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Abstract

There are quite a number of photographs captured under

undesirable conditions in the last century. Thus, they are of-

ten noisy, regionally incomplete, and grayscale formatted.

Conventional approaches mainly focus on one point so that

those restoration results are not perceptually sharp or clean

enough. To solve these problems, we propose a noise prior

learner NEGAN to simulate the noise distribution of real

legacy photos using unpaired images. It mainly focuses on

matching high-frequency parts of noisy images through dis-

crete wavelet transform (DWT) since they include most of

noise statistics. We also create a large legacy photo dataset

for learning noise prior. Using learned noise prior, we can

easily build valid training pairs by degrading clean images.

Then, we propose an IEGAN framework performing image

editing including joint denoising, inpainting and coloriza-

tion based on the estimated noise prior. We evaluate the

proposed system and compare it with state-of-the-art image

enhancement methods. The experimental results demon-

strate that it achieves the best perceptual quality. Please see

the webpage https://github.com/zhaoyuzhi/Legacy-Photo-

Editing-with-Learned-Noise-Prior for the codes and the

proposed LP dataset.

1. Introduction

Restricted by the imaging technology, it remains incom-

plete parts and noise in legacy grayscale photos. It is highly

challenging to restore them due to the great information loss

of real world. Also, there is high demand for high-quality

and colorful legacy photos. Recently, as deep learning tech-

niques have been demonstrated to successfully applied to

many low-level computer vision tasks, the legacy photo en-

hancement becomes possible. In this paper, we would first

discover the representation of blind noise from legacy im-

ages as a prior, and then perform image editing based on the

estimated noise prior.

Editing legacy photos is highly challenging since there

are multiple degradation types in legacy photos. Firstly,

there exist noises with unknown distribution and intensity.

The noises may be caused by many reasons such as sen-

sor noise, camera distortion, jpeg compression, preserva-

tion technology, etc. However, most of current denoisers

[53, 41, 54, 29, 13, 30] are trained with specific noise mod-

els such as Gaussian and Poisson distribution. Directly ap-

plying those denoisers to legacy photos cannot well enhance

the images [1]. Secondly, it remains flaws or cracks in

legacy photos, which are not global noise but regional ar-

tifacts. Moreover, the levels of the artifacts are different

for distinct pixels, which are hard to estimate. Finally, the

grayscale legacy photos lack of color. Thus, the coloriza-

tion process is significant to attach vivid colors to them.

In conclusion, the pipeline of legacy photo editing can be

categorized into three parts: denoising, inpainting, and col-

orization.

To address the issues, we propose a system to implement

the pipeline sequentially. Firstly for denoising, the noise

distribution of legacy photos is always unknown. How-

ever, the current denoisers pre-define a fixed noise model.

It is not practical to directly apply the denoisers to process

legacy photos with blind noise. If denoised images are not

clean enough, the following inpainting and colorization will

also be affected. Moreover, there are no pairs of degraded

and clean target legacy photos (i.e. legacy photos are nor-

mally noisy). There may be three approaches to address the

issue such as estimating noise model [2, 47], unsupervised

training [26, 3] and learning blind noise distribution [6, 52].

Since the camera settings are unknown (i.e. the ISP of old

cameras is extremely hard to acquire), and the unsupervised

training methods also assume a noise distribution, we alter-

natively propose to learn the noise prior on unpaired legacy

photos and clean images by a NEGAN.

Based on the CycleGAN framework [12, 59], we pro-

posed the NEGAN to estimate the blind noise model.

Firstly, we notice that the noisy regions normally include

more high-frequency components than common regions;

whereas flatten (or noise-free) areas comprise the low-

frequency components. Thus, we utilize discrete wavelet
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Figure 1. The edited real legacy photo samples by proposed method (chosen from LP dataset, captured around 1950). The first, second and

third row denote the real legacy photos, image enhancement results by [13, 51, 55] sequentially and the proposed pipeline, respectively.

IEGAN denoised result IEGAN final result

SGN [13] SGN, Deepfillv2, CIC [13, 51, 55]

Input patch from LP dataset

Figure 2. The details of edited real legacy photo by 3 samples.

The left part includes the input patches. The right part includes

denoised result, final result by the proposed system, denoised re-

sult by [13], and previous pipeline [13, 51, 55], respectively.

transform (DWT) to extract the high-frequency components

of generated images and real noisy photos, which are used

for computing the domain adversarial loss. Secondly, we

randomly select patches rather than resizing whole images,

in order to maintain the low-level statistics. In addition, we

collect a legacy photo dataset (LP dataset), which contains

more than 25000 old photos with different levels of noises.

