
0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0  ©  1 9 9 9  I E E E S e p t e m b e r / O c t o b e r  1 9 9 9 I E E E  S o f t w a r e 1 0 3

Nuts

Nuts

B
o

lts

B
o

lt
s

egacy information systems are typically the backbone of an organization’s
information flow and the main vehicle for consolidating business infor-
mation. They are thus mission critical, and their failure can have a serious
impact on business.1 In fact, a LIS can be defined as “any information sys-

tem that significantly resists modification and evolution.”2 They can cause host or-
ganizations several problems:

♦ LISs usually run on obsolete hardware that is slow and expensive to maintain.
♦ Software maintenance can also be expensive, because documentation and

understanding of system details is often lacking and tracing faults is costly and time-
consuming.

♦ A lack of clean interfaces makes integrating LISs with other systems difficult.
♦ LISs are also difficult, if not impossible, to extend.

Jesús Bisbal, Deirdre Lawless, Bing Wu, and Jane Grimson,

TRINITY COLLEGE DUBLIN

N
U

T
S

 &
 B

O
LT

S
:K

ar
l W

ie
g

er
s 

an
d

 D
av

e 
Ca

rd
,e

d
it

o
rs

 • 
kw

ie
g

er
s@

ac
m

.o
rg

 / 
ca

rd
@

co
m

p
u

te
r.o

rg

L

A legac y  in format ion  sys tem represents  a  mass ive, long-term
bus iness  investment. Unfor tunate ly, such  sys tems are  o f ten  br i t t le,
s low, and nonex tens ib le. Captur ing  legac y  sys tem data  in  a  way
that  can  supp or t  o rganizat ions  into  the  future  i s  an  imp or tant  
but  re la t ive ly  new research  area . The  authors  o f fe r  an  over v iew 
of  ex i s t ing  research  and present  t wo promis ing  metho dolog ies  
fo r  legac y  in format ion  sys tem migrat ion .

Legacy Information
Systems: Issues 
and Directions



Several solutions have been proposed to these
problems. These solutions fall generally into three
categories: redevelopment, which rewrites existing
applications; wrapping, which provides a new in-
terface to a component, making it more easily ac-
cessible by other software components; and migra-
tion, which moves the LIS to a more flexible
environment, while retaining the original system’s
data and functionality.

Given the scale, complexity, and risk of failure in
LIS projects, a well defined, easily implemented, and
detailed methodology is essential to project suc-
cess. However, few comprehensive LIS migration
methodologies are available, and a general ap-
proach has yet to be agreed on. Existing approaches
are either too high level or have yet to be applied in
practice.3–5 Although partial solutions such as wrap-
ping are widely adopted, such solutions are short-
term and can actually complicate LIS maintenance
and management over the long term. On the other
hand, redevelopment approaches tend to be too
risky for most organizations. We thus advocate mi-

gration as a sound strategy for contending with LISs.
Here, we offer an overview of existing LIS strategies,
then discuss migration issues and present two
promising approaches for migrating LIS data.

LIS COPING STRATEGIES

Figure 1 shows different approaches commonly
used to cope with LISs. We add maintenance only
for completeness, because it is part of every system’s
life cycle. In fact, if a software system can be main-
tained within an acceptable budget it is usually not
considered a LIS.6 As the figure shows, each ap-
proach varies in terms of changes required and costs
and risks involved. Redevelopment leads to the most
changes (system revolution) and wrapping the least
(system evolution).

However, given a concrete LIS problem, it is not
always possible to categorize the solution accord-
ing to one approach. For example, wrapping can be
seen as a maintenance activity that aims to make
other components oblivious to changes in the
wrapped component; migration can involve wrap-
ping part of the system, maintaining another part,
and redeveloping still another, and so on. Thus, al-
though we describe these approaches as being ap-
plied at a system level, they are typically applied at
a component level.

