
Leftist Grammars and the Chomsky Hierarchy

Tomasz Jurdziński and Krzysztof Loryś

Institute of Computer Science, WrocÃlaw University
Przesmyckiego 20, 51151 WrocÃlaw, Poland

Abstract. Leftist grammars can be characterized in terms of rules of
the form a → ba and cd → d, without distinction between terminals and
nonterminals. They were introduced by Motwani et. al. [9], where the
accessibility problem for some general protection system was related to
these grammars. This protection system was originally proposed in [3,
10] in the context of Java virtual worlds. Here, the accessibility problem
is formulated in the form “Can object p gain (illegal) access to object q
by a series of legal moves (as prescribed by the policy)?”. It was shown
[9] that the membership problem for leftist grammar is decidable what
implied the decidability of the accessibility problem for the appropriate
protection system.
We study relationships between language classes defined by various types
of leftist grammars and classes of the Chomsky hierarchy. We show that
general leftist grammars can recognize languages which are not context
free, answering in negative the question from [9]. Moreover, we study
some restricted variants of leftist grammars and relate them to regular,
deterministic context free and context free languages.
Topics: formal languages; accessibility problem in protection systems.

1 Introduction

Leftist grammars were introduced by Motwani et. al. [9] and related to the ac-
cessibility problem for some general protection system of computer systems. A
protection system is a set of policies that prescribes the ways in which objects
interact with each other. By objects we mean users, processes or other entities
and interactions can include access rights, information sharing privileges and so
on. The accessibility problem for the protection system is formulated in the form
“Can object p gain (illegal) access to object q by a series of legal moves (as pre-
scribed by the policy)?”. A formal treatment of accessibility was first presented
by Harrison, Ruzzo and Ullman [5] who showed that the accessibility problem
is undecidable for a general access-matrix model of object-resource interaction.
This result prompted a broad research on tradeoffs between expressibility and
verifiability in protection systems. The work on protection systems took place
mainly in the context of operating systems and currently, operating systems
have efficient protection mechanisms. However, these mechanisms often fail at
the scale necessary for today’s Internet [1].

The protection system related to leftist grammars was originally proposed
in [3, 10] in the context of Java virtual worlds. The model of this protection

2 Tomasz Jurdziński and Krzysztof Loryś

system strictly generalizes grammatical protection systems [2, 7] and the take
grant model [8], it is a special case of the general access-matrix model [5]. Its
advantage over the general access-matrix model is the fact that accessibility is
decidable for this model what was obtained by the reduction to the membership
problem of leftist grammars [9].

Formally, the protection system is defined here in the following way. Let
G = (V, E) be a directed graph, let t : V → T be a type function assigning
types to vertices. Then, let Ri, Re ⊆ T × T be two binary relations. There are
following operations on G:

– Insert(v, x) which inserts a new vertex x of any type and an edge (v, x).
– Give(a, b, c) which inserts an edge (b, c), provided (a, b), (a, c) ∈ E and

(t(b), t(c)) ∈ Ri.
– Get(a, b, c) which inserts an edge (a, c), provided (a, b), (b, c) ∈ E and

(t(b), t(c)) ∈ Re.

Now, we define the accessibility problem. Given the graph G, vertices p, q and
relations Ri, Re, a question is whether there exists a sequence of operations of
the above type such that there exists an edge (p, q) after applying this sequence
of operations to G. As shown in [9], the accessibility problem for the above set
of operations can be reduced to the accessibility problem for a model in which
the operations Insert and Give are combined into a new operation Insert(a, x, c)
which adds a vertex x and edges (a, x), (x, c), provided (t(x), t(c)) ∈ Ri and
a, c ∈ V .

Leftist grammars can be characterized in terms of rules of the form a → ba
and cd → d over the alphabet Σ (there is no distinction between terminals and
nonterminals). A symbol x ∈ Σ is called a final symbol and a word w ∈ Σ∗

belongs to the language defined by a grammar G iff there exists a derivation
which starts at wx and ends at x. Intuitively, the rules of type a → ba correspond
to the operation Insert, the rules of type cd → d correspond to the operation
Get, and a derivation of a leftist grammar correspond to a sequence of operations
Insert and Get applied to a (sub)graph which is a simple path.

As pointed out above, the membership problem for these grammars is decid-
able [9]. Moreover, the problem of emptiness of the intersection of the language
defined by a leftist grammar and a regular language is decidable. This result
implied decidability of the accessibility problem for the protection system from
[9]. However, no efficient algorithm for the membership problem of leftist gram-
mars is known. And, there are no nontrivial lower bounds for this problem. In
particular, a question if leftist grammars recognize only context-free languages
was addressed in [9]. The lack of efficient algorithms for general leftist grammars
motivates also exploration of some restricted variants of these grammars, what
was addressed by Motwani et al. [9].

From language theoretic point of view, leftist grammars do not even satisfy
restrictions of context-sensitivity, as they can have length-reducing rules and
length-increasing rules simultaneously. On the other hand, the productions of
theses grammars are severely restricted, so one could expect that their com-
plexity is restricted as well. As the leftist grammars are elegantly characterized

Leftist Grammars and the Chomsky Hierarchy 3

and seem to be very simple, the study of their expressiveness is motivated both
by their connections to the complexity of the accessibility problem and by it-
self. As pointed out in [9], slight generalizations of leftist grammars make the
membership problem undecidable, so studying their restricted variants is more
reasonable than the analysis of generalizations.

2 Our Results

We study relationships between language classes defined by various types of left-
ist grammars and classes of the Chomsky hierarchy. First, we propose a natural
classification according to the restrictions on so called delete graphs and insert
graphs. Here, the insert graph is induced by the rules of type a → ba. The set of
vertices of this graph corresponds to symbols of the alphabet Σ of the grammar
and each rule a → ba corresponds to an edge (a, b). Similarly, each rule cd → d
corresponds to an edge (d, c) in the delete graph. We show that general leftist
grammars with arbitrary insert graphs and arbitrary delete graphs can recognize
languages which are not context free, answering in negative the question from
[9]. Further, we show that each time an insert graph or a delete graph is acyclic,
a language defined by the grammar is included in CFL. More precisely, we relate
these restricted classes of grammars to the set of regular, deterministic context
free and context free languages. Our results are summarized in the following
table, where FIN, REG, CFL, and DCFL, denote the classes of finite, regular,
context-free, and deterministic context-free languages, respectively.

Delete graph Insert graph Included in Not included in
acyclic arbitrary REG FIN

arbitrary empty DCFL REG
arbitrary acyclic CFL DCFL
arbitrary arbitrary recursive? CFL

? – proved in [9]

In Section 3 we provide some basic definitions and notations. Then, in Section 4,
we explore properties of so-called leftmost derivations. Next, in Sections 5, 6,
and 7 we investigate expressive power of restricted variants of leftist grammars
and relate them to the classes of the Chomsky hierarchy. Section 8 is devoted to
the proof of the fact that the set of languages defined by general leftist grammars
is not included in CFL. Finally, in Section 9, we summarize our results and state
some open problems.

