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Abstract

We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a
significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury
program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce
multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution
fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS
will have on our understanding of the formation and evolution of YSCs and compact stellar associations within
their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the
bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628
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is consistent with a power-law distribution of slopes ~-2 and a truncation of a few times 105 M . After their
formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time
frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to
hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-
independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or
no disruption. We observe faster disruption rates for low mass (�104 M ) clusters, suggesting that a mass-
dependent component is necessary to fully describe the YSC disruption process in NGC 628.

Key words: galaxies: individual (NGC 628, M74) – galaxies: star clusters: general – galaxies: star formation –

stars: formation

1. Introduction

Young star cluster (YSC) populations, commonly detected in
local star-forming galaxies, can be powerful tracers of the star
formation process in their host galaxies. YSCs form in and
interact with their host galaxies, and as bound objects they
allow us to study the star formation histories (SFHs) of their
parent galaxies (e.g., Adamo et al. 2010a; Glatt et al. 2010). It
is intriguing to find very ancient gravitationally bound stellar
objects, i.e., the globular clusters (GCs). Potentially, GCs and
YSCs could share the same formation process, although the
former have most likely formed under different interstellar
medium (ISM) physical conditions (e.g., Swinbank et al. 2010).
Both similarities and differences between the young and
ancient cluster populations are numerous, and it is not clear yet
whether YSCs could evolve into GCs (e.g., Kruijssen 2015).

Through the access to multiband HST data sets, it has been
possible to conduct several studies of YSC populations in local
galaxies. YSCs appear to be a common product of star
formation in local galaxies. They form in the densest regions of
the giant molecular clouds (GMCs), nested at the bottom of the
hierarchically structured ISM (Elmegreen & Efremov 1997).
Therefore, they can be used to probe star formation processes
in local galaxies.

Investigating properties like the mass function (or the
luminosity function) of YSC populations can help to constrain
their formation mechanism and how they are linked to the
overall star formation process in galaxies. Throughout the
literature, there is consensus and evidence that both the initial
cluster mass and luminosity functions (CMF and CLF,
respectively) are well described by a power-law slope of
approximately −2 (Whitmore et al. 1999; Larsen 2002; Bik
et al. 2003; Gieles et al. 2006; Mora et al. 2009; Whitmore
et al. 2010; Chandar et al. 2014; Whitmore et al. 2014, among
many others). It has also been observed that the range for the
recovered CLF slopes in several nearby galaxies is quite large,

d- < < -2.8 1.5 (e.g., Adamo et al. 2011; Annibali
et al. 2011; Whitmore et al. 2014). Blending effects, important
in crowded fields and in galaxies at large distances (above 80
Mpc), have the tendency to flatten the slope of the CLF
(Randriamanakoto et al. 2013). However, in some dwarf
starburst galaxies (Adamo et al. 2010a, 2011; Annibali
et al. 2011), the CLF slopes appear to be flatter than those of
rich YSC populations in, e.g., M51 and the Antennae over the
same luminosity range. On the other hand, steeper slopes have
been observed as a function of wavelength (e.g., Haas
et al. 2008), and at brighter magnitude ranges (e.g., Gieles
2010; Bastian et al. 2012) in some local spiral galaxies. This
steepening suggests that we find a smaller number of luminous
clusters than expected if the luminosity function results from an
underlying mass function described by a power law with slope

−2 and no upper mass limits. The dearth of very luminous
(thus, massive) clusters could be explained if the CMF were not
a pure power law, but took the form of a Schechter function,
which includes an exponential truncation at masses above M
(e.g., Gieles et al. 2006; Larsen 2009). However, the true shape
and universality of the CMF still remains under debate and
requires the investigation of a significantly larger sample of
galaxies.
Another key aspect not yet fully understood is whether or not

there is a change in the cluster formation efficiency (Γ, the
mass of star formation that is locked into star clusters) as a
function of galactic environment (e.g., Adamo & Bastian
2015). Observational evidence suggests an increase in the
cluster formation efficiency as a function of SFR density, SSFR

(e.g., Goddard et al. 2010; Adamo et al. 2011, 2015). A model
proposed by Kruijssen (2012) suggests that this trend is
produced by the link between the cluster formation efficiency
and the properties of the hierarchically structured ISM. In this
model, YSCs form in regions that reach gas densities above a
critical value. Higher gas pressures (thus, higher gas surface
densities) will favor the formation of clusters (Adamo et al.
2015). Since gas surface density is directly linked to the SSFR

via the Schmidt–Kennicutt (Kennicutt & Evans 2012) relation,
it can explain the observed increase of cluster formation
efficiency. Evidence has also been reported (Chandar et al.
2015) that Γ does not strongly correlate with total SFR,
suggesting that when SFR is used instead of SSFR, the
environmental dependency becomes a second-order effect.
The nature of this type of relation is fundamental for

understanding the clustering properties of star formation. For
example, blue compact galaxies dominated by a recent starburst
appear to have a cluster formation efficiency above 40%
(Adamo et al. 2011). Since the majority of the massive stars
(the dominant source of ionizing photons) is forming in
clusters, cluster feedback has a large impact on the ISM of
these galaxies (e.g., Bik et al. 2015). The Γ versusSSFR relation
can also explain why dwarf irregulars living in galaxy clusters
host significantly larger samples of GCs than their counterpart
dwarf systems which have spent most of their time in the field.
The former, entering the overdense regions, have experienced a
starburst event that has produced numerous clusters (Mistani
et al. 2016).
A full description of YSC populations in local galaxies also

requires a clear understanding of their evolution in the host
galaxies. Two main scenarios are currently considered, and
analyses based on the YSC populations of the same galaxies
have not reached an agreement (see, e.g., Adamo & Bastian
2015 for a summary). The disruption model put forward by,
e.g., Fall et al. (2005) is historically based on the disruption rate
recovered from the age distributions of YSCs in the Antennae

2

The Astrophysical Journal, 841:131 (26pp), 2017 June 1 Adamo et al.



galaxy (see Whitmore et al. 2010 for the latest analysis). It
proposes that YSCs rapidly dissolve (80%–90% each age dex)
first because of internal evaporation (e.g., two-body relaxation,
stellar evolution) and on long timescales because of external
(e.g., tidal fields) processes. Fall et al. (2009) have suggested
that these processes happen over different timescales and are
independent of the cluster masses. The other scenario is
described in Lamers et al. (2005) and observationally supported
by recovered disruption rates in the solar neighbors SMC, M33,
and M51 (e.g., Boutloukos & Lamers 2003; Gieles et al. 2005).
It suggests that YSCs do not disrupt so rapidly, but their mass
losses become significant after some time because of interac-
tions with the GMCs, host tidal fields, and stellar evolution
(Portegies Zwart et al. 2010). Disruption, in this latter scenario,
is dependent on the mass of the YSCs, with low mass clusters
disrupting more rapidly. There is another important difference
between the two empirical scenarios described above, i.e., the
role of the galactic environment. The mass-independent
scenario proposes a “quasi-universal” disruption rate indepen-
dent of the cluster mass and galactic environment where
clusters are formed, indicating that the primary disruptive
influences may be due to internal processes. The other scenario
is clearly anchored to the differences in the properties of the
host galaxies. Theoretical models (Elmegreen & Hunter 2010;
Kruijssen et al. 2011) suggest that interactions with dense ISM
(clusters form in GMC complexes, which will exert tidal forces
on the clusters) can also disrupt clusters of any mass.
Therefore, we should see that the disruption rate should change
as a function of environment (see Adamo & Bastian 2015 for a
compilation of observational evidence).

Many fundamental questions related to cluster formation and
evolution still remain unanswered. The Legacy ExtraGalactic UV
survey (LEGUS) is a Hubble treasury program designed to
provide a homogeneous imaging data set in five bands (from the
UV to the NIR) of a large sample (50) of local star-forming
galaxies, representative of the variety observed within the Local
Volume (Calzetti et al. 2015, hereafter C15). The homogeneous
imaging coverage, including two filters below the Balmer break
(∼4000Å), is enabling us to recover high-quality cluster
photometric and physical properties for a large number of YSC
populations in local galaxies. In the pre-LEGUS era, only a
handful of galaxies can claim comparable data and products, like
M31 (Johnson et al. 2015), the Antennae (Whitmore et al. 2010),
and M83 (Chandar et al. 2014; Adamo et al. 2015). The access to
a large sample of galaxies with high-quality cluster catalogs
produced with the most up-to-date techniques and homogeneous
approaches will provide a common ground on which to investigate
and try to answer all the open questions addressed above.

The aim of this work is to present the LEGUS cluster analysis
and provide guidelines to the numerous cluster catalogs that will
be released to the astronomical community in 2017. We use as a
test bench the nearby spiral galaxy NGC 628 (also known as
M74, distance of ∼9.9 Mpc from C15; see Figure 1).
Morphologically, this galaxy has been classified as a Hubble
type SAc galaxy42, a multiple spiral-arm system. Previous
studies of NGC 628 (e.g., Lelièvre & Roy 2000; Thilker
et al. 2002) find a H II-region luminosity function slightly
shallower than −2 and no significant change of slope as a
function of galactocentric distances but only between arm and
inter-arm regions (Kennicutt et al. 1989). Elmegreen et al. (2006)

report luminosity and mass distributions of increasing stellar
aggregate boundaries compatible with a power-law index of −2,
suggesting that star formation in the NGC 628 inner and outer
disk proceeds in a scale-free hierarchical fashion as result of a
turbulence-dominated ISM. The LEGUS data set (see Figure 1)
now available offers us the possibility to continue this
investigation at the smallest and yet densest star-forming scales,
at the bottom of this hierarchical process.
In the first part of this paper, we provide a thorough

description of the methodology developed to extract cluster
candidate positions, produce final photometric tables, and
investigate completeness limits of our data set (Section 2). In
Section 3, we describe the fitting methods used to derive cluster
candidate physical properties. The color properties of the
cluster candidates of our test galaxy NGC 628 are analyzed in
Section 4. In Section 5, we present the CLF, CMF, and
disruption rate analysis. In the final sections, we discuss our
results in the framework of cluster formation and evolution and
summarize the main result in the conclusions.

2. The Photometric Cluster Catalogs

2.1. Data Set Description

We refer the reader to C15 for a description of the standard data
reduction of the LEGUS imaging data sets, which are currently
released at the Web site https://archive.stsci.edu/prepds/legus/.
Each LEGUS target has a standard and homogeneous filter
coverage provided by archival and newly acquired imaging with
either the Wide Field Camera 3 (WFC3) or the Advanced Camera
for Surveys (ACS). All of the galaxies have WFC3 imaging in the
F275W and F336W filters. Three other bands cover the blue
optical (ACS/F435W or WFC3/F438W), visual (ACS or WFC3
F555W or F606W), and NIR (ACS or WFC3 F814W). Hereafter,
the conventional Johnson passband naming the UV, U, B, V, and I
band will be used for the five filters, although the filter throughput
is not converted to the standard Johnson system. We refer
hereafter to the V band as the reference frame. The photometry
provided by the LEGUS analysis is in the Vega magnitude
system. Reduced science frames have been drizzled to a common
scale resolution, which corresponds to the native WFC3 pixel size
(0 04/px). The frames have all been aligned and rotated north up.
A description of the LEGUS imaging available for NGC 628

is given in Table 1. The data set consists of a mixture of archival
and newly acquired data that have been reduced according to the
standard LEGUS approach (see C15 for details).

2.2. Extraction and Selection of Cluster Candidates

2.2.1. Automated Steps

A custom pipeline, legus_clusters_extraction.py (version
4.0), has been developed to produce initial cluster candidate
catalogs that contain, for each source, an ID number, the
position in pixel coordinates, the final photometry including
errors (in the Vega system), the concentration index (CI), and
the number of filters in which the source was detected with a
photometric error 0.3 mag. A readme file includes all of the
key information about the galaxy, the parameters used to build
the catalog, and the content of the columns.
The pipeline comprises six consecutive steps and produces

several diagnostics that help to fix key parameters to produce the
cluster candidate catalogs for each galaxy. We present here a
detailed description of each step in the pipeline and its application42 Value taken from NED.
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to NGC 628. This galaxy has been observed in two different
pointings, NGC 628c (inner region) and NGC 628e (outer
region). The two data sets have been analyzed separately, because
of different combinations of cameras and filters (see Table 1).