We divide the various approaches into three
general categories. The first, redevelopment,
requires the LIS to be shut down either during de-
velopment or during cut-over to the replacement
system. In this category, we include both redevel-
opment and reengineering, as the sidebar “Clas-
sifying Terms”explains. The second approach, wrap-
ping, is less drastic, but often serves only as a
short-term solution. The third approach, migration,
is a middle ground, offering a long-term solution
while mitigating the risk of system shutdown.

1 0 4 I E E E  S o f t w a r e S e p t e m b e r / O c t o b e r  1 9 9 9

Nuts

Nuts

B
o

lts

B
o

lt
s

W
rap

pin
g

Main
ten

an
ce

Migr
ati

on

Re
de

ve
lop

men
t

System
evolution

System
revolution

Number
of changes
to legacy

(−)      Impact on system      (+)

Operational activity

Figure 1. Solutions to LIS problems range from the relatively mild

wrapping to redevelopment, which can completely change the sys-

tem or create an entirely new system.

Much research and consulting attention has been given to the problem of organizations attempting to reinvent themselves.
But what about those whose businesses are successful but need to adapt to meet the challenges of evolving technology and
market requirements? Many of these organizations have substantial investments in legacy information systems. Replacing
these systems involves not only the direct financial cost of software development but also the expense of rediscovering their
accumulated knowledge about business rules and processes. This article describes several practical approaches to leverag-
ing an organization’s legacy investments so that it can evolve, rather than having to reinvent itself entirely.

 David N. Card and Karl Wiegers, Nuts & Bolts editors



Redevelopment
Redevelopment, commonly referred to as Big

Bang and also known as Cold Turkey,2 redevelops the
LIS from scratch using a new hardware platform and
modern architecture, tools, and databases. As an ex-
ample, the Renaissance research project is aimed at
developing a systematic method for system evolu-
tion and reengineering.4 The project defines a set of
activities and tasks to support an overall reengineer-
ing project and the control flow between the identi-
fied activities, which drives the cooperation among
tasks. Renaissance identifies generic activities that
can be specialized for both the organization and the
system it is implementing.

Scott Tilley proposes a high-level framework for
LIS reengineering from several perspectives.3 For
each perspective, Tilley divides the reengineering
problem into phases, listing pertinent issues for
each one. Although this approach does offer some
guidance, it is far too high level to be practically
applied.

Narsim Ganti and William Brayman7 propose gen-
eral guidelines for transforming from a centralized
legacy environment to a distributed environment. In
this approach, select business processes are reengi-
neered as required and then linked to LISs, which pro-
vide valued data and business logic to the new en-
vironment. New applications are then developed to
fit these processes. This approach recognizes that LIS
migration should cause as little disruption as possi-
ble in the current business environment. However, it
is not clear how cut-over to a separately developed
target system would be handled.

In reality, the risk of failure is usually too great for
organizations to seriously contemplate a redevel-
opment approach. Another very real concern stems
from the fact that technology and business require-
ments are constantly changing. Thus, at the end of
a long process, an organization might find itself with
a redeveloped system based on obsolete technol-
ogy that no longer meets its business needs.

Wrapping
Given the drawbacks of redevelopment, many

organizations are forced to seek alternative ways to
cope with their LISs. Most practical solutions focus
on wrapping, which surrounds existing data, indi-
vidual programs, application systems, and interfaces
with new interfaces. In essence, this gives old com-
ponents new operations or a “new and improved”
look.6 The wrapped component acts as a server, per-
forming some function required by an external

client that does not need to know how the service
is implemented.8 Wrapping lets organizations reuse
well-tested components that they trust and lever-
age their massive investments in the LIS.

