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Abstract

In order to consider singular curves in the unit sphere, we consider Legendre curves
in the unit spherical bundle. By using a moving frame, we define the curvature of Leg-
endre curves in the unit spherical bundle. As applications, we give a relationship among
Legendre curves in the unit spherical bundle, Legendre curves in the unit tangent bundle
and framed curves in the Euclidean space, respectively. Moreover, we define not only
an evolute of a front, but also an evolute of a frontal in the unit sphere under certain
conditions. Since the evolute of a front is also a front, we can take evolute again. On the
other hand, the evolute of a frontal if exists, is also a frontal. We give an existence and
uniqueness conditions of the evolute of a frontal.

1 Introduction

For regular curves in the unit sphere, the Frenet Serret formula and the geodesic curvature
are important to investigate geometric properties of the regular curves. On the other hand,
for singular curves in the unit sphere, we can not construct the Frenet Serret formula and the
geodesic curvature at singular points of the curve. For singular curves, V. I. Arnold established
the spherical geometry by using Legendre singularity theory [2]. It studied fronts in the unit
sphere and gave properties of fronts. Some results in this paper have already considered in
[2, 15, 16, 19, 20]. However, we clarify the notations and calculations by using the curvature of
Legendre curves in the unit spherical bundle. By using the curvature of the Legendre curves,
we give existence and uniqueness theorems of Legendre curves in the unit spherical bundle in
§2. We also give relationships among Legendre curves in the unit spherical bundle, Legendre
curves in the unit tangent bundle and framed curves in the Euclidean space, respectively in
§3. Moreover, we define not only an evolute of a front in §4, but also an evolute of a frontal
in the unit sphere under certain conditions in §5. Since the evolute of a front is also a front,

∗Supported by JSPS KAKENHI Grant Number No.26400078.
2010 Mathematics Subject classification: 58K05, 53A40, 53D35.
Key Words and Phrases. spherical Legendre curve, frontal, front, curvature, evolute.

1



we can take evolute again. We give k-th evolute of the front and its curvature inductively. On
the other hand, the evolute of a frontal if exists, is also a frontal. We give an existence and
uniqueness conditions of the evolute of a frontal. It is a quit different property between the
evolute of a frontal in the sphere and in the Euclidean plane (cf. [8]). We also give examples
of evolutes of a front and a frontal in §6.

All maps and manifolds considered here are differential of class C∞.

2 Legendre curves in the unit spherical bundle

Let R3 be the 3-dimensional Euclidean space. The inner product on R3 is given by a · b =
a1b1 + a2b2 + a3b3 and the vector product of a and b on R3 is given by

a× b =

∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ ,
where e1, e2, e3 is the canonical basis on R3, a = (a1, a2, a3) and b = (b1, b2, b3). We denote the
unit sphere S2 = {x ∈ R3|x · x = 1}.

Let γ : I → S2 be a regular curve. We define the unit tangent vector t(t) = γ̇(t)/|γ̇(t)|
and the unit normal vector n(t) = γ(t) × γ̇(t)/|γ̇(t)|, where |γ̇(t)| =

√
γ̇(t) · γ̇(t) and γ̇(t) =

(dγ/dt)(t). Then {γ(t), t(t),n(t)} is a moving frame along γ(t) and the Frenet Serret formula
is given by  γ̇(t)

ṫ(t)
ṅ(t)

 =

 0 |γ̇(t)| 0
−|γ̇(t)| 0 |γ̇(t)|κg(t)

0 −|γ̇(t)|κg(t) 0

 γ(t)
t(t)
n(t)

 ,

where the geodesic curvature is

κg(t) =
ṫ(t) · n(t)
|γ̇(t)|

=
det(γ(t), γ̇(t), γ̈(t))

|γ̇(t)|3
.

The evolute Ev(γ) : I → S2 of a regular curve γ : I → S2 is given by

Ev(γ)(t) = ± κg(t)√
κ2
g(t) + 1

γ(t)± 1√
κ2
g(t) + 1

n(t). (1)

By definition, we can not construct the Frenet Serret formula at singular points of γ : I →
S2. In this paper, we would like to consider singular curves in the unit sphere.

We denote a 3-dimensional manifold ∆ = {(a, b) ∈ S2 × S2 | a · b = 0}.

Definition 2.1 We say that (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre curve (or, spherical
Legendre curve) if γ̇(t) · ν(t) = 0 for all t ∈ I. We call γ a frontal and ν a dual of γ. Moreover,
if (γ, ν) is a Legendre immersion, we call γ a front.

We consider the canonical contact structure on the unit spherical bundle T1S
2 = S2 × S2

over S2. If (γ, ν) is a Legendre curve, then (γ, ν) is an integral curve with respect to the contact
structure (cf. [2]).
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We define µ(t) = γ(t)× ν(t). Then µ(t) ∈ S2, γ(t) ·µ(t) = 0 and ν(t) ·µ(t) = 0. It follows
that {γ(t), ν(t),µ(t)} is a moving frame along the frontal γ(t). By the standard arguments, we
have the Frenet Serret type formula as follows:

Proposition 2.2 Let (γ, ν) : I → ∆ be a Legendre curve. Then we have γ̇(t)
ν̇(t)
µ̇(t)

 =

 0 0 m(t)
0 0 n(t)

−m(t) −n(t) 0

 γ(t)
ν(t)
µ(t)

 ,

where m(t) = γ̇(t) · µ(t) and n(t) = ν̇(t) · µ(t).

We say that the pair of the functions (m,n) is the curvature of the Legendre curve (γ, ν) : I →
∆ ⊂ S2 × S2.

Note that t0 is a singular point of γ (respectively, ν) if and only if m(t0) = 0 (respectively,
n(t0)=0).

Remark 2.3 If (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre curve with the curvature (m,n), then
(γ,−ν) is a Legendre curve with the curvature (−m,n). Also (−γ, ν) is a Legendre curve with
the curvature (m,−n). Moreover (ν, γ) is a Legendre curve with the curvature (−n,−m).

Definition 2.4 Let (γ, ν), (γ̃, ν̃) : I → ∆ ⊂ S2×S2 be Legendre curves. We say that (γ, ν) and
(γ̃, ν̃) are congruent as Legendre curves if there exists a special orthogonal matrix A ∈ SO(3)
such that

γ̃(t) = A(γ(t)), ν̃(t) = A(ν(t)),

for all t ∈ I.

Then we have the following existence and uniqueness theorems in terms of the curvature of
the Legendre curve.

Theorem 2.5 (The Existence Theorem) Let (m,n) : I → R×R be a smooth mapping. There
exists a Legendre curve (γ, ν) : I → ∆ ⊂ S2 × S2 whose associated curvature is (m,n).

