
13

(
g2
12 + g2

13

)− 64g4
12g

2
13

(
g2
12 + g2

13

)
+ 2g2

11g
4
13

(
g2
12 + g2

13

)
+ 16g11g12g

4
13

(
g2
12 + g2

13

)− 48g2
12g

4
13

(
g2
12 + g2

13

)
− 16g6

13

(
g2
12 + g2

13

)− 3g2
11g

2
12

(
g2
12 + g2

13

)2
+ 12g11g

3
12

(
g2
12 + g2

13

)2
− 12g4

12

(
g2
12 + g2

13

)2
+ 6g11g12g

2
13

(
g2
12 + g2

13

)2 − 12g2
12g

2
13

(
g2
12 + g2

13

)2
− 3g4

13(g
2
12 + g2

13)
2 + 22g11g

6
12g22 − 44g7

12g22 + 44g11g
4
12g

2
13g22

− 110g5
12g

2
13g22 + 22g11g

2
12g

4
13g22 − 88g3

12g
4
13g22 − 22g12g

6
13g22

− 16g11g
4
12

(
g2
12 + g2

13

)
g22 + 32g5

12

(
g2
12 + g2

13

)
g22 − 16g11g

2
12g

2
13

(
g2
12 + g2

13

)
g22

+ 48g3
12g

2
13

(
g2
12 + g2

13

)
g22 + 4g11g

4
13

(
g2
12 + g2

13

)
g22 + 16g12g

4
13(g

2
12 + g2

13)g22

− 6g11g
2
12

(
g2
12 + g2

13

)2
g22 + 12g3

12

(
g2
12 + g2

13

)2
g22 + 6g12g

2
13

(
g2
12 + g2

13

)2
g22

+ 11g6
12g

2
22 + 22g4

12g
2
13g

2
22 + 11g2

12g
4
13g

2
22 − 8g4

12

(
g2
12 + g2

13

)
g2
22

− 8g2
12g

2
13

(
g2
12 + g2

13

)
g2
22 + 2g4

13

(
g2
12 + g2

13

)
g2
22 − 3g2

12

(
g2
12 + g2

13

)2
g2
22

}
/{(

4g3
13

(
g2
12 + g2

13

)3/2(
g2
11 − 4g2

12 − 4g2
13 + 2g11g22 + g2

22

))}
,
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c =
g12 −

√
g2
12 + g2

13

g13
,

d = arbitrary.

(The calculations here were done using the program Mathematica [8].) Here we observe the following. Since

B =

⎡⎣ 1 0 0
0 0 −1
0 1 0

⎤⎦ ∈ SO0(1, 2), we may assume that g12g13 > 0. Since [g] = [gij ] is positive definite,

g11 + g22 > 2|g12 + g13| and so (g11 + g22)2 > 4
(
g12 + g13

)2 = 4
(
g2
12 + g2

13

)
+ 8g12g13 > 4

(
g2
12 + g2

13

)
. This

shows that the denominator of our choice b is non-zero. Hence all such real numbers a, b, c, d exist.

Inspection shows that any two matrices of the form

⎡⎣λ 0 0
0 μ 0
0 0 ν

⎤⎦ where λ > 0, μ ≥ ν > 0 are equivalent if and

only if they are equal.

3.2.6 The simple Lie group SU(2)

Recalling from Proposition 2.7 that Aut(su(2)) = Aut(so(3)) ∼= SO(3) we obtain

Theorem 3.7 Any left invariant metric on SU(2) is equivalent up to automorphism to a metric whose associ-
ated matrix is of the form⎡⎣λ 0 0

0 μ 0
0 0 ν

⎤⎦
where λ ≥ μ ≥ ν > 0.

P r o o f. Let [g] = [gij ] be a symmetric and positive definite 3 × 3 real matrix. Since [g] is symmetric, it
is orthogonally diagonalizable; that is, there exists an orthogonal matrix P such that P−1[g]P = P t[g]P is
a diagonal matrix. If P /∈ O(3), we can write P = Qσ with Q ∈ SO(3) and σ = diag{−1, 1, 1}. Then
Qt[g]Q = P t[g]P and [g] is equivalent to a diagonal matrix with positive entries as [g] is positive definite.

On the other hand, since

⎡⎣ 0 1 0
1 0 0
0 0 −1

⎤⎦,

⎡⎣ −1 0 0
0 0 1
0 1 0

⎤⎦ ∈ SO(3), we can switch the diagonal entries of

a diagonal matrix. Therefore [g] is equivalent up to automorphism to a diagonal matrix diag{λ, μ, ν} with

λ ≥ μ ≥ ν > 0. Inspection shows that any two matrices of the form

⎡⎣λ 0 0
0 μ 0
0 0 ν

⎤⎦ where λ ≥ μ ≥ ν > 0 are

equivalent if and only if they are equal.

3.2.7 The non-unimodular Lie groups

Recalling Proposition 2.8, we obtain the following:

Theorem 3.8 Any left invariant metric on GI is equivalent up to automorphism to a metric whose associated
matrix is of the form⎡⎣1 0 0

0 1 0
0 0 ν

⎤⎦
where ν > 0.

P r o o f. Let [g] = [gij ] be a symmetric and positive definite real 3 × 3 matrix. Since g11g22 > g2
12, B =⎡⎢⎢⎣

1 0 g13g22−g12g23
g2
12−g11g22

0 1 g11g23−g12g13
g2
12−g11g22

0 0 1

⎤⎥⎥⎦ ∈ Aut(gI) and then Bt[g]B =

⎡⎣ [g1]
0
0

0 0 λ

⎤⎦ where [g1] is a symmetric, positive definite
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matrix and λ > 0. Since [g1] is symmetric and positive definite and

⎡⎣SO(2)
0
0

0 0 1

⎤⎦ ⊂ Aut(g), we may assume

that there is B ∈ Aut(gI) such that Bt[g1]B = diag{d1, d2, 1} where d1, d2 > 0. Let D =

⎡⎢⎣
1√
d1

0 0

0 1√
d2

0

0 0 1

⎤⎥⎦ ∈

Aut(gI). Then DtBt[g]BD = diag{1, 1, ν}. Therefore [g] is equivalent up to automorphism to a diagonal
matrix diag{1, 1, ν} with ν > 0. Finally it is easy to see that any two such distinct diagonal matrices are not
equivalent.

Lemma 3.9 Let [g] = [gij ] be a left invariant metric on Gc. Then
(1) [g] is cogredient to a matrix [g′] with g′13 = g′23 = 0.

(2) If g13 = g23 = 0 and if g12 ≤ 0 or g12 ≥ 2g11, then [g] is cogredient to a matrix of the form

⎡⎣1 0 0
0 μ 0
0 0 ν

⎤⎦
where ν > 0, and if c = 0 then μ > 0; if c �= 0 then 0 < μ ≤ |c|.

P r o o f. (1) Since g11g22 > g2
12, we have B =

⎡⎢⎢⎢⎣
1 0 g13g22−g12g23

g2
12−g11g22

0 1 g11g23−g12g13
g2
12−g11g22

0 0 1

⎤⎥⎥⎥⎦ ∈ Aut(gc) and Bt[g]B = [g′] where

g′13 = g′23 = 0.

(2) Suppose that g12(g12 − 2g11) ≥ 0. Let B =

⎡⎣β − α −cα 0
α β + α 0
0 0 1

⎤⎦ where

α = 2g12,

β = (g11c − g22) +
√

g2
11c

2 − 2(2g11g12 − 2g2
12 + g11g22)c + (2g12 − g22)2.

