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LEGENDRE FUNCTIONS OF FRACTIONAL ORDER*

BY

MARION C. GRAY

Bell Telephone Laboratories, Inc., Murray Hill, N. J.

Introduction. In the theory of the propagation of spherical waves in free space

the angular wave functions are Legendre polynomials, P„(cos 6), or associated Legendre

polynomials, P™ (cos 6), where n and m are restricted to integral values. These func-

tions are polynomials in cos 8, their properties have been widely studied, numerical

values have been tabulated, and in general they may be regarded as known functions.

In more recent years, however, Legendre functions of non-integral order, which we

shall denote by PJcos 6), have also occurred in physical problems. Thus, for wave

propagation inside a circular horn of given angle, the boundary conditions introduce

a characteristic equation which is actually an equation in the parameter v. It has been

customary to simplify the problem by choosing horn angles corresponding to integral

values of v, but a complete solution should include a study of the behavior of P„(cos 6)

as a function of v.

Similarly, in the mode theory of antennas developed by Schelkunoff the appropriate

angular wave functions in the antenna region are Legendre functions of order n + 120/K,

where n is an integer and K is the characteristic impedance of the biconical antenna

to the principal wave. For thin cones K is large and the order of the Legendre functions

is nearly, but not quite, integral. Further, when the cone angle is large, v may have

quite general real values.

Another application has appeared early this year, when P. Grivetf used Legendre

functions of fractional order in the approximate solution of an electron lens problem,

with particular emphasis on small values of v.

Thus it appears that the properties of Legendre functions of non-integral order

are of quite general interest, and it may be worth while to put on record some formulas

that were developed a few years ago in connection with Schelkunoff's antenna theory.

At that time the formulas were used to compute values of P„(cos 6), 0 5S d < x, for

values of v between 0 and 2 at intervals of 0.1, and curves based on these computations

have already been published.** Those curves show P„(cos 6) as a function of 6 for the

fractional values of v; in this memorandum we include a table of numerical values (Appen-

dix, Table I), and also a new set of curves (Figure 1) showing P„(cos 6) as a function

of v for values of 6 between 0° and 175°. We have confined our computations to real

values of v, but it might be worth noting that the approximate formulas, and in particular

the fundamental series expansions (3) and (17), are also valid for complex values of v,

in all regions in which they converge.

The function P„(cos 6) has a logarithmic singularity at 6 = v for all non-integral

values of v, and it may be expressed in closed form at 6 = ir/2 for all values of v; hence

*Received September 8, 1952.
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Fig. 1.

it is convenient to consider separately appropriate expansions in the neighborhoods of

0 = 0, 7r/2, it respectively.

It may also be pointed out that for nearly integral values of v, say v = n + 8, it is

sufficient to consider the case of n = 0 and small (positive or negative) values of 5.

Then the recurrence formulas

1 I Of f

P1+8( cos 6) = 1 + s cos OP a (cos e) - 1 - P-;(cos 0),

(1)

Pn+!(cos e) = — 25 cos 9Pn_i+a(cos e) - w "t" 5 P„-2+a(cos fl),
W T 0 0

may be used to obtain the required values for all values of n.

1. Small values of 6. When 6 is not too large, the usual series expansion,*

P'(C0S<?) = (2)

converges quite rapidly and tables of the factorial function are available. This series,

however, does not exhibit the analytic nature of P,(cos 6) as a function of v. Hence,

*S. A. Schelkunoff, loc. cil., p. 420.
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for small values of v, we developed a series expansion in powers of v,

oo

P„(COS 0) = 1 + 2 an"n> ®
n=» 1

where the a's are functions of 6 which can be computed from a set of recurrence relations.

If we write z = sin2 (8/2) we can express the a's in the following form:

/ \n+l co 8 / \n + l co 8

a2n +1 = ■ 22 K. a2n + 2 = , K. 3, (4)
Til g =n+1 » '*"■ 8-n+l «

where

ko.. 1, s 1, 2,

kn,. = 0, s g n

(5)

k =i
n!'

^ , s = n + 1, n + 2, • • •
s

It can be seen that the values k can be tabulated very rapidly, and then multiplied by

the appropriate factors involving z to obtain the values a.

