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1. Introduction

Let X denote an infinite dimensional Banach space. We use B(X) to de-
note the set of all linear bounded operators on X. Also, K(X) and F (X),
respectively, denote the set of all compact and finite rank operators on X.
For A ∈ B(X) we use N(A) and R(A), respectively, to denote the null-space
and the range of A.

We use Gl(X) and Gr(X), respectively, to denote the set of all left and
right invertible operators on X. It is well-known that A ∈ Gl(X) if and only
if A is injective and R(A) is a closed and complemented subspace of X. Also,
A ∈ Gr(X) if and only if A is onto and N(A) is a complemented subspace of
X. The set of all invertible operators on X is denoted by G(X).

Let α(A) = dimN(A) if N(A) is finite dimensional, and let α(A) =
∞ if N(A) is infinite dimensional. Similarly, let β(A) = dim X/R(A) =
codim R(A) if X/R(A) is finite dimensional, and let β(A) = ∞ if X/R(A) is
infinite dimensional.

Sets of upper and lower Fredholm operators, respectively, are defined as

Φ+(X) = {A ∈ B(X) : α(A) < ∞ and R(A) is closed},
and

Φ−(X) = {A ∈ B(X) : β(A) < ∞}.
This work is supported by the Ministry of Science and Technological Development, Re-
public of Serbia, grant no. 144003.
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Operators in Φ±(X) = Φ+(X)∪Φ−(X) are called semi-Fredholm operators.
For such operators the index is defined by i(A) = α(A)−β(A). Let Φ−+(X) =
{A ∈ Φ+(X) : i(A) ≤ 0} and Φ+

−(X) = {A ∈ Φ−(X) : i(A) ≥ 0}. The set of
Fredholm operators is defined as

Φ(X) = Φ+(X) ∩ Φ−(X).

The set of Weyl operators is defined as Φ0(X) = {A ∈ Φ(X) : i(A) = 0}.
Let S be a subset of a Banach space A. The perturbation class of S,

denoted by P (S), is the set

P (S) = {a ∈ R : a + s ∈ S for every s ∈ S}.
The Calkin algebra over X is the quotient algebra C(X) = B(X)/K(X),
and π : B(X) → C(X) denotes the natural homomorphism. Let re(A) de-
note spectral radius of the element π(A) in C(X), A ∈ B(X), i.e. re(A) =
lim

n→∞
(‖π(An)‖) 1

n and it is called essential spectral radius of A. An operator

A ∈ B(X) is Riesz if {λ ∈ C : A − λ ∈ Φ(X)} = C\{0}, i.e. re(A) = 0. For
A ∈ B(X) set

‖A‖PΦ = inf{‖A− P‖ : P ∈ P (Φ(X))}.
It is known that re(A) = lim

n→∞
(‖An‖PΦ)

1
n .

An operator A ∈ B(X) is relatively regular (or g-invertible) if there
exists B ∈ B(X) such that ABA = A. It is well-known that A is relatively
regular if and only if R(A) and N(A) are closed and complemented subspaces
of X.

Sets of left and right Fredholm operators, respectively, are defined as

Φl(X) = {A ∈ B(X) : R(A) is a closed and complemented subspace of X

and α(A) < ∞},
and

Φr(X) = {A ∈ B(X) : N(A) is a complemented subspace of X

and β(A) < ∞}.
It is known that the sets Φl(X) and Φr(X) are open [1] (Chapter 5.2,

Theorem 6), and P (Φl(X)) = P (Φ(X)) = P (Φr(X)) [1] (Chapter 5.2, Corol-
lary 3).

An operator A ∈ B(X) is left (right) Weyl if A is left (right) Fredholm
operator and i(A) ≤ 0 (i(A) ≥ 0). We use Wl(X) (Wr(X)) to denote the set
of all left (right) Weyl operators.

The ascent of A ∈ B(X), denoted by asc(A), is the smallest n ∈ N such
that N(An) = N(An+1). If such n does not exist, then asc(A) = ∞. The
descent of A, denoted by dsc(A), is the smallest n ∈ N such that R(An) =
R(An+1). If such n does not exist, then dsc(A) = ∞.

An operator A ∈ B(X) is upper semi-Browder if it is upper semi-
Fredholm of finite ascent, and A is lower semi-Browder if it is lower semi-
Fredholm of finite descent. Let B+(X) (B−(X)) denote the set of all upper
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(lower) semi-Browder operators. The set of Browder operators is defined as
B(X) = B+(X) ∩ B−(X).

The operator A ∈ B(X) is left Browder if it is left Fredholm of finite
ascent, and A is right Browder if it is right Fredholm of finite descent. Let
Bl(X) (Br(X)) denote the set of all left (right) Browder operators.

From [4] (Theorem 7.9.2) and [1] (Chapter 5.2, Theorem 7), for A ∈
B(X) and K ∈ K(X) which commutes with A, it follows that

A is left Browder ⇐⇒ A + K is left Browder, (1.1)

A is right Browder ⇐⇒ A + K is right Browder. (1.2)
The following assertions [13] (Theorem 7 and Theorem 8) tell us that it

holds more generally. If A ∈ B(X), and if E Riesz which commutes with A,
then

A is left Browder ⇐⇒ A + E is left Browder ,

A is right Browder ⇐⇒ A + E is right Browder.

Moreover, the following hold.

Theorem 1.1. If A ∈ B(X) and E ∈ B(X) is Riesz, then

AE − EA ∈ P (Φ(X)) =⇒ σleft
w (A) = σleft

w (A + E), (1.3)

AE − EA ∈ P (Φ(X)) =⇒ σright
w (A) = σright

w (A + E), (1.4)

AE = EA =⇒ σleft
b (A) = σleft

b (A + E), (1.5)

AE = EA =⇒ σright
b (A) = σright

b (A + E). (1.6)

The following theorem gives a characterization of left and right Browder
operators [13] (Theorem 5 and Theorem 6).

