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Abstract

This paper proposes a left ventricle tridimensional reconstruction method from two
orthogonal X-rays angiographic projections. The algorithm works under the assumption of
having two segmented parallel projections and an homogeneous mixture of blood and contrast
agent, in order to develop a binary reconstruction based on a Markov Random Field model
and Simulated Annealing. The 3D ventricular object is considered as a stacked bidimensional
slice set and each slice is reconstructed from the two one-dimensional profiles corresponding
to a pair of rows obtained from the segmented projections.

Each bidimensional slice is described in a polar coordinate reference system as a
function n = R(& ,•) that describes each point in the slice contour. This discrete one-
dimensional function describing the two-dimensional slice is modeled as a non-causal Markov
Random Field, where the conditional probability of one point given the rest of points is
equivalent to the conditional probability of the same point given the points belonging to a
neighborhood. The slice joint probability distribution is deduced by considering the
equivalence between the Gibbs and Markov Random Fields. This joint probability is defined
by an energy function including the local potential interaction between the sites included in a
neighborhood. The energy function depends on the projections errors of the reconstructed
slice, its connexity and the 3D spatial regularity.

The proposed algorithm starts with a provided initial approximate reconstruction that
is then appropriately deformed to obtain the most probable slice form. Such deformation
process is performed by using the probabilistic Gibbs model and the Simulated Annealing in
order to minimize the energy function.

Performance of the reconstruction method was evaluated with preprocessed
ventricular angiographic images and a 3D binary database. The results are promising as the
reconstruction error is less than 7%.
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1 Introduction

The ventricular function is defined by a parameter set describing the
mechanical and electrical activity of this cavity. This parameter set is an
important attribute necessary for determining the right therapeutic procedure
used in patients with cardiac diseases. Many of those parameters, as the
ventricular volume, the ejection fraction and the ventricular synergy, are
estimated by the assumption of an elliptical tridimensional model for the left

ventricle shape as is presented in Yang et alA This assumption can lead to
important estimation errors. The tridimensional reconstruction of the
ventricular shape, has as a goal to remove this restriction. In this way, it is
possible to improve the assessment of the ventricular function.

The proposed reconstruction algorithm starts with the provided
information from two preprocessed angiographic views, acquired
simultaneously according to two mutually orthogonal directions ( for example
the conventional LAO 60° and RAO 30° views). For simplicity it is considered
that the contrast agent is homogeneously mixed with the blood in the
ventricular cavity, in this way, the binary reconstruction is performed instead
of a gray level reconstruction. It is also assumed that the angiographic images
were acquired according to a parallel projection model. Consequently, it is
possible to consider the 3D object as a stack of 2D parallel slices in order to
decompose the original tridimensional reconstruction problem in a set of
bidimensional reconstruction problems, where each 2D slice is reconstructed
from its two unidimensional projection profiles taken from the angiographic
views. In the binary case, each slice is completely defined by its contour which
is a boundary separating the ventricular cavity from the background.

In general, the reconstruction problem from only the provided
information from two orthogonal projections is an ill defined inverse problem,
because it is not possible to assure the existence, uniqueness and stability of the
solution without including additional restrictions. Consequently, the solution

must be regularized as proposed by Terzopouloŝ  based on a priori
information about the ventricular shape. The Markov Random Field
description, is a probabilistic model that allows to consider this information for

solving the reconstruction problem as is shown in Toro et alA

2 Method

The proposed reconstruction method works under the assumption that the
acquired angiograms contain only information about the left ventricle. This is
possible by performing the logarithmic subtraction and the segmentation of the
angiographic image. The intensity gray level of each pixel in the input images
is related to the depth information in the left ventricle. This information is
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grouped into a matrix form for each image and they are denoted as Iy and /*

of size NiXNi and A^xA^ respectively.

2.1 The left ventricle model

Based on the a priori knowledge about the left ventricular shape as was

reported in Chen et alA it can be considered as a closed set in R* , bounded
and with simple connexity, that can be expressed as:

0=0 u30 (1)

•
where O is a connected set, open and bounded representing the interior region
of the object and 30 is the contour boundary. Under this 3D object
tridimensional representation, each slice can be defined as the intersection of

the object with an horizontal plane H^ at height ra, (l < m< N$). Each slice

can be expressed as:

0m = 0n#m = 0u30m (2)

in particular, the planar contour 3 0^ is considered as continue, except for a
finite number of points. The tridimensional object is decomposed in a finite set

of slices Om with me [/%*»,,, %%*], each one associated to a pair of 1-D
projection profiles denoted as f y(k) and f̂ (l) corresponding to the gray level

information of two rows taken from the given angiographic images.
The slice contour is represented in a polar coordinate system with

origin Om- Each contour point is represented by a scalar function n = R(& ,-) ,
where r, represents the distance from the given contour point to the origin Om
and 0 1 is the angle in the polar coordinate representation. The slice contour
can be represented as a set of points:

R = ]r =/?(9,)/ = l,2,...,M and 6, = -——r (3)

This slice contour representation is convenient as the number of
possible solutions is restricted to the contours with the simple connexity
propriety. The reconstruction slice represented by the binary matrix Xof size
NiXN], is obtained by polygon filling of the given contour points in (3).

