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Dedicated to Professor Norbert A’Campo
on the occasion of his 65th birthday

ABSTRACT. — In this paper we clarify the relationship between ribbon
surfaces of Legendrian graphs and quasipositive diagrams by using cer-
tain fence diagrams. As an application, we give an alternative proof of
a theorem concerning a relationship between quasipositive fiber surfaces
and contact structures on S3. We also answer a question of L. Rudolph
concerning moves of quasipositive diagrams.

RESUME. — Nous étudions ici la relation entre les surfaces de ruban
associées aux graphs legendriens et les diagrammes quasi-positifs. Comme
application, nous donnons une preuve élémentaire qu’une surface fibrée
est quasi-positive, si et seulement si elle porte la structure de contact
standard dans S3. Nous répondons aussi & une question de L. Rudolph
concernant les mouvements des surfaces quasi-positives.

1. Introduction

A link is called quasipositive if it has a diagram which is the closure of
a product of conjugates of the positive generators of the braid group. If the
product consists only of words of the form

04,5 = (O'z' . o'j_g)g'j_l(gi - O'j_z)*l
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then the link obtained as its closure is called strongly quasipositive. Let b be
the braid index of a braid diagram of a strongly quasipositive link. The link
spans a canonical Seifert surface consisting of b copies of disjoint parallel
disks with a band for each o; ;, for example see the diagram on the left in
Figure 1. We call such a diagram of a Seifert surface a quasipositive diagram
and each band a positive band. We say a Seifert surface is quasipositive if
it has a quasipositive diagram. On the right in Figure 1, the quasipositive
diagram is represented by using a graph, which is called a fence diagram.

Y
AT
— |
/ fence diagram
/A /

Figure 1. — An example of quasipositive surface.
The boundary is the knot 10145 in Rolfsen’s notation [?].

To relate fence diagrams to contact topology, we replace each endpoint of
vertical lines as shown in Figure 2 and call the obtained diagram its cusped
fence diagram. A cusped fence diagram is regarded as a front projection of
a Legendrian graph. We will see that the Legendrian ribbon of this Legen-
drian graph is the quasipositive surface of the fence diagram (Lemma 2.1).
Conversely, when a front projection of a Legendrian graph is given, we can
make a fence diagram whose quasipositive surface is a Legendrian ribbon of
the given Legendrian graph. In particular, the Legendrian ribbon of a Leg-
endrian graph in R3 with the standard contact structure is a quasipositive
surface (Theorem 2.2).

D |
RO
(1 U
| L L

fence diagram cusped fence diagram

Figure 2. — From a fence diagram to a cusped fence diagram,
which is a front projection of a Legendrian graph.

As an application, we give an alternative proof of [?, Proposition 2.1
(1)<(2)] which states that a fiber surface is quasipositive if and only if it
supports the standard contact structure on S® (Theorem ??). The proof
in [?] is based on the work of E. Giroux [?] and L. Rudolph [?], and uses
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plumbings. Hence it requires the affirmative answer to J. Harer’s conjec-
ture [?] due to Giroux and N. Goodman [?, ?]. In our proof, one direction
follows from the fence diagram argument and the other one is done ac-
cording to an argument in [?]. In particular, both directions do not need
plumbings.

Next we study Legendrian isotopy moves of Legendrian graphs using
moves of quasipositive surfaces. In [?], Rudolph introduced moves of quasi-
positive diagrams named inflations, deflations, slips, slides, twirls and turns.
These moves are summarized in Figure 3. The same figures can be found
in his paper [?] with more precise definitions. In his notation, we only con-
sider the case where the signs ¢ assigned to bands are positive. There is a
remark about these definitions, see Remark 77 below. We will prove that all
Legendrian isotopy moves of Legendrian graphs are expressed by inflations,
deflations, slips and slides of fence diagrams (Theorem 77).

inflation ] \ [ ]
| - | [ ] Py | ]
_ deflation _| | twir \

slip [ slip ] \ turn \
\ o 11 \ S \
[ slide ! | slide |
Figure 3. — Rudolph’s moves of quasipositive diagrams.

Each positive band may pass over several horizontal lines.