Theorem 1.2. Let A ∈ B(X). Then A is left (right) Browder iff there exist
closed subspaces X1 and X2 invariant with respect to A such that X = X1 ⊕
X2, dim X1 < ∞, the reduction A1 = A|X1 : X1 → X1 is nilpotent and the
reduction A2 = A|X2 : X2 → X2 is left (right) invertible.

Corresponding spectra of A ∈ B(X) are defined as:
σl(A) = {λ ∈ C : A− λ /∈ Gl(X)}-the left spectrum,
σr(A) = {λ ∈ C : A− λ /∈ Gr(X)}-the right spectrum,
σa(A) = {λ ∈ C : A− λ is not bounded below }-the approximate point

spectrum,
σd(A) = {λ ∈ C : A− λ is not onto }-the defect spectrum,
σb(A) = {λ ∈ C : A− λ /∈ B(X)}-the Browder spectrum,
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σ+
b (A) = {λ ∈ C : A− λ /∈ B+(X)}-the Browder essential approximate

point spectrum,

σ+
b (A) = {λ ∈ C : A − λ /∈ B−(X)}-the Browder essential defect spec-

trum,

σleft
b (A) = {λ ∈ C : A− λ /∈ Bl(X)}-the left Browder spectrum,

σright
b (A) = {λ ∈ C : A− λ /∈ Br(X)}-the right Browder,

σw(A) = {λ ∈ C : A− λ /∈ Φ0(X)}-the Weyl spectrum,

σleft
w (A) = {λ ∈ C : A− λ /∈ Wl(X)}-the left Weyl spectrum,

σright
w (A) = {λ ∈ C : A− λ /∈ Wr(X)}-the right Weyl spectrum,

σ+
w (A) = {λ ∈ C : A − λ /∈ Φ−+(X)}-the essential approximate point

spectrum,

σ−w (A) = {λ ∈ C : A− λ /∈ Φ+
−(X)}-the essential defect spectrum,

σe(A) = {λ ∈ C : A− λ /∈ Φ(X)}-the Fredholm spectrum,

σleft
e (A) = {λ ∈ C : A− λ /∈ Φl(X)}-the left Fredholm spectrum,

σright
e (A) = {λ ∈ C : A− λ /∈ Φr(X)}-the right Fredholm spectrum,

σ+
e (A) = {λ ∈ C : A−λ /∈ Φ+(X)}-the upper semi-Fredholm spectrum,

σ−e (A) = {λ ∈ C : A− λ /∈ Φ−(X)}-the lower semi-Fredholm spectrum.

2. Properties of corresponding spectra

We prove the following auxiliary assertion.

Lemma 2.1. Let A ∈ B(X) and let X be a direct sum of closed subspaces X1

and X2 which are A-invariant. If A1 = A|X1 : X1 → X1 and A2 = A|X2 :
X2 → X2, then the following statements hold:

(2.1.1) The operator A is g-invertible if and only if A1 and A2 are g-invertible.

(2.1.2) The operator A ∈ Φl(X) if and only if A1 ∈ Φl(X1) and A2 ∈ Φl(X2),
and in that case i(A) = i(A1) + i(A2).

(2.1.3) The operator A ∈ Φr(X) if and only if A1 ∈ Φr(X1) and A2 ∈ Φr(X2),
and in that case i(A) = i(A1) + i(A2).

(2.1.4) The operator A ∈ Bl(X) if and only if A1 ∈ Bl(X1) and A2 ∈ Bl(X2),
and in that case i(A) = i(A1) + i(A2).

(2.1.5) The operator A ∈ Br(X) if and only if A1 ∈ Br(X1) and A2 ∈ Br(X2),
and in that case i(A) = i(A1) + i(A2).

Proof. (2.1.1): The operator A has the following matrix form with respect to
the decomposition X = X1 ⊕X2:

A =
[
A1 0
0 A2

]
:
[
X1

X2

]
→

[
X1

X2

]
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Suppose that A is g-invertible. Then there exists B ∈ B(X) such that ABA =
A, and B has the following matrix form:

B =
[
B11 B12

B21 B22

]
:
[
X1

X2

]
→

[
X1

X2

]

Therefore [
A1 0
0 A2

] [
B11 B12

B21 B22

] [
A1 0
0 A2

]
=

[
A1 0
0 A2

]
,

and we get

[
A1B11A1 A1B12A2

A2B21A1 A2B22A2

]
=

[
A1 0
0 A2

]
,

which implies A1B11A1 = A1 and A2B22A2 = A2. Thus, A1 and A2 are
g-invertible operators.

Conversely, suppose that A1 ∈ B(X1) and A2 ∈ B(X2) are g-invertible
operators. Then there exist B1 ∈ B(X1) and B2 ∈ B(X2) such that A1B1A1 =
A1 and A2B2A2 = A2. Let

B =
[
B1 0
0 B2

]
.

Then we have B ∈ B(X) and ABA = A, so A is a g-invertible operator.
(2.1.2): Since N(A) = N(A1) ⊕N(A2) and R(A) = R(A1) ⊕ R(A2), it

follows that α(A) = α(A1) + α(A2) and β(A) = β(A1) + β(A2). Therefore,
α(A) < ∞ if and only if α(A1) < ∞ and α(A2) < ∞. Hence, according to
(2.1.1), A ∈ Φl(X) if and only if A1 ∈ Φl(X1) and A2 ∈ Φl(X2), and in that
case i(A) = α(A)−β(A) = (α(A1)+α(A2))−(β(A1)+β(A2)) = i(A1)+i(A2).

(2.1.3): Similarly to (2.1.2).
(2.1.4): Since N(An) = N(An

1 ) ⊕ N(An
2 ) for n ∈ N, we conclude that

asc(A) < ∞ if and only if asc(A1) < ∞ and asc(A2) < ∞. Now the statements
follows from (2.1.2).