Theorem 2.6 (The Uniqueness Theorem) Let (γ, ν) and (γ̃, ν̃) : I → ∆ ⊂ S2×S2 be Legendre
curves whose curvatures (m,n) and (m̃, ñ) coincide. Then (γ, ν) and (γ̃, ν̃) are congruent as
Legendre curves.

By using the theorems of the existence and uniqueness of the solution of a system of linear
ordinary differential equations, these proofs are similar to the cases of regular space curves
([10]), Legendre curves in the unit tangent bundle ([6]) and framed curves ([11]), we omit it.

Example 2.7 Let γ : I → S2 be a regular curve. We consider a Legendre immersion (γ,n) :
I → ∆ ⊂ S2 × S2. Then the relationship between the geodesic curvature κg of γ and the
curvature (m,n) of (γ,n) is given by κg(t) = n(t)/|m(t)|.

Example 2.8 Let n,m and k be natural numbers with m = k + n. We give a mapping
(γ, ν) : R → ∆ ⊂ S2 × S2 by

γ(t) =
1√

1 + t2n + t2m
(1, tn, tm), ν(t) =

1√
n2 +m2t2k + k2t2m

(ktm,−mtk, n).
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Then (γ, ν) is a Legendre curve. Since

µ(t) =
1√

(1 + t2n + t2m)(n2 +m2t2k + k2t2m)
(ntn +mtm+k,−n+ kt2m,−mtk − ktm+n),

the curvature is given by

m(t) =
−tn−1

√
n2 +m2t2k + k2t2m

1 + t2n + t2m
, n(t) =

knmtk−1
√
1 + t2n + t2m

n2 +m2t2k + k2t2m
.

Let γ : (I, t0) → S2 be a smooth curve germ and denote γ(t) = (x(t), y(t), z(t)). It can be
shown that, if γ is not infinitely flat, namely, if either x(t), y(t) or z(t) does not belong to m∞

1

(the ideal of infinitely flat function germs), then γ is a frontal.

Without loss of generality, we suppose that x(t) does not belong to m∞
1 such that

order x(t) ≤ order y(t) ≤ order z(t).

Assume that x(t0) > 0. By the assumptions and γ(t) ∈ S2, there exist smooth function germs
a(t), b(t), c(t) around t0 such that y(t) = a(t)x(t), z(t) = b(t)x(t) and ḃ(t) = c(t)ȧ(t). It follows
that γ is given by

γ(t) =
1√

1 + a2(t) + b2(t)
(1, a(t), b(t)).

If we take

ν(t) =
1√

(a(t)c(t)− b(t))2 + c2(t) + 1
(a(t)c(t)− b(t),−c(t), 1),

then (γ, ν) is a Legendre curve.

On the other hand, constant maps in S2 are also frontal, which do not satisfy the above
sufficient condition. In particular an analytic curve germ is always frontal, because if it is
infinitely flat, then it is constant.

Let I and Ĩ be intervals. A smooth function u : Ĩ → I is a (positive) change of param-
eter when u is surjective and has a positive derivative at every point. It follows that u is a
diffeomorphism.

Let (γ, ν) : I → ∆ and (γ̃, ν̃) : Ĩ → ∆ be Legendre curves whose curvatures are (m,n) and
(m̃, ñ) respectively. Suppose that (γ, ν) and (γ̃, ν̃) are parametrically equivalent via the change

of parameter t : Ĩ → I, that is, (γ̃(u), ν̃(u)) = (γ(t(u)), ν(t(u))) for all u ∈ Ĩ. By differentiation,
we have

m̃(u) = m(t(u))ṫ(u), ñ(u) = n(t(u))ṫ(u). (2)

Hence the curvature is dependent of the parametrization.

Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre curve with the curvature (m,n). We define a
parallel curve γθ : I → S2 by

γθ(t) = cos θγ(t) + sin θν(t),

where θ ∈ [0, 2π). Then γθ is a frontal. More precisely, we have the following. We denote
νθ : I → S2 by νθ(t) = − sin θγ(t) + cos θν(t).
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Proposition 2.9 Under the above notations, (γθ, νθ) : I → ∆ ⊂ S2 × S2 is a Legendre curve
with the curvature

(m(t) cos θ + n(t) sin θ,−m(t) sin θ + n(t) cos θ). (3)

Proof. By definition, γθ(t) · νθ(t) = 0. Since γ̇θ(t) = (m(t) cos θ + n(t) sin θ)µ(t), then γ̇θ(t) ·
νθ(t) = 0. It follows that (γθ, νθ) is a Legendre curve. Moreover, we have µθ(t) = γθ(t)×νθ(t) =
µ(t) and ν̇θ(t) = (−m(t) sin θ + n(t) cos θ)µ(t). The curvature of the Legendre curve is given
by (m(t) cos θ + n(t) sin θ,−m(t) sin θ + n(t) cos θ). 2

We say that (γθ, νθ) is a parallel Legendre curve of the Legendre curve (γ, ν). Note that if
(γ, ν) is a Legendre immersion, then (γθ, νθ) is also a Legendre immersion.

3 Relationships among spherical Legendre curves, Leg-

endre curves and framed curves

First, we give a relationship between spherical Legendre curves and Legendre curves in the unit
tangent bundle over R2.

We review on the Legendre curves in the unit tangent bundle over R2, for more detail see
[6]. We say that (γ, ν) : I → R2 × S1 is a Legendre curve if (γ(t), ν(t))∗θ = 0 for all t ∈ I,
where θ is a canonical contact 1-form on the unit tangent bundle T1R2 = R2 × S1 (cf. [1, 2]).
This condition is equivalent to γ̇(t) · ν(t) = 0 for all t ∈ I. We say that γ : I → R2 is a frontal
if there exists a smooth mapping ν : I → S1 such that (γ, ν) is a Legendre curve.

Let (γ, ν) : I → R2 × S1 be a Legendre curve. Then we have the Frenet formula of the
frontal γ as follows. We put µ(t) = J(ν(t)), where J is the anti-clockwise rotation by π/2 on
R2. We call the pair {ν(t),µ(t)} a moving frame along the frontal γ(t) in R2 and the Frenet
formula of the frontal (or, the Legendre curve) which is given by(

ν̇(t)
µ̇(t)

)
=

(
0 ℓ(t)

−ℓ(t) 0

)(
ν(t)
µ(t)

)
,

where ℓ(t) = ν̇(t) · µ(t). Moreover, there exists a smooth function β(t) such that

γ̇(t) = β(t)µ(t).

We say that the pair of functions (ℓ, β) is the curvature of the Legendre curve (γ, ν) : I →
R2 × S1.

Now we consider the central and the canonical projections to give relationships between
Legendre curves in T1S

2 and T1R2. We denote a hemisphere S+ = {(x, y, z) ∈ S2|z > 0}.
We consider the central projection Φ : S+ → R2 by

Φ(x, y, z) =
(x
z
,
y

z

)
.