In the last two sections we study quasipositive annuli. We first prove
that the moves of fence diagrams of quasipositive annuli correspond to Leg-
endrian isotopy moves (Theorem ?7). It is important to remark that the
same assertion is not true for quasipositive surfaces. Secondly, we study the
Thurston-Bennequin invariant and the rotation number of fence diagrams
of quasipositive annuli, which are defined by those of cusped fence dia-
grams. We prove that the Thurston-Bennequin invariant and the rotation
number of a fence diagram of a quasipositive annulus are invariant under
inflations, deflations, slips, slides, twirls and turns (Theorem ?7?). As a corol-
lary, we conclude that there exists a quasipositive surface with two different
quasipositive diagrams which are not related by inflations, deflations, slips,
slides, twirls and turns. This answers a question of Rudolph in [?, Remark
on p.263].

— 287 —



Sebastian Baader and Masaharu Ishikawa

From the results in this paper, we conclude that there exist surjective,
non-injective maps

{trivalent Legendrian ribbons},. — {quasipositive diagrams} .

—  {quasipositive surfaces} .,

where {trivalent Legendrian ribbons} . is the class of trivalent Legendrian
graphs up to Legendrian isotopy, {quasipositive diagrams},. is the class of
quasipositive diagrams up to inflations, deflations, slips, slides, twirls and
turns, and {quasipositive surfaces} /~ is the class of quasipositive surfaces
up to ambient isotopy.

This paper is organized as follows. In Section 2, we introduce the notion
of front projections in backslash position and prove that a Legendrian rib-
bon is a quasipositive surface. In Section 3, we give an alternative proof of
Hedden’s proposition. Section 4 is devoted to Theorem ?? and Section 5 is
devoted to Theorem ?7. In Section 6, we introduce the Thurston-Bennequin
invariant and the rotation number of a fence diagram of a quasipositive an-
nulus and prove their invariance under the moves of fence diagrams.

2. Legendrian graphs and quasipositive diagrams

The standard contact structure £, on R? is the kernel of the 1-form
dz + xdy. A Legendrian graph is a finite graph consisting of edges and ver-
tices such that each edge is Legendrian, i.e., tangent to the 2-plane field &,
everywhere. The graph may have a simple closed curve component, which
we also call an edge for convenience. The image of the projection of a Leg-
endrian graph I' onto the yz-plane is called a front projection of I'. This
image is an immersed graph with cusps and without vertical tangencies.
We call the image of each vertex also a vertex. If I' is in general position,
its front projection has only node and cusp singularities, and the edges ad-
jacent to each vertex have the same tangency. We call such a I' a generic
front projection. For each node, we regard the arc with smaller slope as the
strand passing over the other arc. Then the figure obtained becomes a graph
diagram of T'.

A Legendrian ribbon R of a Legendrian graph I' in (R3, &) is a smoothly
embedded surface in S3 such that

(1) T is in the interior of R and R retracts onto I,
(2) for each x € T, the 2-plane of £ at x is tangent to R, and

(3) for each x € T, the 2-plane of & at x is transverse to R.
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The notion of a ribbon of a Legendrian graph appears in [?] to prove the
existence of an open book decomposition compatible with a given contact
structure on a 3-manifold, see [?, ?].

Regard a cusped fence diagram as a front projection, then the corre-
sponding quasipositive diagram retracts onto the preimage of the cusped
fence diagram. We call this preimage the Legendrian core graph of the quasi-
positive diagram.

LEMMA 2.1. — A quasipositive diagram can be regarded as a Legendrian
ribbon of its Legendrian core graph.

Proof Set the b copies of disjoint parallel disks in R3 parallel to the
zy-plane and attach the positive bands in the region x > 0 as shown in
Figure 4. This figure shows that this surface is a Legendrian ribbon of the
Legendrian core graph. O

Figure 4. — A positive band of a quasipositive diagram
in a position of a Legendrian ribbon.

The main aim of this section is to prove the converse of Lemma 2.1.

THEOREM 2.2. — A Legendrian ribbon of a Legendrian graph T in (R3, &)
is a quasipositive surface.

Before proving the assertion, we introduce the notion of backslash posi-
tion of front projections, trivalent front projections and their approximating
fence diagrams.

DEFINITION 2.3. — A front projection is called in backslash position if
all tangent lines lie in (m/2,7) U (37/2,2m).

