

Citation for published version:
De Vos, M, Padget, J & Satoh, K 2011, Legal modelling and reasoning using institutions. in New Frontiers in
Artificial Intelligence - JSAI-isAI 2010 Workshops, LENLS, JURISIN, AMBN, ISS, Revised Selected Papers. vol.
6797 LNAI, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Springer, Heidelberg, pp. 129-140, 2nd JSAI International Symposia on
Artificial Intelligence, JSAI-isAI 2010, November 18, 2010 - November 19, 2010, Tokyo, Japan, 1/01/11.
https://doi.org/10.1007/978-3-642-25655-4_12
DOI:
10.1007/978-3-642-25655-4_12

Publication date:
2011

Document Version
Peer reviewed version

Link to publication

The original publication is available at www.springerlink.com

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Aug. 2022

https://doi.org/10.1007/978-3-642-25655-4_12
https://doi.org/10.1007/978-3-642-25655-4_12
https://researchportal.bath.ac.uk/en/publications/c7b946a6-3c5b-4d32-8130-6aa0cdc19349

Legal Modelling and Reasoning using Institutions

Marina De Vos1, Julian Padget1, and Ken Satoh2

1 Department of Computer Science, University of Bath
{mdv,jap}@cs.bath.ac.uk
2 National Institute of Informatics

ksatoh@nii.ac.jp

Abstract. To safeguard fairness for all parties involved and proper procedure,
actions within a legal context are heavily constrained. Detailed laws determine
when actions are permissible and admissible. However, these restrictions do not
prevent participants from acting. In this paper we present a methodology to sup
port legal reasoning using institutions—systems that specify the normative be
haviour of participants—and a corresponding computational model. We show
how it provides a useful separation between the identification of real world ac
tions, if and how they affect the legal model and how consequences within the
legal model can be specified and verified. Thus, it is possible to define a context,
introduce a real-world event and examine how this changes the state of the le
gal model: hence, the modeller can explore both model adequacy and that of the
legal framework from which it is derived, as well as offering a machine-usable
legal ‘oracle’ for software components. We illustrate the use of our framework by
modelling contract cancellation under Japanese contract law.

Introduction

The concept of normative frameworks, or institutions, and organizational modelling is
gaining acceptance in the multi-agent systems (MAS) as a potential solution to the chal
lenge of governing open systems. Modelling frameworks typically provide a method for
the formalization of norms, thus capturing some statement of the designer’s intentions
for how participants should behave: which actions they are allowed to perform and
which ones are not permitted. That does not necessarily ensure compliant behaviour:
violation detection is generally feasible, as long as agents’ actions are somehow ob
servable, but enforcement is a separate issue, which has many implementations on the
spectrum between social and legal punishment.

For the last four years, we have been developing a modelling framework and toolset,
based on the logic programming language of Answer Set Programming [3], that ad
dresses the governance of multi-agent systems. The aim is to express the range of ac
tions, and constraints, on software agents in a machine processable form. The designer
can (exhaustively) explore the reachable states of the model as a means to validate it
and in a running system, the model can be used to compare agent behaviour against
expectations. It may also function as an oracle service for agents to query at run time.

The preoccupations of just building a system that behaves as desired tends to oc
clude the precept that agents, the actors, are situated and that situation does not include

mailto:{mdv,jap}@cs.bath.ac.uk
mailto:ksatoh@nii.ac.jp

just the physical environment that agents can sense and act upon [12], but should also
take account of the (multiple) legal contexts in which such systems may be deployed.
An essential aspect of our modelling framework is its support for the distinction—and
connection—that the designer can make between real world events and institutional
events, following the principle of “counts-as” established by Jones and Sergot [11].
This “counts-as” relation, effective on events, is different from the count-as relations
discussed in [6] that operate on facts and are context dependent. Since this institutional
interpretation of events is a declarative program, it can be a formal representation of
some fragment of a legal code, thus building a connection between agents and a situat
ing legal framework. In this paper we use a Japanese contract law as a case study.

1 Institutions

Formal Model Our formal model has been described in detail in [1], but to make this
paper self-contained we provide a brief overview here.

The premise of our model is that events trigger the creation of institutional facts,
inspired by Jones and Sergot’ [11] account of institutional power and the notion of
‘counts-as’, to explain the connection between exogenous events and institutional events—
this is our generation relation. An event may change the institutional state by initiating
or terminating fluents—this is our consequence relation. The state consists of brute do
main facts [9] and institutional facts specifying permission and power, of events and of
obligations to perform an action. Thus, given an event and an institutional model state,
represented as a set of (institutional) facts, the next state is determined by the transitive
closure of the generation and consequence relations. The analogy we make for legal
reasoning is that the generation relation models actions of individuals in the real world,
creating institutional events in the pertinent legal context, consequently initiating and
terminating domain and institutional facts by means of the consequence relation.