The central projection is useful to analyze the pedal curves (cf. [13, 14]).
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Proposition 3.1 Let (γ, ν) : I → ∆ ⊂ S2×S2 be a spherical Legendre curve with the curvature
(m,n) and γ(I) ⊂ S+. We denote γ(t) = (x(t), y(t), z(t)) and ν(t) = (a(t), b(t), c(t)). Then
γ̃ = Φ ◦ γ is a frontal in R2. More preciously, (γ̃, ν̃) : I → R2 × S1 is a Legendre curve, where

γ̃(t) =

(
x(t)

z(t)
,
y(t)

z(t)

)
, ν̃(t) =

1√
a2(t) + b2(t)

(a(t), b(t))

with the curvature

ℓ(t) =
n(t)z(t)

a2(t) + b2(t)
, β(t) =

m(t)z2(t) + (x(t)b(t)− y(t)a(t))ż(t)

z2(t)
√
a2(t) + b2(t)

.

Proof. Since (γ, ν) is a spherical Legendre curve, we have

x(t)a(t) + y(t)b(t) + z(t)c(t) = 0, ẋ(t)a(t) + ẏ(t)b(t) + ż(t)c(t) = 0.

It follows that x(t)ȧ(t) + y(t)ḃ(t) + z(t)ċ(t) = 0. By definition,

µ(t) = γ(t)× ν(t) = (y(t)c(t)− z(t)b(t), z(t)a(t)− x(t)c(t), x(t)b(t)− y(t)a(t)).

By a direct calculation, we have

m(t) = γ̇(t) · µ(t) = −ẋ(t)b(t) + ẏ(t)a(t)

z(t)
,

n(t) = ν̇(t) · µ(t) = −ȧ(t)b(t) + a(t)ḃ(t)

z(t)
.

By the assumption γ(t) ∈ S+, we have c(t) ̸= ±1 and hence a2(t) + b2(t) ̸= 0. It follows that
ν̃ : I → S1, ν̃(t) = (a(t), b(t))/

√
a2(t) + b2(t) is a smooth mapping. Moreover, we have

˙̃γ(t) =

(
ẋ(t)z(t)− x(t)ż(t)

z2(t)
,
ẏ(t)z(t)− y(t)ż(t)

z2(t)

)
and ˙̃γ(t) · ν̃(t) = 0. Therefore (γ̃, ν̃) : I → R2 × S1 is a Legendre curve.

Since µ̃(t) = J(ν̃(t)) = (−b(t), a(t))/
√
a2(t) + b2(t), we have the curvature

ℓ(t) = ˙̃ν(t) · µ̃(t) = a(t)ḃ(t)− ȧ(t)b(t)

a2(t) + b2(t)
=

n(t)z(t)

a2(t) + b2(t)
,

β(t) = ˙̃γ(t) · µ̃(t) = (−ẋ(t)b(t) + ẏ(t)a(t))z(t) + (x(t)b(t)− y(t)a(t))ż(t)

z2(t)
√
a2(t) + b2(t)

=
m(t)z2(t) + (x(t)b(t)− y(t)a(t))ż(t)

z2(t)
√

a2(t) + b2(t)
.

2

Also, we consider the canonical projection π : S+ → D2 ⊂ R2 by π(x, y, z) = (x, y), where
D2 = {(x, y) ∈ R2|x2 + y2 < 1}.
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Proposition 3.2 Let (γ, ν) : I → ∆ ⊂ S2×S2 be a spherical Legendre curve with the curvature
(m,n) and γ(I) ⊂ S+. We denote γ(t) = (x(t), y(t), z(t)) and ν(t) = (a(t), b(t), c(t)). Then
γ̃ = π ◦ γ is a frontal in D2 ⊂ R2. More preciously, (γ̃, ν̃) : I → D2 × S1 is a Legendre curve,
where

γ̃(t) = (x(t), y(t)) , ν̃(t) =
(z(t)a(t)− x(t)c(t), z(t)b(t)− y(t)c(t))√

(z(t)a(t)− x(t)c(t))2 + (z(t)b(t)− y(t)c(t))2

with the curvature

ℓ(t) =
n(t)z(t) + x(t)ẏ(t)− ẋ(t)y(t)

(z(t)a(t)− x(t)c(t))2 + (z(t)b(t)− y(t)c(t))2
,

β(t) =
m(t)− (x(t)b(t)− y(t)a(t))ż(t)√

(z(t)a(t)− x(t)c(t))2 + (z(t)b(t)− y(t)c(t))2
.

Proof. If z(t)a(t) − x(t)c(t) = 0 and z(t)b(t) − y(t)c(t) = 0, then a(t) = x(t)c(t)/z(t) and
b(t) = y(t)c(t)/z(t). Since ν(t) ∈ S2, we have c2(t) = z2(t) and hence c(t) = ±z(t). It follows
that a(t) = ±x(t) and b(t) = ±y(t). It is contradict the fact that γ(t) · ν(t) = 0. Hence ν̃ is a
smooth mapping. By ẋ(t)a(t) + ẏ(t)b(t) + ż(t)c(t) = 0 and ẋ(t)x(t) + ẏ(t)y(t) + ż(t)z(t) = 0,
we have ˙̃γ(t) · ν̃(t) = 0. Therefore (γ̃, ν̃) : I → D2 × S1 is a Legendre curve. By a similar
calculation as in Proposition 3.1, we have the curvature (ℓ, β) of the Legendre curve (γ̃, ν̃). 2

Remark 3.3 As a projection from the sphere to the plane, how about the stereographic pro-
jection. The properties of the stereographic projection see [10, 17, 18], for example. Does it
hold the similar results of Propositions 3.1 and 3.2 or not?

Conversely, for a Legendre curve in the unit tangent bundle, we have a spherical Legendre
curve as follows.

Proposition 3.4 Let (γ̃, ν̃) : I → R2 × S1 be a Legendre curve with the curvature (ℓ, β). We
denote γ̃(t) = (x(t), y(t)) and ν̃(t) = (a(t), b(t)). Then γ = Φ−1 ◦ γ̃ is a frontal in S+. More
preciously, (γ, ν) : I → ∆ ⊂ S+ × S2 is a spherical Legendre curve, where

γ(t) =
(x(t), y(t), 1)√
1 + x2(t) + y2(t)

, ν(t) =
(a(t), b(t),−(x(t)a(t) + y(t)b(t)))√

1 + (x(t)a(t) + y(t)b(t))2

with the curvature

m(t) =
β(t) + (x(t)ẏ(t)− ẋ(t)y(t))(x(t)a(t) + y(t)b(t))

(1 + x2(t) + y2(t))
√
1 + (x(t)a(t) + y(t)b(t))2

, n(t) =
ℓ(t)
√
1 + x2(t) + y2(t)

1 + (x(t)a(t) + y(t)b(t))2
.

