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Abstract. We provide the explicit solutions of linear, left-invariant, diffusion equa-

tions and the corresponding resolvent equations on the 2D-Euclidean motion group

SE(2) = R2 ⋊ T. These parabolic equations are forward Kolmogorov equations for

well-known stochastic processes for contour enhancement and contour completion. The

solutions are given by group convolution with the corresponding Green’s functions. In

earlier work we have solved the forward Kolmogorov equations (or Fokker-Planck equa-

tions) for stochastic processes on contour completion. Here we mainly focus on the

forward Kolmogorov equations for contour enhancement processes which do not include

convection. We derive explicit formulas for the Green’s functions (i.e., the heat kernels

on SE(2)) of the left-invariant partial differential equations related to the contour en-

hancement process. By applying a contraction we approximate the left-invariant vector

fields on SE(2) by left-invariant generators of a Heisenberg group, and we derive suit-

able approximations of the Green’s functions. The exact Green’s functions are used in

so-called collision distributions on SE(2), which are the product of two left-invariant

resolvent diffusions given an initial distribution on SE(2). We use the left-invariant evo-

lution processes for automated contour enhancement in noisy medical image data using
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256 REMCO DUITS AND ERIK FRANKEN

a so-called orientation score, which is obtained from a grey-value image by means of a

special type of unitary wavelet transformation. Here the real part of the (invertible)

orientation score serves as an initial condition in the collision distribution.

1. Introduction. In many medical imaging applications, elongated structures (such

as catheters, blood vessels and collagen fibres) appear only partially and vaguely in noisy

medical image data, [30]. It is often desirable to process these images such that crossing

elongated structures become more visible before actual detection takes place. Due to

occlusions, small parts of these line or edge-like structures may not be clearly visible,

requiring contour completion, [47, 57, 6, 2], [20]. Furthermore, the acquisition of, for

example, X-ray images is harmful to a patient. Therefore, the radiation dose is reduced

as much as possible, which leads to very noisy images. Such images typically require

contour enhancement, [30, 10], where the aim is to make the elongated structures more

visible while reducing the noise. In this article we will consider operators for contour

enhancement, using diffusion equations on the noncommutative group SE(2) of planar

translations and rotations. Rather than designing operators directly on images we first

construct invertible orientation scores which are complex-valued functions on SE(2), see

Figures 1 and 3, and process the image via these invertible orientation scores, see Figure

2. This approach has the practical advantage that we can handle crossing curves.

First we consider the construction of an orientation score. Image analysis usually starts

with the sampling of an image f ∈ L2(R
2) by a function ψ ∈ L2(R

2) via f �→ (ψ, f)L2(R2).

To probe an image at every location x ∈ R2 and in every direction eiθ one translates and

rotates an anisotropic wavelet ψ. Here directions eiθ are elements of the torus T. This

commutative group T is the unit sphere (the set S1) in C equipped with the product

eiθeiθ
′
= ei(θ+θ′). The result of such an image sampling is a function Wψf ∈ L2(SE(2))

on the Euclidean motion group manifold SE(2) = R2 ⋊ T, which is given by

Wψf(g) =

∫

R2

ψ(R−1
θ (y− x))f(y) dy, (1.1)

where g = (x, eiθ) ∈ SE(2) = R2 ⋊ T, Rθ =
(

cos θ − sin θ

sin θ cos θ

)
∈ SO(2). Note that the

mapping f �→ Wψf is a mapping from L2(R
2) into L2(SE(2)). Throughout this article

we refer to function Wψf as the orientation score of image f ; see Figure 1.

The generation of orientation scores and the reconstruction of images thereof has been

the subject of previous publications, [14, 15, 18, 37]. In Section 2 and Appendix A we will

provide an overview, containing new results on, respectively, the differences with standard

wavelet theory and connections to Fourier theory on SE(2). In previous work we have

shown, [14, Thm. 18, App. 7.2], [12, 16, 15], that Wψ is a unitary transformation of

L2(R
2) onto the unique [5] reproducing kernel space C

SE(2)
K consisting of complex-valued

functions on SE(2) with reproducing kernel K(g, h) = (Ugψ,Uhψ)L2(R2), where

Ugψ(y) = ψ(R−1
θ (y− x)) (1.2)

for all g = (x, eiθ) ∈ SE(2). This reproducing kernel space is the space of orientation

scores and equals the range of Wψ. However, in Section 2 we will show that only for

a proper choice of (distributions) ψ does the norm on this reproducing kernel space (of
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Fig. 1. Illustration of an example image (left) f : R2 → R, mapping
to a given position (x, y) ∈ R2 to a grey-value f(x, y) ∈ R, and an iso-
intensity surface (right) {(x, y, eiθ) ∈ SE(2) : |Wψf(x, y, e

iθ)| = c}
of the absolute value |Wψf | of an orientation score Wψf : SE(2) →

C, mapping an element (x, y, eiθ) ∈ SE(2) to a complex number
Wψf(x, y, e

iθ) ∈ C. Here we have set the constant c > 0 slightly
smaller than max

g∈SE(2)
|Wψf(g)|.

Processed
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Processed
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Image Orientation Score

Fig. 2. A brief schematic view on image processing via invertible
orientation scores. Throughout this article we shall consider suitable
operators for contour enhancement based on left-invariant parabolic
evolutions on SE(2). Here in part I we consider operators Φ based
on linear left-invariant operators, whereas in part II, [22], we shall
consider Φ as a nonlinear left-invariant evolution operator.

orientation scores), for details see [14, ch:4.4, p.120], coincide with the natural restriction

of the L2-norm to the closed subspace of all orientation scores.

This is important since then a small pertubation on an image corresponds to a small

pertubation on its orientation score and vice versa, and consequently operators Φ on the

space of orientation scores are robustly and 1-to-1 related to operators Υψ on images by

Υψ = W∗
ψ ◦ Φ ◦Wψ. (1.3)

To get a first quick impression of our scheme, see Figure 2.

Now the wavelet transformation Wψ between the image f and the orientation score

Wψf intertwines the left regular unitary representations U , L of the 2D Euclidean motion

group SE(2) on, respectively, L2(R
2) and L2(SE(2)) and consequently, the effective

operator on an image Υψ := W∗
ψ ◦ Φ ◦ Wψ is Euclidean invariant iff the corresponding

operator Φ on the orientation score is left-invariant, [14, Thm. 21, p.153]. So this means
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that an operator on an orientation score must commute with left actions of the Euclidean

motion group in order to obtain a Euclidean invariant operator on the image.

As a particular class of left-invariant operators we consider in section 3 all linear,

second-order, left-invariant evolution equations and their resolvents on L2(R
2⋊T), which

correspond to the forward Kolmogorov (or Fokker-Planck) equations of left-invariant

stochastic processes on the Euclidean motion group SE(2) ≡ R2 ⋊ T. The solutions

W (g, s) = esAW (g, 0) of these linear evolution equations represent the probability den-

sity of finding a random walker at position g with traveling time s > 0, given some

initial distribution g �→ W (g, 0). The solutions Pα(g) = α(αI − A)−1W (g, 0) of the

corresponding resolvent equations (obtained from W (g, s) by a Laplace transform over

time) represent the probability density of finding a random walker at position g regard-

less of its traveling time, but again given the initial distribution g �→ W (g, 0). Here the

traveling time s > 0 is memoryless and therefore negatively exponential distributed with

expectation α−1 > 0.

We stress however that just linear left-invariant diffusions themselves (without com-

bining them with grey-value transformations) are of no use on orientation scores, since

if the operator Φ on an orientation score is linear, bounded and left-invariant, the net

operator Υψ on an image is an isotropic convolution. To this end we simply note that if

Φ is linear and left-invariant, then Υψ is linear, bounded, and Euclidean invariant. So by

the Dunford-Pettis theorem, [11], Υψ is a translation rotation-invariant kernel operator,

which must be a convolution with an isotropic kernel, [17], and in such a trivial case,

orientation scores are not needed. Instead of considering linear left-invariant diffusions

we consider direct products of linear left-invariant evolution equations which are collision

distributions of two linear stochastic processes. So these nonlinear operators on orienta-

tion scores boil down to solving linear, left-invariant, evolution equations. We distinguish

between two types of stochastic processes on the Euclidean motion group:

(1) Stochastic processes for contour completion, including the direction process as

proposed by Mumford [47].

(2) Stochastic processes for contour enhancement, including the cortical model of

the visual system for contour enhancement as proposed by Citti et al. [10].

The mathematical difference between these two types of stochastic processes is that the

generator of the forward Kolmogorov equation of stochastic processes of the first type, in

contrast to the forward Kolmogorov equations of stochastic processes of the second type,

contains a convection part that fills and bridges gaps in lines and contours; see [20], Fig.

1, Ch: 1 for two typical examples.

The intuitive difference between contour enhancement and completion in image anal-

ysis is that contour enhancement aims for robust de-noising of elongated structures as a

pre-processing step for detection of elongated structures in noisy images, whereas contour

completion aims for completion of interrupted curves due to, for example, occlusion or

due to the application of thresholds on grey-levels. The difference between enhancement

and completion will clearly be reflected in both the trajectories of the random walks in

the underlying stochastic processes, Figure 5, and in the shape of iso-contours of the

Green’s functions, Figures 7 and 9.
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In this article we mainly consider linear and nonlinear stochastic processes for contour

enhancement, in contrast to our related earlier work [20], where we considered stochastic

processes for contour completion, [20, 2, 14]. Occasionally, we will briefly return to the

contour completion process to stress the analogy and differences between (the solutions

of) the forward Kolmogorov equations of the contour completion and contour enhance-

ment processes. In comparison to [20] we will provide much more detailed information in

Section 2 on the framework of invertible orientation scores, including new results on both

the embedding in standard wavelet theory and Fourier theory on SE(2) in Appendix A.

Section 2 serves as an essential prerequisite for contour enhancement in images, which

we consider in Sections 3, 4. Here we put much more emphasis on both the underlying

(discrete) stochastic processes and the Hörmander condition. Finally, we present a bet-

ter connection (compared to our earlier work on contour completion [20]) of the exact

solutions to the Heisenberg approximations [20] by means of contraction, [52].

In Section 4 we restrict ourselves to direct products of two linear left-invariant re-

solvent diffusions on SE(2) as suitable operators for contour enhancement on invertible

orientation scores. These direct products are the probability density of collision of ori-

ented grey-value particles moving from a source distribution, with oriented grey-value

particles of a sink distribution. In the context of contour completion this is a well-known

technique in image analysis, [59]. In this article, however, we apply this technique to

contour enhancement and restrict ourselves to the case where both the sink and source

distribution are equal to the real part of an orientation score of the input image. Al-

though the nonlinear adaptive left-invariant diffusion equations, which we discuss in part

II of our article, applied to invertible orientation scores seem to lead to visually more

appealing results of enhancing elongated structures in noisy medical image data, we con-

sider these products of linear evolutions for three reasons. Firstly, they are easier to

implement, secondly they involve fewer parameters, and thirdly they are much easier to

analyse.

The solutions of the linear left-invariant evolution equations are given by SE(2)-

convolution with the corresponding Green’s function. As explicit formulae for the Green’s

functions for contour enhancement (i.e., the heat kernels on SE(2)) were missing in our

earlier work [20], we explicitly derive them in Section 5. Here we follow two approaches,

comparable to our two approaches in [20], where we derived the exact Green’s functions

of Mumford’s direction process, [47]. Both approaches are described in Subsection 5.1.

Then in Subsection 5.2 we approximate (analogously to [20, ch: 4.3]) the left-invariant

basis of the Euclidean group generators by left-invariant generators of a Heisenberg-type

group. The resulting equations render simple, analytic approximations, which do not

exactly coincide with the closely related approximations derived in [10].

In Subsection 5.3 we apply the results by Hörmander [36] and provide stochastic

insight in the induced smoothing in the “missing” directions in the diffusion processes

on SE(2) generated by hypo-elliptic (not elliptic) operators. We also explain why the

singular behavior that occurred in the Heisenberg approximation of the Green’s function

of the contour completion [20, ch: 4.3] does not occur in the contour-enhancement case.
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Finally, in Section 5.4 we also provide Gaussian estimates and new practical, accurate,

asymptotic formulas for both the exact and the approximative Green’s functions of the

contour-enhancement process in Subsection 5.4.

2. Invertible orientation scores. In many image analysis applications a func-

tion Uf ∈ L2(SE(2)) defined on the 2D Euclidean motion group SE(2) = R2 ⋊ T is

constructed from a 2D grey-value image f ∈ L2(R
2). Such a function is supposed to pro-

vide an overview of all local orientations in an image. This is important for perceptual

organization, [37, 28, 44, 18, 15, 56, 7] and is inspired by the visual system of mam-

mals, in which receptive fields exist that are tuned to various locations and orientations,

[8]. In addition to the approach given in the introduction there exist many other ways,

[6, 24, 28, 44] and [14, Ch.5], to construct a function Uf : R2 ⋊ T → C from an image

f : R2 → R, but usually these approaches do not consider the stability of the inverse

transformation Uf �→ f .

In this section we consider the case Uf = Wψf , as is given in the introduction (1.1).