The formal institutional model is necessarily more detailed and precise than the
sketch above. The essential elements are: (i) events (E), that bring about changes in
state, and (ii) fluents (F), that characterise the state at a given instant, where a flu
ent is a term whose presence in the institutional state indicates it is true, and absence
implies falsity. We distinguish two kinds of events: institutional (Einst), that are the
events defined by the model and exogenous (Eex), that are outside its scope, but whose
occurrence triggers institutional events reflecting the counts-as principle. We partition
institutional events into institutional actions (Eact) that denote changes in institutional
state and violation events (Eviol), that signal the occurrence of violations. Violations
may be generated explicitly, or through the occurrence of a non-permitted event, or
from the failure to fulfil an obligation. We distinguish two kinds of fluents: institutional
that denote institutional properties of the state such as permissions P , powers W and
obligations O, and domain D that correspond to institutional framework specific prop
erties. The set of all fluents is denoted as F .

The evolution of the state of the framework is achieved through the definition of
two relations: (i) the generation relation: that specifies how the occurrence of one (ex
ogenous or institutional) event generates another (institutional) event, subject to the
empowerment of the actor. Formally, this can be expressed as G : X × E → 2Einst ,

where X denotes a formula over the (institutional) state and E an event, whose conflu
ence results in an institutional event, and (ii) the consequence relation, that specifies the
initiation and termination of fluents subject to the performance of some action in a state
matching some expression, or formally C : X × E → 2F × 2F .

Again, for the sake of context, we summarize the semantics of our framework and
cite [1] for an in-depth discussion. The semantics is defined over a sequence, called
a trace, of exogenous events. Starting from the initial state, each exogenous event is
responsible for a state change, through initiation and termination of fluents, that is
achieved by a two-step process: (i) the transitive closure of G with respect to a given
exogenous event determines all the (institutional) events that result from this event, in
cluding violations of events that where not permitted and violations events of unfulfilled
obligations, while excluding events that are not empowered. (ii) the application of C to
this set of events, identifies all fluents to initiate and terminate with respect to the current
state in order to obtain the next state; this also includes the termination of obligations
that have been fulfilled or violated. So for each trace, we can obtain a sequence of states
that constitutes the model of the institutional framework.

InstAL While the formal framework has its value, from a designer’s point of view
it is not very convenient and forces technical/mathematical details to intrude into the
modelling process. Consequently, we designed a simple domain-specific language for
institutional frameworks called InstAL . We give a brief introduction through examples
of the language features taken from the case study on Japanese contract law which
features later in this paper:

–	 institution name declares the name of the institutional framework, such as
institution legal

–	 type identifier declares a type, such as type Agent. Type declarations establish a
disjoint set of mono-morphic types.

–	 exogenous event event-name(type+) declares a new physical world event and the
types of its parameters, such as exogenous event sale(Agent, Agent)

–	 inst event event-name(type+) declares a new legal world event and the types of
its parameters, such as inst event intSale(Agent, Agent).

–	 violation event event-name(type+) declares a new violation event, such as
violation event contractViolationBuyer(Agent)

–	 fluent fluent-name(type+) declares a new institutional fact—that is, an object that
can be an element of the institutional state, such as fluent contract(Agent,
Agent)

–	 event-name generates legal-world-event+ [if state-condition] adds a new
pair to the generation relation with domain event (physical or legal) and
range legal world event, subject to an optional condition on the state. For
example: sale(Seller, Buyer) generates intSale(Seller, Buyer) if
hasGood(Seller), hasMoney(Buyer), where the condition is the presence of the
fluents hasGood and hasMoney with the corresponding Seller and Buyer (these
variables are unified) in the institutional state.

–	 event-name initiates legal-world-fluent+ [state-condition] adds a new pair to
the consequence (addition) relation, with event (physical or legal) and fluent. Thus,

sale(Seller, Buyer) initiates contract(Seller, Buyer) adds the corre
sponding fluent to the institutional state.

–	 event-name terminates legal-world-fluent+ [condition] adds a new pair to the
consequence (deletion) relation, with event (physical or legal) and fluent. Thus,
transfer(Seller) terminates hasGood(Seller) deletes the corresponding
fluent from the institutional state.

–	 perm(event) is a special fluent whose presence indicates that the event is permitted,
such as perm(transfer(Seller)), and is typically the subject of an initiates
or terminates rule.

–	 pow(event) is a special fluent whose presence indicates that the event is empowered
(has an effect), such as pow(transfer(Seller)), and is typically the subject of an
initiates or terminates rule.

–	 obl(event, event, event) is a special fluent whose presence indicates the exis
tence of an obligation, such as obl(transfer(Seller), handOverDeadline,
contractViolationSeller(Seller)), indicating that the first event needs to oc
cur before the second. If this is not the case, the third event, normally a violation
event will take place. In either case, the obligation is terminated. Typically the sub
ject of an initiates rule.
We realize the above specification by translation to a (non-monotonic) logic pro

gramming language call Answer Set Programming (ASP) [3]. This translation includes
code to take care of inertia of fluents and removal of satisfied or violated obligations.
Again the full details can be found in [1], including a proof of the soundness and com
pleteness of the translation. The result of the translation is a computational model that
can generate sequences of all possible states of the institutional framework (these are
the answer sets of program), given some initial conditions. The development, execution
and visualization of institutions is supported by the IDE InstSuite [8].