In particular

a,

a 2

= - X) 7 = log (1 - 2) = 2 log COS ;
s

= (6)

co s oo s 8 —1-|
ZZ   V-v Z   ^ ^

02,8 ~) = 2—i <72.8 ~2> 02,3 — 2-^ 12*
s=2 5 8=2 S r-1'

When 6 ^ ir/2 we have z g 1/2 and the series (4) converge quite rapidly, while the

successive a's become smaller. The series (3) is valid for either positive or negative

values of v, and can be used very conveniently to compute P„(cos 6) for values of v

such that | v \ < 1/2. Then the recurrence relations (1) may be used for larger values

of v, using also the general relation P-,-, = P„ .

At v = ±1/2 the convergence is rather slow, except for small values of 6, but the

Legendre functions can be expressed in terms of elliptic integrals,

Pi/2(cos 0) -1 [2E(™ I")" K{siu I

(7)
2 / . 1

P_1/2(cos 0) = - Kl sin -
7r \ Z

where K and E are the complete elliptic integrals of the first and second kind, respectively.

These functions have been frequently tabulated, and may be regarded as known. The
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recurrence formulas enable us to express the Legendre functions of order v = n + 1/2

in terms of K and E.

We shall see later that, for small values of v, the first approximation

P„(cos 0) ~ 1 + 2j> log cos | 6 (8)

is good throughout the range 0 f£ 0 < x.

2. The neighborhood of 0= «/2. When 0 = 7r/2 the value of the Legendre function

is

Pi cos1-*) = C0S ̂  ~ *)! (9)
v 2 J

for all values of v. In the neighborhood of it/2 we write 6 = x/2 — a and a series expan-

sion which converges rapidly for small values of a is

T /1 M r, r ■ \ (iy + ir ~ 2)! c — r (2 sin a)1"
P,|_cos (2 . - «jj - «) - z »°s — * ——

1 (h* - i)l J1 ,1 l 1 • 2 \
= cosrTv^F{r + 2'-2v'2'sm v

, „ • -1 (M! J1 , , 1 , 1 3 . 2 \
+ 2smasm^ v-(|i)_^)!^y+l, --.-f^-jsin aj.

When we consider P„(cos ir/2) as a function of v, it can be shown that the first few

terms in the expansion of the function (9) in powers of v are

P,(cos |) = 1 - v log 2 - || |j t - (log 2)SJ

+ |![^0g2-(|0g2).-!|;l,] + .... („,

These terms, however, check with those obtained in Section 1, since, at 0 = jt/2,

(10)

the relation

2 log cos | 0 = 2 log cos - 7r = —log 2;

is given in Smithsonian Mathematical Tables, p. 142; and

st;-s(io62,-l(iog2)'-il;?
can be verified numerically. If we try to expand the series in equation (10) in powers

of v we find that when all terms have been collected we simply return to the series (3).

3. The neighborhood of 0 = «. In this region the most useful expansion for all

values of v seems to be that first obtained by E. Hille.* If we write 6 = t — <p Hille's

*See E. W. Hobson, Spherical and ellipsoidal harmonics, University Press, Cambridge, 1931, p. 225.
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formula may be written in the alternative forms

P„[cos (x — tp)] = P„( —cos <p)

!r! (12)

sin vt (—)r(v + r)! T- , .1 ,, , x , ,, , 2r
= ~ Z _ r^, [2 log sm^+^ + rJ + iK-i' + r-l) - 2*(r) J ^

= S'J VT l0g sin ^ <p + cos v7rJp„(cos <p)

+ 8JVE E (~(^^,r)! Mo + r) + iiy - r) - 2*(r)] ̂  (13)

where z = sin2 <p/2 and \f/{x) is the logarithmic derivative of the factorial, as used by

Hobson,

(log a:!).