This case leads to the framework of invertible orientation scores, which we developed in

previous work, [14, 18, 15], and which we summarize here. Moreover, we will provide a

better view on our previous results in Appendix A.

An orientation score Wψf : R2 ⋊ T → C of an image f : R2 → R is obtained by

correlation with an anisotropic kernel ψ : R2 → C via (1.1). Assume ψ ∈ L2(R
2)∩L1(R

2).

Then the transform Wψ, cf. (1.1), which maps image f ∈ L2(R
2) onto its orientation

score Wψf ∈ L2(R
2 ⋊ T) can be rewritten, in inner product form, as

(Wψf)(g) = (Ugψ, f)L2(R2),

where g �→ Ug is a unitary (group) representation of the Euclidean motion group SE(2) =

R2 ⋊ T into L2(R
2) given by (1.2). Note that the representation U is reducible as it

leaves the following closed subspaces invariant: {f ∈ L2(R
2) | supp {F [f ]} ⊂ B0,̺},

̺ > 0, where B0,̺ denotes the ball with center 0 ∈ R2 and radius ̺ > 0 and where

F : L2(R
2) → L2(R

2) denotes the Fourier transform given by

Ff(ω) =
1

2π

∫

R2

f(x)e−iω·x dx, (2.1)

for almost every ω ∈ R2 and all f ∈ L2(R
2). This differs from standard continuous

wavelet theory; see, for example, [39] and [4], where the wavelet transform is constructed

by means of a quasi-regular representation of the similitude group SIM(2)=R2 ⋊ T× R+,

which is unitary, irreducible and square integrable (admitting the application of the

more general results in [33]). For image analysis this means that we do allow a stable

reconstruction already at a single scale orientation score for a proper choice of ψ. In

standard continuous wavelet reconstruction schemes with ψ ∈ L2(R
2) ∩ L1(R

2) and

Wψf(x, e
iθ, a) =

(
V(x,eiθ,a)ψ, f

)
L2(R2)

, (2.2)

with irreducible representation V : SIM(2) → B(L2(R
2)) given by

V(x,eiθ,a)ψ(y) =
1

a
ψ(a−1R−1

θ (y− x)), (2.3)
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however, it is not possible to obtain an image f in a well-posed manner from a “fixed

scale layer”, that is, from Wψf(·, ·, a) ∈ L2(R
2 ⋊ T), for fixed scale a > 0.

This shortcoming in the standard wavelet theoretical framework directly follows from

the fact that the standard necessary and sufficient wavelet admissibility condition

Cψ =
1

(ψ, ψ)

∫

SIM(2)

|(Vgψ, ψ)|2dμSIM(2)(g) < ∞, (2.4)

where dμSIM(2) denotes the left-invariant Haar measure on SIM(2), allowing stable

reconstruction of f from Wψf ∈ L2(SIM(2)) via the L2-adjoint (i.e., f = W ∗
ψWψf)

conflicts with the necessary and sufficient condition, [14], [31],

MDaψ(ω) :=

∫

SO(2)

|Fψ(a RT
θ ω)|2dθ = 1 for all ω ∈ R2, (2.5)

for some fixed a > 0 for stable reconstruction of f from Wψf(·, ·, a) ∈ L2(SE(2)) via the

adjoint f = (Wψ(·, ·, a))∗Wψf(·, ·, a). Here the unitary dilation operator Da is given by

Daψ(x) = a−1ψ(a−1x), a > 0, x ∈ R2, ψ ∈ L2(R
2).

To this end we note that by a brief and well-known calculation (for details see, for

example, [41, pp. 52, 53]) equality (2.4) is equivalent to

Cψ = 4π2

∫

R2

|Fψ(ω)|2
‖ω‖2 dω < ∞,

so that it implies Fψ(0) = 0 and thereby the continuous function Mψ vanishes at 0. So

clearly, condition (2.5) cannot be satisfied.1 See Example 2.1.

Moreover, the general wavelet reconstruction results [33] do not apply to the transform

f �→ Wψf , since our representation U is reducible. In earlier work we therefore provided

a general theory [14], [12], to construct wavelet transforms associated with admissible

vectors/ distributions.2 With these wavelet transforms we construct orientation scores

Wψf : R2⋊T → C by means of admissible line detecting wavelets3 ψ ∈ L2(R
2) such that

the transform Wψ is unitary onto the unique reproducing kernel Hilbert space C
SE(2)
K

of functions on SE(2) with reproducing kernel K(g, h) = (Ugψ,Uhψ), which is a closed

vector subspace of L2(SE(2)). For the abstract construction of the unique reproducing

kernel space CI
K on a set I (not necessarily a group) from a function of positive type

K : I × I → C, we refer to the early work of Aronszajn [5]. Here we only provide the

essential Plancherel formula, which can also be found in a slightly different way in the

work of Führ [31], for the wavelet transform Wψ and which provides a more tangible

description of the norm on C
SE(2)
K rather than the abstract one in [5]. To this end we

note that we can write

(Wψf)(x, e
iθ) = (U(x,eiθ)ψ, f)L2(R2) = (FTxRθψ,Ff)L2(R2) = F−1(RθFψ · Ff)(x) ,

1For well-posed reconstruction it is not necessary to have reconstruction by the L2-adjoint. In prin-
ciple for Mψ bounded from below and above one may use the inverse (2.8) (which is the adjoint if we
impose the reproducing kernel norm on orientation scores, [14, pp. 123-124, Thm. 19]), but even then
the inverse (2.8) is ill-posed as Mψ is not globally bounded from below.

2Depending on whether images are assumed to be band-limited or not; for full details, see [13].
3Or rather admissible distributions ψ ∈ H−(1+ǫ),2(R2), ǫ > 0 if one does not want a restriction to

band-limited images.
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where the rotation and translation operators on L2(R
2) are defined byRθf(y) = f(R−1

θ y)
and Txf(y) = f(y− x). Consequently, we find that

‖Wψf‖2
C
SE(2)
K

=

∫

R2

∫

T

|(FWψf)(ω, e
iθ)|2dθ 1

Mψ(ω)
dω

=

∫

R2

∫

T

|(Ff)(ω)|2|Fψ(RT
θ ω)|2dθ 1

Mψ(ω)
dω

=

∫

R2

|(Ff)(ω)|2dω = ‖f‖2L2(R2),

(2.6)

where Mψ ∈ C(R2,R) is defined by

Mψ(ω) :=

∫ 2π

0

|Fψ(RT
θ ω)|2dθ. (2.7)

If ψ is chosen such that Mψ = 1, then by (2.6) we gain L2-norm preservation. However,

this is not possible as ψ ∈ L2(R
2) ∩ L1(R

2) implies that Mψ is a continuous function

vanishing at infinity. Now, theoretically speaking, one can use a Gelfand-triple structure

generated by
√
1 + |Δ| to allow distributional wavelets ψ ∈ H−k(R2), k > 1 with the

propertyMψ = 1, so that ψ has equal length in each irreducible subspace (which uniquely

corresponds to the dual orbits of SO(2) on R2); for details see Appendix A, and for

generalizations see [13]. In practice, however, because of finite grid sampling, we can as

well restrict U (which is well-defined) to the space of band-limited images.

Finally, since the wavelet transform Wψ maps the space of images L2(R
2) unitarily4

onto the space of orientation scores C
SE(2)
K (provided thatMψ > 0), [14, Thm. 18], we can

reconstruct the original image f : R2 → R from its orientation score Wψf : SE(2) → C

by means of the adjoint

f = W∗
ψWψ[f ] = F−1

[
ω �→

∫ 2π

0

F [Wψf(·, eiθ)](ω) F [Reiθψ](ω) dθ M−1
ψ (ω)

]
. (2.8)

For typical examples (and different classes) of wavelets ψ such that Mψ = 1 and for

details on fast approximative reconstructions, see [29, 15, 16]. For an illustration of a

typical proper wavelet ψ (i.e., Mψ ≈ 1) with corresponding transformation Wψf and

corresponding Mψ : R2 → R+, see Figure 3.

With this well-posed unitary transformation between the space of images and the

space of orientation scores at hand, we can perform image processing via orientation

scores; see [15, 16, 18, 37]. For the remainder of the article we assume that Wψf is some

given function in L2(SE(2)) and we write Wψf ∈ L2(SE(2)) rather than Wψf ∈ C
SE(2)
K .

4To be precise: According to [5], [46], the norm on the space C
SE(2)
K with reproducing kernel

K(g, h) = (Ugψ,Uhψ) is given by

‖U‖2
C
SE(2)
K

= sup

⎧
⎨
⎩
∣∣∣

l∑

j=1

αjU(gj)
∣∣∣
2( l∑

k,j=1

αkαjK(gk, gj)
)−1∣∣∣ l ∈ N, αj ∈ C, gj ∈ SE(2),

l∑

k,j=1

αkαjK(gk, gj) �= 0

⎫
⎬
⎭ .

Now according to our previous more general results in [14, Thm. 18, appendix 7.2], [12], Wψ :

L2(R2) → C
SE(2)
K is unitary. Now by (2.6) a more tangible description of the same norm is given by

‖U‖2
C
SE(2)
K

=
∫
R2

∫
T
|FR2U(·, θ)(ω)|2dθ Mψ(ω)

−1dω. This norm equals the L2(SE(2)) norm iff Mψ = 1.
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Example 2.1. Consider ψ(x, y) = ψ̌(−x,−y), with

ψ̌(x, y) =
1√
π
ze−

|z|2
2 =

1√
π

2 ∂z e
− |z|2

2 =
1√
π
(∂x − i∂y) e

− x2+y2

2 , z = x+ i y. (2.9)

A direct computation yields Cψ = 4π2, so ψ is admissible in the classical sense. Then

according to [33] the reconstruction is given by

f = W ∗
ψWψf = 1

Cψ

∫ π

−π

∫

R+

∫

R

(Wψf)(b, a, e
iθ)Ub,a,θψ (2πa3)−1 db da dθ

= 1
4π2

∫ ∞

0

∫ π

−π

f ∗ DaRθψ̌ ∗ DaRθψ (2πa3)−1dadθ.

(2.10)

However, a reconstruction from a single scale layer, that is, a reconstruction of f from

Wψf(a, ·, ·) by means of (2.8) is extremely ill-posed as we have MDaψ(ω) = ρ2e−(aρ)2 ,

for a > 0 fixed. This example (2.9) is special since the solution of the following diffusion

problem (in image analysis known as Gaussian scale space, [49, 38, 26, 17]):
{

∂su(x, y, s) = Δx,y u(x, y, s) = ((∂2
x + ∂2

y) u)(x, y, s) , (x, y) ∈ R2, s > 0,

u(x, y, 0) = f(x, y) ,

is given by u(x, y, s) = (Gs ∗ f)(x, y). Now set scale s = a2 > 0. Then it respectively

follows by Δ = 4∂z∂z, G s
2
∗ G s

2
= Gs, ∂sGs = ΔGs and Rθψ̌ = eiθψ̌ that the wavelet

reconstruction formula (2.10) simply coincides with integration after differentiation of

the semigroup generated by the heat kernel:

f = −
∫ ∞

0

∂s(f ∗Gs) ds = −
∫ ∞

0

(f ∗ΔGs) ds = −4

∫ ∞

0

f ∗ ∂z∂zGs ds

= −2

∫ ∞

0

f ∗ 2∂zG a2

2

∗ 2∂zG a2

2

a da

=
1

4π2

∫ ∞

0

∫ π

−π

f ∗ DaRθψ̌ ∗ DaRθψ (2πa3)−1dadθ = W ∗
ψWψf.

(2.11)

Also in scale space theory a reconstruction of f from uf (·, s) (i.e., inverse diffusion),

s > 0, is clearly ill-posed. A first alternative, as proposed in [37], to (2.9), which does

allow well-posed single scale reconstruction, is given by the pointwise limit:

ψa(x, y) =
1

a
lim

N→∞

N∑

n=0

(z
a

)n e−
|z|2
a2

√
n!

, (2.12)

since it satisfies Mψa
= 1 for all a > 0. But even this choice (2.12) has serious practical

disadvantages (for details, see [14, pp. 141–142, App. 7.3, pp. 222–224]) compared to the

other class of proper wavelets discussed in [14, ch: 4.6.1, pp. 131–136], which we used in

the experiments within this paper; see Figure 3 and Figure 9.

