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Abstract. By means of a special type of wavelet unitary transform we construct an

orientation score from a grey-value image. This orientation score is a complex-valued

function on the 2D Euclidean motion group SE(2) and gives us explicit information on

the presence of local orientations in an image. As the transform between image and

orientation score is unitary we can relate operators on images to operators on orienta-

tion scores in a robust manner. Here we consider nonlinear adaptive diffusion equations

on these invertible orientation scores. These nonlinear diffusion equations lead to clear

improvements of the celebrated standard “coherence enhancing diffusion” equations on

images as they can enhance images with crossing contours. Here we employ differen-

tial geometry on SE(2) to align the diffusion with optimized local coordinate systems

attached to an orientation score, allowing us to include local features such as adaptive

curvature in our diffusions.

1. Introduction. In many noisy medical images, elongated structures occur that

cross each other. Therefore in the previous part, cf. [17], we proposed to enhance these

elongated structures using linear diffusions on the Euclidean motion group SE(2). In this
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294 REMCO DUITS AND ERIK FRANKEN

part we go one step further and consider nonlinear diffusion on SE(2). The advantage

of the nonlinear approach is that we can adapt the diffusion process depending on the

orientation confidence of local elongated structures. Just as in the previous part, we will

process the image via diffusions on invertible orientation scores, which we will briefly

explain next.

Image analysis usually starts with the sampling of a square integrable grey-value image

f : R2 → R by a function ψ ∈ L2(R
2)∩L1(R

2) via f �→ (ψ, f)L2(R2). To probe an image

at every location x ∈ R2 and in every direction eiθ ∈ T one translates and rotates an

anisotropic wavelet ψ by means of a representation g �→ Ug of the 2D Euclidean motion

group SE(2) given by

Ugψ(y) = ψ(R−1
θ (y− x)), g = (x, eiθ) ∈ SE(2). (1.1)

The result of such an image sampling is a function Wψf : SE(2) → C on the Euclidean

motion group manifold SE(2) = R2 ⋊ T, which is given by

Wψf(g) = (Ugψ, f)L2(R2) =

∫

R2

ψ(R−1
θ (y− x))f(y) dy, with g = (x, eiθ), (1.2)

and where Rθ =
(

cos θ − sin θ

sin θ cos θ

)
∈ SO(2). Throughout this article we refer to this

function (x, eiθ) �→ Wψf(x, e
iθ) as the orientation score Wψf of the grey-value image f .

As we have shown in [13], [11, ch:4.4, App.7.2] the transformation Wψ is a unitary

linear operator from L2(R
2) onto the unique reproducing kernel space C

SE(2)
K consisting

of complex-valued functions on SE(2) with reproducing kernel

K(g, h) = (Ugψ,Uhψ)L2(R2). (1.3)

The generation of orientation scores and the reconstruction of images thereof has been

the subject of previous publications, [11, 12, 14, 25], and in part I [17], we have derived

the essential equality in the Fourier domain (of the spatial part only):

‖Wψf‖2
C

SE(2)
K

=
∫
R2

∫
T
|(FWψf)(ω, e

iθ)|2dθ 1
Mψ(ω) dω = ‖f‖2

L2(R2), (1.4)

where Mψ(ω) :=
∫ 2π

0
|Fψ(RT

θ ω)|2dθ and where we assume that ψ is chosen such that

Mψ > 0, so that 1
Mψ

is well-defined. Here F denotes the usual unitary Fourier transform

on L2(R
2) given by Fψ(ω) = 1

2π

∫
R2 ψ(x)e

−ix·ωdx.
From (1.4) we obtain the reconstruction formula

f = W∗
ψWψ[f ] = F−1

[
ω �→

∫ 2π

0
F [Wψf(·, eiθ)](ω) F [Reiθψ](ω) dθ M−1

ψ (ω)
]
. (1.5)

The transformation between images and orientation scores preserves the L2-norm iff

‖f‖2
L2(R2) = ‖Wψf‖2L2(SE(2)) ⇔ Mψ = 1. (1.6)

It can be shown that for kernels ψ ∈ L2(R
2)∩L1(R

2) the function Mψ is a continuous

function vanishing at infinity. This means that for such kernels the wavelet transform

Wψ cannot be an isometry from L2(R
2) into L2(SE(2)).

This problem can be tackled by choosing ψ, within the dual space H−k,2(R2) of the

k-th order, k > 1, isotropic Sobolev space Hk,2(R2) such that Mψ = 1. In this case the

associated distributional transform WΨ : Hk,2(R2) → C
SE(2)
K , defined by WΨf(x, e

iθ) =

〈Ψ,U(x,eiθ)−1f〉, for all f ∈ Hk(R2), extends to an isometry from L2(R
2) into L2(SE(2)).
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f ∈ L2(R
2) Uf ∈ C

SE(2)
K ⊂ L2(SE(2))

Υ[f ] = W
∗

ψ[Φ[Uf ]] Φ[Uf ] ∈ L2(SE(2))

Wψ

Φ

(W∗

ψ)ext=W∗

ψ Pψ

Υ

Image

Processed Image Processed Score

Orientation Score

Fig. 1. Top Row: The complete scheme; for proper anisotropic
wavelets ψ the linear map Wψ is unitary from L2(R2) onto the

closed subspace C
SE(2)
K of orientation scores. We can uniquely re-

late a transformation Pψ ◦ Φ : C
SE(2)
K → C

SE(2)
K on an orientation

score to a transformation on an image Υψ = (W∗
ψ) ◦ Pψ ◦ Φ ◦Wψ ,

Here Pψ denotes the orthogonal projection onto C
SE(2)
K given by

PψU(g) =
∫
SE(2) K(g, h)U(h) dh, using the reproducing kernel (1.3).

Alternatively, one may restrict the transform Wψ to the space of images f ∈ L
̺
2(R

2),

the so-called “disc-limited” images, whose Fourier transform has support within a given

disc with radius ̺ > 0 as motivated in Part I. If we now choose ψ ∈ L
̺
2(R

2) such that

Mψ = 1B0,̺
, where B0,̺ = {ω ∈ R2 | ‖ω‖ < ρ}, then the unitary operator Wψ :

L
̺
2(R

2) → C
SE(2)
K between the space of disc-limited images and the space of orientation

scores preserves the L2-norm.

These two approaches lead to two different classes of proper wavelets, as explained

in [12, ch: 4.3 and ch: 4.4], [11]. In both approaches the engineering rationale behind

Mψ = 1 is that the auto-correlations of all rotated kernels Reiθψ together fill up the

Fourier-spectrum. Note that Mψ(ω) = F(
∫ 2π

0
Reiθψ∗Reiθ ψ̌ dθ)(ω), with ψ̌(x) = ψ(−x).

As a result for appropriate choice of ψ (say Mψ = 1) a small perturbation on an image

f corresponds to a small perturbation on its orientation score Wψf and vice versa, and

consequently operators Φ on the space of orientation scores are bijectively related to

operators on images Υψ in a stable manner by

Υψ ↔ Φ ⇔ Υψ = W∗
ψ ◦ Φ ◦Wψ; (1.7)

see Figure 1. This bijection is manifest if Φ maps the space of orientation scores C
SE(2)
K

into itself. With the operators Φ we consider in this article this is usually not the case.

Recall from part I [17] that this does not cause any problems if we naturally extend the

adjoint, recall [17, eq. 4.4], to the space L2(SE(2)). However one should keep in mind

that the effective operator from the space of orientation scores into itself is given by

Pψ ◦ Φ; see Figure 1.
Furthermore, in part I we have explained that Φ must be a nonlinear left-invariant

operator. Therefore we considered collision distributions obtained from a forward linear
diffusion resolvent and a backward linear diffusion resolvent; that is, in part I [17, eqs.

4.1 and 4.2] and [15], [13], [12], we considered the case where the operator Φ : C
SE(2)
K →

L2(SE(2)) is given by Φ(Wψf) = (QD,a(A) − αI)−1(χ(ℜ{Wψf}))) · ((QD,a(A))∗ −
αI)−1(χ(ℜ{Wψf})), where we recall the quadratic form QD,a(A) on the left-invariant
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vector fields on SE(2):

A := {A1,A2,A3} = {∂θ, ∂ξ, ∂η}, ξ = x cos θ + y sin θ, η = −x sin θ + y cos θ,

Q
D,a(A) =

3∑

i=1

(
−aiAi +

3∑

j=1

AiDijAj

)
, ai, Dij ∈ R, D

T = D ≥ 0,
(1.8)

with a = (a1, a2, a3) ∈ R3, D = [Dij ] ∈ R3×3. Here we recall that χ was some monotonic

grey-value transformation to put a soft threshold on weak responses in the orientation

score. The linear parts of these operators, such as

(
((QD,a(A))∗ − αI)−1U

)
(g) =

(∫ ∞

0

KD,−a

s e−αsds ∗SE(2) U

)
(g)

= (RD,−a

α ∗SE(2) U)(g),

are easily computed by means of SE(2)-convolution with the corresponding Green’s

functions RD,−a
α , which we derived explicitly in part I and [15]. However, these operators

suffer from the practical drawback that the involved convolution kernels RD,−a
α , RD,a

α

take care of constant diffusion and convection. In the approach presented in this article

it is possible to incorporate curvature into contour completion and enhancement, as first

reported (for contour completion) by August and Zucker [5].

In this part we go one step further: we propose Φt : C
SE(2)
K → L2(SE(2)) as nonlinear

adaptive diffusion equations on invertible orientation scores, with stopping time t > 0.

Here we will not consider products of linear resolvent equations, but we will consider

nonlinear evolutions, without convection, given by
{

∂tU(g, t) = QD(U),a=0 U(g, t), g ∈ SE(2), t > 0,

U(g, 0) = Wψf(g), g ∈ SE(2),
(1.9)

where the conductivity D(U) depends on the local differential structure of (g, t) �→
U(g, t).

Here we use locally optimal exponential curve fits to the absolute value of an orienta-

tion score. These optimal exponential curve fits provide a gauge frame attached to (the

graph of) an orientation score at each position g ∈ SE(2) in the 2D Euclidean motion

group and will be used to locally align the diffusion on orientation scores. This locally

adaptive alignment of diffusion is a common procedure in image processing, [30], [10],

[39], but so far it has always been considered for diffusions directly on images.

The advantage of the more elaborate nonlinear, adaptive diffusions on invertible ori-

entation scores is that the domain of orientation scores is the 2D Euclidean motion group

SE(2), which has a much richer structure than the domain of images, R2, allowing us to

deal with (multiple) crossing curves in images.

1.1. Organization of Part II. Section 2 gives a quick review of locally adaptive diffu-

sions in image processing. We finish this section with the so-called coherence-enhancing

diffusions proposed in [39], where both the norm and the direction of the image gradient

are used to steer the diffusion on the image. The basic idea is to diffuse tangent to

edges/lines, not orthogonal to edges/lines, in images. The drawback of this approach is

that at locations of crossing lines the direction of the gradient is ill-defined, resulting in

ill-defined orientations and thereby artificial curvatures within the diffusion process. In
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the orientation score this typical crossing problem is automatically tackled as crossing

line structures are torn apart by multiple convolutions with rotated versions of the ori-

ented wavelet. Now in contrast to the differential structure in an image, the direction of

each disentangled elongated structure in an orientation score is well-defined. Therefore,

in Section 4 we consider coherence-enhancing diffusion on invertible orientation scores,

meaning that we set Φ to be equal to a nonlinear left-invariant diffusion operator with

a certain stopping time. Before we can provide these nonlinear diffusions we need some

prerequisites from differential geometry on the Euclidean Motion group. This differential

geometry will be explained in Section 3 and will be used to properly include orientation

score adaptive features such as local curvature and deviation from horizontality in our

nonlinear diffusion schemes.

Section 3 is organized as follows. In Subsection 3.1 we reformulate the coherence-

enhancing diffusion schemes to stress the role of an invariant metric in an adaptive

nonlinear diffusion scheme. Then in Subsection 3.2 we consider the design of an invariant

metric on SE(2), where by Theorem 3.1 we must choose between bi-invariance and

nondegeneracy. Although bi-invariance is a common requirement in both the fields of

mathematics (on symmetric Riemannian spaces, [24]) and computer vision [2], [3], [33],

we show why we do not need it. As we explain in Lemma 3.3 and Corollary 3.4, operators

Φ on orientation scores should be left-invariant and not right-invariant.

This brings us to a nondegenerate first fundamental form Gβ (inducing a metric) on

SE(2), depending on a parameter β with physical dimension 1/[Length]. The induced

metric does not coincide with the usual degenerate bi-invariant Cartan metric on SE(2).

Within this first fundamental form the parameter β > 0 sets a balance between penaliza-

tion of length and penalization of curvature of projections of curves to the spatial plane.

As β tends to zero this left-invariant inner product tends to the bi-invariant degenerate

Cartan metric on SE(2). For β > 0 this first fundamental form is related to the non-

degenerate Cartan metric on SO(3) which can be embedded in SE(2), as we will explain

in Theorem 3.2. Furthermore in Subsection 3.2 we apply the Maurer-Cartan form and

the thereby induced Cartan connection on SE(2). This yields the covariant derivatives

of vector fields on SE(2), which we explain in Theorem 3.8. Then in Theorem 3.9 we

show that our nonlinear diffusions on orientation scores can be expressed in these covari-

ant derivatives and thereby the diffusions take place along the covariantly constant (i.e.,

auto-parallel) curves, which coincide with the exponential curves on SE(2). The Car-

tan connection has constant curvature and torsion and so have the auto-parallel curves,

which are indeed circular spirals.

Then in Subsection 3.3 we consider the definition and relevance of horizontal curves in

SE(2). To every C1-curve s �→ (x(s), y(s)) one can associate a unique horizontal curve

in SE(2) by s �→ (x(s), y(s), θ(s) = arg(x′(s)+ i y′(s))). This is relevant, since at regions
Ω ⊂ SE(2) with strongly oriented responses |Wψf(g)|, g ∈ Ω, in the orientation score g �→
Wψf(g) one would like to diffuse mainly along such horizontal curves. We will show that

this requires a principal fiber bundle structure PY on the domain of an orientation score,

constructed from the unique subgroup Y = {(0, y, 0) | y ∈ R} ⊂ SE(2) with the property

that constant right action on a horizontal curve again yields a horizontal curve. On this

principal fiber bundle PY = (SE(2), SE(2)/Y, π,R), with Y = {(0, y, 0) | y ∈ R} and
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π(g) = gY and Rhg = gh we impose a Cartan-Ehresmann connection form. By definition,

the kernel of this Cartan-Ehresmann connection form equals the horizontal part of each

tangent space Tg(SE(2)) and coincides with the tangent space of all horizontal curves

through g. This is explained in Theorem 3.13, where we also equip PY with the following

left-invariant form dθ⊗dθ+β2(cos θdx+sin θdy)⊗(cos θdx+sin θdy), again parameterized

by β, yielding a suitable left-invariant metric on SE(2). This parameter is similar to

the natural parameter in elastica curves, [29]. Although there is a difference between

the geodesics in PY and elastica curves on SE(2), we note that there is also a strong

analogy between these curves; for more details, see [16]. Here we will not make a detailed

comparison between elastica curves in R2 and geodesics in PY . We will only derive the

geodesics in PY in Appendix A. In contrast to well-known formulas for elastica curves,

[29] our exact formula for the geodesics does not involve special functions.

