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Legged Motion Planning in Complex

Three-Dimensional Environments
Andrew Short1 and Tirthankar Bandyopadhyay2

Abstract—While legged robots are well suited to navigating
complex 3D environments, their practical applicability is still
hampered by the time taken to plan manoeuvres to traverse
these challenging environments. We present Contact Dynamic
Roadmaps (CDRM), which extend Dynamic Roadmaps (DRM)
with contact information. The CDRM is pre-computed offline to
generate a discretised mapping from each leg’s workspace to its
configuration space, and then adapted online to the environment
to rapidly identify collision-free foothold positions. The concept
behind this is to perform the expensive foothold candidate
generation and collision checking phases offline and store the
data for use in the online planner. The CDRM is coupled with
a Rapidly-exploring Random Tree (RRT) planner to generate
acyclic full-body motion plans in complex 3D environments.
The performance of the approach is validated and compared in
simulation in a wide variety of scenarios that require full-body
planning to successfully navigate.

Index Terms—Legged Robots; Motion and Path Planning

I. INTRODUCTION

LEGGED robots enable navigation in challenging environ-

ments where other platforms, such as wheeled or tracked

vehicles, have had limited success. The flexibility of legged

robots come from their high Degrees of Freedom (DOF), at

the cost of computational complexity in planning and control.

Full-body planning for such high DOF robots is chal-

lenging as the set of feasible configurations that enable sta-

ble locomotion lie in a very small subspace of the whole

configuration space. There have been numerous approaches

toward generating a solution, such as a rigorous complete

algorithm [1], or decomposing the problem into a search

between underlying lower dimensional manifolds [2]. How-

ever, these approaches require significant time in computation

and can only be applied to a priori known environments.

When the environment changes, the full motion plan has to

be recomputed, which makes these approaches unsuitable for

many practical applications.
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Fig. 1: A quadruped robot navigating a complex 3D structure.

In environments that are unknown a priori or only partially

known, a popular approach in legged robot navigation is to

generate cyclic gaits and adapt gait parameters (e.g. stride

length and stride height) in a reactive manner [3]. This has

achieved significant success due to its simplicity and ease of

implementation on real systems. However, this only succeeds

in situations that have limited complexity and often fails in

more challenging environments which require complicated

full-body manoeuvres. In this paper, we present a full-body

planning algorithm for legged robots capable of navigating

such complex environments as shown in Fig. 1.

Similar to earlier approaches [4] we decompose the problem

of robot motion planning into body planning and planning

of individual legs to enable stability and reachability. The

use of the pre-computed Contact Dynamic Roadmap (CDRM)

structure to identify footholds for individual legs is the crux

of our approach. While previous work solves the problem

sequentially, we explicitly determine the existence of valid

footholds and stable configurations before accepting a body

pose. This precludes conditions where the robot plans would

have to be recomputed when the feasibility hypothesis fails.

We use a sampling based approach to generate a motion plan

for the robot. Sampling-based planners are an effective tool

for high DOF motion planning [5]. For multi-query problems

in a fixed environment, Probabilistic Roadmaps (PRMs) [6]

are well suited as the roadmap can be pre-computed offline,

leading to an online cost of only performing a graph search.

However when the environment changes, the roadmap has to

be discarded or modified. For mobile robots, dynamic and

unknown environments are common and hence single query
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Fig. 2: A quadruped robot labelled with the notation used

planners such as Rapidly exploring Random Trees (RRTs) [7]

are generally used. While these planners are suitable for high

DOF systems, computational times for full-body planning are

still high for online planning.

Dynamic Roadmaps (DRM) [8] are a good compromise,

where a workspace to configuration space mapping is gener-

ated offline by associating a cell of the workspace to nodes

of a PRM in the configuration space. However, existing DRM

based planning approaches have only been applied to fixed

based platforms. This paper presents modifications required to

enable DRMs to be applied to mobile legged robots. Instead of

using DRMs for a globally changing environment, we instead

transform the origin of the DRM with the position of the

mobile robot. This effectively results in the environment, as

seen from the origin of the DRM, changing as the robot moves.