If the NEGAN is well trained, we can obtain training

pairs by manually degrading the clean images from a large-

scale dataset, such as ImageNet [39]. The degraded images

have similar statistics with legacy photos. Thus, the fol-

lowing inpainting and colorization processes are based on

paired data. The solutions can be briefly categorized into

reference-based and automatic. To improve the quality of

generated images, we propose to perform the image edit-

ing by an IEGAN, i.e. reference-based inpainting and col-

orization. For the inpainting, it is hard to annotate the real

cracks on each legacy photo. Thus, we alternatively col-

lect some templates for modelling the cracks. By multiply-

ing the cracks and clean images, we can obtain the masked

images. While for colorization, we use the color scribbles

as additional input guidance to enhance colorization real-

ity. The adversarial losses used in IEGAN aim to improve

perceptually quality of generated images.

We evaluate the proposed pipeline on ImageNet [39] val-

idation set. Compared with previous pipelines (i.e. denois-

ing with AWGN, inpainting, and colorization networks), the

proposed system achieves the best perceptual performance.

Also, we visualize some samples in LP dataset in Figure 2

(resolution 1760×1760) and details in Figure 2 (resolution

256×512). Since the images in LP dataset generally have

little cracks, we manually add the masks to real legacy pho-

tos for better visualization.

The main contributions of this paper are as follows:

1) We propose a novel NEGAN for estimating blind

noise of legacy photos using unpaired data;

2) We create a new legacy photo dataset (LP dataset) in-

cluding different types of degradation of real legacy photos

for learning noise prior;

3) We propose an IEGAN that jointly performs denois-

ing, inpainting and colorization in a user-guided way based

on the noise prior estimated by NEGAN.

2. Related Work

Image Denoising. Image denoising is a fundamental

problem in low-level vision. Recently, researches have
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shown that deep learning technologies outperform tradi-

tional methods such as bilateral filtering, BM3D [9], non-

local algorithm [4]. Mao et al. [33] designed U-Net

shaped network to perform image denoising, which was im-

proved by DnCNN [53] using residual learning and Mem-

Net [41] using long memory. Using a tunable noise level

map as the input, FFDNet [54] handled a wide range of

noise levels and removed spatially variant noise. Consider-

ing both Gaussian-Poisson Model and in-camera processing

pipeline, CBDNet [14] further improved the blind denoising

ability by embedding a noise estimation network. To fur-

ther improve the network architecture, MWCNN [29] uti-

lized DWT to avoid down-sampling information loss. SGN

[13] greatly decreased the memory consumption and run-

time, while it was further improved by DSWN [30] using

residual path and reconstruction path.

Image Inpainting. The image inpainting denotes the

process of filling cracks of images. Normally, the masks of

corresponding masked images are known. Pathak et al. [36]

firstly adopted a conditional GAN [12] for context comple-

tion. It was enhanced by jointly utilizing global and local

discriminators by Iizuka et al. [19] to strengthen sharpness

for filled regions. Liu et al. [28] introduced a partial con-

volution with automatically updated status to deal with ir-

regular input masks. It was improved by gated convolution

[51]. It is the combination of vanilla convolution and gate

state, which generalizes the partial convolution by a learn-

able dynamic feature selection mechanism. The EdgeCon-

nect [35] proposed an edge generator and image completion

network to minimize blurry effect. Xiong et al. [49] further

enhanced it for foreground-aware image inpainting.

Image Colorization. The existing colorization meth-

ods can be briefly categorized into three classes: scribble-

based [27, 50, 7, 56], example-based [20, 37, 48, 16, 17],

and fully-automatic [8, 55, 18, 10]. The former two kinds

of approaches are user-guided that learn a mapping func-

tion to propagate user hint to the grayscale image. Since

grayscale images only include the edge information, the re-

sults are highly relevant to the reasonability of human hints.

On the other hand, fully-automatic algorithms directly solve

an end-to-end objective from grayscale images to corre-

sponding color embeddings. Normally, these approaches

are trained on a very large dataset, which is essential for

the system to exploit necessary information from the large-

scale database without any human intervention.