Define the diffeomorphism ¢ from the yz-plane to itself by (y,z) —
(y, Az), where A > 0 is a positive real number, and the diffeomorphism ¢
as the —7/4 rotation map of the yz-plane. For a given, Legendrian isotopy
move of a front projection, we can choose A\ sufficiently small such that
the diffeomorphism ¢ o ¢ maps all front projections during the move into
backslash position.
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DEFINITION 2.4. — A wvertex in a generic front projection is called triva-
lent if the number of adjacent edges is three and two of the edges lie on one
side with respect to the vertical line passing through the vertex and the third
edge lies on the other side. A front projection is called trivalent if it is
generic and all vertices are trivalent.

Now we consider the local modifications of front projections described in
Figure 5. The horizontal and vertical reflections of these modifications are
also allowed. The modification in the second line represents a deletion of an
edge with a terminal vertex, and the modification in the last line represents
a slide of an edge.

e e
e

i

Figure 5. — The local modifications of generic front projections of Legendrian graphs.

S

The horizontal and vertical reflections of these modifications are also allowed.

LEMMA 2.5. — The local modifications in Figure 5 satisfy the following
properties:

(1) the Legendrian ribbons before and after these modifications are ambi-
ent isotopic,

(2) every generic front projection can be modified into a trivalent front
projection by using these modifications.

Proof.— The assertion (1) can be verified by describing their Legendrian
ribbons. For the assertion (2), we can remove an edge with a terminal vertex
by using the local modifications in the first and second lines in Figure 5. A
vertex with two adjacent edges can be removed by the local modifications
in the third line. If a vertex has more than three adjacent edges, we can
modify it into a trivalent vertex by iterating the local modifications in the
last line. O

DEFINITION 2.6. — For a fence diagram, we apply deflations as much as
possible and then retract each of the left and right ends of horizontal lines
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until their arriving at o trivalent verter. We call the obtained diagram the
reduced fence diagram. See Figure 6. The same operation is also applied to
a cusped fence diagram and we call the obtained diagram the reduced, cusped
fence diagram.

fence diagram reduced fence diagram

Figure 6. — A reduced fence diagram.

Now we consider to approximate a trivalent front projection in backslash
position by reduced fence diagrams. Let g be a fence diagram, r its reduced
fence diagram and w a trivalent front projection in backlash position. We
denote by X.(r) the set of left-top and right-bottom corners of r, which
correspond to the cusps in the reduced, cusped fence diagram of ¢, by X.(w)
the set of cusps of w, by X, (r) and X, (w) the set of nodes of r and w
respectively, and by X,(r) and X, (w) the set of trivalent vertices of r and
w respectively.

DEFINITION 2.7. — We say a fence diagram q approzimates a trivalent
front projection w if its reduced fence diagram r satisfies the following:

(1) EC(T) = Ec(w);
(2) En(r) = Ep(w);
(3) EU(T) = Ev(w);

(4) there is a continuous family vy of curves from rog = r to 1 = w, which
is polygonal for t = 0, such that riy N1y, = Xe(r) U X, (r) U (r Nw)
for all0 <ty <t; < 1.

See Figure 7 for example.
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~—— the reduced fence diagram r
of an approximating fence diagram

a trivalent front projection w
in backslash position

Figure 7. — An example of an approximating fence diagram.

LEMMA 2.8. — Let q be a fence diagram, r its reduced fence diagram
and w a trivalent front projection in backslash position. Suppose that q ap-
proximates w. Then

(1) r is reqular isotopic to w as immersed curve in R? with cusps, and

(2) the quasipositive surface of the fence diagram q is a Legendrian ribbon
of the Legendrian graph of w.

Proof.— It is easy to verify the assertion (1), cf. Figure 7. Isotope the
quasipositive surface of the fence diagram ¢ according to the deflations and
retractions for making the reduced fence diagram and then isotope it fur-
ther according to the isotopy move in the assertion (1). We then have a
Legendrian ribbon of the Legendrian graph of w. This proves the assertion
in (2). O

Proof of Theorem 2.2.— Let w be a generic front projection of a given
Legendrian graph and assume that w is in backslash position. By Lemma 2.5,
there exists a trivalent front projection w such that the Legendrian ribbons
of w and w are ambient isotopic. By Lemma 7?7, the Legendrian ribbon of
w is quasipositive and hence that of w is also. ([