In contrast to planners such as Obstacle Based PRM [9], envi-

ronment information isn’t used during roadmap construction,

so the expensive DRM generation can be done offline once

per robot and efficiently re-used in different environments. The

PRM connectivity information is updated using the DRM, in

effect using pre-computed offline collision checks, enabling

fast online planning as shown in recent works [10]–[12].

While promising, basic DRMs cannot be directly applied to

grasping, manipulation or navigation of legged platforms, as

these tasks require explicit contact with the environment and

DRMs treat these contact points as collisions. To specifically

address this issue, we introduce Contact DRMs (CDRMs)

that in addition to maintaining workspace-configuration space

mapping also map potential end-effector or foot-tip positions

of the leg or manipulator arm.

II. PROBLEM STATEMENT

A legged robot R operates in a known workspaceW = R3,

with the region O ⊆ W being occupied by obstacles. An

example quadruped robot, along with the notation used, is

shown in Fig. 2. The robot is composed of a robot body

B to which n legs are attached. The body B is free to

translate and rotate in SE(3). A full-body robot configuration

is denoted by qr with the robot’s configuration space (C-

space) C being the set of all possible configurations. The C-

space region invalidated by the presence of obstacles and self-

collisions is denoted by Cobs and the obstacle-free region of

the configuration space Cfree = C − Cobs.

For this paper, we assume that the n legs have the same

kinematic structure, but this is not a hard limitation of the

approach. Each leg L is a kinematic chain of m DOFs. The

configuration of a leg is denoted ql, and the workspace region

occupied by the leg is denoted L(ql). The foot-tip position of

a leg at configuration ql is F (ql).
A contact configuration is defined as a leg configuration ql

that places the foot tip within a certain Euclidean distance

ǫ of the environment surface O. This defines the contact

space Ccontact as in Eqn. 1. For a contact configuration to be

valid, the remaining links of the leg must not collide with the

environment. Collision-free contact configurations are often

only a small portion of the leg’s C-space, meaning random

rejection sampling is not feasible as the probability of samples

being valid foothold configurations is very small.

Ccontact = {ql ∈ C | distance(F (ql),O) < ǫ} (1)

Each valid contact places the end-effector tip link within

distance ǫ of an obstacle surface, without the configuration

being invalidated by any of the remaining manipulator links

colliding with an obstacle. The value of ǫ chosen must be

sufficiently small that, during execution, the foot tip not being

placed exactly on the surface can be compensated for by low

level leg controllers, such as impedance controllers.

The presented motion planner is required to generate a valid

path τ : [0, 1] → Cfree from a start body pose Bs to a goal

Bg such that τ(0) = Bs and τ(1) = Bg . For a path to be

valid, it must be collision free and also maintain sufficient

contacts with the environment to ensure that a stability criteria

is continuously satisfied.

There are several stability criteria available for legged

robots, such as iterative projection [13] and linear program-

ming with a robustness measure [14]. As the stability checking

procedure is not a focus of this paper, a simple approximation

is used, similar to [15]. To check if a configuration is valid, the

Centre of Mass (COM) of all links of the robot is calculated

and projected on the xy plane (assuming that gravity is in the

−z direction). A configuration is considered valid if the COM

is within the projected xy convex hull of all foot contacts.

This approximation is appropriate for flat environments, but a

more complete model is required for planning on very steep

and irregular terrains [13].

III. CONTACT DYNAMIC ROADMAPS

Key to our approach is the Contact Dynamic Roadmap

(CDRM) data structure which extends the Dynamic Roadmap

(DRM) structure introduced by Leven and Hutchinson [8].

