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Abstract

In this paper, we consider (LCS)n manifold admitting almost η−Ricci

solitons by means of curvature tensors. Ricci pseudosymmetry concepts of

(LCS)n manifold admitting η−Ricci soliton have introduced according to

the choice of some special curvature tensors such as pseudo-projective, W1,

W ∗
1 and W2. Then, again according to the choice of the curvature tensor,

necessary conditions are searched for (LCS)n manifold admitting η−Ricci

soliton to be Ricci semisymmetric. Then some characterizations are obtained

and some classifications have made.
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1 Introduction

In [1], the notion of Lorentzian concircular structure (LCS)n−manifolds has

been initiated by A.A. Shaikh by giving an example that generalizes the concept

of LP-Sasakian manifolds. A.A. Shaikh and H. Ahmad discussed certain

transformations on an (LCS)n manifold and showed that the (LCS)n manifold

remained invariant under D−homothetic deformation [2]. Later, it was shown by

C.A. Mantica and L.G. Molinari that Lorentz concircular manifolds coincide with

generalized Robertson-Walker spacetimes [3]. Again, weakly symmetric (LCS)n
manifolds in [4], Φ-recurrent (LCS)n manifolds in [5], generalized Φ−recurrent

(LCS)n manifolds in [6], invariant submanifolds of (LCS)n manifolds in [7], Ricci

solitons for (LCS)n manifolds in [8] and η−Ricci solitons for (LCS)n maifolds

in [9] have also been studied by various mathematicians. Again, M. Atçeken et

al. discussed pseudoparallel invariant submanifolds of (LCS)n manifolds in [10]

and S.K. Hui et al. discussed Ricci solitons on Ricci pseudosymmetric (LCS)n
manifolds [11].

An n−dimensional Lorentzian manifold M is a smoothly connected

paracompact Hausdorff manifold with the Lorentzian metric g, that is, M

contains a smooth symmetric tensor field of type (0, 2) such that for each point

p ∈ M, gp : TM(p) × TM (p) → R is a non-degenerate inner product of signature

(−,+, ...,+) , where TM (p) denotes the tangent vector space of M at p and R is the

real number space. A non-zero vector Xp ∈ TM (p) is said to be timelike ( resp.,

non-spacelike, null, spacelike) if it satisfies gp (Xp, Xp) < 0 (resp., ≤ 0,= 0, > 0) .

Its causal character is the category into which a given vector fields that is, the

category into which a given vector falls is called its causal character. Let Mn be a

Lorentzian manifold that admits the unit timelike concircular vector field ξ, often

known as the manifold’s characteristic vector field. Then we have

g (ξ, ξ) = −1. (1)

Since ξ is a unit concircular vector field, there exists a non-zero η such that

g (ϑ1, ξ) = η (ϑ1) (2)
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the equation of the following form holds

(∇ϑ1η)ϑ2 = α [g (ϑ1, ϑ2) + η (ϑ1) η (ϑ2)] , (3)

for all ϑ1, ϑ2 ∈ Γ (TM), where Γ (TM) and ∇ denote the set differentiable vector

fields set and the Levi-Civita connection on M, respectively. α is a non-zero

function that satisfies

∇ϑ1α = ϑ1 (α) = dα (ϑ1) = ρη (ϑ1) , (4)

ρ being a certain scalar function. If setting

∇ϑ1ξ = αφϑ1, (5)

then from (3) and (5) , it can be seen

φϑ1 = ϑ1 + η (ϑ1) ξ. (6)

It follows that φ is a (1, 1)−type symmetric tensor. Hence we

η (ξ) = −1, φξ = 0, η (φϑ1) = 0, (7)

and

g (φϑ1, φϑ2) = g (ϑ1, ϑ2) + η (ϑ1) η (ϑ2) , φ
2ϑ1 = ϑ1 + η (ϑ1) ξ. (8)

As a result, the Lorentzian manifold M , along with the unit timelike concircular

vector field ξ and its associated 1−form-η and (1, 1)−tensor field φ, is said to be

an almost paracontact Lorentzian manifold with a concircular structure, or simply

(LCS)n manifold [11]. In a (LCS)n manifolds, we have

(∇ϑ1φ)ϑ2 = α [g (ϑ1, ϑ2) ξ + η (ϑ2)ϑ1 + 2η (ϑ1) η (ϑ2) ξ] , (9)

R (ϑ1, ϑ2) ξ =
(
α2 − ρ

)
[η (ϑ2)ϑ1 − η (ϑ1)ϑ2] , (10)

R (ξ, ϑ1)ϑ2 =
(
α2 − ρ

)
[g (ϑ1, ϑ2) ξ − η (ϑ2)ϑ1] , (11)

η (R (ϑ1, ϑ2)ϑ3) =
(
α2 − ρ

)
g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ3) (12)

S (ϑ1, ξ) =
(
α2 − ρ

)
(n− 1) η (ϑ1) , (13)
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ϑ1 (ρ) = dρ (ϑ1) = βη (ϑ1) , (14)

where R and S denote the Riemannian curvature and Ricci tensors of M.