Generative Adversarial Network for Image Enhance-

ment. The image enhancement is a general idea to im-

prove the image quality. It is addressed by a list of sub-

tasks including demosaicking [58, 5], deblurring [24, 25],

super-resolution [45, 57, 44], etc. The performance of im-

age enhancement has been greatly improved through the

data-driven deep learning approaches. Generative adversar-

ial network (GAN), developed by Goodfellow et al. [12],

defines a minmax game between generator and discrimina-

tor. The goal of generator is producing convincing sam-

ples which fool discriminator, so as to distinguish generated

samples from ground truth. The first well-known general

GAN-based image enhancer is Pix2Pix [21] that translates

the images from two different domains. It was improved by

Wang et al. [43] for processing high-resolution images and

Zhu et al. [59] for multimodal generation.

3. Methodology

3.1. Problem Formulation

Suppose the clean images are from the domain Z and

legacy noisy images are in domain N . The target is to pro-

cess the legacy photo n ∈ N and obtain colorful clean im-

age z ∈ Z. The images in both domain Z and N are totally

different in terms of noise, content, and color.

However, the spatial pixels of clean image z and legacy

photo n are not aligned. To constitute valid training pairs,

we propose to decolorize z and add pseudo noise to clean

image x ∈ X to obtain image x̂ ∈ N , which exists similar

low-level characteristics of n ∈ N . We utilize a neural

network G to simulate the blind noise for clean image x.

This transformation process can be formulated as:

x̂ = G(x). (1)

In order to recover colorful clean image z from the artifi-

cial degraded image x̂, we summarize the process as de-

noising, inpainting, and colorization, respectively. Simi-

larly, they are implemented by neural networks due to the

highly non-linear process. To simulate random mask of

legacy photos, we use several binary mask samples m to

process x̂ and obtain masked degraded image ẍ = x̂ × m.

In addition to input image, we provide the masks and color

scribbles to edit final colorized image and obtain sound per-

ceptual quality. It can be represented as:

z = col(inp(den(ẍ)), s), (2)

where col(∗), inp(∗) and den(∗) represent the colorization,

inpainting, and denoising operations, respectively. The s is

the color scribble provided by user. In practice, we combine

den(∗) and inp(∗) into one architecture C to accelerate in-

ference, while col(∗) is implemented by network R.

3.2. Training and Testing Pipeline

Figure 3 shows the training of the proposed pipeline.

Specifically, the left and right part of Figure 3 correspond

to representations of equation 1 and 2, respectively. They

are concluded by two architectures, i.e. NEGAN and IE-

GAN, where NEGAN comprises the sub-network F and G,

IEGAN comprises the sub-network C and R. The NEGAN

is trained firstly. Then, it is used to degrade clean images,
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Figure 3. Illustration of training pipeline of proposed method. It contains four convolutional neural networks G, F , C and R. The left

part (NEGAN) represents the process that learns noise prior. The right part (IEGAN) shows image editing procedure including the joint

denoising, inpainting and scribble-based colorization.

C

Completed image

Colorized

image

mask color scribble

Input

legacy image
R

Figure 4. Illustration of testing stage of proposed system. The

user-provided mask and color scribble map assist the system to

produce photorealistic colorizations from legacy photos.

which are for IEGAN training. To stabilize training of IE-

GAN sub-networks, we propose to enforce a loss on C di-

rectly. Figure 4 shows the testing process, where only C, R

with additional mask and color scribble are adopted to edit

legacy photos. The network architectures and the training

details will be presented in following paragraphs.

3.3. Noise Estimation GAN

The Noise Estimation GAN (NEGAN) including G and

F aims to implement equation 1, i.e. NEGAN translates

the images x ∈ X to noisy image domain N . Since there

is no evident noise model and paired training data in our

application, the unique characteristics of noise become sig-

nificant. A complete image is composed of low-frequency

and high-frequency parts and we notice the noise occupies

most high-frequency components of images. Based on the

observation, we propose to utilize a clean image x ∈ X and

keep the original low-frequency part xL. Then, we replace

its high-frequency component xH with statistics of noisy

image from domain N to implement the translation. There-

fore, we propose a Noise Estimation GAN (NEGAN) based

on unpaired images to learn the implicit noise distribution,

which is called noise prior in following text.

To divide the low-frequency and high-frequency parts,

we need to map the images into frequency domain. The

common way is to utilize low-pass and high-pass filters, e.g.