3. Left-invariant evolution equations on the Euclidean motion group. The

group product within the group SE(2) of planar translations and rotations is

gg′ = (x, eiθ)(x′, eiθ
′
) = (x+Rθx

′, ei(θ+θ′)), g = (x, eiθ), g′ = (x′, eiθ
′
) ∈ SE(2),

with Rθ =
(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2). The tangent space at the unity element e = (0, 0, ei0),

Te(SE(2)), is a 3D Lie algebra equipped with Lie product [A,B] =
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Fig. 3. (a) Example image (x, y) �→ f(x, y). (b) The structure of
the domain of the corresponding orientation score Wψ[f ]. The lifted

circles in the example image become spirals and all spirals are situ-
ated in the same helicoid-shaped surface. The absolute value of an
orientation score |Wψf | is mainly concentrated around this surface,
(i.e., |Wψf | attains high values in the direct neighborhood of this

surface). (c) Real part of orientation score (x, y) �→ Wψf(x, y, e
iθ)

displayed for 4 different fixed orientations. (d) The absolute value
(x, y) �→ |Wψf(x, y, e

iθ)| yields a phase-invariant and positive re-
sponse displayed for 4 fixed orientations. (e) Real part of the wavelet

ψ(x) = e
−‖x‖2

4s√
4πs

F−1[ω �→ Bk
(
nθ((φmod 2π)−π

2
)

2π

)
M(ρ)](x), where

M(ρ) = e
− ρ2

2σ2
∑q

k=0(−1)k(2−1σ−2ρ2)k
, with σ = ̺

2
and Nyquist frequency

̺ and k-th order B-spline Bk = B0 ∗k B0 and B0(x) = 1[− 1
2
, 1
2
](x)

and parameter values k = 2, q = 4, 1
2
σ2 = 400, s = 10, nθ = 64. (f)

Imaginary part of ψ. (g) The function |Fψ|2 (h) The function Mψ.
In all images grey-values have been scaled to [0, 1], where 0 is black
and 1 is white.

limt↓0 t−2
(
a(t)b(t)(a(t))−1(b(t))−1 − e

)
, where t �→ a(t), resp. t �→ b(t), are any smooth

curves in G with a(0) = b(0) = e and a′(0) = A and b′(0) = B. Define {A1, A2, A3} :=

{eθ, ex, ey}. Then {A1, A2, A3} form a basis of Te(SE(2)) and their Lie products are

[A1, A2] = A3, [A1, A3] = −A2, [A2, A3] = 0 . (3.1)

A vector field on SE(2) (considered as a differential operator) is called left-invariant if

for all g ∈ G the push-forward of (Lg)∗Xe by left multiplication Lgh = gh equals Xg;

i.e.,

(Xg) = (Lg)∗(Xe) ⇔ Xgf = Xe(f ◦ Lg), for all f ∈ C∞ : Ωg → R, (3.2)

where Ωg is some open set around g ∈ SE(2). Recall that the tangent space at the unity

element e = (0, 0, ei0) is spanned by Te(G) = span{eθ, ex, ey} = span{(1, 0, 0), (0, 1, 0),
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(a) Left-invariance of tangent vectors to curves:

(b) Left-invariance of tangent vectors considered as differential operators:

Fig. 4. Left-invariant vector fields on SE(2), where we both con-

sider the tangent vectors tangent to curves, that is, Xg = c1eθ(g) +
c2eξ(g) + c3eη(g) for all g ∈ SE(2), and as differential operators on

locally defined smooth functions, that is, Xg = c1 ∂θ |g + c2 ∂ξ
∣∣
g
+

c3 ∂η |g for all g ∈ SE(2). We see that the push-forward of the left

multiplication connects the tangent space Te(SE(2)) to all tangent
spaces Tg(SE(2)).

(0, 0, 1)}. By the general recipe of constructing left-invariant vector fields from elements

in the Lie algebra Te(G) (via the derivative of the right regular representation) we get

the following basis for the space L(SE(2)) of left-invariant vector fields:
{A1,A2,A3} = {∂θ, ∂ξ, ∂η} = {∂θ, cos θ ∂x + sin θ ∂y,− sin θ ∂x + cos θ ∂y}, (3.3)

with ξ = x cos θ+y sin θ, η = −x sin θ+y cos θ. More precisely, the left-invariant vector
fields are given by

eθ(x, e
iθ) = eθ, eξ(x, e

iθ) = cos θ ex+sin θ ey, eη(x, e
iθ) =−sin θ ex+cos θ ey, (3.4)

where we identified Tg=(x,eiθ)(R
2, eiθ) with Te(R

2, ei0) and Tg=(x,eiθ)(x,T) with Te(0,T),

by parallel transport (on R2, respectively T). We can always consider these vector fields

as differential operators; see Figure 4. This means that one can always replace ei by ∂i,

i = θ, ξ, η. Summarizing, we see that for left-invariant vector fields, the tangent vector

at g is related to the tangent vector at e by (3.2). Equality (3.2) sets the isomorphism

between Te(SE(2)) and L(SE(2)), as Ai ↔ Ai, i = 1, 2, 3 implies [Ai, Aj ] ↔ [Ai,Aj ],

j = 1, 2, 3; recall (3.1). Moreover it is easily verified that

[A1,A2] = A1A2 −A2A1 = A3, [A1,A3] = −A2, [A2,A3] = 0 .

See Figure 4 for a geometric explanation of left-invariant vector fields, both considered

as tangent vectors to curves in SE(2) and as differential operators on locally defined

smooth functions.
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Next we follow our general theory for left-invariant scale spaces on Lie groups, see
[19], and set the following quadratic form on L(SE(2)):

Q
D,a(A1,A2,A3) =

3∑

i=1

(
−aiAi +

3∑

j=1

DijAiAj

)
, ai, Dij ∈ R, D := [Dij ] ≥ 0, DT = D ,

(3.5)

and consider the only linear left-invariant second-order evolution equations

{
∂sW = QD,a(A1,A2,A3) W ,

W (·, s = 0) = Wψf(·) ,
(3.6)

where W : SE(2) × R+ → C, with corresponding resolvent equations (obtained by a

Laplace transform over s):

P = α(QD,a(A1,A2,A3)− αI)−1Wψf. (3.7)

These resolvent equations are relevant since for the cases a = 0 they correspond to

first-order Tikhonov regularizations on SE(2), [19], [10]. They also have an important

probabilistic interpretation, as we will explain later on in this section.

By our results in [20], the solutions of these left-invariant evolution equations are given

by SE(2)-convolution with the corresponding Green’s function KD,a
s :

W (g, s) = (KD,a
s ∗SE(2) U)(g) =

∫

SE(2)

KD,a
s (h−1g)U(h) dμSE(2)(h),

=

∫

R2

∫ 2π

0

KD,a
s (R−1

θ′ (x− x′), ei(θ−θ′))U(x′, eiθ
′
)dθ′dx′ g = (x, eiθ),

Pα(g) = (Rα,D,a ∗SE(2) U)(g), Rα,D,a = α

∫ ∞

0

KD,a
s e−αsds.

(3.8)

Here α > 0 is the parameter in the Laplace domain, since, at least formally, one has
∫ ∞

0

W (g, s)e−αsds =

∫ ∞

0

esQ
D,a(A1,A2,A3)W (g, 0)e−αs ds

= α(QD,a(A1,A2,A3)− αI)−1W (g, 0) = Pα(g),

which puts the connection between (3.8) and (3.7).

In the special case Dij = δi1δj1, a = (0, 1, 0), our evolution equation (3.6) is the

Kolmogorov equation
{

∂sW (g, s) = (∂ξ +D11∂
2
θ )W (g, s), g ∈ SE(2), s > 0,

W (g, 0) = U(g),
(3.9)

of Mumford’s direction process, [47],
{

X(s) = X(s) ex + Y (s) ey = X(0) +
∫ s
0
cosΘ(τ ) ex + sinΘ(τ ) ey dτ,

Θ(s) = Θ(0) +
√
s
√
2D11 ǫθ, ǫθ ∼ N (0, 1),

(3.10)

for contour completion, the explicit solutions of which we have derived in [20].

In this article, however, we are primarily interested in the explicit solutions of the case

Dij = Diiδij , i, j ∈ {1, 2, 3}, D33 = 0, a = 0 in which case our evolution equation (3.6)
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becomes the forward Kolmogorov equation
{

∂sW (g, s) = (D11(∂θ)
2 +D22(∂ξ)

2)W (g, s) ,

W (g, 0) = Wψf(g)
(3.11)

of the following stochastic process for contour enhancement:
{

X(s) = X(0) +
√
2D22 ǫξ

∫ s
0
(cosΘ(τ ) ex + sinΘ(τ ) ey)

1
2
√
τ
dτ,

Θ(s) = Θ(0) +
√
s
√
2D11 ǫθ,

(3.12)

with the standard normal random variables ǫξ ∼ N (0, 1) and ǫθ ∼ N (0, 1), D11, D22 > 0.

Here we note that contour-completion processes (cf. (3.10)) are designed for com-

pletion of contours due to occlusion, so one prefers a deterministic drift of the oriented

random walker along the preferred positive direction cos(θ)ex + sin(θ)ey in the spatial

plane, whereas contour-enhancement processes (cf. (3.12)) are designed for noise removal

by anisotropic diffusion, in which case the stochastic movement of the oriented random

walker is bi-directional along the span of cos(θ)ex + sin(θ)ey.

In general the evolution equations (3.6) are the forward Kolmogorov equations of all

linear left-invariant stochastic processes on SE(2), as explained in [20, 2]. All these cases

correspond to continuous stochastic processes such as (3.10) and (3.12).
They can be considered as limiting cases of the following discrete stochastic processes

on SE(2):
⎧
⎨
⎩

Gn+1 := (Xn+1,Θn+1) = Gn +∆s
d∑

i=1

ai ei|Gn
+

√
∆s

d∑
i=1

ǫi,n+1

d∑
j=1

σji ej |Gn
,

G0 = (X0,Θ0),

(3.13)

where n = 1, . . . , N − 1, N ∈ N denotes the number of steps with step-size Δs > 0,

σ =
√
2D is the unique symmetric positive (semi)-definite matrix such that σ2 =

2D, {ǫi,n+1}i=1...d,n=1,...N−1 are independent normally distributed ǫi,n+1 ∼ N (0, 1) and

e1|Gn

= (0, 0, 1), e2|Gn
= (cosΘn, sinΘn, 0), e3|Gn

= (− sinΘn, cosΘn, 0).
We wrote the discrete processes in the form (3.13) to stress that the continuous pro-

cesses (3.12) and (3.10) directly arise by recursion and taking the limit N → ∞. In more
explicit form in (x, y, θ)-coordinates they read:

⎛
⎝

Xn+1

Yn+1

Θn+1

⎞
⎠ =

⎛
⎝

Xn

Yn

Θn

⎞
⎠+∆sRΘn

⎛
⎝

a2

a3

a1

⎞
⎠+

√
∆s (RΘn)

T σRΘn

⎛
⎝

ǫ2,n+1

ǫ3,n+1

ǫ1,n+1

⎞
⎠

with Rθ =

⎛
⎝

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞
⎠ .

(3.14)

In this article we shall mainly restrict ourselves to the case d = 2 (or equivalently d = 3

and Di3 = 0, i = 1, 2, 3 and a3 = 0) so that the trajectories only use the horizontal part,

spanned by {e1|g , e2|g} ≡ {eθ(g), eξ(g)}, of each tangent space Tg(SE(2)), g ∈ SE(2)).

Occasionally, we shall also consider d = 3, a3 = 0 and D33 > 0. See Figure 5.

With respect to this connection to probability theory we note that W (g, s) represents

the probability density of finding an oriented random walker5 (traveling with unit speed,

5That is, a random walker in the space SE(2) that is only allowed to move along horizontal curves,

i.e., along curves with tangent vectors within span{∂θ, ∂ξ}, which is the horizontal subspace if we apply
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Fig. 5. Left: six random walks in SE(2) = R2⋊T (and their projec-
tion on R2) of direction processes for contour completion by Mum-
ford [47] with a = (κ0, 1, 0), D = diag{D11, D22,D33} for various
parameter settings of κ0 ≥ 0 and Dii > 0. Middle: one random
walk (N = 500 steps, with step-size Δs = 0.005) and its projec-
tion to the image plane of the linear left-invariant stochastic pro-
cess for contour enhancement within SE(2) with parameter settings

D11 = D22 = 1
2

and D33 = 0 (corresponding to the cortical model

of Citti and Sarti for contour enhancement, [10]). Right: one ran-
dom walk (N = 800 steps, with step-size Δs = 0.005) of the sto-

chastic process with parameter settings D11 = 1
2
σ2
θ , D22 = 1

2
σ2
ξ ,

D33 = 1
2
σ2
η, with σθ = 0.75, σξ = 1, ση = 0.5 (other parameters

have been set to zero). Appropriate averaging of infinitely many
of these sample paths yields the Green’s functions; see Figure 7, of
the forward Kolmogorov equations (3.6). Note that Mumford’s di-
rection process is the only linear left-invariant stochastic process on

SE(2) whose sample path projections on the image plane are differen-
tiable. For contour completion this is desirable; see [2]. However, the
Green’s function of all linear left-invariant processes (so also the ones
for contour enhancement) are infinitely differentiable on SE(2) \ {e}
iff the Hörmander condition as we will discuss in Section 5.3, see
(5.19), is satisfied.

which allows us to identify traveling time with arc-length s) at position g and traveling

time s > 0 given the initial distribution W (·, 0) = Wψf , whereas P (g) represents the

unconditional probability density of finding an oriented random walker at position g

given the initial distribution W (·, 0) = Wψf regardless of its traveling time. To this end

we note that traveling time T in a Markov process is negatively exponentially distributed:

P (T = s) = αe−αs, (3.15)

since this is the only continuous memoryless distribution. A simple calculation yields:

P (x, y, θ | U and T = s) = (KD11
s ∗SE(2) U)(x, y, θ),

P (x, y, θ | U) =
∫∞
0

P (x, y, θ | U and T = s)P (T = s)ds = (Rα,D11
∗SE(2) U)(x, y, θ)

with Rα,D11
= α
∫
R+ KD11

s e−αsds.
(3.16)

the Cartan connection on PY = (SE(2), SE(2)/Y, π,R); see part II, [22]. In previous work in the field

of image processing, [15, 16], we called these random walkers “oriented grey-value particles”.
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For exact solutions for the resolvent equations (3.7) (in the case of Mumford’s direction

process), approximations, and fast numerical algorithms (related to Fourier-transform on

SE(2)), see [20]. For more details on efficient computation schemes of SE(2)-convolutions

in general and Fourier transforms on SE(2), we refer to [9].