Let us now give the (LCS)n manifold example given by A. Shaikh in [12].

Example 1. We consider 3−dimensional manifold M =
{

(x, y, z) ∈ R3
}
, where

(x, y, z) is the standard coordinates in R3. Let {e1, e2, e3} be linearly independent

global frame on M given by

e1 = e−z
(
∂

∂x
+ y

∂

∂y

)
,

e2 = e−z
∂

∂y
, e3 = e−2z ∂

∂z
.

Let g be the Lorentzian metric defined by

g (e1, e3) = g (e2, e3) = g (e1, e2) = 0,

g (e1, e1) = g (e2, e2) = 1, g (e3, e3) = −1.

Let η be the 1−form defined by

η (ϑ4) = g (ϑ4, e3)

for any ϑ4 ∈ χ (M) . Let φ be the (1, 1)−tensor field defined by

φe1 = e1, φe2 = e2, φe3 = 0.

Then using the linearity of φ and g, we have

η (e3) = −1, φ2ϑ4 = ϑ4 + η (ϑ4) e3,

and

g (φϑ4, φW ) = g (ϑ4,W ) + η (ϑ4) η (W ) ,

for any ϑ4,W ∈ χ (M) . Thus for e3 = ξ, (φ, ξ, η, g) defines a Lorentzian

paracontact structure on M.
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Let ∇ be the Levi-Civita connection concerning the Lorentzian metric g and R be

the curvature tensor of g. Then we have

[e1, e2] = −e−ze2, [e1, e3] = e−2ze1, [e2, e3] = e−2ze2.

Taking e3 = ξ and using Kozsul formula for the Lorentzian metric g, we can easily

calculate
∇e1e3 = e−2ze1,∇e1e2 = 0,∇e1e1 = e−2ze3,

∇e2e3 = e−2ze2,∇e2e2 = e−2ze3 − e−ze1,∇e3e3 = 0,

∇e2e1 = e−2ze2,∇e3e2 = 0,∇e3e1 = 0.

From the above t can be easily seen that (φ, ξ, η, g) is an (LCS)3−structure on M.

Consequently M3 (φ, ξ, η, g) is an (LCS)3 manifold with α = e−2z 6= 0 such that

ϑ1 (α) = ρη (ϑ1) ,

where ρ = 2e−4z. Using the above relations, we can easily calculate the

non-vanishing components of the curvature tensor as follows:

R (e2, e3) e3 = e−4ze2, R (e1, e3) e3 = e−4ze1,

R (e1, e2) e2 = e−4ze1 − e−2ze1, R (e2, e3) e2 = e−4ze3,

R (e1, e3) e1 = e−4ze3, R (e1, e2) e1 = −e−4ze2 + e−2ze2,

and the components which can easily calculate the non-vanishing components of

the Ricci tensor S as follows:

S (e1, e1) = 2e−4z − e−2z, S (e2, e2) = 2e−4z − e−2z, S (e3, e3) = 2e−4z.

On the other hand, Ricci solitons and η−Ricci solitons are natural

generalizations of Einstein metrics. In [13], R.S. Hamilton introduced on a

Riemannian manifold (M, g) an evolution equation for metrics, called the Ricci

flow
∂

∂t
g (t) = −2S (g (t)) ,
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which is used to deform a metric by smoothing out its singularities. Hence Ricci

solitons may be regarded as generalized fixed points of the Ricci flow modeling

the formation of singularities. Precisely, a Ricci soliton on a Riemannian manifold

(M, g) is defined as a triple (g, ξ, λ) on M satisfying

Lξg + 2S + 2λg = 0, (15)

where Lξ is the Lie derivative operator along the vector field ξ and λ is a real

constant. We note that if ξ is a Killing vector field, then the Ricci soliton reduces

to an Einstein metric (g, λ) . Furthermore, in [14], generalization is the notion of

η−Ricci soliton defined by J.T. Cho and M. Kimura as a quadruple (g, ξ, λ, µ)

satisfying

Lξg + 2S + 2λg + 2µη ⊕ η = 0, (16)

where λ and µ are real constants and η is the dual of ξ and S denotes the Ricci

tensor of M. Furthermore if λ and µ are smooth functions on M , then it called

almost η−Ricci soliton on M [14].