The most widely used implementation of wrap-
ping is screen scraping, which replaces a LIS’s char-
acter-based front end with a client-based graphical
user interface.1 Implementing the GUI cheaply and
effectively leverages legacy data and lets users em-
ploy common graphical data manipulation tools to

S e p t e m b e r / O c t o b e r  1 9 9 9 I E E E  S o f t w a r e 1 0 5

C L A S S I F Y I N G T E R M S

Although “reengineering” is often used as a synonym for migra-

tion,1,2 we include it in the redevelopment category as most reengi-

neering efforts propose complete system reimplementation. In our

view, to reengineer a system is to examine (understand) and alter a sys-

tem so as to reconstitute it in a new form.3 Thus, reengineering ulti-

mately leads to an (almost) complete reimplementation of the LIS.4–6

The resulting system might or might not run in a different computing

environment. Also, although redevelopment involves developing a sys-

tem from scratch, it requires a thorough understanding of the existing

system and thus involves many reengineering activities.

We thus view reengineering as closer to redevelopment than to mi-

gration, which aims to avoid the long and costly implementation

process. Migration seeks to reuse as much of the LIS as possible, in-

cluding implementation, design, specification, and requirements. Also,

the target system resulting from a migration process runs in a different

computing environment, whether it is a different programming lan-

guage or a completely new architecture and technology.

If most of the LIS must be discarded, the engineer will be facing a

redevelopment project, not a migration project. Ultimately, in our view,

reengineering is not a solution to the LIS problem per se, but rather a

technology to be used in migration or redevelopment projects.

REFERENCES
1. H.M. Sneed, “Encapsulating Legacy Software for Use in Client/Server Systems,”

Proc. Third Working Conf. Reverse Eng., IEEE Computer Society Press, Los
Alamitos, Calif., 1996, pp. 104–119.

2. D. Aebi, “Data Reengineering: A Case Study,” C.J. van Rijsbergen, ed., Proc.
Advances in Databases and Information Systems (ADBIS97), Springer Verlag,
Berlin, 1997.

3. E.J. Chikofsky and J.H. Cross II, “Reverse Engineering and Design Recovery: A
Taxonomy,” IEEE Software, Jan./Feb. 1990, pp. 13–17.

4. N. Ganti and W. Brayman, Transition of Legacy Systems to a Distributed
Architecture, John Wiley and Sons, New York, 1995.

5. S.R. Tilley and D.B. Smith, Perspectives on Legacy System Reengineering,
Software Eng. Inst., Carnegie Mellon Univ., Pittsburgh, 1996.

6. “Renaissance Project—Methods and Tools for the Evolution and
Reengineering of Legacy Systems,” Esprit Project, Lancaster University,
Lancaster, UK, 1997; http://www.comp.lancs.ac.uk/computing/research/cseg/
projects/renaissance/RenaissanceWeb/ (current, July 1999).

Nuts

Nuts

B
o

lts

B
o

lt
s



input data and process system output.
Despite screen scraping’s commercial success, it

is still very much a short-term solution. Implementing
a GUI in a LIS does not address many of the serious
problems such systems face, including overloading,
static functionality, and high maintenance costs. In
many cases, screen scraping actually compounds an
organization’s maintenance problems, as the func-
tionally superfluous screen-scraping software will it-
self require maintenance.

MIGRATION

When redevelopment is unacceptably risky and
wrapping is unsuitable, migrating the LIS to an open
environment can be the best alternative. Although
it is a much more complex undertaking than wrap-
ping, if successful, migration’s long-term benefits
are also greater. For example, migration offers more
flexibility, better system understanding, easier main-
tenance, and reduced costs.

Although migrating LISs is a major research and
business issue, there are few comprehensive ap-
proaches to migration. Given the bewildering array
of LISs in operation and the problems they pose, it
seems unlikely that a single generic migration
method would be suitable for all systems. However,
a set of comprehensive guidelines to drive migra-
tion is essential.

Before embarking on a migration project, engi-
neers, management, and users should undertake an
intensive study to find the most appropriate ap-
proach for solving their organization’s LIS problems.
To the best of our knowledge, the literature contains
no successful, practical experience reports from pro-
jects using a comprehensive migration approach.
The few (successful) migration-like projects reported
in the literature describe ad hoc solutions to the
problem.9,10

LIS migration issues
LIS migration essentially moves an existing, op-

erational system to a new platform, retaining the
legacy system’s functionality and causing as little
disruption to the existing operational and business
environment as possible. This is a significant chal-
lenge, and it could quite legitimately encompass nu-
merous areas of software engineering, including
program and database understanding, system de-
velopment, and testing.