Proof. Since (γ̃, ν̃) : I → R2 × S1 is a Legendre curve, we have ẋ(t)a(t) + ẏ(t)b(t) = 0. By
definition, µ̃(t) = J(ν̃(t)) = (−b(t), a(t)). It follows that

ℓ(t) = −ȧ(t)b(t) + a(t)ḃ(t), β(t) = −ẋ(t)b(t) + ẏ(t)a(t).

By a direct calculation, we have

γ̇(t) =
1

1 + x2(t) + y2(t)

(
(1 + y2(t))ẋ(t)− x(t)y(t)ẏ(t),

(1 + x2(t))ẏ(t)− x(t)ẋ(t)y(t)),−(x(t)ẋ(t) + y(t)ẏ(t))
)
.
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Then γ(t) · ν(t) = 0 and γ̇(t) · ν(t) = 0 for all t ∈ I. Therefore (γ, ν) : I → ∆ ⊂ S+ × S2 is a
spherical Legendre curve. Since

µ(t) = γ(t)× ν(t)

=
(−x(t)y(t)a(t)− (1 + y2(t))b(t), (1 + x2(t))a(t) + x(t)y(t)b(t), x(t)b(t)− y(t)a(t))√

(1 + x2(t) + y2(t))(1 + (x(t)a(t) + y(t)b(t))2)
,

we have the curvature

m(t) = γ̇(t) · µ(t) = (x(t)ẏ(t)− ẋ(t)y(t))(x(t)a(t) + y(t)b(t))− ẋ(t)b(t) + ẏ(t)a(t)

(1 + x2(t) + y2(t))
√

1 + (x(t)a(t) + y(t)b(t))2

=
β(t) + (x(t)ẏ(t)− ẋ(t)y(t))(x(t)a(t) + y(t)b(t))

(1 + x2(t) + y2(t))
√

1 + (x(t)a(t) + y(t)b(t))2
,

n(t) = ν̇(t) · µ(t) =
(a(t)ḃ(t)− ȧ(t)b(t))

√
1 + x2(t) + y2(t)

1 + (x(t)a(t) + y(t)b(t))2

=
ℓ(t)
√
1 + x2(t) + y2(t)

1 + (x(t)a(t) + y(t)b(t))2
.

2

Proposition 3.5 Let (γ̃, ν̃) : I → D2 × S1 be a Legendre curve with the curvature (ℓ, β). We
denote γ̃(t) = (x(t), y(t)) and ν̃(t) = (a(t), b(t)). Then γ = π−1 ◦ γ̃ is a frontal in S+. More
preciously, (γ, ν) : I → ∆ ⊂ S+ × S2 is a spherical Legendre curve, where

γ(t) = (x(t), y(t), z(t)),

ν(t) =
(a(t)− x(t)(x(t)a(t)− y(t)b(t)), b(t)− y(t)(x(t)a(t)− y(t)b(t)),−z(t)(x(t)a(t) + y(t)b(t)))√

1− (x(t)a(t) + y(t)b(t))2

with the curvature

m(t) =
β(t) + (ẋ(t)y(t)− x(t)ẏ(t))(x(t)a(t)− y(t)b(t))

z(t)
√
1− (x(t)a(t) + y(t)b(t))2

,

n(t) =
ℓ(t)z2(t)− β(t)(x(t)a(t) + y(t)b(t)) + (x(t)ẏ(t)− ẋ(t)y(t))(x(t)a(t) + y(t)b(t))2

z(t)(1− (x(t)a(t) + y(t)b(t))2)
.

Here we put z(t) =
√

1− x2(t)− y2(t).

Proof. Since γ̃(t) · γ̃(t) < 1 and ν̃(t) · ν̃(t) = 1, we have x(t)a(t) + y(t)b(t) < 1 for all t ∈ I.
Therefore ν : I → S2 is a smooth mapping. By the same argument as in Proposition 3.4, we
have

ℓ(t) = −ȧ(t)b(t) + a(t)ḃ(t), β(t) = −ẋ(t)b(t) + ẏ(t)a(t).

Since

γ̇(t) =

(
ẋ(t), ẏ(t),−x(t)ẋ(t)− y(t)ẏ(t)

z(t)

)
and x2(t) + y2(t) + z2(t) = 1, we have γ(t) · ν(t) = 0 and γ̇(t) · ν(t) = 0 for all t ∈ I. Therefore
(γ, ν) : I → ∆ ⊂ S+ × S2 is a spherical Legendre curve. Since

µ(t) =
1√

1− (x(t)a(t) + y(t)b(t))2
(−z(t)b(t), z(t)a(t), x(t)b(t)− y(t)a(t))
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and a direct calculation, we have the curvature (m,n) of the spherical Legendre curve (γ, ν).
2

Second, we discuss relationships between framed curves in the Euclidean space and spherical
Legendre curves.

We review on the framed curves in the unit tangent bundle, for more detail see [11]. We
say that (γ, ν1, ν2) : I → R3 × S2 × S2 is a framed curve if

γ̇(t) · ν1(t) = 0, γ̇(t) · ν2(t) = 0, ν1(t) · ν2(t) = 0

for all t ∈ I. Then (ν1, ν2) ∈ ∆.

Let (γ, ν1, ν2) : I → R3 ×∆ be a framed curve and denote µ(t) = ν1(t)× ν2(t). The Frenet
Serret type formula is given by ν̇1(t)

ν̇2(t)
µ̇(t)

 =

 0 ℓ(t) m(t)
−ℓ(t) 0 n(t)
−m(t) −n(t) 0

 ν1(t)
ν2(t)
µ(t)

 ,

where ℓ(t) = ν̇1(t) · ν2(t),m(t) = ν̇1(t) · µ(t) and n(t) = ν̇2(t) · µ(t). Moreover, there exists a
smooth mapping α : I → R such that

γ̇(t) = α(t)µ(t).

We say that the pair of the functions (ℓ,m, n, α) is the curvature of the framed curve
(γ, ν1, ν2) : I → R3 ×∆.

Let (γ, ν1, ν2) : I → R3 × ∆ be a framed curve with the curvature of the framed curve
(ℓ,m, n, α). For the normal plane of γ(t), spanned by ν1(t) and ν2(t), there is some ambient of
framed curves similarly to the case of the Bishop frame of a regular space curve (cf. [4]). We
define (ν1(t), ν2(t)) ∈ ∆ by(

ν1(t)
ν2(t)

)
=

(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)(
ν1(t)
ν2(t)

)
,

where θ(t) is a smooth function. Then (γ, ν1, ν2) : I → R3 ×∆ is also a framed curve and

µ(t) = ν1(t)× ν2(t)

= (cos θ(t)ν1(t)− sin θ(t)ν2(t))× (sin θ(t)ν1(t) + cos θ(t)ν2(t))

= ν1(t)× ν2(t) = µ(t).

