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Legendre singularities of sub-Riemannian geodesics

Goo Ishikawa and Yumiko Kitagawa

Abstract

Let M be a surface with a Riemannian metric and UM the unit tangent bundle over M with the
canonical contact sub-Riemannian structure D ⊂ T (UM). In this paper, the complete local clas-
sification of singularities, under the Legendre projection UM → M , is given for sub-Riemannian
geodesics of (UM,D). Legendre singularities of sub-Riemannian geodesics are classified completely
also for another Legendre projection from UM to the space of Riemannian geodesics on M . The
duality on Legendre singularities is observed related to the pendulum motion.

1 Introduction

Let M be a C∞ surface with a Riemannian metric g. Then the unit tangent bundle UM over M has the
canonical contact structure D ⊂ T (UM). Moreover D has a sub-Riemannian structure induced from the
Riemannian metric on M . A sub-Riemannian geodesic of D (or a D-geodesic) is a curve on UM which
is tangent to D and is a local minimizer of the sub-Riemannian or Carnot-Carathéodory arc length for
the metric on D ([15]). Any D-geodesic on UM is known to be an immersion if it is not a constant map.
However the projection π : UM →M , which is a Legendre projection, restricted to a D-geodesic on UM
may have singularities, which are called the Legendre singularities.

In this paper we study Legendre singularities of D-geodesics on (UM,D) and give the local classifi-
cation result which determines the Legendre singularities of D-geodesics completely.

The unit tangent bundle UM has the geodesic flow for the metric g on M and is foliated by the
horizontal lifts of Riemannian geodesics on M to UM for the projection π : UM → M . Each leaf is a
Legendre curve for the contact structure D and then we have another Legendre projection π′, at least
locally, from UM to the leaf space, i.e. the space of Riemannian geodesics.

We determine Legendre singularities of D-geodesics on (UM,D) also for the projection π′ completely
in this paper.

Theorem 1.1 Let Γ : (R, t0)→ UM be any germ of D-geodesic. Then the composite mapping diagram

(Γ, π) : (R, t0)
Γ−→ (UM,Γ(t0))

π−→ (M,π(Γ(t0)) is Legendre equivalent to one of following normal forms:
(i) (c1,Π), c1 : (R, 0)→ (R3, 0), c1(t) = (0, 0, 0),
(ii) (c2,Π), c2 : (R, 0)→ (R3, 0), c2(t) = (0, 0, t),
(iii) (c3,Π), c3 : (R, 0)→ (R3, 0), c3(t) = (t, 0, 0),
(iv) (c4,Π), c4 : (R, 0)→ (R3, 0), c4(t) = (12 t

2, 1
3 t

3, t).
Here R

3 with coordinates (x, y, p) has the canonical contact structure defined by dy − pdx = 0 and
Π : (R3, 0)→ R

2 is the Legendre projection defined by Π(x, y, p) = (x, y).
Moreover the pair of Legendre equivalence classes of (Γ, π) and (Γ, π′) is given by

((i), (i)), ((ii), (iii)), ((iii), (ii)), ((iii), (iii)), ((iii), (iv)) or ((iv), (iii)).

In Theorem 1.1, the case (i) means that Γ itself is a constant curve, (ii) (resp. (iii)) means Γ is an
embedding to a π-fiber, (resp. π′-fiber), and (iv) means that Γ has the cusp singularities by the Legendre

Key words: Legendre singularity, sub-Riemannian metric, pseudo-product structure, geodesic coordinates, cusp, optimal con-
trol, pendulum motion.
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projection π or π′. Note that the projection π ◦ Γ (resp. π′ ◦ Γ) of any D-geodesic Γ is a front with only
cusp singularities, provided it is not a constant map.

The transformation of a Riemannian geodesic to the π′-projection of its π-lift is a kind of Legendre
transformation. For instance, the set of oriented geodesics of the unit sphere S2 in R

3 is identified to itself
by taking the orthogonal cuts of S2 by the orthogonal planes to unit vectors in S2. The set of oriented
geodesics on the hyperbolic space modelled in the Minkowski 3-space R

2,1 is identified to the de-Sitter
space S1,1. Moreover the space of geodesics on the Euclidean plane R2 is identified with S1×R naturally
in the framework of projective duality([7]). Then Theorem 1.1 provides the complete local classification
of projections to both surfaces for any oriented sub-Riemannian geodesics on the unit tangent bundle in
each case.

In this paper we investigate locally such Legendre transformations and related “projective duality” on
surfaces along the idea in sub-Riemannian contact geometry and geometric control theory, but in classical
differential geometric language.

In §2 we recall basic constructions related to Riemannian surfaces, and in §3 we recall some facts in
singularities of differentiable mappings used for the proof of Theorem 1.1. We prove Theorem 1.1 in the
flat case. After a preliminary from basic differential geometry of surfaces in 5, we show Theorem 1.1 in
the general case in §6. In the last section §7, we mention a native motivation of our problem treated in
this paper.

For geometric control theory and sub-Riemannian geometry, consult [2, 1, 15, 16, 11]. The sub-
Riemannian geometry on UM or U∗M , the unit cotangent bundle in the flat case M = R

2 has been
investigated in detail, in particular, the problems on conjugate-loci, cut-loci and wavefronts for the sub-
Riemannian geodesics were solved in [14, 17]. Though our aim in this paper to study on Legendre duality
of singularites, our method of construction in the present paper essentially follows these preceding works.
Then it would be an interesting problem, for example, to study global behaviors of projections for general
Riemannian surfaces.

In this paper, all manifolds and maps are supposed to be of class C∞ unless otherwise stated.

2 Basic constructions from Riemannian surfaces

Let M be an oriented 2-dimensional Riemannian manifold with metric g and TM the tangent bundle of
M . Let UM be the unit tangent bundle over M ,

UM := {(x, v) ∈ TM | x ∈M, v ∈ TxM, g(v, v) = 1}.

The bundle π : UM → M , π(x, v) = x, is a principal SO(2) = U(1) bundle and is naturally regarded
as the orthonormal frame bundle over M . The Levi-Civita (Riemannian) connection on M gives the
decomposition

T (UM) = H ⊕ V

into the vertical distribution V of rank 1 and the horizontal distribution H of rank 2. Since π induces an
isomorphism π∗ : H(x,v) → TxM , the bundle H has the induced Riemannian metric and the orientation.
Moreover, for each x ∈ M , the fiber UxM of π over x ∈ M is regarded the unit circle of the Euclidean
plane TxM , and therefore the bundle V has the induced metric, which is written as (dθ)2 using a radian
angle parameter θ. Thus UM has the induced Riemannian metric g+ dθ2 from H and V so that H ⊥ V .