Existing DRM implementations have been demonstrated only

on fixed-base manipulators which do not make contact with

the environment. Our implementation moves with a mobile

robot base, and stores additional contact information to allow

making contacts with the environment.

A DRM can be seen as an extension of PRMs with

additional information stored at its edges and vertices that can

be updated at runtime. However unlike PRMs, DRMs use a

workspace mapping to explicitly maintain and modify the C-

space connectivity graph as the environment changes, enabling

the robot to quickly adapt the motion plan as compared to

recomputing the whole plan.
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q0
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q2

q3

Cell φv(w) φc(w)

A1 q0, q1,

q2, q3

∅

A2 q0, q1 ∅

B1 q2, q3 ∅

C5 ∅ q0

D3 ∅ q1, q2

E2 q2 q3

Fig. 3: Partial CDRM vertex and contact mappings for a

3-DOF manipulator. Cells with colliding configurations are

marked red and cells with contacts are dotted blue. A selection

of cell mappings are shown in the table.

We generate a CDRM for a single representative leg and

then use this in the online planning phase to allow for rapid

contact configuration identification. CDRM generation begins

by creating a Probabilistic Roadmap (PRM) [6] assuming an

obstacle-free workspace. The PRM is a graph G = (V,E)
where the vertices are leg configurations and the edges are

straight line paths connecting two vertices. This graph ap-

proximates the connectivity of C. A dense PRM is generated

offline, discarding configurations and edges which result in a

self-collision. A weighted Euclidean C-space distance metric

is used to connect nearby vertices, but workspace metrics can

also be used [11].

The second stage of the offline pre-processing then maps

from the leg’s workspace to the C-space roadmap. The

workspace is decomposed into cells, most commonly using a

uniform grid decomposition. These discretised workspace cells

are then mapped to the vertices and edges in G, resulting in

the mappings shown in Eqns. 2 and 3. These mappings allow

querying the roadmap vertices and edges which result in the

leg intersecting a workspace cell w.

φv(w) = {ql ∈ V | L(ql) ∩ w 6= ∅} (2)

φe(w) = {e ∈ E | ∃L(ql) ∩ w 6= ∅, ql ∈ e} (3)

The CDRM builds on the DRM by adding an additional

mapping φc(w), which encodes the configurations which place

the foot tip within each cell as shown in Eqn. 4. Fig. 3

shows an example CDRM for a planar manipulator in a 2D

workspace. The process for generating the CDRM is discussed

in detail in Sec. IV-A.

φc(w) = {ql ∈ V |F (ql) ∩ w 6= ∅} (4)

During the online planning phase, the environment is known

and the cells wobs = {w | w ∩ O 6= ∅} are identified which

are occupied by obstacles. The mappings φv(w), φe(w) and

φc(w) can then be used to identify configurations which result

in both a contact and a collision with the environment. As

the mapping is generated offline using a pre-processing phase,

this is a fast operation which does not require any additional

collision checking.

The motion planner uses this mapping for two purposes

once the environment is known. Firstly, it can identify config-

urations which result in a foothold contact but do not place

any other part of the leg in collision with the environment.

Secondly, motion planning queries can be performed for

single-leg transition motions. When an obstacle is observed,

the cells the obstacle occupies can be queried to identify the

roadmap portion which becomes invalidated. A graph query

is then used on the valid nodes and edges to plan paths. This

allows the roadmap connectivity to be maintained in response

to obstacles without requiring expensive collision checks for

each vertex and edge.

IV. FULL-BODY PLANNER

The motion planner uses the Rapidly Exploring Random

Tree (RRT) framework [7] and offline pre-computed CDRM

to perform full-body legged motion planning queries. We

first outline the planner, then Sec. IV-A details the offline

generation of the CDRM mappings and Sec. IV-B shows how

it is used as part of the online planner.