1. Step 1—Source extraction. The pipeline uses SExtractor
(Bertin & Arnouts 1996) to extract source positions from
the white-light image produced with the five standard
LEGUS bands (see C15 for the method used to produce
white-light images). In cases where the white-light image is
not optimal (e.g., it shows numerous artifacts at the edges of
the single frames, or the I band in low stellar density fields
is dominated by red giants), we replace it with the reference
V-band frame. The SExtractor input parameters are
optimized to extract objects with at least a 3σ detection in
a minimum of five contiguous pixels. These numbers
change when the white-light or the V-band filter is used for
detection. We do not apply any filtering to the image but we
use small background cells to make sure that the strong
gradient in the background between the arms and inter-arm
regions does not affect our capability of detecting sources.
These initial catalogs are visually screened to understand
whether potential clusters have been missed and any
possible improvement in the SExtractor configuration file
can be made. The configuration file used for the source
extraction will be released together with the final LEGUS
cluster catalogs for each galaxy. At the end of this first step,
we detect 6272 (NGC 628c) and 4539 (NGC 628e)
candidate clusters.

2. Step 2—Determination of CI and aperture radius para-
meters. In this step, the user selects a training sample of
objects that is clearly stars (i.e., isolated, bright, and with
steep luminosity profiles) and another sample that is clearly
clusters (i.e., isolated, relatively bright, and with shallow
luminosity profiles) using the reference frame (V band). The
pipeline performs aperture photometry on these sources

using radii of increasing size (from 1 px to 20 px with a step
of 1 px). The local sky background annulus is set at 21 px
and is 1 px wide. From this photometry, the pipeline
calculates the CI (the magnitude difference between
apertures of radius 1 pix and 3 pix) and the curves of
growth for the input lists of stars and clusters. In Figure 2,
we show an example of the plots produced by the pipeline
in Steps 2 and 3. The top-left panel shows the CI
distribution recovered for the star and cluster control
sample. From this plot, the user selects a CI value that
separates the visually selected stars and clusters as cleanly
as possible. In the case of NGC 628c, the value we apply is
1.4. This value is an initial guess that can be iteratively
adjusted in Step 3. As we will discuss and further
investigate in Step 3 and in the completeness analysis, a
selection criterion based on the CI cut allows us to remove a
significant amount of stars from the catalog, but it will also
remove compact clusters that appear unresolved on the
frame (see Section 2.3 for a detailed discussion). The
middle panel of Figure 2 shows the growth curve analysis
on the stellar and cluster reference sample. The median
stellar growth curve (thick red line in the plot) shows how
the flux increases for an averaged unresolved source on this
specific reference frame. This curve is linked to the stellar
PSF produced by a given combination of detector and filter,
and will change from galaxy to galaxy. The median cluster
growth curve shows (thick blue line in the plot) how the
flux is distributed in a resolved cluster spread function
(CSF).43 The increase in flux is slower in the resolved
cluster than in the averaged stellar one, explaining why the

Figure 1. Mosaic image of the two F555W pointings of NGC 628, covering the inner part of the galaxy and a portion of the outer disk in the southeast (image rotated
with north up). The circles show the position of class 1 (red), class 2 (green), and class 3 (blue) cluster candidates. See Section 2.2.2 for a description of our
classification used here. Detected objects are covering the portions of the field of view that are in common among the imaging taken in the five standard LEGUS filters.

43 Since the PSF is the spread function of a point-like source, we will refer to
the spread function of clusters as the cluster spread function. Notice that a CSF
does not mean a cluster resolved in their stellar content. Clusters in the LEGUS
galaxies cannot be resolved in their single stars. This is also true for the closest
targets, where an unresolved cluster core is typically surrounded by partially
resolved single stars.
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CI is larger for resolved (clusters) than unresolved (stellar-
like) sources (the CI method was first introduced by
Holtzman et al. 1992; Whitmore et al. 1993). Inspection of
the growth curves allows the user to fix the size of the
aperture radius used to perform photometry. For each
galaxy, we fix the aperture radius to do cluster photometry
to the smallest integer number of pixels containing at least
50% of the flux within the aperture (aperture corrections for
the missing flux are discussed in Step 4). We select the
smallest aperture to reduce as much as possible the risk of
contaminations from neighboring sources. We will refer to
this value as the science aperture, to distinguish it from
other apertures used in the analysis.

3. Step 3—CI selection and multiband photometry. The CI
distribution of all the extracted sources in Step 1 is plotted
together with the CI cut value selected in Step 2. The top-
right plot of Figure 2 shows the distribution for NGC
628c. As already discussed in the literature (e.g., Chandar
et al. 2010; Adamo et al. 2015), the CI distributions of
point sources that are unresolved (stars) will show a
narrow peaked distribution (e.g., peak in the right panel
of Figure 2). On the other hand, clusters are resolved and
they show a broad range of sizes (e.g., Ryon et al. 2015),
thus their CI distribution appears significantly broader
than the stellar one (this can be seen in the distribution as
the prominent wing extended to large CI values). The
goodness of the chosen CI value for the cut is then
directly tested on the reference frame (V band) via visual
inspection of the objects in the catalog that satisfy this
condition. We check whether a smaller CI introduces a
large contamination of stars. The chosen best CI value is,
eventually, indicated as a selection criterion. All sources
with a CI smaller than the reference value (1.4 for the
ACS V band of NGC 628c and 1.3 for the WFC3 V band
of NGC 628e) are removed from the initial catalog. We
then perform multiband aperture photometry on the

sources that pass this selection step, using the science
aperture fixed in Step 2 and a local sky annulus located at
7 px with a width of 1 px. The same science aperture and
local sky annulus is used in all the five filters.

4. Step 4—Averaged and CI-based aperture correction. We
apply two different aperture correction methods both
widely used in the literature.

In the first case, we produce averaged aperture
corrections using the cluster control sample produced in
Step 2. The correction is estimated as the difference
between the magnitude of the source recovered at 20 px
(sky annulus at 21 px, 1 px wide) minus the magnitude of
the source obtained using the science aperture (sky annulus
at 7 px, 1 px wide). Not all of the sources in the control
samples are detected in all the filters. To avoid clusters not
detected in some filters from skewing the averaged values
of the aperture corrections, we reject sources that have
corrections outside a certain range. We show for example
the aperture correction distributions recovered for the cluster
control sample of NGC 628c in the five LEGUS band in the
bottom panels of Figure 2. The vertical dashed lines show
the limits within which we use the values to produce the
average correction. These limits can be adjusted by the user
for a given galaxy. In the case of NGC 628c, some of the
sources are very faint or not detected in the bluest filters;
therefore, their corrections become extreme. In Table 1, we
list the final averaged aperture corrections and the errors
(standard deviations) for each filter of each pointing in NGC
628. These values are added to the photometry produced in
Step 3. The standard deviation of the aperture correction
recovered from the sample is added in quadrature to the
photometric error to take into account the uncertainties
introduced by the averaged correction. With this method,
the differences in the sizes of the clusters are not taken into
account. However, as one can see from the recovered values
in Table 1, the differences in the corrections as a function of

Table 1

The LEGUS Data Set of NGC 628

Filters Program Number PI exptime ZP(Vega) Aver apcora Det Limitsb det threshold
(s) (mag) (mag) (mag) (electron s−1

)

(1) (2) (3) (4) (5) (6) (7) (8)

Inner pointing (NGC 628c)

WFC3/F275W 13364 Calzetti 2481.0 22.632 −0.817±0.066 23.29 0.009
WFC3/F336W 13364 Calzetti 2361.0 23.484 −0.750±0.060 23.91 0.010
ACS/F435W 10402 Chandar 1358.0 25.784 −0.656±0.034 24.93 0.013
ACS/F555W 10402 Chandar 858.0 25.731 −0.634±0.034 25.05 0.021
ACS/F814W 10402 Chandar 922.0 25.530 −0.751±0.037 24.27 0.030

Outer pointing (NGC 628e)

WFC3/F275W 13364 Calzetti 2361.0 22.632 −0.795±0.097 23.38 0.009
WFC3/F336W 13364 Calzetti 1119.0 23.484 −0.706±0.059 23.48 0.018
ACS/F435W 10402 Chandar 4720.0 25.784 −0.695±0.039 25.26 0.010
WFC3/F555W 13364 Calzetti 965.0 25.816 −0.740±0.038 25.22 0.024
ACS/F814W 10402 Chandar 1560.0 25.530 −0.843±0.050 24.42 0.029

Notes.
a Averaged aperture corrections used to produce the final AV_APCOR cluster catalogs.
b The listed values correspond to the 90% completeness limits at the detection thresholds listed in column 8. Completeness limits have been estimated using synthetic
clusters with sizes larger than 1 pc. See details about the meaning of the recovered completeness values in the main text.
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waveband are quite small. Therefore, averaged aperture
corrections do not change the shape of the spectral energy
distribution (SED) of the source—they only change the
normalization. This will slightly affect the mass estimates
(not the derived ages and extinction values), but it will be
well within the average 0.1 dex uncertainties that the SED
fitting methods produce.

In the second approach, we produce aperture correc-
tions based on the CI of the source in each band. The
method to derive the CI versus aperture correction relation
will be described in a forthcoming paper (D. O. Cook et al.
2017, in preparation). This method has initially been
developed to produce an aperture correction for very
extended clusters (partially resolved in their stellar
components) detected in the LEGUS dwarf galaxies and
afterwards extended to the rest of the LEGUS targets. The
CI-based aperture correction for each source is calculated by
measuring the CI in each band and applying the CI–aperture
correction relation determined for the appropriate instrument
and science aperture size. While this method takes into
account the size (indirectly measured via the CI) of the
source as a function of waveband, it can change not only the
normalization of the SED but also the shape (so it will affect
the mass, age, and extinction). This effect will be
particularly large in faint sources and in crowded regions
where the estimate of the CI becomes more uncertain.

At the end of Step 4, we have two sets of aperture
corrections calculated. Within the LEGUS naming conven-
tion, the two final photometric catalogs produced in Step 5

with these two correction methods and derived analyses are
referred to as AV_APCOR and CI_BASED.

5. Step 5—Final products. The quality of the photometry is
checked in this final step. We remove all of the sources
that have not been detected in at least two filters (the
reference V band and either the B or I band) with a
photometric error sl 0.3 mag. In each band, we correct
the photometry of these sources by the foreground
Galactic extinction (Schlafly & Finkbeiner 2011). Two
automatic final photometric catalogs are produced, e.g.,
the automatic_catalog_ngc628c_avgapcor.tab and the
automatic_catalog_ngc628c_cibased.tab. Both catalogs
contain the ID of the sources, positions in pixels and in
R.A. and decl., multiband photometry and errors, CI, and
a flag indicating the number of filters in which each
source was detected. In the case of NGC 628c and e, the
automatic catalogs produced at the end of this step
contain 3086 and 593 cluster candidates, respectively.

These sources, however, are likely not only star
clusters. Among them there are still interlopers, i.e., pairs
and multiple stars in crowded regions, background galaxies,
bright stars in the galaxy that have CI slightly larger than the
limit used here, foreground stars, and objects and artifacts
at the edge of the science frames. To minimize the
contaminations of our final catalogs, we visually inspect a
fraction of the sources found in the automatic catalogs that
satisfy some extra selection criteria. We select for visual
inspection all the sources that are detected in at least four
bands (in the automatic_catalog_ngc628c_avgapcor.tab)

Figure 2. Plots produced by the legus_clusters_extraction.py pipeline and used to decide important photometric parameters, like CI cut, aperture radius, and range of
allowed aperture corrections for each galaxy. The plots included here are for the NGC 628c pointing. Top row: on the left, the recovered CI distributions of the star and
cluster control samples are shown. In the middle, the growth curves (normalized flux in V band vs. aperture) of stars (dark yellow solid lines) and clusters (cyan solid
lines) contained in the control samples are plotted. Median curves of both samples are overplotted with red (stars) and blue (clusters) solid lines. The black horizontal
solid line shows where the 50% flux is reached. The vertical dashed lines show which fraction of flux is contained in apertures of 4, 5, and 6 px. IDs are included for
each single curve, and are used to remove sources that show extreme deviations from the general trends. In the right, the distribution of CI of all the sources extracted
in Step 1 is shown. The red vertical line shows the CI reference value used to distinguish between unresolved sources (stars) and resolved objects (candidate clusters).
Bottom row: the aperture correction recovered using the cluster control sample. The black vertical dashed lines show the limits within which the average values are
estimated for each band. The blue line shows the average value (see Table 1).
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with a photometric error below 0.3 mag and have an
absolute V-band magnitude brighter than −6 mag. The V-
band magnitude cut is applied to the V-band photometry
obtained with the CI-based aperture correction. This allows
us to include slightly fainter, very diffuse clusters since they
have large values of the CI and therefore get a larger
aperture correction.