Note that the parameter θ itself is determined if the base point on the circle is fixed. Therefore if a
unit vector field on an open set Ω ⊂ M is provided, then the function θ : π−1(Ω) → R is determined,
which is periodic along π-fibers with period “2π”.

For each (x, v) ∈ UM , TxM is decomposed as 〈v〉R⊕〈Jv〉R, where J is the 90◦ rotation, and therefore
we have the decomposition H = K ⊕ L induced by π∗. Note also that L = K⊥ in H and the orthogonal
decomposition T (UM) = K ⊕ L⊕ V .

Recall that the connection form ω on UM is characterized as the SO(2)-invariant 1-form ω satisfying
Ker(ω) = H and ω(ξ) = 1 for the unit tangent vector ξ with positive direction along the π-fiber, i.e. the
fundamental vector corresponding to 1 ∈ R = so(2) (see [20]).
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The canonical bundle D ⊂ T (UM) is defined by

D := {(x, v; ξ) ∈ T (UM) | (x, v) ∈ UM, ξ ∈ T(x,v)UM, π∗(ξ) ∈ 〈v〉R}.

The distribution D is a contact distribution on UM . Note that D = K ⊕ V and K = D ∩H .
Note that the geodesic flow on UM induced by the Riemannian metric of M preserves K,L and V

respectively and its trajectories, the horizontal lifts of Riemannian geodesics are integral curves of K.
Recall that a contact structure on a manifold W means a subbundle D ⊂ TW of codimension 1 such

that, any local 1-form α on W defining D, satisfies that dα|D is non-degenerate. Then the dimension of
W is odd, say, 2n+1 for some n. An immersion Γ : N →W from an n-dimensional manifold N is called
a Legendre immersion if dΓ(TN) ⊂ D. A submersion π : W →M to an (n+1)-dimensional manifold M
is calle a Legendre projection if the tangent bundle of any π-fiber is contained in D ([3, 5]). In this paper
we concern only on the case n = 1.

Definition 2.1 A pseudo-product sub-Riemannian contact structure D on a 3-dimensional manifold W
is a sub-Riemannian contact structure D ⊂ TW with an orthogonal decomposition D = K ⊕ V into
subbundles K and V of rank 1 respectively.

Therefore D ⊂ T (UM) is a pseudo-product sub-Riemannian contact structure on UM .
Let us denote byN := UM/K the local leaf space ofK at a point (x, v) ∈ UM and π′ : UM → UM/K

the projection. Then we have locally the double Legendre projection

M
π←− UM

π′

−→ N,

for the contact structure D on UM . Note that Ker(π∗) = V and Ker(π′
∗) = K.

For the general theory of pseudo-product structures or double Legendre projections, see [10, 18, 19, 22].

3 Around the recognition of cusps

Recall that two composite mapping diagrams (R, t0)
Γ−→ (W,Γ(t0))

π−→ (M,π(Γ(t0)) and (R, t′0)
Γ′

−→
(W ′,Γ′(t′0))

π′

−→ (M ′, π′(Γ′(t′0)), where W,W ′ are contact manifolds, are called Legendre equivalent if
there exist diffeomorphism-germs σ : (R, t0) → (R, t′0), τ : (M,π(Γ(t0))) → (M ′, π′(Γ′(t′0)), and a
contactomorphism-germ Φ : (W,Γ(t0))→ (W ′,Γ′(t′0)) such that the diagram

(R, t0)
Γ−→ (W,Γ(t0))

π−→ (M,π(Γ(t0)))
σ ↓ Φ ↓ τ ↓

(R, t′0)
Γ′

−→ (W ′,Γ′(t′0))
π′

−→ (M ′, π′(Γ′(t′0)))

is commutative ([3, 5, 4]). Then the compositions π ◦Γ and π′ ◦Γ′ are right-left equivalent by diffeomor-
phisms σ and τ .

A map-germ γ : (R, t0)→M to a surface is called a cusp if γ is right-left equivalent to the standard
cusp (R, 0)→ (R2, 0), t 7→ (12 t

2, 13 t
3).

We use the following fundamental recognition lemma on cusp singularities.

Lemma 3.1 ([23]) Let k = (x1, x2) : (R, t0) → R
2 be a germ of C∞ curve on the plane. Suppose k is

not an immersion at t0, i.e. (ẋ1(t0), ẋ2(t0)) = (0, 0). Then k is a cusp if and only if

∆ :=

∣∣∣∣
ẍ1

...
x 1

ẍ2
...
x 2

∣∣∣∣ (t0) 6= 0.

3



Proof : Suppose k is not an immersion at t0. Then we see, by simple direct calculations, that the condition
∆ 6= 0 depends only on the right-left equivalence class of k. Then we see if k is cusp then ∆ 6= 0 for the
normal form of cusp. Now suppose ∆ 6= 0. Then we have (X1 ◦ k)(T ) = Tm, (X2 ◦ k)(T ) = Tm+1a(T ) for
an integer m ≥ 2 and a C∞ function-germ a : (R, 0) → R, by taking a new coordinate T = t− t0 of R
and a system of coordinates (X1, X2) on (R2, k(t0)) centered at k(t0). Since ∆ 6= 0, we have m = 2 and
a(0) 6= 0. Then (X1◦k)(T ) = T 2, (X2◦k)(T ) = T 3a(T ). We see there exist C∞ function-germs b(T ), c(T )
such that a(T ) = b(T 2) + Tc(T 2). Then (X2 ◦ k)(T ) = T 3a(T 2) + T 4c(T 2), using Malgrange preparation

theorem (see [6, 13]). Set Y1 = X1, Y2 = 1
a(X1)

(
X2 −X2

1c(X1)
)
. Then the Jacobian ∂(Y1,Y2)

∂(X1,X2)
6= 0 at

(0, 0) and (Y1 ◦ k)(T ) = T 2, (Y2 ◦ k)(T ) = T 3 for the new system of coordinates (Y1, Y2). After a linear
transformation, we have the result. ✷

Remark 3.2 It is known that any two Legendre projections π : (W, z0) → (M,x0) and π′ : (W ′, z′0) →
(M ′, x′

0) are Legendre equivalent, i.e. there exist a diffeomorphism-germ τ : (M,x0) → (M ′, x′
0) and a

contactomorphism-germ Φ : (W, z0)→ (W ′, z′0) such that τ ◦ π = π′ ◦ π′ ([3, 5]).

Lemma 3.3 Let W be a 3-dimensional contact manifold, π : W → M a Legendre projection and Γ :
(R, t0) → W a Legendre immersion. Suppose π ◦ Γ is not an immersion at t0. Then we have that
π ◦ Γ : (R, t0)→M is a cusp if and only if the second derivative (π ◦ Γ)′′(t0) 6= 0.