3 Definitions and Notations

For a word x, |x| denotes its length, the ith symbol of x is denoted by x[i]
(0 < i ≤ |x|), and x[i, j] denotes the factor x[i] . . . x[j] for 0 < i ≤ j ≤ |x|. Let
[i, j] = {l ∈ N | i ≤ l ≤ j}. Throughout the paper ε denotes the empty word,
N, N+ denote the set of non-negative and positive integers. Sometimes, we will
identify regular expressions with regular languages defined by them.

4 Tomasz Jurdziński and Krzysztof Loryś

We refer the reader to [6, 4] for a basic knowledge and terminology from
formal language theory.

Definition 1. A leftist grammar G = (Σ,P, x) consists of a finite alphabet Σ,
a final symbol x ∈ Σ, and a set of production rules P of the following two types,

ab → b (Delete Rule)
c → dc (Insert Rule)

where a, b, c, d ∈ Σ.
We say that a string u ∈ Σ∗ derives a string v ∈ Σ∗, denoted by u ⇒ v, if

u = u1yu2 and v = u1zu2 such that y → z is a production rule in P . As usual,
⇒∗ denotes the reflexive and transitive closure of ⇒. If u derives v, then we say
that u ⇒ v is a derivation step.

A sequence of derivation steps

u1 ⇒ u2 ⇒ . . . ⇒ up

is called a derivation. A word ui for i ∈ [1, p] is called a sentential form in this
derivation.

Finally, the language of G is defined to be

L(G) = {w ∈ Σ∗ |wx ⇒∗ x}.
Notice that reversing the directions of all production rules would give a more

standard definition of a grammar, where x would be the starting symbol. How-
ever, following the convention from [9], we will mainly use the definition stated
above.

Throughout the paper, we will implicitely treat symbols of sentential forms
as objects which can insert/delete other symbols and can be inserted/deleted.
So, we make distinction between different occurences of a symbol a ∈ Σ in a
sentential form. However, in order to simplify notations, we will often identify
the occurence of the symbol a in a sentential form with its value a. It should
be clear from the context whether we say about a symbol as an element of the
alphabet or an element of a sentential form.

We say that the symbol b in the delete rule ab → b is active. Similarly, the
symbol c is active in the insert rule c → dc.

Let u ⇒ v, where u = u1yu2 and v = v1zv2 such that y → z is a pro-
duction rule in P . We would like to say that a symbol which is active in the
production rule y → z is also active in the derivation step u ⇒ v (that is, the
rightmost symbol of the prefix u1y). However, it is possible that there are many
factorizations u = u1yu2 such that v = u1zu2 and y → z is a production. In
order to avoid this ambiguity, we associate arbitrary such factorization in each
derivation step. And, for a factorization u = u1yu2 we say that the rightmost
symbol of u1y is active in the derivation step u1yu2 ⇒ u1zu2. In this way we
will be able to determine uniquely which symbols are inserted/deleted by any
particular symbol. Let u1 ⇒ u2 ⇒ . . . ⇒ up be a derivation with a fixed choice
of factorizations ui = ui,1yiui,2 which determine active symbols in consecutive

Leftist Grammars and the Chomsky Hierarchy 5

derivation steps. A symbol u1[i] is active in u1 with respect to the derivation
u1 ⇒∗ up if it is active in any of derivation steps of the derivation u1 ⇒∗ up.

Despite the above ambiguity of factorizations for general leftist grammars,
we show that for each leftist grammar G, there exists a leftist grammar G′

with unique position of the active symbol for each possible derivation step and
L(G) = L(G′).

Proposition 1. Assume that a leftist grammar G does not contain any produc-
tion of type aa → a or a → aa for a ∈ Σ. Then, for each derivation step u ⇒ v,
there exists a unique factorization u = u1yu2 such that v = u1zu2 and y → z is
a production of G.

Proof. Assume that |v| > |u|. Then, an insert rule is applied in the step u ⇒ v.
Let i be a minimal value such that u[i] 6= v[i]. The only rule which could be
applied is u[i] → v[i]u[i] for the factorization u[1, i− i]u[i]u[i + 1, |u|]. Indeed, a
factorization which chooses a symbol to the right of u[i] would imply that u[i] =
v[i]. A factorization which chooses u[j] for j < i would imply that u[j] 6= v[j] as
for each insert rule a → ba, we have b 6= a. But this contradicts the assumption
that i is minimal such that u[i] 6= v[i].

A similar arguments work also for the case |v| < |u|. ut
Below, we show that for each language defined by a leftist grammar G, there

exists a leftist grammar G′ such thaat L(G) = L(G′) and G′ does not contain
rules of type a → aa for a ∈ Σ.

Proposition 2. Let G = (Σ, P, x) be a leftist grammar. Let P ′ = P \ {a →
aa | a ∈ Σ}. Then, L(G) = L(G′), where G′ = (Σ, P ′, x).

Proof. Let a → aa for a ∈ Σ be called “cloning productions”. We show that
for each derivation wx ⇒∗ x, there exists a derivation wx ⇒∗ x which does not
use “cloning productions”. More precisely, for a derivation wx ⇒∗ x with n > 0
applications of “cloning productions”, we show how to construct a derivation
wx ⇒∗ x with n− 1 applications of cloning productions.

Let uav ⇒ uaav be a derivation step in which (according to the choosen
factorization) a production a → aa is applied. Let uaav ⇒∗ y ⇒ y′ be a sub-
derivation such that y is the last sentential form in which the symbol a inserted
in the step uav ⇒ uaav is not yet deleted. Thus, all derivation steps in the sub-
derivation uaav ⇒∗ y which involve symbols to the left of the suffix av (in the
sentential form uaav) are independent from the derivation steps which involve
symbols from this suffix. We can rearrange the derivation uaav ⇒∗ y in such a
way that first appear the derivation steps which involve the symbols to the left
of the suffix av and then the remaining steps. In this way we obtain a derivation

uaav ⇒∗ u′aav ⇒∗ u′av′ ⇒ u′v′,

where u′av′ = y and u′v′ = y′.
Now, let us skip the derivation step uav ⇒ uaav. Then, we can obtain a

derivation
uav ⇒∗ u′av ⇒ u′v′,

6 Tomasz Jurdziński and Krzysztof Loryś

as the first subderivation does involve only the symbols from the prefix ua and
the second involve only the symbols from the suffix av. Thus, we have obtained
a new derivation wx ⇒∗ x, which contains less applications of the productions of
type aa → a than the original one. In this way, each derivation may be stepwise
transformed into a derivation which does not use productions of this type at
all. ut
Proposition 3. Let G = (Σ,P, x) be a leftist grammar. Let

P ′ = P\{aa → a | a ∈ Σ}∪{x′ → ax′ | (x → ax) ∈ P}∪{ax′ → x′ | (ax → x) ∈ P},
where x′ is a new symbol, x′ 6∈ Σ. Then, L(G) = L(G′), where G′ = (Σ ∪
{x′}, P ′, x′).
Proof. Certainly, by changing the starting symbol x into x′ and adding produc-
tions

{x′ → ax′ | (x → ax) ∈ P} ∪ {ax′ → x′ | (ax → x) ∈ P},
one obtains a grammar G′′ which defines the same language as G. Note also that
G′′ does not have a rule x′x′ → x′.