Since g11g22 − g2
12, we have 4g12(2g11 − g12)

(
g11g22 − g2

12

) ≤ 0, which implies that the value g2
11c

2−
2
(
2g11g12 − 2g2

12 + g11g22

)
c +

(
2g12 − g22

)2
is nonnegative for any c. Thus β is well-defined real number.

Moreover, we can show that β2 + (c − 1)α2 �= 0 and so B ∈ Aut(g) and Bt[g]B = diag{d1, d2, d3} where

di > 0. Let C =

⎡⎢⎣
1√
d1

0 0

0 1√
d1

0

0 0 1

⎤⎥⎦ ∈ Aut(gc). Then Ct

⎡⎣d1 0 0
0 d2 0
0 0 ν

⎤⎦C =

⎡⎣1 0 0
0 μ 0
0 0 ν

⎤⎦. Let C =

⎡⎣β − α −cα 0
α β + α 0
0 0 1

⎤⎦
where α = c−μ√

μ((c−μ)2+4μ)
and β = c+μ√

μ((c−μ)2+4μ)
. Since c �= 0, C ∈ Aut(gc) and Ct

⎡⎣1 0 0
0 μ 0
0 0 ν

⎤⎦C =⎡⎢⎣1 0 0

0 c2

μ
0

0 0 ν

⎤⎥⎦. Thus we have the result.

Theorem 3.10 (Case: c < 0) Any left invariant metric on Gc, where c < 0, is equivalent up to automorphism
to a metric whose associated matrix is of the form⎡⎣1 0 0

0 μ 0
0 0 ν

⎤⎦
where 0 < μ ≤ |c| and ν > 0.

P r o o f. Let [g] = [gij ] be a symmetric and positive definite real 3 × 3 matrix. By Lemma 3.9, we may

assume that g13 = g23 = 0 and 0 < g12 < 2g11. Then B =

⎡⎣ 2 c 0
−1 0 0

0 0 1

⎤⎦∈ Aut(gc) and Bt[g]B = [g′ij ] where

g′13 = g′23 = 0 and g′12 = (2g11 − g12)c. Since c < 0 and g12 < 2g11, we have g′12 < 0. Thus by Lemma 3.9 (2),

[g] is equivalent up to automorphism to a diagonal matrix

⎡⎣1 0 0
0 μ 0
0 0 ν

⎤⎦ where 1 < μ ≤ |c| and ν > 0. Finally it is

easy to see that any two such distinct matrices are not equivalent.
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Theorem 3.11 (Case: c = 0) Any left invariant metric on G0 is equivalent up to automorphism to a metric
whose associated matrix is of the form⎡⎣1 0 0

0 μ 0
0 0 ν

⎤⎦ or

⎡⎣1 1
2 0

1
2 1 0
0 0 ν

⎤⎦
where μ, ν > 0.

P r o o f. Let [g] = [gij ] be a symmetric and positive definite real 3 × 3 matrix. By Lemma 3.9 (1), we

may assume that g13 = g23 = 0. If g12 �= 0 and g22 �= 2g12, then B =

⎡⎢⎣−
g22
g12

0 0

1 2 − g22
g12

0

0 0 1

⎤⎥⎦ ∈ Aut(g0)

and Bt[g]B = diag{d1, d2, d3}. Thus by Lemma 3.9 (2), [g] is equivalent up to automorphism to a diagonal

matrix

⎡⎣1 0 0
0 μ 0
0 0 ν

⎤⎦ where μ, ν > 0. Suppose that g22 = 2g12. Let α = 0 and β be a solution of the equation

(g11 − 2g12)b2 − 2(g11 + g12)b + (g11 − 2g12) = 0. Then B =

⎡⎣β − α 0 0
α β + α 0
0 0 1

⎤⎦∈ Aut(g0) and Bt[g]B =

⎡⎣2μ μ 0
μ 2μ 0
0 0 ν

⎤⎦ for some μ > 0. Let C =

⎡⎢⎣
1√
2μ

0 0

0 1√
2μ

0

0 0 1

⎤⎥⎦. Then C ∈ Aut(g0) and Ct

⎡⎣2μ μ 0
μ 2μ 0
0 0 ν

⎤⎦C =

⎡⎣ 1 1
2

0
1
2

1 0
0 0 ν

⎤⎦. Finally it is easy to see that any two such distinct matrices are not equivalent.

Theorem 3.12 (Case: c = 1) Any left invariant metric on G1 is equivalent up to automorphism to a metric
whose associated matrix is of the form⎡⎣1 0 0

0 μ 0
0 0 ν

⎤⎦ or

⎡⎣1 λ 0
λ 1 0
0 0 ν

⎤⎦
where 0 < λ < 1, 0 < μ ≤ 1 and ν > 0.

P r o o f. Let [g] = [gij ] be a symmetric and positive definite real 3 × 3 matrix. By Lemma 3.9 (1), we may
assume that g13 = g23 = 0. Let

m =
(
(g11 + g22 − 2g12)

(
(g11 + g22 − 2g12)2 + 4g11g22

))− 1
2 ,

α = m(g11 − g22), β = 2m(g11 + g22 − 2g12).

Then B =

⎡⎣β − α −α 0
α β + α 0
0 0 1

⎤⎦∈ Aut(g1) and Bt[g]B =

⎡⎣1 λ 0
λ 1 0
0 0 ν

⎤⎦ where |λ| < 1 and ν > 0. If −1 < λ ≤ 0,

by Lemma 3.9 (2),

⎡⎣1 λ 0
λ 1 0
0 0 ν

⎤⎦ is equivalent up to automorphisms to a matrix of the form

⎡⎣1 0 0
0 μ 0
0 0 ν

⎤⎦ where

0 < μ ≤ 1 and ν > 0. Finally it is easy to see that any two such distinct matrices are not equivalent.

Theorem 3.13 (Case: c > 1) Any left invariant metric on Gc with c > 1 is equivalent up to automorphism to
a metric whose associated matrix is of the form⎡⎣1 1 0

1 μ 0
0 0 ν

⎤⎦
where 1 < μ ≤ c and ν > 0.
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P r o o f. Let [g] = [gij ] be a symmetric and positive definite real 3×3 matrix. By Lemma 3.9, we may assume
that g13 = g23 = 0 and 0 < g12 < 2g11. Suppose g11 �= g12. Note that for any c > 1,

D(c) := g2
11c

2 − 2g11g22c − 4g11g12c + 4g2
12c + 4g11g22 − 4g12g22 + g2

22 ≥ 0.

Let B1 =

⎡⎣β − 1 −c 0
1 β + 1 0
0 0 1

⎤⎦ with β = 2g11+g22−2g12−cg11+
√

D(c)

2(g11−g12) . Then B1 ∈ Aut(gc), Bt
1[g]B1 =

[
λ λ 0
λ k 0
0 0 ν

]

for some λ, k > 0. Let B2 =

⎡⎣ 1√
λ

0 0

0 1√
λ

0

0 0 1

⎤⎦ ∈ Aut(gc). Thus Bt
2B

t
1[g]B1B2 =

[
1 1 0
1 μ 0
0 0 ν

]
where μ > 1

and ν > 0. Observe also that for any [g] =

[
1 1 0
1 μ 0
0 0 ν

]
, we have C =

⎡⎢⎣
1√

μ−1
0 0

0 1√
μ−1

0

0 0 1

⎤⎥⎦∈ Aut(gc) and

Ct[g]C =

⎡⎢⎣1 1 0

1 1 +
(c−1)2

μ−1
0

0 0 ν

⎤⎥⎦. Therefore [g] is equivalent up to automorphism to a diagonal matrix

⎡⎣1 1 0
1 μ 0
0 0 ν

⎤⎦
where 1 < μ ≤ c. Finally it is easy to see that any two such distinct matrices are not equivalent.