Proof : Assume π ◦ Γ is a cusp. Take a system of local coordinates x1, x2, x3 of W centered at Γ(t0) such
that x1 and x2 are constant along each π-fibers. Then we have that (x1, x2) induces a system of local
coordinates of M centered at π ◦ Γ(t0) and π′ is given by (x1, x2, x3) 7→ (x1, x2). Then, by Lemma 3.1,
(x′′

1 (t0), x
′′
2 (t0)) 6= (0, 0), for the system of local coordinates (x1, x2, x3). Conversely assume π ◦Γ(t0) 6= 0.

Then the planer curve (x1(Γ(t)), x2(Γ(t)) is singular at t0 and a non-vanishing term of second order for
the coordinate T = t− t0. Changing the systems of local coordinates (x1, x2) and T if necessary, we have
x1 ◦Γ(T ) = T 2, x2 ◦Γ(T ) = cT 3+ e(T ), the order of e(T ) at 0 being > 3, for some c ∈ R. Since Legendre
lift of the planer curve is unique and must be an immersion which is Legendre equivalent to Γ at t0, we
have c 6= 0. Then, by Lemma 3.1 or a direct argument as in the proof of Lemma 3.1, we see that π ◦Γ is
a cusp, i.e., it is right-left equivalent to the normal form of the cusp. ✷

4 The flat case

First we consider the case M = R
2, the Euclidean plane with coordinates x1, x2. Then UM has coordi-

nates x1, x2, θ, where θ is the radian angle coordinate for the section ∂
∂x1

. We explain the general basic
constructions in sub-Riemannian geometry along this simple situation.

We set

V1 = cos θ
∂

∂x1
+ sin θ

∂

∂x2
, V2 =

∂

∂θ
,

which form an orthonormal frame of D ⊂ T (UM). Let Γ : [a, b] → UM be an absolutely continuous
or a piecewise smooth curve such that Γ′(t) ∈ D for almost every t ∈ [a, b]. The sub-Riemannian or
Carnot-Caratheodory arc length of Γ is defined by

L(Γ) =

∫ b

a

‖Γ′(t)‖dt

using the norm of the sub-Riemannian metric on D introduced in §2. It is known the length minimizing
problem is equivalent to the energy minimizing problem ([15]).

We represent vectors in D ⊂ T (UM) using the frame V1, V2 as

F (x1, x2, θ;u1, u2) = u1V1 + u2V2 = u1

(
cos θ

∂

∂x1
+ sin θ

∂

∂x2

)
+ u2

∂

∂θ
.
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The parameters u1, u2 are regarded as control parameters. The energy function E : D → R is given by
using the squared norm of F as

E(x1, x2, θ;u1, u2) :=
1

2
(u2

1 + u2
2).

Now we consider the optimal control problem on D-integral curves of minimizing the energy E.
Then the Hamiltonian function H : D ×UM T ∗(UM) → R of the optimal control problem is given by
H(x, v, p) := 〈p, F (v)〉+ cE(x, v). for some constant c. Here (x, v) ∈ D, (x, p) ∈ T ∗(UM) and x ∈M . In
coordinates, it is written as

H(x1, x2, θ;u1, u2; p1, p2, ϕ) := u1(p1 cos θ + p2 sin θ) + u2ϕ+
1

2
c(u2

1 + u2
2).

By the Pontryagin principle, any solution (x1(t), x2(t), θ(t), u1(t), u2(t)) of the optimal control problem
is obtained by the constrained Hamilton equation

ẋ1 =
∂H

∂p1
, ẋ2 =

∂H

∂p2
, θ̇ =

∂H

∂ϕ
, ṗ1 = − ∂H

∂x1
, ṗ2 = − ∂H

∂x2
, ϕ̇ = −∂H

∂θ

with constraint
∂H

∂u1
= 0,

∂H

∂u2
= 0 for some (p1(t), p2(t), ϕ(t)) 6= 0, c ∈ R.

The extremal is called abnormal if c = 0 and is called normal if c 6= 0. See [9].
A curve Γ : (R, t0) → UM , Γ(t) = (x1(t), x2(t), θ(t)), is called a D-geodesic if the above constrained

Hamiltonian equation is satisfied for some p1(t), p2(t), ϕ(t), u1(t), u2(t) and c ∈ R.
In our case the condition is given by explicitly

ẋ1 = u1 cos θ, ẋ2 = u1 sin θ, θ̇ = u2, ṗ1 = 0, ṗ2 = 0, ϕ̇ = u1(p1 sin θ − p2 cos θ),

p1 cos θ + p2 sin θ + cu1 = 0, ϕ+ cu2 = 0, (p1, p2, ϕ, c) 6= 0, c ∈ R.

By the above condition we see that each of p1 and p2 is a locally constant on t. Because our distribution
is a contact structure it is known that there are no non-trivial abnormal extremals. Here a trivial extremal
means a locally constant (x1(t), x2(t), θ(t)). To make sure we will check that fact in our simple situation:
Suppose there exists an extremal with c = 0. Then p1 cos θ + p2 sin θ = 0 and ϕ = 0. For any t with
u1(t) 6= 0, we have p1 sin θ − p2 cos θ = 0. Then we have p1 = p2 = ϕ = 0, which leads a contradiction.
Therefore u1(t) must be 0 almost everywhere. Since (p1, p2) 6= (0, 0) and it is a locally constant vector,
we have also (cos θ, sin θ) and so θ must be a locally constant, which implies u2(t) = 0 a.e. also, which
means that the extremal is trivial.

Now suppose c 6= 0 and seek normal extremals. Then, by replacing − 1
c
p1,− 1

c
p2,− 1

c
ϕ by p1, p2, ϕ

respectively, we may set c = −1. Then u1 = p1 cos θ + p2 sin θ, u2 = ϕ. Therefore the extremal
(x1(t), x2(t), θ(t), p1(t), p2(t), ϕ(t)) satisfies a system of ordinary differential equations

ẋ1 = (p1 cos θ + p2 sin θ) cos θ, ẋ2 = (p1 cos θ + p2 sin θ) sin θ, θ̇ = ϕ,

ṗ1 = 0, ṗ2 = 0, ϕ̇ = (p1 cos θ + p2 sin θ)(p1 sin θ − p2 cos θ),

with C∞ right hand sides, and any solution is of class C∞. Suppose that Γ is not an immersion at t0.
Then (ẋ1(t0), ẋ2(t0), θ̇(t0)) = (0, 0, 0). Then p1, p2, ϕ must be all identically zero, and Γ should be a
constant map. Therefore any non-constant D-geodesic Γ is an immersion. Moreover we observe that θ
satisfies the second order ordinary differential equation

θ̈ = (p1 cos θ + p2 sin θ)(p1 sin θ − p2 cos θ)

= p21 cos θ sin θ − p1p2 cos
2 θ + p1p2 sin

2 θ − p22 cos θ sin θ.