Gaussian filter and its inverse. It can be defined as:

x = xL + xH = w ∗ x+ (δ − w) ∗ x, (3)

where x, w, δ represent clean image, low-pass filter, and

impulse function, respectively, while (δ − w) is viewed as

high-pass filter since it is the reverse of filter w. The “∗”

is convolution operator. But kernel w is often set artifi-

cially, which cannot well separate different frequencies. To

improve the functionality of the kernel, we introduce dis-

crete wavelet transform (DWT) for frequency division and

inverse discrete wavelet transform (IDWT) for image con-

struction. Suppose two components xL and xH of input

image x are derived from DWT, the whole learning losses

for training NEGAN can be represented as:

Llow(G,F ) = E[||G(x)L − xL||1]

+ E[||F (G(x))L − xL||1],
(4)

Lhigh(G,DN , X,N) = Ex∼X [||(DN (G(x)H))2||]

+ En∼N [||(DN (nH)− 1)2||],
(5)

Lcycle(G,F ) = Ex∼X [||F (G(x))− x||1]

+ En∼N [||G(F (n))− n||1],
(6)

LNEGAN = λlowLlow(G,F ) + λcycleLcycle(G,F )

+ Lhigh(G,DN , X,N) + Lhigh(F,DX , X,N),
(7)
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where G, F , DX , DN denote generator from domain X to

N , generator from domain N to X , and their corresponding

discriminators, respectively. The x and n are random sam-

ples from both domains. The Lhigh utilizes the LSGAN

loss term [32]. The Lhigh only matches the low-frequency

part of images, which is different from CycleGAN. Also,

the discriminators distinguish between fake and real noisy

images by matching only the high-frequency part.

3.4. Image Editing GAN

The second step of proposed method is to recover a high-

quality image from the pseudo noisy image by an Image

Editing GAN (IEGAN). The inference of IEGAN is di-

vided into two sub-networks: inpainting network (C) and

colorization network (R). The C generates a complete

grayscale image and the R colorizes the output of C. As

shown in Figure 3, the proposed IEGAN framework re-

ceives pseudo noisy grayscale image with additional mask

and color map guidances.

We utilize L1 loss for both sub-networks C and R. The

losses for them share same representations. It is defined as:

L1 = E[||t1 − t2||1], (8)

where the two variables t1 and t2 equal to ŷ and x for C,

meanwhile they equal to ẑ and z for R. The input ẍ = x̂⊙m

is a masked grayscale image with an additional Gaussian

noise added. The outputs ŷ = C(ẍ,m) and ẑ = R(y, s).
The definitions can be found in Figure 3.

To boost perceptual quality of generated images, we

adopt perceptual loss [22], which is defined as:

Lpercep = E[||φl(t1)− φl(t2)||1], (9)

where φl(∗) represents the features of the l-th layer of the

pre-trained CNN. In our experiment, we use the conv4 3

layer of VGG-16 [40] network, which is pre-trained on Im-

ageNet [39] dataset.

Instead of traditional GAN training method [12], we uti-

lize the PatchGAN [21] with LSGAN critic [32] to mini-

mize the Pearson χ2 divergence between the generated sam-

ples and ground truth. It is defined as:

LG =
1

2
E[(D(t1)− 1)2], (10)

LD =
1

2
E[(D(t2)− 1)2] +

1

2
E[(D(t1))

2]. (11)

The total loss functions of IEGAN can be defined as:

LIEGAN = L1C+L1R+λpercepLpercepR+λGLGR, (12)

where inpainting network C only adopts L1 loss term L1C .

The colorization network R utilizes all three loss terms

L1R, LpercepR, and LGR. The definitions of the loss terms

can also be found in Figure 3.

Figure 5. Illustration of mask templates used in this paper.

4. Experiment

4.1. Implementation Details

Dataset. We use LP dataset to include enough modes

of noisy image domain N , for NEGAN training. There are

over 25000 grayscale legacy photos with different resolu-

tions in the dataset. Also, we choose ImageNet [39] (1.3

million images) for clean image domain X . It contains

1000 categories, which is general and robust for learning the

mapping. At training, we randomly select unpaired sample

n ∈ N and x ∈ X . The images are randomly cropped to

256×256 local patches and normalized to range of [0, 1].

Moreover, the binary mask samples m is randomly cropped

from templates, as shown in Figure 5.

Network Architecture. For NEGAN architecture, the

generators adopt 8 residual blocks [15] as transformer with

residual connection between input and output. There are

no downsampling and upsampling operations since they

may affect the low-level details. The discriminators adopt

16 × 16 PatchGAN architecture and all layers are spectral

normalized [34]. The pre-trained NEGAN produces corre-

sponding degraded images from input while maintains the

low-frequency parts. For IEGAN architecture, the genera-

tor C and R adopt U-Net structure [38]. The convolutional

layer of C is replaced by gated convolution [51] to learn

adaptive inpainting. The discriminator DC and DR adopt

convolution part of a VGG-16 architecture while the final

output is one channel. The networks are instanced normal-

ized [42]. Each layer is LeakyReLU activated [31].