In Subsection 3.4 we explain how one can obtain a best (horizontal) exponential curve

fit to the orientation score data, locally at each g ∈ SE(2). Later on in Subsection

4.1 we use the tangent vector of these optimal exponential curves to introduce a gauge-

coordinate frame of left-invariant vector fields {∂a, ∂b, ∂c}, where ∂b is aligned with the

best fitting (horizontal) exponential curve and ∂a and ∂c are tangent vectors orthogonal

to ∂b with respect to the first fundamental form Gβ of Section 3.2.

Finally, in Section 4 we use the theoretical results of the previous section in our solution

to a number of medical image analysis problems that require enhancement of (multiple)

crossing elongated structures in noisy images. For details on the algorithmic side and

medical image analysis applications, see our applied companion paper [20].

2. Previous work in the field of image analysis on locally adaptive diffusion.

A scale space representation uf : Rd × R+ → R of an image f : Rd → R is usually

obtained by solving an evolution equation on the additive group (Rd,+). The most

common evolution equation, in image analysis, is the diffusion equation
{

∂suf (x, s) = ∇x · (C(uf (·, s))(x)∇xuf )(x, s)

uf (x, 0) = f(x),

where C : L2(R
2) ∩ C2(R2) → C1(R2) is a function which takes care of adaptive

conductivity; that is, C(uf (·, s))(x) models the conductivity depending on the local

differential structure at (x, s, uf (x, s)). If C = 1 the solution is given by convolu-

tion uf (x, s) = (Gs ∗ f)(x) with a Gaussian kernel Gs(x) = 1

(4πs)
d
2
e−

‖x‖
4s with scale

s = 1
2σ

2 > 0.

As pointed out by Perona and Malik [31], nonlinear image adaptive isotropic diffusion

is achieved by replacing C = 1 by C(uf (·, s))(x) = c(‖∇xuf (x, s)‖), where c : R+ → R+

is some smooth strictly decaying positive function vanishing at infinity. This is based on

the idea that if (locally) the gradient is large you do not want to diffuse too much. By

restricting ourselves to positively valued c > 0 one ensures that the diffusion is always

forward, and thereby ill-posed backward diffusion is avoided. The common choices are

c(t) = e
− c

(λ
t )

2p

, c(t) =
1

(
t
λ

)2p
+ 1

and c(t) =
1√(

t
λ

)2
+ 1

, (2.1)
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involving parameters p > 1
2 , λ > 0. The corresponding flux magnitude functions are

given by φ(t) = t c(t), with t = ‖∇uf‖. Now the sign of

φ′(t) = c(t) + tc′(t) (2.2)

is important, since if φ′(t) > 0, then the magnitude φ(t), t = ‖∇uf‖, of the flux

c(‖∇uf‖)∇uf , (2.3)

(by the Gauss Theorem) increases as ‖∇uf‖ increases, whereas if φ′(t) < 0 the magnitude

φ(‖∇uf‖) of the flux (2.3) decreases as ‖∇uf‖ increases. Typically, this introduces an

extra “sharpening effect” of lines and edges. However, this sharpening effect should

not be mistaken for ill-posed backward diffusion because, in all cases, c(t) ≥ 0 for all

t > 0. To this end we note that the Perona and Malik equation can be rewritten in

gauge coordinates {a, b}, with a along the normalized gradient 1
‖∇uf‖∇uf and b along

the normalized vector 1
‖∇uf‖ (−∂yuf , ∂xuf ) orthogonal to the gradient, using (2.2):

∂uf

∂s = div(c(‖∇uf‖)∇uf ) =
∂
∂a

(
c(

∂uf

∂a )
∂uf

∂a

)
+ c(

∂uf

∂a )
∂2uf

∂b2 ⇔
∂uf

∂s = φ′(∂uf

∂a )
∂2uf

∂a2 + c(
∂uf

∂a )
∂2uf

∂b2 ,
(2.4)

with
∂2uf

∂a2 = 1
‖∇xuf‖2 (∇xuf )Hx[uf ](∇xuf )

T and
∂uf

∂a = ‖∇xuf‖.
A further improvement of the Perona and Malik scheme is introduced by Weickert [39],

who also uses the direction of the gradient∇xuf of uf , which is not used in the algorithms
of Perona and Malik type. He proposed “coherence-enhancing diffusion” (CED), where
the diffusion constant c is replaced by a diffusion matrix:

S(uf (·, s))(x) = (Gσ ∗ ∇uf (·, s)(∇uf (·, s))T )(x),
C(uf (·, s))(x) = αI+

(1− α)e
− c

(λ1(S(uf (·,s))(x))−λ2(S(uf (·,s))(x)))2
e2(S(uf (·, s))(x)) eT

2 (S(uf (·, s))(x)),
(2.5)

where α ∈ (0, 1), c > 0, σ > 0 are parameters and where the so-called “structure tensor”

S, with eigenvalues {λi(S(uf (·, s))(x))}i=1,2 is used to get a measure for local anisotropy

e
− c

(λ1(S(uf (·,s))(x))−λ2(S(uf (·,s))(x)))2 together with an orientation estimate e2(S(uf (·, s))(x)),
which is the eigenvector of the structure tensor with smallest eigenvalue. In order to get

robust orientation estimates it is essential to apply a componentwise smoothing on the

so-called “structure-tensor field” ∇uf ⊗∇uf . The amount of averaging of the structure

tensor field is determined by σ > 0. The CED method leads to useful and visually

appealing diffusions of, for example, the famous Van Gogh paintings and fingerprint

images; see Figure 2.

Nevertheless, this method fails in image analysis applications with crossing curves as

it starts to create strong artificial curvatures at crossing locations where the direction of

the gradient is ill-defined. As this is a major drawback in many imaging applications we

are going to solve this problem by considering similar nonlinear adaptive evolution equa-

tions on invertible orientation scores. This coherence-enhancing diffusion via invertible

orientation scores has two advantages over coherence-enhancing diffusion on images:

(1) In the domain SE(2) = R2⋊T of an (invertible) orientation scoreWψf : SE(2) →
R, crossing curves visible in an image f : R2 → R are torn apart by convolution

with an oriented wavelet at multiple angles (1.2). Along the separated curves
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300 REMCO DUITS AND ERIK FRANKEN

Fig. 2. From left to right: input image f of the well-known portrait
of Van Gogh, computed on comparable slices uf (·, s) in a linear scale

space representation C = 1, Perona and Malik nonlinear scale space
representation (left case in (2.1)) and coherence-enhancing diffusion
(CED) given by (2.5) in Weickert, [39].

Original +Noise CED-OSt = 10 ED t = 10C

Fig. 3. Illustration of the typical different behavior of coherence-
enhancing diffusion on images (CED) and coherence-enhancing dif-
fusion via invertible orientation scores (CED-OS). Both methods are
applied to the second image with noise and both evolutions are

stopped at comparable stopping time t = 10. Clearly, CED-OS
preserves crossings of curves much better than CED (which creates
artistic van Gogh-type patterns at crossings).

the direction of the gradient of an orientation score is well-defined. This allows

us to diffuse coherently along the separate curves after which the inverse wavelet

transformation will automatically merge the separate curves visible in a diffused

orientation score Φ(Wψf) into properly smoothed crossings visible in the final

enhanced image Υψ(f).

(2) In an orientation score (x, y, eiθ) �→ Wψ(f)(x, y, e
iθ) we have explicit information

on local directions and we can easily measure curvature in a robust manner as we

will explain in Subsection 3.4. This enables us to align the left-invariant diffusion

Wψf �→ Φt(Wψf) on the orientation scores adaptively to the local differential

structure in an evolving orientation score Φt(Wψf).

See Figure 3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



NONLINEAR DIFFUSIONS ON SE(2) 301

Before we can translate these conceptual advantages into working image-processing

algorithms, of which Fig. 3 shows an example result, we need to discuss some prerequisites

from differential geometry, which will be the subject of the next section.

3. Differential geometry on SE(2).
3.1. First fundamental forms underlying nonlinear diffusion schemes. In order to gen-

eralize the CED (coherence-enhancing diffusion) schemes to orientation scores we simply
have to replace the left-invariant vector fields {∂x, ∂y} on the additive group (R2,+),
by the left-invariant vector fields on SE(2). To this end we formulate the standard
coherence-enhancing diffusion equations on images (with conductivity (2.5)) as

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂suf (x, s) =

(
∇x · S ·

(
ε 0

0 (1 − ε)e
− c

λ1−λ2 + ε

)
· S

−1 · (∇xuf (·, s))T
)
(x)

=
(

∂a ∂b

)
(

ε 0

0 (1 − ε)e
− c

(λ1−λ2)2 + ε

)(
∂a

∂b

)
uf (x, s), x ∈ R

2, s > 0,

uf (x, 0) = f(x), x ∈ R
2.

(3.1)

Here we expressed the diffusion equations in both the global standard basis ǫ =

{ex, ey} := {(1, 0), (0, 1)} ↔ {∂x, ∂y} and in the locally adapted basis of eigenvectors

of an auxiliary matrix S(uf (·, s))(x) (in image analysis known as the “structure tensor”,

recall (2.5)):

α = {e1, e2} := {e1 (S(uf (·, s))(x)) , e2 (S(uf (·, s))(x))} ↔ {∂a, ∂b},

with respective eigenvalues λk := λk(S(uf (·, s))(x)), k = 1, 2. The corresponding orthog-

onal basis transform which maps the standard basis vectors to the eigenvectors {e1, e2}
is denoted by S = (e1 | e2) and we have (∂a ∂b) = (∂x ∂y) · S. At isotropic areas

λ1 → λ2 and thereby the conductivity matrix becomes a multiple of the identity yielding

isotropic diffusion only at isotropic areas, which is desirable for noise-removal.

In principle, one can consider linear diffusion equations by making the conductivity

only adaptive to f = uf (·, ·, 0). In such a case the mapping f �→ uf is still nonlinear, but

the diffusion equation itself is linear. In a numerical finite difference scheme this means

that the conductivity need not be updated as it is not dependent on time. Moreover,

in this case the diffusion system will have a unique smooth solution, which is to our

knowledge not a priori guaranteed in the case of nonlinear diffusions.

The diffusion/conductivity matrix in (3.1) is intuitively diagonalized along the local

gauge-coordinate frame {∂a, ∂b} attached to the graph Γuf (·,·,s) = {(x, y, uf (x, y, s)) |
(x, y) ∈ R2} of a blurred image (x, y) �→ uf (x, y, s), s ≥ 0. By equipping the space

R2 with the usual metric where each tangent space Tx(R
2) is identified with T0(R

2) by

standard parallel transport on R2, the basis-transformation between the fixed coordinates

and the gauge coordinates is unitary, so that ST = S−1 and thereby the diffusion is

steered along a normalized, orthogonal, local gauge-coordinate frame {∂a, ∂b}.
Instead of adapting the conductivity one can also intrinsically replace the standard

first fundamental form on the image domain by a first fundamental form on the graph
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of an image in order to consider Laplace-Beltrami flow, as proposed by Sochen [33]:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂suf (x, y, s) =
1√

det {G(x,y,s)}

2∑
i=1

2∑
j=1

∂i

{√
det {G(x, y, s)}Gij(x, y, s) ∂juf (·, ·, s)

}
(x, y),

where we applied short notation G(x, y, s) := C(uf (·, ·, s))(x, y),

uf (x, y, s = 0) = f(x, y) for all (x, y) ∈ R
2.

Now note that the right-hand side in the PDE in (3.1) can be rewritten as

2∑

i=1

2∑

j=1

∂i
{
Gij(·, ·, s)∂juf (·, ·, s)

}
(x, y),

where [Gij(x, y, s)]2i,j=1 denotes the inverse of the first fundamental form matrix

G(x, y, s) = [Gij(x, y, s)]
2
i,j=1. Here the inverse matrix [Gij(x, y, s)]2i,j=1 equals the sym-

metric positive definite conductivity matrix C(uf (·, ·, s))(x, y), recall (2.5), evaluated at

position (x, y) ∈ R2 at time s > 0.
By the product rule for differentiation, the Laplace-Beltrami flow can be obtained by

adding the following terms to the right-hand side of the PDE in (3.1):

1√
detG(x, y, s)

2∑

i=1

∂i

{√
detG(·, ·, s)

}
(x, y)

2∑

j=1

G
ij(x, y, s) ∂juf (x, y, s) .

For numerical reasons, however, we will not add these terms within this paper.

Now in order to generalize the coherence-enhancing diffusion schemes on images to

coherence-enhancing diffusion schemes on orientation scores we must replace the left-

invariant vector fields on R2 by the left-invariant vector fields on SE(2), as in (1.9), and

in order to keep track of orthogonality and parallel transport in our diffusions we need an

invariant first fundamental form G on SE(2), rather than the trivial, bi-invariant, first

fundamental form on (R2, T (R2)), where each tangent space Tx(R
2) is identified with

T0(R
2) by standard parallel transport on R2, i.e. GR2(x,y) = x · y = x1y1 + x2y2.

3.2. Design of the metric on SE(2): Bi-invariance versus nondegeneracy. In both the

field of image analysis [2] and in mathematics (symmetric spaces) [24] it is very common

to use bi-invariant metrics on groups. Here arises the first complication: as in SE(2)

no such bi-invariant, nondegenerate, first fundamental form (inducing a metric in the

usual way) exists; see Theorem 3.1. Therefore we must choose between bi-invariance

and nondegeneracy for the underlying metric in our nonlinear diffusion schemes. In this

section we explain why we use a left-invariant, nondegenerate metric on SE(2) as the

underlying metric for our nonlinear diffusions on orientation scores. Furthermore, we will

consider some differential geometry on SE(2), which serves as an essential prerequisite

for the full understanding and design of our diffusions on orientation scores later on.1

1It is not crucial to grasp all the details in Subsections 3.2, 3.3 to follow Sections 3.4 and 4. The
reader who is not interested in the details can skip all proofs in Subsections 3.2, 3.3 and just consider
Theorems 3.1, 3.3, 3.4, 3.9 and Definition 3.11 and eqs. (3.5), (3.11), (3.25), (3.26), (3.31), (3.23), (3.24),

(3.38).
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Theorem 3.1. The only real-valued left-invariant (symmetric, positive, semidefinite)

first fundamental forms G : SE(2)× T (SE(2))× T (SE(2)) → C on SE(2) are given by

G =

3∑

i=1

3∑

j=1

gij dAi ⊗ dAj , gij ∈ R, (3.2)

where the dual basis {dA1, dA2, dA3} ⊂ (L(SE(2)))∗ of the dual space (L(SE(2)))∗ of

the vector space L(SE(2)) of left-invariant vector fields spanned by

A1 = ∂θ, A2 = ∂ξ = cos θ ∂x + sin θ ∂y, A3 = ∂η = − sin θ ∂x + cos θ ∂y, (3.3)

obtained by applying the derivative dR of the right-regular representation R to the

standard basis in the Lie algebra {A1, A2, A3} := {∂x, ∂y, ∂θ} ⊂ Te(SE(2)), is given by

dA1 = dθ , dA2 = cos θ dx+ sin θ dy, dA3 = − sin θ dx+ cos θ dy. (3.4)

The only (up to scalar multiplication) bi-invariant fundamental form on SE(2) is degen-

erate and given by G ≡ dθ ⊗ dθ.