Suppose the constants p1 = p2 = 0, then u1 = 0 and ẋ1 = ẋ2 = 0, each of x1, x2 being a constant.
Moreover ϕ̇ = 0 and ϕ is a constant. Therefore θ̇ is a constant and θ(t) = at for some a ∈ R. If a = 0,
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then Γ is a constant curve. If a 6= 0, then Γ gives a parametrization of a π-fiber over a point on M , and
the D-geodesic Γ can be regarded as a constant directed curve, or a frontal, on the plane endowed with
rotating directions of constant angular velocity.

Next suppose (p1, p2) 6= (0, 0). For example, for p1 = 0, p2 = 1, then the D-geodesic Γ(t) =
(ẋ1(t), ẋ2(t), θ(t)) satisfies ẋ1 = sin θ cos θ, ẋ2 = sin2 θ and θ̈ = − sin θ cos θ = − 1

2 sin 2θ. In general

we have θ̈ = −r sin(2θ + ρ), where we set r = 1
2 (p

2
1 + p22), cos ρ = − 1

2r (p
2
1 − p22) and sin ρ = 1

r
p1p2. If we

set Θ = 2θ + ρ, ω =
√
2r, then we have

Θ̈ = −ω2 sinΘ,

that is the non-linear equation of a simple pendulum. See also [14, 17]. Therefore θ can be expressed
by elliptic functions. We need only the simple behavior of θ hereafter: When θ̇ = 0, then θ̈ 6= 0. When
θ̈ = 0, then θ̇ 6= 0.

Now we begin to show Theorem 1.1.

Proof of Theorem 1.1 in the flat case. Let Γ : (R, t0) → (UM,Γ(t0)) be a D-geodesic. Set Γ(t) =
(x1(t), x1(t), θ(t)) as above.

Part I. π-Legendre classification of Γ.
We have by setting c = −1,

ẋ1 = (p1 cos θ + p2 sin θ) cos θ, ẋ2 = (p1 cos θ + p2 sin θ) sin θ.

Let Γ̃(t) = (Γ(t);u1(t), u2(t); p1(t), p2(t), ϕ(t)) be a corresponding extremal. If Γ is a constant curve,
then (Γ, π) is Legendre equivalent to the case (i) of Theorem 1.1. If γ is not a constant curve, but
π ◦ Γ = (x1, x2) is a constant curve. Then (Γ, π) is Legendre equivalent to (ii). Suppose π ◦ Γ is
not a constant curve. First suppose (ẋ1(t0), ẋ2(t0)) 6= (0, 0), i.e. π ◦ γ is an immersion-germ. Then
(Γ, π) is Legendre equivalent to (iii). Now suppose (ẋ1(t0), ẋ2(t0)) = (0, 0). Note that, then, we have
p1 cos θ(t0) + p2 sin θ(t0) = 0 and therefore θ̈(t0) = 0. Then we have

ẍ1 = θ̇{(− sin θ)(p1 cos θ + p2 sin θ) + cos θ(−p1 sin θ + p2 cos θ)} = θ̇(−p1 sin 2θ + p2 cos 2θ),

ẍ2 = θ̇{cos θ(p1 cos θ + p2 sin θ) + sin θ(−p1 sin θ + p2 cos θ)} = θ̇(p1 cos 2θ + p2 sin 2θ),
...
x 1 = θ̈(−p1 sin 2θ + p2 cos 2θ) + θ̇2(−2p1 cos 2θ − 2p2 sin 2θ),
...
x 2 = θ̈(p1 cos 2θ + p2 sin 2θ) + θ̇2(−2p1 sin 2θ + 2p2 cos 2θ).

Therefore we have
∣∣∣∣
ẍ1

...
x 1

ẍ2
...
x 2

∣∣∣∣ =
∣∣∣∣
θ̇(−p1 sin 2θ + p2 cos 2θ) θ̈(−p1 sin 2θ + p2 cos 2θ) + θ̇2(−2p1 cos 2θ − 2p2 sin 2θ)

θ̇(p1 cos 2θ + p2 sin 2θ) θ̈(p1 cos 2θ + p2 sin 2θ) + θ̇2(−2p1 sin 2θ + 2p2 cos 2θ)

∣∣∣∣

= 2θ̇3
∣∣∣∣
−p1 sin 2θ + p2 cos 2θ −p1 cos 2θ − p2 sin 2θ
p1 cos 2θ + p2 sin 2θ −p1 sin 2θ + p2 cos 2θ

∣∣∣∣

= 2θ̇3{(−p1 sin 2θ + p2 cos 2θ)
2 + (p1 cos 2θ + p2 sin 2θ)

2} = 2θ̇3(p21 + p22)

Thus we have ∆ = 2θ̇(t0)
3(p21 + p22). Since θ̈(t0) = 0, and since θ(t) satisfies the above second order

ordinary differential equation and is not a constant, we see that θ̇(t0) 6= 0. Therefore ∆ 6= 0, and we
see that π ◦ Γ is right-left equivalent to the cusp t 7→ (12 t

2, 1
3 t

3), which has the unique Legendre lift
t 7→ (12 t

2, 13 t
3, t) to the standard contact manifold R

3 with coordinates (x, y, p) with dy− pdx = 0. Thus
we have that (Γ, π) is Legendre equivalent to (iv).

Part II. π′-Legendre classification of Γ.
In our flat case, the projection π′ is given by (x1, x2, θ) 7→ (F,E), where

F = −x1 sin θ + x2 cos θ, E = θ.
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Note that F and E are independent first integrals of the geodesic flow for the flat metric on M = R
2.

We set f = F ◦ Γ, e = E ◦ Γ. Then we have

ḟ = −θ̇(x1 cos θ + x2 sin θ),

f̈ = −θ̇(p1 cos θ + p2 sin θ)− θ̇2(−x1 sin θ + x2 cos θ)− θ̈(−x1 cos θ + a2 sin θ)
...
f = θ̇2(p1 cos θ − p2 sin θ)− 2θ̈(p1 cos θ + p2 sin θ) + 3θ̇θ̈(x1 cos θ − x2 sin θ)

+ θ̇3(x1 cos θ + x2 sin θ)−
...
θ (x1 cos θ + x2 sin θ)

If Γ is a constant curve, then (Γ, π′) is Legendre equivalent to (i). If θ is a constant function, then (Γ, π′)
is Legendre equivalent to (ii). If θ̇(t0) 6= 0, then π′ ◦ Γ is an immersion at t0 and (Γ, π′) is Legendre
equivalent to (iii). Suppose π′ ◦ Γ is not an immersion at t0. Then θ̇(t0) = 0. Then we have that

∣∣∣∣
f̈

...
f

ë
...
e

∣∣∣∣ (t0) = 2θ̈(t0)
2(p1 cos θ(t0) + p2 sin θ(t0)).