3. An alternative proof of Hedden’s proposition

Let a be a contact 1-form on S and ¢ = ker « its contact structure. Two
manifolds with contact structures are called contactomorphic if there exists
a diffeomorphism between these manifolds which maps the 2-plane field of
the contact structure from one to the other. If £ is contactomorphic to the
contact structure on S% = {(z1,y1,72,y2) € R* | 23 + 42 + 23 + y2 = 1}
determined by the kernel of the 1-form o = Zi:m(xidyi — y;dz;)| g3, then
¢ is called the standard contact structure on S®. In this case, (5%, ¢) minus
one point is contactomorphic to (R?, &y).
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Let F be an oriented surface with boundary and ¢ : F' — F a diffeomor-
phism which is the identity map on the boundary 9F of F'. Identify F x [0, 1]
by equivalence relations (z,1) ~ (¢(z),0) for each x € F' and (y,0) ~ (y,0)
for each y € OF and any 6 € [0,1]. Then F is called a fiber surface in the
3-manifold F'x [0, 1]/ ~. We consider only the case where F x [0,1]/ ~ is S3.
We denote the fiber surface parametrized by 6 € [0, 1] by Fy and suppose
F=F,.

A fiber surface F' embedded in S is called compatible with a contact
structure & on S3 if it satisfies the following:

(1) the boundary of Fy is transverse to &;
(2) da is a volume form on each fiber Fy;

(3) the orientation of 9Fy coincides with the orientation of £ determined
by a > 0.

THEOREM 3.1 (HEDDEN [?]). — Let F be a fiber surface in S3. F is
quasipositive if and only if F' is compatible with the standard contact struc-
ture on S3.

We here give a proof of this theorem without using the affirmative answer
to Harer’s conjecture.

Proof. — Let F be a fiber surface compatible with the standard con-
tact structure on S3. By the Legendrian realization argument based on the
result in [?], we can assume that the fiber surface is a Legendrian ribbon
of a Legendrian graph, cf. [?, Remark 4.30]. Hence by Theorem 2.2 it is a
quasipositive surface.

The proof of the converse assertion is done according to the argument
in [?, p.21-23]. Let F be a quasipositive surface with a quasipositive dia-
gram. By Lemma 2.1, F can be embedded in S® with the standard contact
structure & in such a way that F is a Legendrian ribbon in (S3,&p). Since
OF is transverse to &, there exists a small tubular neighborhood N(9F) of
OF in S3 with the contact structure ker(dz +r2df), where the z-coordinate
is along OF and (r,0) is the polar coordinates of a plane transverse to JF.
We then define M to be the union of F x [—¢,¢] and N(OF), where ¢ is a
sufficiently small positive real number, and assume that the boundary of M
is convex (see [?], or for instance [?] for the definition of convexity). Since
F is a fiber surface, the complement M¢ = closure(S®\ M) is a handlebody
with the tight contact structure &o|aze.

The rest of the proof is the same as the argument in [?, p.21-23], so we
only show the outline. We first deform the Reeb vector field of (S3,&) in
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such a way that it is tangent to the boundary of N(OF) and transverse to
the fibers of the fibration in F' x [—¢,¢]. Next we once forget the contact
structure £y on M€ and extend the Reeb vector field on M to M¢ accord-
ing to the fibration. In particular, the contact structure &; determined by
this Reeb vector field is compatible with the fibration. The Reeb vector
field allows us to make a contact embedding of (M€, &) into F' x R with
the vertically invariant contact structure. By Giroux’s criterion, the contact
structure on F' x R is tight and hence (M€ &) is also. The two contact
structures &o|pre and & on M€ are both tight and have the same character-
istic foliation on dM€. Therefore, due to the uniqueness of the tight contact
structure on a handlebody [?], we can conclude that the contact structure
(M, &) U (M€, &) is contactomorphic to (S2,&y), which is the standard
contact structure on S3. ]

4. Isotopy moves of Legendrian graphs and quasipositive
diagrams

DEFINITION 4.1. — Two Legendrian graphs Ty and 'y in a contact man-
ifold (M, €) are said to be Legendrian isotopic if there exists a one-parameter
family {T't}ie0.1) of Legendrian graphs from Iy to T'y such that the cyclic
order of adjacent edges tangent to the 2-plane of & at each vertex does not
change.

It is well-known that generic front projections of Legendrian isotopic
Legendrian links in (R3, ;) are related by the local moves I, IT and IIT of
generic front projections shown in Figure 8 ([?]).