6. Step 6—Missed clusters. During the visual classification
of the sources it is also possible to add sources that have
not been included in the visual inspection catalog. If such
extra sources are not found in the automatic catalogs then
we use Step 6 to produce their final photometry in the
same homogeneous way as done for the bulk of the other
sources. The number of added sources is typically below
1% but it can change from galaxy to galaxy.

2.2.2. Classification of Cluster Candidates

At this stage of the reduction, three or more independent
classifiers from within the LEGUS team visually inspect the
cluster candidates. A tool has been made available within the
LEGUS collaboration to perform this task. This tool visualizes
the object to be classified in two frames, in the reference V band
and in a combined three-color image. Using an interactive
window, the user can also visualize the contour, the radial
profile, and the surface plot of each source in the reference
band (see Figure 3) using the IRAF task IMEXAMINE. Two
circles on the images show the aperture used to perform
photometry (inner) and the location of the local sky (outer
circle). Each source is inspected in the single-band image to
check whether the light is extended (cluster) or has a stellar
PSF (star). The difference in the light distribution of a cluster
and a star at the distance of NGC 628 can be easily discerned in
the top row panels of Figure 3. The source at the center of the
inset is a cluster and it has an FWHM=3.71 px. A star is
visible in the same cutout and its light is much less extended
(FWHM=2.4 px) than the one of the cluster. The contour and
surface plots (middle and right panels) confirm the different
behavior in the two objects.

Based on this inspection, each object in the catalog gets
assigned one of four defined classes. In Figure 3 we show an
example object for each class taken from the central pointing of
NGC 628. Class 1 clusters are compact and centrally
concentrated objects, with an FWHM more extended than the
stellar one. They show a homogeneous self-consistent color.
With respect to class 1, class 2 systems are clusters with
slightly elongated density profiles and less symmetric light
distribution. Class 3 can potentially be less compact and
homogeneous clusters, more likely compact associations44, and
they show asymmetric profiles and multiple peaks on top of
diffuse underlying wings, which suggest the presence of a
possible concentration of low mass stars. Finally, class 4
objects are single stars or artifacts, or any other interlopers
(e.g., background galaxies, foreground stars) that can affect the
cluster analysis. The bottom row of Figure 3 shows an example
of an object detected with extended CI, morphology, and CSF
profile similar to a class 3 object. However, the stars belonging
to this system have clearly different colors. We consider these

objects as a chance superposition along the line of sight of two
stars; thus, they are excluded from the cluster catalog.
Within the LEGUS collaboration, we are also testing a

machine-learning (ML) recognition of the sources. The visually
inspected catalogs are fed to the algorithm as training sets for
the subsequent classification of sources. Testing is in progress
and the results will be published in a forthcoming paper
(Grasha et al. 2017, in preparation). The cluster catalogs of a
third of the LEGUS galaxies have currently been inspected by
humans. We are providing visual classification of a fraction of
the catalogs of another third of galaxies, which are used as
training sets by the ML algorithm. The goal is to perform the
visual classification of the remaining galaxies using a purely
ML-based approach.

2.3. Testing Our Approach and Completeness Limits

To investigate the impact of the assumptions and the
selection criteria adopted to produce the LEGUS cluster
catalogs, we have performed several completeness tests. The
tests are run with a custom-made pipeline, legus_cct.py
(LEGUS Cluster Completeness Tool), available within the
LEGUS collaboration. The pipeline runs in five consecutive
steps, i.e., creation of synthetic sources, source extraction,
photometry, recovery fractions, and final outputs. One of the
input files is the same used to run the standard legus_clus-
ters_extraction.py. The second input file specifies quantities
necessary to create the synthetic frames containing the
simulated clusters, e.g., input parameters for the BAOlab
software (Larsen 1999). A stellar PSF generated with the IRAF
task PSF using selected stars in the science frames is also
provided. This PSF is then convolved with MOFFAT15
profiles of specified effective radii, Reff. The resulting extended
sources are then randomly distributed in a blank frame of the
same dimension as the science one. A magnitude range is
provided as well. To overcome crowding problems, we only
insert a thousand clusters per loop. The frame containing
synthetic clusters is then added to the real science frame. In
the next step, all the sources are then extracted using the
same procedure as in legus_clusters_extraction.py. For all the
sources extracted, it estimates the CI and the photometry
(including averaged aperture correction) in the same way as for
the real clusters. Using the known position of the simulated
clusters, the software estimates a source recovery fraction
before and after the CI cut is applied.
As a first result of these simulations, we have investigated

the relation between the CI and Reff of increasingly extended
sources, with a particular emphasis on the impact that the CI
cut has on removing compact clusters as a function of distance
of the galaxy. In Figure 4, we show the recovered relation
between CI and Reff for the ACS and WFC3 F555W science
frames, used as reference frames for the CI selection. As an
example, we refer to the study case NGC 628. The applied CI
cuts of 1.4 mag and 1.3 mag for the ACS and WFC3 F555W
correspond to a cluster ~R 1eff pc. This does not imply that all
clusters of 1 pc size are systematically removed from the
catalogs. We investigate the recovery fraction of sources in the
V-band frame before and after the CI cut is applied. In Figure 5,
we illustrate the results for NGC 628c. Before the CI cut is
applied, we have 100% recovery for sources of 1 pc as well as
more extended ones. However, the recovery of very compact
sources goes below 50% after the CI cut is applied. Only half
of the sources with ~R 1eff pc are extended enough to make it

44 Typical size of stellar associations is between 50 pc and a few hundreds
parsecs. Class 3 objects that we will hereafter call associations, or compact
associations, have a projected size of a few tens of parsecs and, in many cases,
these compact associations are part of much larger stellar associations.
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into the selection. A smaller CI will include too many stellar
objects, so we conclude that at the distance of NGC 628, the CI
cut applied removes a fraction of unresolved clusters with sizes
of 1 pc and below. This choice does not introduce biases in our
cluster analysis because observationally, no clear relation

Figure 3. Panels inspected for the visual classification of the sources. An example for each identified class is listed. The first two panels of each row show each object
in the reference frame V band (logarithmic scale) and in a three-color composition. The outer purple ring has a radius of 7 px (=  ~0. 28 13.4 pc) and shows the
position of the local sky annulus. The inner ring shows the aperture radius used to do photometry (4 px =  ~0. 16 7.7 pc). The middle and right plots show the
contour, the radial profile, and the surface plot of the object. The FWHM reported in the radial profile is estimated using a MOFFAT light distribution. Detailed
comments on each object are provided in the text.

Figure 4. Relation between CI and Reff. The two curves are the median values
obtained from artificial clusters simulated with increasing Reff. The relation has
been tested for the reference V band frame in both the ACS and WFC3
instruments. The error bars are the 25 and 75% quartiles of the measurement.
An inset shows the pixel resolution corresponding to the distance range
typically covered by the LEGUS galaxies. The black dotted lines show the CI
values used for the cluster candidate selection in the inner (ACS/F555W) and
outer (WFC3/F555W) of NGC 628. The applied cuts approximately
correspond to ~R 1eff pc.

Figure 5. Recovered completeness limits in the V-band frame of NGC 628c as
a function of Reff (annotated in each panel). The top row shows the recovery
rates before, the bottom row after the CI cut is applied. The CI cut is only
affecting the recovery of very compact and partially unresolved clusters with
R 1eff pc.
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between the size and mass or luminosity of star clusters has
been found (see Ryon et al. 2015 and references therein).
Moreover, an ongoing analysis of cluster sizes in NGC 628
shows a clear log-normal distribution which is well above the
detection limits of 1 pc (Ryon et al. 2017).

In Figure 6, we illustrate the final completeness limits of
the two pointings in NGC 628. In Table 1, we list the
magnitude limits corresponding to 90% recovery of sources
with a detection threshold above 3σ (column 8 Table 1)
within a minimum of five contiguous pixels. For the same
band, the differences in the exposure times (longer expo-
sures) have a larger impact on the recovery fractions than the
differences in crowding between the inner and outer region
(i.e., compare the recovery magnitude for the F336W and
F435W for the inner and outer pointing). The completeness
software has been run independently for each band. There-
fore, these values must be considered as indicative of the
detection limits intrinsic to the science frames. However, we
are not taking into account that we apply to our catalogs
additional selection constraints (detection in at least two
filters, or in the case of visually inspected sources in four
filters), visual inspection, and that real clusters have different
luminosities at each wavelength depending on their age,
mass, and extinction.

2.4. Comparison with Catalogs Available in the Literature

Figure 7 shows a comparison between the LEGUS final
catalog (green circles are class 1 and 2, blue circles class 3) and
a catalog from Whitmore et al. (2014, shown as red circles) for
a small region in NGC 628. The Whitmore et al. catalog was
produced automatically based on Hubble Legacy Archive
(HLA) observations, including measurements of the concentra-
tion index and algorithms that remove close pairs and multiple
hits in very crowded regions. A relatively bright limit is used
( = -M 8V ) for the HLA-based catalog since no manual
inspections are made.

The correspondence is fairly good, with 77% of the HLA-based
sources being included in the LEGUS catalog. Making a similar
magnitude cut in the LEGUS catalog (which goes roughly 2 mag
deeper) results in a recovery rate of 73% of the HLA-based
catalog being found in the bright end of the LEGUS catalog.
There are two primary differences: (1) the LEGUS catalog
includes approximately five more (out of about 100 in the region
of overlap used for the comparison) bright class 1 objects that are
clearly good cluster candidates and were missed in the HLA
(probably due to using too conservative a limit for the
concentration index), and the LEGUS catalog includes about 15
more compact associations—i.e., type 3—than found in the HLA-
based catalog. Although selection effects are an important
consideration in any study, we note that Chandar et al. (2014)
compared completely manual, hybrid (like with LEGUS), and
completely automatic catalogs made by two different studies and
found that the selection did not result in major changes to the
primary results of the studies (i.e., the CLF, CMF, and age
distributions).

3. Final Cluster Catalogs and SED Fitting Procedures

The photometric catalogs produced in Step 5 of the pipeline,
as described in Section 2.2.1, are fed into two different SED
fitting algorithms.
The analysis is performed with two different approaches that

reflect the most common methods used in the literature.
In the first case, we fit the cluster SEDs with Yggdrasil SSP

models (Zackrisson et al. 2011). We use two stellar libraries to
create two sets of SSP models, Padova-AGB and Geneva tracks
without rotation, available in Starburst99 (Leitherer et al. 1999;
Vázquez & Leitherer 2005). They assume a Kroupa (2001)
universal initial mass function (IMF), with stellar masses
between 0.1 and 100 M . The IMF is assumed to be fully
sampled; therefore, we will refer to these models as
deterministic. These stellar models are then used as input to
run Cloudy (Ferland et al. 2013) and obtain a realistic evolution
of the nebular emission line and continuum, produced by the

Figure 6. Recovered completeness limits as a function of different bands for
clusters with sizes larger than 1 pc. Solid and dashed lines associated with
different symbols have been used to show the recovery rates in the inner and
outer field, respectively (see the inset).

Figure 7. Zoom-in image of a region of NGC 628 (560 × 473 px). The
LEGUS final catalog of objects classified as class 1 and 2 is illustrated by the
green circles, class 3 by blue circles. We compare the LEGUS catalog to
the automatic catalog (red circle sources) based on HLA observations as
described in Whitmore et al. (2014). See the text for differences and similarities
in the selection criteria.
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ionized leftover gas surrounding the very young clusters. All
the metallicity steps available in Starburst99 for both stellar
libraries are accessible. For the Cloudy simulations, we assume
that the gas and the stars form in material with the same
metallicity. For each galaxy, we adopted the present-day
metallicity of its young populations as derived from nebular
abundances in the literature and listed in C15. We use spherical
solutions for the gas distribution around the ionizing sources.
The hydrogen number density, nH, is set to typical values
measured in H II regions, ~n 10H

2 cm−3. The covering factor,
c, is assumed to be 0.5, i.e., roughly 50% of Lyman continuum
photons, produced by the central source, ionize the surrounding
gas. The gas filling factor, f, is assumed to be 0.01. While the
Yggdrasil interface is able to provide several combinations of
Cloudy assumptions, we decided to fix the parameters to
average values. Our data set is limited to wide passbands; thus,
the total integrated fluxes of these very young clusters are
sensitive to the presence of emission lines and continuum from
the ionized gas. The changes produced by different assump-
tions in the gas phases are secondary and difficult to
disentangle. Including the nebular treatment in the models is
fundamental to estimate the cluster physical parameters of very
young stellar clusters (e.g., Zackrisson et al. 2001; Adamo et al.
2010b; Reines et al. 2010); however, we do not have enough
information to disentangle the gas conditions. The model grid
used in the fitting procedure includes a combination of
progressive age steps and increasing internal reddening, i.e.,

- =( ) [ ]E B V 0.0; 1.5 and steps of 0.01 mag. The models are
reddened prior to being fitted to the observed photometry. We
provide to the fit three extinction and/or attenuation laws. First,
the Milky Way extinction law from Cardelli et al. (1989).
Second, the starburst extinction law by (Calzetti et al. 2000),
assuming the stars and gas suffer the same reddening, and third,
the same Calzetti et al. starburst extinction law, but instead, we
assume the gas emission suffers higher extinction than the
stars. The fitting algorithm is based on a traditional c2 approach
described in Adamo et al. (2010a). The software also provide
also error analyses as described in Adamo et al. (2012). Only
sources that are detected with a photometric error s 0.3 mag
in at least four bands are analyzed. This condition will ensure
that all the sources selected for visual inspection and a
significant fraction of the excluded ones get a potential
determination of their physical properties.