If p1 cos θ(t0) + p2 sin θ(t0) = 0, then ẋ1(t0) = ẋ2(t0) = θ̇(t0) = ṗ1(t0) = ṗ2(t0) = ϕ̇(t0) = 0, which leads
that Γ is a constant curve. Thus, if Γ is not a constant curve, then we see p1 cos θ(t0) + p2 sin θ(t0) 6= 0.
Therefore we see that ∆ = θ̈(t0)

2(p1 cos θ(t0) + p2 sin θ(t0)) 6= 0 whenever θ̇(t0) = 0. Thus we have that,
in this case, (Γ, π′) is Legendre equivalent to (iv).

The last claim on the combination of Legendre singularities for π and π′ is obtained just by observing
the “pendulum” duality on points t = t0 where θ̇(t0) = 0, θ̈(t0) 6= 0 and points t = t1 where θ̇(t1) 6=
0, θ̈(t1) = 0, which appears as the Legendre duality in our case. ✷

Remark 4.1 It is the geometry of the curve π◦Γ(t) = (x1(t), x2(t)) on R
2, which is the projection to R

2

of aD-geodesic Γ(t) = (x1(t), x2(t), θ(t)). We see π◦Γ is singular at t = t0 when p1 cos θ(t0)+p2 sin θ(t0) =
0. For instance we see the curvature of the plane curve π ◦ Γ(t) = (x1(t), x2(t)) is given by

κ(t) =
θ̇(t)

|p1 cos θ(t) + p2 sin θ(t)|
,

by simple calculations, if π ◦ Γ is an immersion at t. Therefore we see π ◦ Γ(t) has an inflection point at
t = t0 if θ̇(t0) = 0. Moreover we have that, if π ◦ Γ has a cusp at t = t0, then the cuspidal curvature κc

of π ◦ Γ at t = t0 is given by

κc = 2 (sign θ̇)
|θ̇| 12

(p21 + p22)
1

4

.

For the cuspidal curvature see [23].
Further we observe that, for any non-constant solution of the equation of pendulum, the points t

where θ̇(t) = 0 and θ̈(t) = 0 appear alternately. Note that, for any D-geodesic Γ, we have an inflection
point t = t0 where θ(t0) = 0 and a cusp point t = t1 on π ◦ Γ where p1 cos θ(t0) + p2 sin θ(t0) = 0 and so
θ̈(t0) = 0, and θ(t0) 6= 0. For a sub-Riemannian geodesic Γ : R→ UR

2, if the variation of the angle θ(t)
is small, then the inflection points, where θ̇ = 0, and the cusp points, where θ̈ = 0, appear alternately
along the non-constant projection π◦Γ, which may be called a “zigzag” curve ([23]). Moreover we observe
the directions of cusps are all parallel. This will provide a severe restriction on the front curve π ◦ Γ. An
example of the projection of D-geodesic is illustrated roughly like as follows.

See illustrations also in [1, 14, 17].
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5 Geodesic parallel coordinates

To analyze the equation of sub-Riemannian geodesics on UM in the case of general Riemannian surface
M , it is useful to take special local coordinates on M , which is called geodesic parallel coordinates. We
will recall it.

Let (M, g) be a 2-dimensional Riemannian manifold, p ∈M and v ∈ TpM a unit tangent vector. For
a system of local coordinates (x1, x2), we set g( ∂

∂xi
, ∂
∂xj

) = gij .

Lemma 5.1 There exists a system of local coordinates (x1, x2) centered at p satisfying that
(1) g11 = 1, g12 = g21 = 0 so that g is of form (dx1)

2+g22(dx2)
2 and moreover g22 satisfies the conditions

g22(0, x2) = 1 and
∂g22
∂x1

(0, x2) = 0.

(2)
∂gij
∂xk

(p) = 0 for any i, j, k = 1, 2, and all connection coefficients (Christoffel symbols) Γk
ij vanish at p.

(3) v = ∂
∂x1

|p and the curve x1(t) = t, x2(t) = c, c being a constant, gives the Riemannian geodesic on
M . If c = 0, it is the Riemannian geodesic starting from p with the initial velocity vector v.
(4) Let θ be the angle function with the base section ∂

∂x1
. Then the generating vector field V of the geodesic

flow V on UM satisfies 〈dθ, V 〉(x1, x2, 0) = 0.

Proof of Lemma 5.1: We take the geodesic parallel coordinates around p on M . See, for instance, [12] on

its existence. Then we have (1). The assertion (2) follows from (1) and Γk
ij = 1

2g
kℓ
(

∂gℓi
∂xj

+
∂gℓj
∂xi
− ∂gij

∂xℓ

)

using Einstein convention. The assertion (3) follows from (1) by rotating the coordinates (x1, x2) linearly
if necessary. From (3), we see the ∂

paθ
of V vanishes along the each geodesic x1(t) = t, x2(t) = c. Therefore

we have 〈dθ, V 〉(x1, x2, 0) = 0, and we have (4). ✷

Lemma 5.2 There exists a local orthonormal frame v1, v2 of TM on a neighborhood of p such that, for
some geodesic parallel coordinates x1, x2, they are written as

v1 = k(x1, x2)
∂

∂x1
+ ℓ(x1, x2)

∂

∂x2
, v2 = m(x1, x2)

∂

∂x1
+ n(x1, x2)

∂

∂x2
,

with all of first order partial derivatives of k, ℓ,m, n vanished at p.