PROPOSITION 4.2. — Generic front projections of Legendrian isotopic
Legendrian graphs are related by the local moves described in Figure 8.

T >\ KXY
KA TN

Figure 8. — Legendrian isotopy moves. The horizontal and vertical reflections
of these moves are also allowed. The overstrand and understrand
at each crossing are determined according to the rule that
the arc with the smaller slope passes over the other arc.

Proof. — Let 'y and I'; be two Legendrian graphs, which are Legendrian
isotopic, with generic front projections wy and w; respectively. The Legen-
drian isotopy {T't}¢cjo,1] between I'g and T'; is realized by a global move
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{wt }iepo,1) of front projections from wg to wy. We choose the Legendrian
isotopy to be generic so that two vertices do not meet each other in the front
projection w; for each ¢ € [0,1]. We decompose the global move {w; }c(o,1
into three kinds of local moves:

(i) no vertex of I'; appears in the local move;
(ii) a vertex of Iy appears in one of the local moves I, IT and IIT;
(iii) a local move of I'; around a vertex which is not in case (ii).

The move in case (i) is realized by a combination of local moves I, IT and
II1. So, we consider the other two cases.

We first consider case (ii). Let v denote the vertex appearing in the
local move and ¢, denote the line passing through v at which each edge
adjacent to v is tangent to £,. By choosing the Legendrian isotopy {I't }+e[0,1]
generic, we can assume that the tangency to £, of each adjacent edge does
not change during this local move. Then it is clear that both of the local
moves II and III with a vertex can be realized as a combination of the local
moves Il described in Figure 8. In case of the local move I with a vertex,
we decompose the Legendrian isotopy move into two steps: we first keep
the vertex outside the triangle in the right of the move I, and then move
it into somewhere on the boundary of the triangle if necessary. The first
move is just the local move I, and the second move can be realized as a
combination of the local move IIg and some move around a cusp. This last
move is considered to be in case (iii).

Next we consider case (iii). Since each edge adjacent to the vertex v is

Legendrian, we can label these edges by €1, -, €., in such a way that
(1) ey, -+, enm are ordered in anti-clockwise orientation with respect to &,
(2) eq,---,ex lie on the left of the vertex v in the generic front projection
and eg41, -, e lie on the right,

see Figure 9. Since the Legendrian move in case (iii) keeps the property that
these edges are Legendrian, the move which can appear is only a rotation
of one of the edges ey, ek, €xt1, €, onto the other side of the vertex v,
keeping the order fixed in (1). Such a rotation is realized by the local move
R described in Figure 8. Remark that a local move where a vertex passes
though a cusp is also realized by this rotation. This completes the proof.
O
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() és
(4] %64 -
R
es

\63

Figure 9. — Label adjacent edges in anti-clockwise orientation with respect to &,

and rotate one of the edges onto the other side.

THEOREM 4.3. — If the Legendrian graphs of reduced, cusped fence di-
agrams are Legendrian isotopic, then their fence diagrams are related by
inflations, deflations, slips and slides.

Remark 4.4. — In [?], the slides were defined as the moves from the left
to the right in Figure 8 and it was remarked on p.263 that the inverse
moves can be realized as conjugations of slides by twirls. In this paper, for
our convenience to compare with Legendrian isotopy moves, we call these
inverse moves also slides. The definitions of twirls and turns in Figure 3
are also different from those in [?] because of the same reason.

Before proving Theorem 7?7, we explain the flexibility of approximating
fence diagrams shown in Figure 10. The thickened polygonal curves in the
figures represent a part of the reduced fence diagram. Figure (A) shows
that by combining an inflation and a slide we can produce a fence diagram
with better approximation. Figure (B) shows that by combining an infla-
tion, slides and a deflation we can exchange the heights of two horizontal
edges, and Figure (C) shows that by a slip we can exchange the positions of
vertical edges. These properties imply that we can make an approximating
fence diagram whose reduced fence diagram is as close to w as we need
by using inflations and slides, and every regular isotopy move of a generic
front projection, as moves of immersed curves in R? with cusps, can be ex-
pressed by a family of approximating fence diagrams defined by inflations,
deflations, slips and slides.