For each derivation wx′ ⇒∗ x′ in G′′ which applies n > 0 times the rules of
type aa → a, we construct a derivation wx′ ⇒∗ x′ which applies such rules n−1
times. Let uaiv ⇒ uai−1v be a derivation step in the derivation wx′ ⇒∗ x′ such
that a factorization defining the position of the active symbol gives a production
aa → a inside the infix ai. Moreover assume that:

– the rightmost position of u as well as the leftmost symbol of v are not equal to
a and v 6= ε (such a factorization exists, because there is no rule x′x′ → x′).

– there is no application of the rule aa → a in the subderivation uai−1v ⇒∗

x′; that is, we consider the last application of this rule during the whole
derivation.

Now, let uai−1v ⇒∗ u′av′ ⇒ u′v′ be a subderivation of the derivation

uai−1v ⇒∗ x′

such that the derivation step u′av′ ⇒ u′v′ deletes the rightmost a from the
sequence ai−1. So, this derivation step applies a rule ab → b for b 6= a. Let us
skip the derivation step uaiv ⇒ uai−1v and follow the derivation uai−1v ⇒∗

u′av′ ⇒ u′v′. Then, we obtain the following subderivation

uaiv ⇒∗ u′aav′ ⇒ u′av′.

In the sentential form u′av′, we can apply a rule ab → b once again, deleting the
symbol a which is between u′ and v′. Thus, we have obtained a new derivation
wx′ ⇒∗ x′, which contains less applications of the productions of type aa → a
than the original one. In this way, each derivation may be stepwise transformed
into a derivation which does not use productions of this type at all. ut

Propositions 1, 2 and 3 have the following implication.

Leftist Grammars and the Chomsky Hierarchy 7

Corollary 1. For each leftist grammar G, there exists a leftist grammar G′ =
(Σ′, P ′, x′) such that L(G) = L(G′) and, for each possible derivation step u ⇒G′

v, there exists only one factorization u = u1yu2 such that v = u1zu2 where
y → z is a production of G′.

Based on Corollary 1, we can consider only such grammars, in which each deriva-
tion step of the grammar uniquely identifies which symbol of the sentential form
is active in this step. In particular, if uav ⇒ ubav or ubav ⇒ uab for a 6= b, then
the symbol a preceding v is active in this derivation step. All our results assume
that grammars satisfy this condition.

Fact 2 Let u ⇒∗ x be a derivation. Then, one can obtain a derivation u ⇒∗ x
such that the symbol u[1] is not active in any step of this derivation.

Let FIN>0 denote a set FIN \ {∅, {ε}}.
Fact 3 The set of languages generated by leftist grammars is disjoint with
FIN>0.

Proof. Let G be a leftist grammar such that L(G) 6∈ {∅, {ε}}. Let w 6= ε be a
word in L(G), |w| = n. Then, there exists a derivation which starts at wx and
ends at x. No insert rule is applied in which the leftmost symbol of w (i.e. w[1])
is active in this derivation (Fact 2). Further, the symbol w[1] is deleted at some
derivation step. So, G derives also a word

w[1]iw[2, n]

for each i > 0, what implies that the language L(G) is infinite. ut
The above fact implies that if the set of languages generated by any type of

leftist grammars is included in the set which contains finite languages, then this
inclusion is proper.

3.1 Insert Graphs and Delete Graphs

Let G = (Σ, P, x) be a leftist grammar, where Σ = {a1, . . . , ap}. An Insert
Graph of G has p vertices v1, . . . , vp. There exists an edge (vi, vj) in this graph
iff the grammar contains a rule ai → ajai. Similarly, a Delete Graph of G has
p vertices v1, . . . , vp. There exists an edge (vi, vj) in this graph iff the grammar
contains a rule ajai → ai.

We will consider the cases that the insert/delete graph is empty, acyclic, or
arbitrary. These cases will be denoted by empty, acyclic and arb, respectively.
Leftist grammars with delete graphs of type A and insert graphs of type B are
denoted by LG(A,B). For example, LG(acyclic, arb) denotes leftist grammars with
acyclic delete graphs and arbitrary insert graphs. Note that, by Propositions 2,
3, for each grammar G of type LG(A,B) where A,B ∈ {empty, acyclic, arb}, there
exists a leftist grammar G′ = (Σ′, P ′, x′) such that L(G) = L(G′), G′ is of type
LG(A,B) and G′ does not contain productions of type aa → a nor a → aa for
any a ∈ Σ′.

8 Tomasz Jurdziński and Krzysztof Loryś

4 Leftmost Derivations and their Properties

Let u1 ⇒ u2 ⇒ . . . ⇒ up be a derivation. A symbol u1[i] is alive in u1 with
respect to the derivation u1 ⇒∗ up if there exists j ≤ i such that u1[j] is active
with respect to u1 ⇒ u2 ⇒ . . . ⇒ up. A symbol which is not alive is gone.

A derivation u1 ⇒ u2 ⇒ . . . ⇒ up is the leftmost derivation if in each
derivation step ui ⇒ ui+1 the leftmost alive symbol with respect to ui ⇒∗ up is
active in ui ⇒ ui+1.

Definition 4. Let u ⇒∗ v be a leftmost derivation. Assume that u[i] is gone
with respect to u ⇒∗ v. Then, u[i] is firm with respect to this derivation if it is
not deleted until v. Otherwise, u[i] is useless in u.

Proposition 4. If there exists a derivation u ⇒∗ v then there exists a leftmost
derivation which starts at u and ends at v.

Proof. An induction with respect to the number of derivation steps. If there are
no derivation steps, then the derivation is certainly leftmost. Let u1 ⇒ u2 ⇒
. . . ⇒ up be a derivation. Assume that u1 ⇒∗ ui is the leftmost derivation for
i > 1. If the active symbol in ui ⇒ ui+1 is equal to the leftmost alive symbol in
ui then the derivation u1 ⇒∗ ui+1 is leftmost as well. Otherwise, assume that
the symbol which is active in a derivation step ui ⇒ ui+1 is not the leftmost
alive symbol in ui (with respect to the derivation ui ⇒∗ up). Then, there exists
j > i such that the leftmost alive symbol in ui is active in a derivation step
uj ⇒ uj+1. Let j be a smallest value which satisfies this condition. According to
the choice of j, the derivation ui ⇒∗ uj does not change anything in the prefix
which ends at the leftmost alive symbol in ui. And, this symbol is active in the
step uj ⇒ uj+1. Thus, if one applies a derivation rule from uj ⇒ uj+1 before the
(sub)derivation ui ⇒∗ uj then, after the derivation corresponding to ui ⇒∗ uj ,
we obtain uj+1. In this way we constructed another derivation u ⇒∗ v in which
first i+1 derivation steps form a leftmost derivation from a derivation u ⇒∗ v in
which first i derivation steps form a leftmost derivation. Moreover, the number
of derivation steps in the new derivation is equal to the number of derivation
steps in the original derivation. ut
Proposition 5. Let G′ be a leftist grammar Then, each leftmost derivation
v ⇒∗ w satisfies the following condition: Each sentential form u in this deriva-
tion has a factorization u = u1u2u3 such that all symbols in u3 are alive, all
symbols in u2 are useless, and all symbols in u1 are firm.

Proof. The fact that alive symbols form the suffix of a sentential form follows
directly from the definition of alive symbols. For the sake of contradiction, as-
sume that a useless symbol a is located directly to the left of a firm symbol b.
However, as each firm symbol is not active nor deleted in a further derivation, it
is not possible to delete a symbol located directly to the left of it. Contradiction,
because a should be deleted (it is useless). ut
Next, we make the following observation.