Proof : In general, if we set k = 1√
g11

, ℓ = 0,m = − g12√
g11
√

g11g12−g2

12

and n =
√
g11

√
g11
√

g11g12−g2

12

, then

v1 = k ∂
∂x1

+ ℓ ∂
∂x1

, v2 = m ∂
∂x1

+ n ∂
∂x2

form a local orthonormal frame. If (x1, x2) is a system of geodesic

parallel coordinates, then we see k = 1, ℓ = 0,m = 0 and 1√
g22

. Then, for the exterior derivatives, we

have dk = dℓ = dn = 0 and dk = − k
2g22

dg22. Thus, by Lemma 5.1 (2), we have the result. ✷

6 The case of general Riemannian surfaces

Let us study the case with a general Riemannian surface (M, g). Let Γ : (R, t0)→ UM be any curve-germ.
Let (x1, x2) be a system of geodesic parallel coordinates of M centered at π(Γ(t0)). Let

v1 = k(x1, x2)
∂

∂x1
+ ℓ(x1, x2)

∂

∂x2
, v2 = m(x1, x2)

∂

∂x1
+ n(x1, x2)

∂

∂x2

be a local orthonormal frame for g on M . For the local coordinates x1, x2, θ of UM introduced in §2 for

the base section
∂

∂x1
, we have that

V1 = v1 cos θ + v2 sin θ, V2 =
∂

∂θ
,
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form a local sub-Riemannian orthonormal frame of D ⊂ T (UM). In this case the Hamiltonian for
sub-Riemannian geodesics is given by

H = u1{(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ}+ u2ϕ+
1

2
c(u2

1 + u2
2),

where c ∈ R, and the equation for the extremal (x1, x2, θ, p1, p2, ϕ) is written as





ẋ1 = u1(k cos θ +m sin θ), ẋ2 = u1(ℓ cos θ + n sin θ), θ̇ = u2

ṗ1 = −u1{(
∂k

∂x1
p1 +

∂ℓ

∂x1
p2) cos θ + (

∂m

∂x1
p1 +

∂n

∂x1
p2) sin θ},

ṗ2 = −u1{(
∂k

∂x2
p1 + ℓx2

p2) cos θ + (
∂m

∂x2
p1 +

∂n

∂x2
p2) sin θ},

ϕ̇ = −u1{−(kp1 + ℓp2) sin θ + (mp1 + np2) cos θ}

with the constraint

(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ + cu1 = 0, ϕ+ cu2 = 0.

Suppose c = 0. Then, by the constraint, (kp1 + ℓp2) cos θ+ (mp1 + np2) sin θ = 0 and ϕ = 0. For any
t with u1(t) 6= 0, we have −(kp1 + ℓp2) sin θ + (mp1 + np2) cos θ = 0. Then we have

(
cos θ sin θ
− sin θ cos θ

)(
k ℓ
m n

)(
p1
p2

)
=

(
0
0

)

Then we have p1 = p2 = ϕ = 0, which leads a contradiction. Therefore u1(t) must be 0 almost
everywhere. Then x1(t), x2(t), p1(t), p2(t) are locally constants and therefore (cos θ(t), sin θ(t)) and θ(t)
must be a constant. Thus we have checked directly that any non-trivial D-geodesic is normal in our case.

Now suppose c 6= 0. By replacing − 1
c
p1,− 1

c
p2,− 1

c
ϕ by p1, p2, ϕ respectively, we may set c = −1.

Then we have
u1 = (kp1 + ℓp2) cos θ + (mp1 + np2) sin θ, u2 = ϕ.

Thus we have a first order ordinary differential equation






ẋ1 = {(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ}(k cos θ +m sin θ),

ẋ2 = {(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ}(ℓ cos θ + n sin θ),

θ̇ = ϕ,

ṗ1 = −{(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ}{(
∂k

∂x1
p1 +

∂ℓ

∂x1
p2) cos θ + (

∂m

∂x1
p1 +

∂n

∂x1
p2) sin θ},

ṗ2 = −{(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ}{(
∂k

∂x2
p1 +

∂ℓ

∂x2
p2) cos θ + (

∂m

∂x2
p1 +

∂n

∂x2
p2) sin θ},

ϕ̇ = −{(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ}{−(kp1 + ℓp2) sin θ + (mp1 + np2) cos θ}.

In our general case, we have θ̈ = −r sin(2θ + ρ), where r = r(t) = 1
2{(kp1 + ℓp2)

2 + (mp1 + np2)
2} and

ρ = ρ(t) satisfies sin ρ = −(kp1 + ℓp2)(mp1 +np2)/r and cos ρ = 1
2{(kp1+ ℓp2)

2− (mp1 +np2)
2}/r. Note

that r and ρ depend on t. Therefore we observe that θ follows a generalized equation of pendulum.
Now we return to show Theorem 1.1.

Remark 6.1 It is known that any normal sub-Riemannian geodesic (x(t), θ(t)) is obtained as the pro-
jection of a solution x(t), θ(t), p(t), ϕ(t) of the Hamiltonian equation

ẋ =
∂H̃

∂p
, θ̇ =

∂H̃

∂ϕ
, ṗ = −∂H̃

∂x
, ϕ̇ = −∂H̃

∂θ
,
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on T ∗(UM) for the another Hamiltonian

H̃(x, θ, p, ϕ) =
1

2

(
〈p, V1〉2 + 〈ϕ, V2〉2

)
.

See [15] Theorem 1.14. One can check that the same result is obtained also by analyzing the above
Hamiltonian equation.

Proof of Theorem 1.1 in the general case.
Let Γ : (R, t0)→ (UM,Γ(t0) be a D-geodesic and Γ̃ : (R, t0)→ (T ∗(UM), Γ̃(t0)) be a corresponding

extremal for some c 6= 0. Set Γ(t) = (x1(t), x2(t), θ(t)) and Γ̃(t) = (Γ(t); p1(t), p2(t), ϕ(t)). We set

A(x1, x2, θ, p1, p2) := (kp1 + ℓp2) cos θ + (mp1 + np2) sin θ,
B(x1, x2, θ, p1, p2) := −(kp1 + ℓp2) sin θ + (mp1 + np2) cos θ.

Part I. π-Legendre classification of Γ. If (ẋ1(t0), ẋ2(t0)) 6= (0, 0), then we have the case (iii). Suppose
(ẋ1(t0), ẋ2(t0)) = (0, 0). Then A(x1(t0), x2(t0), θ(t0), p1(t0), p2(t0)) = 0 at t0. Assume θ̇(t0) = 0. Then
we have ẋ1(t0) = ẋ2(t0) = θ̇(t0) = ṗ1(t0) = ṗ2(t0) = ϕ̇(t0) = 0. Therefore, by the uniqueness of solution,

we see Γ̃ itself is a constant curve, and Γ is also constant, then we have (i). Suppose θ̇(t0) 6= 0. Set
a = θ̇(t0). If B(x1(t0), x2(t0), θ(t0), p1(t0), p2(t0)) = 0 at t0, then we have (p1(t0), p2(t0)) = (0, 0). Since
(p1(t), p2(t)) satisfies a linear homogeneous differential equation as above, we see p1(t) and p2(t) are
identically zero. Then π ◦ Γ is a constant map. and then θ(t) = at. Thus we have the case (ii).