Methodology Our institution terminology refers to exogenous and institutional events.
From the perspective of a legal domain, the first represent the actions of the participants:
e.g. signing a contract, while institutional events are a mechanism for the legal interpre
tation of these actions. For example, a signature of a minor is not recognised or stating
that one cancels a contract does not automatically mean that the contract has indeed
been cancelled; certain conditions must be fulfilled for a contract to be cancelled. Insti
tutions make explicit this separation of concerns and allow reasoning on both levels.

In our model, each exogenous event of concern has a corresponding institutional
event, that functions as a gatekeeper to the legal model. If the actor of an exogenous
event does not have the necessary credentials or certain conditions are not met, the
institutional event does not occur and nothing changes within the model, so the exoge
nous event is of no consequence. The credentials are modelled by assigning institutional
power to the the gatekeeper events. Without institutional power, these events are not
triggered. Permission of exogenous events and gatekeeper events is determined by the
legal rules that are modelled.

Each institutional event can generate further institutional events to allow for the
specification of special or alternative cases, e.g. buyers and sellers have different obli
gations when a contract is established.

Case:
Contract:

–	 X had a contract to buy a piece of jewellery from Y for 1 million yen.
–	 X was supposed to pay 1 million yen on Sep 30 2009 at Y’s residence and
– Y was supposed to give the jewellery to Y on the same day.

2007 Sep 30:
–	 X gave 1 million yen to Y, but Y did not give the jewellery to X, so X demanded to Y to give the

jewellery J by Oct 14
2007 Oct 14:

– Y did not give the jewellery to X
2007 Oct 15:

–	 X cancels the contract

Question: Is the cancellation of the contract by X valid?

Fig. 1. Contract Cancellation Scenario

Obligations are used to express when future events have to take place, e.g. the con
tract requires that the goods are transferred before a certain date. To make the model
as abstract as possible, dates are not encoded in the model instead we use exogenous
events that act as deadlines, i.e. the obligation has to satisfied before the deadline occurs.
This deadline can be generated by an agent action as a timekeeper.

Dedicated violation events can be introduced to indicate not only that an event has
taken place without permission but also that an obligation was not fulfilled or that an
undesirable event has taken place given the current state of affairs.

The domain fluents are used to describe the non-institutional state of the world.
They keep track of what has happened in the system; i.e. a contract was signed, money
was transferred, relevant details of the participants, etc..

2 Modelling Contract Law: A Case Study

Contract Cancellation under Japanese Law: We take our case study from Japanese
contract law.

In our case study we look at contract cancellation. The question we aim to be able
to answer is “When is it permissible to cancel a contract?”. Although the specification
is more general, the objective is to answer the question in the scenario presented in
Figure 1 against the Articles presented in Figure 2.

InstAL Specification Contract execution and cancellation consists of various stages:
(i) first a contract has to be established, (ii) then, if all parties adhere to it, the contract is
executed (iii) a reminder can be sent if one of the parties misses a deadline (iv) if a party
breaks the contract, the other party can cancel the contract, after which the transactions
have to be undone. The InstAL specification of these five phases, set-up, execution,
reminding, cancellation and transaction reversal, can be found in Figures 3-8.

We discuss these stages in more detail later, but before doing so we need to declare
the types, events and fluents needed in the specification. Their full declaration can be
found in Figure 3. We name our institutional framework legal (Line 1). Our specifi
cation has only needs one type (Line 4) to represent the participants. The participant
actions are represented as exogenous events (Lines 7-13). The contract institutions has
five deadlines (dates) by which certain actions have to be performed. They are modelled

– Article 412 (Time for Performance and Delay in Performance)
1.	 If any specified due date is assigned to the performance of an obligation,

the obliger shall be responsible for the delay on and after the time of
the arrival of such time limit.

2.	 If any unspecified due date is assigned to the performance of a claim,
the obliger shall be responsible for the delay on and after the time when
he/she becomes aware of the arrival of such time limit.

3.	 If no time limit is assigned to the performance of an obligation, the
obliger shall be responsible for the delay on and after the time he/she
receives the request for performance.

– Article 540 (Exercise of Right to Cancel)
1.	 If one of the parties has a right to cancel in accordance with the

provisions of the contract or law, the cancellation shall be effected
by manifestation of intention to the other party.

2.	 The manifestation of intention under the preceding paragraph may not be
revoked.

– Article 555 (Sale)
1.	 A sale shall become effective when one of the parties promises to transfer

a certain real rights to the other party and the other party promises to
pay the purchase money for it.

– Article 541 (Right to Cancel for Delayed Performance)
1.	 In cases where one of the parties does not perform his/her obligations,

if the other party demands performance of the obligations, specifying a
reasonable period and no performance is tendered during that period, the
other party may cancel the contract.

Fig. 2. Related Civil Law on contract cancellation (translated provided by Japanese Law Translation
http://www.japaneselawtranslation.go.jp)

as exogenous events (Line 15 -19). Each institutional framework has a special event that
will initialise it: for legal, we name this creation event start (Line 22). As described
in section 1, for each exogenous events for which the model should account, we define
a corresponding institutional event (Lines 25-32). Here, this means all the actions of
the participants except for the reminder. Setting up the contract, intSale, results in
two further institutional events, transferReq and paymentReq, whose purpose is to
differentiate between buyers and sellers (Lines 26-27). The model also distinguishes
four violation events, different from unpermitted events, to indicate that the buyer or
the seller has not fulfilled their obligation with respect to the contract or its return pol
icy (Lines 35-38). Apart from keeping track of power and permission for each of the
events, the model also monitors the contract, the goods and the money involved in the
transactions. This is done by the domain fluents defined in Lines 41-46.