In the second case, the cluster physical properties are
obtained using a Bayesian analysis method together with
stochastically sampled cluster evolutionary models presented
by Krumholz et al. (2015b, hereafter K15). The analysis is
based on the Stochastically Lighting Up Galaxies (SLUG; da
Silva et al. 2012; Krumholz et al. 2015a) code and its post-
processing tool for analysis of star cluster properties,
cluster_SLUG (K15). The stellar libraries and extinction
curves/attenuations used in cluster_SLUG are the same as
for Yggdrasil. In contrast to Yggdrasil, the SLUG treatment of
the nebular emission is based on an analytical solution (see
K15 for a discussion of the assumptions and possible
differences arising from this different approach). cluster_SLUG
provides posterior probability distribution functions (PDFs) for
the ages, masses, and extinctions of the cluster candidates,
assuming different priors on the cluster mass function and
dissolution rate.

This second approach provides a direct treatment of the
uncertainties produced by low mass clusters affected by

stochasticity combined with stellar evolutions. In K15, we
present a direct comparison of the recovered cluster properties
using the two methods presented here.
Both deterministic and stochastic analyses are released,

together with the photometric catalogs, on the LEGUS Web
page. The data release for each galaxy contains 48 catalogs, 12
produced with deterministic fitting procedures and 36 with
Bayesian approaches.45

Detailed studies on the impact of different flavors of stellar
libraries and assumptions to build cluster evolutionary tracks
are currently under investigation in the LEGUS team. Wofford
et al. (2016) has tested the impacts of new evolutionary tracks
in deriving the physical properties of very massive YSCs
detected within a small sample of LEGUS galaxies. More
specifically, we have tested the use of recently published stellar
libraries with single non-rotating stars, i.e., Padova (Tang
et al. 2014), Geneva (Ekström et al. 2012), Geneva with single
rotating stars (Ekström et al. 2012), and BPASS with
interacting binaries (Eldridge et al. 2008).
In the following sections, we will analyze the cluster

population of NGC 628. The goal is to probe cluster formation
conditions and evolution in this galaxy. We will check whether
our results depend on the assumptions made to retrieve the
cluster photometry and physical properties. Differences will
be outlined and taken into account in our interpretations of the
results.

4. The Photometric Properties of the
NGC 628 YSC Population

In the upcoming analysis, we use as a reference sample the
YSC catalog of NGC 628 obtained with photometry corrected
by an average aperture correction; SED fits produced with the
deterministic approach, assuming Padova stellar evolutionary
models and solar metallicity tracks; and the Milky Way
extinction law (Cardelli et al. 1989) to take into account the
internal reddening. The reference catalogs of NGC 628c and
NGC 628e contain 3086 and 593 cluster candidates, respec-
tively. Of these sources, roughly 1600 and 380 passed the
selection required to move onto the next step of visual
inspection (e.g., they have photometric errors <0.3 mag in all
four bands and CI values >1.4). In NGC 628c (NGC 628e),
334 (92) systems have been classified as class 1, 357 (80) as
class 2, and 326 (87) as class 3. The remaining 583 (121)
sources have been assigned class 4.
The main difference between class 1 and class 2 clusters is

linked to the apparent morphology of the systems, with the
latter having elongated surface brightness. Ellipticity in the
surface brightness profile of well-resolved nearby YSCs has
been measured in the MW and the Local Group (e.g., San
Roman et al. 2012), but they find that it is not linked to any
specific dynamical status of the cluster (e.g., expanding and/or
disrupting systems). In the LEGUS galaxies, clusters are not
fully resolved and our ability to recover their morphology is
very much dependent on the distance of the galaxy and the
crowding of the region. In Grasha et al. (2015), we compare the
cluster physical properties such as ages, masses, and

45 Twelve catalogs come from a combination of the two photometric
approaches for aperture correction (average based, CI based), two stellar
libraries (Geneva and AGB-Padova), and three extinction/attenuation curves.
The Bayesian analysis is produced for three different sets of priors but the same
combination of photometric analysis, stellar libraries, and extinction curves
(12 × 3 for a total of 36 catalogs).
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extinctions of the three different classes (1, 2, 3) of systems
identified in NGC 628. We report that the median age and mass
of class 1 clusters are slightly higher than for the other two
classes. This trend may be the result of the methodology we
apply to classify cluster candidates. YSCs are born in cluster
complexes and giant young star-forming regions. This implies
that during the first ∼10Myr, it is challenging to identify the
real morphology of a cluster because of the complexity of
the regions where clusters form (e.g., the Tarantula nebula in
the LMC is a good nearby example). Conversely, we believe
class 3 objects constitute a different type of system from class 1
and 2 objects. In particular, their multipeak nature suggests
these to be likely compact associations. In light of these
considerations, in the rest of the analysis we will look at cluster
physical properties unifying class 1 and 2 objects under the
same group and comparing their properties to class 3 objects.

In Figure 8, we show the UV and optical color–color
diagrams of all the sources included in the automatic catalog as
dots, while the class 1 and 2 clusters and class 3 systems from
our reference (AV_APCOR) catalog are shown with contours
of density numbers. The spread in colors of the automatically
selected populations is clearly reduced after visual inspection.
The color–color diagrams show that in the inner region of NGC
628, the cluster population is well distributed along the
evolutionary track with the peak of number densities of
clusters at very young ages (∼1–10 Myr) and between 50 and
several hundreds of Myr. We see a clear difference in the
distribution of class 1 and 2 clusters versus class 3; the latter is

fairly concentrated in a region of the diagram corresponding to
1–10Myr and it extends up to ∼50 Myr, with relatively few
objects at older ages. The difference between the age
distributions of the classes of objects confirms that the
morphological classification of class 3 objects, characterized
by multiple peaks in their brightness profile and asymmetries in
the light distribution is probably selecting stellar associations
that evaporate and disappear in short timescales in the galactic
stellar field (e.g., Gieles & Portegies Zwart 2011) and not
gravitationally bound objects.
The age–mass diagram in Figure 9 confirms the observed

trend in the color properties of our clusters and associations.
The majority of class 3 objects have ages below 20Myr and
smaller masses than class 1 and 2 as already reported by Grasha
et al. (2015). The maximum mass observed per age bin
increases on average as a function of age, a result of the nearly
constant SFR, the stochastic nature of the cluster formation
process, and of the size-of-sample effect (longer age intervals
imply a higher chance to form more massive clusters; e.g.,
Hunter et al. 2003).
We also investigate the colors of the cluster population

detected in the outer pointing of NGC 628. The color–color
diagrams reported in the panels on the right of Figure 8 show
that the cluster population (class 1 and 2) in the outer region of
NGC 628 has a less significant population of very young
clusters (the contour levels are very weak in the region
corresponding to ages younger than 5 Myr) with respect to the
inner pointing. We see that the outer field color distribution is

Figure 8. UV (left) and optical (middle and right panels) color–color diagrams of the cluster population of NGC 628c (left and central) and NGC 628e (right). The
dots show the location of all sources contained in the final reference (AV_APCOR) catalog. The overlaid density number contours show the distribution of class 1 and
2 clusters (top), and class 3 objects (bottom). The contours include regions with densities equal to or larger than 10% of the 2D histogram peak. Padova (blue) and
Geneva (magenta) evolutionary tracks are included (see the legend). The arrow shows in which direction the objects will move if corrected for a reddening

- =( )E B V 0.2 mag. The error bar on the top-right corner shows the average error in color.
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dominated by a cluster population with ages between 50 and a
few hundreds Myr. On the other hand, the distribution of the
class 3 associations behaves in a similar fashion in the two
galactic regions, with their numbers quickly fading after
50Myr. Similar behaviors in the YSC populations of the inner
and outer regions have already been reported in the literature
for M83 (e.g., Bastian et al. 2011; Chandar et al. 2014) and can
likely be linked to the role of the environment where YSCs are
forming and evolving. The large sampling of different galactic
environments provided by LEGUS will be a key to interpret
these observational trends in the near future.

4.1. A Comparison Between the AV_APCOR and CI_BASED
Catalogs of NGC 628c

In this section we compare the photometry and analysis
performed on the CI_BASED catalog to our reference catalog.
For convenience, we show only the analysis performed on the
NGC 628c pointing, but the outcome is very similar for the
outer field.

The advantage of using average aperture corrections is that
this method does not change the shape of the SEDs or the
intrinsic colors of the clusters. As we see in Table 1,
the differences between the applied aperture corrections change
only slightly between different bandpasses (i.e., it reflects the
change in the PSF as a function of filter/camera). Therefore,
such a correction will change the normalization of the cluster
SED, but not the shape. This method, however, does not take
into account that, at the distance ranges of the LEGUS targets,
clusters are partially resolved, that is, their CSF changes as a
function of the cluster size. However, since the intrinsic shape
of the SED is preserved and only the normalization is affected,
this method may overestimate the mass of very compact
clusters or underestimate the mass of the very extended

sources, but the uncertainties will be within the 0.1–0.2 dex in
logarithmic age and mass usually produced by the fitting
method.
The CI-based aperture correction takes into account the

relation between the size of the cluster and the required
aperture correction. The relation has been derived in each band
using simulations of YSCs of varying sizes (see D. O. Cook
et al. 2017, in preparation). This method has the great
advantage of taking into account the cluster sizes. The
limitation, however, resides in the uncertainties produced by
the CI estimates as a function of wavelength. This means that
the CI-based method not only changes the normalization of the
SED but also the shape. Therefore, the uncertainties propagate
in the estimated mass, age, and extinction of the source.
In Figure 10, we show the same UV and optical color–color

diagrams but derived using the photometry of the CI_BASED
catalog. We notice that while the overall location of the clusters
and associations are similar in the two photometric catalogs, the
contours of the CI_BASED photometry are more extended on
the left side of the tracks, a spread that is larger than the
photometric uncertainties. In general, one expects sources
identified as clusters to diffuse on the right side of the
evolutionary tracks because of reddening, while the spread on
the left side is mainly produced by photometric errors and
uncertainties in the calibration.
In Figure 11, the analysis of the residuals (i.e., the difference

between the observed and the best model-integrated fluxes) of
class 1, 2, and 3 clusters in each band does not show significant
differences in the residuals of the F336W filter in both
the AV_APCOR and CI_BASED catalogs. The residuals of the
F275W filters in the CI_BASED catalog are more concentrated
around zero (the best match) than the AV_APCOR ones. The
opposite trend is observed in the AV_APCOR residuals of the BVI
filters, where they show a narrower distribution around the best
match than the CI_BASED ones. The latter are less peaked and
show a tail toward positive values (i.e., the observed magnitude is
brighter than the one predicted by the best model) in the B and V

bands and negative values in the I band. Overall, we see that the
differences between the reduced c2 obtained from the fit
performed to the photometry of the AV_APCOR and CI_BASED
catalogs show a more significant negative tail, suggesting that the
fit to the CI_BASED photometry is slightly worse.
A direct comparison of the recovered ages, masses, and

extinctions of class 1, 2, and 3 objects of the AV_APCOR and
CI_BASED catalogs is shown in Figure 12. Although on
average we see correspondence along the one-to-one line, some
deviations are also significant. The most important difference in
the CI_BASED catalog is the appearance of the pronounced
peak at around 5Myr, visible in the top-right distribution of
Figure 12. According to the top-left panel, these systems have
been assigned in the AV_APCOR catalog both younger,
similar, or older ages. Since the mass-to-light ratio is smaller at
younger ages, the objects that become younger in the
CI_BASED analysis will also have smaller stellar mass;
therefore, we can explain why the AV_APCOR and
CI_BASED mass histograms (central right panel of Figure 12)
differ in the mass bins between 1000 and 104 M . In the
CI_BASED catalog, these objects have been assigned masses
 M103 . In total, we estimate that about 20% of the class 1, 2,
and 3 systems that are in common in the two catalogs have
differences in ages larger than 0.1 dex, which is the average

Figure 9. Age–mass diagram of the NGC 628c pointing. The mass limits as a
function of age for both evolutionary tracks, shown by the blue and purple
lines, are estimated assuming = -M 6V mag (23.98 mag), i.e., the magnitude
cut used to select objects for visual inspection. The underlying black dots
show the sources in the reference catalog which have been detected in at least
four filters but have not been visually inspected. A small random shift is
applied to the age of each source so that they do not overlap, creating single
columns at each age step. The discrete age steps of the models are anyway
visible.
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uncertainty recovered for age estimates obtained with determi-
nistic methods. This small fraction of deviating sources may
explain why we do not see significant differences in the
recovered CLFs, CMFs, and disruption rates (Section 5) of the
cluster population in NGC 628 when AV_APCOR and
CI_BASED catalogs are used. Further investigation of these
two approaches is presented in D. O. Cook et al. (2017, in
preparation). In the next section, we will report the results of
the analysis performed on the YSC population of NGC 628
using only the AV_APCOR reference catalog.