Finally, we recall from [20] that both diffusion and convection in the evolutions (3.6)

take place along the exponential curves in SE(2). These well-known curves are circular

spirals and straight lines; for explicit formulas of the exponential curves, see [20, eq. 3.7].

4. Image enhancement via left-invariant evolution equations on invertible

orientation scores. In Section 2 we have constructed a stable transformation between

images f and corresponding orientation scores Wψf . This enables us to relate operators

Υ on images to operators Φ on orientation scores in a robust manner; see Figure 6. Let

B(L2(SE(2))) denote the space of all bounded linear operators on L2(SE(2)).

It is easily verified that Wψ ◦ Ug = Lg ◦ Wψ for all g ∈ SE(2), where the left-regular

representation L : G → B(L2(SE(2))) is given by LgU(h) = U(g−1h). Consequently,

the effective operator on the image Υ is Euclidean invariant if and only if the operator

on the orientation score is left-invariant, i.e.,

Υ ◦ Ug = Ug ◦Υ for all g ∈ SE(2) ⇔ Φ ◦ Lg = Lg ◦ Φ for all g ∈ SE(2); (4.1)

see [14, Thm. 21, p.153].

The diffusions discussed in the previous section, Section 3, can be used to construct

a suitable operator Φ on the orientation scores. At first glance the linear diffusions

themselves (with a certain stopping time t > 0) and their resolvents (with parameter

α > 0) seem to be suitable candidates for operators on orientation scores, as they follow

from stochastic processes for contour enhancement. However, if the operator Φ is left-

invariant (which is required, see Figure 6) and linear, then the effective operator Υ

is translation and rotation invariant, boiling down to an isotropic convolution on the

original image. Clearly, in such a case one does not need any orientation scores.

So our operator Φ must be left-invariant and nonlinear and still we would like to relate

such an operator to stochastic processes on SE(2) as we discussed in the previous section.

Therefore we consider the operators (with A := {A1,A2,A3})
Φ(U, V ) = (QD,a(A)− αI)−1(χ(U)) ((QD,a(A))∗ − αI)−1(χ(V )),

= (Rα,D,−a ∗SE(2) (χ(U))) · (Rα,D,−a ∗SE(2) (χ(V ))),
(4.2)

where U (the source distribution) and V (the sink distribution) denote two initial distri-

butions on SE(2) and where χ is a monotonic, homogeneous6 grey-value transformation

on orientation scores such as χ(U)(x, y, θ) = F (U(x, y, θ)), with F : R → R given by

F (I) = |I|psign(I), I ∈ R, for some p > 1. The function Φ(U, V ) ∈ L2(SE(2)) can be

considered as the “collision distribution” obtained from collision of the forwardly evolving

source distribution U and backwardly evolving sink distribution V , similar to [7]. Origi-

nally, this idea was first developed for contour-completion processes in [57]. To motivate

the word “collision distribution” we recall from (3.16) that (QD,a(A)− αI)−1(χ(U))(g)

represents the unconditional probability density of finding a random walker (regardless

6To ensure grey-scaling f �→ λf , λ > 0 covariance of the effective operator Υψ (4.3).
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f ∈ L2(R
2) Uf ∈ C

SE(2)
K ⊂ L2(SE(2))

Υ[f ] = W
∗

ψ[Φ[Uf ]] Φ[Uf ] ∈ L2(SE(2))

Wψ

Φ

(W∗

ψ)ext=W∗

ψ Pψ

Υ

Image

Processed Image Processed Score

Orientation Score

Contour enhancement
input image ƒ output image ϒƒ=W∗φΦWφƒ

Contour completion
input image ƒ output image ϒƒ=W∗φΦWφƒ

Fig. 6. Top Row: The complete scheme; for admissible anisotropic
wavelets ψ the linear map Wψ is unitary from L2(R2) onto a closed

subspace C
SE(2)
K of L2(SE(2)). So we can uniquely relate a trans-

formation Φ : C
SE(2)
K → C

SE(2)
K on an orientation score to a trans-

formation on an image Υψ = (W∗
ψ)

ext ◦ Φ ◦ Wψ , where (W∗
ψ)

ext

is given by (4.4). Here we take Φ as a concatenation of nonlin-
ear invertible grey-value transforms and linear left-invariant evolu-
tions (4.3) with U = V = ℜ{Wψ(f). Bottom row: Automated
contour enhancement (left) and completion (right). Part II of this
article offers a more adaptive alternative to the operator Φ defined by
(4.3); one can set the operator Φ as the adaptive evolution operator
Wψf �→ u(x, y, eiθ , t) defined by the nonlinear adaptive left-invariant
evolution equation with certain stopping time t > 0.

of its traveling time) at position g starting from the initial distribution χ(U). Now the

probability density of finding both a random walker evolving independently from a source

distribution χ(U) and a random walker from the sink distribution χ(V ) (regardless of its

traveling time) is up to normalization equivalent to the direct product of the probability

densities. For a clear connection between the well-known Brownian-bridge measures in

probability theory on manifolds [58], and the measures induced by collision distributions,

both defined on the manifold SE(2), see [21, App. B, pp. 67–69].
In contrast to earlier work [21], [20], [6], we shall restrict ourselves here to the case

where both source and sink equal the real-valued part of the orientation score of the
original image f , i.e. U = V = ℜ{Wψf}, so that the effective operator on the image
f ∈ L2(R

2) becomes

Υψ(f) = W∗
ψ

[
((QD,a(A)− αI)−1(χ(ℜ{Wψf}))) · ((QD,a(A))∗ − αI)−1(χ(ℜ{Wψf}))

]
.

(4.3)
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Here we note that the imaginary part, which we discard by setting U = V = ℜ{Wψf},
of the orientation score does not play a role in the reconstruction.

In part II of this article, [22], we shall consider more sophisticated alternatives to

the operator given by (4.3). In this part, however, we restrict ourselves to the case

(4.3), since this is much easier to analyse and also easier to implement as it requires

two group convolutions (recall (3.8)) with the corresponding Green’s functions, which we

shall explicitly derive in the next section.

The relation between image and orientation score remains bijective if we ensure that

the operator on the orientation score again provides an orientation score of an image:

Let C
SE(2)
K denote the space of orientation scores within L2(SE(2)). Recall from Section

2 that we use this notation since the space of orientation scores generated by a proper

wavelet ψ is the unique reproducing kernel space on SE(2) with reproducing kernel, [14,

pp. 221-222, pp. 120-122], [12],

K(g, h) = (Ugψ,Uhψ).

An operator on an orientation score is 1-to-1 related to an operator on an image iff Φ

maps C
SE(2)
K into C

SE(2)
K . However, in general it is very hard to directly obtain operators

that leave the space of orientation scores C
SE(2)
K invariant. Therefore we naturally extend

the reconstruction to L2(SE(2)):

(W∗
ψ)

extU(g) = F−1

[
ω �→

∫ 2π

0

F [U(·, eiθ)](ω) F [Reiθψ](ω) dθM−1
ψ (ω)

]
, (4.4)

for all U ∈ L2(SE(2)). Consequently, the effective part of an operator Φ : C
SE(2)
K →

L2(SE(2)) on an orientation score is in fact PψΦ : C
SE(2)
K → C

SE(2)
K , where Pψ =

Wψ(W∗
ψ)

ext is the orthogonal projection of L2(SE(2)) onto C
SE(2)
K . Here we note that

the range R(Wψ) of Wψ equals R(Wψ) = C
SE(2)
K = R(Pψ) = N (I − Pψ) and thereby

(since the null space of a bounded operator is always closed) the space of orientation

scores C
SE(2)
K is a closed subspace of L2(SE(2)). Furthermore, we note that (PψΦ)(g) =∫

SE(2)
K(g, h)Φ(h) dh.

Now recall that Φ must be left-invariant because of (4.1). It is not difficult to show

that the only linear left-invariant kernel operators on L2(SE(2)) are SE(2)-convolutions,

which are given by (3.8). Even these SE(2)-convolutions do not leave the space of

orientation scores C
SE(2)
K invariant. Although for all f ∈ L2(R

2), g ∈ SE(2), k ∈
L1(SE(2)), one has

(k ∗SE(2) Wψf)(g) =

∫

SE(2)

(Uhψ, f)L2(R2)k(h
−1g)dμSE(2)(h)

= (

∫

SE(2)

Ugh̃−1ψ k(h̃)dμSE(2)(h̃) , f)L2(R2)

= (Ugψ̃, f)L2(R2) = Wψ̃f(g),

where ψ̃ =
∫
SE(2)

Uh̃−1ψ k(h̃) dμSE(2)(h̃), the reproducing kernel space associated to ψ̃

will in general not coincide with the reproducing kernel space associated to ψ.
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5. The heat kernels on SE(2). In Section 5.1 we will present the exact formulas

of the Green’s functions and their resolvents for linear anisotropic diffusion on the group

SE(2), which do not seem to appear in the literature. Although the exact resolvent diffu-

sion kernels, which take care of Tikhonov regularization on SE(2), cf. [19], are expressed

in only four Mathieu functions, we also derive the corresponding Heisenberg approxima-

tive resolvent diffusion kernels, in Section 5.2. These approximate Green’s functions are

Green’s functions on the space of positions and velocities rather than Green’s functions

on the space of positions and orientations and arise by replacing cos θ by 1 and sin θ

by θ in the generators. In the context of contour completion this was first proposed in

[53] and here we will mainly focus on the contour-enhancement case. Although these

approximative Green’s functions are not as simple as in the contour-completion case,

[20, ch:4.3], they are more suitable if it comes to fast implementations. For comparison

between the exact resolvent heat kernels and their approximations, see Figure 7.

5.1. The exact heat kernels on SE(2) = R2 ⋊ SO(2). In this section we will derive

the heat kernels KD
s : SE(2) → R+ and the corresponding resolvent kernels Rα,D :

SE(2) → R+ on SE(2). Recall that SE(2)-convolution with these kernels, see (3.8),

provides the solutions of the forward Kolmogorov equations (3.11) and recall that Rα,D =

α
∫∞
0

KD
s e−αs ds. In this chapter we set D as a constant diagonal matrix. Although

D33 = 0 (as in Section 3, (3.11)) has our main interest we also consider the case D33 ≥ 0.
The kernels KD

s and Rα,D are the unique solutions of the following problems:
{ (

−D11(∂θ)
2 −D22(∂ξ)

2 −D33(∂η)
2 + α

)
Rα,D = αδe

Rα,D(·, ·, 0) = Rα,D(·, ·, 2π)Rα,D ∈ L1(SE(2)) ,
⎧
⎪⎨
⎪⎩

∂sK
D
s =

(
D11(∂θ)

2+D22(∂ξ)
2+D33(∂η)

2
)
KD

s

lim
s↓0

KD
s = δe

KD
s ∈ L1(SE(2)) .

The first step here is to perform a Fourier transform with respect to the spatial part

≡ R2 of SE(2) = R2 ⋊ T , so that we obtain R̂α,D, K̂D
s ∈ L2(SE(2)) ∩ C(SE(2)):

K̂D
s (ω1, ω2, θ) = F [KD

s (·, ·, θ)](ω1, ω2),

R̂α,D(ω1, ω2, θ) = F [Rα,D(·, ·, θ)](ω1, ω2).

Then R̂α,D and K̂D
s satisfy

(αI − Bω)R̂α,D = α
2π δ0 and ∂sK̂

D
s = BωK̂D

s , lim
s↓0

K̂D
s (ω, θ) = δe , (5.1)

where we define the operator

Bω = −D22ρ
2 cos2(ϕ− θ)−D33ρ

2 sin2(ϕ− θ) +D11(∂θ)
2

where we expressed ω ∈ R2 in polar coordinates

ω = (ρ cosϕ, ρ sinϕ) ∈ R2,

and where we note that F(δe) =
1
2π1R2 ⊗ δθ0 . We can rewrite operator Bω to a Mathieu

operator (corresponding to the well-known Mathieu equation (5.4), [45], [1])

Bω = D11

(
(∂θ)

2 + aI − 2q cos(2(ϕ− θ))
)
,
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where a = −α+(ρ2/2)(D22+D33)
D11

and q = ρ2
(

D22−D33

4D11

)
∈ R. Clearly, this unbounded

operator (with domain D(Bω) = H2(T)) is for each fixed ω ∈ R2 a symmetric operator

of Sturm-Liouville type on L2(T):

(Bω)∗ = Bω .