Our approach first generates body poses B, and then con-

nects them to nearby body poses using single leg transition

motions. This hierarchical approach trades completeness for

computational efficiency, but is still able to plan complex paths

as shown in Sec. V. Our approach also differs from approaches

such as [16] which first generate foothold configurations

before body poses. An outline of the online planning process

is:

1) Body poses are sampled and connected to nearby poses

in a tree structure. This is continued until the goal is

reached, or the allotted planning time has expired.

2) The CDRM is used to identify candidate leg configura-

tions (footholds) for each leg which place the foot tip

in contact with the environment, without the rest of the

leg colliding with the environment.

3) Inverse Kinematics (IK) are used to generate a

single-mode transition configuration for each candidate

foothold. It must also be free of collision, and the CDRM

is used to ensure that it can be connected to a foothold

in the previous body pose.

4) If there is at least one valid foothold available for each

leg, a full-body state is created by randomly sampling

a foothold for each leg. These are combined to produce

a full-body state which is then tested for self-collision

and stability.

5) Once the goal is reached, the best full-body state for

each body pose is identified using a heuristic cost

function, yielding a path composed of discrete full-body

configurations.

A. Offline Contact Dynamic Roadmap Generation

As introduced in Sec. III, a CDRM combines a C-space

PRM [6] with workspace mappings. It is generated offline

using a time-consuming mapping process and then used online

for motion planning queries. We generate φc(w), φv(w) and

φe(w) for a single representative leg in a pre-processing

phase and save it for later use in motion planning queries.
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In general different CDRMs could be created for each leg if

they had different structures. The leg is treated as an m DOF

manipulator located at the origin of an obstacle-free workspace

Wl ∈ R
3.

In the first stage, we generate the C-space PRM G = (V,E)
approximating the leg’s configuration space. We use the Open

Motion Planning Library (OMPL) [17] PRM implementation

to generate n vertices and connect each of them to the nearest

k vertices with a straight line connection to create the roadmap.

The environment is assumed to be obstacle free, so the only

configurations and edges discarded are those which violate

kinematic constraints or result in self-collision.

The roadmap must be dense enough to approximate the

reachability of the leg, as each configuration is a potential

foothold to be used by the planner. As obstacles are added to

the environment, portions of the roadmap are invalidated and

the graph must be robust enough to maintain connectivity.

While we use uniform sampling, a possible enhancement

to improve the roadmap quality would be to bias sampling

to ensure that foot tip positions are distributed across the

workspace as in [10].

In the second stage we then decompose Wl into a number

of uniform grid cells w ∈ Wl with a specified resolution r.

We then map cells in this cellular decomposition back to the

C-space roadmap. We also augment the DRM by including

contact information to create the CDRM.

Calculating the maps φc(w), φv(w) and φe(w) is difficult,

so as in [8] we calculate the inverse maps by placing the

leg links at the configurations being tested and then checking

which workspace cells it occupies. This is done using a vox-

elisation routine based on a triangle-box intersection algorithm

[18] to test if the cell is occupied.

Firstly to calculate the inverse vertex mapping φ−1

v (ql) we

voxelise each configuration ql ∈ V in the PRM. Each cell w ∈
Wl occupied by the configuration has ql added to its list of

configurations. In order to calculate the inverse edge mapping

φ−1

e (ql) each edge (q1, q2) ∈ E is individually voxelised. To

voxelise an edge, the edge is recursively bisected and voxelised

until no more occupied cells are seen. These occupied cells

are then added to the mapping. Finally, for each ql ∈ V the

leg’s forward kinematics are used to determine the foot tip

contact position. This is then inserted into the mapping.

The concept behind the CDRM is to perform the expensive

foothold candidate generation and collision checking phases

offline, and then store the data for use in the online planner.