Remark 3.14 Consider the Lie algebra gc where 0 < c < 1. Recall that gc has a basis {X, Y, Z} so that

[X, Y ] = 0, [Z, X ] = Y, [Z, Y ] = −cX + 2Y.

Putting X1 = −cX + (1 − z)Y, X2 = −cX + (1 + z)Y, X3 = Z where z =
√

1 − c, we obtain a new basis
{X1, X2, X3} for gc satisfying

[X1, X2] = 0, [X3, X1] = (1 − z)X1, [X3, X2] = (1 + z)X2.

With respect to this new basis, the Lie group Aut(gc) is isomorphic to⎧⎨⎩
⎡⎣γ 0 ∗

0 δ ∗
0 0 1

⎤⎦ ∣∣∣∣ γ, δ, ∗ ∈ R, γδ �= 0

⎫⎬⎭ .

In fact, given γ, δ,⎡⎢⎢⎢⎢⎣
1 + z

−2cz

1
−2z

0

1 − z

2cz

1
2z

0

0 0 1

⎤⎥⎥⎥⎥⎦
−1 ⎡⎣γ 0 ∗

0 δ ∗
0 0 1

⎤⎦
⎡⎢⎢⎢⎢⎣

1 + z

−2cz

1
−2z

0

1 − z

2cz
1
2z 0

0 0 1

⎤⎥⎥⎥⎥⎦ =

⎡⎣β − α −cα ∗
α β + α ∗
0 0 1

⎤⎦

where z =
√

1 − c, α = δ−γ
2z and β = δ+γ

2 .

Theorem 3.15 (Case: 0 < c < 1) Any left invariant metric on Gc with 0 < c < 1 is equivalent up to
automorphism to a metric whose associated matrix is of the form

⎡⎢⎢⎢⎣
1 + z

−2cz

1
−2z

0

1 − z

2cz

1
2z

0

0 0 1

⎤⎥⎥⎥⎦
t ⎡⎣1 μ 0

μ 1 0
0 0 ν

⎤⎦
⎡⎢⎢⎢⎣

1 + z

−2cz

1
−2z

0

1 − z

2cz

1
2z

0

0 0 1

⎤⎥⎥⎥⎦
where z =

√
1 − c, 0 ≤ μ < 1 and ν > 0.
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P r o o f. Let {X1, X2, X3} be the basis for gc given in Remark 3.14, i.e.,

X1 = −cX + (1 − z)Y, X2 = −cX + (1 + z)Y, X3 = Z

where z =
√

1 − c. Then

[X1, X2] = 0, [X3, X1] = (1 − z)X1, [X3, X2] = (1 + z)X2

and the Lie group Aut(gc) is isomorphic to

⎧⎨⎩
⎡⎣γ 0 ∗

0 δ ∗
0 0 1

⎤⎦ ∣∣∣∣ γ, δ, ∗ ∈ R, γδ �= 0

⎫⎬⎭.

Let g be a left invariant metric on gc. Then with respect to the basis {X1, X2, X3}, [g] = [gij ] is a

symmetric and positive definite real 3 × 3 matrix. Since B =

⎡⎢⎢⎢⎣
1√
g11

0 g13g22−g12g23
g2
12−g11g22

0 ±1√
g22

g11g23−g12g13
g2
12−g11g22

0 0 1

⎤⎥⎥⎥⎦ ∈ Aut(gc) and

Bt[g]B =

⎡⎣ 1 ±μ 0
±μ 1 0
0 0 ν

⎤⎦, [g] is equivalent up to automorphism to a matrix of the form

⎡⎣1 μ 0
μ 1 0
0 0 ν

⎤⎦ where

0 ≤ μ < 1 and ν > 0. Moreover it is easy to see that any two such distinct matrices are not equivalent.
Since

⎡⎣X
Y
Z

⎤⎦ =

⎡⎢⎢⎢⎢⎣
1 + z

−2cz

1
−2z

0

1 − z

2cz

1
2z

0

0 0 1

⎤⎥⎥⎥⎥⎦
⎡⎣X1

X2

X3

⎤⎦ ,

Remark 3.14 yields the result.

4 Curvatures on three-dimensional unimodular Lie Groups

In this and the next sections, we study the extent to which curvature can be altered by a change of left invariant
metric. Let g be a Riemannian metric on a connected Lie group G. Suppose that ϕ ∈ Aut(g) with [g′] =
[ϕ]t[g][ϕ]. Let ∇ and ∇′ be the Levi–Civita connections determined by the left invariant metrics g and g′,
respectively, on G. Then by [7, (5.3)]

g
(
ϕ∇′

XY, ϕZ
)

= g′(∇′
XY, Z)

=
1
2
(
g′([X, Y ], Z) − g′([Y, Z], X) + g′([Z, X ], Y )

)
=

1
2
(
g([ϕX, ϕY ], ϕZ) − g([ϕY, ϕZ], ϕX) + g([ϕZ, ϕX ], ϕY )

)
= g(∇ϕXϕY, ϕZ),

for all X, Y, Z ∈ g. This reduces to ϕ∇′
XY = ∇ϕXϕY . In other words, we have the following commuting

diagram:

g × g
∇′−−−−→ g

ϕ×ϕ

⏐⏐* ⏐⏐*ϕ

g × g
∇−−−−→ g

Therefore, the classification of the left invariant metrics up to automorphism is equivalent to the study of the left
invariant metrics which leave all the curvature properties invariant.
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Let g be a left invariant metric on a connected Lie group G and let ∇ be the Levi–Civita connection determined
by g. Then the Riemann curvature tensor R associates to each smooth vector fields X, Y the linear transformation

RXY = ∇[X,Y ] −∇X∇Y + ∇Y ∇X

from smooth vector fields to smooth vector fields. If U and V are orthonormal, the number

K = κ(U, V ) = 〈RUV (U), V 〉
is called the sectional curvature associated with U and V . If Y1, Y2, . . . , Yn is any orthonormal basis for g, then
for a unit vector field U the number

r(U) =
∑

i

κ(U, Yi) =
∑

i

〈RUYi(U), Yi〉

is called Ricci curvature, and the number

ρ = r(Y1) + r(Y2) + · · · + r(Yn) = 2
∑
i<j

κ(Yi, Yj)

is called the scalar curvature.
In particular, we review curvatures of left invariant metrics on the 3-dimensional simply connected unimodular

Lie groups from [7]. Let g be a 3-dimensional unimodular Lie algebra with a positive definite metric and with a
preferred orientation. One can choose an orthonormal basis {Y1, Y2, Y3} which is positively oriented such that

[Y2, Y3] = ξ1Y1, [Y3, Y1] = ξ2Y2, [Y1, Y2] = ξ3Y3.

Define numbers ζ1, ζ2, ζ3 by the formula

ζi =
1
2
(ξ1 + ξ2 + ξ3) − ξi.

Then:

1. the orthonormal basis Y1, Y2, Y3 diagonalizes the Ricci transformation r̂, the principal Ricci curvatures
being given by

r(Y1) = 2ζ2ζ3, r(Y2) = 2ζ3ζ1, r(Y3) = 2ζ1ζ2,

2. the scalar curvature is given by the formula

ρ = 2(ζ2ζ3 + ζ3ζ1 + ζ1ζ2),

3. for any pair of orthonormal vectors U and V , the sectional curvature κ(U, V ) associated with U and V is
given by the formula

κ(U, V ) = ||U × V ||2 ρ

2
− r(U × V ).