5. Constraining the Formation and Evolution of Clusters
and Associations in NGC 628

In Section 4, we have observed that the photometric
properties of clusters (class 1 and 2, in our analysis) and
compact associations (class 3) show significant differences,
with the latter class disappearing from the regions of the color–
color diagrams occupied by more evolved stellar populations.

In the following sections, we analyze and compare physical and
statistical properties of class 1 and 2 and class 3 objects
separately. The aim is to probe differences and analogies
between these two types of stellar objects that can help us to
understand their formation process and evolution.

5.1. Multiwavelength Analysis of the CLF of
Likely Bound and Unbound Systems

The luminosity function of YSCs is typically described as a
power-law function in the luminosity space, µ b-dN dL L .
However, we fit the function in logarithmic space, where the
luminosity is replaced by the magnitude, so that µ[ ( ) ]d N dMlog
q ´ M , where b q= ´ +2.5 1 (e.g., Whitmore et al. 2002;
Haas et al. 2008).
We apply two different techniques, equally used in the

literature, to analyze the CLF of NGC 628. In Figure 13 we
report the observed luminosity functions in each band, using
cumulative distributions (left panel), like in Bastian et al. (2012),

Figure 10. UV (left) and optical (right) color–color diagrams of the cluster population of NGC 628c based on CI_BASED catalogs. The dots show the location of all
the sources contained in the CI_BASED catalog. The overlaid density number contours show the distribution of class 1 and 2 clusters (top), and class 3 objects
(bottom). See Figure 8 for more details.

13

The Astrophysical Journal, 841:131 (26pp), 2017 June 1 Adamo et al.



and bins containing the same number of objects (right panel),
following the Maíz Apellániz & Úbeda (2005) approach.

The luminosity properties of the clusters are directly
observable, not affected by age or mass determinations.
However, their luminosity distributions depend on both the
detection limits of our data sets and by the adopted extraction
procedure combined with the selection criteria we impose to
yield the final catalog. To build the CLF, we select only sources
that have been visually classified as class 1, 2, or 3 (thus they
are brighter than −6.0 mag in the V band and detected in four
filters with photometric error smaller than 0.3 mag) and are

younger than 200Myr. In Figure 14, we show the age–mass
diagnostic diagram including the recovered 90% detection
limits in the four bands required for detection and the V-band
cut at −6.0 mag, all converted to limiting masses as a function
of age. We observe that the V-band cut applied for the visual
inspection is more conservative than the detection limits of our
data set. However, we notice here that the resulting flattening of
the distributions at the low luminosity ends is produced by the
combination of a sharp magnitude cut combined with detection
limits of the science frames and the method used to produce the
final position catalog of cluster candidates. The age limit of
200Myr enables us to directly compare the CLF to the CMF
(see Section 5.3). In total, we count 733 (370) class 1 and 2
(class 3 numbers are indicated inside brackets) objects in the
F275W filter, 846 (404) in the U band, and 851 (408) in the
BVI bands before the age cut. After the age cut is applied, we
are left with 703 (369), 778 (397), and 783 (401) class 1 and 2
(class 3) objects in the UV, U, and BVI bands, respectively. To
prevent incompleteness from affecting our analysis, we
perform the fit of the binned and cumulative distributions from
the brightest bin (object) down to the bin (object) with
magnitude brighter than 22.12, 22.26, 23.50, 23.50, and 23.0
mag in UV, U, B, V, and I, respectively. These limiting values
have been chosen to avoid the shallower regions of the
distributions and are more conservative than the 90%
completeness magnitudes reported in Table 1.
In the case of an equal number of object bins, the slopes and

the associated uncertainties are produced by the IDL package
LINFIT, which takes into account the weighted error associated
with each bin. In the case of the cumulative functions, the error
analysis has been performed with bootstrapping techniques. To
take into account how the photometric uncertainty associated with
each point affects the final recovered slope, we perform Monte
Carlo realizations of 1000 cumulative distributions. With each
observed magnitude, we associate an uncertainty extracted from a
Gaussian distribution with standard deviation equal to the
maximum tolerated error of 0.3 mag. Each cumulative realization
is thus fitted. The final error associated with the observed slope is
the standard deviation of all the recovered indexes.
In general, both methods produce slopes that are close to an

index of −2. We notice that the recovered slopes for the binned
data are shallower than in the case of cumulative distributions.
This is mainly the result of the differences between the two
techniques (see Section 5.3), hence slopes determined using
binned and cumulative distributions cannot be directly
compared. Some important features are, however, observable
in both analyses. We find a clear steepening as a function of
increasing wavelength, i.e., the recovered slopes become
significantly steeper than −2 in the BVI filters. This is true
for both class 1 and 2 clusters and class 3 associations (see
insets in Figure 13). The distributions of the two bluest filters
show an extended flat peak that in the cumulative distributions
appears as a significant curvature. Moreover, the cumulative
distributions at all wavelengths show a clear steepening at the
bright magnitude ends. Such steepening is not observed in
the binned distributions because while a variable-size binning
technique mitigates biases introduced by equally spaced
binning approaches (Maíz Apellániz & Úbeda 2005), it also
tends to wash out small-scale variations (see Section 5.3).
Because of the small number of very luminous objects, the
brightest bin of the CLF has a width of about 1.5–2 mag

Figure 11. Residuals produced by the SED fitting analysis of both
AV_APCOR (black) and CI_BASED (blue) catalogs of NGC 628c as a
function of waveband. The bottom-right panel shows the difference between
the recovered reduced c2 in the AV_APCOR and CI_BASED catalogs. Only
class 1, 2, and 3 objects have been used to produce these distributions.

Figure 12. Recovered physical properties for class 1, 2, and 3 objects for both
AV_APCOR (x-axes and black solid line histogram) and CI_BASED (y-axes
and blue dashed line histograms) catalogs of NGC 628c. The dashed red lines
in the left panels show the location of the one-to-one correlation.
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encompassing the range where the steepening in the cumulative
function is observed. Our simulations, in Section 5.3, show that
the departures from a single power-law function happen mainly

at the bright (massive) end, thus the cumulative analysis is
better suited to investigate the shape of the luminosity and mass
functions.
The luminosity function is a direct observable of the underlying

mass function integrated over time. The trends we observe in the
CLF of NGC 628 suggest a dearth of luminous (massive) clusters/
associations and thus simultaneously analyzing the CLF and CMF
can tell us something important about how clusters form and
evolve in this galaxy.

5.2. The Analysis of the Cluster Mass Function

To derive masses, we need to perform an extra step where
the ages and internal reddening of the sources are extracted. As
discussed in K15, the stellar physical properties derived with
our deterministic method are severely biased at very low
masses due to stochastic variations from the small number of
stars. Figure 14 of K15 shows the one-to-one comparison
between Yggdrasil deterministic and SLUG stochastically
derived cluster properties, suggesting that important deviations
occur at cluster masses below 5000 M . This mass limit was, in
recent years, widely adopted in the YSC analysis based on
deterministic approaches. We assume the same mass limit in
our current analysis. Figure 14 shows the age–mass diagram of
the clusters/associations in our two HST pointings of NGC
628. A mass cut of 5000 M gives us complete detection up to
a stellar age of 200Myr. Sources falling within the shadowed
areas are, thus, not included in the analysis of the CMF and
disruption rates presented hereafter. In total, we count 320 class
1 and 2 clusters and 42 class 3 objects that pass this mass and
age selection. We notice that our mass cut is very close to the

Figure 13. Luminosity function of the whole cluster population of NGC 628 in the five standard LEGUS bands. From top to bottom, we plot the CLFs obtained in the
UVUBVI filters. On the left panel, we fit cumulative distributions of the magnitudes of class 1 and 2 and class 3, the recovered slopes are listed in the insets. On the right
plot we fit distributions of bins containing the same number of objects. The plot consists of two panels, the left one shows the distributions for class 1 and 2, the right one
for class 3. The fit has been performed including the brightest object (bin) down to the system (bin) with magnitude comparable to the detection limits listed in Table 1.

Figure 14. Age–mass diagram of the cluster and association populations of
both the inner and outer pointing of NGC 628. The magnitudes corresponding
to 90% completeness limits (see Table 1) in the four bands required for the
analysis have been converted into mass limits as a function of age using
Yggdrasil models. We also include the detection limits in age and mass
imposed by the < -M 6V mag selection criterion. The latter cut ensures we are
above 90% recovery in all four bands for masses above 5000 M and ages up
to about 200 Myr. The shadowed areas show which part of the sample has been
excluded in the analysis of the CMF and disruption rates.
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completeness limits of our catalogs at the last age bin at
200Myr. We tested whether using a higher mass cut at 8000
M produces different outcomes. We do not see any change in

the recovered CMF properties, only higher errors because of
the smaller number of clusters available for the analysis.

The observed mass function of class 1 and 2 (orange
triangles) and class 3 (blue dots) systems are shown as
cumulative distributions in Figure 15. The observed cumulative
distributions are fitted using the IDL maximum-likelihood
fitting package MSPECFIT (Rosolowsky 2005). We perform
two different fits to the cumulative distributions, a single
power-law function, in the integral form ¢ > µ a( )N M M M ,
and a power-law function with a truncation at the upper mass
end, i.e., ¢ > µ -a( ) [( ) ]N M M N M M 10 (see Rosolowsky
2005 and references therein for a complete discussion of the
formalism). The resulting fitted parameters for the two
functions (single power law in the top panel, truncated power
law in the bottom panel) are included in the insets of Figure 15.
In Table 2 we list the recovered values for the class 1 and 2

population. M
å
, the index aSF, and N0, which is the number of

objects more massive than 
aM21 , are determined for a

truncated function, while the pure power-law fit provides the
index aPLF. As described in Rosolowsky (2005), if the resulting
N0 is significantly larger than 1, then a truncated CMF form is
preferred to the more traditional single power-law function.
When <N 10 , the truncation mass is unconstrained and thus a
single power-law fit is sufficient. In Table 2, we also include
errors. The errors associated with the observed maximum
cluster mass, Mmax, and fifth most massive cluster mass, Mmax

5th ,
have been computed during the SED fitting procedure and
described in Section 3. The errors associated with the best-
fitting parameters have been computed using deviations from
1000 iterations of bootstrap trials.
In general, we observe that both a very steep single power-

law fit and a truncated function fit with a slightly flatter index
can reproduce the observed mass distribution for class 3
objects. However, the number of associations is very small
(42), and thus it is not possible to impose any further constraint.
On the other hand, the analysis of the mass distributions of

class 1 and 2 systems yields, for both a single power law and a
truncated function type fits, slopes very close to −2. However,
as already noticed during the analysis of the CLF, the
approximation of the CMF by a single power-law function
(see the top panel of Figure 15) overestimates the expected
number of clusters at the upper mass end of the distribution. A
fit to the observed CMF of class 1 and 2 with a truncated
power-law function (bottom panel of Figure 15) yields a similar
slope, but it mitigates the differences at the high mass end of
the CMF distribution. The resulting N0 (see value listed in
Table 2) is larger than 1, suggesting that the latter function
provides a better fit to the observed CMF. Thus, a truncated
function with slope a = -2.03SF and  ~ ´ M M2.0 105 is
the statistically favored description of the observed CMF of
NGC 628. However, it is important to notice that the number of
clusters more massive than ´ M5 104 is about 22 and only
half of those clusters are more massive than 105 M so the
constraint on M is weak and the uncertainties on N0 large.
As an exercise, we try to estimate the expected number of

clusters more massive than M . Using the combination of far-
UV and 24 μm fluxes of the area covered by the LEGUS
pointings of NGC 628, we estimate an SFR of about 0.59

-
M yr 1. Assuming that the SFR was constant for the last

200Myr, we estimate that a total stellar mass of ´ M1.18 108

has been formed in the region. Using the cluster formation
efficiency definition given in Adamo et al. (2015) and clusters
in the age range between 1 and 100Myr (same as the age range
to which the estimated SFR is sensitive to), we derive for this
region of NGC 628 a cluster formation efficiency of 12%. This
means that 12% of the total stellar mass of ´ M1.18 108 is in
bound clusters, i.e., ´ M1.42 107 . Using the latter amount as
the total stellar mass in clusters, we can estimate the number of
clusters more massive than M . Observationally, we find two
clusters more massive than M . Assuming a pure power-law
mass function of slope −2.09 (with upper mass ´ M1. 107 ),
we estimate that five clusters more massive than M should
have formed in the last 200Myr. A Schechter-type function, as
described by Equation (3), results in one cluster more massive
than M . The estimated total stellar mass in clusters results in
cluster numbers that are consistent with the observed ones but
does not produce any definitive proof that can help to discern
the real shape of the upper mass function. Therefore, the

Figure 15. Cumulative mass functions of class 1 and 2 (orange triangles) and
class 3 (blue dots) systems. The distributions have been created only with
objects younger than 200 Myr, and the fit includes only systems more massive
than 5000 M . The recovered slopes for the two subpopulations are reported in
the inset.
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solution provided by a pure power-law function with slope
−2.09 cannot be discarded.