(2.1.5): From R(An) = R(An
1 )⊕R(An

2 ) for n ∈ N, we see that dsc(A) <
∞ if and only if dsc(A1) < ∞ and dsc(A2) < ∞. Then the conclusion follows
from (2.1.3). ¤

Let P(X) denote the set of all projections P ∈ B(X) such that
codim R(P ) < ∞. For A ∈ B(X) and P ∈ P(X), the compression AP :
R(P ) → R(P ) is defined by AP y = PAy, y ∈ R(P ), i.e. AP = PA|R(P ),
where A|R(P ) : R(P ) → X is the restriction of A. Clearly, R(P ) is a Banach
space and AP ∈ B(R(P )).

Zemánek [12] gave the proof of the fact that if P ∈ P(X), then A is
semi-Fredholm if and only if AP is semi-Fredholm and i(A) = i(AP ).

We prove the following result in that case.
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Theorem 2.2. Let A ∈ B(X), P ∈ P(X). Then

(2.2.1) A ∈ Φl(X) if and only if AP ∈ Φl(R(P )), and in that case i(AP ) =
i(A).

(2.2.2) A ∈ Φr(X) if and only if AP ∈ Φr(R(P )), and in that case i(AP ) =
i(A).

(2.2.3) If AP = PA, then A ∈ Bl(X) if and only if AP ∈ Bl(R(P )), and in
that case i(AP ) = i(A).

(2.2.4) If AP = PA, then A ∈ Br(X) if and only if AP ∈ Br(R(P )), and in
that case i(AP ) = i(A).

Proof. (2.2.3), (2.2.4): Suppose that P ∈ P(X), A ∈ B(X) and AP = PA.
Then X = R(P ) ⊕ N(P ) and subspaces R(P ) and N(P ) are invariant for
PAP ∈ B(X). The operator PAP has the following matrix form:

PAP =
[
AP 0
0 0

]
:
[
R(P )
N(P )

]
→

[
R(P )
N(P )

]
.

Since dim N(P ) < ∞, from (2.1.4) and (2.1.5) it follows that PAP is left
(right) Browder if and only if AP is left (right) Browder and i(PAP ) =
i(AP ) + i(0) = i(AP ). Since

A = PA + (I − P )A = PAP + PA(I − P ) + (I − P )A,

and since PA(I−P )+(I−P )A is a finite rank operator, which commutes with
PAP , by (1.1) and (1.2) it follows that PAP is a left (right) Browder operator
if and only if A is left (right) Browder, and in that case i(PAP ) = i(A).

(2.2.1) and (2.2.2) can be proved similarly, using (2.1.2) and (2.1.3). ¤

It is known [12] that

σ+
w (A) =

⋂
P∈P(X)

σa(AP ), σ−w (A) =
⋂

P∈P(X)

σd(AP ),

σ+
b (A) =

⋂
P∈P(X), AP=PA

σa(AP ), σ−b (A) =
⋂

P∈P(X), AP=PA

σd(AP ).

We prove analogous assertion for the left and right Browder and Weyl spectra.

Theorem 2.3. Let A ∈ B(X). Then

σleft
b (A) =

⋂

P∈P(X), AP=PA

σl(AP ), (2.1)

σright
b (A) =

⋂

P∈P(X), AP=PA

σr(AP ). (2.2)
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Proof. To prove the inclusion ”⊂” in (2.1) (or (2.2)), suppose that λ /∈ σl(AP )
(λ /∈ σr(AP )) for some P ∈ P(X) such that AP = PA. Then AP − λIP =
(A−λ)P is left (right) invertible, and so (A−λ)P is left (right) Browder. By
Theorem 2.2 it follows that A − λ is left (right) Browder, i.e. λ /∈ σleft

b (A)
(λ /∈ σright

b (A)).
To prove the converse inclusion, suppose that λ /∈ σleft

b (A) (λ /∈ σright
b (A)).

Then A−λ ∈ Bl(X) (A−λ ∈ Br(X)). By Theorem 1.2, X is a direct sum of
closed subspaces X1 and X2, which are A−λ-invariant. Consequently, they are
A-invariant, and they have the following properties: dim X1 < ∞ and A1−λ
is nilpotent on X1, where A1 = A|X1 : X1 → X1 and if A2 = A|X2 : X2 → X2,
then A2 − λ is left (right) invertible. Let P be the projection of X onto X2

along X1. Clearly, P ∈ P(X). Since the subspaces X1 and X2 are invariant
for A, we see that AP = PA and (A− λ)P = A2 − λ. Thus AP − λIP is left
(right) invertible and so λ /∈ σl(AP ) (λ /∈ σr(AP )). ¤

Combining (2.2.1) and (2.2.2) with the proof of Theorem 2 in [12] we
get the following theorem.

Theorem 2.4. Let A ∈ B(X). Then

σleft
w (A) =

⋂

P∈P(X)

σl(AP ), (2.3)

σright
w (A) =

⋂

P∈P(X)

σr(AP ). (2.4)

Proof. To prove the inclusion ”⊂” in (2.3) (or (2.4)), suppose that λ /∈ σl(AP )
(λ /∈ σr(AP )) for some P ∈ P(X), then AP − λIP = (A− λ)P is left (right)
invertible, and so (A − λ)P is left (right) Weyl. By (2.2.1) (or (2.2.2)) it
follows that A− λ is left (right) Weyl, i.e. λ /∈ σleft

w (A) (λ /∈ σright
w (A)).