In particular, for each 1 ≤ i < j ≤ 3,

κ(Yi, Yj) = ζ1ζ2 + ζ2ζ3 + ζ3ζ1 − 2ζiζj .

If U =
∑

uiYi and V =
∑

viYi are linearly independent unit vectors, then

κ(U, V ) = (u2v3 − u3v2)2κ(Y2, Y3) + (u3v1 − u1v3)2κ(Y3, Y1) + (u1v2 − u2v1)2κ(Y1, Y2),

where

κ(Yi, Yj) = ζ1ζ2 + ζ2ζ3 + ζ3ζ1 − 2ζiζj .
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In [7], Milnor studied the extent to which curvature is altered by a change of metric on each three-dimensional
Lie group. Since we have the left invariant metrics in hand, we can take an orthonormal basis {Y1, Y2, Y3}. We
compute directly the principal Ricci curvatures r(Y1), r(Y2), r(Y3), the scalar curvature ρ = r(Y1) + r(Y2) +
r(Y3) and the sectional curvatures κ. Then these are expressed explicitly as functions of left invariant metrics.
Therefore we can understand completely the change of the signature of the Ricci transformation and the change of
the sign of the scalar curvature by a change of metric. In particular, given a simply connected three-dimensional
Lie group G with any left invariant metric on it, it is possible to determine the necessary and sufficient conditions
for three real numbers r1, r2, r3 in order that they be the principal Ricci curvatures of the Lie group G. Actually
this kind of problem was treated in [6] by means of the formulas given in [7], which relate the Ricci curvatures
to the structure constants of G. See Table 1 for a summary.

Recall that the left invariant metrics are the metrics [gij ] obtained after fixing the ordered bases {X, Y, Z}
which are given in Section 2.1 for the three-dimensional Lie algebras.

Theorem 4.1 For any left invariant metric on R3, the Ricci transformation has signature (0, 0, 0) and the
scalar curvature ρ is zero.

Theorem 4.2 For any left invariant metric on Nil, the Ricci transformation has signature (+,−,−) and the
scalar curvature ρ is strictly negative. Furthermore, the Ricci transformation is diagonalized as diag{−ρ, ρ, ρ}.

P r o o f. We may assume that the metric 〈, 〉 is associated with the matrix
[

λ 0 0
0 λ 0
0 0 1

]
with λ > 0. Recalling that

the Lie algebra of Nil has a basis {X, Y, Z} so that [X, Y ] = Z, [Z, X ] = [Z, Y ] = 0, we see that

〈X, X〉 = 〈Y, Y 〉 = λ, 〈Z, Z〉 = 1, 〈X, Y 〉 = 〈X, Z〉 = 〈Y, Z〉 = 0.

Taking Y1 = 1√
λ
X, Y2 = 1√

λ
Y, Y3 = Z , they form an orthonormal basis and satisfy

[Y2, Y3] = 0, [Y3, Y1] = 0, [Y1, Y2] =
1
λ

Y3,

with ξ1 = 0, ξ2 = 0, ξ3 = 1
λ . The principal Ricci curvatures are

r(Y1) = − 1
2λ2

, r(Y2) = − 1
2λ2

, r(Y3) =
1

2λ2
,

and the scalar curvature is strictly negative

ρ = r(Y1) + r(Y2) + r(Y3) = − 1
2λ2

.

The Ricci transformation r̂ is diagonalized as diag{ρ, ρ,−ρ} and has signature (−,−, +). Taking the orthonor-
mal basis {Y3, Y1, Y2}, we see that the Ricci transformation r̂ is diagonalized as diag{−ρ, ρ, ρ} and has signature
(+,−,−).

Corollary 4.3 The sectional curvatures for the metric

⎡⎣λ 0 0
0 λ 0
0 0 1

⎤⎦ with λ > 0 on Nil are

κ(X, Y ) = − 3
4λ2

, κ(Y, Z) = κ(Z, X) =
1

4λ2
.

Theorem 4.4 The Ricci transformation for Sol has signature either (0, 0,−) or (+,−,−) depending on
the choice of left invariant metric which is equivalent up to automorphism to a metric whose associated matrix is
of the form ⎡⎣1 0 0

0 1 0
0 0 ν

⎤⎦ or

⎡⎣1 1 0
1 μ 0
0 0 ν

⎤⎦
where μ > 1, ν > 0; and the scalar curvature is always strictly negative.
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P r o o f. Suppose that the metric 〈, 〉 is associated with the matrix

⎡⎣1 0 0
0 1 0
0 0 ν

⎤⎦ with ν > 0. Recalling that the

Lie algebra of Sol has a basis {X, Y, Z} so that [X, Y ] = 0, [Z, X ] = X, [Z, Y ] = −Y , we see that

〈X, X〉 = 〈Y, Y 〉 = 1, 〈Z, Z〉 = ν, 〈X, Y 〉 = 〈X, Z〉 = 〈Y, Z〉 = 0.

Taking Y1 = 1√
2
(X + Y ), Y2 = − 1√

2
(X − Y ), Y3 = 1√

ν
Z , they form an orthonormal basis and satisfy

[Y2, Y3] = 1√
ν
Y1, [Y3, Y1] = − 1√

ν
Y2, [Y1, Y2] = 0. The principal Ricci curvatures are

r(Y1) = 0 = r(Y2), r(Y3) = −2
ν

,

and the Ricci transformation r̂ is diagonalized as diag{r(Y1), r(Y2), r(Y3)}. Thus the signature of the Ricci
transformation r̂ is (0, 0,−).

Suppose that the metric 〈, 〉 is associated with the matrix

⎡⎣1 1 0
1 μ 0
0 0 ν

⎤⎦ with μ > 1, ν > 0. With respect to the

basis {X, Y, Z} for the Lie algebra of Sol subject to [X, Y ] = 0, [Z, X ] = X, [Z, Y ] = −Y , we see that

〈X, X〉 = 〈X, Y 〉 = 1, 〈Y, Y 〉 = μ, 〈Z, Z〉 = ν, 〈X, Z〉 = 〈Y, Z〉 = 0.

Taking Y1 = 1√
2
√

μ+
√

μ

(√
μX + Y

)
, Y2 = 1√

2
√

μ−√
μ

(−√
μX + Y

)
, Y3 = 1√

ν
Z, they form an orthonormal

basis and satisfy

[Y2, Y3] =

√
μ +

√
μ√

ν
√

μ −√
μ

Y1, [Y3, Y1] =
−√μ −√

μ√
ν
√

μ +
√

μ
Y2, [Y1, Y2] = 0.

The principal Ricci curvatures are

r(Y1) =
2
√

μ

ν(μ − 1)
, r(Y2) = − 2

√
μ

ν(μ − 1)
, r(Y3) = − 2μ

ν(μ − 1)
,

and the Ricci transformation r̂ is diagonalized as diag{r(Y1), r(Y2), r(Y3)}. Thus the signature of the Ricci
transformation r̂ is (+,−,−). In particular,

ρ = r(Y1) + r(Y2) + r(Y3) =

⎧⎪⎨⎪⎩
−2

ν

− 2μ

ν(μ − 1)
.

Hence the scalar curvature ρ is strictly negative.