Leftist Grammars and the Chomsky Hierarchy 9

Proposition 6. Assume that two symbols of the sentential form in the leftmost
derivation are inserted by the same symbol. Then, the symbol inserted earlier is
gone in this sentential form.

Proof. Note that, if a and b which occur in a sentential form are inserted by the
same symbol and a is inserted earlier than b, then b is to the right of a in the
sentential form. But, in the derivation step inserting b, all symbols located to
the left of this copy of b are gone. ut
We introduce a notion which formally describes the way in which symbols in sen-
tential forms were inserted. Let U ≡ u1 ⇒ u2 ⇒ . . . ⇒ up be a derivation. Let b, d
be symbols which appear in some sentential forms of this derivation. We say that
b is a descendant of d in U if (d, b) belongs to the reflexive and transitive closure of
the relation {(x, y) | vxw ⇒ vyxw is a derivation step in U for some v and w}.

Further, we define a history of each symbol which appears during the deriva-
tion U ≡ u1 ⇒ u2 ⇒ . . . ⇒ up. A history of a symbol a which appears in u1

is equal to a word h(a) = a. Further, let c be a symbol inserted in a derivation
step vbw ⇒ vcbw of U . Then, a history of (this copy of) c is equal to a word
h(c) = ch(b). So, the history of each symbol (except symbols which appear in
the “initial” sentential form) is fixed at a moment when it is inserted.

Proposition 7. Let ubav be a sentential form in a leftmost derivation. Assume
that the symbol a following the prefix ub has descendants in ubav with respect to
the considered derivation. Then u = u1u2 such that u2b form all descendants of
a. Moreover, if the symbol b following the prefix u is alive in ubav, then it was
inserted by the symbol a which follows it.

Proof. The first statement follows directly from the form of insert rules and
delete rules of leftist grammars.

For the second statement, notice that the only possibility to move to the left
the position of the leftmost alive symbol in the leftmost derivation, is to make
an insert step. As a has descendants in ubav, it has inserted some symbols in the
subderivation which ends at ubav. It was the leftmost alive symbol in derivation
steps in which it inserted symbols. And, as long as the leftmost alive symbol is
to the left of a, the rightmost symbol inserted by it is not deleted. ut
Proposition 8. Let

u ⇒∗ y1ay2y3 ⇒ y1bay2y3 ⇒∗ v

be a leftmost derivation, let a symbol b following y1 be an descendant of the
rightmost symbol of y2. Then, a history of this copy of b is equal to bay2.

Proof. Note that the factor ay2 contains alive symbols in y1ay2y3, because a is
active in the derivation step starting from this sentential form. By Proposition 6,
each symbol in ay2 inserted at most one symbol in this factor. So, by Proposi-
tion 7, the y2[i] inserted y2[i− 1] for i ∈ [2, |y2|] and y2[1] inserted a. Thus, the
history of b following y1 is equal to bay2. ut

10 Tomasz Jurdziński and Krzysztof Loryś

Proposition 9. Let uav ⇒∗ w be a leftmost derivation. Then, the suffix v re-
mains unchanged as long as the symbol a following u is alive with respect to
this derivation. If the symbol a following the prefix u is useless with respect to
the derivation uav ⇒∗ w, then the prefix ua remains unchanged, as long as the
symbol a following u is not deleted.

The statements of the above proposition follow immediately from the definition
of alive and useless symbols.

5 Grammars with Empty Insert Graphs

Now, we consider grammars with empty insert graphs.

Theorem 1. The set of languages recognized by grammars LG(arb, empty) is
included in DCFL.

Proof. Assume that uawx ⇒∗ x is the leftmost derivation for an input word
uaw and a at the position |u| + 1 is the leftmost alive symbol with respect to
this derivation. Thus, all symbols in the prefix u are gone, they are not active
in any derivation step. Then, there exists a leftmost derivation u′awx ⇒∗ x for
each u′ which is a subsequence of u. Indeed, as no symbol from u is active in
the derivation, we obtain a leftmost derivation u′aw ⇒∗ x by removing from the
derivation uawx ⇒∗ x all steps which delete symbols in u that do not appear in
u′.

The above observation implies the following fact. Let u ∈ L(G) for a grammar
G of type LG(arb, empty), let v = ux. Let i ∈ [2, n + 1] be minimal value such
that G contains a production v[i − 1]v[i] → v[i], where n = |u|. Then, a word
u′ = u[1, i − 2]u[i, n] belongs to L(G) as well. Using this property, we obtain
the following algorithm determining if w ∈ Σ∗ belongs to L(G). In each step,
the algorithm finds a leftmost position such that an application of the (delete)
production rule is possible at this position. Then, an appropriate symbol is
deleted from the sentential form. This process is repeated until we obtain x
what means that w ∈ L(G) or y 6= x such that no application of any rule of G
is possible in y, what implies that w 6∈ L(G).

Observe that the above algorithm satisfies the following condition. If it
chooses a rewrite ba → a in a sentential form wbay at some step and replaces
wbay into way then no symbol from the prefix w is active in any further deriva-
tion steps chosen by the algorithm. So, one can design the following DPDA M
which determines if w ∈ Σ∗ belongs to L(G). The automaton starts with w as
an input word. First, it pushes w[1] on the stack. Next, it applies the following
rules. Let b be a symbol on the top of the pushdown and let a be a currently
scanned input symbol. If G contains a production ba → a then M pops b from
the pushdown and makes the ε-transition (i.e. it does not move its input head).
Otherwise, M moves its input head to the right and pushes a on the pushdown.
Finally, when the input head achieves a right delimiter, M pops symbols from
the pushdown, as long as G contains a production ax → x, where a is a symbol

Leftist Grammars and the Chomsky Hierarchy 11

on the top of the pushdown. If M finishes computation with the empty push-
down, it accepts, otherwise it rejects. One can easily verify that in this way M
implements the above algorithm which determines if the input word belongs to
L(G). ut
Theorem 2. The set of languages recognized by grammars LG(arb, empty) is not
included in REG.

Proof. We describe a grammar G = (Σ, P, x) of type LG(arb, empty) which gen-
erates a non-regular language. Let Σ = {a0, a1, b0, b1, x} and let P contain the
following production rules:

{aibi → bi | i = 0, 1} ∪ {b1−ibi → bi | i = 0, 1} ∪ {b1x → x}.
Now, let w = a1a0 and u = b0b1. We make the following observation

wnum ∈ L(G) ⇐⇒ m ≥ n.

The implication ⇐ is obvious. The second implication follows from two obser-
vations:

– a symbol ai for i = 0, 1 can be deleted only by bi;
– each copy of bi for i = 0, 1 in the input word from w∗u∗ is able to delete at

most one copy of ai.

So, the language w∗u∗∩L(G) is equal to a non-regular language {wnum |m ≥
n}. As the set of regular languages is closed under intersection, the language
L(G) is non-regular as well. ut

6 Grammars with Acyclic Insert Graphs

Next, we analyze grammars with acyclic insert graphs.