The considered problem is how to reconstruct the slice contour 3 Om
from the slice projection profiles f y(k) and /,(/) in such a way that the

binary reconstructed pattern X fulfill the given projections:
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\* _ f (j,\ZrfA*/ — J y\K)

*„ = ,
Jt=l

subject to the constraint:

^ 7) (5)

2.2 The Random Field Markov Model

Each slice contour R is modeled as a one dimensional Random Field

R = {RI ,#2 ,.--,#M} associated to a set L = {/1 1 < i < M} including M sites,
where each random variable /?/ takes a value r, e A and / e L, where A is a
set including all possible values for the random variable. The set R is defined
as a Markov Random Field in relation to a neighborhood system:

TI={H,. | Vie L, r|,cL} (6)

where T| . is a neighborhood of site / such that / ̂ TJ . and if j e T| . then
/erj^., for any /e L. As a Random Markov Field the local and global

conditional probabilities are related as:

ri_{,})=f(r, (7)

where r̂  are the values for the neighbors of site i and rz,_{,} are the set of

values in the sites included in L - {/}. This Markovian property of the Random
Field allows to model its local and global characteristics, notwithstanding,
there is not a feasible direct method for estimating the joint probability
distribution of the slice contour from the associated conditional probability
distribution. The estimation in this case is made by using the hammersley-

Clifford theorem, in Besag^ that states the equivalence between a Random
Markov Field and a Random Gibbs Field in relation to a neighborhood system
r|, if and only if the joint probability distribution is of the form:

P(r) = ±e*™ (8)

where Z is a normalization constant that allows P(r) to fulfill the conditions
to be considered a probability distribution function, r is a realization of the
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Random Field R and E(r) is the energy function that can be expressed as

E(r) = aU*(r), where the vector U(r) = [Ui(r) [/zW [/sW] includes

three potential functions and a is a vector including three weighting

parameters a = [a i a 2 a 3] . The parameter T is usually known as

temperature and it is used in the optimization algorithm.
The energy function is constructed from some potential functions

derived from the local contour characteristics, and it is defined as:

f/,(r)=2X(r) s = l,2,3 (9)
ceC

where c is a subset of L known as a clique, that includes only one site or any
other set of pixels that satisfy the following condition, / ̂  7, i e. c and j e c
implies that i e r| . and C is the collection of all possible cliques in the

neighborhood.

2.3 The energy function

The energy function was designed in such a way that the solution for the slice
contour provides the minimum energy value in order to maximize the joint
probability distribution giving by equation (8). It was chosen an energy
component that measures the degree of match between the given projections
and the current slice reconstruction projections. If the given projections are

fy(k), /,(/) and the current slice projections are denoted as f̂ (k) and /£(/)

the first energy component V\ for the slice m is estimated as:

where the profile /*(/) takes values greater than zero in the range
Lm </</«« and //&) in the range k^n <k<k^ consequently A& , A/ are

the number of non zero samples in each profile, that are used to weight the
square error in order to keep both terms equally important during the
optimization process.

The second energy component is a regularization term that constraints
the number of plausible solutions to the smooth slice contours. This component
takes into account the fact that the ventricular contour is with high probability
a smooth contour. In our case, we have used the following second order
derivative approximation :

(11)
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This potential energy term is defined on a second order neighborhood

TJ = {ii. = {i-2,i-l,i + l,i' + 2}| i = l,2,...,Af} where only the sites included

in the clique c\ = {*' ~~ UV +1} are used.
The third component considers the regularity constraint of spatial

smoothing between adjacent slices. This smoothing constraint is very useful
specially when the slice contour has only slight modifications from one slide to
the other. This term is obtained as the difference between the current contour
and the previously reconstructed slice contour:

(12)

where rT is the current contour radial length and rT * is the contour radial
length of the previously reconstructed contour after translation to the current
origin Om-

2.4 Optimal solution search

The Simulated Annealing algorithm works on an iterative basis by searching
for the configuration that minimizes the energy function. The algorithm starts
with an approximate initial solution (usually an elliptical or approximate
reconstruction that considers the a priori knowledge about the slice ) that is
then deformed or modified. The new possible configuration candidate r« is
generated by slight modifications of the current configuration r«, those
modifications are performed by a random visitation procedure, where each
radial element is modified in a random and without replacement basis. For
each radial element visited, the new radial value r™ is generated according to
the following relation:

r,, = r, + rr (13)

where rr is a random number picked from a uniform distribution in the real

interval [- ru/2, ru/2\ and ru is a threshold defining the radial variation range

that is estimated as:

rP* ^,ru = l + —7- with 7 = -^— and (3 =0.95 (14)
10 M

The modification of only one radial element gives rises to a new
possible configuration. This configuration is chosen according to the
probability relation P(rJ/P(rJ, in this way the normalization constant Z
does not intervene in the process. If P(rJ > f(rj the new configuration is
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unconditionally accepted, otherwise it is accepted if P(rJ/P(rJ is greater
than a random number p^ generated in the range (0,1) according to a uniform

probability distribution. This procedure allows to attain a global minimum for
the objective function without getting stuck on any local minimum.