To prove the converse in (2.3), suppose that λ /∈ σleft
w (A). Then A−λ ∈

Φl(X) and i(A−λ) ≤ 0. Since α(A−λ) ≤ β(A−λ), there exists a subspace V
such that dim V = dim N(A−λ) < ∞ and V ∩R(A−λ) = {0}. There exists a
joint closed complement W of V and N(A−λ), that is X = V ⊕W = N(A−
λ)⊕W . Let P be the projection such that R(P ) = W and N(P ) = V . Then
P ∈ P(X) and we show that (A−λ)P is left invertible. From A−λ ∈ Φl(X) it
follows that (A−λ)P is a left Fredholm operator on R(P ), by (2.2.1). To prove
that (A − λ)P is injective, suppose that w ∈ W and (A − λ)P w = 0. Then
P (A−λ)w = 0 and hence (A−λ)w ∈ N(P )∩R(A−λ) = V ∩R(A−λ) = {0},
which implies w ∈ W ∩ N(A − λ) = {0}. Therefore, (A − λ)P is injective.
This proves that (A− λ)P is left invertible, and hence λ /∈ σl(AP ).

To prove the converse in (2.4), suppose that λ /∈ σright
w (A). Then A−λ ∈

Φr(X) and i(A−λ) ≥ 0. Hence α(A−λ) ≥ β(A−λ) and β(A−λ) < ∞. Let
M be a subspace of N(A−λ) such that dim M = codim R(A−λ) < ∞. There
exists a closed subspace V of X such that X = M ⊕ V . Since codim V =
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codim R(A−λ) < ∞, there exists a joint complement W of V and R(A−λ),
that is

X = W ⊕ V = W ⊕R(A− λ). (2.5)
Let P be the projection such that R(P ) = V and N(P ) = W , clearly, P ∈
P(X). Since X = M ⊕ V and M ⊂ N(A − λ), we see that (A − λ)V =
(A − λ)X, so R((A − λ)P ) = P ((A − λ)V ) = P (R(A − λ)). From (2.5) we
get P (R(A−λ)) = V . Therefore, R((A−λ)P ) = V , i.e. (A−λ)P is onto. By
(2.2.2) it follows that (A − λ)P is right Fredholm, and so (A − λ)P is right
invertible. Hence λ /∈ σr(AP ). ¤

The following example shows that in general σleft
w (A) 6= σleft

b (A) and
σright

w (A) 6= σright
b (A). This example was used in [9] and [7].

Example. Let H be a separable Hilbert space, let V be the right shift on H

and let N ∈ B(H) be quasinilpotent. If A = V ⊕ V ∗ ⊕ N , then σleft
b (A) =

σright
b (A) = D and σleft

e (A) = σright
e (A) = σleft

w (A) = σright
w (A) = ∂D∪{0},

where D is the closed unit ball.

Proof. Since σb(A) = D [9] and σ+
b (A) = σ−b (A) = D [7], from σ+

b (A) ⊂
σleft

b (A) ⊂ σb(A) and σ−b (A) ⊂ σright
b (A) ⊂ σb(A) we get σleft

b (A) =
σright

b (A) = D.
From σw(A) = ∂D ∪ {0} [9], ∂σw(A) ⊂ σ+

e (A) ⊂ σe(A) ⊂ σw(A) and
∂σw(A) ⊂ σ−e (A) ⊂ σw(A) we obtain σ+

e (A) = σ−e (A) = σe(A) = ∂D ∪ {0}.
Since σ+

e (A) ⊂ σleft
e (A) ⊂ σe(A) and σ−e (A) ⊂ σright

e (A) ⊂ σe(A), it follows
that σleft

e (A) = σright
e (A) = ∂D ∪ {0}. As σleft

e (A) ⊂ σleft
w (A) ⊂ σw(A) and

σright
e (A) ⊂ σright

w (A) ⊂ σw(A), we get σleft
w (A) = σright

w (A) = ∂D∪{0}. ¤
Recall that for A, B ∈ B(X) the following hold:
If A, B ∈ Φl(X) (Φr(X)), then BA ∈ Φl(X) (Φr(X));
If BA ∈ Φl(X), then A ∈ Φl(X); If BA ∈ Φr(X), then B ∈ Φr(X).

Also recall that for A, B ∈ B(X) it holds [4] (Theorem 7.9.2):
If AB = BA, then A, B ∈ B+(X) (B−(X)) if and only if AB ∈ B+(X)

(B−(X)).
Now it is easy to see that the next statements hold.

Lemma 2.5. Let A, B ∈ B(X) and AB = BA. Then
(2.5.1) A, B ∈ Bl(X) ⇐⇒ AB ∈ Bl(X),
(2.5.2) A, B ∈ Br(X) ⇐⇒ AB ∈ Br(X).

Theorem 2.6. Let A ∈ B(X) and let f be an analytic function defined in a
neighborhood of σ(A). Then

f(σleft
b (A)) = σleft

b (f(A)),

f(σright
b (A)) = σright

b (f(A)).
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Proof. Follows from Lemma 2.5, [6] (Chapter I, Theorem 6.4 and Theorem
6.8), (2.1.4), (2.1.5) and the fact that the left (right) Browder spectrum of
any operator is non-empty set. ¤

Let us remark that previous theorem can be proved also in the following
way: for A ∈ B(X), σleft

b (A) = σleft
e (A) ∪ σ+

b (A) and it is well-known that
f(σleft

e (A)) = σleft
e (f(A)) [3] and f(σ+

b (A)) = σ+
b (f(A)) [7] (Theorem 3.4)

for every analytic function f defined in a neighborhood of σ(A). Thus,

f(σleft
b (A)) = f(σleft

e (A) ∪ σ+
b (A)) = f(σleft

e (A)) ∪ f(σ+
b (A))

= σleft
e (f(A)) ∪ σ+

b (f(A)) = σleft
b (f(A)).

Similarly for the right Browder spectrum.

Let (Gn) be a sequence of compact subsets of C. The limit superior,
lim sup Gn, is the set of all λ in C such that every neighborhood of λ intersects
infinitely many Gn.