Proposition 10. Let G′ be a leftist grammar with acyclic insert graph. Let
u ⇒∗ v be a leftmost derivation in G′. Then, each symbol in each sentential
form of this derivation has at most |Σ| descendants which are alive.

Proof. Let way ⇒ wbay be a derivation step which inserts a symbol b. Then,
by Proposition 8, y = y1y2 such that bay1 is equal to the history of this b and b
is the descendant of the rightmost symbol of y1. As the insert graph is acyclic,
this history is not longer than the depth of the insert graph, which is bounded
by |Σ|. And, because we consider the leftmost derivation, all symbols to the left
of this b are gone in wbay. Thus, all alive descendants of the rightmost symbol
of y1 are included in bay1 and |bay1| ≤ |Σ|. ut
Proposition 11. Let G′ be a leftist grammar with acyclic insert graph. Then,
for each leftmost derivation w ⇒∗ w′, there exists a leftmost derivation which
starts at w, ends at w′ and there is no sentential form in this derivation which
contains two useless descendants of the same symbol with equal histories.

12 Tomasz Jurdziński and Krzysztof Loryś

Proof. Let w ⇒∗ w′ be a leftmost derivation. Assume that a sentential form
uavay appears in this derivation and copies of a located directly to the left of
v and directly to the right of v are useless symbols that are descendants of the
same symbol and have equal histories. We show how to shorten this derivation
such that one of these a’s does not appear in any sentential form. Moreover, we
do not introduce any new derivation steps which would insert symbols. Let az
be a history of both these copies of a. According to Propositions 8 and 9, the
original derivation w ⇒∗ w′ contains a subderivation

w ⇒∗ u1azz′ ⇒∗ uazz′ ⇒∗ uav1azz′ ⇒∗ uavazz′ ⇒∗ uavay,

where

– u1azz′ is a sentential form obtained after a derivation step which inserts the
left copy of a, preceding v (see Proposition 8);

– uazz′ is a first sentential form in which the left copy of a is gone (i.e. useless)
– (see Propositions 9 and 8);

– uav1azz′ is a sentential form obtained in a derivation step which inserts the
right copy of a, following v (see Propositions 8 and 9);

– uavazz′ is a first sentential form in which the right copy of a is gone and
useless (see Proposition 9);

As the whole av following u is useless in the sentential form uavazz′ (what follows
from Proposition 5 and the fact that the first and the last symbol in the factor
ava are useless), the derivation uavazz′ ⇒∗ w′ implies that there exists also a
derivation uazz′ ⇒∗ w′ obtained from the original derivation by deleting the
subderivation uazz′ ⇒∗ uavazz′, and all derivation steps which remove symbols
from the factor av in the subderivation uavazz′ ⇒∗ w′. Thus, we obtained a
new leftmost derivation w ⇒∗ w′ which avoids the sentential form uavazz′ with
two useless symbols a that have equal histories and are descendants of the same
symbol. In this way, each derivation w ⇒∗ w′ may be stepwise transformed into
a derivation w ⇒∗ w′ which satisfies conditions of the proposition. ut
Theorem 3. The set of languages recognized by grammars of type
LG(arb, acyclic) is included in CFL.

Proof. By Proposition 11, if w ∈ L(G) then there exists a leftmost derivation
wx ⇒∗ x such that for each sentential form of this derivation and each symbol
a in this sentential form, there are no two different descendants of a which are
useless and have equal histories. However, as the derivation wx ⇒∗ x deletes all
symbols except the initial symbol x, each symbol which is gone in any sentential
form during the derivation wx ⇒∗ x, is also the useless symbol.

By Proposition 10, each symbol in each leftmost derivation wx ⇒∗ x has
at most |Σ| alive descendants. So, for each w ∈ L(G), there exists a leftmost
derivation wx ⇒∗ x such that each symbol in each sentential form has at most
s = |Σ|+ |Σ||Σ| descendants. We construct a PDA A which, for each input word
w ∈ L(G) guesses a leftmost derivation wx ⇒∗ x that satisfies this condition.
The automaton A starts with w as an input word and the empty pushdown store.

Leftist Grammars and the Chomsky Hierarchy 13

First, it pushes w[1] on the stack. Next, it applies the following rules. Let y be a
current content of the pushdown, let w[i] be a currently scanned input symbol.
Assume that yw[i, n]x is the current sentential form, all symbols in y are useless.
So, as long as w[i] is alive starting from yw[i, n]x, the active symbol is equal to
w[i] or an descendant of w[i]. Next, as long as w[i] is alive, A simulates (guesses)
an appropriate subderivation without moving its input head. All descendants
of w[i] are stored in the finite control of A. If the particular derivation step
changes only the set of descendants of w[i], this step changes only the state of A
(describing these descendants). However, if the number of descendant of w[i] is
larger than s, A rejects. If the derivation step deletes a symbol from the prefix
y, this symbol is removed from the pushdown. If A nondeterministically decides
that w[i] becomes gone, the current sequence of its descendants and w[i] itself are
pushed on the pushdown store. Finally, when the input head achieves the right
delimiter, A continues the above process assuming that the current pushdown
store contains useless symbols, and the only active symbol is x. If A is able to
remove all symbols from the pushdown and all descendants of x inserted during
this process, it accepts (as before, if the number of descendants of x is larger than
s, A rejects). Otherwise, it rejects. The problem is that A may loop infinitely
without moving its input head. However, it is able to determine such loops in
the finite control and avoid them.

One can easily verify that A accepts exactly L(G). Indeed, one can show by
induction on i that, after the step in which A moves its input head on the ith
position of the input word, the concatenation of the content of the pushdown
store and the part of the input which is not read yet form a sentential form
obtained in a leftmost derivation after the last derivation step in which an input
symbol from w[1, i − 1] is alive. Moreover, A is able to simulate each leftmost
derivation in which each symbol from the input word has at most s descendants.
So, the result follows. ut

Theorem 4. The set of languages recognized by grammars LG(arb, acyclic) is
not included in DCFL.

Proof. We will define a grammar G = (Σ, P, x) with an acyclic insert graph,
such that the language L(G) does not belong to DCFL. Let

Σ = {ai | i ∈ [0, 3]} ∪ {bi, ei, fi | i ∈ [0, 1]} ∪ {c, d, x}.

Production rules of G are following, where i = 0, 1:

14 Tomasz Jurdziński and Krzysztof Loryś

bi → eibi

bi → fibi

b1−iei → ei

b1−ifi → fi

e1−iei → ei

f1−ifi → fi

ajej mod 2 → ej mod 2 for j ∈ [0, 3]
ajfj div 2 → fj div 2 for j ∈ [0, 3]

b1c → c
e1c → c
b1d → d
f1d → d
cx → x
dx → x .

Let w = a3a2a1a0, u = b0b1. We show that

wnumc ∈ L(G) ⇐⇒ m ≥ 2n.