By a direct calculation, we have

ν̇1(t) = (ℓ(t)− θ̇(t)) sin θ(t)ν1(t) + (ℓ(t)− θ̇(t)) cos θ(t)ν2(t)

+(m(t) cos θ(t)− n(t) sin θ(t))µ(t),

ν̇2(t) = −(ℓ(t)− θ̇(t)) cos θ(t)ν1(t) + (ℓ(t)− θ̇(t)) sin θ(t)ν2(t)

+(m(t) sin θ(t) + n(t) cos θ(t))µ(t).

If we take a smooth function θ : I → R which satisfies θ̇(t) = ℓ(t), then we call the frame
{ν1(t), ν2(t),µ(t)} an adapted frame along the framed base curve γ(t). It follows that the
Frenet Serret type formula is given by ν̇1(t)

ν̇2(t)
µ̇(t)

 =

 0 0 m(t)
0 0 n(t)

−m(t) −n(t) 0

 ν1(t)
ν2(t)
µ(t)

 ,
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where m(t) and n(t) are given by(
m(t)
n(t)

)
=

(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)(
m(t)
n(t)

)
.

Proposition 3.6 Let (γ, ν1, ν2) : I → R3×∆ be a framed curve with the curvature (ℓ,m, n, α).

(1) Suppose that {ν1(t), ν2(t),µ(t)} is an adapted frame of γ(t). Then (ν1, ν2) : I → ∆ ⊂
S2 × S2 is a spherical Legendre curve with the curvature (m(t), n(t)).

(2) Let γ(t) be non-zero. We denote γ̃(t) = γ(t)/|γ(t)| and γ̃(t) = a(t)ν1(t) + b(t)ν2(t) +
c(t)µ(t) with a2(t) + b2(t) + c2(t) = 1. Suppose that a2(t) + b2(t) ̸= 0. Then γ̃(t) is a frontal in
S2. More preciously, (γ̃, ν̃) : I → ∆ ⊂ S2 × S2 is a spherical Legendre curve, where

ν̃(t) =
γ̃(t)× µ(t)

|γ̃(t)× µ(t)|
,

with the curvature

m̃(t) = −a(t)m(t) + b(t)n(t) + ċ(t)√
a2(t) + b2(t)

,

ñ(t) =
(a2(t) + b2(t))(a(t)n(t)− b(t)m(t) + c(t)ℓ(t)) + (a(t)ḃ(t)− ȧ(t)b(t))c(t)√

a2(t) + b2(t)
.

Proof. (1) By definition, (ν1, ν2) is a spherical Legendre curve with the curvature (m(t), n(t)).

(2) Since ν̃(t) = (b(t)ν1(t)− a(t)ν2(t))/
√
a2(t) + b2(t), we have

µ̃(t) =
1√

a2(t) + b2(t)
(a(t)c(t)ν1(t) + b(t)c(t)ν2(t)− (a2(t) + b2(t))µ(t)).

By using the Frenet Serret type formula, we have

˙̃γ(t) = (ȧ(t)− b(t)ℓ(t)− c(t)m(t))ν1(t) + (ḃ(t) + a(t)ℓ(t)− c(t)n(t))ν2(t)

+(ċ(t) + a(t)m(t) + b(t)n(t))µ(t),

˙̃ν(t) =
1

(a2(t) + b2(t))
3
2

(
(ḃ(t)a2(t) + a(t)(a2(t) + b2(t))ℓ(t)− ȧ(t)a(t)b(t))ν1(t)

+(−ȧ(t)b2(t) + b(t)(a2(t) + b2(t))ℓ(t) + ḃ(t)a(t)b(t))ν2(t)

+(a2(t) + b2(t))(−a(t)n(t) + b(t)m(t))µ(t)
)
.

By a direct calculation, we have

m̃(t) = ˙̃γ(t) · µ̃(t) = −a(t)m(t) + b(t)n(t) + ċ(t)√
a2(t) + b2(t)

,

ñ(t) = ˙̃ν(t) · µ̃(t)

=
(a2(t) + b2(t))(a(t)n(t)− b(t)m(t) + c(t)ℓ(t)) + (a(t)ḃ(t)− ȧ(t)b(t))c(t)√

a2(t) + b2(t)
.

2

Conversely, for a spherical Legendre curve, we have a framed curve as follows.
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Proposition 3.7 Let (γ, ν) : I → ∆ ⊂ S2×S2 be a spherical Legendre curve with the curvature
(m,n). Then (γ, γ, ν) : I → S2×∆ ⊂ R3×∆ is a framed curve with the curvature (ℓ,m, n, α) =
(0,m, n,m).

Proof. Since (γ, ν) : I → ∆ ⊂ S2 × S2 is a spherical Legendre curve, (γ, γ, ν) : I → S2 ×∆ ⊂
R3 ×∆ is a framed curve with the curvature (0,m, n,m). 2

4 Evolutes of fronts in the sphere

In this section, we assume that (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre immersion, that is,
(m(t), n(t)) ̸= (0, 0) for all t ∈ I. We define an evolute of the front and give properties of the
evolute in the sphere. The evolute of curves in the Euclidean plane see [5, 7, 8, 9].

Definition 4.1 We define an evolute Ev(γ) : I → S2 of the front γ by

Ev(γ)(t) = ± n(t)√
m2(t) + n2(t)

γ(t)∓ m(t)√
m2(t) + n2(t)

ν(t) (4)

Remark 4.2 If (γ, ν) is a Legendre immersion with the curvature (m,n), then (γ,−ν) (respec-
tively, (−γ, ν)) is a Legendre immersion with the curvature (−m,n) (respectively, (m,−n)) by
Remark 2.3. It is easy to see that the evolute Ev(γ) does not change. For the case (ν, γ), see
below Corollary 4.6.

Proposition 4.3 Let γ : I → S2 be a regular curve with the geodesic curvature κg. Then the
evolute of the regular curve and the evolute of the front are coincide.

Proof. We consider a Legendre immersion (γ,n) : I → ∆ ⊂ S2 × S2 with the curvature
(m,n), see Example 2.7. Since n(t) = ν(t) and t(t) = −µ(t), we have m(t) < 0. By κg(t) =
n(t)/|m(t)| = −n(t)/m(t) and the definition of the evolute of the regular curve (1), we have

Ev(γ)(t) = ± κg(t)√
κ2
g(t) + 1

γ(t)± 1√
κ2
g(t) + 1

n(t)

= ± n(t)√
m2(t) + n2(t)

γ(t)∓ m(t)√
m2(t) + n2(t)

ν(t) = Ev(γ)(t).

2

Proposition 4.4 Suppose that (γ, ν) : I → ∆ ⊂ S2 × S2 and (γ̃, ν̃) : Ĩ → ∆ ⊂ S2 × S2 are

parametrically equivalent via the change of parameter t : Ĩ → I. Then Ev(γ̃)(u) = Ev(γ)(t(u)).