Proof. Recall from part I [17, ch:3] that dR yields the fundamental isomorphism

between the Lie algebras Te(SE(2)) and L(SE(2)), so Ai = dR(Ai) and [Ai,Aj ] =

AiAj −AjAi. The dual basis (3.4) satisfies 〈dAi,Aj〉 = δij . Then by definition, G is

• left-invariant if ∀h,g∈SE(2)∀X,Y ∈χ(SE(2)) : Gh(Xh, Yh)=Ggh((Lg)∗Xh, (Lg)∗Yh).

• right-invariant if ∀h,g∈SE(2)∀X,Y ∈χ(SE(2)) : Gh(Xh, Yh)=Ghg((Rg)∗Xh, (Rg)∗Yh).

• inversion-invariant if ∀h,g∈SE(2)∀X,Y ∈χ(SE(2)) :

Gre(g)((re)∗Xg, (re)∗Yg)=Gg(Xg, Yg).

• Ad-invariant if ∀h,g∈SE(2)∀X,Y ∈χ(SE(2)) :

Ghgh−1(Ad(h)Xg,Ad(h)Xg)=Gg(Xg, Yg).

• reflection-invariant if ∀h,g∈SE(2)∀X,Y ∈χ(SE(2)) :

Grh(g)((rh)∗Xg, (rh)∗Yg) = Gg(Xg, Yg).

Now the dual tangent space (Tg(SE(2)))∗, g ∈ SE(2), is spanned by {dA1
∣∣
g
, dA2

∣∣
g
,

dA3
∣∣
g
}. As a result for all g ∈ SE(2) there exist numbers gij(g) ∈ R, i, j = 1, 2, 3 such

that

Gg =

3∑

i=1

3∑

j=1

gij(g) dAi
∣∣∣
g
⊗ dAj

∣∣∣
g
.

Now G is left-invariant iff ∀i,j∈{1,2,3}∀g∈SE(2) Gg(Ai|g , Aj |g) = Ge((Lg−1)∗ Ai|g ,
(Lg−1)∗ Aj |g) = Ge(Ai, Aj), i.e. ∀i,j∈{1,2,3}∀g∈SE(2) gij(g) = gij(e). For the cases

where G is bi-invariant we note that reflections around the unity element given by

re(g) = g−1 relate left multiplication Lgh = gh to right multiplication Rgh = hg since

Rg = reLg−1re ⇔ reRg−1re = Lg and reflections h �→ rg(h) = gh−1g around element

g ∈ SE(2) follow by rg = LgRgre and the adjoint action is defined by Ad(g) = (Rg−1Lg)∗,
so that, [35, Ch:V]:

G is both left and inversion-invariant ⇔ G is both left and right-invariant

⇔ G is both left and reflection-invariant ⇔ G is both left and Ad-invariant.
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This brings us2 to the left-invariant Cartan form induced by the Killing-form K (which
is invariant under all Lie algebra automorphisms, [24, p.266], and in particular Ad):

Gg = −K(Ai, Aj) dAi
∣∣
g
⊗ dAj

∣∣
g
= trace (ad(Ai) ◦ ad(Aj)) dAi

∣∣
g
⊗ dAj

∣∣
g

= −〈dAk, ad(Ai) ◦ ad(Aj)Ak〉 dAi
∣∣
g
⊗ dAj

∣∣
g
= −clkjc

k
li dAi

∣∣
g
⊗ dAj

∣∣
g

,
(3.5)

where ckij are the structure constants of the Lie algebra and ad(Aj)Ai = [Ai,Aj ] = ckijAk.

A direct computation of this Killing form yields G = dθ ⊗ dθ. It is not difficult to see

that the metric given in (3.5) is the only both left- and Ad-invariant metric, since by

left-invariance it can be written as (3.2) and by Adg=(x,y,eiθ)(∂θ) = ∂θ − y ∂x + x ∂y,

Ad(x,y,eiθ)(∂x) = ∂x, Ad(x,y,eiθ)(∂y) = ∂y, the adjoint orbits are planes with fixed ∂θ
component on which the quadratic form is constant, so gij = 0 if (i, j) �= (1, 1). �

Summarizing, we must choose between bi-invariance and invertibility. On the one

hand, in Lie group theory it is common to maintain bi-invariance, and therefore we

embed SE(2) into SO(3), on which the bi-invariant metric is nondegenerate. In Theorem

3.2 we present a parameterized class of compact groups {(SE(2))β | 0 < β ≤ 1}, with
lim
β↓0

(SE(2))β = SE(2) and (2πZ× {0} × {0})\(SE(2))β=1 ≡ SO(3). Each member of

this class admits a bi-invariant metric which is nondegenerate iff β > 0. We use this class

to derive covariant derivatives and Riemannian curvature on (SE(2))β and by taking the

limit β ↓ 0 we obtain covariant derivatives and sectional curvatures on SE(2). On the

other hand, by Lemma 3.3 and Corollary 3.4, operators on orientation scores should be

left-invariant, not right-invariant, so we do not need right-invariance.

Theorem 3.2. The Euclidean motion group SE(2) can be obtained by contraction from
the group SO(3), by means of the groups3 (SE(2))β, β ∈ [0, 1], that arise by equipping
the set R2 × S1 with the group product

(x, y, θ) ·β (x′, y′, θ′) = (x + x′ cos θ
√
1+β2y2 − y′ sin θ

√
1 + β2y2 , y + x′(1+β2y2) sin θ

+y′(1+β2y2) cos θ, θ + θ′ − β2x′y cos θ + β2y′y sin θ mod 2π) .

One has SE(2) = lim
β↓0

(SE(2))β and4 SO(3) ≡ 2π Z×{0}× {0}\(SE(2))β=1. The latter

isomorphism (for a geometrical explanation, see Figure 4) is given by

SO(3) ∋ Rez ,γ̃Rey,β̃
Rez ,α̃ ↔ (x, y, θ) ∈ (SE(2))β=1

⇔ α̃ = x and β̃ = π
2 − arctan(y) and γ̃ = θ,

(3.6)

where the well-known Euler angle parametrization of SO(3) is given by Rez ,γ̃Rey,β̃
Rez ,α̃.

The left-invariant vector fields on (SE(2))β are given by

Aβ
1 = ∂θ ,

Aβ
2 = −β2y cos θ ∂θ + cos θ

√
1 + β2 y2 ∂x + sin θ (1 + β2 y2) ∂y ,

Aβ
3 = β2y sin θ ∂θ − sin θ

√
1 + β2 y2 ∂x + cos θ (1 + β2 y2) ∂y .

(3.7)

2Occasionally within this paper, as in (3.5), we use the Einstein summation convention; i.e., we apply

automatic summation over indices which appear both as upper and lower indices.
3The groups (SE(2))β , β ∈ [0, 1] in this part II, connecting SE(2) and SO(3), should not be mistaken

with the groups (SE(2))t, t ∈ [0, 1], connecting SE(2) and H(3), used in part I [17].
4The quotient is taken only to ensure that the first variable x of the group (SE(2))β=1 is 2π-periodic.
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These vector fields form a 3D Lie algebra: [Aβ
1 ,Aβ

2 ] = Aβ
3 , [Aβ

1 ,Aβ
3 ] = −Aβ

2 ,

[Aβ
2 ,A

β
3 ] = β2 Aβ

1 , which tends to L(SE(2)) = {∂θ, ∂ξ, ∂η} for β → 0. Let the left-

invariant co-vectors {dAi
β}3i=1 be given by 〈dAi

β,A
β
j 〉 = δij . Then the bi-invariant first

fundamental form Gβ on (SE(3))β induced by the Killing form (as in (3.5)) is given by

Gβ = gijdAi
β ⊗ dAj

β, with G = [gij ] =

(
1 0 0

0 β2 0

0 0 β2

)
. (3.8)

As a result the groups (SE(2))β are compact symmetric5 Riemannian spaces iff β > 0.

The Riemann curvature tensor on these symmetric Riemannian spaces equals:

R = β2Aβ
1 ⊗ dA2

β ⊗ dA1
β ∧ dA2

β − β2Aβ
1 ⊗ dA3

β ⊗ dA1
β ∧ dA3

β

+β2Aβ
2 ⊗ dA3

β ⊗ dA2
β ∧ dA3

β − β2Aβ
3 ⊗ dA2

β ⊗ dA3
β ∧ dA2

β

+ Aβ
2 ⊗ dA1

β ⊗ dA1
β ∧ dA2

β + Aβ
3 ⊗ dA1

β ⊗ dA1
β ∧ dA3

β .

(3.9)

Proof. The tangent space at the unity element e = (0, 0, 0) of all groups {(SE(2))β}
is the same for all β ≥ 0 and it is spanned by {A1, A2, A3} = {∂x, ∂y, ∂θ}. Now the

formula for the left-invariant invariant vector field Aβ
i (3.7) directly follows by applying

the derivative dR of the right-regular representation R given by Rgφ(h) = φ(hg), as
in (B.2), to Ai, i = 1, 2, 3. Now with respect to the isomorphism (3.6) we note that
the Euler angle parametrization of SO(3) is given by Rez ,γ̃Rey,β̃

Rez ,α̃. A basis of left-

invariant vector fields on SO(3) (in Euler angles) is given by

B1 = cot β̃ cos γ̃ ∂γ̃ − cos γ̃

sin β̃
∂α̃ + sin γ̃ ∂β̃ , B2 = − cot β̃ sin γ̃ ∂γ̃ − cos γ̃

sin β̃
∂α̃ + sin γ̃ ∂β̃ , (3.10)

and B3 = ∂γ̃ , with commutators [B1,B2] = B3, [B2,B3] = B1, [B3,B1] = B2, [8, ch:9.10].

If we apply the coordinate transformation α̃ = βx, β̃ = π
2 − arctan(βy), γ̃ = θ and

multiply B1 and B2 by β we obtain the left-invariant vector fields (3.7). Therefore these

vector fields {Aβ
1 ,A

β
2 ,A

β
3} again form a three-dimensional Lie algebra:

[Aβ
1 ,Aβ

2 ] = Aβ
3 , [Aβ

1 ,Aβ
3 ] = −Aβ

2 , [Aβ
2 ,Aβ

3 ] = β2 Aβ
1 ,

which converges to {A1,A2,A3} = {∂θ, ∂ξ, ∂η} for β → 0. Now the Lie algebra of

SO(3) is equal to so(3) = {A ∈ GL(3,R) | AT = −A}, which is isomorphic to R3

by means of a ↔ (x �→ a × x), and by direct computation of (3.5) we indeed find

gβ=1
ij = δij and (3.8). Moreover (3.9) follows by Cartan’s formula [1] for the Riemannian

curvature tensor components on compact, semisimple Lie groups: Ri
j,kl =

1
2

∑
λ c

i
λjc

λ
kl,

where −c213 = c231 = c312 = −c321 = 1 and c123 = β2. As a matrix group is compact and

semisimple iff its Killing form is negative definite, [24, p.269], (SE(2))β is compact iff

β > 0. However, Cartan’s formula also applies to the case β = 0 as we show in Appendix

B. �

Lemma 3.3. Let Φ be a mapping on the space of orientation scores Φ : C
SE(2)
K → C

SE(2)
K .

Let Υψ = W∗
ψ ◦Φ◦Wψ be the corresponding operator on the space L2(R

2) of images. Let

U , respectively L, denote the regular representation of SE(2) onto L2(R
2) and L2(SE(2),

given by, respectively, (1.1) and LgU(h) = U(g−1h). Then,

∀g∈SE(2) : Φ ◦ Lg = Lg ◦ Φ ⇔ ∀g∈SE(2) : Ug ◦Υψ = Υψ ◦ Ug ,

∀g∈SE(2) : Φ ◦ Rg = Rg ◦ Φ ⇔ ∀g∈SE(2) : ΥUgψ = Υψ .
(3.11)

5These spaces are symmetric with respect to fundamental reflection h �→ gh−1g, [24].
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Fig. 4. The embedding of SE(2) in SO(3) by (3.6) for β = 1. The
group SO(3) can be identified with a unit ball B0,2π with radius

2π by means of the Euler angle parametrization. Here all points on
the sphere {x̃ ∈ R3 | ‖x̃‖ = α̃ = 2π} are identified with the origin.
Now given a fixed member of (x, y, eiθ) ∈ SE(2) we can obtain the
corresponding element in SO(3) as follows. First consider the point
(x̃, ỹ, z̃) = (x, y, 0) with attached direction θ = ∠((x̃, ỹ), (1, 0)) and
construct the unique half-line ℓ through the origin with direction θ.
Then project (x, y, 0) on the ỹ-axis and rotate the point so that it
ends up at point P at the line ℓ. Then find the unique point Q on the

unit sphere such that �OQ⊥ �PN where N is the north pole. Finally,
scale Q with x modulo 2π.

Proof. Recall from Figure 1 that every operator Φ on (and in) the space of orientation

scores (associated to kernel ψ) is 1-to-1 related to an operator Υψ = W∗
ψ ◦ Φ ◦ Wψ on

the space of images. Now it is easily verified by conjugation that the following relations

hold:

∀g∈SE(2) : WψUg = LgWψ ⇔ ∀g∈SE(2) : W∗
ψLg = UgW∗

ψ ,

∀g∈SE(2) : RgWψ = WUgψ ⇔ ∀g∈SE(2) : W∗
ψ = (WUgψ)

∗Rg ,
(3.12)

where we used (Lg)
∗ = (Lg)

−1 = Lg−1 , (Rg)
∗ = (Rg)

−1 = Rg−1 , (Ug)
∗ = (Ug)

−1 = Ug−1

for all g ∈ SE(2). Now the result (3.11) directly follows from (3.12). �

Corollary 3.4. Operators on orientation scores Φ should be left-invariant (i.e. Lg◦Φ =

Φ ◦ Lg) and not right-invariant in order to ensure that the effective operator Υψ is

a Euclidean invariant operator which requires an appropriately centered and rotated

anisotropic kernel ψ.

Therefore we consider the Maurer-Cartan form on SE(2), see Theorem 3.8, and impose

the following left-invariant, first fundamental form Gβ : SE(2)×T (SE(2))×T (SE(2))→
C on SE(2),

Gβ =
3∑

i,j=1

gijdAi ⊗ dAj = dθ ⊗ dθ + β2dA2 ⊗ dA2 + β2dA3 ⊗ dA3 , (3.13)
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where [gij ] = diag{1, β2, β2}. Here the parameter β (physical dimension equals 1/

[Length]) should be considered as a fundamental parameter which relates distance on

the tori {(x, eiθ) | θ ∈ [0, 2π)} to distances in the spatial planes {(x, eiθ) | x ∈ R2}. We

return to this explanation of β later when we put an explicit relation to certain geodesics

in SE(2) and elastica curves in R2 (where β2 determines the typical energy ratio of

bending and stretching of an elastic rod).

Remarkably, the left-invariant metric (induced by) Gβ on SE(2), which serves as the

major ingredient in our diffusion schemes on orientation scores in Section 4, is clearly

related to the bi-invariant metric (induced by) Gβ on the compact group (SE(2))β, (3.8).

In order to be able to understand the full meaning of the next two theorems we need

some basic definitions from differential geometry.