The implication ⇐ is simple. In fact, there exists a leftmost derivation in which
each bi inserts ei. This ei deletes b1−i, e1−i (if they occur directly to the left of
ei) and one element of {ai, ai+2} (if exists). Finally, c deletes the rightmost b1

and e1, and x deletes c.
For the implication ⇒, observe that a derivation which starts from a word

in w∗u∗cx and ends at x cannot use symbols f0, f1. Indeed, these symbols can
be deleted only by d and there is no insert rule which inserts d, while there
is no occurence of d in any word from w∗u∗cx. So, the only insert rules which
are applied in such a derivation introduce symbols e0, e1. Let us consider a
leftmost derivation for an input word from w∗u∗c. Then, according to the above
observations, each sentential form in this derivation belongs to the set

w∗{a3a2a1, a3a2, a3, ε}{b0, b1, e0, e1}∗[ei]bi{b0, b1}∗cx,

where i ∈ [0, 1], bi or ei preceding the suffix {b0, b1}∗c is the leftmost alive symbol
in this sentential form. Let u1[ei]biu2x be such a sentential form, where bi or ei

following u1 is the leftmost alive symbol. We claim that, as long as this bi is not
deleted, only one symbol from the set {a0, a1, a2, a3} can be deleted. Indeed, bi

is not able to delete any symbol and it can insert only ei. The symbol ei can
delete ai and ai+2 and cannot insert any symbol. However, each two copies of
symbols from the set {ai, ai+2} are separated by ai+1 or a(i+3) mod 4. Thus, bi

and all descendants of bi are able to delete at most one symbol from the set
{a0, a1, a2, a3}.

As c and x cannot delete any of ai’s, the above fact implies that, if a
word wnumc belongs to L(G), then the number of copies of symbols from the
set {b0, b1} is not smaller than the number of copies of symbols from the set
{a0, a1, a2, a3}. This condition is satisfied iff m ≥ 2n.

Using similar arguments as above, one can show that

wnumd ∈ L(G) ⇐⇒ m ≥ n.

Leftist Grammars and the Chomsky Hierarchy 15

This property follows from the fact that a derivation for a word wnumd can use
symbols f0, f1 and cannot use e0, e1 what implies that, for each bi, i ∈ [0, 1], at
most two symbols from {a0, a1, a2, a3} can be deleted in the part of the (leftmost)
derivation which starts in a step when this bi is active and finishes in the step
in which this copy of bi is deleted.

The above observations imply that

L(G) ∩ (w∗u∗c ∪ w∗u∗d)

is equal to the language

L′ = {wnumc |m ≥ 2n} ∪ {{wnumd |m ≥ n}.
As the language L′ is not in DCFL, and DCFL is closed under intersection with
regular languages, L(G) is not in DCFL, either. ut

7 Grammars with Restricted Delete Graphs

In this section we show that leftist grammars with acyclic delete graphs define
only regular languages.

Let G be a grammar of type LG(acyclic, arb). Let G′ be a “reversed” grammar
with respect to G. That is, for each production ab → b in G, G′ contains a
production b → ab; similarly, each production c → dc of G corresponds to a
production dc → c in G′. Certainly, L(G) is equal to the set

{w |x ⇒∗
G′ wx}.

The delete graph of G is equal to the insert graph of G′ and the insert graph of
G is equal to the delete graph of G′. So, if the delete graph of G is acyclic then
the insert graph of G′ is acyclic as well.

Proposition 12. Let G′ be a leftist grammar with acyclic insert graph. Then,
for each leftmost derivation x ⇒∗ wx, the number of alive symbols in each sen-
tential form is not larger than the depth of the insert graph.

Proof. Each symbol in the derivation x ⇒∗ wx is an descendant of the rightmost
x. So, the statement follows from Proposition 10. ut
Proposition 13. Let G′ be a leftist grammar with acyclic insert graph. Then,
for each word w such that x ⇒∗ wx, there exists a leftmost derivation x ⇒∗ wx,
such that the number of useless symbols in each sentential form of this derivation
is not larger than |Σ||Σ|.
Proof. Note that each symbol in each sentential form of the leftmost derivation
x ⇒∗ wx is a descendant of the rightmost initial symbol x. And, by Proposi-
tion 11, there exists a leftmost derivation x ⇒∗ wx such that the number of
useless descendants of the rightmost symbol x in each sentential form is not
larger than the number of possible histories of symbols. As the insert graph is
acyclic, the number of possible histories of symbols is at most |Σ||Σ|. So, the
result follows. ut

16 Tomasz Jurdziński and Krzysztof Loryś

Note that the leftmost derivation x ⇒∗ wx makes firm symbols from the
final word w from left to right. That is, first w[1] becomes a status firm, then
w[2], w[3] and so on (see Proposition 5). Thus, one can design the following
nondeterministic one-way finite automaton A which, for each w ∈ Σ∗, determines
if x ⇒∗

G′ wx. The automaton A guesses a leftmost derivation x ⇒∗ wx such that
each sentential form in this derivation contains at most |Σ| alive symbols and
at most |Σ||Σ| useless symbols. A starts the computation with the input head
on w[1]. Then, it guesses a subderivation until the symbol w[1] is inserted and
becomes firm, without moving its head. It stores the current sequence of all alive
symbols and all useless symbols in its finite control. After the derivation step in
which w[1] is inserted, A moves its head to the right and continues the simulation
until w[2] is inserted and becomes firm, still storing active and useless symbols
in its finite control. This process in continued for all consecutive symbols of the
input word until w[|w|] is inserted or A is not able to “insert” a consecutive
symbol of the input word without increasing the number of useless symbols over
|Σ||Σ|. In the latter case, it rejects. In the former case, A continues the simulation
until there are no alive nor useless symbols (assuming that the rightmost x is
the only symbol which should not be deleted among the sequence of symbols
stored in the finite control). If it guesses correctly such a derivation, it accepts.
Otherwise, it rejects. Propositions 12 and 13 imply that A accepts exactly the
set of words w such that x ⇒∗

G′ wx, i.e. w ∈ L(G).

So, finally, we obtain the following theorem.

Theorem 5. The set of languages recognized by grammars of type
LG(acyclic, arb) is included in REG.

8 General Leftist Grammars

In this section we describe a leftist grammar that defines a language which is
not context-free. Let G = (Σ, P, x) be a grammar with the alphabet

Σ = {ai, Bi, Fi | i = 0, 1} ∪ {Xi,j , Di,j | i, j = 0, 1} ∪ {x},

Leftist Grammars and the Chomsky Hierarchy 17

and the following set of productions, where i, j, k ∈ {0, 1}:

(10) ai → Biai

(20) ai → Xi,0ai

(30) Xi,j → Yi,jXi,j

(40) Yi,j → Di,jYi,j

(50) Yi,j → Xi,1−jYi,j

(60) a1−iBi → Bi

(70) BiDi,j → Di,j

(80) Di,jDi,1−j → Di,1−j

(83) X1−i,kDi,0 → Di,0

(86) Y1−i,kDi,1 → Di,1

(90) a0F0 → F0

(100) X0,jF0 → F0

(110) Y0,jF1 → F1

(120) F1−iFi → Fi

(140) F1x → x
(150) Di,jx → x

Let

A = {a0, a1}
F = {F0, F1}
Di = {Di,0, Di,1}
Xi = {Xi,0, Xi,1}
Yi = {Yi,0, Yi,1}
Zi = {Xi,0, Yi,0, Xi,1, Yi,1}

where i ∈ [0, 1]. For sets of symbols U ,V, by UV we mean the set {uv |u ∈
U and v ∈ V}.
Proposition 14. Let n,m ∈ N. If n ≥ 22m−2, then a word w = (a1a0)m(F0F1)n

belongs to L(G).