The next step is to define the rules of the institutional framework, starting with set
ting up the contract (see Fig. 4). The triggering event of this phase is sale. A contract
between buyer and seller (Line 53) is set up if intSale is empowered and permitted
and if the seller has the goods and the buyer has the money (Line 53). The genera
tion of intSale generates transferReq and paymentReq (Line 57) and initiates the
contract fluent (Line 58). In turn, the two generated events set up the contractual
obligations for the buyer and seller and give them the necessary power and permission
to do so (Lines 61–70). The contractual obligations are automatically removed when
the participants fulfil them or when the deadlines expire.

The next phase details the normal execution of a contract (see Fig. 5). When the
seller (giveGoods) or the buyer (makePayment) satisfies their part of the contract
(Lines 75–76), the corresponding institutional events change the owner of the money
or goods and removes the power and permission of the execution events (Lines 78–84).
If either participant fulfils their contractual obligations, irrespective of the deadline,

http://www.japaneselawtranslation.go.jp)

1 institution legal;
2

3 % Types
4 type Agent;
5

6 % exogeneous events
7 exogenous event
8 exogenous event
9 exogenous event

10 exogenous event
11 exogenous event
12 exogenous event
13 exogenous event
14

15 exogenous event
16 exogenous event
17 exogenous event
18 exogenous event
19 exogenous event
20

21 % creation

sale(Agent,Agent); %
giveGoods(Agent);
makePayment(Agent);
reminder(Agent);
cancel(Agent);
repayBuyer(Agent);
returnSeller(Agent);

handOverDeadline;
paymentDeadline;
handOverDeadline2;
paymentDeadline2;
returnDeadline;

22 create event start;

23

24 % institutional events

25 inst event intSale(Agent,Agent);

26 inst event transferReq(Agent);

27 inst event paymentReq(Agent);

28 inst event transfer(Agent);

29 inst event payment(Agent);

30 inst event cancellation(Agent);

31 inst event intrepayBuyer(Agent);

32 inst event intreturnSeller(Agent);

33

34 % violation

Seller, Buyer

% Seller, Buyer

35 violation event contractViolationBuyer(Agent);

36 violation event contractViolationSeller(Agent);

37 violation event contractReturnViolationBuyer(Agent);

38 violation event contractReturnViolationSeller(Agent);

39

40 % fluents

41 fluent contract(Agent,Agent); % Seller, Buyer

42 fluent cancelledContract(Agent,Agent); % Seller, Buyer

43 fluent hasGood(Agent);

44 fluent hasMoney(Agent);

45 fluent paid;

46 fluent transferred;

Fig. 3. Declaration of types and events in the model

it should be impossible for the other party to cancel the contract (Lines 87–90). The
occurrence of the deadlines handOverDeadline and PaymentDeadline permits the
occurrence of reminders and terminates the permission for the deadline to occur again
(Lines 92–96).

The reminder phase is specified in Fig. 6. From the previous phase we know that
this phase can only occur without causing violation (from the reminder perspective)
when the deadline for the contractual obligation has lapsed for one of the participants.

The cancellation phase specification is given in Fig. 7. Whenever one of the par
ticipants tries to cancel a contract (cancel) it is the status of the empowerment of the
institutional event cancellation that determines whether the contract cancellation is
valid or not (Line 116). The state of the contract may be changed from contract to
cancelled (Lines 117–119). Once the contract is cancelled power and permission to
cancel the contract is no longer required (Line 121). The power and permission to cancel

48 %--

49 % Establish Contract

50 %--

51 % the sale proceeds if sale is empowered and both participants have

52 % the correct assests

53 sale(Seller,Buyer) generates intSale(Seller,Buyer) if hasGood(Seller),

54 hasMoney(Buyer);

55

56 % sale split between buyer and seller responsibilities

57 intSale(Seller,Buyer) generates transferReq(Seller), paymentReq(Buyer);

58 intsale(Seller,Buyer) initiates contract(Seller,Buyer);

59

60 % obligations for buyer and seller specified

61 transferReq(Seller) initiates obl(transfer(Seller),handOverDeadline,

62 contractViolationSeller(Seller));

63 paymentReq(Buyer) initiates obl(payment(Buyer),paymentDeadline,;

64 contractViolationBuyer(Buyer));

65

66 % appropriate permission and power given

67 transferReq(Seller) initiates pow(transfer(Seller)),perm(transfer(Seller)),

68 perm(handOverDeadline);

69 paymentReq(Buyer) initiates pow(payment(Buyer)),perm(payment(Buyer)),

70 perm(paymentDeadline);

Fig. 4. Setting up a contract in InstAL

72 %--

73 % Executing Contract

74 %--

75 giveGoods(Seller) generates transfer(Seller) if hasGood(Seller);

76 makePayment(Buyer) generates payment(Buyer) if hasMoney(Buyer);

77

78 transfer(Seller) initiates transferred, hasGood(Buyer)

79 if contract(Seller,Buyer);