Definition 3.5. Let M be a smooth manifold, G be a Lie group. A principal

fiber bundle PG := (P,M, π,R) above a manifold M with structure group G is a tu-

ple (P,M, π,R) such that P is a smooth manifold, π : P → M is a smooth projection

map with π(P ) = M , R a smooth right action Rgp = p · g, p ∈ P , g ∈ G, such that

p · (gh) = (p · g) · h and π(p · g) = π(p) for all p ∈ P , g, h ∈ G. Finally it should satisfy

the “local triviality” condition, [34, pp. 346-347].

Definition 3.6. It is common to equip a principal fiber bundle PG = (P,M, π,R)

with a Cartan-Ehresmann connection form ω. This is by definition a Lie algebra Te(G)-

valued 1-form ω : P × T (P ) → Te(G) on P such that

ω(dR(A)) = A for all A ∈ Te(G),

ω((Rh)∗A) = Ad(h−1)ω(A) for all vector fields A and all h ∈ G .
(3.14)

It is also common practice to relate principal fiber bundles to vector bundles. Here

one uses an external representation ρ : G → F into a finite-dimensional vector space

F of the structure group to put an appropriate vector space structure on the fibers

{π−1(m) | m ∈ M} in the principal fiber bundles.

Definition 3.7. Let P be a principal fiber bundle with finite-dimensional structure

group G. Let ρ : G → F be a representation in a finite-dimensional vector space F . Then

the associated vector bundle is denoted by P ×ρ F and equals the orbit space under the

right action

(P × F )×G → P × F given by ((u,X), g) �→ (ug, ρ(g)X),

for all g ∈ G, X ∈ F and u ∈ P .

For details on the associated fiber bundle, see [32, pp. 123–148], where at the end the

author provides a clarifying table of correspondences between P and P ×ρ F .

Theorem 3.8. The Maurer-Cartan form ω on SE(2) is given by

ωg(Xg) =

3∑

i=1

〈dAi
∣∣
g
, Xg〉Ai, Xg ∈ Tg(SE(2)), (3.15)

where {dAi}3i=1 is given by (3.4) and Ai = Ai|e; recall (3.3). It is a Cartan-Ehresmann

connection form on the principal fiber bundle P = (SE(2), e, SE(2),L(SE(2))), where

π(g) = e, Rgu = ug, u, g ∈ SE(2). Let Ad denote the adjoint action of SE(2) on its own

Lie algebra Te(SE(2)), i.e. Ad(g) = (Rg−1Lg)∗, i.e. the push-forward of conjugation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



308 REMCO DUITS AND ERIK FRANKEN

Then the adjoint representation of SE(2) on the vector space L(SE(2)) of left-invariant

vector fields is given by

Ãd(g) = dR ◦Ad(g) ◦ ω. (3.16)

This adjoint representation gives rise to the associated vector bundle SE(2)×
Ãd

L(SE(2)).

The corresponding connection form on this vector bundle is given by

ω̃ = A2 ⊗ dA3 ∧ dA1 +A3 ⊗ dA1 ∧ dA2. (3.17)

Then ω̃ yields the following 3× 3-matrix-valued 1-form:

ω̃k
j (·) := −ω̃(dAk, ·,Aj), k, j = 1, 2, 3 (3.18)

on the frame bundle, [34, p.353, p.359], where the sections are moving frames [34, p.354].

Let {μk}3k=1 denote the sections in the tangent bundle E := (SE(2), T (SE(2))) which

coincide with the left-invariant vector fields {Ak}3k=1. Then the matrix-valued 1-form

(3.18) yields the Cartan connection6 D on the tangent bundle (SE(2), T (SE(2))) given

by the covariant derivatives

DX|γ(t)
(μ(γ(t))) := Dμ(γ(t))(X|γ(t))

=
3∑

k=1

ȧk(t)μk(γ(t)) +
3∑

k=1

ak(γ(t))
3∑

j=1

ω̃j
k(X|γ(t)) μj(γ(t))

=
3∑

k=1

ȧk(t)μk(γ(t)) +
3∑

i,j=1

γ̇i(t) ak(γ(t)) Γj
ik μj(γ(t)),

(3.19)

with ȧk(t) = γ̇i(t) (Ai|γ(t) ak), for all tangent vectors X|γ(t) = γ̇i(t) Ai|γ(t) along a curve

t �→ γ(t) ∈ SE(2) and all sections μ(γ(t)) =
∑3

k=1 a
k(γ(t))μk(γ(t)). The Christoffel

symbols in (3.19) are constants Γj
ik = −cjik, with cjik the structure constants of the Lie

algebra Te(SE(2)). The curvature tensor equals

D2 = Rj
i,kldAi⊗dAk ⊗dAl⊗Aj = A2⊗dθ⊗dθ∧dA2 + A3⊗dθ⊗dθ∧dA3. (3.20)

This formula arises from (3.9) by taking the limit β ↓ 0. So the curvature on SE(2) is

constant, the sectional curvature of the planes spanned, respectively, by {∂θ, ∂ξ} and by

{∂θ, ∂η} is 1 (so constant) and the sectional curvature of the plane spanned by {∂ξ, ∂η}
vanishes.

Proof. For the proof, see Appendix B. �

The next theorem relates the previous results on Cartan connections and covariant

derivatives to our nonlinear diffusion schemes on SE(2).

Theorem 3.9. The covariant derivative of a co-vector field a on the manifold ((SE(2))β,
Gβ) is a (0,2)-tensor field with components: ∇jai = Ajai −Γk

jiak, whereas the covariant

derivative of a vector field v on (SE(2))β is a (1,1)-tensor field with components ∇j′v
i =

Aj′v
i + Γi

j′k′vk
′
. Here the Christoffel symbols equal minus the structure constants of

6Following the definitions in [34], it is formally not right to call this the Cartan connection. It is the
Koszul connection, [34, p.242], corresponding to the Cartan connection, [34, p.353], i.e. the associated
differential operator corresponding to a Cartan connection. For a complete overview on Koszul connec-
tions, Ehresmann connections (the most general ones), Cartan connections and classical connections, see
[34, pp. 386-387]. From now on we avoid all these technicalities and just use “Cartan connection” (a

Koszul connection in [34]) and “Cartan-Ehresmann connection form” (Ehresmann connection in [34]).
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the Lie algebra L((SE(2))β) : Γk
ij = −ckij using short notation ∇j := DAj

, where D
denotes the Cartan connection on (SE(2))β. The Christoffel symbols are anti-symmetric
as the underlying Cartan connection7 D has constant curvature and constant torsion.
The left-invariant evolution equations (1.9) can be rewritten in covariant derivatives:

⎧
⎨
⎩

∂sW (g, s) =
3∑

i,j=1

Ai ( (Dij(W ))(g, s)AjW )(g, s) =
3∑

i,j=1

∇i ((Dij(W ))(g, s)∇jW )(g, s),

W (g, 0) = Wψf(g) , for all g ∈ SE(2), s > 0.

(3.21)
Both convection and diffusion in the left-invariant evolution equations (1.9) take place
along the exponential curves in SE(2) which are the covariantly constant curves with
respect to the Cartan connection. These curves are circular spirals in R2 × [0, 2π):

t �→ g0 exp(t(
3∑

i=1

ciAi)) = (x0 +
c3
c1
(cos(c1t+ θ0)− cos θ0) +

c2
c1
(sin(c1t+θ0)− sin θ0),

y0+
c3
c1
(sin(c1t+θ0)− sin θ0)− c2

c1
(cos(c1t+θ0)−cos θ0), e

i(c1t+θ0)), c1 
= 0,

(3.22)

for all g0 = (x0, y0, e
iθ0) ∈ SE(2), with radius

√
c22+c23
c1

and central point (− c3
c1

cos θ0 −
c2
c1

sin θ0 + x0,
c2
c1

cos θ0 − c3
c1

sin θ0 + y0). For c1 = 0 the exponential curves are given by

t �→ g0 exp(t(c2A2 + c3A3)) = (x0 + t c2 cos θ0 − t c3 sin θ0, y0 + t c2 sin θ0 + t c3 cos θ0, e
iθ0).

Proof. The first part of the proof is a straightforward generalization of Theorem 3.8,

where β = 0. Here we note that by Theorem 3.2 covariant differentiation takes place

on a symmetric Riemannian manifold ((SE(2))β),Gβ iff β > 0. We know by Theorem

3.2 that the curvature of the Cartan connection D on (SE(2))β is constant. Now the

torsion tensor T (X,Y ) = DXY − DY X − [X,Y ] is constant as well, since T [Ai,Aj ] =

DAi
Aj −DAj

Ai − [Ai,Aj ] =
∑

k(Γ
k
ijAk − Γk

jiAk − ckijAk) = −3
∑

k c
k
ijAk. Finally, the

covariant constant curves γ (or “auto-parallel” curves) are by definition given byDγ̇ γ̇ = 0

on the tangent bundle (SE(2), T (SE(2))):

Dγ̇ γ̇ = Dγ̇ i Ai|γ(t)
γ̇ i Ai|γ(t) = γ̈ i Ai|γ(t) + γ̇ iγ̇ kΓj

ikAj = γ̈i Ai|γ(t) = 0, (3.23)

where we again apply automatic summation over double indices and where Γk
ij = −Γk

ji =

ckji = −ckij . Apparently, tangent vectors to auto-parallel curves have constant coefficients

with respect to {A1,A2,A3}, i.e. ∀t>0 γ̇i(t) = 〈dAi
∣∣
γ(t)

, γ̇(t)〉 = 〈dAi
∣∣
γ(0)

, γ̇(0)〉 = ci ∈
R, i = 1, 2, 3. Now for smooth U : SE(2) → C one has

d
dt

U(γ(t)) = lim
h→0

U(γ(t+h)−U(γ(t)))
h

= (dR(
3∑

i=1

ciAi)U)(γ(t)) =
3∑

i=1

ci(dR(Ai)U)(γ(t))

=
3∑

i=1

ci AiU |γ(t) , where γ(t) = g0e
t

3∑
i=1

ciAi

, recall Ai = Ai|e ,
(3.24)

so these curves γ(t) coincide with the exponential curves in SE(2), derived in [15], [11].

Now the connection D is a Koszul connection, [34, p.241], and therefore ∇i(UAj) φ =

∇i(U∇j) φ = U∇i∇jφ + (∇iU)∇jφ for all U ∈ C1(SE(2)) and all smooth φ ∈
C∞(SE(2)). Now set U = Dij(W )(·, s) and φ = W (·, s) for all s > 0, use Dij = Dji and

Γk
ij = −Γk

ji, take the sum over both indices i, j and the result (3.21) follows. �

7Our Cartan connection is not related to a Levi-Civita connection (where Christoffels are symmetric).
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Remark 3.10. Circular spirals are the only curves with nonzero constant curvature

and torsion in the flat space R2 × [0, 2π). A circular spiral is covariantly constant in

(SE(2), T (SE(2))) with respect to the Cartan connection with constant curvature and

torsion iff the principal axis of the cylinder containing the spiral lies in the θ-direction.

3.3. Horizontal curves and principal fiber bundles. There exists a natural relation

between curves in the plane R2 and curves in SE(2). For every C1-curve s �→ (x(s), y(s))

one can construct a unique corresponding curve in SE(2) by s �→ (x(s), y(s), θ(s) =

arg(x′(s) + i y′(s))). We will call such curves in SE(2) horizontal curves.

Definition 3.11. A curve s �→ γ(s) = (x(s), y(s), eiθ(s)) in SE(2) is called horizontal

iff θ(s) = arg(x′(s) + i y′(s)). Then γ is called the lifted curve in SE(2) of the curve

s �→ x(s) = (x(s), y(s)) in R2. A tangent vector in Xg ∈ Tg(SE(2)) is called horizontal

if it is the tangent vector to some horizontal curve through g. A vector field X is called

horizontal if Xg is horizontal for all g ∈ SE(2).

We want to diffuse on orientation scores mainly along horizontal exponential curves;

for a practical motivation, see [20]. To get the right intuition: Recall [17, Fig.1], where

typically the mass of an orientation score is concentrated around a horizontal curve.

A smooth horizontal curve γ = (x, eiθ) in SE(2), given by s �→ (x(s), eiθ(s)), can be

parameterized by the arc-length s > 0 of its projection x = PR2γ on the spatial plane.

Using this spatial arc-length parametrization it is clear from Definition 3.11 that along

a horizontal curve γ = (x, eiθ) : R+ → SE(2) one has

γ = (x, eiθ) is horizontal ⇒ κ(s) = θ̇(s), (3.25)

where κ(s) = ±‖ẍ(s)‖R2 , with ‖ · ‖R2 the Euclidean norm on R2, is the curvature of the

curve s �→ x(s) = PR2γ(s). Furthermore, a smooth curve s �→ γ(s) is horizontal iff

γ̇(s) ∈ span{eθ|γ(s) , eξ|γ(s)} for all s > 0. (3.26)

Here we denote tangent vectors as eθ(s) = eθ, eξ(s) = cos θ(s)ex + sin θ(s)ey, eη(s) =

− sin θ(s)ex + cos θ(s)ey as they are considered as tangent vectors to (classes of) curves,

rather than considering tangent vectors as differential operators {∂θ, ∂ξ, ∂η} on locally

defined smooth functions, although by the isomorphisms described in [4] it boils down

to the same thing; recall [17, Fig.4].

By equality (3.26) and Definition 3.11 it follows that the horizontal part Hg ⊂
Tg(SE(2)) of each tangent space Tg(SE(2)) is spanned by Hg = {∂θ|g , ∂ξ|g}, and the

space of horizontal left-invariant vector fields is spanned by {∂θ, ∂ξ} = {A1,A2}. How-

ever, a horizontal curve itself s �→ γ(s) ∈ SE(2) can have components in all directions

{eθ, eξ, eη}, in contrast to γ̇(s) ∈ Tγ(s)(SE(2)). In fact a smooth curve γ given by

s �→ γ(s) = ξ(s)eξ(s) + η(s)eη(s) + θ(s)eθ(s), (3.27)

with γ(s) = (x(s), eiθ(s)) ∈ SE(2) and s > 0 the arc length of the projected curve

x = PR2γ, is a horizontal curve in SE(2) iff dη
ds = −ξκ. Moreover, for such curves we

have dξ
ds − κη = ‖ẋ(s)‖ = 1. This follows by differentiation of s �→ γ(s) and observation

(3.26):

d

ds
(ξ(s)eξ(s)+η(s)eη(s)+θ(s)eθ) = (ξ̇(s)−κ(s)η(s))eξ(s)+(η̇(s)+κ(s)ξ(s))eη(s)+θ̇(s)eθ. (3.28)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



NONLINEAR DIFFUSIONS ON SE(2) 311

Differentiating a smooth function C : SE(2) → R along a horizontal curve γ yields
d
ds
C(γ(s)) = 〈Cξ(γ(s))dA2 + Cη(γ(s))dA3 + Cθ(γ(s))dθ, γ̇(s)〉

=
(
Cξ(γ(s))

(
dξ

ds
− κ(s)η(s)

)
+ Cη(γ(s))

(
dη

ds
+ κ(s)ξ(s)

)
+ Cθ(γ(s))κ(s)

)

= Cξ(γ(s)) + κ(s)Cθ(γ(s)) .