An almost η−Ricci soliton (g, ξ, λ, µ) is called steady if λ = 0, if shrinking

λ < 0, and if expanding λ > 0.

A more general notion is that of η−Ricci soliton introduced in [14] and it was

applied on Hopf hypersurfaces in complex space forms in [15].

Many mathematicians have been interested in the geometry of Ricci solitons

over the past 20 years. It has gained more significance especially since Perelman

used Ricci solitons to answer the long-standing Poincare conjecture. Furthermore,

in [16], the Ricci solitons in contact geometry were studied by R. Sharma.

The notion of Ricci pseudosymmetric manifold was introduced by Deszcz

in [17]. Ricci pseudosymmetric (LCS)n−manifolds admitting Ricci solitons were

studied in [11]. They searched the conditions concircular Ricci pseudosymmetric,

projective Ricci pseudosymmetric, conharmonic Ricci pseudosymmetric, and

W3−Ricci pseudosymmetric (LCS)n−manifolds whose metric tensor admit Ricci

soliton from a point of view.
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In the present paper, we tried to find conditions on almost η−Ricci

pseudosymmetric, concircular almost η−Ricci pseudosymmetric, conharmonic

almost η−Ricci pseudosymmetric and almost M−projectively almost η−Ricci

pseudosymmetric (LCS)n−manifolds whose metric tensors admit Ricci soliton.

2 Almost η−Ricci Solitons on Ricci Pseudosymmetric

(LCS)n−Manifolds

Now let (g, ξ, λ, µ) be almost η−Ricci soliton on (LCS)n−manifold. Then we

have

(Lξg) (ϑ1, ϑ2) = Lξg (ϑ1, ϑ2)− g (Lξϑ1, ϑ2)− g (ϑ1, Lξϑ2)

= ξg (ϑ1, ϑ2)− g ([ξ, ϑ1] , ϑ2)− g (ϑ1, [ξ, ϑ2])

= g (∇ξϑ1, ϑ2)− g (ϑ1,∇ξϑ2)− g (∇ξϑ1, ϑ2)

+ g (∇ϑ1ξ, ϑ2)− g (∇ξϑ2, ϑ1) + g (ϑ1,∇ϑ2ξ) ,

for all ϑ1, ϑ2 ∈ Γ (TM) . By using φ is symmetric and in view of (5) , we have

(Lξg) (ϑ1, ϑ2) = 2αg (φϑ1, ϑ2) . (17)

Thus, in an (LCS)n−manifolds, from (16) and (17) , we have

αg (φϑ1, ϑ2) + S (ϑ1, ϑ2) + λg (ϑ1, ϑ2) + µη (ϑ1) η (ϑ2) = 0. (18)

For ϑ2 = ξ, this implies that

S (ξ, ϑ1) = (µ− λ) η (ϑ1) . (19)

Taking into account (13) , we conclude that

µ− λ = (n− 1)
(
α2 − ρ

)
. (20)

For an n−dimensional semi-Riemann manifold M , the W1−curvature tensor

is defined as

W1 (ϑ1, ϑ2)ϑ3 = R (ϑ1, ϑ2)ϑ3 +
1

n− 1
[S (ϑ2, ϑ3)ϑ1 − S (ϑ1, ϑ3)ϑ2] . (21)

Earthline J. Math. Sci. Vol. 13 No. 2 (2023), 291-311
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For an n−dimensional (LCS)n manifold, if we choose ϑ3 = ξ in (21) , we can write

W1 (ϑ1, ϑ2) ξ = 2
(
α2 − ρ

)
[η (ϑ2)ϑ1 − η (ϑ1)ϑ2] , (22)

and similarly if we take the inner product of both sides of (21) by ξ, we get

η (W1 (ϑ1, ϑ2)ϑ3) = 2
(
α2 − ρ

)
g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ3) . (23)

Theorem 1. Let M be a n−dimensional (LCS)n−manifold. If M is W1−flat,

then M is an η−Einstein manifold.

Proof. Let us assume that M is W1−flat. So, we can write

W1 (ϑ1, ϑ2)ϑ3 = 0

for all ϑ1, ϑ2, ϑ3 ∈ χ (M) , that is

R (ϑ1, ϑ2)ϑ3 =
1

n− 1
[S (ϑ1, ϑ3)ϑ2 − S (ϑ2, ϑ3)ϑ1] .

If we choose ϑ1 = ξ in the last equality, we get

R (ξ, ϑ2)ϑ3 =
1

n− 1
[S (ξ, ϑ3)ϑ2 − S (ϑ2, ϑ3) ξ] .