It is known that B+(X) and B−(X) are open subsets in B(X) [5] (Satz
4). Since the sets Φl(X) and Φr(X) are open, we conclude that Bl(X) and
Br(X) are open subsets in B(X) and consequently, for A ∈ B(X) the map-
ping A 7→ σleft

b (A) is upper semi-continuous, i.e. if An ∈ B(X) and An → A,
then lim sup σleft

b (An) ⊂ σleft
b (A). Analogously, the mapping A 7→ σright

b (A)
is upper semi-continuous.

If X and Y are infinite dimensional Banach spaces, A ∈ B(X), B ∈
B(Y ) and C ∈ B(Y, X), we denote

MC =
[
A C
0 B

]
∈ B(X ⊕ Y ).

Theorem 2.7. For each j ∈ {e, w, b} and ∗ ∈ {+,−, left, right} there is
inclusion

σ∗j (MC) ⊂ σ∗j (A) ∪ σ∗j (B).
Particulary, if A and B are left (resp. right, upper, lower) Browder (Weyl),
then MC is left (resp. right, upper, lower) Browder (Weyl).

Proof. Let M =
[
A 0
0 B

]
. By Lemma 2.1 it follows that σ∗j (M) = σ∗j (A) ∪

σ∗j (B). Observe that
[
I 0
0 kI

] [
A C
0 B

] [
I 0
0 1

k I

]
=

[
A 1

kC
0 B

]
= Mk

C → M as k →∞.

Since Mk
C and MC are similar, it follows that σ∗j (Mk

C) = σ∗j (MC). By openess
of all the relevant semigroups the mappings σ∗j are each upper semicontinu-
ous: thus indeed

σ∗j (MC) = lim sup σ∗j (Mk
C) ⊂ σ∗j (A) ∪ σ∗j (B).

¤
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3. Geometric characteristics

For A ∈ B(X), the injectivity radius of A, denoted by sinj(A), is defined as
follows:

sinj(A) = inf{|λ| : λ ∈ σa(A)}
= max{ε ≥ 0 : |λ| < ε =⇒ A− λ is bounded below}.

The surjectivity radius of the operator A, denoted by ssur(A), is defined
as follows:

ssur(A) = inf{|λ| : λ ∈ σd(A)}
= max{ε ≥ 0 : |λ| < ε =⇒ A− λ is onto}.

The semi-Fredholm radius of A is

s(A) = inf{|λ| : A− λ is not semi− Fredholm}
= max{ε ≥ 0 : |λ| < ε =⇒ A− λ is semi− Fredholm}.

Zemánek [11] proved the following results: If A ∈ B(X) is bounded

below, then

s(A) = sup
F∈F (X)

sinj(A + F ).

If A ∈ B(X) is surjective, then

s(A) = sup
F∈F (X)

ssur(A + F ).

For A ∈ B(X) we define the Gl-radius sl(A) and Gr-radius sr(A):

sl(A) = inf{|λ| : λ ∈ σl(A)} = max{ε ≥ 0 : |λ| < ε =⇒ A− λ ∈ Gl(X)},
sr(A) = inf{|λ| : λ ∈ σr(A)} = max{ε ≥ 0 : |λ| < ε =⇒ A− λ ∈ Gr(X)}.

Analogously, we define left and right Fredholm, Weyl and Browder ra-
dius of A:

s∗ω(A) = dist(0, σ∗ω(A)),
where ω = e, w, b, and ∗ = left, right, and also upper and lower semi-

Browder radius of A:

s+
b (A) = dist(0, σ+

b (A)),

s−b (A) = dist(0, σ−b (A)).

Using Zemánek’s method of removing jumping points, we prove the
following result.
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Theorem 3.1. (3.1.1) Let A ∈ B(X) be a left invertible operator. Then

sleft
b (A) = sup

AF=FA,F∈F (X)

sl(A + F ) = sup
AE=EA,E∈R(X)

sl(A + E).

(3.1.2) Let A ∈ B(X) be a right invertible operator. Then

sright
b (A) = sup

AF=FA,F∈F (X)

sr(A + F ) = sup
AE=EA,E∈R(X)

sr(A + E).

Proof. (3.1.1): Let A ∈ Gl(X), and let D = {λ ∈ C : |λ| < sleft
b (A)}. Then

A − λ ∈ Φ+(X) for every λ ∈ D. According [2] (Theorem 3.2.20), α(A − λ)
is equal to 0 everywhere in the disk D, except possibly in the set which is at
most countable, and all points of this set are isolated. These points are called
jumping points. The set of all accumulation points of the set of all jumping
points can only be a subset of the boundary of D.

From (1.5) we obtain

sleft
b (A) = dist(0, σleft

b (A)) = dist(0, σleft
b (A + E)) ≥ sl(A + E)

for every E ∈ R(X) which commute with A. Hence,

sleft
b (A) ≥ sup

AE=EA,E∈R(X)

sl(A + E) ≥ sup
AF=FA,F∈F (X)

sl(A + F ). (3.1)

If A does not have any jumping point in D, then

sleft
b (A) = sl(A) ≤ sup

AF=FA,F∈F (X)

sl(A + F ). (3.2)

From (3.1) and (3.2) we get (3.1.1).
Suppose that A has the jumping points in D. Denote the jumping points

such that
|λ1| ≤ |λ2| ≤ . . . |λn| ≤ · · · < sleft

b (A).

Therefore, sl(A) = |λ1|.
Since A − λ1 ∈ Bl(X), from [6] (Theorem 20.10) it follows that X is

a direct sum of closed subspaces X1 and X2 in X, which are invariant for
A−λ1, i.e. they are invariant for A, dim X1 < ∞, A−λ1 is nilpotent on X1,
and for the reduction A2 = A|X2 : X2 → X2 we have A2 − λ1 is injective.