The performance of the Simulated Annealing is affected by the initial
choice of the temperature parameter and also by the decreasing law of this
parameter. If the initial temperature value is high, the optimization algorithm
would take a great number of iterations in order to reach the optimal solution.
Otherwise if this value is very low, the final solution would show an
important error level. The initial temperature is estimated according to the

heuristic method proposed by Jhonson et alA The temperature decreasing

ratio was chosen as 7t = g*7o, where g is a cooling constant that is
heuristically fixed as 0.95.

The optimal solution search is performed by contour scanning cycles at
each temperature value &, where all M sites of the contour are visited and
modified. The optimal searching procedure is stopped when the number of
accepted transitions is lower than 4% of M.

3 Results

In order to evaluate the reconstruction method, several tests were performed,
including the slice reconstruction without considering the adjacent slice
information. The method was also tested by reconstructing a known 3D binary
object, and by performing the reconstruction from two real angiographic views
appropriately preprocessed.

3.1 Isolated slice reconstruction

The slices to be reconstructed were taken from a 3D binary database, obtained
by segmentation and binarization of a tomographic scanning database of a dog
heart. The reconstruction was performed from the orthogonal projection
corresponding to the row and column addition of several slices of the binary
database. In this test, we use 60 radial elements for describing the contour. The
weighting parameters of the energy function components were taken as
oci = 100, (X2 = l and 0,3 = 0. The information of the adjacent slice was not
considered and the reconstruction method was started with an elliptical initial
approximation that has its mayor axis placed between the second and four
quadrant. The algorithm showed a good performance, with results that have a
form very close to the original one, as shown in figure 1. The reconstruction
errors are less than 6% and we can obtain error levels as low as 1.28% .
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3.2 Tridimensional Reconstruction

In this test, 60 radial elements were used for representing each slice contour.
The weighting parameters of the energy function were taken as oci = 100,
a 2 = 1 and a 3 = 0.95*, where the last parameter is gradually reduced at each
temperature state in order to allow for differences between the current slice
and the neighbor previously reconstructed slice. An elliptical approximation is
used to start the reconstruction method. This approximation has the mayor axis
in the second and fourth quadrant. In figure 2, it is shown the 3D binary
database and the reconstructed tridimensional object, visualized from the same
viewpoint. In this case the reconstruction error is 7.02%.

3.34% 2.31% 1.28% 2.12% 1.48% 6.23%

Figure 1: Obtained results for the isolated slice reconstruction. In the first row,
the original slices are shown. In the second and third row the reconstructed
slices are shown as well as the reconstruction error for each slice.

In figure 3a it is shown two angiographic views, RAO 30° and LAO
60° respectively, after logarithmic subtraction, median filtering, segmentation

and densitometric equalization as recommended by Prause & Onnasĥ . The
two angiographic views are used for performing the left ventricle 3D
reconstruction, using the same parameters that were used in the previous tests.
In this case, as the original tridimensional object is unknown, the performance
of the reconstruction method is estimated by comparison between the
projections of the reconstructed object and the original angiographic views.
The projections errors are 12.74% and 11.05%. These errors are the
consequence of several factors, including the presence of noise in the
angiographic images, the selection of a possible wrong orientation for the
initial approximate reconstruction and the limitation of the polar coordinate
representation for modeling complex slice forms that could be present in the
left ventricle. Even when this error is present, the reconstruction algorithm is
able to recover a tridimensional object shown on figure 3b, with a smooth
surface that matches the a priori medical knowledge about the real left
ventricle shape.
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(a)

(b)

Figure 2: Tridimensional reconstruction from two orthogonal projections of
a 3D binary database of a dog heart, a) Four views of the original database, b)
Four views of the tridimensional reconstructed object.

(a)

(b)

Figure 3: a) Left ventricle angiographic views RAO 30° and LAO 60°. b)
Several views of the tridimensional reconstructed object obtained from the two
real angiographic views shown in (a).

4 Conclusions

The probabilistic Markovian model for the slice contour allows the
reconstruction of the left ventricle tridimensional shape from the information
provided by two angiographic projections, taken according to mutually
orthogonal directions. The model allows to solve the ambiguity of the problem
by including a priori information in the form of constraints and any initial
approximate reconstruction.
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The Simulated Annealing algorithm allows to attain a useful global
minimum corresponding to the binary reconstruction, that minimizes the
projection error, and satisfies the rest of constraints.
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