If we use (11) and (13) in the last equation, we have

1

n− 1
S (ϑ2, ϑ3) ξ =

(
α2 − ρ

)
[g (ϑ2, ϑ3) ξ − 2η (ϑ3)ϑ2] .

If we take the inner product of both sides of the last equality by ξ ∈ χ (M) and

make the necessary adjustments, we obtain

S (ϑ2, ϑ3) = − (n− 1)
(
α2 − ρ

)
[g (ϑ2, ϑ3) + 2η (ϑ2) η (ϑ3)] .

This completes the proof.

Definition 1. Let M be an n−dimensional Riemannian manifold. If W1 · S
and Q (g, S) are linearly dependent, then the manifold is said to be W1−Ricci

pseudosymmetric.
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In this case, there exists a function LW1 on M such that

W1 · S = LW1Q (g, S) .

Let us now investigate the W1−Ricci pseudosymmetric case of the n−dimensional

(LCS)n−manifold admitting almost η−Ricci soliton.

Theorem 2. Let M be (LCS)n−manifold and (g, ξ, λ, µ) be almost η−Ricci

soliton on M. If M is a W1−Ricci pseudosymmetric, then

LW1 = 2
(
α2 − ρ

)
or α = µ− 2λ.

Proof. Let us assume that (LCS)n−manifold be W1−Ricci pseudosymmetric and

(g, ξ, λ, µ) be almost η−Ricci soliton on (LCS)n−manifold. That’s mean

(W1 (ϑ1, ϑ2) · S) (ϑ4, ϑ5) = LW1Q (g, S) (ϑ4, ϑ5;ϑ1, ϑ2) ,

for all ϑ1, ϑ2, ϑ4, ϑ5 ∈ Γ (TM) . From the last equation, we can easily write

S (W1 (ϑ1, ϑ2)ϑ4, ϑ5) + S (ϑ4,W1 (ϑ1, ϑ2)ϑ5)

=LW1 {S ((ϑ1 ∧g ϑ2)ϑ4, ϑ5) + S (ϑ4, (ϑ1 ∧g ϑ2)ϑ5)} .
(24)

If we choose ϑ5 = ξ in (24) , we get

S (W1 (ϑ1, ϑ2)ϑ4, ξ) + S (ϑ4,W1 (ϑ1, ϑ2) ξ)

=LW1 {S (g (ϑ2, ϑ4)ϑ1 − g (ϑ1, ϑ4)ϑ2, ξ)

+S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)} .

(25)

If we make use of (13) and (22) in (25) , we have(
α2 − ρ

)
(n− 1) η (W1 (ϑ1, ϑ2)ϑ4)

+ 2
(
α2 − ρ

)
S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)

=LW1

{(
α2 − ρ

)
(n− 1) g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4)

+S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)} .

(26)
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If we use (23) in the (26), we get

2
(
α2 − ρ

)2
(n− 1) g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4)

+ 2
(
α2 − ρ

)
S (η (ϑ2)ϑ1 − η (ϑ1)ϑ2, ϑ4)

=LW1

{(
α2 − ρ

)
(n− 1) g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4)

+S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)} .

(27)

If we use (18) and (6) in the (27), we can write[(
α2 − ρ

)
(n− 1) + α+ λ

] [
2
(
α2 − ρ

)
− LW1

]
g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4) = 0.

(28)

It is clear from (28) ,

LW1 = 2
(
α2 − ρ

)
,

or

λ =
(
ρ− α2

)
(n− 1)− α.

This completes the proof.

Corollary 1. Let M be (LCS)n−manifold and (g, ξ, λ, µ) be almost η−Ricci

soliton on M. If M is a W1−Ricci semisymmetric, then

µ = −α.

Corollary 2. Let M be (LCS)n−manifold and (g, ξ, λ, µ) be almost η−Ricci

soliton on M. If M is a W1−Ricci semisymmetric, then

i) M is an expanding if
(
ρ− α2

)
(n− 1) > α,

ii) M is a shrinking if
(
ρ− α2

)
(n− 1) < α.

For an n−dimensional semi-Riemann manifold M , the W ∗
1−curvature tensor

is defined as

W ∗
1 (ϑ1, ϑ2)ϑ3 = R (ϑ1, ϑ2)ϑ3 −

1

n− 1
[S (ϑ2, ϑ3)ϑ1 − S (ϑ1, ϑ3)ϑ2] . (29)

For an n−dimensional (LCS)n manifold, if we choose ϑ3 = ξ in (29) , we can write

W ∗
1 (ϑ1, ϑ2) ξ = 0, (30)
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and similarly, if we take the inner product of both sides of (30) by ξ, we get

η (W ∗
1 (ϑ1, ϑ2)ϑ3) = 0. (31)

Theorem 3. Let M be a n−dimensional (LCS)n−manifold. If M is W ∗
1−flat,

then M is an Einstein manifold.