We also test whether there is any variation in the CMF
properties as a function of galactocentric distance by performing
a radial analysis of the CMF for the class 1 and 2 clusters. In
total, our sample contains 320 objects more massive than 5000
M and younger than 200Myr. We divide the sample in three

radial bins of increasing distance from the center of the galaxy,
each containing the same number of objects so that we remove
the size-of-sample effect. We then determine the M , N0, aSF,
and aPLF of the mass function of each bin using both a truncated
and a more traditional power-law function as described above.
The recovered values are listed in Table 2. In bin 1, the
recovered M is larger than the most massive cluster observed in
the bin, and the resulting N0, including the uncertainties, is very
close to 1. This means that the shape of the upper mass end of
the CMF in the inner bin remains unconstrained and the solution
with a single power-law fit is as likely. In the second and third
bins, between 3 and 10 kpc, M is consistently 1×105 M and
does not decline significantly. The recovered N0 is larger than 1
but the uncertainties are large, too. In Figure 16, we plot
the derived M (cyan dots and blue bands, including the
uncertainties), the masses and uncertainties of the most massive
cluster,Mmax (red triangles and orange bands), and the fifth most
massive cluster, Mmax

5th (green triangles and bands), observed in
each bin. The derived M decreases significantly between the
innermost and the other two bins. In the two outermost bins, the
observed masses of the most massive clusters are significantly
more massive than the constrained M , but the numbers of
clusters close to the determined M are small, which makes the
statistics (e.g., N0) quite uncertain.

Overall, we observe that if the recovered N0 is larger than 1,
the analyzed cluster population has formed at least a few
clusters with masses close to and larger than the truncation
value, M . This behavior suggests that M is not a sharp
truncation and that the mass function is likely stochastically
sampled. In the literature, it has been suggested that the CMF
of YSC populations in local galaxies can be described with a
Schechter function of slope close to −2 and a rapid exponential
decline above a certain truncation mass (Gieles et al. 2006;
Larsen 2009; Bastian et al. 2012). The Schechter function
differs from a pure power-law function only at the upper mass
end of the distributions and could in principle explain the
disagreement between the low numbers of observed massive
clusters with respect to the expected one from the extrapolation

of a pure power-law function. The probability to form clusters
more massive than M declines exponentially but is not null.
We notice that the M of class 1 and 2 systems recovered for

NGC 628 is very similar to the one retrieved for M83 (Adamo
et al. 2015), in agreement with the evidence presented in
Larsen (2009), who suggested that M in local spiral galaxies is
about a few times 105 M .

5.3. Using Monte Carlo Simulations to Link
Cluster Mass and Luminosity Functions

In the attempt to understand the uncertainties imposed by the
low number statistics and, at the same time, link the observed
CMF to the CLF we use simulated cluster populations. We
stochastically sample a pure power-law mass function (we will
refer to this population as run A) and a truncated one in the
form of a Schechter function (run B), with the same slopes and
M derived for the cluster (class 1 and 2) population of NGC

628. In both runs, we sample the mass function from 2×102

to 100×Mmax M . We use ´1.5 104 objects so that the
resulting cluster population will approximately have the same
number of clusters more massive than 5000 M as observed
in NGC 628 (i.e., 320 class 1 and 2 objects). For each cluster,
we stochastically assign an age between 1 and 200Myr, i.e., we
assume that star formation has been constant during this time
range. Based on the evidence produced by the analysis of
cluster dissolution timescales in Section 5.4, we also include
mass-dependent disruption using the formula:

g= -g g-( ) ( ) ( )M t M t t , 1i i i i 0

where we assume g = 0.65 and t0 = 4.91 × 105 years (values
obtained from a maximum-likelihood fit to the data; see
Section 5.4 for details). We then create 1000 realizations of
each population.
In Figure 17, we include the observed CMF of NGC 628

(orange dots) and we overplot the median (red solid line) mass
cumulative distribution and the distributions containing 50%
(dashed red line) and 90% (dotted red line) of the 1000 Monte
Carlo realizations sampled from an underlying pure power-law
mass function (run A, top panel) and Schechter truncated
function (run B, bottom panel). To build the cumulative
distributions of the simulated populations we apply the same
mass cut as in the observations at 5000 M . When comparing
the loci occupied by the simulations with respect to the
observed CMF we see that 90% of realizations of run A
overestimate the number of clusters more massive than 105 M

Table 2

Parameters Describing the Cluster Mass Function in NGC 628a

Region Number Radius Mmax Mmax
5th N0

b aSFb,c M
b aPLFc

(kpc) (105 M ) (105 M ) (105 M )

bin 1 107 0.46–3.19 -
+1.62 0.26
0.13

-
+1.11 0.30
0.07 2.29±3.40 −1.84±0.13 4.85±2.02 −1.90±0.10

bin 2 107 3.22–4.53 -
+2.16 0.19
0.18

-
+0.45 0.10
0.11 3.77±2.80 −2.15±0.12 0.98±0.42 −2.25±0.12

bin 3 106 4.56–10.15 -
+4.36 0.27
0.14

-
+0.43 0.11
0.04 5.67±4.17 −2.00±0.13 1.04±0.59 −2.13±0.09

all 320 0.46–10.15 -
+4.36 0.27
0.14

-
+1.40 0.08
0.09 7.58±4.20 −2.03±0.07 2.03±0.81 −2.09±0.06

Notes.
a The table only includes observed and fitted values of class 1 and 2 cluster population with ages smaller than 200 Myr and masses above 5000 M .
b Mass function parameter fits, computed via the maximum-likelihood method of Rosolowsky (2005). If N 10 , a truncated CMF form is appropriate, while N 10

indicates a single power law is more appropriate.
c aSF is the slope derived assuming a truncated mass function, and aPLF has been derived assuming a pure power-law function. See the text for details.
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(the locations of the upper mass end of the observed CMF is off
the 90% limits of realizations). We test the null hypothesis that
the upper part of the median distribution of run A and run B
realizations and of the observed CMF are drawn from the same
parent population. Since the differences between the pure
power-law function and the truncated function is at the upper
mass end of the distributions, we run both a Kolmogorov–
Smirnov (KS) and an Anderson–Darling (AD) test using
clusters more massive than 104 M . We recover similar
probabilities from both statistics with p(AD) and p(KS) of
∼0.3 and ∼0.9 for run A and run B, respectively. This result
does not discard any of the two functions, but it yields a
marginal preference for a truncated mass function.

Next, we analyze the resulting luminosity functions
produced from the two run A and run B simulated cluster
populations with the goal of understanding if the underlying
CMF has a truncation. We use the median cluster population of
the 1000 Monte Carlo realizations to yield the CLF. We do not
apply any mass cut to the simulated populations, but we use the
age and mass of each mock object together with Yggdrasil
models to estimate their fluxes in the UBVI LEGUS bands. We
then select only sources with a luminosity brighter than
 -M 6V mag and brighter than the 90% completeness values

in the other two bands for which we require detection for a
source to enter the catalog (namely B and I). Extinction is not
taken into account.

The resulting cumulative and binned CLFs as a function of
waveband of the two simulated cluster populations are illustrated
in Figure 18. As done in Section 5.1 for the observed CLFs, we
fit a single power-law function to the simulated CLFs. To
recreate the limiting detection depth of each waveband, we use
the same low luminosity limits as for the observed distributions.

Since the underlying CMF of the simulated cluster
populations is known, we can directly verify the effect of
using either binning or cumulative techniques on the resulting

distributions. We notice that the recovered slopes blPLF and b
l
SF

listed in the left panel of Figure 18 are about 0.2 steeper than
the ones listed in the right plot of the same figure. As discussed
in Section 5.2, the way the equal-number object binning and
cumulative distributions are built make them sensitive to
different properties of the distributions. Since we are interested
in understanding whether the CMF has a truncation at high
mass, we prefer to analyze cumulative distributions.
The cumulative distributions in the left panel of Figure 18

should be compared to the observed cumulative distributions of
class 1 and 2 objects (cumulative functions illustrated with
triangles in the left plot in Figure 13). First, the resulting
indexes of run A (blPLF) and run B (blSF) show that the effect of
fading when comparing the slope of the U band to the ones in
the redder filters is between 0.1 and 0.15. The differences in the

Figure 17. Monte Carlo simulations aim to reproduce the observed CMF for
class 1 and 2 (orange triangles). 1000 realizations, containing a similar number
of objects as in the real distributions, have been performed in each case. The
median and the regions containing 50% and 90% realizations are shown as
indicated in the inset. In the top panel, we assume a pure power-law shape (run
A). In the bottom panel, we assume a Schechter-type distribution (run B). The
slopes of the power law and the truncation masses used are reported in the top-
right inset of each panel. See the text for a discussion of the results.

Figure 16. Comparison between the estimated truncation mass, M (cyan dots),
and the observed mass of the most massive cluster (red triangles) and fifth most
massive cluster (green downward triangles) in bins of increasing galactocentric
distance. The vertical dashed lines show the width of the bins, which were
created to contain the same total number of class 1+2. The shadowed areas
show the uncertainties associated with each derived M and the errors on the
mass estimates obtained with the SED fitting procedure described in Section 3.
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recovered slopes for the observed CLFs in the ultraviolet and
optical are larger (about 0.2–0.3). However, we note that our
simulations do not include extinction, which preferentially
affects the bluer bands and could explain the larger flattening of
the observed ultraviolet slopes.

Second, we notice that the recovered CLF slopes for a
population of clusters sampled out of a pure power-law CMF
(run A) are very close to the initial slope of the corresponding
CMF (i.e., a = 2.09PLF ). The slopes obtained fitting a CLF
sampled out of a CMF with a power-law shape (slope −2) and
a truncation at the high mass end (run B) are steeper than −2.
We also notice a fundamental difference at the bright
luminosity end between the cumulative distributions of the
two runs (pure power law versus power law with a truncation).
The presence of a truncation at the high mass end of the CMF
(run B) results in significant deviations at the bright end (i.e.,
solid triangles) of the CLF, with respect to the population
sampled out from a pure power-law CMF (run A, open circles).
The drop at the bright luminosity observed for the run B CLF
(filled circles, left panel of Figure 18) is very similar to the ones
observed in the real CLF (class 1 and 2, left plot in Figure 13).
This trend reinforces the evidence of a presence of a truncation
in the underlying CMF of NGC 628.