Let µ ∈ C such that |µ| > ‖A‖ + sleft
b (A) and F = µP , where P is

the projection from X onto X1 along X2. Let λ ∈ D. Then ‖A − λ‖ ≤
‖A‖+ sleft

b (A) < |µ|, so A−λ+µ is invertible. Hence the reduction (A+µ−
λ)|X1 = (A + F − λ)|X1 : X1 → X1 is invertible on X1 and N(A + F − λ) =
N((A + F − λ)|X1) ⊕ N((A + F − λ)|X2) = {0} ⊕ N((A2 − λ)|X2) = {0},
for all λ ∈ D\{λ2, . . . , λn, . . . }. For all λ ∈ D it holds A − λ ∈ Bl(X). Since
F ∈ F (X) and AF = FA, by (1.1) it follows that A + F − λ ∈ Bl(X).
Therefore, A + F − λ is left invertible for all λ ∈ D\{λ2, . . . , λn, . . . }.

Let ε > 0. Then there exist only finitely many jumping points λi such
that |λi| < sleft

b (A) − ε. Therefore, applying the previous method finitely
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many times, we obtain the operator F1 ∈ F (X) such that A + F1 − λ is left
invertible for |λ| < sleft

b (A)− ε, i.e.

sl(A + F1) ≥ sleft
b (A)− ε. (3.3)

From (3.3) and (3.1) we get (3.1.1).
The statement (3.1.2) can be proved similarly. ¤

Theorem 3.2. Let A ∈ B(X).

(3.2.1) If A is bounded below, then

s+
b (A) = sup

AF=FA,F∈F (X)

sinj(A + F ) = sup
AE=EA,E∈R(X)

sinj(A + E).

(3.2.2) If A is surjective, then

s−b (A) = sup
AF=FA,F∈F (X)

ssur(A + F ) = sup
AE=EA,E∈R(X)

ssur(A + E).

Proof. Analogously to Theorem 3.1, using [8] (Theorem 7). ¤

Theorem 3.3. Let J(X) be any non zero ideal of Riesz operators.

(3.3.1) If A ∈ B(X) is left invertible, then

sleft
w (A) = sleft

e (A) = sup
F∈F (X)

sl(A + F ) = sup
E∈J(X)

sl(A + E)

= sup
E∈R(X),AE−EA∈P (Φ(X))

sl(A + E).

(3.3.2) If A ∈ B(X) is right invertible, then

sright
w (A) = sright

e (A) = sup
F∈F (X)

sr(A + F ) = sup
E∈J(X)

sr(A + E)

= sup
E∈R(X),AE−EA∈P (Φ(X))

sr(A + E).

Proof. The first equality in (3.3.1) and (3.3.2) follows from the continuity of
the index. The other equalities in (3.3.1) and (3.3.2) follow from (1.3), (1.4),
[6] (Theorem 16.21 and Corollary 12.4), and [1] (Chapter 5.2, Theorem 7),
analogously to the proof of Theorem 3.1. ¤

For A ∈ B(X), set

mleft
e (A) = dist(A,B(X)\Φl(X)),

mright
e (A) = dist(A,B(X)\Φr(X)).

We extend some results from [14] to left and right Fredholm operators.
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Theorem 3.4. Let A, B ∈ B(X). Then:
(3.4.1) mleft

e (A) > 0 ⇐⇒ A ∈ Φl(X),
(3.4.2) mleft

e (A + B) = mleft
e (A) for each A ∈ B(X) ⇐⇒ B ∈ P (Φ(X)),

(3.4.3) mleft
e (A + B) ≤ mleft

e (A) + ‖B‖,
(3.4.4) mleft

e (A + B) ≤ mleft
e (A) + ‖B‖PΦ.

(3.4.5) If ‖B‖PΦ < mleft
e (A), then A, A + B ∈ Φl(X) and i(A) = i(A + B).

(3.4.6) If ‖A‖PΦ < mleft
e (I), then I −A ∈ Φ(X) and i(I −A) = 0.

(3.4.7) If ‖An‖PΦ < mleft
e (I) for some n > 1, then I − A ∈ Φ(X) and

i(I −A) = 0.
(3.4.8) If AB −BA ∈ P (Φ(X)) and

re(B) < lim
n→∞

(mleft
e (An))

1
n ,

then A, A + B ∈ Φl(X) and i(A + B) = i(A).

(3.4.9) sleft
e (A) ≥ lim

n→∞
(mleft

e (An))
1
n .

Proof. (3.4.1): Clearly, since Φl(X) is open.
(3.4.2): (=⇒) Suppose that mleft

e (A+B) = mleft
e (A) for each A ∈ B(X).

If A ∈ Φl(X), then mleft
e (A) > 0 by (3.4.1), and so mleft

e (A + B) > 0. It
follows that A + B ∈ Φl(X). Therefore, B ∈ P (Φl(X)) = P (Φ(X)).

(⇐=) Let B ∈ P (Φ(X)) = P (Φl(X)). Then −B ∈ P (Φl(X)) and we
have that C ∈ Φl(X) if and only if C + B ∈ Φl(X). Thus, C ∈ B(X)\Φl(X)
if and only if C ∈ −B + B(X)\Φl(X). Consequently,

mleft
e (A) = inf{‖A− C‖ : C ∈ B(X)\Φl(X)}

= inf{‖A− (−B + C1‖ : C1 ∈ B(X)\Φl(X)}
= inf{‖(A + B)− C1‖ : C1 ∈ B(X)\Φl(X)}
= mleft

e (A + B).