80 transfer(Seller) terminates hasGood(Seller);

81 payment(Buyer) initiates paid, hasMoney(Seller) if contract(Seller,Buyer);

82 payment(Buyer) terminates hasMoney(Buyer);

83 transfer(Seller) terminates pow(transfer(Seller)),perm(transfer(Seller));

84 payment(Buyer) terminates pow(payment(Buyer)),perm(payment(Buyer));

85

86 % transfer or payment retracts permission to cancel for opposite party

87 transfer(Seller) terminates pow(cancellation(Byer)),perm(cancellation(Buyer)),

88 perm(cancel(Buyer)) if contract(Seller,Buyer);

89 payment(Buyer) terminates pow(cancellation(Seller)),perm(cancellation(Seller)),

90 perm(cancel(Seller)) if contract(Seller,Buyer);

91

92 handOverDeadline initiates perm(reminder(Buyer));

93 paymentDeadline initiates perm(reminder(Seller));

94

95 handOverDeadline terminates perm(handOverDeadline);

96 paymentDeadline terminates perm(paymentDeadline);

Fig. 5. Executing a contract in InstAL

98 %--
99 % Reminder

100 %--
101 % give the agents a second change
102 reminder(Seller) initiates obl(transfer(Seller),handOverDeadline2,
103 contractViolationSeller(Seller)),
104 perm(handOverDeadline2) if not transferred;
105

106 reminder(Buyer) initiates obl(payment(Buyer),paymentDeadline2,
107 contractViolationBuyer(Buyer)),
108 perm(paymentDeadline2) if not paid;

Fig. 6. Reminders in the model

110 %--

111 % Cancelling the contract

112 %--

113 % Cancellation procudure: cancellation only empowered when violation

114 % occured and only given to grieved agent

115

116 cancel(Agent) generates cancellation(Agent);

117 cancellation(Agent) terminates contract(Seller,Buyer);

118 cancellation(Agent) initiates cancelledContract(Seller,Buyer)

119 if contract(Seller,Buyer);

120

121 cancellation(Agent1) terminates pow(cancellation(Agent)),

122 perm(cancellation(Agent)), perm(cancel(Agent));

123

124 % power and permission to cancel is given to appropriate agent

125 contractViolationSeller(Seller) initiates pow(cancellation(Agent)),

126 perm(cancellation(Agent)),

127 perm(cancel(Agent))

128 if contract(Seller,Agent), paid;

129 contractViolationBuyer(Buyer) initiates pow(cancellation(Agent)),

130 perm(cancellation(Agent)),

131 perm(cancel(Agent))

132 if contract(Agent,Buyer), transferred;

Fig. 7. Cancelling the contract in InstAL

134 %---

135 % Return Policy

136 %--

137 % if goods or money has changes owner they need to be returned when the

138 % contract is cancelled

139 cancellation(Agent) initiates perm(repayBuyer(Seller)),

140 pow(intrepayBuyer(Seller)),

141 perm(intrepayBuyer(Seller)),

142 obl(repayBuyer(Seller),returnDeadline,

143 contractReturnViolationSeller(Seller))

144 if contract(Seller,Buyer), hasMoney(Seller);

145 cancellation(Agent) initiates perm(returnSeller(Buyer)),

146 pow(intreturnSeller(Buyer)),

147 perm(intreturnSeller(Buyer)),

148 obl(returnSeller(Buyer), returnDeadline,

149 contractReturnViolationBuyer(Buyer))

150 if contract(Seller,Buyer), hasGood(Buyer);

151

152 repayBuyer(Seller) generates intrepayBuyer(Seller);

153 intrepayBuyer(Seller) initiates hasMoney(Buyer)

154 if cancelledContract(Seller,Buyer);

155 intrepayBuyer(Seller) terminates hasMoney(Seller)

156 if cancelledContract(Seller,Buyer);

157

158 returnSeller(Buyer) generates intreturnSeller(Buyer);

159 intreturnSeller(Buyer) initiates hasGood(Seller)

160 if cancelledContract(Seller,Buyer);

161 intreturnSeller(Buyer) terminates hasGood(Buyer)

162 if cancelledContract(Seller,Buyer);

Fig. 8. Modelling the return policy in InstAL

164 %--
165 % Initial state
166 %--
167 initially pow(transferReq(seller)), pow(paymentReq(buyer)),
168 perm(transferReq(seller)), perm(paymentReq(buyer)),
169 perm(sale(seller,buyer)),perm(makePayment(buyer)),
170 perm(giveGoods(seller)),hasGood(seller), hasMoney(buyer),
171 pow(intSale(seller,buyer)), perm(intSale(seller,buyer));

Fig. 9. The initial state

1 observed(start,i00). 6 observed(reminder(seller),i05).
2 observed(sale(seller,buyer),i01). 7 observed(handOverDeadline2,i06).
3 observed(makePayment(buyer),i02). 8 observed(cancel(buyer),i07).
4 observed(paymentDeadline,i03). 9 observed(repayBuyer(seller),i08).
5 observed(handOverDeadline,i04).

Fig. 10. The complete trace of our contract example

the contract is given to a party in the contract when the other party fails to satisfy their
part of the contract. In our model, failure is represented by a contractViolation
event (Lines 125–132).