Proof. Let’s assume that M is W ∗
1−flat. So, we can write

W ∗
1 (ϑ1, ϑ2)ϑ3 = 0

for all ϑ1, ϑ2, ϑ3 ∈ χ (M) . That is

R (ϑ1, ϑ2)ϑ3 =
1

n− 1
[S (ϑ2, ϑ3)ϑ1 − S (ϑ1, ϑ3)ϑ2] .

If we choose ϑ1 = ξ in the last equality, we get

R (ξ, ϑ2)ϑ3 =
1

n− 1
[S (ϑ2, ϑ3) ξ − S (ξ, ϑ3)ϑ2] .

If we use (11) and (13) in the last equation, we have

S (ϑ2, ϑ3) ξ =
(
α2 − ρ

)
(n− 1) g (ϑ2, ϑ3) ξ.

If we take the inner product of both sides of the last equality by ξ ∈ χ (M) and

make the necessary adjustments, we obtain

S (ϑ2, ϑ3) =
(
α2 − ρ

)
(n− 1) g (ϑ2, ϑ3) .

This completes the proof.

Definition 2. Let M be an n−dimensional Riemannian manifold. If W ∗
1 · S

and Q (g, S) are linearly dependent, then the manifold is said to be W ∗
1−Ricci

pseudosymmetric.

In this case, there exists a function LW ∗
1

on M such that

W ∗
1 · S = LW ∗

1
Q (g, S) .

Let us now investigate the W ∗
1−Ricci pseudosymmetric case of the n−dimensional

(LCS)n−manifold.
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Theorem 4. Let M be (LCS)n−manifold and (g, ξ, λ, µ) be almost η−Ricci

soliton on M. If M is a W ∗
1−Ricci pseudosymmetric, then M is either W ∗

1−Ricci

semisymmetric or µ = −α.

Proof. Let’s assume that (LCS)n−manifold be W ∗
1−Ricci pseudosymmetric and

(g, ξ, λ, µ) be almost η−Ricci soliton on (LCS)n−manifold. That’s mean

(W ∗
1 (ϑ1, ϑ2) · S) (ϑ4, ϑ5) = LW ∗

1
Q (g, S) (ϑ4, ϑ5;ϑ1, ϑ2) ,

for all ϑ1, ϑ2, ϑ4, ϑ5 ∈ Γ (TM) . From the last equation, we can easily write

S (W ∗
1 (ϑ1, ϑ2)ϑ4, ϑ5) + S (ϑ4,W

∗
1 (ϑ1, ϑ2)ϑ5)

=LW ∗
1
{S ((ϑ1 ∧g ϑ2)ϑ4, ϑ5) + S (ϑ4, (ϑ1 ∧g ϑ2)ϑ5)} .

(32)

If we choose ϑ5 = ξ in (32) , we get

S (W ∗
1 (ϑ1, ϑ2)ϑ4, ξ) + S (ϑ4,W

∗
1 (ϑ1, ϑ2) ξ)

=LW ∗
1
{S (g (ϑ2, ϑ4)ϑ1 − g (ϑ1, ϑ4)ϑ2, ξ)

+S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)} .

(33)

If we make use of (13) and (30) in (33) , we have

LW ∗
1

{(
α2 − ρ

)
(n− 1) g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4) + S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)

}
=
(
α2 − ρ

)
(n− 1) η (W ∗

1 (ϑ1, ϑ2)ϑ4) .

(34)

If we use (31) in the (34), we get

LW∗
1

[(
α2 − ρ

)
(n− 1) g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4) + S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)

]
= 0.

(35)

If we use (18) and (6) in the (35), we can write

LW ∗
1

[(
α2 − ρ

)
(n− 1) + α+ λ

]
g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4) = 0. (36)

It is clear from (36) ,

LW ∗
1

= 0,
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or

λ =
(
ρ− α2

)
(n− 1)− α.

This completes the proof.

Corollary 3. Let M be (LCS)n−manifold and (g, ξ, λ, µ) be almost η−Ricci

soliton on M. If M is a W ∗
1−Ricci pseudosymmetric, then M is either W ∗

1−Ricci

semisymmetric or

i) M is an expanding if
(
ρ− α2

)
(n− 1)− α > 0,

ii) M is a shrinking if
(
ρ− α2

)
(n− 1)− α < 0.