Proof of Theorem ?7.— We first show that the Legendrian isotopy moves
I, II, ITI, 115, R can also be expressed by moves of approximating fence di-
agrams. Since all reduced fence diagrams are trivalent, the vertices in the
moves Ilg, R are trivalent. Consider the move II with right cusp. If the cusp
passes a line from the top to the bottom, then the move is expressed by a
combination of an inflation and slides as shown on the top in Figure 11.
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inflation
S R e
deflation slide
—— inflation —— deflation
(B) P = —_—
deflation slide inflation

C)IHI

( L slip T

Figure 10. — Flexibility of approximating fence diagrams.

front projection in backslash position

a
/ the reduced fence diagram
of an approximating fence diagram

[ infl. o |

[ — 11

11

.
— .
A\
%& E T
B
<

Ilg)

I
I
11

[ slide
L

R \\ \&
F\\ﬂx\%

R 1
[~ [
defl. slide _\

Figure 11. — The moves of approximating fence diagrams corresponding

to the Legendrian isotopy moves II, III, II5, R.
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The move of approximating fence diagrams corresponding to the move II
with left cusp is given by the m-rotation of the figure. In case the right (resp.
left) cusp passes a line from the left to the right (resp. from the right to
the left), the move corresponds to a slip, cf. Figure 12 below. For every
move which appears below, we also need to check the figure obtained by the
m-rotation, though we omit it. The move III corresponds to a slip, which
is shown on the second figure in Figure 11. The move IIs corresponds to
a slide if the cusp passes a line from the top to the bottom, see the third
figure. In case where the cusp passes a line from the left to the right, the
move corresponds to a slip. The move R has four cases as shown in the
fourth figure. The move of approximating fence diagrams for the first case
is shown on the bottom in Figure 11. Looking only at the cusp in the move
R on the bottom in Figure 11, we have the move I. We can check the other
cases of the move R by the same way. Thus we conclude that all the moves I,
II, II1, IIg, R are expressed by approximating fence diagrams with using
inflations, deflations, slips and slides.

Now we prove the assertion. Let w and w’ be reduced, cusped fence
diagrams whose Legendrian graphs are Legendrian isotopic and rg and r{,
the reduced fence diagrams corresponding to w and w’ respectively. By small
perturbation we can assume that w and w’ are in backslash position, and by
applying move (A) in Figure 10 to rg and r{, we can obtain fence diagrams
r1 and 7] which approximate w and w’ respectively. Now we make the
approximation 71 of w as close to w as possible and follow the Legendrian
isotopy moves from w to w’ with approximating fence diagrams. We denote
the obtained fence diagram by rs, which approximates w’. It is easy to
make the same approximation of w’ from 7] and ro by applying move (A)
in Figure 10. Thus r and r{, are related by the moves in the assertion.

5. Quasipositive annuli

In this section we study quasipositive annuli. The reduced fence dia-
gram of a quasipositive diagram of a quasipositive annulus has no trivalent
vertices, i.e., it is a knot diagram of a knot in R3.

THEOREM 5.1. — The mowves of fence diagrams of quasipositive annuli
under inflation, deflation, slips and slides correspond to Legendrian isotopy
moves of reduced, cusped fence diagrams.

Proof.— An inflation and a deflation do not change the reduced fence
diagram. The slip of a reduced fence diagram shown in Figure 12 corresponds
to the Legendrian move II if there is no horizontal line passing under the
shorter vertical edge. In case where the shorter vertical edge passes over
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several horizontal lines, the move is realized by the moves II and III. The
other cases of slips are obviously Legendrian isotopy.

- -

slip | slip

~——_10 -

slip ] slip

Figure 12. — Moves of reduced fence diagrams under slips.

We consider the slide from the left to the right shown in Figure 13 (A).
If the reduced fence diagram does not pass through the lower vertical edge
in Figure 13 (B), then this move is obviously Legendrian isotopy. If it passes
through the lower vertical edge, there are eight cases shown in Figure 13 (C).
The non-obvious case is (C3) and corresponds to the Legendrian isotopy
move I. In case where the vertical lines of fence diagrams in Figure 13
pass over several other horizontal lines, we may need to use the Legendrian
isotopy move II additionally. The proof for the slide from the right to the
left also follows from Figure 13. For the second slide in Figure 3, the proof
is analogous.

A)

(&3]

o

) L
-
.