When <p is small the series in equation (13) converges rapidly and only a few terms

are significant. Further, the first term of the series vanishes with v for small v and thus

the dominant terms in the expansion in powers of v are those obtained from the first

term in equation (13),

P„( cos 9) = Py{ — cos <p) = P„(cos ^>)(l + 2v log sin | <pj

(14)

^ 1 + 2v log cos ^ 6.
£

If we include the series terms, the expansion in powers of v for small <p found most con-

venient for computation may be written

P,(— cos (?) = P„(cos <p)£cos vtt + ^ "X (log sin | <p + — ^(0)^

j sin vtt , . 2 . , .
H   (co + Cii> + c2v + • • •), (15)

7r

where

Co = d\ ,

t

C\ ~~ 2(7 2 i

C2 = —a3 + 2 £
a = 1 ^

^4 = 2Gt* 2 ^2,« j

^5 &4 2 ^ ' 0*2,« 3 2 ^ C3i8 2
8-2 S 8-2 $

(16)
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and where the values a are the constants of P,(cos <p), z = sin2 <p/2, and

_ A.
°n.t 2-/ r»*

When <p is not too small it is also possible to use the series expansion

p,(-cob*) = 1 + (J7j

with

= 2 log sin | <p,

IT2

62 = ox6, a,2 "g",

(18)

b. - b,(a,+ 7-

The coefficients are of course more complicated than those of equation (3), but if the

a's have already been computed the remaining terms may be evaluated without too

much labor.

4. Zeros of P,(cos 0). In Grivet's electron lens theory certain focal distances are

determined from the roots 60 of P,(cos 6) = 0 and from the values of dPJdd at 6 = 60 .

From the_values of Table I the curve of Figure 2 has been drawn, showing the roots

ZEROS OF I=(cos0)
o APPROXIMATE VALUES

o'i
OA 0.8 v 1.2 1.6 2.0

Fig. 2.

of P, for 'values of v between 0 and 2. However, approximate values of the roots can

be found from the approximate formulas of the preceding sections, and it is surprising

that the simple formula (8) gives values very near the true values except in the neigh-

borhood of v = 1/2. At this point the root can be obtained from elliptic integral tables.

For smaller values of v we find from (8)

1 „
cos 2 0 = exp (-s)' <19)
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and for values of v between 0.5 and 1.5 we combine equation (8) with the recurrence

relation (1) to derive the equation

, 1 „ 1 (1 + 25) cos 8 — 5 , , „
log cos^ = 25 (1 + 25) cose+5' " = 1 + (2°)

Similar equations can be obtained for larger values of v by repeated use of the recurrence

formula, and it is always possible to obtain an equation for the root which expresses

log cos 8/2 as the ratio of two polynomials in cos 6.

When v is small the root 80 is near ir, and a somewhat more accurate formula is

obtained from equation (15):

log sin i <p = *°g ^ ^ ! | cot vir - \p(v) + ^(0), (21)
2 1 -|- 2v log cos 2 <P ^

where 8 = ir — <p. Similarly for v = 1 + 5, where 5 is small, the smallest root can be

found from equation (20), but there is a second root near ir which is determined more

accurately from the equation

, 1 n *■ r. „ r(1 + 25) cos 8 - 5~| cos 0M5) - ^(0) - log sin %8] (nn.
log cos 2 8 = -- cot ̂ LuTW^TTiJ (T+"25) cos 8 + 5 ' (22)

In Figure 2 we have indicated by circles the values of the roots obtained from equa-

tions (19) and (20) where these may be distinguished from the curve values.

For the derivative of P„ at 8 — 80 we can find simple formulas by differentiating

the approximate formulas (3) and (15). Thus retaining the first three terms in (3) and

using the approximation (19) for 80 we find

dP,
dd

= (23)
6_9o sin 80

When v is small, so that 80 is near x the asymtotic approximation is

dP, ! _ 2 sin vir 1 

dd |»_», 7rsin 0O 1 + 2v log sin 80/2'

At v = 0.5 the derivatives of the elliptic integrals give

7£(sin 80/2)

(24)

~ PU2{cos 8) (25)
T sin On '

as shown by Grivet. For v > 0.5 we may combine (20) and (3) with the recurrence

formula to find approximately

TdPl+>(-C0S ^ L. = sin 6>0[(1 + 25) cos 80 + 5]" ^

Note that this equation is valid as 5 —> 0. For we have P1+s —> cos 8, and the limit is

approached in such a way that cos 80 = limJ_[l 5/(1 + 25). Thus in equation (26) the

limiting value is

de" sin 8a

which is correct.
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APPENDIX, TABLE I
Legendre Functions of Fractional Order, P, (cos 6)