Suppose B(x1(t0), x2(t0), θ(t0), p1(t0), p2(t0)) 6= 0 at t0. Now we calculate ∆ as in Lemma 3.1.

ẋ1 =
(

∂A
∂p1

)
A, ẋ2 =

(
∂A
∂p2

)
A,

ẍ1 =
(

∂A
∂p1

)′
A+

(
∂A
∂p1

)
A′, ẍ2 =

(
∂A
∂p2

)′
A+

(
∂A
∂p2

)
A′,

...
x 1 =

(
∂A
∂p1

)′′
A+ 2

(
∂A
∂p1

)′
A′ +

(
∂A
∂p1

)
A′′,

...
x 2 =

(
∂A
∂p2

)′′
A+ 2

(
∂A
∂p2

)′
A′ +

(
∂A
∂p2

)
A′′,

At t = t0, we have A = 0, k̇ = ℓ̇ = ṁ = ṅ = 0, ṗ1 − ṗ2 = 0. Therefore we have

∆ :=

∣∣∣∣
ẍ1

...
x 1

ẍ2
...
x 2

∣∣∣∣ (t0) = A′(t0)

∣∣∣∣∣∣

∂A
∂p1

2
(

∂A
∂p1

)′
A′ +

(
∂A
∂p1

)
A′′

∂A
∂p2

2
(

∂A
∂p2

)′
A′ +

(
∂A
∂p2

)
A′′

∣∣∣∣∣∣
(t0) = 2A′(t0)

2

∣∣∣∣∣∣

∂A
∂p1

(
∂A
∂p1

)′

∂A
∂p2

(
∂A
∂p2

)′

∣∣∣∣∣∣
(t0)

We have, at t = t0,
A′ = {−(kp1 + ℓp2) sin θ + (mp1 + np2) cos θ}θ̇ = Bθ̇

and ∣∣∣∣∣∣

∂A
∂p1

(
∂A
∂p1

)′

∂A
∂p2

(
∂A
∂p2

)′

∣∣∣∣∣∣
(t0) = θ̇(t0)(kn− ℓm)(t0)

Therefore we have
∆ = 2B(t0)

2(kn− ℓm)(t0)θ̇(t0)
3 6= 0.

Therefore π ◦ Γ is right-left equivalent to the cusp and this is the case (v).
Part II. π′-Legendre classification of Γ.
Next we analyse (Γ, π′). If π′ ◦ Γ is an immersion at t0, then we have (iii). If Γ is a constant curve,

then we have (i). If π′ ◦ Γ is a constant curve, then since Γ is an immersion, we have (ii).
Now suppose π′ ◦Γ is not an immersion at t0. We take geodesic parallel coordinates around π ◦Γ(t0)

and local frame v1, v2 as in Lemma 5.1.
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Set R(x1, x2, θ) := k(x1, x2) cos θ+m(x1, x2) sin θ) and S(x1, x2, θ) := ℓ(x1, x2) cos θ+n(x1, x2) sin θ).
Then the geodesic flow in a neighborhood of Γ(t0) is written as

V = R
∂

∂x1
+ S

∂

∂x2
+W

∂

∂θ

for some function W = W (x1, x2, θ). We use the geodesic parallel coordinates around π ◦ Γ(t0). Then,
by Lemma 5.1, we see W (x1, x2, 0) = 0.

The projection π′ is locally expressed by taking a pair of independent first integrals (F,E) of V in a
neighborhood of Γ(t0). We set π′ ◦ Γ(t) = (F (Γ(t)), E(Γ(t))) =: (f(t), e(t)). Then we have





ḟ(t) =

(
∂F

∂x1
◦ Γ

)
(t) ẋ1(t) +

(
∂F

∂x2
◦ Γ

)
(t) ẋ2(t) +

(
∂F

∂θ
◦ Γ

)
(t) θ̇(t),

ė(t) =

(
∂E

∂x1
◦ Γ

)
(t) ẋ1(t) +

(
∂E

∂x2
◦ Γ

)
(t) ẋ2(t) +

(
∂E

∂θ
◦ Γ

)
(t) θ̇(t),





f̈(t) =

(
∂2F

∂x2
1

◦ Γ
)
(t) ẋ1(t)

2 +

(
∂2F

∂x2
2

◦ Γ
)
(t) ẋ2(t)

2 +

(
∂2F

∂θ2
◦ Γ

)
(t) θ̇(t)2

+2

(
∂2F

∂x1∂x2
◦ Γ

)
(t) ẋ1(t)ẋ2(t) + 2

(
∂2F

∂x1∂θ
◦ Γ

)
(t) ẋ1(t)θ̇(t) + 2

(
∂2F

∂x2∂θ
◦ Γ

)
(t) ẋ2(t)θ̇(t)

+

(
∂F

∂x1
◦ Γ

)
(t) ẍ1(t) +

(
∂F

∂x2
◦ Γ

)
(t) ẍ2(t) +

(
∂F

∂θ
◦ Γ

)
(t) θ̇(t),

ë(t) =

(
∂2E

∂x2
1

◦ Γ
)
(t) ẋ1(t)

2 +

(
∂2E

∂x2
2

◦ Γ
)
(t) ẋ2(t)

2 +

(
∂2E

∂θ2
◦ Γ

)
(t) θ̈(t)2

+2

(
∂2E

∂x1∂x2
◦ Γ

)
(t) ẋ1(t)ẋ2(t) + 2

(
∂2E

∂x1∂θ
◦ Γ

)
(t) ẋ1(t)θ̇(t) + 2

(
∂2K

∂x2∂θ
◦ Γ

)
(t) ẋ2(t)θ̇(t)

+

(
∂E

∂x1
◦ Γ

)
(t) ẍ1(t) +

(
∂E

∂x2
◦ Γ

)
(t) ẍ2(t) +

(
∂E

∂θ
◦ Γ

)
(t) θ̈(t),

Since π′ ◦ Γ is not an immersion at t0, we have (ḟ(t0), ė(t0)) = (0, 0). Moreover we have

ẋ1(t0) = k(kp1 + ℓp2)|t=t0 , ẋ2(t0) = ℓ(kp1 + ℓp2)|t=t0 , θ̇(t0) = 0.