For an n−dimensional semi-Riemann manifold M , the W2−curvature tensor

is defined as

W2 (ϑ1, ϑ2)ϑ3 = R (ϑ1, ϑ2)ϑ3 −
1

n− 1
[g (ϑ2, ϑ3)Qϑ1 − g (ϑ1, ϑ3)Qϑ2] . (37)

For an n−dimensional (LCS)n manifold, if we choose ϑ3 = ξ in (37) , we can write

W2 (ϑ1, ϑ2) ξ =
(
α2 − ρ

)
[η (ϑ2)ϑ1 − η (ϑ1)ϑ2]

− 1

n− 1
[η (ϑ2)Qϑ1 − η (ϑ1)Qϑ2] ,

(38)

and similarly, if we take the inner product of both sides of (37) by ξ, we get

η (W2 (ϑ1, ϑ2)ϑ3) =
1

n− 1
S (η (ϑ2)ϑ1 − η (ϑ1)ϑ2, ϑ3)

−
(
α2 − ρ

)
g (η (ϑ2)ϑ1 − η (ϑ1)ϑ2, ϑ3) .

(39)

Theorem 5. Let M be a n−dimensional (LCS)n−manifold. If M is W2−flat,

then M is an Einstein manifold.

Proof. Let us assume that M is W2−flat. So, we can write

W2 (ϑ1, ϑ2)ϑ3 = 0

for all ϑ1, ϑ2, ϑ3 ∈ χ (M) . That is

R (ϑ1, ϑ2)ϑ3 =
1

n− 1
[g (ϑ2, ϑ3)Qϑ1 − g (ϑ1, ϑ3)Qϑ2] .
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If we choose ϑ1 = ξ in the last equality, we get

R (ξ, ϑ2)ϑ3 =
1

n− 1
[g (ϑ2, ϑ3)Qξ − S (ξ, ϑ3)Qϑ2] .

If we use (11) and (13) in the last equation, we have

− 1

n− 1
η (ϑ3)Qϑ2 =

(
α2 − ρ

)
[2g (ϑ2, ϑ3) ξ − η (ϑ3)ϑ2] .

If we first choose ϑ3 = ξ and then we take the inner product of both sides of the

last equality by ϑ1 ∈ χ (M) and make the necessary adjustments, we obtain

S (ϑ1, ϑ2) =
(
α2 − ρ

)
(n− 1) [g (ϑ1, ϑ2) + 2η (ϑ1) η (ϑ2)] .

This completes the proof.

Definition 3. Let M be an n−dimensional Riemannian manifold. If W2 · S
and Q (g, S) are linearly dependent, then the manifold is said to be W2−Ricci

pseudosymmetric.

In this case, there exists a function LW2 on M such that

W2 · S = LW2Q (g, S) .

Let us now investigate the W2−Ricci pseudosymmetric case of the n−dimensional

(LCS)n−manifold admitting almost η−Ricci soliton.

Theorem 6. Let M be (LCS)n−manifold and (g, ξ, λ, µ) be almost η−Ricci

soliton on M. If M is a W2−Ricci pseudosymmetric, then

LW2 =
(α+ λ)2 + (µ− λ) [(µ− λ) + 2 (α+ λ)]

(n− 1) (µ+ α)
.

Proof. Let us assume that (LCS)n−manifold be W2−Ricci pseudosymmetric and

(g, ξ, λ, µ) be almost η−Ricci soliton on (LCS)n−manifold. That means

(W2 (ϑ1, ϑ2) · S) (ϑ4, ϑ5) = LW2Q (g, S) (ϑ4, ϑ5;ϑ1, ϑ2) ,
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for all ϑ1, ϑ2, ϑ4, ϑ5 ∈ Γ (TM) . From the last equation, we can easily write

S (W2 (ϑ1, ϑ2)ϑ4, ϑ5) + S (ϑ4,W2 (ϑ1, ϑ2)ϑ5)

=LW2 {S ((ϑ1 ∧g ϑ2)ϑ4, ϑ5) + S (ϑ4, (ϑ1 ∧g ϑ2)ϑ5)} .
(40)

If we choose ϑ5 = ξ in (40) , we get

S (W2 (ϑ1, ϑ2)ϑ4, ξ) + S (ϑ4,W2 (ϑ1, ϑ2) ξ)

=LW2 {S (g (ϑ2, ϑ4)ϑ1 − g (ϑ1, ϑ4)ϑ2, ξ)

+S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)} .