(3.29)

A horizontal curve can be mapped to a new horizontal curve by right multiplication

with a fixed element from the subgroup Y = {(0, y, ei0 = 1) | y ∈ R}. Here we note that

γ(s) (0, y, 1) = (x(s), eiθ(s)) (0, y, 1) = (x(s) + yeη(s), e
iθ(s))

and ẋNEW (s) = ẋ(s) + d
dseη(s) = ẋ(s) + κ(s)eξ(s) = (1 + κ(s))eξ(s), so again the

horizontal condition θNEW (s) = arg(ẋNEW (s) + iẏNEW (s)) holds and therefore

s �→ γ(s) is horizontal ⇒ s �→ (γ(0, h, 0))(s) := γ(s)(0, h, 0) is horizontal . (3.30)

In fact Y is the only subgroup of SE(2) that has this property, whereas left multiplication

of a horizontal curve with any fixed element from SE(2) always yields a horizontal curve

again. For an overview of all (length-preserving) perturbations of horizontal curves into

horizontal curves, see [16, app. C].

Let us return to our goal of diffusing on orientation scores along horizontal exponential

curves; for a practical motivation, see [20]. Now by (3.26) this simply means that in the

diffusion generator (1.8) of our nonlinear diffusion system on orientation scores (3.21),

all ∂η derivatives should be removed (or equivalently set a3 = Di3 = D3i = 0, i = 1, 2, 3).

Recall from [17] that this removal does not cause singular behavior (like it would on R3)

iff {1, 3} ∈ {i | ai �= 0 ∨ Dii �= 0} or {1, 2} ∈ {i | ai �= 0 ∨ Dii �= 0}, because of the

noncommutativity of SE(2) and Hörmander’s condition, [23]. We stress that diffusion

does not take place on an integrable 2D submanifold of SE(2) (not even locally !), due to

the nonintegrability of the {dA1, dA2} = {dθ, cos θdx + sin θdy}-foliation, nor does the

horizontal diffusion take place on the quotient SE(2)/Y , as horizontal curves can have

an η-component in (3.27).

Summarizing, we need a better mathematical grip on the removal of the third direction

in the tangent space. Now technically speaking this means that diffusion takes place along

the contact manifold {SE(2), dA3}, [7, p.9]. Here we note that ddθ = 0 and

d(− sin θ dx+ cos θ dy) = − cos θ dθ ∧ dx− sin θ dθ ∧ dy,

d(cos θ dx+ sin θ dy) = − sin θ dθ ∧ dx+ cos θ dθ ∧ dy,
(3.31)

which coincides with Cartan’s structural formula on SE(2), [1], (B.10), in explicit form.

For example one has ddA3 = −dA1 ∧ dA2, where in the left-hand side only the left d

denotes an exterior derivative (dAi denotes the dual vector to Ai as in Theorem 3.1). So

the nondegeneracy condition on the Pfaffian form dA2 of the contact manifold [7, p.9] is

indeed satisfied : dA3 ∧ ddA3 = dA1 ∧ dA2 ∧ dA3 �= 0. It is well known in the theory

on contact manifolds [7] that the only integrable submanifolds are one-dimensional and

they are usually called Legendre submanifolds, which in our case simply coincide with

horizontal curves on SE(2). Contact manifold theory, [6], is highly useful for optimization

of Lagrangians along horizontal curves, [7, ch:1.2], as can be seen in Appendix A. But

it is mainly based on Pfaffian forms (elements in the dual tangent space) and we rather
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need a fiber structure in the manifold SE(2). Therefore we will use the Pfaffian form

dA3 of the contact manifold in an Ehresmann connection of a principal fiber bundle on

SE(2). So we consider the domain of the (evolving) orientation score as the following

principal fiber bundle:

PY = (SE(2), SE(2)/Y, π,R), (3.32)

with subgroup Y = {(0, y, ei0) | y ∈ R}, right-multiplication Rhg = gh, h ∈ Y , g ∈ SE(2)

and projection π : SE(2) → SE(2)/Y given by π(g) = gY = {g′ ∈ SE(2) | g′ ∼
g i.e. g−1g′ ∈ Y }, so that π(gh) = π(g) for all g ∈ SE(2), h ∈ Y . For more details on

principal fiber bundles in general, see [26], [34], [32].

Here we stress that coordinate-free differential geometry on principal fiber bundles

starts with horizontal lifts as defined below. These horizontal lifts define parallel trans-

port (which turns out to be independent of the choice of horizontal lift), [34, ch:8, p.365]

and parallel transport defines the covariant derivative [34, p.366] which yields a connec-

tion8, [34, p.367-368].

Definition 3.12. A horizontal lift of a curve γ : [0, 1] → SE(2)/Y is a horizontal

curve γ∗ : [0, 1] → SE(2) such that π(γ∗) = γ.

It can be shown [34, Prop. 7, p.363] that for every curve in γ : [0, 1] → SE(2)/Y

with γ(0) = g0Y for some g0 ∈ PY meaning g0 ∈ SE(2), say π(g0) = g0Y , there exists a

unique lift γ∗ of γ such that γ∗(0) = g0. In fact horizontal lifts are uniquely determined

by right multiplication and since Y is the unique subgroup satisfying (3.30), we are able

to relate our basic definition of horizontal vector fields, Definition 3.11, to the standard

definition of horizontal vector fields on the principal fiber bundle PY ; see Theorem 3.13.

On PY one can still impose a left-invariant metric, as is done in Theorem 3.13, again

parameterized by the same β > 0, by removing the left-invariant direction A3 from each

tangent space. The geodesics on this principal fiber bundle are closely related to elastica

curves and are derived in Appendix A. Our formula for these geodesics is much more

tangible than the well-known formula for the corresponding elastica curves, [29], [6]. For

a comparison between elastica and corresponding geodesics, see [16, Ch: 7, Fig.13].

Theorem 3.13. The set PY = (SE(2), SE(2)/Y, π,R) with subgroup Y = {(0, y, ei0) |
y ∈ R}, projection π(g) = gY and right-multiplication Rhg = gh, h ∈ Y , is a principal

fiber bundle (with structure group Y ) on which ω = (L0,−y,0)∗ is a Cartan-Ehresmann

connection form and, in the moving frame of reference {A1,A2,A3}, it is given by

ωg(Xg) = 〈dA2
∣∣
g
, Xg〉A2 = 〈− sin θ dx+ cos θ dy,Xg〉∂y , X ∈ L(SE(2)). (3.33)

The horizontal part Hg of each tangent space Tg(SE(2)), g ∈ SE(2), is by definition

Hg := ker{ωg} = span {A1|g , A2|g} = span {∂θ, cos θ ∂x + sin θ∂y} (3.34)

and it coincides with the vector space of tangent vectors along all possible horizontal

curves passing through g ∈ SE(2); recall Definition 3.11. The connection form ω̃ on the

8This Koszul connection coincides, [34, pp. 368-371], with the Koszul connection [p.320][34] obtained
from the Cartan connection, [34, ch:7,p.314] corresponding to an Ehresmann connection, [34, p.359] on

the frame-bundle F (SE(2)/Y ), [34, ch:7,p.345].
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associated vector bundle SE(2)×
Ãd

L(SE(2)) is given by

ω̃ = −A2 ⊗ dA1 ⊗ dA3 = −(cos θ ∂x + sin θ ∂y)⊗ dθ ⊗ (− sin θ dx+ cos θ dy). (3.35)

The horizontal auto-parallels of the connection D = d + ω, with ω(akAk) =
−akω̃(dAj , ·,Ak)Aj ,

DaiAi
(γ̇i Ai|γ(t)) = (Da

iAi)(γ̇
i Ai|γ(t)) = ȧ

1 A1|γ(t)+(ȧ2+a
3
γ̇
1) A2|γ(t)+ ȧ

3 A3|γ(t) , (3.36)

are the horizontal exponential curves, given by (3.22) with c3 = 0; see Figure 5.

Finally, we equip PY with the following left-invariant form:

Gβ = dθ ⊗ dθ + β2dA2 ⊗ dA2, (3.37)

which yields a left-invariant metric on SE(2): dSE(2)(g, g0) = dSE(2)(g
−1
0 g, e) defined by

dSE(2)(g
−1
0 g, e) = inf{

∫ 1

0

√
(θ′(t))2 + β2‖x′(t)‖2 dt | γ horizontal, γ(0) = e, γ(L) = g−1

0 g}
= inf{

∫ L

0

√
(κ(s))2 + β2 ds =

∫ L

0

√
gij γ̇i(s)γ̇j(s)ds | γ horizontal, γ(0) = e, γ(L) = g−1

0 g},
(3.38)

where s > 0 denotes the spatial arc-length parameter of the projected curve x = PR2γ,

with curvature κ(s) = ‖ẍ(s)‖ in R2 and where γ̇i(s) = 〈dAi, γ̇(s)〉, i = 1, 2, 3. The

explicit curves that minimize (3.38) are explicitly derived in Appendix A. In contrast to

previous belief, [9], they do not exactly coincide with elastica curves, [29],[6].

Proof. The first part of the proof is analogous to the proof of Theorem 3.8 in Appendix

B. The big difference, though, is that instead of a principal fiber bundle P with structure

group SE(2) we now have fiber bundle PY with structure group Y . In particular the base

manifold {e} ≡ SE(2)/SE(2) is now replaced by SE(2)/Y . In Theorem 3.8 every tangent

vector is vertical, whereas in this theorem we are rather interested in the horizontal

part Hg of the tangent space T (SE(2). Note that by (3.26) the differential geometrical

definition of horizontality Hg := ker{ωg} coincides with the horizontality condition,

Definition 3.11, required in the application ! The connection form ωg is indeed a Cartan-

Ehresmann connection form on PY : The first condition in Definition 3.6 is satisfied since

ω ◦ dR(A3) = ω(A3) = A3, and the second condition follows by (3.14) (special case

g ∈ Y ).

Again the Cartan connection D is obtained via the connection form ω̃. This is the

corresponding connection form on the associated vector bundle SE(2)×
Ãd

L(SE(2)) given

by ω̃ = Ãd∗(A3) ⊗ dA3 = ãd(A3) ⊗ dA3 = cki3Ak ⊗ dAi ⊗ dA3 = c213A2 ⊗ dA1 ⊗ dA3,

yielding (3.35). Here we note that direct computation yields ω(a1A1 + a2A2 + a3A3) =

a3dA1( · )A2 from which (3.36) directly follows. Tangent vectors γ̇ =
∑

i γ̇
i(t) Ai|γ(t) to

auto-parallel curves satisfy: ∇γ̇ γ̇ = 0 ⇔ γ̈2 = −γ̇1γ̇3 and γ̈1 = γ̈3 = 0, so in particular if

they are horizontal we find γ̈2 = γ̈1 = γ̇3 = 0. As a result all auto-parallel curves in the

fiber bundle are horizontal exponential curves (3.22) with constants c1 = γ̇1, c2 = γ̇2,

c3 = 0. Now (3.37) follows from (3.13) by omitting the vertical direction A3 and in

(3.38) we stress that the Lagrangian is parameter independent, so we may as well choose

the spatial arc-length parameter s > 0 of the projection of the horizontal curve on the

spatial plane with length L, in which case we have κ(s) = θ̇(s). The metric (3.37)

coincides with the metric in [9] (where this metric is called an “elastica functional”)

and is related to the well-known elastica functional
∫ L

0
κ2(s) + β2ds, [29], [6], for curves
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Fig. 5. All horizontal exponential curves through a fixed point
g ∈ SE(2) for different curvature values, shown from different view-
points. The left image shows that these curves correspond to circular
arcs if projected onto the spatial plane. These curves coincide with
the auto-parallels, see (3.22), in the principal fiber bundle PY .

in R2. The important difference though is the square root! This square root ensures

that the functional is parameter independent in SE(2), whereas the elastica functional

is only parameter independent on R2. In a standard Riemannian manifold it does not

matter if one applies a monotonic transformation on the integrand of the metric (this

monotonic transformation can be taken into account by a reparametrization of the same

curve). However this argument does not apply here since only for the spatial arc-length

parametrization of a horizontal curve do we have κ(s) = θ̇(s). �

Finally we note with respect to the fundamental parameter β2, which in the case of

elastica denotes the typical fraction of bending and stretching energy, that there exist two

fundamentally different approaches to relate minimal energy curves to direct products

of Green’s functions of stochastic processes on SE(2) with linear forward Kolmogorov

equations, parameterized by constants α > 0, [Dij ] ≥ 0 as considered in part I [17]. If one

follows the approach by Mumford, [29], to relate elastica curves to the direction process

(a contour-completion process), then one must set β2 = 4αD11; if one follows Brownian

bridge theory, [16, app.B], to relate geodesics to a contour-enhancement process with

Dij �= 0 ⇔ (i = j = 1 or i = j = 2), then one takes the limit α−1 → 0 and sets

β2 = D11/D22.

3.4. Extraction of spatial curvature from orientation scores. Let U : SE(2) → R+ be

some positive smooth function on SE(2). This could for example be the absolute value

U = |Wψf | =
√
(ℜ(Wψf))2 + (ℑ(Wψf))2 of a (processed) orientation score of an image,

which is positive and phase invariant; see part I [17, Fig.3]. Then the exponential curves

through g0 with direction ci AiU |g0 form “tangent spirals” (where we naturally embed

SE(2) into R2× [−π, π)) to the orientation score Wψf : SE(2) → R+. In particular, the

horizontal exponential curves are given by (3.22). See Figure 5.

In this section we will provide fast algorithms for curvature estimation at each g0 ∈
SE(2) in the domain of U , by finding the exponential curve through g0 that fits U locally

in an optimal way.
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Remark 3.14. Sometimes we restrict ourselves to horizontal exponential curve fits;

however, orientation scores Wψf and their absolute value U = |Wψf | in general do not

satisfy ∂ηU = 0. So from a strict point of view this restriction is not entirely appropriate.

Nevertheless, the density U = |Wψf | is typically concentrated around horizontal curves.

Recall, for example, Figure 1 in Part I of this article.

For the exact definition of such an optimally fitting (horizontal) tangent spiral we first

need a few preliminaries. First we apply the left-invariant first fundamental form (3.13)

on T (SE(2))× T (SE(2)). Then the norm of a left-invariant vector field ciAi equals

|ciAi|β =
√
(ciAi, ciAi)β =

√
(cθ)2 + (β cξ)2 + (β cη)2 =: ‖c‖β , (3.39)

with c = (c1, c2, c3) ∈ R3. Here we stress that the norm | · |β : L(SE(2)) → R+

is defined on the space L(SE(2)) of left-invariant vector fields on SE(2), whereas the

norm ‖ · ‖β : R3 → R+ is defined on R3. The gradient dU of U : SE(2) → R+

is given by dU = ∂U
∂θ dθ + ∂U

∂ξ dA2 + ∂U
∂η dA3. The corresponding vector field equals

G−1dU = ∂U
∂θ ∂θ + β−2 ∂U

∂ξ ∂ξ + β−2 ∂U
∂η ∂η. Note that G−1dAk = gkiAi, with gijgjl = δil .

The norm of a co-vector field (such as the gradient dU) is given by

|aidAi|2β = gijaiaj = (aθ)
2 + β−2(aξ)

2 + β−2(aη)
2 = ‖a‖β−1 with a = (a1, a2, a3).