(3.4.3): Clearly.
(3.4.4): Let P ∈ P (Φ(X)). According to (3.4.2) and (3.4.3) we have

mleft
e (A + B) = mleft

e (A + B + P ) ≤ mleft
e (A) + ‖B + P‖,

which implies mleft
e (A + B) ≤ mleft

e (A) + inf{‖B + P‖ : P ∈ P (Φ(X))} =
mleft

e (A) + ‖B‖PΦ.
(3.4.5): Suppose that ‖B‖PΦ < mleft

e (A) and let λ ∈ [0, 1]. From (3.4.4)
it follows that

mleft
e (A) = mleft

e (A + λB + (−λB)) ≤ mleft
e (A + λB) + ‖ − λB‖PΦ

= mleft
e (A + λB) + λ‖B‖PΦ < mleft

e (A + λB) + mleft
e (A),

and so mleft
e (A + λB) > 0. It follows that A + λB ∈ Φl(X), and hence

A, A+B ∈ Φl(X). Since the index is locally constant, we obtain i(A+B) =
i(A).

(3.4.6): Let ‖A‖PΦ < mleft
e (I). From (3.4.5) we get I −A ∈ Φl(X) and

i(I −A) = i(I) = 0. Thus, I −A ∈ Φ(X).
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(3.4.7): Let ‖An‖PΦ < mleft
e (I) for some n > 1 and let λ ∈ [0, 1]. Then

‖(λA)n‖PΦ = λn‖An‖PΦ ≤ ‖An‖PΦ < mleft
e (I) and from (3.4.6) it follows

that I − (λA)n ∈ Φ(X). Since

I − (λA)n = (I − λA)(I + λA + ... + λn−1An−1)
= (I + λA + ... + λn−1An−1)(I − λA),

we conclude I − λA ∈ Φ(X). Consequently, I − A ∈ Φ(X) and i(I − A) =
i(I) = 0.

(3.4.8): Suppose that AB−BA ∈ P (Φ(X)) and re(B) < lim
n→∞

(mleft
e (An))

1
n .

Let ε be such that re(B) < ε < lim
n→∞

(mleft
e (An))

1
n . Since re(B) = lim

n→∞
(‖Bn‖PΦ)

1
n

it follows that lim
n→∞

(‖Bn‖PΦ)
1
n < ε < lim

n→∞
(mleft

e (An))
1
n . Thus there is an

odd n ∈ N such that (‖Bn‖PΦ)
1
n < ε < (mleft

e (An))
1
n , and so ‖Bn‖PΦ <

mleft
e (An). By (3.4.5) we get An+Bn ∈ Φl(X). Since P (Φ(X)) two-sided ideal

of B(X), from AB−BA ∈ P (Φ(X)) it follows that An +Bn = C(A+B)+P
where C = An−1−BAn−2+ ... +Bn−1 and P ∈ P (Φ(X)). Thus, C(A+B) ∈
Φl(X) and so A+B ∈ Φl(X). Let us remark that the proof above shows that
A + λB ∈ Φl(X) for 0 ≤ λ ≤ 1, which implies that i(A + B) = i(A).

(3.4.9): Suppose that lim
n→∞

(mleft
e (An))

1
n >0. For λ∈C, |λ|< lim

n→∞
(mleft

e (An))
1
n

and B = λI it follows that re(B) = |λ| < lim
n→∞

(mleft
e (An))

1
n . Since AB =

BA, from (3.4.8) we get λI−A ∈ Φl(X). Hence sleft
e (A) ≥ lim

n→∞
(mleft

e (An))
1
n .
¤

The next theorem is a dual part of Theorem 3.4.

Theorem 3.5. Let A, B ∈ B(X). Then

(3.5.1) mright
e (A) > 0 ⇐⇒ A ∈ Φr(X),

(3.5.2) mright
e (A + B) = mright

e (A) for each A ∈ B(X) ⇐⇒ B ∈ P (Φ(X)),

(3.5.3) mright
e (A + B) ≤ mright

e (A) + ‖B‖,
(3.5.4) mright

e (A + B) ≤ mright
e (A) + ‖B‖PΦ.

(3.5.5) If ‖B‖PΦ < mright
e (A), then A, A+B ∈ Φr(X) and i(A) = i(A+B).

(3.5.6) If ‖A‖PΦ < mright
e (I), then I −A ∈ Φ(X) and i(I −A) = 0.

(3.5.7) If ‖An‖PΦ < mright
e (I) for some n > 1, then I − A ∈ Φ(X) and

i(I −A) = 0.

(3.5.8) If AB −BA ∈ P (Φ(X)) and

re(B) < lim
n→∞

(mright
e (An))

1
n ,

then A, A + B ∈ Φr(X) and i(A + B) = i(A).

(3.5.9) sright
e (A) ≥ lim

n→∞
(mright

e (An))
1
n .
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Theorem 3.6. Let A, B ∈ B(X).
(3.6.1) If

‖A−B‖PΦ < mleft
e (A) + mleft

e (B),
then A, B ∈ Φl(X) and i(A) = i(B).
(3.6.2) If

‖A−B‖PΦ < mright
e (A) + mright

e (B),
then A, B ∈ Φr(X) and i(A) = i(B).

Proof. (3.6.1): Suppose that ‖A−B‖PΦ < mleft
e (A)+mleft

e (B). Then mleft
e (A)+

mleft
e (B) > 0, and so mleft

e (A) and mleft
e (B) can not be at the same time

equal to zero. If one of them, say mleft
e (B), is equal to zero, then mleft

e (A) > 0.
Now from ‖A − B‖PΦ < mleft

e (A), by (3.4.5) we conclude B ∈ Φl(X), that
is mleft

e (B) > 0, which is a contradiction. Therefore, mleft
e (A) > 0 and

mleft
e (B) > 0, and so A, B ∈ Φl(X). There exists P ∈ P (Φ(X))) such that

‖A−B − P‖ < mleft
e (A) + mleft

e (B).