Its right inverse extends to a compact selfadjoint operator on L2(T) and thereby Bω has

the following complete orthogonal basis of eigenfunctions:

Θω

n (θ) = men(ϕ− θ, q), n ∈ Z, q = ρ2
(

D22−D33

4D11

)
∈ R,

BωΘω

n = λ̺
nΘ

ω

n ,

λρ
n = −an(q)D11 − ρ2

2 (D22 +D33) ≤ −n2D11 ≤ 0 ,

where men(z, q) = cen(z, q) + i sen(z, q) denotes the well-known Mathieu function (with

discrete Floquet exponent ν = n), [45, 1], and characteristic values an(q) which are count-

able solutions of the corresponding characteristic equations [1, p.723], [45], containing

continued fractions. Note that at ω = 0, i.e. ρ = 0, we have men(z, 0) = einz, λ0
n = n2.

The functions q �→ an(q) are analytic on the real line. In contrast with the eigen-

function decomposition of the generator of the forward Kolmogorov equation (3.9) of

Mumford’s direction process [20], we have q ∈ R rather than q ∈ iR and therefore we

will not meet any cumbersome branching points of an. For Taylor expansions of an(q),

see [1, p.730]. For each fixed ω ∈ R2 the set {Θω

n }n∈Z is a complete orthogonal basis for

L2(T) and

〈δ0, φ〉 = φ(0) =
1

2π

∞∑

n=−∞
(Θω

n , φ)Θω

n (0)

for all test functions φ ∈ D(T). Consequently, the unique solutions of (5.1) are given by

K̂s(ω, θ) = 1
2π

∞∑
n=∞

Θω

n (θ)Θω

n (0)eλ
̺
ns, R̂α,D(ω, θ) = α

2π

∞∑
n=−∞

Θωn (θ)Θωn (0)
α−λρ

n
. (5.2)

This proves the following result:

Theorem 5.1. Let D11, D22, D33 > 0. Then the heat kernels KD11,D22,D33
s on the

Euclidean motion group which satisfy
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂sK
D11,D22,D33
s =

(
D11(∂θ)

2 +D22(∂ξ)
2 +D33(∂η)

2
)
KD11,D22,D33

s ,

KD11,D22,D33
s (·, ·, 0) = KD11,D22,D33

s (·, ·, 2π) for all s > 0,

lim
s↓0

KD11,D22,D33
s (·, ·, ·) = δe,

KD11,D22,D33
s ∈ L1(SE(2)), for all s > 0

(5.3)

are given by

KD11,D22,D33
s (x, y, eiθ) = F−1[ω �→ K̂D11,D22,D33

s (ω, eiθ)](x, y),

where

K̂D11,D22,D33
s (ω, eiθ) = e−s(1/2)(D22+D33)ρ

2

( ∞∑

n=−∞

men(ϕ, q)men(ϕ− θ, q)

2π
e−s an(q)D11

)
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with q = ρ2(D22−D33)
4D11

and an(q) the Mathieu characteristic with Floquet exponent n and

with the property that KD11,D22,D33
s > 0 and

‖KD11,D22,D33
s ‖L1(SE(2)) =

∫ 2π

0

K̂D11,D22,D33
s (0, eiθ) dθ

=
∞∑

n=−∞
(2π)−1

∫ 2π

0

einθdθe−s n2D11 = 1.

Consider the case where D11 ↓ 0. Then an(q) ∼ −2q as q → ∞ and we have

lim
D11↓0

K̂D11,D22,D33
s (ω, eiθ) = e−

s
2 (D22+D33)(ω

2
x+ω2

y)e−
s
2 (D22−D33)(ω

2
x−ω2

y)δθ0

= e−s(D22ω
2
x+D33ω

2
y)δθ0 = K̂D11,D22,D33

s (ω, eiθ)δθ0 .

Finally, the case D11 = 0 yields the following operation on L2(SE(2)):

(K0,D22,D33
s ∗SE(2) U)(g) =

∫

R2

GD22,D33

t (R−1
θ (x− x′))U(x′, eiθ)dx′

=(ReiθG
D22,D33
t ∗R2 f)(x)

g = (x, eiθ) ∈ SE(2), where GD22,D33
t (x, y) = Gd=1

tD22
(x) Gd=1

tD33
(y) equals the well-known

anisotropic Gaussian kernel or heat kernel on Rn, and where Reiθφ(x) = φ(R−1
θ x) is the

left regular action of SO(2) in L2(R
2), which corresponds to anisotropic diffusion in each

fixed orientation layer U(·, ·, θ) where the axes of anisotropy coincide with the ξ and η

axes. This operation is, for example, used in image analysis in the framework of channel

smoothing [24], [15]. However, also the diffusion kernels with D11 > 0 are interesting for

various image processing frameworks such as tensor voting, channel representations and

invertible orientation scores, as they allow different orientation layers {U(·, ·, θ)}θ∈[0,2π) to

interact. For an illustration of the corresponding resolvent kernel Rα,D (with comparison

to the approximations in Section 5.2), see Figure 7.

Although expression (5.2) for the exact resolvent kernel Rα,D can be related to numer-

ical schemes [20, ch: 5], it is a Fourier series which converges (point-wise) rather slowly in

the neighborhood of the unity element. Therefore we shall derive a more suitable series

expression than (5.2) for the resolvent kernel Rα,D with rapidly decreasing terms. To

this end we will unwrap the torus to R and replace the periodic boundary condition in θ

by an absorbing boundary condition at infinity. Afterwards we shall construct the true

periodic solution by explicitly computing (using Floquet’s theorem) the series consisting

of (rapidly decreasing) 2π-shifts of the solution with absorbing condition at infinity.

In our explicit formulas for the resolvent kernel Rα,D we shall make use of the non-

periodic complex-valued Mathieu function which is a solution of the Mathieu equation

y′′(z) + [(a− 2q) cos(2z)]y(z) = 0, a, q ∈ R (5.4)
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and which is by definition,7 [45, p.115], [1, p.732], given by

me±ν(z, q) = ceν(z, q)± i seν(z, q). (5.5)

Here ν = ν(a, q) equals the Floquet exponent (due to the Floquet Theorem [45, p.101])

of the solution, which means that

me±ν(z + π, q) = eiνzme±ν(z, q), (5.6)

for all z, q ∈ R.

Theorem 5.2. Let α > 0, D22 ≥ D33 > 0, D11 > 0. The solution R∞
α,D : R3 \{0, 0, 0} →

R of the problem
⎧
⎨
⎩

(
−D11(∂θ)

2 −D22(∂ξ)
2 −D33(∂η)

2 + α
)
R∞

α,D = αδe,

R∞
α,D(·, ·, θ) → 0 uniformly on compacta as |θ| → ∞,

R∞
α,D ∈ L1(R

3)

is given by R∞
α,D(x, y, θ) = F−1[(ωx, ωy) �→ R̂∞

α,D(ωx, ωy, θ)](x, y), where

R̂∞
α,D(ωx, ωy, θ) =

−α
4πD11Wa,q

×
[
meν

(
ϕ, (D22−D33)ρ

2

4D11

)
me−ν

(
ϕ− θ, (D22−D33)ρ

2

4D11

)
u(θ)

+ me−ν

(
ϕ, (D22−D33)ρ

2

4D11

)
meν

(
ϕ− θ, (D22−D33)ρ

2

4D11

)
u(−θ)

] (5.7)

with ω = (ρ cosφ, ρ sinφ), where θ �→ u(θ) denotes the unit step function, which

is given by u(θ) = 1 if θ > 0, u(θ) = 0 if θ < 0. The Floquet exponent equals

ν
(

−(α+(1/2)(D22+D33)ρ
2)

D11
, (D22−D33)ρ

2

4D11

)
and Wa,q = ceν(0, q)se

′
ν(0, q) equals the Wron-

skian of ce(·, q) and se(·, q) with a = −(α+(1/2)(D22+D33)ρ
2)

D11
and q = (D22−D33)ρ

2

4D11
.

In case D22 = D33 (which follows by taking the limit D22 → D33 in (5.7)) we have

R̂∞
α,D(ω, θ) =

α e
−
√

α+D22ρ2

D11
|θ|

4π
√
D11

√
D22ρ2 + α

, ρ = ‖ω‖, D22 = D33,

which yields (for D22 = D33):

KD;∞
s (x, θ) = 1√

D11D22

1

(4πs)
3
2
e−

θ2

D11
+ r2

D22
4s , r = ‖x‖, D22 = D33,

R∞
α,D(x, θ) = α

4π
1√

D11D22

e
−√

α

√
θ2

D11
+ r2

D22√
θ2

D11
+ r2

D22

.

(5.8)

Proof. We apply a Fourier transform with respect to R2 only, which yields

(D22(∂ξ)
2 +D33(∂η)

2 +D11(∂θ)
2 − αI)R∞

α,D = −αδe ⇔
(−D22ρ

2 cos2(ϕ− θ)−D33ρ
2 sin2(ϕ− θ) +D11(∂θ)

2 − αI)R̂∞
α,D = − α

2π δ
θ
0 ⇔

(−D33ρ
2 + (D33 −D22)ρ

2 cos2(ϕ− θ) +D11(∂θ)
2 − αI)R̂∞

α,D = − α
2π δ

θ
0 ⇔

((∂θ)
2 + aI − 2q cos(2(φ− θ)))R̂∞

α,D = − α
2πD11

δθ0 ,

(5.9)

7There exist several definitions of Mathieu solutions (for an overview see [1, p.744, Table 20.10]), each
with different normalizations. In this article we always follow the consistent conventions by Meixner and
Schaefke [45]. However, for example, Mathematica 5.2 chooses an unspecified convention. This requires

a slight modification of (5.5); see [2].
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where a = −
(

α+(ρ2/2)(D22+D33)
D11

)
and q = ρ2

(
D22−D33

4D11

)
. Now the remainder of the

proof is tangential/analogous to our proof of a similar theorem for the contour-completion

process [20, Thm. 4.10], so we omit it here. For details see [21, p.16].

Note that if D22 = D33, the diffusion in the spatial part is isotropic and Δ = ∂2
ξ +∂2

η =

∂2
x+∂2

y commutes with ∂2
θ . Therefore if D22 = D33, then left-invariant diffusion on R2×T

(with direct product), left-invariant diffusion on R2 ⋊T (with semi-direct product), and

thereby the kernels (5.8) coincide with the Green’s functions for anisotropic diffusion on

R3. We have employed this fact in [29] in order to generalize fast Gaussian derivatives

on images with separable Gaussian kernels to fast Gaussian derivatives on orientation

scores. For details and implementation, see [30, ch:5.2].

Finally, analogously to the contour-completion case [20, ch:4.2.1], we stress that we

can expand the exact Green’s function Rα,D11
as an infinite sum over 2π-shifts of the

solution R∞
α,D11

for the unbounded case, i.e.

Rα,D(x, y, eiθ) = lim
N→∞

N∑

k=−N

R∞
α,D(x, y, θ − 2kπ). (5.10)

We stress that the rapidly decaying sum in (5.10) can be computed explicitly by means

of the Floquet theorem, i.e. (5.6), and the geometrical series
∞∑
k=0

rk = 1
1−r for r = eiν

with r = |eiν | < 1 since the imaginary part of ν = ν(a, q) is positive. By straightforward

computations this yields the following result.

Theorem 5.3. Let α,D11, D22 > 0 and D33 ≥ 0. Then the solution Rα,D : SE(2) → R

of the problem

⎧
⎨
⎩

(
−D11(∂θ)

2 −D22(∂ξ)
2 −D33(∂η)

2 + α
)
Rα,D = αδe,

Rα,D(·, ·, θ + 2kπ) = Rα,D(·, ·, θ) for all k ∈ Z,

Rα,D ∈ L1(SE(2))

is given by Rα,D(x, θ) =
∑
k∈Z

R∞
α,D(x, θ + 2kπ), the right-hand side of which can be

calculated using Floquet’s theorem and (5.7) yielding for D33 < D22:

[FRα,D(·, θ)](ω) = α
4πD11ceν(0,q) se′ν(0,q)

×{(− cot(νπ) (ceν(ϕ, q) seν(ϕ− θ, q) + seν(ϕ, q) seν(ϕ− θ, q))
+ceν(ϕ, q) seν(ϕ− θ, q)− seν(ϕ, q) ceν(ϕ− θ, q)) u(θ)

+ (− cot(νπ) (ceν(ϕ, q) ceν(ϕ− θ, q)− seν(ϕ, q) seν(ϕ− θ, q))
+ceν(ϕ, q) seν(ϕ− θ, q) + seν(ϕ, q) ceν(ϕ− θ, q)) u(−θ)},

(5.11)

with q = (D22−D33)ρ
2

4D11
, ω = (ρ cosϕ, ρ sinϕ) and the Floquet exponent ν = ν(a, q),

a = −α+(1/2)(D22−D33)ρ
2

D11
and where θ �→ u(θ) denotes the unit step function, which is

given by u(θ) = 1 if θ > 0, u(θ) = 0 if θ < 0.