5.4. The Cluster and Association Age Distributions and
Implications for Evolution

In this section, we probe the evolution of the two classes of
objects visually identified: class 1 and 2 likely being clusters,

and class 3 being a heterogeneous sample dominated by
compact stellar associations.
We apply the same mass cut at 5000 M , which ensures that

we will be complete in their recovery rate up to 200Myr, but to
look now at the number densities of objects per unit time (dN/dt)
as a function of increasing age. A decreasing rate of objects as a
function of time µ ddN dt t is historically interpreted as
evidence for YSC dissolution within the galaxy (see Lamers
2009 for a short review). In Figure 19, top panel, we plot the
change in number densities of class 1 and 2 (orange dots), class 3
(blue diamonds), and the whole sample (green triangles) using
bins of the same width (left panel). The shadowed areas are the
regions of the diagram where incompleteness mimics a rapid
disappearance of objects. Therefore, these regions are excluded
(e.g., see Lamers 2009). Overall, we observe that the disruption
rate of class 3 systems is certainly more significant than class 1
and 2. When the two classes are analyzed together, the resulting
disruption rate is coincident with the one of class 1 and 2,
probably because this latter class is much more numerous.

5.4.1. Cluster and Compact Association Evolution

During the First 10 Myr

We also observe variations depending on the age range. In
all the plots of Figure 19, we clearly see that during the first
10Myr the number densities of objects in both class 1 and 2
and class 3 are significantly higher than in the range
10–100Myr. The number densities per unit time declines
roughly by factors of 4 and 3 for class 3 and class 1 and 2,
respectively, when comparing the rate between the range 1 to

Figure 18. Cumulative function (left) and binned distributions (right) of the luminosity produced with run A (pure power-law function, open circles) and run B
(Schechter truncated function, solid triangles) simulated cluster populations. Dashed lines are the single power-law fits performed on both distributions. The fit is
carried out down to the same luminosity limits as in the observed CLFs to take into account the effect of detection limits imposed by the depth of the data. The
resulting indexes for run A (alPLF) and run B (alSF) are listed in the bottom-left insets.
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10Myr and 10 to 100Myr. Two different explanations are
typically advocated to describe such a downtrend, either “infant
mortality,” in the classic terminology introduced by Lada &
Lada (2003), or contamination of our sample with systems that
are not gravitationally bound (e.g., Gieles & Portegies
Zwart 2011 on the difficulty of distinguishing bound from
unbound young star-forming regions). In the first scenario, it is
assumed that all stars form in bound clusters that rapidly
dissolve because gas evacuated by stellar feedback has
destabilized the gravitational potential of the system. In the
second scenario, the rapid disruption is only caused by the
limits of the method we are employing. Dynamical imprints of
very young star-forming regions in the Milky Way (e.g.,
Wright et al. 2014) and Magellanic Clouds (Gouliermis et al.
2014) suggest that even massive OB associations, like Cygnus
OB2, are not the result of an evolution from a gravitationally
bound status but are formed already unbound. Stellar feedback,
therefore, does not appear to be a major agent of cluster
disruption (e.g., Longmore et al. 2014 for a review). In
extragalactic studies, like the one performed on the LEGUS
galaxies, we are not able to probe the boundness status of the
objects we consider clusters. Objects older than 10Myr and with
effective radii of a few parsecs can be considered gravitationally
bound since their crossing time is smaller than the age of the
stars. However, younger objects, often still nested within the
large star-forming regions where they have formed, are more
difficult to classify. Because of the complexity involved in
characterizing objects at these young ages, we restrict our dN/dt
analysis to the age range 10–200Myr.

5.4.2. The Change in the Number Density of Clusters and Associations

as a Function of Time, Mass, and Galactocentric Distance

Between 10 and 200Myr, the left plot of Figure 19 shows
that the change in the number density of class 1 and 2 clusters
is consistent with mild disruption. We do not observe any
drastic dissolution of this class of objects up to 200Myr. On the
other hand, the number density of class 3 systems keeps
declining by a factor of 3 in the same age range, suggesting, as
already observed in the color–color diagrams analysis, their

rapid disappearance within 100Myr (the slope we recover is
d ~ -0.7). These short timescales are in agreement with the
clustering analysis performed by Grasha et al. (2015) on the
class 3 population. The lack of clustering after 40Myr may
be caused by the quick dissolution of these systems. On the
other hand, since class 1 and 2 survive longer, their lack of
spatial clustering is possibly the result of the randomization of
their positions because they move away from their birthplaces.
The clustering analysis of stellar structures performed by
Gouliermis et al. (2015) in another LEGUS galaxy, NGC 6503,
finds that hierarchical clustered stellar structure disappear and
distribute into the stellar field within 60Myr. This suggests that
class 3 objects are well nested within the hierarchical properties
of star formation, while stellar clusters, even though have
formed within the same hierarchically structured ISM, as
gravitationally bound systems, may follow a different fate.
Recent theoretical and numerical works (e.g., Elmegreen &

Hunter 2010; Kruijssen et al. 2011) point out that tidal forces
exerted by GMC encounters in a hierarchical ISM can
reproduce the steady decrease in cluster numbers over time
as a result of a decreasing ISM density in each cluster’s
environment as it drifts away from its birth place. Higher gas
densities toward the centers of spiral galaxies or in starburst
systems can increase the overall dissolution rate of YSCs.
In Figure 8, the color–color diagrams of the inner and outer

cluster population of NGC 628 show interesting features,
suggesting that the outer cluster population is preferentially
older. We attempt here to investigate whether we observe any
change in the recovered dissolution time as a function of
galactocentric distances. We split our sample of class 1 and 2
objects into a central and outer bin containing the same number
of objects. In the central panel of Figure 19, we show the
recovered disruption rates for the inner and outer bins. We
observe that the number density of clusters in the outer bins is
consistent with being constant between 10 and 200Myr
(d ~ 0.0), while in the inner bin we observe higher dissolution
rates d ~ 0.3. The observed trends are consistent with
theoretical expectations, suggesting a higher mass-independent
disruption in denser galactic ISM, thus closer to the center of
the spiral galaxy.

Figure 19. Number density of systems more massive than 5000 M per unit time as a function of age using equally spaced temporal bins (bin size is 0.6 dex). The
shaded areas show the regions of the diagrams that are affected by incompleteness and excluded from the analysis. The fit to each distribution within the age range
10–200 Myr is illustrated with a dashed line. The recovered slopes are included in the corresponding insets. The left panel illustrates the change in number density of
the whole population (class 1, 2, and 3, green triangles), cluster candidates (class 1 and 2, orange dots), and compact associations (class 3, blue diamonds). The central
panel shows the number density of clusters as a function of age within an inner and outer region. The two regions contain the same number of clusters with mass above
5000 M . In the left panel, we split the sample into low mass (  ( )M Mlog 3.9 , magenta dots) and high mass ( > ( )M Mlog 3.9 , green diamonds) clusters. See the
text to follow the discussion of the results.
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In the right panel of Figure 19, we probe the disruption rate
of low (magenta dots) and high (green diamonds) mass cluster
candidates. We observe that low mass clusters show evidence
of mild disruption (d ~ -0.3) while the number densities of
clusters with mass similar to or larger than 104 M are
consistent with being constant (d ~ 0.0). This result suggests
the presence of a mass dependency in the disruption rate of
clusters.

Another way to investigate cluster evolution as a function of
the cluster mass is to encode in a bivariate distribution, ( )g M t,
the mass function and time dependence for formation and
evolution of clusters (see Fall et al. 2009; Gieles 2009). The
function ( )g M t, is thus the number of clusters observed as a
function of time and mass expressed as

=( ) ( )g M t
d N

dMdt
, . 2

2

Integrating ( )g M t, over the mass provides the dN/dt
distributions, while integrating ( )g M t, over a time range
provides the observed CMF.

In Figure 20 we show the recovered mass distributions as a
function of cluster age normalized by the corresponding age
interval (i.e., dN/dMdt diagnostic). The distribution is built to
contain the same number of objects in each bin. The dN/dMdt
diagnostic is sensitive to the evolution of the mass function
with time. If the number of clusters rapidly declines
independently of the cluster mass then the shape of the mass
function will be unchanged but the distribution at each age
interval will be shifted because the number of clusters is
diminishing. On the other hand, if the cluster disruption
timescale depends on cluster mass, then the aging CMFs
should overlap at the mass ranges untouched by disruption and
deviate where disruption of low mass clusters is significant.
The plot in Figure 20 shows a clear offset of the CMF for
clusters younger than 10Myr. As already seen in the dN/dt

distribution, the number of clusters at this age range is
significantly higher. The dN/dMdt analysis provides further
insights showing that the number of clusters younger than
10Myr is higher at any mass range in units of time. The CMFs
of the other two age ranges (10–100 and 100–200 Myr) overlap
at masses larger than 104 M , while deviations become
significant at lower masses. These deviations suggest that the
number of clusters with masses below 104 M are decreasing,
flattening the CMF. This trend is consistent with both the effect
of detection limits causing the loss of an increasing number of
low mass clusters at older ages and higher disruption rates of
clusters below 104 M (consistent with the trends observed in
the right plot of Figure 19). As pointed out in Section 5.2, our
mass cut of 5000 M is very close to the completeness limits at
200Myr (see Figure 14). Incompleteness can mimic a mass-
dependent cluster dissolution, and we cannot exclude that the
observed flattening is in part caused by incompleteness.
To understand whether the trends observed in the bivariate

distribution of the CMF as a function of time are compatible
with mass-dependent disruption we perform a maximum-
likelihood fit to our data. We refer to Gieles (2009) for the
formalism behind the fit and to Bastian et al. (2012) for an
application to the YSC population in the M83 galaxy. The fit is
performed assuming a Schechter function that describes the
probability to form a cluster of mass Mi in the time interval t
and +t dt as


= -- ⎛

⎝
⎜

⎞

⎠
⎟ ( )

d N

dM dt
A M

M

M
exp , 3

i
i

i
2

2

where Mi depends on time. If only cluster mass-dependent
disruption is taken into account, the disruption time can
be described as = gt t Mdis 0 , with t0 and γ depending on the
galactic environment (see e.g., Lamers et al. 2005), and the mass
evolution is described by g= -g g( )M M t ti 0

1 (Lamers et al.
2005; Gieles 2009). In the fit, γ is fixed to the average value found
in local spirals (g = 0.65). The fitting algorithm thus finds the
values of M , t0, and t4 that maximize the likelihood. The t4 is the
timescale necessary to dissolve a cluster of = M M104

4 , and it
depends on t0 as g= g

( )t t M4 0 4 . The results of maximum-
likelihood fits performed on the YSC population of NGC 628 are
shown in Figure 21. The fit is performed on class 1 and 2 clusters
more massive than 5000 Me, brighter than the magnitude cut

= -M 6V (V=23.98 mag) mag, and younger than 300Myr.
The age–mass diagram on the left side panels shows the YSC
population taken into account in the fit. The mass cut removes
low mass objects up to an age of 200Myr. The magnitude cut
becomes important at older ages because it removes clusters more
massive than 5000 M at ages older than 200Myr. The fit is done
for the entire cluster population (top), and the inner (center) and
outer (bottom) regions of the galaxy corresponding to two bins
containing the same number of clusters. The maximum-likelihood
fit performed on the entire cluster population finds  = ´M 2.2

M105 and a timescale for dissolution of a 104 M cluster of
=t 190 Myr4 . These values are in agreement with the M found

in Section 5.2 and the evidence of slow disruption in the dN/dt
analysis performed above. With the same technique, we derive
M and t4 for clusters of the inner and outer regions containing the

same number of objects, as defined above. The cluster population

Figure 20. Number of clusters per mass and time unit (dN/dMdt). Only
clusters more massive than 5000 M and classified as class 1 and 2 are
included. Blue dots show the CMF for ages below 10 Myr. Green and magenta
triangles show the CMF between 10 and 100 Myr and between 100 and
200 Myr, respectively. The dashed line is included to provide a reference for a
power-law CMF with slope −2. See the text for details.
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located within the inner bin has the same M value found for the
entire galaxy (  = ´ M M2.2 105 ) and a timescale for dissolu-
tion of a 104 M cluster of =t 130 Myr4 . The clusters in the
outer region have a factor of 2 longer disruption timescales
with =t 270 Myr4 and  = ´ M M2.0 105 . The maximum-

likelihood fitting analysis confirms the results and trends obtained
from the analyses of the CMF and the dN/dt distributions. The
average timescale for cluster disruption in the galaxy are long
enough to produce a shallow dN/dt distribution. However, the
age interval to which our analysis is sensitive too is long enough

Figure 21. Maximum-likelihood fit of the YSC population of NGC 628. Only class 1 and 2 clusters more massive than 5000 M and younger than 300 Myr are
included. A magnitude limit corresponding to the = -M 6V magnitude cut applied to select cluster candidates is also taken into account in the fitting. The left panels
show the age–mass diagram of the sources included in the fit (black dots) overplotted on the whole class 1 and 2 sample (blue dots). The dashed line shows how the
mass and magnitude limits select clusters at different age ranges. At young ages, the mass cut is limiting the sample (horizontal dashed line); at older ages the
luminosity cut is more important (transversal dashed line at ages larger than 200 Myr). The right panels show the values of t4 and M that provide the maximum
likelihood (red dots). In the top panels, the total YSC population of NGC 628 has been fitted. The central and bottom panels show the results of the fit performed on
the inner and outer bin population as shown in Figure 18. See the text for details.
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that we should start to see the effect of disruption on low mass
clusters. Indeed, in this respect the dN/dMdt analysis is a more
sensitive diagnostic than the simple dN/dt one. The longer
timescales for the disruption of clusters in the outer part of the
galaxy are also in agreement with the expectation from theoretical
works (e.g., Elmegreen & Hunter 2010; Kruijssen et al. 2011) and
the results obtained for the M83 spiral galaxy (Bastian
et al. 2012).