Moreover, since ṗ1(t0) = ṗ2(t0) = 0 and all partial derivatives of first order of k, ℓ,m, n vanish at
pi ◦ Γ(t0), we see ẍ1(t0) = ẍ2(t0) = 0. On the other hand we have θ̈(t0) 6= 0. Thus we have





f̈(t0) =
∂2F

∂x2
1

k2(kp1 + ℓp2)
2 + 2

∂2F

∂x1∂x2
kℓ(kp1 + ℓp2)

2 +
∂2F

∂x2
2

ℓ2(kp1 + ℓp2)
2 +

∂F

∂θ
θ̈

∣∣∣∣
t=t0

= k(kp1 + ℓp2)
2

(
k
∂2F

∂x2
1

+ ℓ
∂2F

∂x1∂x2

)
+ ℓ(kp1 + ℓp2)

2

(
k

∂2F

∂x1∂x2
+ ℓ

∂2F

∂x2
1

)
+

∂F

∂θ
θ̈

∣∣∣∣
t=t0

,

ë(t0) =
∂2E

∂x2
1

k2(kp1 + ℓp2)
2 + 2

∂2E

∂x1∂x2
kℓ(kp1 + ℓp2)

2 +
∂2E

∂x2
2

ℓ2(kp1 + ℓp2)
2 +

∂E

∂θ
θ̈

∣∣∣∣
t=t0

= k(kp1 + ℓp2)
2

(
k
∂2E

∂x2
1

+ ℓ
∂2E

∂x1∂x2

)
+ ℓ(kp1 + ℓp2)

2

(
k

∂2E

∂x1∂x2
+ ℓ

∂2E

∂x2
1

)
+

∂E

∂θ
θ̈

∣∣∣∣
t=t0

,

Because F and E are first integrals of V , as functions on x1, x2, θ,

R
∂F

∂x1
+ S

∂F

∂x2
+W

∂F

∂θ
= 0, R

∂E

∂x1
+ S

∂H

∂x2
+W

∂H

∂θ
= 0.

By taking the differentials by x1 and x1 of the right hand sides of the above equations respectively, we
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have 



∂R

∂x1

∂F

∂x1
+

∂S

∂x1

∂F

∂x2
+

∂W

∂x1

∂F

∂θ
+R

∂2F

∂x2
1

+ S
∂F

∂x1∂x2
+W

∂F

∂x1∂θ
= 0,

∂R

∂x2

∂F

∂x1
+

∂S

∂x2

∂F

∂x2
+

∂W

∂x2

∂F

∂θ
+R

∂2F

∂x1∂x2
+ S

∂F

∂x2
2

+W
∂F

∂x2∂θ
= 0,

∂R

∂x1

∂E

∂x1
+

∂S

∂x1

∂E

∂x2
+

∂W

∂x1

∂E

∂θ
+R

∂2E

∂x2
1

+ S
∂E

∂x1∂x2
+W

∂E

∂x1∂θ
= 0,

∂R

∂x2

∂E

∂x1
+

∂S

∂x2

∂E

∂x2
+

∂W

∂x2

∂E

∂θ
+R

∂2E

∂x1∂x2
+ S

∂E

∂x2
2

+W
∂E

∂x2∂θ
= 0,

At the point Γ(t0), we have all of
∂R

∂x1
,
∂R

∂x2
,
∂S

∂x1
,
∂S

∂x2
,W,

∂W

∂x1
,
∂W

∂x2
vanish. Moreover we have R(Γ(t0)) =

k(π ◦ Γ(t0)), S(Γ(t0) = ℓ(π ◦ Γ(t0)). Therefore we obtain

k
∂2F

∂x2
1

+ ℓ
∂2F

∂x1∂x2

∣∣∣∣
t=t0

= 0, k
∂2F

∂x1∂x2
+ ℓ

∂2F

∂x2
1

∣∣∣∣
t=t0

= 0,

k
∂2E

∂x2
1

+ ℓ
∂2E

∂x1∂x2

∣∣∣∣
t=t0

= 0, k
∂2E

∂x1∂x2
+ ℓ

∂2E

∂x2
1

∣∣∣∣
t=t0

= 0.

Therefore we have

f̈(t0) =
∂F

∂θ
(t0)θ̈(t0), ḧ(t0) =

∂E

∂θ
(t0)θ̈(t0).

Since
∂

∂θ
does not belongs to the kernel of the differential of (F.E) : (UM,Γ(t0))→ R

2 at Γ(t0), we have

(
∂F

∂θ
(t0),

∂E

∂θ
(t0)) 6= (0, 0). Since θ̈(t0) 6= 0, we have (f̈(t0), ë(t0)) 6= (0, 0). Therefore, by Lemma 3.3, we

have π′ ◦ Γ is a cusp.
The last statement on the combination of singularities of π ◦ Γ and π′ ◦ Γ follows by remarking that

the combinations ((iii), (iii)), ((iv), (iv)) are never occur because Ker(dπ) ∩ Ker(dπ′) = V ∩ K = {0}.
This completes the proof of Theorem 1.1.

7 Appendix: A naive motivation

In the winter snow season, you will observe many cusp-shaped traces of vehicles on many roads and
parking lots usually. Naturally it can be supposed that we control vehicles in a (nearly) optimal way,
when we drive and park. Therefore the cuspidal shape of such snow-traces may be regarded as an
appearance of generic singularities for solutions to some problem of optimal control theory. For instance:

Problem. Suppose your car is located on a parking place. You are asked to move your car to the very
next (right) place. How do you drive and move your car ?

Maybe you will go forward to a right direction a little and then go back to the proper parking place.
Then the trace of your drive wheel will form a cusp-shaped curve. The front direction of the wheel or its
left-side normal is determined anytime, so the trace can be regarded as a kind of so-called a “front” or a
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“frontal” ([8]). The short lines indicate the left side directions of the driver, which form a normal field
to the trace.

The phenomena of the appearance of singularities do not depend on the flatness of the field and you
will observe the singularities also on slopes and non-flat parking lots everywhere. The singularities can
be understood as Legendre singularities of sub-Riemannian geodesics for general Riemannian surfaces
which we have discussed in the present paper.

References

[1] Agrachev A., Barilari D., Bascain U., A Comprehensive Introduction to Sub-Riemannian Geometry, Cam-
bridge studies in adv. math., 181, Cambridge Univ. Press (2020).

[2] Agrachev A., Sachkov Y., Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical
Sciences 87, Springer-Verlag, Berlin, Heidelberg, New York (2010).

[3] Arnold V.I., Singularities of Caustics and Wave Fronts, Kluwer Academic Publishers, (1990).

[4] Arnold V.I., Goryunov V.V., Lyashko O.V., Vasiliev V.A., Singularity Theory II, Classification and Appli-

cations, Dynamical Systems VIII, Encyclopaedia of Math. Sci. 39, Springer-Verlag, (1993).

[5] Arnold V.I., Gusein-Zade S.M., Varchenko A., Singularities of Differentiable Maps, I, Birkhäuser, (1985).
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