Proof. We denote (m(t), n(t)) and (m̃(u), ñ(u)) the curvature of (γ(t), ν(t)) and (γ̃(u), ν̃(u))
respectively. By the assumption, we have (γ̃(u), ν̃(u)) = (γ(t(u)), ν(t(u))). By using the
relationship between the curvature (2), we have Ev(γ̃)(u) = Ev(γ)(t(u)). 2

Proposition 4.5 Let θ ∈ [0, 2π) and (γθ, νθ) : I → ∆ ⊂ S2 × S2 be a parallel Legendre
immersion of (γ, ν). Then the evolute of the parallel curve and the evolute of the front are
coincide.
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Proof. By Proposition 2.9, (mθ(t), nθ(t)) = (m(t) cos θ + n(t) sin θ,−m(t) cos θ + n(t) cos θ) is
the curvature of (γθ, νθ). Then we have m2

θ(t) + n2
θ(t) = m2(t) + n2(t). It follows that

Ev(γθ)(t) = ± nθ(t)√
m2

θ(t) + n2
θ(t)

γθ(t)∓
mθ(t)√

m2
θ(t) + n2

θ(t)
νθ(t)

= ±(−m(t) sin θ + n(t) cos θ)√
m2(t) + n2(t)

(cos θγ(t) + sin θν(t))

∓(m(t) cos θ + n(t) sin θ)√
m2(t) + n2(t)

(− sin θγ(t) + cos θν(t))

= ± n(t)√
m2(t) + n2(t)

γ(t)∓ m(t)√
m2(t) + n2(t)

ν(t) = Ev(γ)(t).

2

If we take θ = π/2, then (γθ, νθ) = (ν,−γ). By Proposition 4.5 and Remark 4.2, we have
the following Corollary.

Corollary 4.6 For a Legendre immersion (γ, ν) : I → ∆ ⊂ S2 × S2, (ν, γ) is also a Legendre
immersion. Then the evolute of the front and the evolute of the dual curve are coincide, that
is, Ev(γ)(t) = Ev(ν)(t).

We define a family of functions H : I × S2 → R by

H(t,v) = µ(t) · v.

Proposition 4.7 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature
(m,n). We have the following.

(1) H(t,v) = 0 if and only if v = aγ(t) + bν(t) for some a, b ∈ R with a2 + b2 = 1.

(2) H(t,v) = ∂H
∂t
(t,v) = 0 if and only if v = ± n(t)√

m2(t)+n2(t)
γ(t)∓ m(t)√

m2(t)+n2(t)
ν(t).

Proof. (1) Since {γ(t), ν(t),µ(t)} is an orthogonal base on R3, we have µ(t) ·v = 0 if and only
if there exist real numbers a, b ∈ R such that v = aγ(t) + bν(t) ∈ S2.

(2) Since (d/dt)H(t,v) = (−m(t)γ(t)−n(t)ν(t)) ·v, we have a2+b2 = 1 and am(t)+bn(t) =
0. It follows that

a = ± n(t)√
m2(t) + n2(t)

, b = ∓ m(t)√
m2(t) + n2(t)

.

By a direct calculation, the converse holds. 2

We can show that H is a Morse family, in the sense of Legendrian singularity theory (cf.
[1, 3, 12, 21]), namely, (H, ∂H/∂t) : I × S2 → R× R is a submersion at (t,v) ∈ D(H), where

D(H) = {(t,v) | H(t,v) = (∂H/∂t)(t,v) = 0}.

It follows that the evolute of the front Ev(γ) is a (wave) front of a Legendre immersion and is
given by the envelope of the parallel of the front. In fact, we have the following.
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Proposition 4.8 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature
(m,n). Then Ev(γ) is a front. More precisely, (Ev(γ),µ) : I → ∆ ⊂ S2 × S2 is a Legendre
immersion with the curvature

mEv(t) =
ṁ(t)n(t)−m(t)ṅ(t)

m2(t) + n2(t)
, nEv(t) = ±

√
m2(t) + n2(t).

Proof. Here we denote (γEv, νEv) = (Ev(γ),µ). By definition of the evolute of the front Ev(t),
γEv(t) · νEv(t) = 0 for all t ∈ I. Moreover, since

γ̇Ev(t) = ± d

dt

(
n(t)√

m2(t) + n2(t)

)
γ(t)∓ d

dt

(
m(t)√

m2(t) + n2(t)

)
ν(t),

we have γ̇Ev(t) · νEv(t) = 0 for all t ∈ I. Hence (γEv, νEv) : I → ∆ ⊂ S2 × S2 is a Legendre
curve. By a direct calculation, we have ν̇Ev(t) = µ̇(t) = −m(t)γ(t)− n(t)ν(t) and

µEv(t) = γEv(t)× νEv(t) = ∓ m(t)√
m2(t) + n2(t)

γ(t)∓ n(t)√
m2(t) + n2(t)

ν(t).

Then the curvature is given by

mEv(t) = γ̇Ev(t) · µEv(t)

= − m(t)√
m2(t) + n2(t)

d

dt

(
n(t)√

m2(t) + n2(t)

)
+

n(t)√
m2(t) + n2(t)

d

dt

(
m(t)√

m2(t) + n2(t)

)

=
ṁ(t)n(t)−m(t)ṅ(t)

m2(t) + n2(t)
,

nEv(t) = ν̇Ev(t) · µEv(t)

= ± m2(t)√
m2(t) + n2(t)

± n2(t)√
m2(t) + n2(t)

= ±
√
m2(t) + n2(t).

It follows from nEv(t) ̸= 0 for all t ∈ I that (γEv, νEv) is a Legendre immersion. 2

Remark 4.9 The evolute of γ and of ν are coincide by Corollary 4.6. It follows that the evolute
of µ is given by the second evolute of γ, see Theorem 4.11 below, that is, Ev(µ) = Ev(Ev(γ))
by Proposition 4.8

We denote a plane by P (v, a) = {x ∈ R3|x · v = a}, where v ∈ S2 is a constant vector and
a ∈ R is a constant.

Proposition 4.10 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature
(m,n). Then Ev(γ)(t) is a constant if and only if there exist a vector v ∈ S2 and a, b ∈ R with
a2 + b2 = 1 such that γ(t) ⊂ P (v, a) ∩ S2 and ν(t) ⊂ P (v, b) ∩ S2.