C3 : -
©3) slide slide
slide slide
Figure 13. — Moves of reduced fence diagrams under slides.

Remark 5.2. — For quasipositive surfaces, the moves of their fence dia-
grams under inflation, deflation and slips correspond to Legendrian isotopy
moves of reduced, cusped fence diagrams. But this is not true for slides.
Figure 14 shows that a slide may exchange the mutual positions of two ver-
tices and this cannot be realized by Legendrian isotopy moves of Legendrian
graphs.
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a ba
_[_r -«
b slide
Figure 14. — A slide which exchanges the mutual positions of two vertices.

Remark 5.3. — Theorem 77 shows the existence of the surjective map
{trivalent Legendrian ribbons},. — {quasipositive diagrams} .,

where {trivalent Legendrian ribbons},. is the class of Legendrian graphs
up to Legendrian isotopy and {quasipositive diagrams} . is the class of
quasipositive diagrams up to inflations, deflations, slips, slides, twirls and
turns, and the above remark shows that this map is not injective.

6. Quasipositive surfaces with different fence diagrams

Let v be a Legendrian knot in (R3, ), i.e., v is tangent to the 2-plane
field &5 everywhere. The Thurston-Bennequin invariant tb(y) of ~ is the
linking number of v and a curve obtained by pushing off v normal to £.
To give the definition of the rotation number, we assign an orientation to -y
and denote it by 4. The rotation number r(¥) of 4 is the winding number
of vectors tangent to 7 with respect to the trivialization of £ along . The
other choice of the orientation of v changes the sign of the rotation number.

The Thurston-Bennequin invariant and the rotation number can be read
from the front projection. Let v be a Legendrian knot and w., its generic
front projection. Assign an orientation to w. and let p(w,) (resp. n(wy))
denote the number of positive (resp. negative) crossings and r.(w.) the
number of right cusps of w,. Then the Thurston-Bennequin invariant of ~y
is determined by the formula

th(7) = p(wy) — n(wy) = re(wy). (6.1)

Obviously, this number does not depend on the choice of the orientation.
For the rotation number, let d.(w,) (resp. u.(w,)) denote the number of
downward (resp. upward) cusps. Then the rotation number is determined
by

1

1) = (delwy) = ucluwy).

It is easy to verify that the other choice of the orientation of v changes
the sign of the rotation number. For more precise explanations, see for
instance [?].
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A reduced, cusped fence diagram of a quasipositive annulus is regarded
as a front projection of a Legendrian knot. We define the Thurston-Bennequin
invariant and the rotation number of a fence diagram of a quasipositive an-
nulus by those of its reduced, cusped fence diagram.

LEMMA 6.1. — The Thurston-Bennequin invariant of a fence diagram
of a quasipositive annulus A is equal to —1 times the linking number of
the two boundary components of A. In particular, the Thurston-Bennequin
invariant is independent of the choice of a quasipositive diagram.

Proof.— On a quasipositive diagram, we assume that the positive cross-
ing of each positive band lies close to the bottom end of the band. Then
the contribution to the linking number of the two boundary components of
A is given as shown in Figure 15. The number on the right-bottom of each
figure represents the contribution to the linking number. Thus the linking

number is —p + n + r. = —tb by formula (6.1). O
T e T S I A |
)corners ) -1 1
positive crossing  negative crossing

V4 =
0

Figure 15. — The contribution to the linking number

of the two boundary components of A.

Remark 6.2. — Lemma ?? can be proved by checking the coincidence
of the Legendrian framing and the Seifert surface’s framing of a reduced,
cusped fence diagram, cf. for example [?]. This proof is more direct than
the above proof if we assume the knowledge of these framings.

THEOREM 6.3. — The Thurston-Bennequin invariant and the rotation
number of a fence diagram of a quasipositive annulus are invariant under
inflations, deflations, slips, slides, twirls and turns.

Proof.— Since the moves of quasipositive annuli in the assertion are
ambient isotopy moves of Seifert surfaces, the linking number of the two
boundary components of a quasipositive annulus does not change under
these moves. Therefore, by Lemma 77, the Thurston-Bennequin invariant
also does not change. The rotation number is also invariant under infla-
tions, deflations, slips and slides since they are Legendrian isotopy moves
by Theorem ?7.
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We will prove the invariance of the rotation number in case of twirls and
turns. For twirls, there are four cases (A), (B), (C) and (D) of reduced fence
diagrams as shown in Figure 16. We assign an orientation as shown in the
figures. The small arrows in the figures represent the positions of upward
and downward cusps. It is easy to check that the rotation number does not
change under these moves. The other choice of the orientation changes the
sign of the rotation number, but it does not matter for its invariance under
these moves.