Figure 2 shows important practical issues in mi-

gration, divided roughly according to those related
to the LIS and those related to the target system.
Some migration issues are common to all software-
engineering projects and are widely researched and
supported. These include target system develop-
ment, testing, and database model selection. Other
issues are specific to migration and have yet to be
extensively researched. These include target system
database population and cut-over with mission-
critical support.

Because a LIS already meets some of the business
and user requirements demanded of the target sys-
tem, it is important to understand its operations and
interactions. Poor LIS understanding can lead to in-
correct target-system requirement specifications and
ultimately to failed migration projects. Thus, to begin,
engineers should have a good understanding of the
LIS data, interfaces, and applications that require tool
support.1,11 Although some support is available, en-
gineers may have to develop specialized tools to fit
their LIS and target systems.10 They might also clas-
sify their LIS by type and properties, and develop ap-
propriate migration guidelines.12

Database population
To populate the target database with LIS data, en-

gineers first map the LIS schema onto the target
schema13 and work out the required transformation.
Data must also be mapped at instance level14 before
migration. Data can also be migrated in separate
steps, by dividing it into independent fragments. If
LIS data is of poor quality, data cleaning might be re-
quired.10 If so, decisions must be made about which
method to use15 and when to use it: before, during,
or after migration.

Testing and functionality issues
Up to 80 percent of a migration engineer’s time

can quite legitimately be spent testing the target sys-
tem,1 which is an ongoing process during migration.
Given the legacy system’s mission-critical nature, tar-
get system outputs must be completely consistent
with those of the LIS. Thus, it is inadvisable to intro-
duce new functionality to the target system during
the migration project.1,16,17 When functionality is the
same, engineers can directly compare outputs to de-
termine the target system’s validity. However, on a
practical level, migration projects are often expected
to add functionality to justify the project’s expense
and risk. In this case, the LIS should be migrated first.
New functionality can be incorporated into the tar-
get system after the initial migration.

1 0 6 I E E E  S o f t w a r e S e p t e m b e r / O c t o b e r  1 9 9 9

Nuts

Nuts

B
o

lts

B
o

lt
s



Cut-over
The last step in the migration project is the cut-

over from the LIS to the target system. Three differ-
ent transition strategies have been proposed:17

1. The cut-and-run strategy consists of switching
off the LIS and turning on a new feature-rich re-
placement (see Figure 3a).

2. With the phased interoperability strategy, the
cut-over is performed in small, incremental steps:
each step replaces a few LIS components (applica-
tions or data) with corresponding target compo-
nents (see Figure 3b).

3. In the parallel operations strategy, LIS and tar-
get systems operate simultaneously, with both sys-
tems performing all operations. During this period,
the target system is continually tested; once it is fully
trusted, the LIS is retired.

The cut-and-run strategy is, in many cases, un-
realistic because of the risk: cutting over to the tar-
get system in a single step puts the organization’s
whole information flow in an untried and thus un-

trusted system. On the other hand, phased inter-
operability is potentially highly complex. To be suc-
cessful, this method requires the migration engi-
neer to split LIS applications into functionally
separate modules or to separate the data into por-
tions that can be independently migrated. The
monolithic and unstructured nature of most legacy
systems makes such a step-wise approach difficult,
if not impossible.

In addition, the management of such a process
would be challenging, as it is likely to involve het-
erogeneous environments and distributed applica-
tions and databases.13,18 Although incremental LIS
migration is designed to reduce migration-phase
risk, its inherent complexity might actually increase
the overall migration risk.