The final phase, the return policy, appears in Fig. 8. When a contract is cancelled,
transferred goods and money must be returned to the original owner. Therefore, the
occurrence of cancellation generates the permission and the obligation for the par
ticipants to return what they have received (Lines 139–150). When the buyer and seller
return/repay the goods/money, ownership is adjusted accordingly (Lines 152–162).

With the five phases now specified, we just need the initial state to complete the
model. In this case, this is the power and permission for the events that make up the
first phase of the model (see Fig. 9).

Running the Model: Before we can run the model, we must declare the participating
agents, by means of: Agent: buyer seller. The resulting ASP program can be used in a
variety of ways. Without additional constraints, the model can compute all the possible
ways exogenous events can take place and their consequences. From a more practical
point of view, the model can be used to answer specific questions about the validity
of an action/event given a sequence of events. While in most cases a complete set of
events would be given, e.g. representing a specific case, the model is capable of reason
ing about an incomplete sequence of events. Another use of the model is to verify the
current state of affairs, e.g. is the contract still in place or has it been cancelled. Also,
one can query the model for legal loopholes by asking if it is possible for a certain
situation to occur.

While in litigation one often only takes the current status of rights and obligation
between parties into account, there are situations, from example in tort or when reason
ing about a prescription, where past and future statuses do matter. The model presented
in paper, due the tracking the various states and partial sequences of events, allows for
reasoning not only in the present but past and future as well.

ASP facts of the form observed(event,time) are added to represent complete
or partial traces. A complete trace matching the scenario in Fig 1 displayed in Fig 10. It
starts with the creation event followed by setting up the contract. After payment and the
expiry of deadlines the seller (y) is reminded about his/her obligations. After that dead
line expires the buyer cancels the contract. The trace finishes with seller repaying the
buyer. The textual output from running the model is rather hard for humans to process.
To make examining the model more user friendly InstSuite provides trace diagrams that
graphically represent the events and state changes over time. Figures 11 and 12 provide
a visualization of the complete trace. States are denoted by circles and transition events
are shown above the lines connecting states, with exogenous events in bold. For each
state, all the fluents that are true in that state are listed and initiated fluents are in bold.

As we can see from the trace, the only violation that occurred was contractViola
tionSeller(seller). No viol(cancel(buyer)) occurred indicating that it was
legal for buyer to cancel the contract.

3 Summary, Related and Future Work

In this paper we have demonstrated that is possible to use the concept institutional
framework for the representation of and reasoning about legal state. We have shown
that the same tools can be usefully employed to make machine processable equivalents
of legislation available for the governance of and reference by software components.

The formal representation of legal frameworks by normative systems has been a
subject of research for several decades: a comprehensive discussion appears in [10].
Contracts, specifically, have received much attention using different formalisms, al
though defeasible logic [4, 5] is considered particularly appropriate, along with various
executable representations, such as RuleML in [4].

Herrestad in [7] argues that Sergot’s formalisation of the library regulations is con
fronted with the Christholm paradox and that therefore logic programming formalism

i00 i01 i02 i03 i04 i05 i06 i07 i08 i09

hasGood(seller)
hasMoney(buyer)
live(legal)
perm(giveGoods(seller))
perm(intSale(seller,buyer))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(sale(seller,buyer))
perm(transferReq(seller))
pow(legal)intSale(seller,buyer)
pow(legal)paymentReq(buyer)
pow(legal)transferReq(seller)

contract(seller,buyer)
hasGood(seller)
hasMoney(buyer)
live(legal)
obl(payment(buyer),

paymentDeadline,

contractV iolationBuyer(buyer))
obl(transfer(seller),

handOverDeadline,

contractV iolationSeller(seller))
perm(giveGoods(seller))
perm(handOverDeadline)
perm(intSale(seller, buyer))
perm(makePayment(buyer))
perm(payment(buyer))
perm(paymentDeadline)
perm(paymentReq(buyer))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)intSale(seller, buyer)
pow(legal)payment(buyer)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

contract(seller, buyer)
hasGood(seller)
hasMoney(seller)
live(legal)
obl(transfer(seller),

handOverDeadline,

contractV iolationSeller(seller))
perm(giveGoods(seller))
perm(handOverDeadline)
perm(intSale(seller, buyer))
perm(makePayment(buyer))
perm(paymentDeadline)
perm(paymentReq(buyer))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)intSale(seller, buyer)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

contract(seller, buyer)
hasGood(seller)
hasMoney(seller)
live(legal)
obl(transfer(seller),

handOverDeadline,

contractV iolationSeller(seller))
perm(giveGoods(seller))
perm(handOverDeadline)
perm(intSale(seller, buyer))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(reminder(buyer))
perm(reminder(seller))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)intSale(seller, buyer)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

contract(seller, buyer)
hasGood(seller)
hasMoney(seller)
live(legal)
perm(cancel(buyer))
perm(cancellation(buyer))
perm(giveGoods(seller))
perm(intSale(seller, buyer))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(reminder(buyer))
perm(reminder(seller))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)cancellation(buyer)
pow(legal)intSale(seller, buyer)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

contract(seller, buyer)
hasGood(seller)
hasMoney(seller)
live(legal)
obl(transfer(seller),