Corollary 4.5 The sectional curvatures for the metric

⎡⎣1 0 0
0 1 0
0 0 ν

⎤⎦ with ν > 0 or
[

1 1 0
1 μ 0
0 0 ν

]
with μ > 1, ν > 0

on Sol are

κ(X, Y ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
ν

μ

ν
√

μ2 − 1
,

κ(Y, Z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1
ν

(2 − μ)
ν(μ − 1)

,

κ(Z, X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1
ν

2 − μ

ν(μ − 1)
.
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Theorem 4.6 The Ricci transformation for Ẽ0(2) has signature either (+,−,−) or (0, 0, 0) depending on
the choice of left invariant metric which is equivalent up to automorphism to a metric whose associated matrix is
of the form ⎡⎣1 0 0

0 μ 0
0 0 ν

⎤⎦
where 0 < μ ≤ 1 and ν > 0. Moreover, a left invariant metric on Ẽ0(2) is flat if and only if it is equivalent up to
automorphism to a metric whose associated matrix is of the form⎡⎣1 0 0

0 1 0
0 0 ν

⎤⎦
where ν > 0 if and only if the scalar curvature ρ is zero.

P r o o f. We may assume that the metric 〈, 〉 is associated with the matrix
[

1 0 0
0 μ 0
0 0 ν

]
with 0<μ≤ 1 and ν > 0.

Recalling that the Lie algebra of Ẽ0(2) has a basis {X, Y, Z} so that [X, Y ] = 0, [Z, X ] = −Y, [Z, Y ] = X, we
see that

〈X, X〉 = 1, 〈Y, Y 〉 = μ, 〈Z, Z〉 = ν, 〈X, Y 〉 = 〈X, Z〉 = 〈Y, Z〉 = 0.

Taking Y1 = X, Y2 = 1√
μY, Y3 = 1√

ν
Z , they form an orthonormal basis and satisfy

[Y1, Y2] = 0, [Y3, Y1] = −
√

μ√
ν

Y2, [Y3, Y2] =
1√
μν

Y1.

The principal Ricci curvatures are

r(Y1) =
(1 + μ)(1 − μ)

2μν
, r(Y2) = − (1 + μ)(1 − μ)

2μν
, r(Y3) = − (1 − μ)2

2μν
,

and the Ricci transformation r̂ is diagonalized as diag{r(Y1), r(Y2), r(Y3)}. Therefore r(Y1) ≥ 0, r(Y2) ≤
0, r(Y3) ≤ 0, and r(Y1) = 0 if and only if r(Y2) = 0 = r(Y3). Therefore the signature of the Ricci transforma-
tion r̂ is (+,−,−) or (0, 0, 0) according as μ < 1 or μ = 1. Moreover, the metric is flat if and only if r(Yi) = 0
if and only if μ = 1. In particular, the scalar curvature is non-positive

ρ = r(Y1) + r(Y2) + r(Y3) = − (1 − μ)2

2μν
.

Hence the last assertion holds.

Corollary 4.7 The sectional curvatures for the metric

⎡⎣1 0 0
0 μ 0
0 0 ν

⎤⎦ with 0 < μ ≤ 1 and ν > 0 on Ẽ0(2) are

κ(X, Y ) =
(1 − μ)2

4μν
, κ(Y, Z) = − (1 − μ)(3 + μ)

4μν
, κ(Z, X) =

(1 − μ)(1 + 3μ)
4μν

.

Theorem 4.8 The Ricci transformation for P̃SL(2, R) has signature either (+,−,−) or (0, 0,−) depending
on the choice of left invariant metric which is equivalent up to automorphism to a metric whose associated matrix
is of the form⎡⎣λ 0 0

0 μ 0
0 0 ν

⎤⎦
according as λ �= μ + ν, or λ = μ + ν; and the scalar curvature is always strictly negative.
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P r o o f. We may assume that the metric 〈 , 〉 is associated with the matrix
[

λ 0 0
0 μ 0
0 0 ν

]
with λ > 0 and

μ ≥ ν > 0. Recalling that the Lie algebra so(1, 2) of P̃SL(2, R) has a basis {X, Y, Z} so that [X, Y ] =
2Z, [Z, X ] = 2Y, [Z, Y ] = 2X, we see that

〈X, X〉 = λ, 〈Y, Y 〉 = μ, 〈Z, Z〉 = ν, 〈X, Y 〉 = 〈X, Z〉 = 〈Y, Z〉 = 0.

Taking Y1 = 1√
λ
X1, Y2 = 1√

μX2, Y3 = 1√
ν
X3, they form an orthonormal basis and satisfy

[Y2, Y3] =
−2λ√
λμν

Y1, [Y3, Y1] =
2μ√
λμν

Y2, [Y1, Y2] =
2ν√
λμν

Y3.

The principal Ricci curvatures are

r(Y1) =
2
(
λ2 − (μ − ν)2

)
λμν

, r(Y2) =
2
(
μ2 − (ν + λ)2

)
λμν

, r(Y3) =
2
(
ν2 − (λ + μ)2

)
λμν

,

and the Ricci transformation r̂ is diagonalized as diag{r(Y1), r(Y2), r(Y3)}. Thus r(Y3) < 0, and r(Y1) > 0,
= 0, < 0 if and only if r(Y2) < 0, = 0, > 0, respectively. Therefore the signature of the Ricci transformation r̂
is (+,−,−), (0, 0,−) or (−, +,−) according as λ + ν > μ, λ + ν = μ or λ + ν < μ. In particular, the scalar
curvature

ρ = r(Y1) + r(Y2) + r(Y3)

=
2
(
λ2 + μ2 + ν2 − (λ + μ)2 − (μ − ν)2 − (ν + λ)2

)
λμν

=
−2
(
(λ + μ − ν)2 + 4λν

)
λμν

< 0

is strictly negative.

Corollary 4.9 The sectional curvatures for the metric
[

λ 0 0
0 μ 0
0 0 ν

]
with λ > 0, μ ≥ ν > 0 on P̃SL(2, R) are

κ(X, Y ) =
(λ + μ − ν)2 + 4ν(μ − ν)

λμν
,

κ(Y, Z) = − (λ + μ + ν)2 + 2
(
λ2 − μ2 − ν2

)
λμν

,

κ(Z, X) =
(λ − μ + ν)2 − 4μ(μ − ν)

λμν
.

Theorem 4.10 The Ricci transformation for SU(2) has signature either (+, +, +), (+, 0, 0) or (+,−,−)
depending on the choice of left invariant metric which is equivalent up to automorphism to a metric whose
associated matrix is of the form⎡⎣λ 0 0

0 μ 0
0 0 ν

⎤⎦
according as λ < μ + ν, λ = μ + ν or λ > μ + ν; and the scalar curvature is positive, zero or negative if and
only if

√
λ <

√
μ +

√
ν,

√
λ =

√
μ +

√
ν or

√
λ >

√
μ +

√
ν, respectively.

P r o o f. We may assume that the metric 〈 , 〉 is associated with the matrix
[

λ 0 0
0 μ 0
0 0 ν

]
with λ ≥ μ ≥ ν > 0.
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Recalling that the Lie algebra su(3) of SU(2) has a basis X1, X2, X3 so that [X1, X2] = X3, [X3, X1] =
X2, [X3, X2] = −X1, we see that

〈X, X〉 = λ, 〈Y, Y 〉 = μ, 〈Z, Z〉 = ν, 〈X, Y 〉 = 〈X, Z〉 = 〈Y, Z〉 = 0.

Taking Y1 = 1√
λ
X1, Y2 = 1√

μX2, Y3 = 1√
ν
X3, they form an orthonormal basis and satisfy

[Y2, Y3] =
λ√
λμν

Y1, [Y3, Y1] =
μ√
λμν

Y2, [Y1, Y2] =
ν√
λμν

Y3.