Proof. By Proposition 4.8 and Ėv(γ)(t) = 0, we have ṁ(t)n(t) − m(t)ṅ(t) = 0 and m2(t) +
n2(t) ̸= 0 for all t ∈ I. Then m and n are linearly dependent, that is, there exist a, b ∈ R with
a2 + b2 = 1 such that am(t) + bn(t) = 0 for all t ∈ I. By the Frenet Serret formula, we have
aγ̇(t)+bν̇(t) = 0 for all t ∈ I. There exists a constant vector v ∈ S2 such that aγ(t)+bν(t) = v.
Therefore, we have γ(t) ⊂ P (v, a) ∩ S2 and ν(t) ⊂ P (v, b) ∩ S2.
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Conversely, if γ(t) · v = a and ν(t) · v = b, then m(t)µ(t) · v = 0 and n(t)µ(t) · v = 0. It
follows that µ(t) · v = 0. Since {γ(t), ν(t),µ(t)} is an orthogonal basis on R3, we can denote
v = aγ(t) + bν(t). By differentiate, we have am(t) + bn(t) = 0 and aṁ(t) + bṅ(t) = 0. Since
a2 + b2 = 1, we have ṁ(t)n(t)−m(t)ṅ(t) = 0 for all t ∈ I. It follows that Ev(γ) is a constant.
2

Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature (m,n). We give
the form of the k-th evolute of the front, where k is a natural number. We denote

Ev0(γ)(t) = γ(t), ν0(t) = ν(t), µ0(t) = µ(t), m0 = m(t), n0 = n(t),

for convenience. We define

Evk(γ)(t) = Ev(Evk−1(γ))(t), νk(t) = µk−1(t), µk(t) = Evk(γ)(t)× νk(t),

mk(t) =
ṁk−1(t)nk−1(t)−mk−1(t)ṅk−1(t)

m2
k−1(t) + n2

k−1(t)
, nk(t) = ±

√
m2

k−1(t) + n2
k−1(t),

inductively. Then we have the following theorem.

Theorem 4.11 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature
(m,n). Then Evk(γ) is a front. More precisely, (Evk(γ), νk) : I → ∆ ⊂ S2 × S2 is a Legendre
immersion with the curvature (mk, nk), where

Evk(γ)(t) = ± nk−1(t)√
m2

k−1(t) + n2
k−1(t)

Evk−1(γ)(t)∓ mk−1(t)√
m2

k−1(t) + n2
k−1(t)

νk−1(t).

Proof. By Proposition 4.8, the case of k = 1 holds.

Suppose that the case of k holds. We consider Ev(Evk(γ))(t). By the assumption, (Evk(γ), νk)
is a Legendre immersion with the curvature (mk, nk). By Proposition 4.8, the (k+1)-th evolute
of the front is given by

Evk+1(γ)(t) = ± nk(t)√
m2

k(t) + n2
k(t)

Evk(γ)(t)∓ mk(t)√
m2

k(t) + n2
k(t)

νk(t).

Since

d

dt
Evk+1(γ)(t) = ± d

dt

(
nk(t)√

m2
k(t) + n2

k(t)

)
Evk(γ)(t)± nk(t)√

m2
k(t) + n2

k(t)
mk(t)µk(t)

∓ d

dt

(
mk(t)√

m2
k(t) + n2

k(t)

)
νk(t)∓

mk(t)√
m2

k(t) + n2
k(t)

nk(t)µk(t)

= ± d

dt

(
nk(t)√

m2
k(t) + n2

k(t)

)
Evk(γ)(t)∓ d

dt

(
mk(t)√

m2
k(t) + n2

k(t)

)
νk(t),

and νk+1(t) = µk(t) = Evk(γ)(t) × νk(t), we have Evk+1(γ)(t) · νk+1(t) = 0 and Ėvk+1
(γ)(t) ·

νk+1(t) = 0. It follows that (Evk+1(γ), νk+1) : I → ∆ ⊂ S2 × S2 is a Legendre curve. Since
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µk+1(t) = Evk+1(γ)(t)× νk+1(t), we have

mk+1(t) =
d

dt
Evk+1(γ)(t) · µk+1(t)

= − d

dt

(
nk(t)√

m2
k(t) + n2

k(t)

)
mk(t)√

m2
k(t) + n2

k(t)
Evk(γ)(t) · (νk(t)× µk(t))

− d

dt

(
mk(t)√

m2
k(t) + n2

k(t)

)
nk(t)√

m2
k(t) + n2

k(t)
νk(t) · (Evk(γ)(t)× µk(t))

=
ṁk(t)nk(t)−mk(t)ṅk(t)

m2
k(t) + n2

k(t)
.

Moreover, since ν̇k+1(t) = µ̇k(t) = −mk(t)Evk(γ)(t)− nk(t)νk(t), we have

nk+1(t) = ν̇k+1(t) · µk+1(t)

= ± m2
k(t)√

m2
k(t) + n2

k(t)
Evk(γ)(t) · (νk(t)× µk(t))

∓ n2
k(t)√

m2
k(t) + n2

k(t)
νk(t) · (Evk(γ)(t)× µk(t))

= ±
√
m2

k(t) + n2
k(t).

It follows from nk+1(t) ̸= 0 for all t ∈ I that (Evk+1(γ), νk+1) is also a Legendre immersion with
the curvature (mk+1, nk+1). This completes the proof of Theorem. 2

5 Evolutes of frontals in the sphere

Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre curve with the curvature (m,n). We define an
evolute of the frontal as follows.

Definition 5.1 The evolute Ev(γ) : I → S2 of the frontal γ is given by

Ev(γ)(t) = ±p(t)γ(t)± q(t)ν(t),

if there exists a smooth mapping (p, q) : I → S1 such that

m(t)p(t) + n(t)q(t) = 0 (5)

for all t ∈ I. In this case, we say that the evolute Ev(γ) exists.

Remark 5.2 If m(t) = n(t) = 0 for all t ∈ I, that is, γ(t) and ν(t) are constant vectors in S2,
then for any smooth mapping (p, q) : I → S1 satisfies the condition m(t)p(t) + n(t)q(t) = 0.
Then the evolute exists but does not unique.

The uniqueness condition is well-known as a topological condition.

Lemma 5.3 Suppose that there exists a continuous mapping (p, q) : I → S1 such that p(t) =
n(t)/

√
m2(t) + n2(t) and q(t) = −m(t)/

√
m2(t) + n2(t) on X = {t ∈ I | m2(t) + n2(t) ̸= 0}.

Then the mapping (p, q) is a unique if and only if X is a dense subset of I, namely, X = I.
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Let (γ, ν) : I → ∆ ⊂ S2×S2 be a Legendre curve with the curvature (m,n). In this section,
we assume that X = {t ∈ I | m2(t)+n2(t) ̸= 0} is a dense subset of I, that is, the set of regular
points of the Legendre curve (γ, ν) is a dense subset of I. This condition follows that if such
a smooth mapping (p, q) : I → S2 exists, then the uniqueness condition is satisfied by Lemma
5.3. Note that if the singular points (γ, ν) are isolated, then the condition that X is a dense
subset of I is satisfied.

The existence condition of the evolute of a frontal is as follows. It is a quit different property
between the evolute of a frontal in the sphere and in the Euclidean plane (cf. [8]).