handOverDeadline2,
contractV iolationSeller(seller))

perm(cancel(buyer))
perm(cancellation(buyer))
perm(giveGoods(seller))
perm(handOverDeadline2)
perm(intSale(seller, buyer))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(reminder(buyer))
perm(reminder(seller))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)cancellation(buyer)
pow(legal)intSale(seller, buyer)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

contract(seller, buyer)
hasGood(seller)
hasMoney(seller)
live(legal)
perm(cancel(buyer))
perm(cancellation(buyer))
perm(giveGoods(seller))
perm(handOverDeadline2)
perm(intSale(seller, buyer))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(reminder(buyer))
perm(reminder(seller))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)cancellation(buyer)
pow(legal)intSale(seller, buyer)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

cancelledContract(seller,buyer)
hasGood(seller)
hasMoney(seller)
live(legal)
obl(repayBuyer(seller),

returnDeadline,

contractReturnV iolationSeller(seller))
perm(giveGoods(seller))
perm(handOverDeadline2)
perm(intSale(seller, buyer))
perm(intrepayBuyer(seller))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(reminder(buyer))
perm(reminder(seller))
perm(repayBuyer(seller))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)intSale(seller, buyer)
pow(legal)intrepayBuyer(seller)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

cancelledContract(seller, buyer)
hasGood(seller)
hasMoney(buyer)
hasMoney(seller)
live(legal)
perm(giveGoods(seller))
perm(handOverDeadline2)
perm(intSale(seller, buyer))
perm(intrepayBuyer(seller))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(reminder(buyer))
perm(reminder(seller))
perm(repayBuyer(seller))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)intSale(seller, buyer)
pow(legal)intrepayBuyer(seller)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

start

start

sale(seller,buyer)
intSale(seller, buyer)
paymentReq(buyer)
sale(seller, buyer)

transferReq(seller)

makePayment(buyer)
makePayment(buyer)

payment(buyer)
paymentDeadline

paymentDeadline

handOverDeadline

contractV iolationSeller(seller)
handOverDeadline

reminder(seller)
reminder(seller)

handOverDeadline2

contractV iolationSeller(seller)
handOverDeadline2

cancel(buyer)
cancel(buyer)

cancellation(buyer)

repayBuyer(seller)
intrepayBuyer(seller)
repayBuyer(seller)

Fig. 11. The first 5 time instances of the example trace

i00 i01 i02 i03 i04 i05 i06 i07 i08 i09

hasGood(seller)
hasMoney(buyer)
live(legal)
perm(giveGoods(seller))
perm(intSale(seller,buyer))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(sale(seller,buyer))
perm(transferReq(seller))
pow(legal)intSale(seller,buyer)
pow(legal)paymentReq(buyer)
pow(legal)transferReq(seller)

contract(seller,buyer)
hasGood(seller)
hasMoney(buyer)
live(legal)
obl(payment(buyer),

paymentDeadline,

contractV iolationBuyer(buyer))
obl(transfer(seller),

handOverDeadline,

contractV iolationSeller(seller))
perm(giveGoods(seller))
perm(handOverDeadline)
perm(intSale(seller, buyer))
perm(makePayment(buyer))
perm(payment(buyer))
perm(paymentDeadline)
perm(paymentReq(buyer))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)intSale(seller, buyer)
pow(legal)payment(buyer)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

contract(seller, buyer)
hasGood(seller)
hasMoney(seller)
live(legal)
obl(transfer(seller),

handOverDeadline,

contractV iolationSeller(seller))
perm(giveGoods(seller))
perm(handOverDeadline)
perm(intSale(seller, buyer))
perm(makePayment(buyer))
perm(paymentDeadline)
perm(paymentReq(buyer))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)intSale(seller, buyer)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

contract(seller, buyer)
hasGood(seller)
hasMoney(seller)
live(legal)
obl(transfer(seller),

handOverDeadline,

contractV iolationSeller(seller))
perm(giveGoods(seller))
perm(handOverDeadline)
perm(intSale(seller, buyer))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(reminder(buyer))
perm(reminder(seller))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)intSale(seller, buyer)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

contract(seller, buyer)
hasGood(seller)
hasMoney(seller)
live(legal)
perm(cancel(buyer))
perm(cancellation(buyer))
perm(giveGoods(seller))
perm(intSale(seller, buyer))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(reminder(buyer))
perm(reminder(seller))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)cancellation(buyer)
pow(legal)intSale(seller, buyer)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

contract(seller, buyer)
hasGood(seller)
hasMoney(seller)
live(legal)
obl(transfer(seller),

handOverDeadline2,
contractV iolationSeller(seller))

perm(cancel(buyer))
perm(cancellation(buyer))
perm(giveGoods(seller))
perm(handOverDeadline2)
perm(intSale(seller, buyer))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(reminder(buyer))
perm(reminder(seller))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)cancellation(buyer)
pow(legal)intSale(seller, buyer)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

contract(seller, buyer)
hasGood(seller)
hasMoney(seller)
live(legal)
perm(cancel(buyer))
perm(cancellation(buyer))
perm(giveGoods(seller))
perm(handOverDeadline2)
perm(intSale(seller, buyer))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(reminder(buyer))
perm(reminder(seller))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)cancellation(buyer)
pow(legal)intSale(seller, buyer)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