(41)

If we make use of (13) and (38) in (41) , we have

LW2

{(
α2 − ρ

)
(n− 1) g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4) + S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)

}
=
(
α2 − ρ

)
(n− 1) η (W2 (ϑ1, ϑ2)ϑ4) + S

(
ϑ4,
(
α2 − ρ

)
[η (ϑ2)ϑ1 − η (ϑ1)ϑ2]

− 1

n− 1
[η (ϑ2)Qϑ1 − η (ϑ1)Qϑ2]

)
.

(42)

If we use (39) in the (42), we get

2
(
α2 − ρ

)
S (η (ϑ2)ϑ1 − η (ϑ1)ϑ2, ϑ4)−

(
α2 − ρ

)2
(n− 1) g (η (ϑ2)ϑ1 − η (ϑ1)ϑ2, ϑ4)

1

n− 1
S (ϑ4, η (ϑ2)Qϑ1 − η (ϑ1)Qϑ2)

=LW2

{(
α2 − ρ

)
(n− 1) g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4) + S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)

}
.

(43)

If we use (18) and (6) in the (43), we can write

−
(
α2 − ρ

) [
2α+ 2λ+

(
α2 − ρ

)
(n− 1)

]
g (η (ϑ2)ϑ1 − η (ϑ1)ϑ2, ϑ4)

+
1

n− 1
(α+ λ)S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)

=LW2

[(
α2 − ρ

)
(n− 1) + α+ λ

]
g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4) .

(44)

If we use (18) again in (44) , we have{
−
(
α2 − ρ

) [
2α+ 2λ+

(
α2 − ρ

)
(n− 1)

]
− (α+ λ)

2

(n− 1)
LW2

[(
α2 − ρ

)
(n− 1) + α+ λ

]}
×g (η (ϑ2)ϑ1 − η (ϑ1)ϑ2, ϑ4) = 0.

(45)
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It is clear from (45) ,

LW2 =
µ+ α

n− 1
.

This completes the proof.

Corollary 4. Let M be (LCS)n−manifold and (g, ξ, λ, µ) be almost η−Ricci

soliton on M. If M is a W2−Ricci semisymmetric, then

λ = −α− (n− 1)
[
α2 − ρ

]
.

For an n−dimensional semi-Riemann manifold M , the pseudo-projective

curvature tensor is defined as

P∗ (ϑ1, ϑ2)ϑ3 =a0R (ϑ1, ϑ2)ϑ3 + a1 [S (ϑ2, ϑ3)ϑ1 − S (ϑ1, ϑ3)ϑ2]

− r

n

(
a0

n− 1
+ a1

)
[g (ϑ2, ϑ3)ϑ1 − g (ϑ1, ϑ3)ϑ2] ,

(46)

where ao, a1 is the smooth function, and r is scalar curvature of manifold.

For an n−dimensional (LCS)n manifold, if we choose ϑ3 = ξ in (46) , we can

write

P∗ (ϑ1, ϑ2) ξ =

{(
α2 − ρ

)
[a0 + (n− 1) a1]−

r

n

(
a0

n− 1
+ a1

)}
× [η (ϑ2)ϑ1 − η (ϑ1)ϑ2] ,

(47)

and similarly, if we take the inner product of both sides of (46) by ξ, we get

η (P∗ (ϑ1, ϑ2)ϑ3) =

{(
α2 − ρ

)
[a0 + (n− 1) a1]−

r

n

(
a0

n− 1
+ a1

)}
×g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ3) .

(48)

Theorem 7. Let M be a n−dimensional (LCS)n−manifold. If M is pseudo

projective flat, then M is an η−Einstein manifold.

Proof. Let us assume that M is pseudo-projective flat. So, we can write

P∗ (ϑ1, ϑ2)ϑ3 = 0
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for all ϑ1, ϑ2, ϑ3 ∈ χ (M) . That is

a0R (ϑ1, ϑ2)ϑ3 =a1 [S (ϑ1, ϑ3)ϑ2 − S (ϑ2, ϑ3)ϑ1]

+
r

n

(
a0

n− 1
+ a1

)
[g (ϑ2, ϑ3)ϑ1 − g (ϑ1, ϑ3)ϑ2] .

If we choose ϑ1 = ξ in the last equality, we get

a0R (ξ, ϑ2)ϑ3 =a1 [S (ξ, ϑ3)ϑ2 − S (ϑ2, ϑ3) ξ]

+
r

n

(
a0

n− 1
+ a1

)
[g (ϑ2, ϑ3) ξ − g (ξ, ϑ3)ϑ2] .