The principal Ricci curvatures are

r(Y1) =
λ2 − (μ − ν)2

2λμν
> 0, r(Y2) =

μ2 − (ν − λ)2

2λμν
, r(Y3) =

ν2 − (λ − μ)2

2λμν
,

and the Ricci transformation r̂ is diagonalized as diag{r(Y1), r(Y2), r(Y3)}. Thus r(Y1) > 0, and r(Y2) > 0,
= 0, < 0 if and only if r(Y3) > 0, = 0, < 0, respectively. Therefore the signature of the Ricci transformation r̂
is (+, +, +), (+, 0, 0) or (+,−,−) according as λ < μ + ν, λ = μ + ν or λ > μ + ν. In particular, the scalar
curvature is

ρ = r(Y1) + r(Y2) + r(Y3)

=
λ2 + μ2 + ν2 − (λ − μ)2 − (μ − ν)2 − (ν − λ)2

2λμν

= −
(√

λ +
√

μ −√
ν
)(√

λ −√
μ +

√
ν
)(√

λ +
√

μ +
√

ν
)(√

λ −√
μ −√

ν
)

2λμν
.

Since λ ≥ μ ≥ ν > 0, we have that ρ > 0, = 0 or < 0 if and only if
√

λ − √
μ − √

ν < 0, = 0 or > 0,
respectively.

Corollary 4.11 The sectional curvatures for the metric
[

λ 0 0
0 μ 0
0 0 ν

]
with λ ≥ μ ≥ ν > 0 on SU(2) are

κ(X, Y ) =
(λ − μ + ν)2 + 4ν(μ − ν)

4λμν
,

κ(Y, Z) =
(λ + μ − ν)2 − 4λ(λ − ν)

4λμν
,

κ(Z, X) =
(λ − μ − ν)2 + 4μ(λ − μ)

4λμν
.

5 Curvatures on three-dimensional non-unimodular Lie groups

Recall that GI and Gc are simply connected three-dimensional non-unimodular Lie groups whose Lie algebras
are gI and gc, respectively. Now we study curvatures on simply connected three-dimensional non-unimodular Lie
groups. Utilizing Milnor’s idea again together with our complete list of left invariant metrics on simply connected
three-dimensional non-unimodular Lie groups up to automorphism, we are able to understand completely the
change of the signature of the Ricci transformation by a change of metric. We show that the scalar curvature of
any left invariant metric on all three-dimensional simply connected non-unimodular Lie groups is always strictly
negative. Our results extend Milnor’s result [7, Theorem 4.11] in great detail. See Table 2 for a summary.

Recall again that the left invariant metrics are the metrics [gij ] obtained after fixing the bases {X, Y, Z} which
are given in Section 2.1 for the three-dimensional Lie algebras.

Theorem 5.1 The Ricci transformation for GI has signature (−,−,−) depending on the choice of left invari-
ant metric which is equivalent up to automorphism to a metric whose associated matrix is of the form⎡⎣1 0 0

0 1 0
0 0 ν

⎤⎦
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where ν > 0; and the scalar curvature is always strictly negative.

P r o o f. We may assume that the metric 〈, 〉 is associated with the matrix

⎡⎣1 0 0
0 1 0
0 0 ν

⎤⎦ with ν > 0. We see that

〈X, X〉 = 〈Y, Y 〉 = 1, 〈Z, Z〉 = ν, 〈X, Y 〉 = 〈X, Z〉 = 〈Y, Z〉 = 0.

Taking Y1 = 1√
ν
Z, Y2 = X, Y3 = Y , they form an orthonormal basis and satisfy

[Y1, Y2] =
1√
ν

Y2, [Y1, Y3] =
1√
ν

Y3, [Y2, Y3] = 0.

With respect to the basis {Y1, Y2, Y3}, the associated matrix of the Ricci transformation r̂ is of the form

[r̂] =

⎡⎢⎢⎢⎢⎣
−2

ν
0 0

0 −2
ν

0

0 0 −2
ν

⎤⎥⎥⎥⎥⎦ .

Thus the principal Ricci curvatures are

r1 = r2 = r3 = −2
ν

.

Therefore the signature of the Ricci transformation r̂ is (−,−,−). Clearly the scalar curvature

ρ = r(Y1) + r(Y2) + r(Y3) = −6
ν

is strictly negative.

Corollary 5.2 The sectional curvatures for the metric

⎡⎣1 0 0
0 1 0
0 0 ν

⎤⎦ with ν > 0 on GI are

κ(X, Y ) = κ(Y, Z) = κ(Z, X) = −1
ν

.

Lemma 5.3 The Ricci transformation for Gc has signature (+,−,−) depending on the choice of left invariant
metric which is equivalent up to automorphism to a metric whose associated matrix is of the form⎡⎣1 0 0

0 μ 0
0 0 ν

⎤⎦
where μ, ν > 0; and the scalar curvature is always strictly negative.

P r o o f. Suppose that the metric 〈, 〉 is associated with the matrix

⎡⎣1 0 0
0 μ 0
0 0 ν

⎤⎦ with μ, ν > 0. Note that

〈X, X〉 = 1, 〈Y, Y 〉 = μ, 〈Z, Z〉 = ν, 〈X, Y 〉 = 〈X, Z〉 = 〈Y, Z〉 = 0.

Taking Y1 = 1√
ν
Z, Y2 = X, Y3 = 1√

μY , they form an orthonormal basis and satisfy

[Y1, Y2] =
√

μ√
ν

Y3, [Y1, Y3] =
−c√
μν

Y2 +
2√
ν

Y3, [Y2, Y3] = 0.
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With respect to the basis {Y1, Y2, Y3}, the associated matrix of the Ricci transformation r̂ is of the form

[r̂] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
− (μ − c)2 + 8μ

2μν
0 0

0 −μ2 − c2

2μν
−2

√
μ

ν

0 −2
√

μ

ν

μ2 − 8μ − c2

2μν

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus the principal Ricci curvatures are

r1 = −4μ −√
(μ2 − 4μ − c2)2 + 16μ3

2μν
=

(
μ2 − c2

)2 + 8μ
(
μ2 + c2

)
2μν(4μ +

√
(μ2 − 4μ − c2)2 + 16μ3)

,

r2 = −4μ +
√

(μ2 − 4μ − c2)2 + 16μ3

2μν
,

r3 = − (μ − c)2 + 8μ

2μν
.

Note that r1 > 0, r2 < 0 and r3 < 0. Therefore the signature of the Ricci transformation r̂ is (+,−,−). Clearly
the scalar curvature

ρ = r(Y1) + r(Y2) + r(Y3) = − (μ − c)2 + 16μ

2μν
.

is strictly negative.

Corollary 5.4 The sectional curvatures for the metric

[
1 0 0
0 μ 0
0 0 ν

]
on Gc are

κ(X, Y ) =
(μ − c)2

4μν
, κ(Y, Z) =

μ2 + 2(c − 8)μ − 3c2

4μν
, κ(Z, X) = − (μ − c)(c + 3μ)

4μν
.

Theorem 5.5 (Case: c < 0) The Ricci transformation for Gc with c < 0 has signature (+,−,−) depending
on the choice of left invariant metric which is equivalent up to automorphism to a metric whose associated matrix
is of the form⎡⎣1 0 0

0 μ 0
0 0 ν

⎤⎦
where 0 < μ ≤ |c| and ν > 0; and the scalar curvature is always strictly negative.

P r o o f. This follows immediately from Lemma 5.3.

Theorem 5.6 (Case: c = 0) The Ricci transformation for G0 has signature either (+,−,−) or (0,−,−)
depending on the choice of left invariant metric which is equivalent up to automorphism to a metric whose
associated matrix is of the form⎡⎣1 0 0

0 μ 0
0 0 ν

⎤⎦ or

⎡⎣1 1
2 0

1
2 1 0
0 0 ν

⎤⎦
where μ, ν > 0; and the scalar curvature is always strictly negative.
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In Table 2, P =
[ 1+z

−2cz
1

−2z 0
1−z
2cz

1
2z 0

0 0 1

]
.