Optimization. At first stage, the parameters of all net-

works are initialized using Xavier method [11] and the

learning rate is initialized as 1×10−4. The NEGAN and two

sub-networks of IEGAN are trained independently for 20

epochs. At second stage, all networks are optimized jointly.

The learning rate is fixed to 5 × 10−5 while the system is

trained for another 20 epochs. The learning rate is fixed in

both stages. We use Adam optimizer [23] with β1 = 0.5, β2

= 0.999 and batch size of 32. Moreover, we randomly select

0 - 30 color scribbles as hint for network R. The hyperpa-

rameters λpercep, λG equal to 10 and 0.1, respectively. We

implement our system with PyTorch framework and train

it on 4 NVIDIA Titan Xp GPUs. It takes approximately 2

weeks to complete the whole training process.
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[53, 51, 55] [13, 51, 55] [53, 51, 56]v1 [53, 51, 56]v2 [13, 51, 56]v1 [13, 51, 56]v2 Proposed Ground truthColor scribbleInputGrayscale Mask

Figure 6. Illustration of image editing results. The input masked images are obtained by multiplication operation of grayscale images and

masks. Different columns represent different samples edited by methods in experiment. They are randomly selected from validation set.

Table 1. Comparison results of the proposed pipeline and other

6 state-of-the-art pipelines. The grayscale images (clean) are ob-

tained from ground truth colorful images. In “Reference” item, the

“mask” and “color” denote the additional mask and color scribble

input. Also, the [53, 51, 55] represents using [53], [51], [55] for

inference sequentially.

Method Reference PSNR SSIM

Grayscale (clean) / 23.24 0.9443

[53, 51, 55] mask 21.26 0.8865

[13, 51, 55] mask 21.18 0.8865

[53, 51, 56]v1 mask 23.62 0.9059

[53, 51, 56]v2 mask, color 27.51 0.9233

[13, 51, 56]v1 mask 23.50 0.9024

[13, 51, 56]v2 mask, color 27.34 0.9194

Proposed mask, color 28.02 0.9408

4.2. Validation on Image Editing Quality

In this section, we quantitatively evaluate the image en-

hancement quality of the proposed system. Since there is no

ground truth for legacy photos, we alternatively adopt the

ImageNet validation 50000 images. We convert the images

to grayscale and rescale them to 256×256. Each validation

image is added a pseudo mask and an additive Gaussian

noise with standard deviation of 0.05 to simulate a legacy

image, which is similar to training process. At inference

stage, only IEGAN is used since the noise prior modelled

by NEGAN is implied in C at training. We utilize differ-

ent combinations of denoisers [53, 13], inpainting network

[51], and colorization networks [55, 56] as pipelines and

there are overall 6 combinations. All aforementioned algo-

rithms are trained on ImageNet training dataset. Specifi-

cally, the denoisers are trained on the same noise level (i.e.

AWGN) as validation data, whereas IEGAN is trained on

blind noise learned from noise prior. The method [56] is

a scribble-based colorization algorithm while [55] is fully-

automatic colorization method. Color scribbles are used in

both IEGAN and method [56]; therefore all the approaches

in experiment adopt reference information. There are 30

scribbles used for IEGAN and for [56] at test.

The comparison results are summarized in Table 1 and

illustrated in Figure 6. The methods using color scribbles

achieve the PSNR higher than 27 and obviously outper-

form others since they have precise color prior. Note that,

the proposed method achieves the highest PSNR and SSIM

since the two parts of IEGAN are trained collaboratively.

Therefore, the colorized images are more natural and real-

istic than other methods.
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Input image Mask

SGN, Deepfillv2 [13, 51] Proposed

Input patch Mask patch SGN, Deepfillv2 [13, 51] Proposed

Figure 7. Comparison of legacy photo enhancement results of the proposed and previous [13, 51] pipeline. The left part and right part

include the full resolution legacy photos and local patches, respectively. The colorful rectangles denote the locations of selected patches.

Table 2. Comparison results for ablation study.