The results in the preceding theory on the resolvent Green’s function of the contour-

enhancement process can be set in a variational formulation, similar to the variational

formulation in [10] (where D33 = 0).
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Corollary 5.4. Let U ∈ L2(SE(2)) and α,D11, D22 > 0, D33 ≥ 0. Then the unique
solution of the variational problem

arg min
W∈H1(SE(2))

∫

SE(2)

α

2
|W (g)−U(g)|2 +D11|∂θW (g)|2+D22|∂ξW (g)|2 +D33|∂ξW (g)|2dμSE(2)(g)

is given by W (g) = (Rα,D ∗SE(2) U)(g) =
∫
SE(2)

Rα,D(h−1g)U(h) dμSE(2)(h), where the

Green’s function Rα,D : SE(2) → R+ is explicitly given in Theorem 5.3.

For a proof see [21, p.18].

5.2. The Heisenberg approximations of the heat kernels on SE(2). If we apply a first-

order approximation cos θ ≈ 1 and sin θ ≈ θ the left-invariant vector fields {A1,A2,A3}
are approximated by

Â1 = ∂θ, Â2 = ∂x + θ∂y, Â5 = −θ∂x + ∂y, (5.12)

which are left-invariant vector fields in a 5-dimensional nilpotent Lie algebra (adding

the directions Â3 = ∂y, Â4 = ∂x) of Heisenberg type. In our previous related work [20]

we used this replacement to explicitly derive more tangible Green’s functions which are

surprisingly good approximations of the exact Green’s functions of the direction process.

In fact the replacements A1 → Â1 and A2 → Â2 (while considering the case D33 = 0) will

provide Green’s functions on the group of positions and velocities rather than Green’s

functions on the group of positions and orientations; see [53, App. C]. The Lie algebra

of this 3-dimensional subgroup H3 is spanned by

{Â1 = ∂θ, Â2 = ∂x + θ∂y, Â3 = [Â1, Â2] = ∂y}.

Later in Section 5.4 we will underpin the intuitive replacements A1 → Â1 and A2 → Â2

by decent mathematics, following the method of contraction as described in [52].

Here we will derive the approximative Green’s functions for contour enhancement,

which coincide, up to coordinate transformation, with the heat kernels on H3. In the

case of contour completion we had the interesting situation that the approximative left-

invariant vector field Â2 = ∂x + θ∂y together with the diffusion generator (∂θ)
2 and the

identity operator I and all commutators form an 8-dimensional nilpotent Lie algebra

spanned by {I, ∂x, ∂θ, ∂y, θ∂y, ∂2
θ , ∂θ∂y, ∂

2
y}. From this observation and [55, Theorem

3.18.11 p.243] it follows that the approximative Green’s functions are given by

K
D11,a2=1

s (x, y, θ) = δ(x− s)
√
3

2D11πx2 e
− 3(xθ−2y)2+x2(θ−κ0x)2

4x3D11 ,

Rα,D11,a2=1(x, y, θ) = α
√
3

2D11πx2 e
−αxe

− 3(xθ−2y)2+x2(θ−κ0x)2

4x3D11 u(x),

(5.13)

where u denotes the 1D Heaviside/unit step function. However, this efficient technique

cannot be applied to the diffusion case (contour enhancement), since the commutators of

the separate diffusion generators provide infinitely many directions. Therefore we follow

[10] and apply a coordinate transformation

K
D11,D22

s (x, y, θ) = K̃s(x
′, ω′, t′) = K̃s

(
x√
2D22

,
θ√
2D11

,
2(y − xθ

2 )√
D11D22

)
, (5.14)
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where we note that ∂sK
D11,D22

s =
(
D11∂

2
θ +D22(∂x + θ∂y)

2
)
K

D11,D22

s if and only if

∂sK̃s =
1
2

(
(∂ω′ − 2x′∂t′)2 + (∂x′ + 2ω′∂t′)2

)
K̃s =

1
2ΔKK̃s, which provides us the left-

invariant evolution equation on the usual Heisenberg group H3 generated by Kohn’s

Laplacian, [32]. So now we can translate well-known results on harmonic analysis on

H3 to the diffusion equation of the contour-enhancement process. For example the heat

kernel and fundamental solution on H3 are well known [32]. The heat kernel equals

K̃s(x
′, ω′, t′) =

1

(2πs)2

∫

R

2τ

sinh(2τ )
cos

(
τ t′

s

)
e−

(
(x′)2

s
+

(ω′)2
s

)
τ

tanh(2τ) dτ, (5.15)

and as a result by (5.14) we obtain8 the following Heisenberg-type approximation of the

Green’s function and corresponding resolvent (for infinite expected lifetime, (3.15)):

K
D11,D22

s (x, y, θ) = 1
2D11D22

K̃s

(
x√
2D22

, θ√
2D11

,
2(y− xθ

2 )√
D11D22

)

= 1
8D11D22π2s2

∫
R

2τ
sinh(2τ) cos

(
2τ(y− xθ

2 )

s
√
D11D22

)
e−

(
x2

sD22
+ θ2

sD11

)
τ

2 tanh(2τ) dτ

and lim
α→0

α−1Rα,D11,D22
(x, y, θ) = 1

4πD11D22

1√
1
16

(
x2

D22
+ θ2

D11

)2
+

(y− 1
2
xθ)2

D11D22

.

(5.16)

The resolvent Green’s function lim
α→0

α−1Rα,D11,D22
follows by the fundamental solution

on H3, [32] and the coordinate transform (5.14).
For a detailed derivation of (5.15), (5.16), we refer to our earlier work [19, pp. 6–8],

which mainly follows derivations by [32] on H3, where we systematically applied (5.14)
to relate the coordinates of the first kind to coordinates of the second kind on H3. Here
we also provide the corresponding resolvent kernel with finite expected lifetime α−1:
R̃α(x

′, ω′, t′) = α
∫
R+ K̃D

s (x′, ω′, t′) e−αs ds, which is given by

Rα(x, y, θ) = R̃α(x
′, ω′, t′) with (x′, ω′, t′) =

(
x√

2D22
, θ√

2D11
,

2(y−xθ
2

)√
D11D22

)

= 2α
√

α

π2

∫∞
0

τ
sinh 2τ

Re

⎛
⎜⎜⎝

k1

(
2
√

α

√
2τ

tanh 2τ

(
(x′)2
D11

+
(ω′)2
D22

)
− 2i τt′√

D11D22

)

√
2τ

tanh 2τ

(
(x′)2
D11

+ ω2
D22

)
− 2i τt′√

D11D22

⎞
⎟⎟⎠ dτ ,

(5.17)

where k1 is the first-order Bessel K-function. Formulae (5.17) and (5.16) are somewhat

cumbersome if it comes to fast computations in practice. Later, in Section 5.4, we shall

derive asymptotic formulas for these kernels that are more tangible from a practical point

of view. However, the resolvent kernel with infinite lifetime (5.16) is much simpler and

follows by taking the limit α → 0 in (5.17) and substitution v = cosh(2τ ).

Figure 7 shows illustrations of both the exact resolvent Green’s function Rα,D11,D22

and its approximation Rα,D11,D22
, which coincides with the resolvent kernel on H3:

Rα,D11,D22
= (D11Â

2
1 +D22Â

2
2 − αI)−1δe . (5.18)

8 Note that our approximation of the Green’s function on the Euclidean motion group does not

coincide with the formula by Citti in [10].
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Fig. 7. Top row, left: A comparison between the exact Green’s func-
tion Rα,D11,D22 of the resolvent diffusion process α = 1

30
, D11 = 0.1,

D22 = 0.5 on SE(2) in Theorem 5.3 and the approximate Green’s

function Rα,D11,D22 (5.18) (iso-contours in dashed lines) of the cor-
responding resolvent process with infinite lifetime (α → 0) on SE(2)
given by (5.16). Here both distributions are integrated over the torus,
yielding the xy-marginals. Top row right: 3D-view on a stack of iso-
contours (intersections by fixed θ-planes) in SE(2) (left: approxima-

tion Rα,D11,D22 = C, right: exact Rα,D11,D22 (·, ·, θ) = C) viewed
along the θ-direction. Bottom row: a comparison of the level curves
of the marginals of Rα,D11 (given by (5.13)) and the exact Green’s
function of the direction process Rα,D11,a2=1 given in [20]. Right:
3D-view on a stack of iso-contours Rα,D11,a2=1(·, ·, θ) = C in SE(2).
Left: comparison of the xy-marginals, where again dashed lines de-
note the level sets of the approximation Rα,D11,a2=1. The small
difference is best seen in the iso-contours close to zero. In both cases
the typical difference between the dashed (approximation) and non-
dashed iso-contours (exact) contours is due to the fact that random
walkers of the approximation processes (such as (5.21)) on H3 must
move forward in the initial x-direction and thereby, in contrast to the

random walkers of the exact processes on SE(2) (such as (3.12)), do
not turn in the negative x-direction.
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5.3. The Hörmander condition and the underlying stochastics of the Heisenberg ap-

proximation of the diffusion process on SE(2). In this subsection we will address two

issues. First we derive necessary and sufficient conditions on the convection and diffu-

sion parameters, respectively a = (a1, a2, a3) and D = [Dij ], in order to get smooth

Green’s functions of the left-invariant convection-diffusions (3.6) with generator (3.5). It

turns out that D need not be strictly positive, as for example in the case of the contour-

enhancement process we have a = (0, 0, 0) and D = diag{D11, D22, 0} and in the case

of the direction process we even have a = (0, 1, 0) and D = diag{D11, 0, 0}. By the

Hörmander theorem [36] the noncommutative nature of SE(2), in certain cases, takes

care of missing directions in the diffusion matrix (i.e., directions in the null-space of

D). Secondly, we would like to get a stochastic grip on the induced smoothing in these

missing directions.

Consider the contour-enhancement kernel

KD11=1,D22=1,0
s (x, y, θ) = (e

t(∂2
ξ+∂2

θ )

SE(2) δe)(x, y, θ)

on the group SE(2) and its approximation

K̃1,1,0
s (x, y, θ) = (e

t((∂x+θ∂y)
2+∂2

θ )
H3

δe)(x, y, θ)

on the group H3. Both kernels are nonsingular and smooth in all directions, whereas

the corresponding kernel on the commutative group (R3,+), given by (e
t(∂2

x+∂2
θ )

R2 δx0 ⊗ δy0 ⊗
δθ0)(x, y, θ) = Gd=1

t (x)Gd=1
t (θ)δy0 , is the singular Green’s function of Brownian motion

in the (x, θ)-plane in R3. Throughout this subsection we shall restrict ourselves to the

Heisenberg approximation of contour enhancement to illustrate our issues. Regarding

our second issue we show how the indirect smoothing in the ∂y-direction relates to a

random variable that depends on random variables related to the direct smoothing in

the ∂x and ∂θ directions. First we will formulate the Hörmander theorem.
A differential operator L defined on a manifold M of dimension n ∈ N, n < ∞ is called

hypo-elliptic if for all distributions f defined on an open subset of M such that Lf is
C∞ (smooth), f must also be C∞. In his paper [36], Hörmander presented a sufficient

and essentially necessary condition for an operator of the type L = c +X0 +
r∑

i=1

(Xi)
2,

r ≤ n, where {Xi} are vector fields on M , to be hypo-elliptic. This condition, which we
shall refer to as the Hörmander condition, is that among the set

{Xj1 , [Xj1 , Xj2 ], [Xj1 , [Xj2 , Xj3 ]], . . . , [Xj1 , [Xj2 , [Xj3 , . . . , Xjk ]]] . . . | ji ∈ {0, 1, . . . , r}} (5.19)

there exist n elements which are linearly independent at any given point in M . Now if M

is a Lie group and we restrict ourselves to left-invariant vector fields, then it is sufficient to

check whether the vector fields span the tangent space at the unity element. So necessary

and sufficient conditions for smooth (resolvent) Green’s functions on SE(2)\{e} on the

diffusion and convection parameters (D, a) in the generator (3.5) of (3.6) for diagonal D

are

{1, 3} ⊂ {i | ai �= 0 ∨Dii �= 0} ∨ {1, 2} ⊂ {i | ai �= 0 ∨Dii �= 0}.
If we apply this theorem to the forward Kolmogorov equation of the direction process,

then we see that the Hörmander condition is satisfied since we have M = SE(2)× R+,
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X0 = −∂s − ∂ξ, X1 = ∂θ and we have

dim span{−∂s − ∂ξ, ∂θ, [∂θ,−∂s − ∂ξ], [∂θ, [∂θ,−∂s − ∂ξ]]} = dim span{∂s, ∂θ, ∂ξ, ∂η} = 4

and indeed the Green’s function of Mumford’s direction process is infinitely differentiable

on SE(2); see [20]. Similarly the Green’s function of the resolvent direction process

determined by LR = δe, with L = −∂ξ + D11(∂θ)
2 − γI, is infinitely differentiable on

SE(2)\{e}; for explicit formulas, see [20]. To this end set M = SE(2) and note that

span{∂θ, [∂θ, ∂ξ], [∂θ, [∂θ, ∂ξ]]} = span{∂θ, ∂ξ, ∂η} = L(SE(2)).

However, in the case of the direction process, the Heisenberg approximation of the time-

dependent Green’s function (5.13) is singular and indeed

dim span{−∂s − ∂x − θ∂y, ∂θ, ∂y} = 3 < 4.