P r o o f. Suppose that the metric 〈 , 〉 is associated with the matrix

⎡⎣1 0 0
0 μ 0
0 0 ν

⎤⎦ with μ, ν > 0. Then by

Lemma 5.3, the signature of the Ricci transformation r̂ is (+,−,−) and the scalar curvature ρ = −μ+16
2ν is

strictly negative.

Suppose that the metric 〈, 〉 is associated with the matrix

⎡⎣ 1 1
2

0
1
2

1 0
0 0 ν

⎤⎦ with ν > 0. Note that

〈X, X〉 = 〈Y, Y 〉 = 1, 〈X, Y 〉 =
1
2
, 〈Z, Z〉 = ν, 〈X, Z〉 = 〈Y, Z〉 = 0.

Taking Y1 = 1√
ν
Z, Y2 = X, Y3 = 1√

3
X − 2√

3
Y, they form an orthonormal basis and satisfy

[Y1, Y2] =
1

2
√

ν
Y2 −

√
3

2
√

ν
Y3, [Y1, Y3] = −

√
3

2
√

ν
Y2 +

3
2
√

ν
Y3, [Y2, Y3] = 0.

With respect to the basis {Y1, Y2, Y3}, the associated matrix of the Ricci transformation r̂ is of the form

[r̂] =

⎡⎢⎢⎢⎢⎢⎢⎣
−4

ν
0 0

0 −1
ν

√
3

ν

0
√

3
ν

−3
ν

⎤⎥⎥⎥⎥⎥⎥⎦ .

Thus the principal Ricci curvatures are

r1 = 0, r2 = r3 = −4
ν
.

Therefore the signature of the Ricci transformation r̂ is (0,−,−), and the scalar curvature

ρ = r(Y1) + r(Y2) + r(Y3) = −8
ν

is strictly negative.

Corollary 5.7 The sectional curvatures on G0 for the metric

⎡⎣1 0 0
0 μ 0
0 0 ν

⎤⎦ or

⎡⎣ 1 1
2

0
1
2

1 0
0 0 ν

⎤⎦ with μ, ν > 0 are

κ(X, Y ) =

{ μ

4ν
,

0,
κ(Y, Z) =

⎧⎪⎨⎪⎩
μ − 16

4ν
,

−5
2ν

,

κ(Z, X) =

⎧⎪⎨⎪⎩
−3μ

4ν
,

−1
ν

.

Theorem 5.8 (Case: c = 1) The Ricci transformation for G1 has signature (+,−,−), (0,−,−) or (−,−,−)
depending on the choice of left invariant metric which is equivalent up to automorphism to a metric whose
associated matrix is of the form⎡⎣1 0 0

0 μ 0
0 0 ν

⎤⎦ or

⎡⎣1 λ 0
λ 1 0
0 0 ν

⎤⎦
where 0 < λ < 1, 0 < μ ≤ 1 and ν > 0; and the scalar curvature is always strictly negative.
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P r o o f. Suppose that the metric 〈, 〉 is associated with the matrix

⎡⎣1 0 0
0 μ 0
0 0 ν

⎤⎦ with 0 < μ ≤ 1, ν > 0. Then

by Lemma 5.3, the signature of the Ricci transformation r̂ is (+,−,−) and the scalar curvature ρ = − (μ−1)2+16μ
2μν

is strictly negative.

Suppose that the metric 〈, 〉 is associated with the matrix

⎡⎣1 λ 0
λ 1 0
0 0 ν

⎤⎦ with 0 < λ < 1, ν > 0. Note that

〈X, X〉 = 〈Y, Y 〉 = 1, 〈X, Y 〉 = λ, 〈Z, Z〉 = ν, 〈X, Z〉 = 〈Y, Z〉 = 0.

Taking Y1 = 1√
ν
Z, Y2 = X, Y3 = − λ√

1−λ2 X + 1√
1−λ2 Y, they form an orthonormal basis and satisfy

[Y1, Y2] =
λ√
ν

Y2 +
√

1 − λ2

√
ν

Y3, [Y1, Y3] = − (1 − λ)2√
(1 − λ2)ν

Y2 +
2 − λ√

ν
Y3, [Y2, Y3] = 0.

With respect to the basis {Y1, Y2, Y3}, the associated matrix of the Ricci transformation r̂ is of the form

[r̂] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− 4
(1 + λ)ν

0 0

0 − 4
(1 + λ)ν

− 2(1 − λ)√
1 − λ2ν

0 − 2(1 − λ)√
1 − λ2ν

− 4
(1 + λ)ν

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus the principal Ricci curvatures are

r1 = −2
(
(1 + λ) −√

2(1 − λ)
)

(1 + λ)ν
, r2 = −2

(
(1 + λ) +

√
2(1 − λ)

)
(1 + λ)ν

, r3 = − 4
(1 + λ)ν

.

Note that r1 > 0, = 0, < 0 if and only if λ <
√

5 − 2, =
√

5 − 2, >
√

5 − 2, respectively, and r2 < 0, r3 < 0.
Therefore the signature of the Ricci transformation r̂ is (+,−,−),(0,−,−) or (−,−,−). In particular, the scalar
curvatures

ρ = r(Y1) + r(Y2) + r(Y3) = −4(2 + λ)
(1 + λ)ν

is strictly negative.

Corollary 5.9 The sectional curvatures on G1 for the metric

⎡⎣1 0 0
0 μ 0
0 0 ν

⎤⎦ or

⎡⎣1 λ 0
λ 1 0
0 0 ν

⎤⎦ with 0 < λ < 1, 0 <

μ ≤ 1, ν > 0 are

κ(X, Y ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − μ)2

4μν

−2λ(1 − λ)

ν
√

1 − λ2
,

κ(Y, Z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ2 − 14μ − 3

4μν

−4 − 2λ − 4λ2 + 4λ3

(1 + λ)ν
,

κ(Z, X) =

⎧⎪⎪⎨⎪⎪⎩
(1 − μ)(1 + 3μ)

4μν

− 2λ

ν(1 + λ)
.

Theorem 5.10 (Case: c > 1) The Ricci transformation for Gc with c > 1 has signature (+,−,−), (0,−,−)
or (−,−,−) depending on the choice of left invariant metric which is equivalent up to automorphism to a metric
whose associated matrix is of the form⎡⎣1 1 0

1 μ 0
0 0 ν

⎤⎦
where 1 < μ ≤ c and ν > 0; and the scalar curvature is always strictly negative.
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P r o o f. Assume that the metric 〈 , 〉 is associated with the matrix

⎡⎣1 1 0
1 μ 0
0 0 ν

⎤⎦ with 1 < μ ≤ c, ν > 0. Note

that

〈X, X〉 = 〈X, Y 〉 = 1, 〈Y, Y 〉 = μ, 〈Z, Z〉 = ν, 〈X, Z〉 = 〈Y, Z〉 = 0.

Taking Y1 = 1√
ν
Z, Y2 = X, Y3 = − 1√

μ−1
X + 1√

μ−1
Y, they form an orthonormal basis and satisfy

[Y1, Y2] =
1√
ν

Y2 +
√

μ − 1√
ν

Y3, [Y1, Y3] = − c − 1√
(μ − 1)ν

Y2 +
1√
ν

Y3, [Y2, Y3] = 0.