Proposition 5.4 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre curve with the curvature (m,n).
If m(t) or n(t) does not belong to m∞

1 around t0, then the evolute of the frontal Ev(γ) exists
around t0.

Proof. Suppose that m(t) ̸∈ m∞
1 around t0. There exists a smooth function λ : (I, t0) → R

such that n(t) = λ(t)m(t) around t0. We put

p(t) =
λ(t)√

λ(t)2 + 1
, q(t) = − 1√

λ(t)2 + 1
.

Then the condition m(t)p(t)+n(t)q(t) = 0 holds around t0. Therefore the evolute of the frontal
Ev(γ) exists around t0. By the similar arguments, we can prove the case of n(t) ̸∈ m∞

1 around
t0. 2

Proposition 5.5 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre curve with the curvature (m,n).
If the evolute Ev(γ) of the frontal exists with (p, q) : I → S1 satisfies (5), then the evolute Ev(γ)
is also a frontal. More precisely, (Ev(γ),µ) : I → ∆ ⊂ S2 × S2 is a Legendre curve with the
curvature

mEv(t) = ṗ(t)q(t)− p(t)q̇(t), nEv(t) = ∓m(t)q(t)± n(t)p(t).

Proof. By the Frenet Serret type formula (Proposition 2.2), we have

Ėv(γ)(t) = ±ṗ(t)γ(t)± p(t)γ̇(t)± q̇(t)ν(t)± q(t)ν̇(t)

= ±ṗ(t)γ(t)± q̇(t)ν(t)± (m(t)p(t) + n(t)q(t))µ(t)

= ±ṗ(t)γ(t)± q̇(t)ν(t).

Since µ(t) = γ(t)×ν(t), (Ev(γ),µ) is a Legendre curve. We denote µEv(t) = Ev(γ)(t)×µ(t) =
±q(t)γ(t)∓ p(t)ν(t). Thus, the curvature is given by

mEv(t) = Ėv(γ)(t) · µEv(t) = ṗ(t)q(t)− p(t)q̇(t),

nEv(t) = µ̇(t) · µEv(t) = ∓m(t)q(t)± n(t)p(t).

2

Remark 5.6 By Proposition 5.5, if nEv(t) = 0, then we have m(t) = n(t) = 0. Hence if the
set of regular points of the Legendre curve (γ, ν) is a dense subset of I, then the set of regular
points of (Ev(γ),µ) is also a dense subset of I. By Proposition 5.4, if mEv(t) or nEv(t) dose not
belong to m∞

1 , then there exists unique the second evolute Ev2(γ) of the Legendre curve (γ, ν)
at least locally.
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6 Examples

We give examples of the evolutes of fronts and frontals.

Example 6.1 (Spherical nephroid) Let (γ, ν) : [0, 2π) → ∆ ⊂ S2 × S2 be

γ(t) =

(
3

4
cos t− 1

4
cos 3t,

3

4
sin t− 1

4
sin 3t,

√
3

2
cos t

)
,

ν(t) =

(
3

4
sin t− 1

4
sin 3t,−3

4
cos t− 1

4
cos 3t,−

√
3

2
sin t

)
.

Since

γ̇(t) =

(
−3

4
sin t+

3

4
sin 3t,

3

4
cos t− 3

4
cos 3t,−

√
3

2
sin t

)
,

we have γ(t) · ν(t) = 0 and γ̇(t) · ν(t) = 0. Hence (γ, ν) : [0, 2π) → ∆ ⊂ S2 × S2 is a Legendre
curve. By

µ(t) =

(√
3

2
cos 2t,

√
3

2
sin 2t,−1

2

)
,

the curvature is given by (m(t), n(t)) = (
√
3 sin t,

√
3 cos t). It follows that (γ, ν) is a Legendre

immersion. The evolute of the front is given by

Ev(γ)(t) = ± n(t)√
m2(t) + n2(t)

γ(t)∓ m(t)√
m2(t) + n2(t)

ν(t)

= ± cos tγ(t)∓ sin tν(t)

= ±

(
1

2
cos 2t,

1

2
sin 2t,

√
3

2

)

and the curvature of (Ev(γ),µ) is (mEv(t), nEv(t)) = (1,±
√
3) by Proposition 4.8. Then the

second evolute of the front is given by

Ev2(γ)(t) = ± nEv(t)√
m2

Ev(t) + n2
Ev(t)

Ev(t)∓ mEv(t)√
m2

Ev(t) + n2
Ev(t)

µ(t) = ±(0, 0, 1).

Example 6.2 Let n,m and k be natural numbers with m = k+n. Consider a Legendre curve
(γ, ν) : R → ∆ ⊂ S2 × S2 by

γ(t) =
1√

1 + t2n + t2m
(1, tn, tm), ν(t) =

1√
n2 +m2t2k + k2t2m

(ktm,−mtk, n),

see Example 2.8. Then the curvature is given by

m(t) =
−tn−1

√
n2 +m2t2k + k2t2m

1 + t2n + t2m
, n(t) =

knmtk−1
√
1 + t2n + t2m

n2 +m2t2k + k2t2m
.

Note that (γ, ν) is a Legendre immersion when k = 1 or n = 1. We put 1 < n ≤ k = n + r
for some natural number r. Then the evolute of the frontal is given by Ev(γ)(t) = ±p(t)γ(t)±
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q(t)ν(t), where

p(t) =
(1 + t2n + t2m)

3
2knmtr√

(1 + t2n + t2m)3(knm)2t2r + (n2 +m2t2k + k2t2m)3
,

q(t) =
(n2 +m2t2k + k2t2m)

3
2√

(1 + t2n + t2m)3(knm)2t2r + (n2 +m2t2k + k2t2m)3
.

For example, when n = 2,m = 5, k = 3 and r = 1, then we have

γ(t) =
1√

1 + t4 + t10
(1, t2, t5), ν(t) =

1√
4 + 25t6 + 9t10

(3t5,−5t3, 2)

and

p(t) =
30t(1 + t4 + t10)

3
2√

302t2(1 + t4 + t10)3 + (4 + 25t6 + 9t10)3
,

q(t) =
(4 + 25t6 + 9t10)

3
2√

302t2(1 + t4 + t10)3 + (4 + 25t6 + 9t10)3
.

Then the evolute of the frontal is given by

Ev(γ)(t) = ±30t(1 + t4 + t10)(1, t2, t5) + (4 + 25t6 + 9t10)(3t5 − 5t3, 2)√
302t2(1 + t4 + t10)3 + (4 + 25t6 + 9t10)3

.

This is an example that γ is an ordinary rhamphoid cusp, but ν is not (cf. [15, 16]). It is easy
to see that the assumption of Proposition 2 in [15] page 219 (also Proposition 18.2 in [16] page
304) dose not hold.
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