Fortunately, this discrepancy between the Heisenberg approximation and the exact case

does not take place in the contour-enhancement processes, where we have both

dim span{−∂s, ∂x + θ∂y, ∂θ, ∂y} = 4 and dim span{∂s, ∂θ, ∂ξ, ∂η} = 4 .

Now we consider our second issue:

“Can we get stochastic insight in the induced smoothing in the remaining directions in

the diffusion processes (3.6) on SE(2) generated by hypo-elliptic operators, of the type

(3.5), that are not elliptic ?”

Consider to this end the heat kernel on the 3D Heisenberg group H3, recall (5.15), which

is smooth in all directions, despite the fact that diffusion is only done in the ∂x + 2ω∂t
and ∂ω − 2x∂t directions. Here, the induced smoothness in the t-direction has an elegant

stochastic interpretation. As shown in [32], the underlying stochastic process (with the

diffusion equation on H3 as the forward Kolmogorov equation) is given by
⎧
⎨
⎩

Z(s) = X(s) + iW (s) = Z0 + ε
√
s, ε ∼ N (0, 1),

T (s) = 2

∫ s

0

WdX −XdW, s > 0,
(5.20)

so the random variable Z = X + iW is a Brownian motion in the complex plane and

the random variable T (s) measures the deviation from a sample path with respect to

a straight path Z(s) = Z0 + s(Z(s) − Z0) by means of the stochastic integral T (s) =

2
∫ s
0
WdX −XdW . To this end we note that for9 s �→ (x(s), ω(s)) ∈ C∞(R+,R2) such

that the straight line from X0 to X(s) followed by the inverse path encloses an oriented

surface Ω ∈ R2, we have by Stokes’ theorem that

2μ(Ω) = −
∫ s

0

(−X ′(t)W (t) +X(t)W ′(t)) dt+ 0 =

∫ s

0

WdX −XdW.

Now by the coordinate transformation (5.14) we deduce that the underlying stochastic

process of the Heisenberg approximation of the diffusion process on SE(2) is given by
{

X(s) + iΘ(s) = X(0) + iΘ(0) +
√
s(ǫx + i ǫθ),

Y (s) = Y (0)− X(0)Θ(0)
2 + X(s)Θ(s)

2 + 1
2

∫ s
0
ΘdX −XdΘ ,

(5.21)

9A Brownian motion is a.e. not differentiable in the classical sense, nor does the integral in (5.20)

make sense in classical integration theory.
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Fig. 8. Stochastic interpretation of the “indirect smoothing” (by
means of the commutators) within the Hörmander condition of the
diffusion generator of the Heisenberg approximation. See (5.21). The

left-invariant diffusion on H3 generated only by Â1 = ∂θ and Â2 =
∂x + θ∂y takes place along the corresponding exponential curves of

H3. Along these curves one has dy
dx

= θ and thereby d(y − xθ
2
) =

1
2
(θdx− xdθ) and the random variable Y (s) (determined by X and

Θ) can be written as the stochastic integral Y (s) = Y (0)−X(0)Θ(0)
2

+
X(s)Θ(s)

2
+ 1

2

∫ s
0 ΘdX−XdΘ and measures the surface area between

a path and the x-axis.

with the random variables ǫx ∼ N (0, 2D11), ǫθ ∼ N (0, 2D22), which provides a better

understanding of the “indirect smoothing” (by means of the commutators) within the

Hörmander condition of the Heisenberg approximation of the contour-enhancement pro-

cess on SE(2): the indirect smoothing in the ∂y-direction is due to the randomness of

the variable Y (s) given in (5.21), similar to the fact that the direct smoothing in, re-

spectively, the ∂x and ∂θ directions is due to the randomness of X(s) and Θ(s). For the

simple geometric meaning of the random variable Y (s), see Figure 8.

5.4. Gaussian estimates for a parameterized class of intermediate semigroups. In this

section we shall derive, only for the case D33 = 0, a continuum of semigroups between

the exact semigroup U �→ KD11,D22
s ∗SE(2) U with the kernels KD11,D22

s : SE(2) → R+

discussed in Subsection 5.1 and the approximate semigroup U �→ K
D11,D22

s ∗SE(2)U with

the kernels K
D11,D22

s : SE(2) → R+ discussed in Subsection 5.2, s > 0. Furthermore, we

shall derive Gaussian estimates for both KD11,D22
s and K

D11,D22

s , s > 0. For the latter

case this Gaussian estimate turns out to be rather sharp.

We follow the general work by ter Elst and Robinson [23] on semigroups on Lie groups

generated by weighted subcoercive operators. In their general work we consider a par-

ticular case by setting the Hilbert space H = L2(SE(2)), the group G = SE(2) and the

right-regular representation U = R. For details, see [21, App.D]. Furthermore we con-

sider the algebraic basis {∂θ = dR(A1), ∂ξ = dR(A2)} leading to the following filtration

of the Lie algebra:

g1 = span{∂θ, ∂ξ} ⊂ g2 = span{∂θ, ∂ξ, ∂η}, (5.22)

so the weights are w1 = 1, w2 = 1 and w3 = 2. For example ∂η has weight 2 since it

occurs in g2 but not in g1. Now we define the dilations on the Lie algebra and the Lie
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group:

γt(
3∑

i=1

ci Ai) =
3∑

i=1

twi ci Ai, for all ci ∈ R,

γ̃t(x, y, θ) =
(

x
tw2

, y
tw3

, ei
θ

tw1

)
, with w1 = w2 = 1, w3 = 2,

and for 0 < t ≤ 1 we define the Lie product [A,B]t = γ−1
t [γt(A), γt(B)]. Now let (SE(2))t

be the simply connected Lie group generated by the Lie algebra (Te(SE(2)), [·, ·]t). The
group products on the intermediate groups (SE(2))t∈(0,1] are given by

(x, y, θ) ·t (x′
, y

′
, θ

′) = (x+ cos(θt)x′ − t sin(θt)y′
, y +

sin(θt)

t
x
′ + cos(θt)y′

, θ + θ
′) . (5.23)

The left-invariant vector fields on (SE(2))t are given by At
i|g = (γ̃−1

t ◦ Lg ◦ γ̃t)∗Ai, so

At
1

∣∣
g
= 1

t (t∂θ) = ∂θ ,

At
2

∣∣
g
= t
(

cos(θt)
t ∂x + sin θt

t2 ∂y

)
= cos(θt)∂x + sin(θt)

t ∂y ,

At
3

∣∣
g
= t2

(
− sin(θt)

t ∂x + cos(θt)
t2 ∂y

)
= −t sin(θt)∂x + cos(θt)∂y.

Now the homogeneous nilpotent contraction Lie algebra equals

(SE(2))0 = lim
t↓0

(SE(2))t ≡ H3 and (SE(2))t=1/({0}×{0}×2πZ) = SE(2), (5.24)

with the Lie algebra L(H3) = L((SE(2))0) = span{∂θ, ∂x + θ∂y, ∂y} = {Â1, Â2, Â3},
where we recall (5.12). Note that L(SE(2)) = L((SE(2))t=1) = {∂θ, ∂ξ, ∂η}.

So we have derived a continuum of holomorphic semigroups between the exact case

and its Heisenberg approximation with rapidly decaying kernels Kt
s ∈ L2((SE(2))t) ∩

L1((SE(2))t) that satisfy Gaussian estimates |Kt
s(g)| ≤ Cs−2e−b

(|g|′t)
2

s , with C, b > 0

constant, where the equivalent |g|t moduli are defined in [52]. Locally these moduli are

equivalent (so locally there exists a c > 0 : c−1|a|t ≤ | expt(a)|′t ≤ c|a|t, later we will see

c ≈ 1) to the weighted modulus on the Lie algebra, see [52, Prop.6.1], which is given by

|a|t =
∣∣∣∣∣

3∑

i=1

βi
tA

t
i

∣∣∣∣∣
t

=
√
(β1

t )
2/w1 + (β2

t )
2/w2 + |β3

t |2/w3 , (5.25)

and as a result (derivations will follow below) we have for, respectively, t ↓ 0 and for

t = 1:

K
D11,D22

s (x, y, eiθ) ≤ 1
4πs2D11D22

e
− 1

4s c2

(
x2

D22
+ θ2

D11
+

|y− xθ
2

|√
D11D22

)

,

KD11,D22
s (x, y, eiθ) ≤ 1

4πs2D11D22
e
− 1

4s c2

(
θ2

D11
+ θ2(y−η)2

4(1−cos(θ))2D22
+ 1√

D11D22
| θ(ξ−x)
2(1−cos θ) |

)

.

(5.26)

A problem though with these estimates is that they are, in contrast to the corresponding

exact kernels, not differentiable at, respectively, the surface given by y = 1
2xθ and the

surface given by tan θ = y
x . This is for example a practical problem in generalizing fast

regularized derivatives on orientation scores, [30, ch: 5], to the case D22 �= D33. This

problem can be resolved by applying the estimate

|a|+ |b| ≥
√
a2 + b2 ≥ 1√

2
(|a|+ |b|), (5.27)
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which holds for all a, b ∈ R, to the exponents of our Gaussian estimates. Therefore we
shall estimate the weighted modulus (5.25) by the equivalent (for all t ≥ 0) weighted

modulus | · |t : Te((SE(2))t) → R+ given by

∣∣∣∣
3∑

i=1

βi
tA

t
i

∣∣∣∣
t

:= 4
√
(|β1

t |2 + |β2
t |2)2 + |β3

t |2,
again indexed by t ≥ 0. This yields, with again ξ = x cos θ+y sin θ, η = −x sin θ+y cos θ,

K
D11,D22
s (x, y, eiθ) ≤ 1

4πs2D11D22
e
− 1

4s c2

√
(

x2

D22
+ θ2

D11

)2
+

|y− xθ
2

|2
D11D22 ,

KD11,D22
s (x, y, eiθ) ≤ 1

4πs2D11D22
e
− 1

4s c2

√(
θ2

D11
+

θ2(y−η)2

4(1−cos(θ))2D22

)2
+ 1

D11D22

(
θ2(ξ−x)2

4(1−cos θ)2

)
,

(5.28)

where the right-hand sides turn out to be useful asymptotic formulas10 for the exact

Green’s functions, in the sense that almost similar lower bounds exist. The latter estimate

coincides only locally with the local upper estimate reported by Citti and Sarti [10,

Thm. 5.1, eq. 12], K
D11,D22
s (g) ≤ C1

s2
e

−C2

(
ξ2

D22
+ θ2

D11
+

|η|√
D11D22

+2

√
|η|√

D11D22

√
ξ2

D22
+ θ2

D11

)
1
4s , with

g = (x, y, eiθ) for |g|′t < 1 and some C1, C2 > 0. Our estimate appears to be a much

sharper estimate (away from the origin e). Moreover, the formula by Citti and Sarti is

intended as a local upper estimate. It can only be used as a rough approximation of

the true kernel close to the unity element if the last term in the exponent is dropped,

but even then the restriction of exact kernels to fixed θ strongly deviates from the exact

kernels as |θ| increases, which is not the case with our asymptotic formulas (5.28).

The advantage of using the Gaussian estimates (5.28) is that they in practice do

not require any inverse Fourier transforms, in contrast to our exact formula for the

Green’s functions on SE(2) and their local approximations, the Green’s functions on

H3, in Theorem 5.1 (for D22 �= D33). For D11

D22
≪ 1 the Heisenberg approximation is

close to the exact case, so for these parameter settings we may expect (considering the

results concerning the equivalent moduli | · |t, t ∈ [0, 1] in [52]) that the estimate for the

exact kernel KD11,D22
s , see (5.26), is sharp as well. Figure 9 shows how the asymptotic

formulae (5.28) perform into our scheme of contour enhancement via orientation scores

as explained in Section 4.

5.4.1. Derivation of our estimates by coordinates of the first kind. With respect to

the first estimate of (5.26) (and (5.28)) we note that this nilpotent Lie group, which is

isomorphic to H3, is a subgroup of the five-dimensional group H5 of Heisenberg type

that arises by approximating cos θ ≈ 1 and sin θ ≈ θ with left-invariant vector fields:

Â1 = A0
1 = ∂θ, Â2 = A0

2 = ∂x + θ∂y, Â4 = ∂y,

Â3 = −θ∂x + ∂y, Â5 = ∂x.

This Lie algebra L(H5) = span{Â1, Â2, Â3, Â4, Â5} is isomorphic to the matrix algebra

5∑

i=1

a
i
Âi ↔

⎛
⎜⎜⎝

0 a1 a4 a5

0 0 a2 a3

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ =:

5∑

i=1

a
i
Ei =: B .