Each of these proposals is an active research area
and may not be mature enough for use in a mission-
critical environment. At this point, a concrete tran-
sition strategy for a particular migration project
would probably involve a combination of these ap-

S e p t e m b e r / O c t o b e r  1 9 9 9 I E E E  S o f t w a r e 1 0 7

Nuts

Nuts

B
o

lts

B
o

lt
s

Legacy
data

Target system

Cut-over

User
training

Database
population

Target
architecture

System
development

Hierarchical

Relational

Legacy system

Interface Applications Classification

Data
model

Data
cleaning

Schema
mapping

Migration Properties

Understanding

Tool support

Methods

Tool support

Workflow

Data
mapping

Data
division

ClassificationTime Method

Application
areas

Mission-critical
support

Flat file

Figure 2. Classification of LIS migration issues. The issues common to software engineering projects, such as testing

and database model selection, have been widely researched; those related specifically to migration, such as populat-

ing the target system’s database, have received less attention.



proaches, applied to different LIS components. More
research is needed to identify the best strategies for
the cutting-over phase, which is central to migra-
tion project success.

MIGRATION METHODS

Current approaches to LIS problems tend to offer
short-term solutions to long-term problems. They
also fail to recognize that the essence of migration
is to reuse LIS components in the replacement sys-
tem, and to operate the legacy system while the re-
placement system is being developed.

Many migration approaches, including the
Chicken Little approach described later, let the
legacy and its replacement system interoperate via
a gateway. While such approaches can be successful,
gateways suffer from serious limitations. For exam-
ple, such approaches 

♦ offer no support for trans-
action management and thus no
way to ensure data consistency
between the legacy and target
systems;

♦ provide no way to homog-
enize the structural and repre-
sentational differences between
the two database schemas; and

♦ are difficult to build and
operate.

Our recognition of such prob-
lems led us to develop the Butter-
fly Methodology, which addresses
many software development top-
ics, including target system devel-
opment and testing, user training,
and other complex tasks unique
to migration. Above all, however,
we recognized that data is an im-
portant business resource and
thus focused our efforts on devel-
oping a method to support data
migration.

The Chicken Little Strategy
Michael Brodie and Michael

Stonebraker propose the Chicken
Little strategy, which lets LIS and
target systems interoperate dur-
ing migration using a mediating
module, generally known as a

“gateway.”2 The Chicken Little strategy offers an 11-
step plan for cutting over from the LIS to the target
system. Each step is incremental.

1. Analyze the LIS.
2. Decompose the LIS structure.
3. Design the target interface.
4. Design the target application.
5. Design the target database.
6. Install the target environment.
7. Create and install necessary gateways.
8. Migrate the legacy databases.
9. Migrate the legacy applications.
10. Migrate the legacy interfaces.
11. Cut over to the target information system.
Chicken Little is a refinement of the Composite

Database Approach2 (see Figure 4), which is also
known as stepwise migration.17 Using this strategy,
LIS applications are gradually rebuilt on the target
platform using modern tools and technology. The
target system is initially quite small, but grows as the

1 0 8 I E E E  S o f t w a r e S e p t e m b e r / O c t o b e r  1 9 9 9

Nuts

Nuts

B
o

lts

B
o

lt
s

Gateway(s)

Legacy
information

system

Cut-over1

Legacy data

Legacy
information

system

Legacy data

(Partial)
legacy
information
center

Legacy data

Target database(s)

Target application(s) modules

Composite information system

Cut-over

M1

Target
environment

Legacy environment

Target data

(a)

(b)

M1 M2
M3 Mn

Figure 3. Legacy information system cut-over is typically performed using a com-

bination of the (a) cut-and-run strategy and the (b) phased-interoperability strategy.



migration progresses. Eventually,
the target system performs all the
functionality of the LIS, which can
then be retired. During migration,
the LIS and target systems form a
composite information system.

Chicken Little uses a forward
gateway to translate and redirect
calls to the target database ser-
vice and to translate the target
database’s results for use by LIS
applications. A reverse gateway
maps the target data to the LIS
database. This mapping can be
complex and slow, thus affecting
new applications. Also, many of
the complex features found in
modern databases (such as in-
tegrity, consistency constraints,
and triggers) might not exist in
the archaic LIS database and
hence cannot be exploited by
new applications.