If we differentiate a smooth function U : SE(2) → R+ along an exponential curve

γ(t) = g0exp(t(
∑

ciAi)) passing g0 we get, recall (3.24),

d

dt
U(γ(t)) =

3∑

i=1

ci AiU |γ(t) = c1 Uθ(γ(t)) + c2 Uξ(γ(t)) + c3 Uη(γ(t)). (3.40)

After these preliminaries we return to our goal of finding the optimal tangent spiral

at position g0 ∈ SE(2) given U : SE(2) → R+.
Definition 3.15. Consider the solution of the following minimization problem:

c∗ = arg min
{ci}3i=1

{∣∣∣∣
d

dt
dU(γ(t))

∣∣∣∣
t=0

∣∣∣∣
2

β

| γ(t) = g0exp(t(

3∑

i=1

c
i
Ai)) ; ‖c‖β = 1

}
. (3.41)

Then we call the covariantly constant curve t �→ g0 exp(t
∑3

i=1 c
i
∗Ai) the optimal tangent

spiral at g0 ∈ SE(2) given U : SE(2) → R+.
By means of (3.40) and the chain rule, the energy in (3.41) can be rewritten as

∣∣ d
dt
(dU)(γ(t))

∣∣
t=0

∣∣2
β
=
∥∥∇(∇U)T (γ(0)) · γ′(0)

∥∥2
β−1

=

∥∥∥∥∥∥∥

⎛
⎝

∂θ(∂θU) ∂ξ(∂θU) ∂η(∂θU)
∂θ(∂ξU) ∂ξ(∂ξU) ∂η(∂ξU)
∂θ(∂ηU) ∂ξ(∂ηU) ∂η(∂ηU)

⎞
⎠
∣∣∣∣∣∣
g0

⎛
⎝

c1

c2

c3

⎞
⎠

∥∥∥∥∥∥∥

2

β−1

=: ‖ HU |g0 c‖2β−1 ,
(3.42)

where ∇U := (∂θU, ∂ξU, ∂ηU) and where the noncovariant Hessian HU does not coin-
cide with the covariant Hessian form consisting of covariant derivatives of the Cartan
connection, which we provided in Theorem 3.9. The covariant Hessian form equals

[∇i∇jU ] = [∇iAjU ] = [AiAjU + Γλ
ij AλU ]

=

⎛
⎝

∂θ(∂θU) ∂θ(∂ξU) ∂θ(∂ηU)
∂ξ(∂θU) ∂ξ(∂ξU) ∂ξ(∂ηU)
∂η(∂θU) ∂η(∂ξU) ∂η(∂ηU)

⎞
⎠ .

(3.43)
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For example, in the 2nd row and the 1st column we have ∇1∇2U = (∂θ∂ξ − c312∂η)U =

∂ξ(∂θU). Note that the minimization problem (3.41) can now be rewritten as

argmin
c

{
‖(HU)(g0) c‖2β−1 | ‖c‖β = 1

}
.

Set Mβ := diag{1, β−1, β−1} ∈ GL(3,R) and HβU := Mβ HU Mβ . Then by the Euler-

Lagrange theory the gradient of ‖(HU)c‖2β−1 = (c, (HU)TM2
β(HU)c)1 at the optimum

c∗ is linearly dependent on the gradient of the side condition, which can be written

(1− ‖c‖2β) = 1− (c,M−2
β c)1 = 0 , i.e.

(HU(g0))
TM2

β(HU(g0))c∗ = λ M−2
β c∗ ⇔ (HβU)T (HβU)c̃ = λ c̃,

for some Lagrange multiplier λ ∈ R, where c̃ = M−1
β c∗.

So we have shown that the minimization problem (3.41) requires eigensystem analysis
of (HβU)THβU , which is the product of the Hessian HβU and the covariant Hessian
given by (3.43), which equals (HβU)T . The covariant Hessian also appears in the Euler-
Lagrange equation for the following minimization problem (for simplicity we set β = 1):

argmin
ci

{∣∣∣∣
d2

dt2
U(γ(t))

∣∣∣∣ | γ(t) = g0exp(t(

3∑

i=1

c
i
Ai)) ; ‖c‖β=1 = 1

}
, (3.44)

which by means of a double application of (3.40) can be rewritten as
∣∣∣ d2

dt2U(γ(t))
∣∣∣=

∣∣ d
dtc

iAiU(γ(t))
∣∣=

∣∣cjciAj(AiU)(γ(t))
∣∣= | cT ( 12 (HU + (HU)T )

∣∣
γ(t)

)c |

and as a result the Euler-Lagrange equations for the minimization problem (3.44) corre-

spond to the eigensystem of 1
2 (HU + (HU)T ): ∇∇TUc = 1

2 (HU + (HU)T )c = λc.

Experiments on images consisting of lines with ground truth curvatures show that the

minimization problem (3.41) is preferable over (3.44) for spatial curvature estimation.

Remark 3.16. On the commutative group R2 (i.e., the domain of images f rather

than the domain of the orientation scores Wψf) we do not have the difference between

the two Hessians above, since here the Hessian Hf =

(
fxx fxy
fyx fyy

)
is square symmetric

and thereby Hf = 1
2 (Hf + (Hf)T ) and (Hf)T (Hf) have the same eigenvectors with

respective eigenvalues {λn} and {(λn)
2}.

We suggest the following two methods for curvature estimation. In the first approach

we do not restrict ourselves to horizontal exponential curves, whereas in the second

approach we enforce horizontality and obtain a horizontal curvature estimate.

1. Compute the curvature of the projection x(s(t)) = PR2

(
g0exp(t(

∑3
i=1 c

i
∗Ai))

)

of the optimal exponential curve in SE(2) on the ground plane from an eigenvector

c∗ = (cθ∗, c
ξ
∗, c

η
∗). This eigenvector of (H̃β|U |)T (H̃β|U |), with 3× 3 Hessian

H̃β |U | =

⎛
⎝

β2∂θ∂θ|U | β∂ξ∂θ|U | β∂η∂θ|U |
β∂θ∂ξ|U | ∂ξ∂ξ|U | ∂η∂ξ|U |
β∂θ∂η|U | ∂ξ∂η|U | ∂η∂η|U |

⎞
⎠ , (3.45)

is the one with smallest eigenvalue. The curvature estimation is now given by

κest = ‖ẍ(s)‖sign(ẍ(s) · eη) =
cθ∗sign(c

ξ
∗)√

(cξ∗)2 + (cη∗)2
. (3.46)
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2. Compute the eigenvectors of (H̃hor
β |U |)T (H̃hor

β |U |) with horizontal Hessian

H̃hor
β |U | =

⎛
⎝

β2∂θ∂θ|U | β∂ξ∂θ|U |
β∂θ∂ξ|U | ∂ξ∂ξ|U |
β∂θ∂η|U | ∂ξ∂η|U |

⎞
⎠ . (3.47)

To this end we recall that the optimum c∗ = argmin{‖H̃hor
β |U |(g0) c‖2β−1 | ‖c‖β = 1}

with c = (cθ, cξ) = cθeθ + cξeξ satisfies 2(H̃hor
β |U |)T H̃hor

β |U | c̃ = 2λc̃, c∗ = Mβ c̃ for

some Lagrange multiplier λ. Then we compute the curvature of the projection x(s(t)) =

PR2(g0exp(t(
∑

ci∗Ai))) of the exponential curve in SE(2) on the ground plane from the

eigenvector c∗ = (cθ∗, c
ξ
∗) with smallest eigenvalue:

κhor
est = ‖ẍ(s)‖sign(ẍ(s) · eη) =

cθ∗
cξ∗

. (3.48)

For numerical experiments on the proposed curvature estimation (comparing the two

methods above and the approach by van Ginkel [37]) on orientation scores of noisy

example images, see [20], [19], [16].

4. Coherence-enhancing diffusion on orientation scores. In order to obtain
adaptive diffusion on orientation scores we will use the following basic nonlinear left-
invariant evolution equation on SE(2) as a starting point:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tU(g, t) = ( β∂θ ∂ξ ∂η )

⎛
⎝
(D11(U))(g, t) 0 0

0 (D22(U))(g, t) 0
0 0 (D33(U))(g, t)

⎞
⎠
⎛
⎝
β∂θ

∂ξ

∂η

⎞
⎠U(g, t),

for all g ∈ SE(2), t > 0,

U(g, t = 0) = Wψ[f ](g) for all g ∈ SE(2),

(4.1)

with β > 0 (recall 3.8) and where the positive functions Dkk : L2(SE(2) × R+) ∩
C2(SE(2)× R+) → C1(SE(2)× R+), k = 1, 2, 3 are given by

(g, t) �→ (Dkk(U))(g, t) ≥ 0, U ∈ L2(SE(2)× R
+) .

These functionsDkk, k = 1, 2, 3 should be chosen dependent on the local HessianHU(·, t)
of U(·, t) such that, at strong orientations, D33 should be small so that we have anisotropic

diffusion in the spatial plane along the preferred direction ∂ξ, while, at weak orientations,

D33 and D22 should be relatively large and isotropic D22 ≈ D33.

Example. In the nonlinear diffusion system (4.1) we propose to set D22(U)(g, t) = 1,

D11(U)(g, t) = D33(U)(g, t) = e−
(s(|U|)(g,t))2

c , where c > 0 is a standard nonlinear diffusion

parameter and where the orientation confidence s(U)(g, t) is given by

s(U)(g, t) = max{−(∂2
η |U(g, t)|+ β2∂2

θ |U(g, t)|), 0}. (4.2)

With respect to the numerics of (4.1) (and later (4.4)), we implemented a forward finite

difference scheme using central differences along the moving frame {ξ, η, θ}, where we

used second-order B-spline interpolation, [36], to get the equidistant samples on the

{ξ, η, θ}-grid from the given samples on the {x, y, θ}-grid; see Figure 6. Our method is

second-order accurate on SE(2) and only first-order accurate in time. With this respect

we note that a Crank-Nicholson scheme for time integration is second-order in time and
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θ

x

x + eξ

x− eξ

x + eη

x− eη

x

y
∂θu ≈

1

2sθ
(u(x, l + 1) − u(x, l − 1))

∂
2
θu ≈

1

s2
θ

(u(x, l + 1) − 2u(x, l) + u(x, l − 1))

∂ξu ≈
1

2

(
u(x + e

l
ξ, l) − u(x − e

l
ξ, l)

)

∂
2
ξu ≈ u(x + e

l
ξ, l) − 2u(x, l) + u(x − e

l
ξ, l)

∂ηu ≈
1

2

(
u(x + e

l
η, l) − u(x − e

l
η, l)

)

∂
2
ηu ≈ u(x + e

l
η, l) − 2u(x, l) + u(x − e

l
η, l)

∂ξ∂θu ≈
1

4sθ

(
u(x + e

l
ξ, l + 1) − u(x + e

l
ξ, l − 1) − u(x − e

l
ξ, l + 1) + u(x − e

l
ξ, l − 1)

)

∂θ∂ξu ≈
1

4sθ

(
u(x + e

l+1
ξ , l + 1) − u(x + e

l+1
ξ , l − 1) − u(x − e

l−1
ξ , l + 1) + u(x − e

l−1
ξ , l − 1)

)

Fig. 6. Finite difference scheme of (4.1), where we use second-order
B-spline interpolation, [36], for sampling on the grid of our moving
frame {eθ, eξ = cos θ ex + sin θ ey , eη = − sin θ ex + cos θ ey}.

can improve computation time since one can take larger time steps. For comparison

between coherence-enhancing diffusions on images and orientation scores, see Figure 7.

4.1. Including adaptive curvatures in the diffusion scheme by gauge coordinates. In

Subsection 3.4 we discussed two methods to obtain curvature estimates in orientation

scores. This was done by finding the best exponential curve fit to the absolute value9

|Wψf | : SE(2) → R+ of the orientation score Wψf : SE(2) → C. We distinguished

between two approaches. In the first approach (3.46) we consider the best exponential

curve fit to the absolute value of the orientation score, whereas in the second approach we

consider the best horizontal exponential curve fit to the absolute value of an orientation

score (3.48). Both approaches yield a curvature estimate, which in this paragraph we

assume to be given. We shall write κ := (κest(|U |))(g, t) for the curvature estimate of

the score U via its absolute value |U | at location g ∈ SE(2) at time t > 0.

Now we can include curvature in our scheme (4.1) by replacing ∂ξ by ∂ξ + κ∂θ. To

this end we recall from Theorem 3.9 that the exponential curve s �→ g0 e
s (∂ξ+κ∂θ)|e =

g0e
s(∂x+κ∂θ) yields a circular spiral (3.22) whose projection on R2 is a circle with radius

|κ|−1 if κ is constant. Moreover, along horizontal curves we have (3.29); see Figure 8.

Here we note that {∂θ, ∂ξ+κ∂θ, ∂η} are (in contrast to 1
β {β∂θ, ∂ξ, ∂η}) not orthonormal

with respect to the (·, ·)β inner product (3.39). Therefore we are going to introduce the

gauge coordinates, aligned with the optimally fitting exponential curve

s �→ g exp(s
3∑

i=1

ci∗(g, t)Ai), c∗(g, t) = (cθ∗(g, t), c
ξ
∗(g, t), c

η
∗(g, t)) ∈ R

3,

9The absolute value |Wψf | is phase invariant; recall Fig. 3 in Part I of this article. This phase
invariance is important for local feature estimation. Curvature estimation at the vicinity or border of a

(thick) line should be similar to the estimate on top of the line.
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Original CED-OS t = 30 CED t = 30

Original CED-OS t = 30 CED t = 30

Fig. 7. Medical image applications. Top row: Result of coherence-
enhancing diffusion on orientation scores (CED-OS), see (4.1) and
(4.4), and standard coherence-enhancing diffusion (CED) directly
on the image, see (2.5), of bone tissue. Middle row: Result of (CED-
OS) and (CED) of 2-photon microscopy images of a muscle cell.
Bottom row: Result of (CED-OS) and (CED) on medical images
of collagen fibers of the heart. All these applications clearly show
that coherence-enhancing diffusion on orientation scores (CED-OS)
properly enhances crossing fibers whereas (CED) fails at crossings.

with ‖c∗‖β = (cθ∗)
2 + β2(cξ∗)2 + β2(cη∗)2 = 1, to the orientation score data |U(·, t)| at

position g ∈ SE(2) at time t > 0. These gauge directions are (for cξ∗ > 0) given by
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂a = β2

√
(cξ∗)2 + (cη∗)2∂θ − cθ∗c

ξ
∗√

(cξ∗)2+(cη∗)2
∂ξ − cθ∗c

η
∗√

(cξ∗)2+(cη∗)2
∂η,

∂b = β(cξ∗∂ξ + cη∗∂η + cθ∗∂θ),

∂c =
−cη∗√

(cξ∗)2+(cη∗)2
∂ξ +

cξ∗√
(cξ∗)2+(cη∗)2

∂η .

Note that the gauge vector is along the best exponential curve-fit direction, i.e. ∂b =

βc∗ and span{∂a, ∂c} ≡ (c∗)⊥. For geometric understanding it helps to consider the

gauge tangent vectors in the spherical coordinates (dH , α) with respect to the basis

of left-invariant vector fields {∂θ, ∂ξ, ∂η} so that it becomes obvious which rotation in

SO(3) (or rather which class of rotations in SO(3)/SO(2) ≡ S2 if we do not distinguish

between directions in the plane (c∗)⊥) is required to map the standard left-invariant

basis {∂θ, ∂ξ, ∂η} into the gauge basis {∂a, ∂b, ∂c}; see Figure 9.
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Fig. 8. Illustrations of heat kernels KD
t : SE(2) → R+ on SE(2) for

different parameter values. (a): D = diag{D11, D22, D33} in left-
invariant coordinate frame {∂θ, ∂ξ, ∂η}, Left: heat kernel integrated
over θ, D11 = D33 = 0.003, κ = 0, D22 = 1, and β = 1. (b): shows
the effect of nonzero κ. Parameters κ = −0.04, Daa = Dcc = 0,
Dbb = 1, and β = 1, dH = 0 with respect to frame {∂a, ∂b, ∂c},
see (4.3). (c): Shows the effect of varying Daa = Dcc. Parameters
κ = 0.06, β = 0.1 and Dbb = 1. As Daa increases from 0 to 1, the
resulting Green’s function becomes more and more isotropic.