Proof. First, observe that there exist the following derivations in G for i ∈ [0, 1],
j ∈ N:

ai ⇒∗ Bi(Di,0Di,1)j(Yi,1Xi,1Yi,0Xi,0)jai. (1)

We obtain such a derivation by applying the rules (10), (20), (30), (40) at the
beginning, then the sequence (50), (30), (40), 2j−1 times (where always the left-
most possible application of the appropriate rule is choosen; each such sequence
inserts Di,1Yi,1Xi,1 or Di,0Yi,0Xi,0).

Next, observe that for each j ∈ N, i ∈ [0, 1], there exists a derivation

(YiXi)jaiB1−i(D1−i,0D1−i,1)j ⇒∗ D1−i,1. (2)

18 Tomasz Jurdziński and Krzysztof Loryś

Indeed, the above derivation is obtained by applying the productions (60), (70)
and then the sequence of productions (83), (80), (86), (80) j − 1 times (where
always the leftmost possible application of the appropriate rule is choosen) and
finally (83), (80) and (86).

Using the above properties, we can show by induction the following result.
Claim For each p > 1, there exist the following derivations

(a1a0)p−1a1 ⇒∗ D0,0D1,1(D0,1D1,1)p−2(Y1,1X1,1Y1,0X1,0)2
2p−4

a1

(a1a0)p ⇒∗ D0,0D1,1(D0,1D1,1)p−2D0,1(Y0,1X0,1Y0,0X0,0)2
2p−3

a0.

Proof (of Claim) For p = 2 and the word (a1a0)a1 we start by the following
derivation

a1a0 ⇒ a1B0a0 ⇒ B0a0 ⇒3 B0D0,0Y0,0X0,0a0 ⇒ D0,0Y0,0X0,0a0.

Then, the derivation a1a0a1 ⇒∗ D0,0D1,1Y1,1X1,1Y1,0X1,0a1 is obtained by the
application of Equation (1) (with i = 1, j = 1) for the rightmost a1 and Equa-
tion (2) (with i = 1, j = 1).

For p ≥ 2 and the word (a1a0)p as well as p > 2 and the word (a1a0)p−1a1,
we use the induction hypothesis and Equations (1) and (2), respectively. (Claim)

ut
By the above claim, there exists the following derivation for n,m ∈ N:

(a1a0)m ⇒∗ D0,0D1,1(D0,1D1,1)m−2D0,1(Y0,1X0,1Y0,0X0,0)2
2m−3

a0.

Similarly to the recognition of the example language from Theorem 2, one
can show that 22m−2 copies of F0F1 are sufficient to remove 22m−3 copies of
Y0,1X0,1Y0,0X0,0 (by application 22m−2 times the sequence of productions (100),
(120), (110), (120)). In this way, for each n ≥ 22m−2, we obtain a derivation

(a1a0)m(F0F1)nx ⇒∗ D0,0D1,1(D0,1D1,1)2m−2D0,1(Y0,1X0,1Y0,0X0,0)2
2m−3

(F0F1)nx
⇒∗ x,

where the second subderivation is obtained by applying the productions from
the set (90)− (150) ut

Now, for an input word w = (a1a0)m(F0F1)nx, we formulate conditions which
are necessary in order to exist a derivation w ⇒∗ x.

Proposition 15. Let (a1a0)m(F0F1)nx ⇒∗ x be a derivation in G. Then, n ≥
22m−2.

Proof. First, we specify some necessary conditions satisfied by each derivation
(a1a0)m(F0F1)nx ⇒∗ x. All conditions specified in claims stated below concern
such derivations. Observe that no insert rule of G inserts a symbol x, so each
sentential form of each derivation which starts from (a1a0)m(F0F1)nx contains
only one x, at its rightmost position.
Claim 1 For each i ∈ [0, 1] and each copy of ai in the word (a1a0)m(F0F1)nx
except the leftmost a1, ai inserts a symbol Bi which deletes a1−i located directly

Leftist Grammars and the Chomsky Hierarchy 19

to the left of it. Moreover, its descendants insert Di,j for j ∈ [0, 1] which deletes
Bi inserted by it. And, the rightmost element of Di which is the descendant of
this ai is deleted by x.
Proof of Claim 1 We prove this statement by induction. Notice that the right-
most a0 has to insert B0 which deletes the rightmost a1. Otherwise, the rightmost
a1 would not be deleted at all, as other (than B0) possible descendants of a0 and
the elements of F ∪{x} do not delete a1, nor insert any other symbols. As there
are no delete rules in which the elements of F ∪ {x} delete B0, the descendants
of the rightmost a0 have to insert an element of D0, which deletes B0. Finally,
as the elements of D0 may be deleted only by other elements of D0 and by x, the
rightmost descendant of the rightmost a0 which belongs to D0 remains undeleted
until it is just to the left of x.

Now assume that our hypothesis is satisfied for p − 1 rightmost elements
of A, where 2m > p > 1. Let the pth (rightmost) element of A be aj for j ∈
[0, 1]. The induction hypothesis guarantees that a1−j located directly to the
right of this aj has an descendant from D1−j which will be deleted by x. So,
a1−j to the left of this aj should be deleted by x, this aj the next a1−j or
any of descendants of these three symbols. As x does not insert anything and
it is not possible that the symbol deleting a1−j is an descendant of a1−j , aj

has to insert Bj which will delete a1−j located to the left of it. Similarly, no
possible descendant of a1−j nor x can delete Bj , so it is necessary that there is
an element of Dj among descendants of this aj . The rightmost element of Dj

which is the descendant of aj will be separated from the rightmost element of
D1−j which is the descendant of a1−j located directly to the right of this aj

(which exists by induction hypothesis) by elements which could be descendants
of a0 or descendants of a1 except of elements of Dj . As none of these elements
can delete the element of Dj and, by the induction hypothesis, the symbol to
the right of this sequence (i.e. the rightmost descendant of a1−j which belongs
to D1−j) is deleted by x, the rightmost descendant of the pth element from A
which belongs to Dj is deleted by x. (Claim 1) ut
Claim 2 For each i ∈ [0, 1] and each copy of ai in the word (a1a0)m(F0F1)nx
except the leftmost a1, all descendants of a1−i located directly to the left of this
ai and belong to Z1−i should be deleted by the descendants of this ai.
Proof of Claim 2 First, notice that each copy of ai for i ∈ [0, 1] except the
leftmost a1 has some descendants from Zi in some sentential forms during the
derivation. Indeed, by Claim 1, each such ai has descendants from Di. And, such
descendants may be inserted only by elements of Yi.