Methods Setting PSNR SSIM

w/o DWT-based losses 1) 27.91 0.9397

w/o perceptual loss 2) 27.78 0.9369

w/o GAN loss 2) 27.83 0.9396

w/o both losses 2) 26.18 0.9334

10 color scribbles 3) 26.78 0.9354

20 color scribbles 3) 27.59 0.9390

w/o joint training 4) 27.45 0.9358

Proposed / 28.02 0.9408

4.3. Ablation Study

In order to demonstrate the effectiveness of NEGAN and

IEGAN losses, we set up 4 ablation study settings. We use

50000 ImageNet validation data for validation. All images

are added unknown noise by pre-trained NEGAN to simu-

late legacy photos. The settings are show as:

1) Drop the DWT-based loss terms that NEGAN noise

prior learner retrogrades to a CycleGAN [59];

2) Drop the perceptual loss or GAN loss or both loss

terms of IEGAN to compare their effectiveness, while the

NEGAN remains unchanged;

3) Decrease the number of color scribbles to 20 or 10;

4) Train two sub-networks of IEGAN framework sepa-

rately in order to evaluate joint training scheme.

As shown in Table 2, the full system reaches the best per-

formance on PSNR and SSIM [46]. If the DWT-based loss

terms are dropped, the system is hard to handle the “real

noise” generated by the NEGAN. Also, each loss term or

joint training contributes to better performance. In conclu-

sion, all components of proposed method and significant.

4.4. Validation on Legacy Photo Enhancement

In this section, we assess the denoising and inpainting

ability of the proposed system, i.e. network C of IEGAN.

The state-of-the-art denoising and inpainting methods [13,

51] are used for comparison. For the denoising, the results

of proposed approach are more sharper than [13, 51]. For

instance, the eyebrows, cheeks and beard generated by the

proposed method are more clear, as shown in the second

patch in Figure 7. For inpainting, the patches produced by

the proposed method are also realistic. For instance, the

color of filled regions are closer to clothes, as shown in the

first patch. Also, the patch of proposed model in third row

is much more smoother than [13, 51]. Since the NEGAN

better estimates the noise model, the generated results are

cleaner and sharper. Moreover, the inpainted regions are

more plausible due to better denoising ability.

4.5. Validation on Legacy Photo Colorization

In this section, we assess the editing quality of the pro-

posed system on real legacy photos. We utilize the state-

of-the-art pipelines, i.e. [13, 51, 56] for comparison and

15 color scribbles are adopted for both methods, as shown

in Figure 8. The samples are selected from the proposed

LP dataset. The proposed method produces more plausible

colors than compared method since the it utilizes joint train-

ing scheme for image denoising, inpaiting and colorization.

Moreover, the proposed method learns noise prior well, thus

it produces high-quality images.

5. Failure Cases

Our system can predict relatively reasonable coloriza-

tions in many cases; however, there are still some common
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[13, 51, 56] ProposedColor scribbleInput [13, 51, 56] ProposedColor scribbleInput

Figure 8. Comparison of the proposed and previous [13, 51, 56] pipeline on real legacy photos. The rectangles denote the highlighted areas.

ProposedColor scribbleInput ProposedColor scribbleInput ProposedColor scribbleInput

Figure 9. Illustration of some failure image editing cases of proposed method, including color bleeding, artifacts and inconsistent colors.

failure cases, shown in Figure 9. For left part (left 3 rows

in the figure), there exists slight color bleeding effect when

given “not reasonable color scribbles”. Since the degrada-

tion degree is shifted for many legacy photos, the output

images of center part still contain artifacts. Finally, as color

scribbles provided by users are not reasonable enough, the

results are also not very plausible, as right part shows. We

will enhance the design of the proposed framework and.

Moreover, we will add semantic information into our frame-

work to guide inpainting and colorization in the future.

6. Conclusion

In this paper, we present a novel framework for editing

legacy photos in an end-to-end manner. Since the legacy

photographs are captured by old cameras, they are corrupted

with undesirable noise, artifacts and saved in grayscale for-

mat. The noise is often blind, thus it is difficult to use a

specific distribution for modelling. Thus, we propose a NE-

GAN to simulate noise prior learned from real legacy pho-

tos based on unpaired data training. We enforce the NE-

GAN to focus more on noisy parts (i.e. high-frequency

components) of images by introducing DWT-based loss

functions. Moreover, we collect a large-scale legacy photo

dataset (LP dataset) including more than 25000 real pho-

tographs in different scenes for training NEGAN. More-

over, to remove the artifacts and colorize legacy photos, we

propose an IEGAN that performs joint denoising, inpainting

and scribble-based colorization sequentially, based on esti-

mated noise prior. At test phase, users can edit the legacy

photo by providing masks and color scribbles. Experimen-

tal results show that the proposed framework has better per-

formance than the state-of-the-art pipelines.
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