Fig. 9. Illustration of curvature κ and deviation from horizontality
dH and the gauge frame (4.3). For visualization reasons, the lengths
of the vectors are arbitrary. The true lengths are given by ‖c∗‖β =
‖eθ‖β = ‖eξ‖β = ‖eη‖β = 1 and ‖∂a‖β = ‖∂b‖β = ‖∂c‖β = β.
Recall from part I of this article that eθ ↔ ∂θ , eξ ↔ ∂ξ, eη ↔ ∂η .

The gauge directions in spherical coordinates read
⎧
⎨
⎩

∂a = − cosα cos dH ∂ξ − cosα sin dH ∂η + β sinα∂θ ,

∂b = sinα cos dH ∂ξ + sinα sin dH ∂η + β cosα∂θ ,

∂c = − sin dH ∂ξ + cos dH ∂η ,

(4.3)
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Original +Noise CED-OS with κ CED-OS no κ

Fig. 10. Shows the effect of including curvature κ = (κest(|U |))(g, t)
on a noisy test image f in the final result of the CED-OS method,
[20], [16], of Υψf = W∗

ψΦWψf , where ψ is the kernel illustrated

in Fig. 3(e,f) of part I of this article and where operator Φ is the
nonlinear diffusion (4.4) stopped at time t = 30. At t = 30 the effect
is visible: the circle with highest curvature is blurred if no curvature
is taken into account.

Original +Noise CED-OS with dH CED-OS no dH

Fig. 11. Shows the effect of including “deviation from horizontality”

dH(U)(g, t) = arg(cξ∗(g, t) + i cη∗(g, t)) ≥ 0 on a noisy test image f in
the final result Υψf = W∗

ψΦWψf , where ψ is the kernel illustrated

in Fig. 3(e,f) of part I of this article and where the operator Φ is the
nonlinear diffusion (4.4) stopped at time t = 24 using only 4 equidis-
tant samples on the circle. At t = 24 the result without deviation
from horizontality (using curvature estimation (3.48)) clearly shows
that the lines bias towards the sampled angles 0,π/4, π/2 and 3π/4.
If we include deviation from horizontality (using curvature estima-

tion (3.46)) this problem does not occur, and even with only four
samples on the torus we are able to handle these crossings correctly.

where the Euler angles read, where we recall (3.46),

α = arccos
(
sign(cξ∗) cθ∗

)
= arccos κ√

κ2+β2
, dH = arg(cξ∗ + i cη∗).

Here the function dH which maps U to dH(U)(g, t) = arg(cξ∗(g, t) + i cη∗(g, t)) represents
the “deviation from horizontality”, i.e. it indicates how much the tangent vector of the

optimally fitting exponential curve (tangent spiral) points out of the horizontal plane,

[20], [19]; see Figure 11.

Remark 4.1. In some cases (for example if the image f has many identical parallel

curves) it is better to use the horizontal curvature estimates (3.48) rather than the

curvature estimates (3.46), [20]. In these cases one must set dH = 0.
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The diagonal diffusion generator along the left-invariant gauge vector fields is

Daa(∂a)
2 +Dbb(∂b)

2 +Dcc(∂c)
2

= ( β∂θ ∂ξ ∂η )MT
α,dH

⎛
⎝

Daa 0 0
0 Dbb 0
0 0 Dcc

⎞
⎠Mα,dH

⎛
⎝

β∂θ

∂ξ

∂η

⎞
⎠ ,

where Mα,dH
=

⎛
⎝

sinα − cosα cos dH − cosα sin dH

cosα cos dH sinα sinα sin dH

0 − sin dH cos dH

⎞
⎠ is the rotation matrix in SO(3) that

maps the left-invariant vector fields {β∂θ, ∂ξ, ∂η} onto the gauge frame {∂a, ∂b, ∂c}. This
leads to the following nonlinear evolution equations on orientation scores:
⎧
⎪⎪⎨
⎪⎪⎩

∂tU(g, t) = ( β∂θ ∂ξ ∂η )MT
α,dH

⎛
⎝

Daa 0 0
0 Dbb 0
0 0 Dcc

⎞
⎠Mα,dH

⎛
⎝

β∂θ

∂ξ

∂η

⎞
⎠U(g, t), t > 0,

U(g, t = 0) = Wψ[f ](g) for all g ∈ SE(2),

(4.4)

where we again used short notation Dii = (Dii(U))(g, t), for i = a, b, c. Now again we set

Dbb = 1 and (Daa(U))(g, t) = (Dcc(U))(g, t) = e−
(s(|U|)(g,t))2

c , c > 0, where orientation

confidence s(|U |)(g, t), recall (4.2), is now expressed in gauge coordinates:

s(g, t) = max{−Δc⊥
∗
|U(·, t)|(g), 0} = max{−

(
(∂a)

2|U(·, t)|+ (∂c)
2|U(·, t)|

)
(g), 0},

and the conductivity matrix in (4.4) equals

1

β2 + κ2

(
κ2 + Daaβ

2 κβ(1 −Daa) cos dH κβ(1−Daa) sin dH

κβ(1−Daa) cos dH Daa(κ
2+β2) + (1−Daa)β

2 cos2 dH cos dH sin dHβ2(1−Daa)

κβ(1−Daa) sin dH cos dH sin dHβ2(1−Daa) β2+Daaκ
2 + (Daa−1)β2 cos2 dH

)
.

See Figure 8 for an illustration of the special case that Dbb is constant, Daa = Dcc = 0,

dH = 0, which despite the strong degree of degeneracy still leads to a smooth and useful

Green’s function since the Hörmander condition, recall [17, Ch:5.3] (part I of this article)

is satisfied. Furthermore, see Figure 10 and Figure 11 for illustrations of the practical

relevance of, respectively, κ and dH in the gauge coordinate frame (4.3).

Appendix A. Derivation of the geodesics in PY by means of reduction of

Pfaffian systems using Noether’s Theorem. In this section we apply the Bryant-

Griffiths approach [6] on the Marsden-Weinstein reduction for Hamiltonian systems [28]

admitting a Lie group of symmetries on Euler-Lagrange equations associated to the func-

tional
∫ √

κ2(s) + ǫ ds, to explicitly derive the solution curves s �→ γ(s) in SE(2). In [16,

Ch:7.1] we derived the curvature of the minimizer of
∫ √

κ2(s) + ǫds by solving an ODE

for κ that we derived from Euler-Lagrange minimization, similar to Mumford’s approach

to the elastica functional [29]. Here we derive the same equation, in a more abstract way,

avoiding extensive computations, by means of symplectic geometry. Moreover we will

derive an important underlying conservation law and by the Marsden-Weinstein reduc-

tion we derive the curves themselves (rather than just their curvatures [16, Ch:7.1]). The

formulae that we shall derive (A.6) for the geodesics are much simpler than the formulae

for the corresponding elastica curves as they do not involve special functions. For small

β > 0 the geodesics are very close to the elastica curves and could be a nice practical
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alternative to the non-left-invariant (i.e. coordinate dependent) B-spline interpolations

between two local orientations, [15], in vector graphics applications.

Although not discussed here, we stress that there is a fundamental relation between

products of Green’s functions discussed in Part I of this article, cf. [17, ch:4], and these

curves: The unconditional Brownian bridge measure of the contour-enhancement process

concentrates on the geodesics as the expected lifetime E(T ) = 1
α → 0; see [16, App.B].

Consider the manifold Q = SE(2) × R+ × R × R with coordinates (x, y, eiθ, σ, κ, t),

where σ = ‖x′(t)‖ so that ds = σdt. On Q we consider the Pfaffian equations

θ1 := dA2 − σdt = 0, θ2 := dA3 = 0, θ3 := dθ − κσdt = 0. (A.1)

Note that these Pfaffian equations uniquely determine the horizontal part I(Q) of the

dual tangent space T ∗(Q), where we recall that along horizontal curves we have dθ
ds =

σ−1 dθ
dt = κ, 〈dA3,x′(t)〉 = 0, 〈dA2,x′(t)〉 = σ.

We would like to minimize the energy
∫ √

κ2 + ǫ σ dt under the side conditions (A.1).

Then the gradient of the energy should be linearly dependent on the gradient of the side

condition, and therefore we set

ψ =
√

κ2 + ǫσdt+ λ1(dθ − κσdt) + λ2(dA2 − σdt) + λ3dA3,

where λ1, λ2, λ3 are Lagrange multipliers. Formally speaking, we consider the affine

subbundle Z = {Zq| q ∈ Q} ≡ Q× T (SE(2))∗ of T ∗(Q) determined by

Zq = {
√
κ2 + ǫσdt

∣∣
q
∈ Iq ⊂ T ∗

q (Q)},

Z ≡ Q× T (SE(2))∗ by the isomorphism (q,λ) ↔
√
κ2 + ǫσdt

∣∣
q
+

3∑
k=1

λkθ
k
∣∣
q
.

Next we compute the exterior derivative of ψ :

dψ =
√
κ2 + ǫdσ ∧ dt+ κσ√

κ2+ǫ
dκ ∧ dt+ λ2dθ ∧ dA3 + dλ2 ∧ dA2

−dλ2 ∧ σdt− λ3dθ ∧ dA2 − λ2dσ ∧ dt+ dλ3 ∧ dA3 + dλ1 ∧ dθ

−κσdλ1 ∧ dt− σλ1dκ ∧ dt− κλ1dσ ∧ dt,

where we used Cartan’s structural equation (B.10): ddA3 = −dθ∧dA2, ddA2 = dθ∧dA3.

Now by the results in [7, ch:1.2.2] the exterior derivative dψ determines the characteristic

curves (i.e. the geodesics) by means of

γ′(t)⌋dψγ(t) = 0, and γ∗dt �= 0,

where we use the notation a⌋b := b(a, ·). As a result the Pfaffian equations for decent

parameterizations satisfying γ∗dt �= 0 are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂λ1
⌋dψ = dθ − κσdt = 0

∂λ2
⌋dψ = dA2 − σdt = 0

∂λ3
⌋dψ = dA3 = 0

∂σ⌋dψ = (
√
κ2 + ǫ− λ1κ− λ2)dt = 0

∂κ⌋dψ = σ(κ(κ2 + ǫ)−1/2 − λ1)dt = 0

−∂θ⌋dψ = dλ1 − λ2dA3 + λ3dA2 = 0

−∂ξ⌋dψ = dλ2 − λ3dθ = 0

−∂η⌋dψ = dλ3 + λ2dθ = 0.

(A.2)
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The first three equations represent the horizontality restriction, the two equations in

the middle represent the Euler-Lagrange optimization of the energy, and the last three

equations provide the Lagrange multipliers

λ1 = κ√
κ2+ǫ

= z , λ2 =
√
ǫ
√
1− z2 , dz + λ3σdt = dz + λ3ds ⇒ λ3 = −ż. (A.3)

As we will explain next, by Noether’s theorem and an invariance group of symmetries

of ψ (in our case SE(2) acting on Z) we will get important preservation laws along the

characteristic curves.

Noether’s theorem states that the momentum mapping m : Z → Te(SE(2))∗ given by

〈m(p), ξ〉 = (ξ⌋ψ)(p), p ∈ Z, ξ ∈ Te(SE(2)),

is constant along the characteristic curves.

Now the momentum mapping is invariant under the co-adjoint representation

m(ηg(p)) = (Adg−1)∗m(p), (A.4)

where ηg(p = (g′, κ, σ, λ)) = (g g′, κ, σ, (Adg−1)∗λ), so that η∗gψ = ψ and (ηg)ξ = (Adg)ξ,

from which it indeed follows that

〈m(ηgp), ξ〉 = (ξ⌋ψ)(ηg(p)) = ((ηg)∗ξ⌋(ηg)∗ψ)(p)
= ((Adg)ξ⌋(ηg)∗ψ)(p) = (ξ⌋(Adg−1)∗ψ)(p)
= 〈(Adg−1)∗m(p), ξ〉 ,

for all ξ ∈ Te(SE(2)). It can be verified that the co-adjoint orbits of SE(2) are given by

λ2
2 + λ2

3 = c2ǫ ≥ 0, c > 0. Consequently, the geodesics are contained in the co-adjoint

orbits, and we get the following preservation law that holds along the characteristic

curves:

(ż(s))2 + ǫ− c2ǫ = ǫ(z(s))2, s > 0, (A.5)

where the normalized curvature z(s) = κ(s)√
κ2(s)+ǫ

satisfies |z| < 1. Note that

z̈ = ǫz ⇔ żz̈ = ǫżz ⇔ (ż(s))2 = ǫ(z(s))2 + C,C ∈ R.

As observed by Bryant-Griffiths [6, pp. 543-544] (with slightly different conventions) the

last three equations of (A.2) can be written as

dλ̂ = λ̂g−1dg ⇔ d(λ̂ · g−1) = d ̂
(
(Adg−1)∗ · λ

)
= 0,

where λ̂ = (−λ3, λ2, λ1) and where the matrix form of the Cartan connection equals

g−1dg =

⎛
⎝

cos θ − sin θ x

sin θ cos θ y

0 0 1

⎞
⎠

−1

d

⎛
⎝

cos θ − sin θ x

sin θ cos θ y

0 0 1

⎞
⎠ =

⎛
⎝

0 −dθ dA2

dθ 0 dA3

0 0 0

⎞
⎠ ,

where both the Lie algebra and the Lie group are embedded in the group of invertible

3× 3 matrices. Consequently, by Noether’s theorem we have λ̂ = μ̂ · g, for some constant

μ̂ = (−μ3, μ2, μ1), or more explicitly we have
⎧
⎨
⎩

z = μ1 − μ3x+ μ2y

ż = −μ3 cos θ + μ2 sin θ√
ǫ(1− z2) = μ3 sin θ + μ2 cos θ, with μ2

2 + μ2
3 = c2ǫ.
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Next we choose

h0 =

⎛
⎜⎝

− μ3

c
√
ǫ

− μ2

c
√
ǫ

μ1μ3

c2ǫ
μ2

c
√
ǫ

− μ3

c
√
ǫ

−μ1μ2

c2ǫ

0 0 1

⎞
⎟⎠

−1

∈ SE(2),

so that μ̂ · h−1
0 = (

√
ǫc, 0, 0) and use left-invariance g = h−1

0 g̃, g̃ ≡ (x̃, ỹ, eiθ̃). Then we

get λ̂ = μ̂ · g = (c
√
ǫ, 0, 0) · g̃, i.e.

x̃ = z
c
√
ǫ
, c

√
ǫ cos θ̃ = c

√
ǫ ˙̃x = ż, and −

√
ǫ(1− z2) = −√

ǫc sin θ̃ = c
√
ǫ ˙̃y ,

and consequently we have

x̃(s) = (
√
ǫc)−1z(s), ỹ(s) = ỹ(0) + 1

c

∫ s

0

√
1− (z2(τ )) dτ, θ̃(s) = θ̃(0) +

s∫
0

κ(τ ) dτ.