If we use (11) and (13) in the last equation, we have

a1S (ϑ2, ϑ3) ξ =

[
a1
(
α2 − ρ

)
(n− 1)− r

n

(
a0

n− 1
+ a1

)
+ a0

(
α2 − ρ

)]
η (ϑ3)ϑ2

− a0
(
α2 − ρ

)
η (ϑ2)ϑ3 +

r

n

(
a0

n− 1
+ a1

)
g (ϑ2, ϑ3) ξ.

If we take the inner product of both sides of the last equality by ξ ∈ χ (M) and

make the necessary adjustments, we obtain

S (ϑ2, ϑ3) =
r

a1n

(
a0

n− 1
+ a1

)
g (ϑ2, ϑ3)

−
[(
α2 − ρ

)
(n− 1)− r

a1n

(
a0

n− 1
+ a1

)]
η (ϑ2) η (ϑ3) .

This completes the proof.

Definition 4. Let M be an n−dimensional Riemannian manifold. If P∗ · S and

Q (g, S) are linearly dependent, then the manifold is said to be pseudo-projective

Ricci pseudosymmetric.

In this case, there exists a function LP∗ on M such that

P∗ · S = LP∗Q (g, S) .

Let us now investigate the pseudo-projective Ricci pseudosymmetric case of the

n−dimensional (LCS)n−manifold admitting almost η−Ricci soliton.

Earthline J. Math. Sci. Vol. 13 No. 2 (2023), 291-311



308 Tuğba Mert, Mehmet Atçeken, Pakize Uygun and Shashikant Pandey

Theorem 8. Let M be (LCS)n−manifold and (g, ξ, λ, µ) be almost η−Ricci

soliton on M. If M is a pseudo-projective Ricci pseudosymmetric, then

LP∗ =
(
α2 − ρ

)
[a0 + (n− 1) a1]−

r

n

(
a0

n− 1
+ a1

)
or µ = −α.

Proof. Let’s assume that (LCS)n−manifold is pseudo-projective Ricci

pseudosymmetric and (g, ξ, λ, µ) be almost η−Ricci soliton on (LCS)n−manifold.

That’s mean

(P∗ (ϑ1, ϑ2) · S) (ϑ4, ϑ5) = LP∗Q (g, S) (ϑ4, ϑ5;ϑ1, ϑ2) ,

for all ϑ1, ϑ2, ϑ4, ϑ5 ∈ Γ (TM) . From the last equation, we can easily write

S (P∗ (ϑ1, ϑ2)ϑ4, ϑ5) + S (ϑ4, P∗ (ϑ1, ϑ2)ϑ5)

=LP∗ {S ((ϑ1 ∧g ϑ2)ϑ4, ϑ5) + S (ϑ4, (ϑ1 ∧g ϑ2)ϑ5)} .
(49)

If we choose ϑ5 = ξ in (49) , we get

S (P∗ (ϑ1, ϑ2)ϑ4, ξ) + S (ϑ4, P∗ (ϑ1, ϑ2) ξ)

=LP∗ {S (g (ϑ2, ϑ4)ϑ1 − g (ϑ1, ϑ4)ϑ2, ξ)

+S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)} .

(50)

If we make use of (13) and (47) in (50) , we have(
α2 − ρ

)
(n− 1) η (P∗ (ϑ1, ϑ2)ϑ4) +AS (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)

=LP∗

{(
α2 − ρ

)
(n− 1) g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4) + S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)

}
,

(51)

where A =
(
α2 − ρ

)
[a0 + (n− 1) a1]−

r

n

(
a0
n−1 + a1

)
. If we use (48) in the (51),

we get

A
(
α2 − ρ

)2
(n− 1) g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4) +AS (η (ϑ2)ϑ1 − η (ϑ1)ϑ2, ϑ4)

=LP∗

{(
α2 − ρ

)
(n− 1) g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4) + S (ϑ4, η (ϑ2)ϑ1 − η (ϑ1)ϑ2)

}
.

(52)
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If we use (18) and (6) in the (52), we can write[(
α2 − ρ

)
(n− 1) + α+ λ

]
[A− LP∗ ] g (η (ϑ1)ϑ2 − η (ϑ2)ϑ1, ϑ4) = 0. (53)

It is clear from (53) ,

LP∗ =
(
α2 − ρ

)
[a0 + (n− 1) a1]−

r

n

(
a0

n− 1
+ a1

)
,

or

λ =
(
ρ− α2

)
(n− 1)− α.

This completes the proof.

Corollary 5. Let M be (LCS)n−manifold and (g, ξ, λ, µ) be almost η−Ricci

soliton on M. If M is a pseudo-projective Ricci semisymmetric, then M is either

manifold with constant scalar curvature r = n (n− 1)
(
α2 − ρ

)
or µ = −α.
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