10The Gaussian kernels are global upper bounds for the exact L1-normalized positive kernels; there-
fore they are not L1-normalized. For example, the first Gaussian estimation kernel (5.26) must be

multiplied by 1
c48

to be an L1-normalized kernel on H3.
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The exponent is given by

exp(tB) = 1 + tB +
t2

2
B

2 =

⎛
⎜⎜⎝

1 t a1 t a4 + 1
2
t2a1a2 t a5 + 1

2
t2a1a3

0 1 t a2 t a3

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

This isomorphism enables us to relate the coordinates of the first kind to the coordinates

of the second kind in H3 = (SE(2))0 without explicit use of the CBH-formula :

(x, y, θ) = exp0(α
3A3) exp0(α

2A2) exp0(α
1A1) = exp0(β

1
0A1 + β2

0A2 + β3
0A3) ⇔

β1
0 = α1 = θ, β3

0 + 1
2β

1
0β

2
0 = α3 = y, β2 = α2 = x,

with Ai = Âi|e ∈ Te(H3), i = 1, 2, 3. So the coordinates of the first kind on (SE(2))0 are

β1
0 = θ, β2

0 = x and β3
0 = y − 1

2
xθ, (5.29)

and thereby the weighted modulus on (SE(2))0 associated to our filtration (5.22) equals

|g|0 =

√
θ2 + x2 + |y − 1

2
xθ|. (5.30)

Finally we note that the estimate for the Heisenberg approximation (5.26) is reason-
ably sharp if we relate it to our fundamental solution (5.16) :

1
4πD11D22

1

x2

D22
+ θ2

D11
+

|y− 1
2
xθ|√

D11D22

≤
∫∞
0

K
D11,D22
s (x, y, θ) ds = 1

πD11D22

1√(
x2

D22
+ θ2

D11

)2
+16

|y− 1
2
xθ|2

D11D22

≤ 1
πD11D22

√
2

x2

D22
+ θ2

D11
+

|y− 1
2
xθ|√

D11D22

,

where we recall (5.27). Then we see that c = 4
√
2 ≈ 1.19 > 1 indeed yields a Gaussian

upper bound for the exact Heisenberg kernel for α ↓ 0, whereas c = 0.5 yields a Gaussian

lower bound for the same kernel.

Similarly we can derive the second estimate of (5.26) (and (5.28)). To this end we use

the formula for exponential curves [20, eq. 3.7] to solve for

exp(β1
1A1 + β2

1A2 + β3
1A3) = (x, y, eiθ),

which yields by straightforward computation (for θ ∈ (−π, π) \ {0}) that

β1
1 = θ, β2

1 =
yθ − θη

2(1− cos θ)
and β3

1 =
−xθ + ξθ

2(1− cos θ)
, (5.31)

from which result (5.28) follows. Note that θ
2(1−cos θ) =

θ
2

2 sin2( θ
2 )
, so again the first-order

expansion of θ in (5.31) gives (5.29) and if θ → 0, then β1
t → 0, β2

t → x, β2
t → y for all

t ≥ 0.
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Fig. 9. Top row: From left to right, a: original noisy image
f , b: |f |psignf , c: (W∗

ψ)
ext(χp(Wψf)), where we recall that

χ(U)(x, y, θ) = |ℜ(U(x, y, θ))|psign{U(x, y, θ)}, d: contour enhance-
ment (4.3) but using time-dependent diffusion kernel depicted below,
e: contour enhancement (4.3) using resolvent Green’s functions de-
picted below, f: contour completion using resolvent completion kernel
depicted below. In all cases we have set p = 3

2
and the involved ori-

entation scores are sampled on a 100×100 grid, using 64 orientations.
Circles depict parts of the output images Υψ(f), where a clear dif-
ference arises in the contour-completion and contour-enhancement
processes. Middle row: From left to right, (real part of) proper
wavelet ψ, where we used the proper wavelets as described in [29]
(parameters q = 8, k = 2, nθ = 64, t = 100, s = 20), Green’s func-
tion time-dependent contour-enhancement process with parameters
D11 = 0.00015, D22 = 1, stopping time send = 15, where we used
the asymptotic formula (5.28), Green’s function resolvent contour-

enhancement processD11 = 0.00015,D33 = 1, α = 1
64

, Green’s func-

tion resolvent contour-completion process D11 = 0.0024, α = 1
64

.

Bottom row slices Wψf(·, ·, e
iθk ) for θk = (2k+1) π

32
, k, 0, 1, 2, 3, 4, 5,

in the corresponding orientation scores of the output image.

Appendix A. Invertibility of transforms Wψ, resp. Wψ, and decomposi-

tion of V, resp. U , into irreducible representations and an inverse Fourier

transform on SE(2), resp. SIM(2). So far we have presented a summary of results

(relevant for applications) of our previous theory on invertible orientation scores. A nat-

ural question that arises to the reader unfamiliar with the previous works [14], [31], [33],

[3] is how does the invertibility of the transform Wψ, given by
(
R2 ∋ (x, y) �→ f(x, y) ∈ R

)
→ (SIM(2) ∋ g �→ Wψf(g) = (Vgψ, f) ∈ C) ,
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relate to the irreducibility of the underlying representation V ; recall (2.3). Secondly, the
question arises how this relates to the fact that we must set Mψ = 1 (recall (2.7) and

(2.6)) to guarantee well-posed reconstruction of the transform Wψ, given by
(
R2 ∋ (x, y) �→ f(x, y) ∈ R

)
→ (SE(2) ∋ g �→ Wψf(g) = (Ugψ, f) ∈ C) ,

by means of its L2-adjoint (Wψ)
∗. In this section we provide a brief answer to these

important questions.

Although the early works of Grossmann et al., [33], [3], are mostly based on decompo-

sition of the identity using extended versions of Schur’s lemma, an alternative and shorter

answer to this question can be deduced from [31, ch:4] by exploiting the relation between

the transforms Wψ : L2(R
2) → L2(SIM(2)) (2.2) and Wψ : L2(R

2) → L2(SE(2)) (1.1)

and inverse Fourier transforms on, respectively, the groups SIM(2) and SE(2). How-

ever, since the important and general work in [31] is rather abstract, we will focus only

on our specific cases of interest and provide the explicit formulae for these cases.
To this end we use the general identity: trace{a⊗ b ◦A∗} = (Ab, a), where A is some

bounded linear operator on a Hilbert space and a and b some vectors in the Hilbert space,
where we define (a⊗ b)(x) = (b, x)a. As a result we rewrite the wavelet transform Wψ as

Wψf(g) = (Vgψ, f)L2(R2) = trace{f ⊗ ψ ◦ (Vg)
∗} =

∫
ŜIM(2)

trace{Af,ψ(σ)σ(g
−1)}

dν
ŜIM(2)

(σ)

ν
ŜIM(2)

(V)

=
1

ν
ŜIM(2)

(V) [F
−1
SIM(2)(Af,ψ)](g

−1) ,

(A.1)

where ν
ŜIM(2)

denotes the Plancherel measure on the dual group ŜIM(2), [27], consisting

of all nonequivalent, unitary, irreducible representations of the group SIM(2) and where

Af,ψ(σ) =

{
0 if σ �= V ,
f ⊗ ψ if σ = V .

So the Plancherel theorem for the Fourier transform on the group SIM(2) now yields

‖Wψf‖2L2(SIM(2)) =

∫

ŜIM(2)

|||Af,ψ(σ)|||2
dν

ŜIM(2)
(σ)

ν
ŜIM(2)(V)

= ‖f‖2L2(R2)‖ψ‖2L2(R2)

1

ν
ŜIM(2)

(V) ,

where ||| · ||| denotes the Hilbert-Schmidt norm, which is defined on bounded operators
A ∈ B(L2(R

2)) acting on L2(R
2) by means of

|||A|||2 = trace{A∗
A} =

∞∑

k=1

‖Afk‖2, where {fk}∞k=1 is some orthonormal basis for L2(R
2) ,

so in particular, the Hilbert-Schmidt norm of the tensor product f ⊗ψ of ψ and f equals

|||f ⊗ ψ|||2 = ‖f‖2‖ψ‖2. We conclude that the admissibility constant (2.4) equals Cψ =
1

ν
ŜIM(2)

(V)‖ψ‖2 and, moreover, the unitarity of Wψ directly follows from the Plancherel

theorem on SIM(2) and the fact that V ∈ ŜIM(2).

Obviously, one would like to obtain the same kind of connection between the trans-

form Wψ : L2(R
2) → L2(SE(2)) and the inverse Fourier transform on SE(2), but here

arises a technical problem. In contrast to the representation V , the representation U is

reducible. Therefore it must be decomposed into irreducible representations; i.e., U must
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be written as a direct integral of irreducible representations. This is similar to the well-

known Peter-Weyl theorem for compact groups, [50], but the technical problem is that

SE(2) is not compact, giving rise to an over-countable set of irreducible representations

requiring direct integral decomposition (for details on these decompositions, see [31, pp.

67-84]) rather than direct sum decomposition. All unitary, irreducible representations,

up to unitary equivalence, of SE(2) are given in [51] and the ones with nontrivial dual

Plancherel measure occur only once in the direct integral decomposition of U . They can

be related to the dual orbits of SO(2) on R2 which coincide with rings in the Fourier

domain, using Mackey’s theory [42]. Now the theoretical rationale behind Mψ = 1, recall

(2.6), is that the kernel ψ must be chosen with unit length in each irreducible subspace

of L2(R
2)∩L1(R

2), meaning that the L2-norm over each fixed ring in the Fourier domain

is 1 (note that Mψ(ω) only depends on the radius ρ = ‖ω‖) so that each irreducible sub-

space of L2(R
2) ∩ L1(R

2) is unitarily mapped to each irreducible subspace of the space

of orientation scores R(Wψ) ⊂ L2(SE(2)).

Let us verify these statements on both the transform Wψ between images and orienta-

tion scores and the corresponding reducible representation U by explicit formulas. First

of all we define the representations Ũρ : SE(2) → B(L2(Sρ)), where B(L2(Sρ)) stands for

all bounded operators on the space L2(Sρ) of quadratic integrable function(s) (classes)

defined on the sphere Sρ = {ω ∈ R2 | ‖ω‖ = ρ}, given by

Ũρ
gF (ρ cosϕ, ρ sinϕ) = ei(ρ cosϕ,ρ sinϕ)·(x,y) F (ρ cos(ϕ− θ), ρ sin(ϕ− θ)),

for all g = (x, y, eiθ) ∈ SE(2), F ∈ L2(Sρ). These representations are unitarily equivalent

to well-known unitary, irreducible representations of SE(2), [51], [9, ch: 10.2], given by

Uρ
gφ(v) = e−iρ(x,v)φ((Rθ)

−1v), ρ > 0, φ ∈ L2(S1),v ∈ S1, g = (x, eiθ) ∈ SE(2), (A.2)

since Ũρ
g = Dρ ◦ Uρ

g ◦ D−1
ρ , where the dilation operator Dρ : L2(S1) → L2(Sρ) is unitary

and Dρφ(v) = ρ−
1
2 φ(ρ−1v).

Consider the dual orbit space T\R2, where the dual orbits are given by Sρ = {AT
ω |

A ∈ SO(2)}, with ρ = ‖ω‖. Then we have the following direct integral decomposition:

F ◦ Ug ◦ F−1 =

∫ ⊕

R+≡T\R2

Ũρ
g dν(Sρ) ,

where the measure on the dual orbits by identification ρ ∈ R+ ≡ Sρ ∈ T\R2 equals

dν(Sρ) = ρ dρ. Analogously to (A.1), we have

Wψf(g) = (Ugψ, f)L2(R2) = (
∫ ⊕
R+ Ũρ

g ρ dρFψ,Ff)L2(R2)

=
∫∞
0

((Ũρ
g ) Fψ|Sρ

, Ff |Sρ
) ρ dρ =

∫∞
0

trace
((

Ff |Sρ
⊗ Fψ|Sρ

)
◦ Ũρ

g−1

)
ρ dρ .

(A.3)

Now ρ �→ Ũρ is injective into the dual group ŜE(2), since Ũρ is unitarily equivalent to

the unitary irreducible representations (A.2). Moreover dν(Sρ) equals the restriction of

the Plancherel measure to {Ũρ}ρ>0, [51], so we see that (A.3) can be rewritten as

Wψf(g
−1) = F−1

SE(2)(ρ �→ Ff |Sρ
⊗ Fψ|Sρ

)(g).
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Now by the Plancherel theorem on both SE(2), [51], [9], and R2 one has

‖Wψf‖2L2(SE(2)) =
∫∞
0

||| Ff |Sρ
|||2ρdρ =

∫∞
0

‖ Fψ|Sρ
‖2
L2(Sρ)

‖ Ff |Sρ
‖2
L2(Sρ)

ρdρ,

‖f‖2
L2(R2) = ‖Ff‖2

L2(R2) =
∫∞
0

‖ Ff |Sρ
‖2
L2(Sρ)

ρdρ ,

(A.4)

so indeed we have the following sufficient and necessary condition for L2-norm preserva-

tion:

Mψ = 1 i.e. ‖ Fψ|Sρ
‖2L2(Sρ)

= 1 for all ρ = ‖ω‖ > 0,

where we recall the definition of Mψ (2.7) and where we note that Mψ(ω) =

‖ Fψ|Sρ=‖ω‖
‖2
L2(Sρ)

. Moreover in the case Mψ = 1, for ψ ∈ L2(R
2) ∩ L1(R

2), its contin-

uous Fourier transform Fψ has equal L2-norm over each dual orbit, implying that each

irreducible subspace of L2(R
2)∩L1(R

2) given by {f ∈ L2(R
2)∩L1(R

2) | suppFf ⊂ Sρ}
is unitarily mapped onto each irreducible subspace within R(Wψ) ⊂ L2(SE(2)).
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