The Chicken Little approach
can use data duplicated across
the LIS and target databases. To
maintain data integrity and con-
sistency, a transaction coordinator intercepts all
update requests from LIS or target applications and
identifies whether they refer to data replicated in
both databases. If they do, the update is propa-
gated to both databases using a two-phase com-
mit protocol (as in a distributed database18). As
Brodie and Stonebraker themselves point out, up-
date consistency across heterogeneous informa-
tion systems is a complex technical problem and
an open challenge for researchers.2 Thus, although
the Chicken Little approach has the advantage of
breaking the migration process into a series of well-
designed stages, it can involve highly complex
strategies to ensure consistency between the tar-
get and LIS databases.

The Butterfly methodology
Our Butterfly methodology5 assumes that al-

though the LIS must remain operable throughout
migration, the LIS and target system need not in-
teroperate during the process. This assumption elim-
inates the need for gateways and their potential
complexity.

Successfully migrating the data management
service from the LIS to the target system is the key to

overcoming many LIS problems.2,10 The Butterfly
methodology thus focuses on LIS data migration,
and develops the target system in an entirely sepa-
rate process.19

Once data migration commences, the LIS data
store is set to read-only. The data access allocator
(DAA) redirects LIS data manipulations; the results
are stored in a series of auxiliary data stores, or
TempStores. Figure 5 shows the migration process
using Butterfly methodology. While the legacy data
is being migrated, the DAA stores all manipulations
to the first TempStore (TS1). When the legacy appli-
cations issue a data request, the DAA will retrieve
the correct data from either the legacy data or TS1.
Once LIS data has been migrated, the target data-
base contents must be updated with the data stored
in TS1, which must also be migrated.

The Chrysaliser data transformer migrates LIS
and TempStores data to the target system. When
Chrysaliser is migrating the legacy data, all manip-
ulations are stored in TS1; when it is migrating TS1

data, manipulations are stored in TS2; and so on. If
the Chrysaliser migrates a TempStore faster than the
LIS can build the next one, the TempStore size de-
creases at the next iteration.

S e p t e m b e r / O c t o b e r  1 9 9 9 I E E E  S o f t w a r e 1 0 9

Nuts

Nuts

B
o

lts

B
o

lt
s

Mh Mn

Mapping
table

Target data

M1

SI1 UI1

M j

SI j Uj j

Forward gatewayReverse gateway

SIk UIk S Im UIm SI UI SIh UIh S In UIn

Target DBMS

Legacy component

Key:

Target component

SI: System interface UI:User interface M:Application module

Legacy data/
database
service

Coordinator

Figure 4. The Chicken Little strategy is a refinement of the composite database ap-

proach, which gradually rebuilds LIS applications on the target platform.



In the Butterfly methodology’s final step, the
DAA and Chrysaliser act as a data migration engine
for the LIS data migration. Throughout migration,
the LIS operates normally until the size of the last
TempStore reaches a predetermined threshold value,
such that the amount of time necessary to migrate
this last TempStore is sufficiently small to let the LIS
be brought down without causing serious inconve-
nience to the core business. When this condition is
reached, the legacy system can be switched off
(frozen), the last TempStore migrated, and the tar-
get system turned on, having reached data consis-
tency with the LIS.

Using the Butterfly methodology, the LIS is ac-
cessible for all but a very brief period of time and
never needs to interoperate with the target system.
Also, at any stage prior to cut-over, the process is re-
versible and migration can be safely stopped.

Because LIS migration has received scant atten-
tion in the research community until relatively

recently,1 all aspects of migration require more study.
Methodologies such as Chicken Little and Butterfly
address some key migration issues and are a useful

starting point for further research.
Another promising research direction aims to

identify different types of legacy systems and de-
velop specific migration processes and methodolo-
gies for each.12 A next step is to identify and develop
specific tools to support these processes and aid mi-
gration engineers in performing time-consuming
and error-prone tasks.