Let ai for i ∈ [0, 1] be a symbol from A which appears in the input word,
not the leftmost a1. By Claim 1, this ai has an descendant from Di which will
be deleted by x. As x and possible descendants of a1−i are not able to delete
elements of Z1−i, if a1−i located directly to the left of this ai has descendants
from Z1−i, then all these descendants should be deleted by descendants of this
ai. (Claim 2) ut
Claim 3 Let ai for i ∈ [0, 1] be a symbol which appears in the input word.
Then, a sequence of its descendants in each sentential form of the derivation

20 Tomasz Jurdziński and Krzysztof Loryś

which ends at x belongs to the set

({Bi} ∪ Di)∗Z∗i {Bi}∗.
Proof of Claim 3 For the sake of contradiction, assume that a symbol from
Di appears between symbols from Zi or to the right of them in some sentential
form. According to Claim 1, the rightmost descendant of ai from the set Di will
be deleted by x. As x does not insert any symbols, and descendants of ai cannot
delete elements of Zi, the descendants of ai from Zi located to the left of the
rightmost descendant from Di should be deleted by x. But there are no delete
rule in which x deletes any element of Zi. (Claim 3) ut

By Proposition 4, there exists a leftmost derivation wx ⇒∗ x for each
w ∈ L(G). So, let us consider only leftmost derivations which start from
w = (a1a0)m(F0F1)nx. Remind that ai (for i ∈ [0, 1]) and its descendants are
not able to insert symbols which could delete elements of Zi. By Claim 1, the
factor Y0,0X0,0 should appear in the sequence of descendants of the leftmost a0.
Indeed, this a0 has to insert an element of D0 (see Claim 1) and the only way to
insert such an element is by inserting X0,0 which inserts Y0,0. Now, we show by
induction that the sequence of descendants of the pth symbol from A (for p > 2),
say ai, contains (in some sentential form) a subsequence (Yi,1Xi,1Yi,0Xi,0)2

p−3

which is not deleted as long as this ai is not deleted. The latter statement follows
from the fact that ai and its descendants are not able to insert symbols which
delete the elements of Zi. Let p = 3, that is, we consider the third symbol from
A, the second a1. As the first (leftmost) a0 inserted the subsequence Y0,0X0,0,
the descendants of the second a1 should insert the symbols which delete Y0,0X0,0

(see Claim 2). That is, the subsequence D1,0D1,1 should appear among the de-
scendants of the second a1 in some sentential form (as D1,0 is the only symbol
which deletes elements of X0, D1,1 is the only symbol which deletes elements
of Y0 and D1,1 is the only possible descendant of a1, which deletes D1,0). How-
ever, in order to insert this sequence to the left of all elements of Z1 (which are
descendants of this ai) – see Claim 3, a subsequence

Y1,1X1,1Y1,0X1,0 = (Y1,1X1,1Y1,0X1,0)2
3−3

should be inserted.
Now, assume that the statement is true for p−1 < 2n. Thus, the pth element

of A, say ai, and its descendants should insert symbols which are able to delete
the sequence (Y1−i,1X1−i,1Y1−i,0X1−i,0)2

p−4
(see Claim 2). Note that elements of

X1−i can be deleted only by Di,0 or F0. However, F0 cannot be an descendant of
ai. Similarly, elements of Y1−i can be deleted only by Di,1 or F1, but F1 cannot
be an descendant of ai. As the descendants of a particular ai have to delete

(Y1−i,1X1−i,1Y1−i,0X1−i,0)2
p−4 ∈ (Y1−iX1−i)2

p−3
,

the derivation should contain a subsequence of sentential forms v1, . . . , v2p−2 such
that the leftmost descendant of the considered ai in vj is equal to Di,(j−1) mod 2.
Indeed, only the leftmost descendant of a symbol a is able to delete a symbol

Leftist Grammars and the Chomsky Hierarchy 21

which is not an descendant of this a. Moreover, by Claim 3, only the leftmost
descendants of ai which belongs to Zi is allowed to insert an element of Di.
And, no descendant of ai which belongs to Zi is deleted until this ai is deleted
(because it is not possible that an descendant of ai is able to delete an element
of Zi). So, in order to obtain first Di,0 (as the leftmost descendant of ai in v1),
a subsequence Yi,0Xi,0 should be inserted. Further, assume that Di,(j−1) mod 2

is the leftmost descendant of ai in vj . In order to obtain Di,j mod 2 as the left-
most descendant of ai, it is needed that at least Yi,(j−1) mod 2 which inserted
Di,(j−1) mod 2 inserts Xi,j mod 2 which in turn inserts Yi,j mod 2 and it finally
inserts Di,j mod 2. However, it means that the pth element of A (and its descen-
dants) inserts a subsequence (Yi,1Xi,1Yi,0Xi,0)2

p−3
which is not deleted by its

descendants.
So, finally, the rightmost element of A, that is a0 which is the (2m)th el-

ement, inserts a subsequence (Y0,1X0,1Y0,0X0,0)2
2m−3

that will not be deleted
by its descendants. Similarly as in Theorem 2, at least one copy of F from
the sequence (F0F1)n is needed to delete one symbol from the sequence
(Y0,1X0,1Y0,0X0,0)2

2m−3
(as F0 deletes only X0,1, X0,0 and F1 deletes only

Y0,1, Y0,0. Thus, it is required that n ≥ 22m−2. ut
Theorem 6. The language L(G) is not a context-free language.

Proof. For the sake of contradiction, assume that L(G) ∈ CFL. As CFL is closed
under intersection with regular languages, the language L′ = L∩(a1a0)+(F0F1)+

is a context-free language as well. However, by Propositions 14 and 15, L′ is equal
to the non context-free language

{(a1a0)m(F0F1)n |n ≥ 22m−2}.
ut

9 Conclusions and Open Problems

We have investigated expressive power of leftist grammars, the naturally defined
class of grammars, having interesting connections to the accessibility problem in
protection systems. Here, we have introduced a classification of theses grammars
according to the structure of so-called insert graphs and delete graphs. We have
placed all but the most general class of this classification into the Chomsky
hierarchy. For general leftist grammars we have shown that they are able to
define languages which are not context free, answering the open problem from
[9].

From practical point of view, the most interesting further research direction
concerns the existence of efficient algorithms for the membership problem of
general leftist grammars. More precisely, is this problem in PSPACE? Is it in NP
or in P? Concerning the placement of the leftist grammars into the Chomsky
hierarchy, a natural question is whether the set of languages defined by leftist
grammars is included in the set of context sensitive languages.

22 Tomasz Jurdziński and Krzysztof Loryś

References

1. M. Blaze, J. Fegenbaum, J. Ioannidis, A. Keromytis. The role of trust management
in distributed security. In J. Vitekand C. Jensen, editors, Secure Internet Program-
ming: Security Issues for Distributed and Mobile Objects, LNCS 1603, Springer,
185–210.

2. T. Budd. Safety in grammatical protection systems. International Journal of Com-
puter and Information Sciences, 12(6):413–430, 1983.

3. O. Cheiner, V. Saraswat. Security Analysis of Matrix. Technical report, AT&T
Shannon Laboratory, 1999.

4. M. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
5. M. Harrison, W. Ruzzo, J. Ullman. Protection in operating systems. Communica-

tions of the ACM, 19(8):461–470, August 1976.
6. J. Hopcroft, R. Motwani, J. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 2000.
7. R. Lipton, T. Budd. On Classes of Protection Systems. In Foundations of Secure

Computation, Academic Press, 1978, pp. 281–296.
8. R. Lipton, L. Snyder. A linear time algorithm for deciding subject security. Journal

of the ACM, 24(3):455–464, July 1977.
9. Rajeev Motwani, Rina Panigrahy, Vijay A. Saraswat, Suresh Ventkatasubra-

manian. On the decidability of accessibility problems (extended abstract). STOC
2000, 306–315.

10. V. Saraswat. The Matrix Design. Technical report, AT&T Laboratory, April 1997.