Let C = B + P . From (3.4.2) it follows that mleft
e (C) = mleft

e (B), and so we
get

‖A− C‖ < mleft
e (A) + mleft

e (C).
Therefore, the open ball centered at A with radii mleft

e (A) and the open
ball centered at C with radii mleft

e (C) have a non-empty intersection. Hence
their union is linearly connected set contained in Φl(X) ⊂ Φ+(X). Since the
index is locally constant, it follows that i(A) = i(C). For λ ∈ [0, 1] we have
λP ∈ P (Φ(X)), which implies B + λP ∈ Φl(X). Again from local constancy
of the index we conclude i(B) = i(B + P ). Therefore i(A) = i(B). ¤

Let us remark that P (Wl(X)) = P (Φ(X)) and P (Wr(X)) = P (Φ(X))
and analogous assertions can be formulated for left and right Weyl operators
and the quantities:

mleft
w (A) = dist(A, B(X)\Wl(X)),

mright
w (A) = dist(A,B(X)\Wr(X)), A ∈ B(X).

Notice that if mleft
w (A) > 0 (mright

w (A) > 0), i.e. if A ∈ Wl(X) (A ∈ Wr(X)),
then because of local constancy of the index it holds mleft

w (A) = mleft
e (A)

(mright
w (A) = mright

e (A)).

Moreover, the following more general assertions can be proved analo-
gously.

Theorem 3.7. Let U be an open subset of Φ±(X) such that µU ⊂ U for every
µ 6= 0. For A ∈ B(X), set

mU (A) = dist(A,B(X)\U),
‖A‖P (U) = inf{‖A + P‖ : P ∈ P (U)},

where P (U) is the perturbation class of U .
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Then, for A, B ∈ B(X), the following hold:
(3.7.1) mU (A) > 0 ⇐⇒ A ∈ U ;
(3.7.2) mU (A + B) = mU (A) for every A ∈ B(X) ⇐⇒ B ∈ P (U);
(3.7.3) mU (A + B) ≤ mU (A) + ‖B‖;
(3.7.4) mU (A + B) ≤ mU (A) + ‖B‖P (U);
(3.7.5) If ‖B‖P (U) < mU (A), then A, A + B ∈ U and i(A) = i(A + B).
(3.7.6) If ‖A‖P (U) < mU (I), then I −A ∈ Φ(X) and i(I −A) = 0.
(3.7.7) If ‖An‖P (U) < mU (I) for n > 1, then I−A ∈ Φ(X) and i(I−A) = 0.
(3.7.8) If

‖A−B‖P (U) < mU (A) + mU (B),
then A, B ∈ U and i(A) = i(B).

Theorem 3.8. Let U be an open subset of Φ±(X) such that
(i) µU ⊂ U for every µ 6= 0,
(ii) I ∈ U ,
(iii) K(X) ⊂ P (U).

Then

re(A) = lim
n→∞

(‖An‖P (U))
1
n . (3.4)

Proof. Let λ ∈ C and |λ| > (mU (I))−
1
n (‖An‖P (U))

1
n for some n ∈ N. Then

mU (I) > ‖(A/λ)n‖P (U) and by (3.7.7) it follows that λI −A ∈ Φ(X). There-
fore re(A) ≤ (mU (I))−

1
n (‖An‖P (U))

1
n for all n ∈ N. Notice that from I ∈ U

it follows that mU (I) > 0. Therefore,

re(A) ≤ lim
n→∞

(mU (I))−
1
n lim

n→∞
(‖An‖P (U)))

1
n = lim

n→∞
(‖An‖P (U))

1
n .

Since K(X) ⊂ P (U), it follows that ‖An‖P (U) ≤ ‖π(An)‖ for every n ∈ N.
Thus

re(A) ≤ lim
n→∞

(‖An‖P (U))
1
n ≤ lim

n→∞
(‖An‖P (U))

1
n ≤ lim

n→∞
(‖π(An)‖) 1

n = re(A),

which implies (3.4). ¤

Theorem 3.9. Let U be an open subset of Φ±(X) such that
(i) µU ⊂ U for every µ 6= 0,
(ii) I ∈ U ,
(iii) K(X) ⊂ P (U),
(iv) GU ⊂ U and UG ⊂ U ,
(v) (∀A,B ∈ B(X))(AB ∈ U =⇒ A ∈ U) or (∀A,B ∈ B(X))(AB ∈ U =⇒
B ∈ U).

Then, for A,B ∈ B(X), the following hold:
(3.9.1) If AB −BA ∈ P (U) and

re(B) < lim
n→∞

(mU (An))
1
n ,
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then A, A + B ∈ U and i(A + B) = i(A).

(3.9.2) sU (A) ≥ lim
n→∞

(mU (An))
1
n , where sU (A) = max{ε ≥ 0 : |λ| < ε ⇒

A− λ ∈ U}.

Proof. Follows from Theorem 3.8 and (3.7.5). ¤

For A ∈ B(X), let

‖A‖PΦ+ = inf{‖A + P‖ : P ∈ P (Φ+(X))},
‖A‖PΦ− = inf{‖A + P‖ : P ∈ P (Φ−(X))},

and

m+
e (A) = dist(A,B(X)\Φ+(X)),

m−
e (A) = dist(A,B(X)\Φ−(X)).

If we take Φ+(X) or Φ−(X) for U in (3.7.8), we get:

Corollary 3.10. Let A, B ∈ B(X). If

‖A−B‖PΦ+ < m+
e (A) + m+

e (B),

or
‖A−B‖PΦ− < m−

e (A) + m−
e (B),

then i(A) = i(B).

From Corollary 3.10 we obtain Theorem 4 in [10]:

Let T, S ∈ B(X). If ‖π(T − S)‖ < m+
e (T ) + m+

e (S) or ‖π(T − S)‖ <
m−

e (T ) + m−
e (S), then i(T ) = i(S).
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