Finally, we need project reports to support all
areas of LIS migration. Such practical case studies
can provide a better understanding of the legacy
problem in general and the migration process in
particular. These reports would also help identify
appropriate classifications for legacy systems, and
thus further aid the development of specific
processes and tools to address the problems inher-
ent in each. ❖

ACKNOWLEDGMENTS
We thank Ray Richardson and Donie O’Sullivan from

Broadcom Éireann Research and Vincent Wade from the

1 1 0 I E E E  S o f t w a r e S e p t e m b e r / O c t o b e r  1 9 9 9

Nuts

Nuts

B
o

lts

B
o

lt
s

Target
appm

Legacy
datastore

Frozen

Operative
legacy
data

Legacy system Target system

Graphic user interfaces

TS1 TS2 TSn TSn+1

Data access allocator

Legacy interface
+

Legacy applications
+

Database services

Target
app1

Target
app2

Target databases

Middleware database services

Chrysaliser

Turned on for
development
and testing

Turned on for
development
and testing

Figure 5. The Butterfly methodology splits target system construction into a separate task, and focuses on migrating

data. The Chrysaliser migrates the LIS  data, stored in TempStores (TS1...TSn), to the target system. The data access allo-

cator populates the TempStores with legacy data.



Computer Science Department in Trinity College Dublin for
their insightful comments on previous versions of this article.

REFERENCES
1. K. Bennett, “Legacy Systems,” IEEE Software, Jan. 1995, pp.

19–73.

2. M. Brodie and M. Stonebraker, Migrating Legacy Systems:
Gateways, Interfaces and the Incremental Approach, Morgan
Kaufmann, San Francisco, 1995.

3. S.R. Tilley and D.B. Smith, Perspectives on Legacy System
Reengineering, Software Eng. Inst., Carnegie Mellon Univ.,
Pittsburgh, 1996.

4. “Renaissance Project—Methods and Tools for the Evolution
and Reengineering of Legacy Systems,” Esprit Project,
Lancaster Univ., Lancaster, UK, 1997; http://www.comp.lancs.
ac.uk/computing/research/cseg/projects/renaissance/
RenaissanceWeb (current, July 1999).

5. B. Wu et al., “The Butterfly Methodology: A Gateway-Free
Approach for Migrating Legacy Information Systems,” Proc. Int’l
Conf. Eng. Complex Computer Systems (ICECCS ’97), IEEE
Computer Soc. Press, Los Alamitos, Calif., 1997, pp. 200–205.

6. N. Weiderman et al., “Implications of Distributed Object
Technology for Reengineering,” Tech. Report CMU/SEI-97-TR-
005, Carnegie Mellon Univ., Pittsburgh, 1997.

7. N. Ganti and W. Brayman, Transition of Legacy Systems to a
Distributed Architecture, John Wiley and Sons, New York, 1995.

8. H.M. Sneed, “Encapsulating Legacy Software for Use in
Client/Server Systems,” Proc. Third Working Conf. Reverse Eng.,
IEEE Computer Soc. Press, Los Alamitos, Calif., 1996, pp.
104–119.

9. A.J. O’Callaghan, ed., Practical Experiences of Object Technology,
Stanley Thornes Publishers, Cheltenham, UK, 1996.

10. D. Aebi, “Data Reengineering: A Case Study,” C.J. van
Rijsbergen, ed., Proc. Advances in Databases and Information
Systems ( ADBIS97), Springer-Verlag, Berlin, 1997.

11. J.L. Hainaut et al., “Database Design Recovery,” Proc. Conf.
Advanced Information Systems Eng. (CAiSE96), Lecture Notes in
Computer Science 1250, Springer-Verlag, Berlin, 1996, pp. 
272–300.