cancelledContract(seller,buyer)
hasGood(seller)
hasMoney(seller)
live(legal)
obl(repayBuyer(seller),

returnDeadline,

contractReturnV iolationSeller(seller))
perm(giveGoods(seller))
perm(handOverDeadline2)
perm(intSale(seller, buyer))
perm(intrepayBuyer(seller))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(reminder(buyer))
perm(reminder(seller))
perm(repayBuyer(seller))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)intSale(seller, buyer)
pow(legal)intrepayBuyer(seller)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

cancelledContract(seller, buyer)
hasGood(seller)
hasMoney(buyer)
hasMoney(seller)
live(legal)
perm(giveGoods(seller))
perm(handOverDeadline2)
perm(intSale(seller, buyer))
perm(intrepayBuyer(seller))
perm(makePayment(buyer))
perm(paymentReq(buyer))
perm(reminder(buyer))
perm(reminder(seller))
perm(repayBuyer(seller))
perm(sale(seller, buyer))
perm(transfer(seller))
perm(transferReq(seller))
pow(legal)intSale(seller, buyer)
pow(legal)intrepayBuyer(seller)
pow(legal)paymentReq(buyer)
pow(legal)transfer(seller)
pow(legal)transferReq(seller)

start

start

sale(seller,buyer)
intSale(seller, buyer)
paymentReq(buyer)
sale(seller, buyer)

transferReq(seller)

makePayment(buyer)
makePayment(buyer)

payment(buyer)
paymentDeadline

paymentDeadline

handOverDeadline

contractV iolationSeller(seller)
handOverDeadline

reminder(seller)
reminder(seller)

handOverDeadline2

contractV iolationSeller(seller)
handOverDeadline2

cancel(buyer)
cancel(buyer)

cancellation(buyer)

repayBuyer(seller)
intrepayBuyer(seller)
repayBuyer(seller)

Fig. 12. The last 5 time instances of the example trace

are ill-suited for modelling this kind of knowledge. Herrestad claim is based the as
sumption that implication can be rewritten as a disjunction. In answer set programming,
this is not the case as it uses negation as failure which if semantics differs from classi
cal negation (see [2] for more information). Furthermore, with our approach there is no
need to express that no disciplinary action is taken when books are returned on time.
This is supported implicitly.

At this stage, we have completed an off-line specification that can be used to answer
the question posed in section 2. While this is “just another model”, we observe that con
ventionally in litigation, only the current status of rights and obligations between parties
is usually considered. However, a potential benefit of the approach taken is the capacity
to reason about not only the current status, but also the past (postdiction) and future
status (prediction) [8]. Furthermore, the tools demonstrated (and under development—
see below) may offer a way to bridge the practical gap between legal modelling and
software agents.

Future work is proceeding on three fronts: (i) contract recision: this extends the
case described here (ii) on-line reasoning: we are developing the means for agents to
reason about institutional facts in a different domain, but using the same institutional
model (iii) model refinement: as models become more complicated, they are harder to
write and to debug: consequently, we are using an inductive logic programming appli
cation that given test cases and desired outcomes suggests new, and revises old, rules.

References
1. Owen Cliffe, Marina De Vos, and Julian Padget. Specifying and reasoning about multiple

institutions. In Coin, volume 4386 of LNAI, pages 67–85. Springer Berlin / Heidelberg, 2007.
2. Marc Denecker. What’s in a model? Epistemological analysis of logic programming. In

Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth Interna
tional Conference (KR2004),, pages 106–113, 2004.

3. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc
tive databases. New Generation Computing, 9(3-4):365–386, 1991.

4. Guido Governatori. Representing business contracts in RuleML.	 International Journal of
Cooperative Information Systems, 14(2-3):181–216, June-September 2005.

5. Guido Governatori and Antonino Rotolo. Defeasible logic: Agency, intention and obligation.
In Alessio Lomuscio and Donald Nute, editors, Deontic Logic in Computer Science, volume
3065 of LNAI, pages 114–128, Berlin, 2004. Springer.

6. Davide Grossi, John-Jules Ch. Meyer, and Frank Dignum. The many faces of counts-as: A
formal analysis of constitutive rules. J. Applied Logic, 6(2):192–217, 2008.

7. Henning Herrestad. Norms and formalization. In ICAIL’91: Proceedings of the 3rd interna
tional conference on Artificial intelligence and law, pages 175–184. ACM Press, 1991.

8. Luke Hopton, Owen Cliffe, Marina De Vos, and Julian Padget. Instql: A query language for
virtual institutions using answer set programming. In ClimaX, pages 87–104, 2009.

9. John R. Searle. The Construction of Social Reality. Allen Lane, The Penguin Press, 1995.
10. Andrew J. I. Jones and Marek Sergot. On the characterization of law and computer systems:

the normative systems perspective. In Deontic logic in computer science: normative system
specification, pages 275–307. John Wiley and Sons Ltd., 1993.

11. Andrew J.I. Jones and Marek Sergot. A Formal Characterisation of Institutionalised Power.
ACM Computing Surveys, 28(4es):121, 1996. Read 28/11/2004.

12. Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2010.