With respect to the basis {Y1, Y2, Y3}, the associated matrix of the Ricci transformation r̂ is of the form

[r̂] =

⎡⎢⎢⎢⎢⎢⎢⎣
− (c − μ)2 + 4(μ − 1)

2(μ − 1)ν
0 0

0 −μ2 + 2μ − c2 + 2c − 4
2(μ − 1)ν

c − μ√
μ − 1ν

0
c − μ√
μ − 1ν

μ2 − 6μ − c2 + 2c + 4
2(μ − 1)ν

⎤⎥⎥⎥⎥⎥⎥⎦ .

Thus the principal Ricci curvatures are

r1 = −4(μ − 1) − (c − μ)
√

(c − μ)2 + 2c(μ − 1)
2(μ − 1)ν

,

r2 = −4(μ − 1) + (c − μ)
√

(c − μ)2 + 2c(μ − 1)
2(μ − 1)ν

,

r3 = − (c − μ)2 + 4(μ − 1)
2(μ − 1)ν

.

Note that r1 > 0, = 0, < 0 if and only if

μ >
√

c2 + 4 −
√

4 + 2c − 2
√

c2 + 4, =
√

c2 + 4 −
√

4 + 2c − 2
√

c2 + 4, <
√

c2 + 4 −
√

4 + 2c − 2
√

c2 + 4,

respectively, and r2 < 0, r3 < 0. Therefore the signature of the Ricci transformation r̂ is (+,−,−), (0,−,−)
or (−,−,−), and the scalar curvature

ρ = r(Y1) + r(Y2) + r(Y3) = − (μ − c)2 + 12(μ − 1)
2(μ − 1)ν

is strictly negative.

Corollary 5.11 The sectional curvatures for the metric

⎡⎣1 1 0
1 μ 0
0 0 ν

⎤⎦ with 0 < μ < c and ν > 0 on Gc where

c > 1 are

κ(X, Y ) =
c2 − 2cμ + μ2 − 4μ + 4

4ν
√

μ − 1
,

κ(Y, Z) =
(4 − 3μ)c2 + 2c(μ2 + 2μ − 4) + μ(μ2 − 12μ + 12)

4μν(μ − 1)
,

κ(Z, X) = −c2 + 2cμ − 3μ2 − 4c + 4
4ν(μ − 1)

.
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Theorem 5.12 (Case: 0 < c < 1) The Ricci transformation for Gc with 0 < c < 1 has signature (+,−,−),
(0,−,−) or (−,−,−) depending on the choice of left invariant metric which is equivalent up to automorphism
to a metric whose associated matrix is of the form⎡⎢⎢⎢⎢⎣

1 + z

−2cz

1
−2z

0

1 − z

2cz

1
2z

0

0 0 1

⎤⎥⎥⎥⎥⎦
t ⎡⎢⎣1 μ 0

μ 1 0

0 0 ν

⎤⎥⎦
⎡⎢⎢⎢⎢⎣

1 + z

−2cz

1
−2z

0

1 − z

2cz

1
2z

0

0 0 1

⎤⎥⎥⎥⎥⎦
where z =

√
1 − c, 0 ≤ μ < 1 and ν > 0; and the scalar curvature is always strictly negative.

P r o o f. Assume that the metric 〈, 〉 is associated with the matrix⎡⎢⎢⎢⎢⎣
1 + z

−2cz

1
−2z

0

1 − z

2cz

1
2z

0

0 0 1

⎤⎥⎥⎥⎥⎦
t ⎡⎢⎣1 μ 0

μ 1 0

0 0 ν

⎤⎥⎦
⎡⎢⎢⎢⎢⎣

1 + z

−2cz

1
−2z

0

1 − z

2cz

1
2z

0

0 0 1

⎤⎥⎥⎥⎥⎦
with z =

√
1 − c, 0 ≤ μ < 1 and ν > 0. Let {X1, X2, X3} be the basis for gc given in Remark 3.14, i.e.,

X1 = −cX + (1 − z)Y, X2 = −cX + (1 + z)Y, X3 = Z

where z =
√

1 − c. Note that

[X1, X2] = 0, [X3, X1] =
(
1 −√

1 − c
)
X1, [X3, X2] =

(
1 +

√
1 − c

)
X2.

With respect to the basis {X1, X2, X3}, the metric 〈 , 〉 is associated with the matrix

⎡⎣1 μ 0
μ 1 0
0 0 ν

⎤⎦ with 0 ≤ μ < 1,

ν > 0. Note that

〈X1, X1〉 = 〈X2, X2〉 = 1, 〈X1, X2〉 = μ, 〈X3, X3〉 = ν, 〈X1, X3〉 = 〈X2, X3〉 = 0.

Taking Y1 = 1√
ν
X3, Y2 = X1, Y3 = μ√

1−μ2
X1 − 1√

1−μ2
X2, they form an orthonormal basis and satisfy

[Y1, Y2] =
1 −√

1 − c√
ν

Y2,

[Y1, Y3] = − 2
√

1 − cμ√
(1 − μ2)ν

Y2 +
1 +

√
1 − c√
ν

Y3,

[Y2, Y3] = 0.

With respect to the basis {Y1, Y2, Y3}, the associated matrix of the Ricci transformation r̂ is of the form

[r̂] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2
(
2 − c − μ2

)(
1 − μ2

)
ν

0 0

0 −2
(
1 −√

1 − c − (2 −√
1 − c − c)μ2

)(
1 − μ2

)
ν

−2μ
(
1 −√

1 − c − c
)√

1 − μ2ν

0 −2μ
(
1 −√

1 − c − c
)√

1 − μ2ν
−2

(
1 +

√
1 − c − (

√
1 − c + c)μ2

)(
1 − μ2

)
ν

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus the principal Ricci curvatures are

r1 = −
2
((

1 − μ2
)−√

(1 − c)
(
1 − cμ2

))(
1 − μ2

)
ν

,
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r2 = −
2
((

1 − μ2
)

+
√

(1 − c)
(
1 − cμ2

))(
1 − μ2

)
ν

,

r3 = −2
(
2 − c − μ2

)(
1 − μ2

)
ν

.

Note that r1 > 0, = 0, < 0 if and only if

μ >

√
2 − (1 − c)

(
c +

√
c2 + 4

)
2

, =

√
2 − (1 − c)

(
c +

√
c2 + 4

)
2

, <

√
2 − (1 − c)

(
c +

√
c2 + 4

)
2

,

respectively, and r2 < 0, r3 < 0. Therefore the signature of the Ricci transformation r̂ is (+,−,−), (0,−,−) or
(−,−,−), and the scalar curvature

ρ = r(Y1) + r(Y2) + r(Y3) = −2(4 − c − 3μ2)
(1 − μ2)ν

is strictly negative.

Corollary 5.13 The sectional curvatures on Gc where 0 < c < 1 for the metric

⎡⎢⎢⎢⎣
1 + z

−2cz

1
−2z

0

1 − z

2cz

1
2z

0

0 0 1

⎤⎥⎥⎥⎦
t ⎡⎢⎣1 μ 0

μ 1 0

0 0 ν

⎤⎥⎦
⎡⎢⎢⎢⎢⎣

1 + z

−2cz

1
−2z

0

1 − z

2cz

1
2z

0

0 0 1

⎤⎥⎥⎥⎥⎦
with z =

√
1 − c, 0 ≤ μ < 1 and ν > 0 are

κ(X, Y ) =
μ2 − c

ν
√

1 − μ2
,

κ(Y, Z) =
4(1 −√

1 − c − c)μ4 + (−1 + 6
√

1 − c + 2c)μ2 − (1 +
√

1 − c)2

ν(1 − μ2)
,

κ(Z, X) =
(3 − 2

√
1 − c − 2c)μ2 − (1 −√

1 − c)2

ν(1 − μ2)
.
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