12. P. Stevens and R. Pooley, “Software Reengineering Patterns,”
Proc. SIGSOFT’98 6th Int’l Symp. Foundations of Software Eng.,
ACM Press, New York, 1998.

13. S.T. March, ed., Special Issue on Heterogeneous Databases,
ACM Computing Surveys, Vol. 22, No. 3, 1990.

14. S.B. Davidson and A.S. Kosky, “WOL: A Language for Database
Transformations and Constraints,” Proc. 13th Int’l Conf. Data
Eng., IEEE Computer Soc. Press, Los Alamitos, Calif., 1997, pp.
55–65.

15. K. Kukich, “Techniques for Automatically Correcting Words in
Text,” ACM Computer Surveys, Vol. 24, No. 4, 1992, pp. 377–439.

16. B. Beizer, Software Testing Techniques, second ed., Van
Nostrand Reinhold, New York, 1990.

17. A.R. Simon, Systems Migration—A Complete Reference, Van
Nostrand Reinhold, New York, 1992.

18. D. Bell and J. Grimson, Distributed Database Systems, Addison
Wesley Longman, Reading, Mass., 1992.

19. J. Bisbal et al., “Building Consistent Sample Databases to
Support Information System Evolution and Migration,” Proc.
Database and Expert Systems Applications (DEXA98), Lecture
Notes in Computer Science 1460, Springer Verlag, Berlin, 1998,
pp. 196–205.

S e p t e m b e r / O c t o b e r  1 9 9 9 I E E E  S o f t w a r e 1 1 1

Nuts

Nuts

B
o

lts

B
o

lt
s

Jesús Bisbal is a doctoral student with
the Department of Computer Science in
Trinity College Dublin. He is currently
working on the Synex project, a Euro-
pean Union funded project that is devel-
oping an open, generic, and secure
means for sharing healthcare records
and related medical data. Previously, he

worked on the Milestone project, which set out to develop a
methodology for legacy information systems migration. His
research interests include legacy migration, health informatics,
database theory, and data mining. Bisbal received his BA and
BAI degrees in computer science from Technical University of
Catalonia, Spain. Contact him at Jesus.Bisbal@cs.tcd.ie.

Deirdre Lawless is a systems analyst for
Coras Iompair Eireann, Ireland’s state-
owned national transport company.
After earning a BSc in computer science
from University College Dublin, Ireland,
she worked in the software industry for
several years. She recently completed
her MSc degree in research with the

Department of Computer Science in Trinity College Dublin.
Contact her at Deirdre.Lawless@cie.ie.

About the Authors

Bing Wu is a lecturer in the Department
of Computer Science at Dublin Institute
of Technology. His current research in-
terests include legacy system migration,
health informatics, modeling and engi-
neering of distributed information sys-
tems, and application of active data-
bases. He received his BSc and MSc in

computer science from the National University of Defence
Technology, China, and his PhD in computation from the
University of Manchester Institute of Science and Technology,
England. Contact him at bwu@maths1.kst.dit.ie.

Jane Grimson is an associate professor
and founder of the Knowledge and Data
Engineering Group at the Department
of Computer Science, Trinity College,
Dublin, where she is also co-chair of the
Centre for Health Informatics and the
dean of Engineering and System
Sciences. Her research focuses on het-

erogeneous, distributed multimedia databases, knowledge-
based systems, and healthcare informatics. She is a fellow of
the Irish Computer Society, the British Computer Society, and
the Institution of Engineers of Ireland, the latter of which she
will serve as president in 1999-2000. She is also a member of
the ACM and the IEEE, and a Chartered Engineer. Grimson
holds a BA and BAI in engineering from Trinity College Dublin,
a MSc in computer science from the University of Toronto,
and a PhD in computer science from the University of
Edinburgh. Contact her at Jane.Grimson@cs.tcd.ie.

Address questions about this article to Bisbal at the
Knowledge and Data Engineering Group, Computer Science
Department, Trinity College Dublin, Dublin 2, Ireland;
Jesus.Bisbal@cs.tcd.ie.