@) V<~

- 7- —_ > |- -[-

- tWir] i - : : tWir] i “ |
©) = - == I 7. M) = L == I F
— twirl -|-_-|; — twirl -|-_-|7

Figure 16. — The four cases of the moves of reduced fence diagrams under twirls.

The proof of the invariance under turns is analogous to the proof for
twirls. There are four cases (A), (B), (C) and (D) of the moves of reduced
fence diagrams as shown in Figure 17 and we can check easily that the
rotation number does not change under these moves. O

( A)/{H'l‘l [ [ (B)YH_H [ [1HH
Ha ] turn [t Halll turn |-

|- - || L]
(C)Y”hll 1A (D)TW” [1HH

- _—
HA I turn [ HH HA I turn |44
Figure 17. — The four cases of the moves of reduced fence diagrams under turns.
As a corollary, we answer a question of Rudolph in [?, Remark in p.263].

COROLLARY 6.4. — There exists a quasipositive surface with two differ-
ent quasipositive diagrams which are not related by inflations, deflations,
slips, slides, twirls and turns.

Proof.— We consider two fence diagrams shown in Figure 18. They
are quasipositive annuli and it is easy to check by formula (6.1) that the
Thurston-Bennequin invariants are both —3. Hence, by Lemma 7?7, their
quasipositive surfaces are the same, namely the 3 times full twisted quasi-
positive annulus. However the rotation number of the fence diagram on the
left is 0 and the number of the right diagram is £2. Hence, by Theorem ?7,
these fence diagrams are not related by the moves in the assertion. O
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Figure 18. — Two different fence diagrams of the 3 times

full twisted quasipositive annulus.

If the Legendrian isotopy class of a Legendrian knot with the same knot-
type is determined by the Thurston-Bennequin invariant and the rotation
number, then this knot-type is called Legendrian simple. It is known by
Y. Eliashberg and M. Fraser in [?] that the unknot is Legendrian simple,
and J. Etnyre and K. Honda proved in [?] that the torus knots and the figure
eight knot are Legendrian simple. On the other hand, the knots 55, 63 and
72, in Rolfsen’s notation [?], are not Legendrian simple [?, ?]. These facts
are known as an application of Chekanov’s differential graded algebra [?].

As a direct corollary of Theorem 7?7, we can determine the isotopy class
of a quasipositive annulus up to the moves of quasipositive annuli in case
where its core curve is Legendrian simple.

COROLLARY 6.5. — Let A be a quasipositive annulus such that the knot
type of its core curve is Legendrian simple.

(1) The isotopy class of a quasipositive diagram of A up to inflations,
deflations, slips and slides is determined by the Thurston-Bennequin
imwvariant and the rotation number of their reduced, cusped fence dia-
grams.

(2) The classification of quasipositive diagrams of A in (1) is equivalent
to the classification up to inflations, deflations, slips, slides, twirls
and turns.

For example, consider the n times full twisted quasipositive annulus A,,.
By using the classification of the Legendrian unknot in [?], we know that
there exist | (n+1)/2] reduced fence diagrams of A,, with different rotation
numbers. Hence, by Corollary 7?7, we conclude that they are not related by
inflations, deflations, slips, slides, twirls and turns.

Remark 6.6. — The existence of the map

{quasipositive diagrams},. — {quasipositive surfaces} ..
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is obvious and Corollary 7?7 shows that this map is not injective, where
{quasipositive surfaces},. is the class of quasipositive surfaces up to am-
bient isotopy and {quasipositive diagrams} . is the class of quasipositive
diagrams up to inflations, deflations, slips, slides, twirls and turns.

Remark 6.7. — In the preliminary version of this paper, we asked whether
there exists a quasipositive fiber surface, other than a disk, from which we
cannot deplumb a Hopf band. M. Hirasawa informed us later that the (2, 1)-
cable of the right-handed trefoil satisfies this property, and M. Hedden also
pointed out the same fact in [?] independently.
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