So by solving (A.5) we have z(s) = z0 cosh(
√
ǫ s)+

z′
0√
ǫ
sinh(

√
ǫ s) and we get the surpris-

ingly simple solution g(s) = (x(s), y(s), θ(s)) = h−1
0 (x̃(s), ỹ(s), θ̃(s)), i.e.

⎧
⎪⎨
⎪⎩

x(s)= μ1μ3
c2ǫ

− μ3
c
√
ǫ
x̃(s)− μ2

c
√
ǫ
ỹ(s)

y(s)= −μ1μ2
c2ǫ

+ μ2
c
√
ǫ
x̃(s)− μ3

c
√
ǫ
ỹ(s)

θ(s)= θ̃(s)+arccos
(
− μ3

c
√
ǫ

) with

⎧
⎪⎪⎨
⎪⎪⎩

x̃(s)= z0√
ǫc

cosh(
√
ǫs)+

z′0
cǫ

sinh(
√
ǫs)

ỹ(s)= ỹ0+
1
c

∫ s

0

√
1− c2(x̃(τ))2ǫ dτ

θ̃(s)=arccos
(

z0
c
sinh(

√
ǫ s)+

z′0
c
√
ǫ
cosh(

√
ǫs)

)
,

(A.6)

where c =
√
1 +

(z′
0)

2

ǫ − z20 . Now we have 6 unknown parameters μ1, μ3, z0, z
′
0, ỹ(0), L,

to ensure the given boundary conditions
{

g(0) = (x(0), y(0), eiθ(0)) = g0 := (x0, y0, e
iθ0),

g(L) = (x(L), y(L), eiθ(L)) = g1 = (x1, y1, e
iθ1).

By means of left-invariance we can always ensure (by multiplying from the left with g−1
1 )

that g1 = e, so θ1 = 0, x1 = 0, y1 = 0. In this case straightforward computations yield

μ1 = z0 + μ3x0 − μ2y0,

μ2 = c
√
ǫ sin(arccos

(
−μ3
c
√

ǫ

)
),

μ3 = −z′0 cos θ0 +
√
ǫ sin θ0

√
1− z20 ,

c =

√
μ2
2+μ2

3
ǫ

=

√
1 +

(z′0)
2

ǫ
− (z0)2,

ỹ(0) = −μ3y0−μ2x0
c
√

ǫ
,

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−1√
ǫ
log

(
μ3√
ǫz0

)
if c = 1

1√
ǫ
log

(
−μ3+

√
−(z′0)2+(z0)2ǫ+μ2

3
z′0+z0

√
ǫ

)

if c > 1, μ3 < 0, z′0 + z0
√
ǫ > 0

1√
ǫ
log

(
−μ3−

√
−(z′0)2+(z0)2ǫ+μ2

3
z′0+z0

√
ǫ

)

if c < 1, μ3 < 0, z′0 + z0
√
ǫ < 0.

(A.7)

So all parameters are now expressed in the two unknowns z0 and z′0, which are determined

by the two remaining boundary conditions:
{

μ1μ3

c2ǫ − μ3

c
√
ǫ
x̃(L)− μ2

c
√
ǫ
ỹ(L) = x1,

−μ1μ2

c2ǫ + μ2

c
√
ǫ
x̃(L)− μ3

c
√
ǫ
ỹ(L) = y1.

(A.8)

Now since SE(2) is a symmetric space [24] all points can be connected by a geodesic and

we may expect that there indeed exist z0 and z′0 such that (A.8) holds. Consequently,

the singularities (which cause extreme problems in our numerical shooting algorithm [16,

Ch:7.1]), where z(smax) = 1 occur always at smax ≥ L (and if μ3 �= c
√
ǫ, then smax > L).

Next we explicitly verify that smax ≥ L in two cases.
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Fig. 12. Left figure: Illustration of a geodesic s �→ g(s) computed by

(A.6) and its affine relative s �→ g̃(s) = h−1
0 g(s). Parameter settings

x0 = −11.868, y0 = −8.44337, θ0 = 51.95◦, x1 = y1 = θ1 = 0,
L = 15, ǫ = 0.0125, z0 = −0.1641, z′0 = 0.0183, c = 1.

In case c > 1, μ3 < 0 and z′0 +
√
ǫz0 > 0 we have

e
√
ǫL =

−μ3+
√

−(z′
0)

2+(z0)2ǫ+μ2
3

z′
0+z0

√
ǫ

and e
√
ǫsmax =

−√
ǫ+
√

(z′
0)

2−(z0)2ǫ+ǫ

z′
0+z0

√
ǫ

=
√
ǫ(1+c)

z′
0+z0

√
ǫ

and indeed −μ3 +
√
−(z′0)

2 + (z0)2ǫ+ μ2
3 < 2

√
ǫ < (1 + c)

√
ǫ, so L < smax.

In case c < 1, μ3 > 0 and z′0 +
√
ǫz0 < 0 we have

e
√
ǫL =

−μ3 −
√
−(z′0)

2 + (z0)2ǫ+ μ2
3

z′0 + z0
√
ǫ

and

e
√
ǫsmax =

−√
ǫ+

√
(z′0)

2 − (z0)2ǫ+ ǫ

z′0 + z0
√
ǫ

=

√
ǫ(1 + c)

|z′0 + z0
√
ǫ| =

√
ǫ(1 + c)

−(z′0 + z0
√
ǫ)

and indeed we have e
√
ǫsmax ≥ e

√
ǫL, since

μ3 +
√
−(z′0)

2 + (z0)2ǫ+ μ2
3 ≤ c

√
ǫ+

√
ǫ(1− c2) + c2ǫ =

√
ǫ(1 + c).

Equality is obtained if μ3 = c
√
ǫ. See Figure 12.

Appendix B. Proof of Theorem 3.8. Again we set {A1, A2, A3} = {∂x, ∂y, ∂θ} as

a basis for the Lie algebra Te(SE(2)) and {A1,A2,A3} = {dR(A1), dR(A2), dR(A3)} =

{∂θ, ∂ξ, ∂η} as a basis for the space L(SE(2)) of left-invariant vector fields with corre-

sponding dual basis {dA1, dA2, dA3} ⊂ (L(SE(2)))∗ as given in Theorem 3.1.

The Maurer-Cartan form ω : (SE(2), T (SE(2)))→ Te(SE(2)) is defined by

ωg(Yg) = (Lg−1)∗Yg, (B.1)

where (Lg−1)∗ denotes the push-forward of the inverse left multiplication h �→ Lgh =

g−1h, i.e. ωg(Yg)φ = Yg(φ ◦ Lg−1) for all φ : Ωe → R smooth and defined on some local

open set Ωe around the unity e. Now recall from Theorem 3.1 that the left-invariant

vector fields are obtained by the derivative dR of the right-regular representation g �→
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Rgφ(h) = φ(hg), i.e. Ai = dR(Ai). Now the Maurer-Cartan form does the reverse; it

“connects” each tangent space Tg(SE(2)) to Te(SE(2)). To this end we note that

lim
h↓0

φ(g exp(hAi))− φ(g)

h
=: (dR(Ai))gφ = (Ai)gφ = (Lg)∗Aiφ = Ai(φ ◦ Lg) ∈ R (B.2)

for all g ∈ SE(2) and all smooth φ : Ωg → R. Therefore we have

(Lg)∗(Lg−1)∗ = (Lgg−1)∗ = I ⇔ ∀i∈{1,2,3} : ω ◦ dR(Ai) = ω(Ai) = Ai ⇔ ω ◦ dR = I.

So by linearity and 〈dAi,Aj〉 = δij it is now clear that the coordinate-dependent defini-

tion of the Cartan-Maurer form (B.1) indeed yields (3.15) in explicit coordinates.
Now we show that the Maurer-Cartan form indeed forms a Cartan-Ehresmann con-

nection form, recall Definition 3.6, on the principal fiber bundle and, recall Definition
3.5, P = (SE(2), e, SE(2),L(SE(2))). The first requirement in Definition 3.6 has been
shown above, so let us verify the second requirement. Indeed a brief computation yields

ωgh((Rh)∗Yg) = (Lh−1 ◦ Lg−1)∗((Rh)∗Yg) = (Lh−1)∗ ◦ (Lg−1)∗ ◦ (Rh)∗Yg = Ad(h−1)ωgYg .

(B.3)

Then we must show that equality (3.16) holds. This equality follows from the fact that

left multiplication Lg and right multiplication Rg commute, since this implies that

(Rg−1Lg)∗ = (LgRg−1)∗ = (Lg)∗(Rg−1)∗ = (Lg)∗(Rg−1Lg)∗(Lg−1)∗,

from which we indeed deduce that Ãd(g) = dR ◦ Ad(g) ◦ ω. The adjoint representation

Ad : SE(2) → GL(Te(SE(2))) coincides with the derivative of the conjugation automor-

phism h �→ conj(g)(h) = ghg−1 evaluated at e, i.e. Ad(g) = Deconj(g) = (Rg−1Lg)∗.

Remark B.1. Here GL(Te(SE(2))) stands for all linear operators on the Lie algebra

Te(SE(2)). Note that each linear operator Q ∈ GL(Te(SE(2)) on Te(SE(2))) is 1-to-1

related to a bilinear form Q on (Te(SE(2)))∗ × Te(SE(2)) by means of

〈B,QA〉 = Q(B,A), for all B ∈ (Te(SE(2)))∗, A ∈ Te(SE(2)) and

Q =
3∑

i=1

Q(dAi, ·)Ai.

So a basis for GL(Te(SE(2))) is given by {dAi ⊗Aj | i, j = 1, 2, 3}. In this article, we

omit the overline and again write dAi ⊗ Aj as it is clear from the context whether we

mean the bilinear form or the linear mapping.

Recall Definition 3.7 of an associated vector bundle and set

P = SE(2), M = e, G = SE(2), F = L(SE(2)), ρ = Ãd, π(g) = e, Rgu = u g, (B.4)

where L(SE(2)) denotes the Lie algebra of left-invariant vector fields on SE(2) and Ãd

the adjoint representation of SE(2) into GL(L(SE(2))) given by

Ãd(g)X = (Rg−1Lg)∗X, X ∈ L(SE(2)), g ∈ SE(2). (B.5)

A connection ω on a principal fiber bundle P is 1-to-1 related to a connection ω̃ on the

vector bundle P ×ρ F by means of

ω =
∑

j

Aj ⊗ dxj ↔ ω̃ =
∑

j

ρ∗(Aj)⊗ dxj , (B.6)
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where {dxj} are dual forms on F ; for details on this common bijection, see [32]. In our

case we have F = L(SE(2)) and dual forms {dAj}j=1,2,3. Note that we applied the

convention in Remark B.1. So in our case (B.4) the push-forward ρ∗ of ρ = Ãd equals

(Ãd)∗(Aj) = (dR ◦Ad∗) (Aj) = (dR ◦ ad ◦ ω)(Aj)

= ãd(Aj) = [ · ,Aj ]L(SE(2)) =
3∑

i,k=1

ckijAk ⊗ dAi.

Thereby the connection form on the vector bundle SE(2)×
Ãd

L(SE(2)) is given by

ω̃ =

3∑

j=1

ãd(Aj)⊗ dAj =

3∑

i,j,k=1

ckij Ak ⊗ dAi ⊗ dAj , (B.7)

where ckij are the structure constants of the Lie group SE(2), so ãd(Aj)(Ai) = [Ai,Aj ] =∑3
i,j,k=1 c

k
ijAk. The nonzero structure constants are −c213 = c231 = c312 = −c321 = 1 and

thereby (B.7) yields (3.17), where we also used da ∧ db = da⊗ db− da⊗ db.

Now from ω̃ given by (B.7) one can construct the 9-connection 1-forms {ω̃k
j ( · )}3k,j=1

by (3.18) which together form a 3 × 3 matrix-valued 1-form on the frame bundle [34,

p.353, p.359], where the sections are moving frames [34, p.354].

Let {μk}3k=1 denote the sections in (SE(2), T (SE(2))) which coincide respectively with

the left-invariant vector fields {Ak}3k=1. Then the Cartan connection D on (the vector

bundle SE(2)×
Ãd

L(SE(2)) isomorphic to) the tangent bundle (SE(2), T (SE(2))) equals

D := d + ω with ω(μk)( · ) :=
3∑

j=1

ω̃j
k( · ) μj , (B.8)

or more precisely, the covariant derivatives are given by

DX|γ(t)
(μ(γ(t))) := (Dμ(γ(t)))(X|γ(t))

=
3∑

k=1

ȧk(t)μk(γ(t)) +
3∑

k=1

ak(γ(t))
3∑

j=1

ω̃j
k(X|γ(t)) μj(γ(t))

=
3∑

k=1

ȧk(t)μk(γ(t)) +
3∑

i,j,k=1

γ̇i(t) ak(γ(t)) Γj
ik μj(γ(t)) ,

(B.9)

with ȧk(t) = γ̇i(t)(Ai|γ(t) ak)(γ(t)), for all curves γ : R → SE(2) and tangent vectors

X|γ(t) =
∑3

i=1 γ̇
i(t) Ai|γ(t) ∈ Tγ(t)(SE(2)) and all sections

μ(γ(t)) =
3∑

k=1

ak(γ(t)) μk(γ(t))

and where the Christoffel symbols Γk
ij , [24, p.108], are constant: Γk

ij =

ω̃k
j (Ai) = −ω̃(dAk,Ai,Aj) = −ckij = ckji. Now finally, the curvature 2-forms Ωi

j for

the moving frame {A1,A2,A3} are Ωi
j = dω̃i

j +
∑3

k=1 ω̃
i
k ∧ ω̃k

j , [34, p.317]. These curva-

ture 2-forms are bijectively related, [34, p.322] to the Riemann-curvature tensor on the

tangent bundle (SE(2), T (SE(2))) :

Ri
jkl = Ωi

j(Ak,Al) and Ωi
j =

1

2

3∑

k,l=1

Ri
jkl dAk ∧ dAl .
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Now by means of Maurer-Cartan’s structural formula, [1], recall (3.31),

d(dAk) = −1

2

3∑

i,j,k=1

c
k
ijdAi ∧ dAj

, (B.10)

we find by straightforward computation (using Einstein’s summation convention)

Ωi
j = cijλd(dAλ) + ciλkc

λ
jl dAk ∧ dAl = 1

2

(
cikλc

λ
lj + (cijλc

λ
kl − cikλc

λ
jl)
)
dAk ∧ dAl

= 1
2
(cikλc

λ
lj − cilλc

λ
kj) dAk ∧ dAl = 1

2
ciλjc

λ
kl dAk ∧ dAl = 1

2
R

j
i,kldAk ∧ dAl,

(B.11)

where we used the Jacobi identity [X, [Y, Z]]+[Y, [Z,X]]+[Z, [X,Y ]] = 0 in the third and

fourth equality. For example for Y = Al, Z = Aj , X = Ak we find cikλc
λ
lj+cilλc

λ
jk+cijλc

λ
kl.

Now from (B.11) we deduce Ri
j,kl =

1
2c

i
λjc

λ
kl, from which the final result (3.20) follows.
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