e v = .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

10° .999161 .998171 .997028 .995735 .994289 .992693 990947 .989050 .987003 .984808
20° .996635 .992665 .988095 .982927 .977168 .970822 .963895 .956393 .948322 .939693
30° .992387 .983428 .973140 .961544 .948665 .934528 .919163 .902601 .884877 .866025
40° .986362 .970362 .952059 .931521 .908821 .884042 .857275 .828616 .798169 .766044
50° .978471 .953322 .924694 .892752 .857676 .819665 .778935 .735715 .692387 .642788
60° .968597 .932102 .890814 .845072 .795249 .741748 .685007 .625480 .563646 .5
70° .956571 .906416 .850092 .788227 .721505 .650659 .576469 .499745 .421314 .342020
80° .942171 .875872 .802069 .721889 .636309 .546730 .454374 .360536 .266528 .173648
90° .925086 .839927 .746089 .645288 .539353 .430189 .319752 .209982 .102787 0

100° 904886 .797813 .681210 .557670 .430035 .301038 .173516 .050203 -.066312 -.173648

110° 880955 .748422 .606031 .456324 .307261 .157754 .016269 -.116S49 -.237227 -.342020
120° .852374 . 690081 .518406 . 342882 .169084 . 002434 -.151995 -.289652 -.406673 -.5

.817704 . 620144 . 414869 . 209624 . 012012 -.170817 —.332468 -.467557 -.574395 -.642788

.774511 .534092 . 289416 . 051166 —.170483 -.366364 —.528746 —.651698 —.734616 -.766044

.718190 . 423320 .130467 —.145688 -.391682 -.596024 —.749809 —.847187 —.885632 -.866025
638358 . 268268 —.088558 —.411669 — .683193 —.888957 —1.019355 -1.069887 —1.041354 —.939693
501717 . 005894 -.453932 -.847492 -1.150000 -1.343918 -1.420160 -1.378607 -1.227945 -.984808

175° .365201 -.254581 -.813813 -1.272544 -1.599553 -1.774742 -1.791031 -1.652930 -1.378654 -.996444

8 V = 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

130°

140°

150°

160°

170'

10° .982463 .979971 .977330 .974544 .971609 .968530 .965306 .961937 .958424 .954769
20° .930510 .920782 .910521 .899731 .888427 .876616 .864311 .851520 .838256 .824533
30° .846085 .825099 .803106 .780153 .756288 .731556 .706009 .679698 .652678 .625
40° .732358 .697230 .660787 .623160 .584483 .544892 .504529 .463536 .422057 .380236
50° '593260 .542960 .491146 .438457 .385144 .331534 .277906 +.224546 +.171992 +.119764
60° .435048 . 369302 .303277 . 237487 +.172439 +.108625 +.046528 -.013395 -.070707 -.125
70° .262707 +.184212 +.107352 +.032911 —.038356 —.105747 —.168608 —.226363 —.278485 —.324533
80° +.083160 —.003726 —.085870 —.162209 —.231828 —.293895 —.347694 —.392684 —.428461 —.454769
90° - 096662 -.185629 -.265506 -.335101 -.393447 -.439820 -.473745 -.495011 -.503662 -.5

100° -.269688 -.352628 -.421019 -.473792 -.510309 -.530315 -.533992 -.521924 -.495078 -.454769
XX0° —.428902 —.496128 —.542575 —.567190 —.571540 —.555254 —.520788 —.468913 —.402560 —.324533
120° -.567487 —.607957 —.621232 —.608117 -.570350 —.510520 -.431952 —.338567 —.234713 -.125
130° - 679240 - 680298 -.648801 -.587376 -.500235 -.392577 -.270327 -.139860 -.007413 +.119764
140° -.756377 -.705113 -.617004 -.498494 -.357352 -.202235 -.042220 +.113682 +.260689 .380236
150° -.792525 -.672251 -.514788 -.331564 -.135126 +.061648 +.246321 .407651 .536224 . 625
160° —.775450 —.562976 —.319350 —.063159 +.186880 .412909 . 599730 . 735204 . 811308 . 824533
170° - 672324 — 318188 +.047601 +.395130 .696918 .930007 1.077683 1.130627 1.087486 .954769
175° -.542651 -.058480 .413527 .833237 1.165932 1.385435 1.476543 1.433916 1.265476 989351