To verify the effect of incompleteness at the low mass end as a
function of age, we repeat the maximum-likelihood fit using the
same mass cut at 5000 M together with a more conservative
luminous cut, i.e., Mv=22.93 mag, i.e., one magnitude brighter
than previously done. The mass and magnitude cuts result in a
selection of clusters more massive than 5000 M up to 100Myr
and objects brighter than 22.93 mag at older ages. We obtain
values of M and t4 within a factor of two from the analysis
performed above with a less conservative magnitude cut. With a
limiting brightness of = -M 22.93v mag, we retrieve  =M
´ M1.7 105 and =t 170 Myr4 for the entire sample, and
 = ´M 2.2 105 and ´ M1.4 105 , and =t 1004 and 530Myr

for the central and out region of NGC 628, respectively. This
further test reinforces the evidence, found above, of a mass-
dependent component necessary to describe cluster disruption in
NGC 628.

6. Discussion

6.1. The Shape of the CMF at the High Mass End and
Constraints on the Cluster Formation Process

CLF and CMF are powerful tools to investigate the
formation of YSCs.

In the spiral galaxy NGC 628, using the LEGUS data set, we
recover the properties of the CLF from the UV to the NIR. The
luminosity distributions of the cluster (class 1 and 2) population
is close to the slope −2, while the compact stellar associations
(class 3) appear to have steeper slopes. The analysis of
increasing size of stellar aggregates (Elmegreen et al. 2006)
also finds slopes close to −2. Hence, star formation is
consistent with a hierarchical process, driven by turbulence,
from the largest scales, i.e., star-forming complexes, down to
the densest and smallest physical scales, i.e., star clusters. Our
analysis also reveals some interesting variations in the CLF for
both clusters and associations. At each waveband, we observe a
steepening at the brightest end of the cumulative distributions.
Extinction cannot explain the steepening at the brightest end of
the CLF. If more luminous clusters are more extinguished than
faint ones, it would imply preferential extinction as a function
of luminosity, a trend not observed in studies of local galaxies.

The cause of the steepening of the CLF could be connected
to the nature of the cluster formation process. The CLF is a
direct observable tracer of the underlying CMF integrated over
time. If the CMF is a pure power-law function of slope −2 at
any age and cluster dissolution is independent of the cluster
mass, the resulting CLF should consistently be a function with
the same slope. The steepening that we are observing at the
bright end of the distributions suggests that we find fewer
luminous (massive) clusters than expected for a pure power-
law CMF.

Increasing evidence in the literature suggests that the YSC
mass function is better described by a truncated power law.
Johnson et al. (2017), studying the YSC population of M31,
find that the CMF in this galaxy has a Schechter-type form,

with M ∼1×104 M . Cosmological simulations of the Milky
Way type of galaxies, where YSCs are implemented as star
formation units, show that the resulting YSC populations have
CMF that are better described by a Schechter function and M
scales as a function of SFR (Li et al. 2017).
In the case of NGC 628, both a steeper power law (a ~ 2.1)

or a Schechter function (a ~ 2.0 and  = ´ M M2.0 105 ) can
equally reproduce the observed CMF. We investigate whether
the steepening observed in the mass function, which suggests a
dearth of very massive systems (if a pure power-law function is
assumed), is a sign of an underlying soft truncation. The
difficulty in constraining the upper mass distribution of the
CMF in local spirals has already been pointed out by Larsen
(2006). The combination of cluster formation being a stochastic
process (e.g., Adamo & Bastian 2015) and relatively low SFR
combined with detection limits and rapidly fading luminosities
above a few hundreds of Myr make it very challenging to put
strong constraints on the shape of the cluster upper mass
distribution, because of low number statistics.

6.2. Timescales for Cluster Disruption in NGC 628;
Probing Cluster Evolution

Another fundamental aspect that gives important constraints
on the formation and evolution of YSCs is understanding how
they disrupt. Star-forming regions and stellar complexes are
hierarchical in space and time (Efremov & Elmegreen 1998),
thus their crossing times are comparable to their ages and
appear to dissolve on timescales below 60Myr (e.g., Pellerin
et al. 2012; Crocker et al. 2015; Gouliermis et al. 2015). On the
other hand, the fate of YSCs, forming in the densest peaks of
these very regions, is not yet well understood.
In our analysis, we look at the number density of stellar

systems between 1 and ∼200 Myr. We are not able to derive
the dynamical status of the stars within our objects, but since
the average size of our class 1 and 2 systems peaks at 3 pc
(Ryon et al. 2017), their crossing times, for those older than
10Myr, are much shorter than the stellar ages so we can
consider them likely gravitationally bound. We see a clear
decline between the number of objects during the first 10 Myr
and the next age bin, suggesting a significant loss of both class
1 and 2 and class 3 systems. The recovered number densities of
YSCs versus associations in the age range 10–200Myr are
significantly different. Compact stellar associations (class 3)
rapidly decline in number and disappear on timescales (∼50
Myr) comparable to those of hierarchically structured star-
forming regions. Objects that we have identified as potentially
bound clusters (class 1 and 2) show close to constant number
densities (d ~ -0.2) in the dN/dt analysis.
Small disruption rates within the first 100–200Myr have also

been reported in the literature for other local galaxies, e.g., in
M31 (Fouesneau et al. 2014), LMC (Baumgardt et al. 2013),
and M83 (Silva-Villa et al. 2014). However, we notice here that
these results are not ubiquitous. A compilation of previous
works (Adamo & Bastian 2015) clearly shows that disruption
rates of YSCs may change significantly from galaxy to galaxy
and become very high for YSCs in hostile environments like
the Antennae system (Whitmore et al. 2010).
Our results suggest a steeper disruption slope for YSCs

located in the inner portion of the galaxy (d ~ -0.3). This
finding is observationally supported by the difference in the
number densities of YSCs in regions of the color–color
diagrams (Figure 8) corresponding to young ages. In the inner
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pointing, the number of YSCs is larger than in the outer
pointing at young ages, while similar number densities are
observed at older ages between the populations of the two
pointings. If star formation has been constant in the last few
hundreds of Myr, then these differences suggest a longer
survival time in the outer regions. A larger coverage of the
galaxy would certainly improve the results, as recently shown
for M83 (e.g., Chandar et al. 2010, 2014; Bastian et al. 2012;
Silva-Villa et al. 2014).

7. Conclusions

We present the methods and pipelines developed and applied
to build uniform YSC catalogs of the LEGUS galaxies. Our
method consists of a mixture of automated and visually
optimized procedures, which take into account differences in
the quality of the data, distance of the galaxy, coverage, and
varying local background. We implement a quality-flag system,
based on human and ML approaches under development,
which describe the morphology of sources that are detected in
at least four bands, and have luminosities in the visual band
brighter than −6 mag. We provide final YSC catalogs which
include positions, CI of the source, photometry in the five
LEGUS bands; ages, masses, extinctions, and uncertainties; c2
analysis including residuals; and visual classification flags.
Cluster photometry is produced with the two most used
methods in the literature, which consist of fixed aperture
photometry corrected by (1) an average aperture correction
derived from observed clusters in each band, or (2) a CI-based
aperture correction as a function of wavelength. The SED of
each source is then fitted with both deterministic and stochastic
SSP models, which include a treatment for nebular emission.
We used both Padova and Geneva stellar libraries and three
different recipes for internal extinction.

We provide, as a proof of concept, a detailed description of
all the steps necessary to produce the final cluster candidate
catalogs, with parameters and assumptions optimized for the
LEGUS target NGC 628. Two regions of the galaxy have been
targeted by LEGUS, the inner and the outer one.

In the attempt to probe YSC formation and evolution, we
analyze the luminosity and physical properties of the YSC
population in NGC 628, using as reference catalog the one
obtained with Padova evolutionary tracks, Kroupa IMF, solar
metallicity, and Cardelli extinction law. A comparison between
the cluster properties obtained with the two photometric
methods (AV_APCOR and CI_BASED) shows some differ-
ences in the color–color distributions and recovered cluster
physical properties. We conclude that significant deviations
affect about 20% of the sources in common between the
two catalogs. We perform the analysis for both photometric
catalogs, but results are not affected by the choice of the
catalog.

The color–color diagrams of class 1 and 2 systems (which,
according to our visual classification scheme, are YSC candidates)
and class 3 objects (likely compact stellar associations) show
interesting differences in their density distributions. YSC
candidates follow closely the SSP models at all ages, while
stellar associations are more concentrated around the regions of
the tracks younger than 50–60Myr. We also compare the color
properties of the YSCs and stellar associations in the inner and
outer regions of NGC 628. We do not observe any significant
difference between the number of stellar association distributed

along the evolutionary models, suggesting similar age ranges for
the associations in these two pointings. On the other hand, in
regions of the color–color diagram corresponding to young ages,
the number density of YSCs changes between the inner and outer
pointing. On average, the population in the outer field is older,
probably reflecting a slower disruption rate in the outer part of the
galaxy.
Thanks to the LEGUS multiband coverage, we produce a

complete luminosity function analysis from the UV to the NIR.
A power-law fit to the luminosity distributions yields slopes
that are consistently close to −2. We also observe, for both
YSC candidates and stellar associations, that the recovered
slopes show a steepening from the shorter to the longer
wavebands possibly consistent with wavelength-dependent
fading effects. At the bright end of the CLF, at all wavelengths,
we see a clear deviation from the power-law shape, suggesting
a dearth of luminous clusters. The analysis of the CMF and
Monte Carlo simulations of cluster populations suggest that the
CMF can be described by a power-law function with a slope
close to −2 with a truncation at  ~ ´ M M2 105 . However,
due to the low number statistics, the solution of a pure power-
law function with a slope of a ~ -2.1 cannot be discarded.
The analysis of the number densities of objects as a function

of age shows different trends for YCS candidates and stellar
associations. The numbers of stellar associations decline rapidly
and they tend to disappear on short timescales as already
observed in the color–color diagrams. On the other hand, bound
systems do not show any drastic decline in their numbers
between 10 and ∼200 Myr. We find evidence of a more
significant cluster disruption rate in the inner region of NGC
628, in agreement with expectations of higher chances of
encounters with GMCs and consistent with theoretical predic-
tions of an environmental dependency in cluster disruption. We
estimate that the timescale to disrupt a cluster with = M M104

is shorter (130 Myr) closer to the center and significantly longer
in the outer part of the galaxy (270 Myr). These timescales
should be considered as lower limits, because we cannot exclude
that incompleteness at older ages is affecting our results.
Since we do not observe significant disruption for cluster

with masses above 104 M , we conclude that the observed M
values are linked to the formation mechanism of the YSC
population and not to their evolution.
The analysis performed on the YSC population of NGC 628

shows important evidence for our understanding of the
formation and evolution of YSC and stellar associations within
their host galaxy. Our morphologically based classification
provides, for the first time, insights on the properties of our
stellar systems within the framework of a hierarchically driven
star formation process. YSCs and stellar associations form
within star-forming regions and inherit the imprints of the
turbulent status of the ISM as proved by their power-law slope
−2. However, evidence suggests that at some physical scales,
other physical parameters may play an important role and affect
the shape of the CMF. After their formation, YSCs and
associations seem to follow different evolution paths, with the
former surviving untouched for a longer time frame, while
associations disappear on timescales comparable to hierarchi-
cally organized star-forming regions.
These initial results show interesting trends, but only the

sampling provided by a survey like LEGUS can allow us to
address fundamental open questions related to YSC formation
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and evolution. A large pool of different galactic environments
will provide us with the means to investigate whether the CMF
is universal, what physical properties affect the upper mass end
of the mass function, what mechanism dominates cluster
disruption, and whether cluster formation efficiency is a
relevant quantity to describe cluster formation in the local
universe.
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