When the environment is known, the pre-computed CDRM can

be transformed to the origin of a leg being considered. The

CDRM is then collided with the environment to give wobs, the

cells which collide with this environment. Candidate foothold

leg qfootholds ∈ V configurations are those for which the end-

effector position, but no other part of the leg, is in collision

with the environment. This can be identified from the CDRM

mappings: qfootholds = φc(w)− φv(w).
The limitation of this approach is that the foothold positions

and collision checks will only be accurate to within the map-

ping resolution r. If the mapping is generated at a sufficiently

fine resolution, this may be acceptable. One solution would

be to adjust the foothold configurations using IK to place

them directly on the environment surface. Alternatively, an

impedance controller which can compensate for this during

motion execution can be used.

B. Online Full-body Planning

The full-body motion planner is based on the Rapidly ex-

ploring Random Tree (RRT) framework [7], but could also be

applied to other sampling-based planners such as PRMs. Our

implementation is single-threaded, but parallelisation could

also be used to improve performance. The RRT algorithm is

shown in Alg. 1, and our implementation again leverages the

Open Motion Planning Library (OMPL) [17]. A tree of body

poses is created rooted at the start pose Bs. Body poses are

sampled, validated, and an attempt is made to connect to the

nearest existing pose in the tree.

Algorithm 1 The full-body RRT algorithm

T.INIT(Bs) ⊲ Create a tree rooted at Bs

while planning time not exceeded do

Brand ← SAMPLEBODYPOSE()
Bprev ← NEARESTVERTEX(T,Brand)
Bnew ← NEWSTATE(Bprev, Brand,∆B)
if CANCONNECT(Bprev, Bnew) then

T.ADDVERTEX(Bnew)

T.ADDEDGE(Bprev, Bnew)

if Bnew = Bg then return success

end if

end while

The SAMPLEBODYPOSE function generates a 6-DOF body

pose Brand. With some probability (by default 5%) it will

yield Bg to guide the search towards the goal. Otherwise, it

will randomly sample a collision-free body pose from W . In

order for a body pose to be valid, all foot tips must be within

a certain distance ǫ of the environment to reach the surface.

If the environment is outside the work envelope of any of the

legs, the pose is discarded. This is a simplified analogy of

[2] to ensure the environment remains within the reachable

workspace of each leg.

The nearest body pose already in the tree Bprev is then

found using NEARESTVERTEX and extended towards Brand

by up to the range parameter ∆B to create Bnew. The

range parameter limits the maximum distance between two

successive steps, and must be within the reachability of the

legs. The CANCONNECT function checks that Bnew is valid

and can be reached from Bprev with a single footstep for

each leg. This state and transition validation is the most time

consuming part of the planner and consists of:

• checking that the body does not collide with O between

Bprev and Bnew (Sec. IV-B1),

• ensuring that there is at least one valid foothold configu-

ration for each leg at Bnew (Sec. IV-B2),

• validating that foothold configurations can be reached

from the previous body pose Bprev (Sec. IV-B3), and

• generating at least one full-body state which is free of

self-collision and statically stable (Sec. IV-B4).

These steps are described in detail below:
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1) Body Collision: For the first stage it is assumed that

the body translates linearly from Bprev to Bnew. A straight-

line collision check is performed between the body and the

environment moving between the two poses using recursive

bisection [19]. If the body collides at any point the state

Bnew is invalidated. This is only an approximation to the true

movement. If required, a final check could be performed after

the full-body motion plan is generated to validate this body

movement.

2) Foothold Generation: The second stage in validating

Bnew is to generate at least one valid foothold configuration

for each leg. These configurations must be collision-free and

place the foot tip within ǫ of the environment. If any of the legs

don’t have a valid foothold configuration, the body pose Bnew

is invalidated; a consequence of this is that all legs will be in

contact with the environment at all body poses. Approaches

which would allow legs to be free include optimising for

minimum number of contacts [20] or using a priority queue

for contact selection [2].

To generate candidate footholds the CDRM origin is trans-

formed to each leg’s local origin for the body pose Bnew being

validated. A collision check is performed to identify CDRM

workspace cells wobs in collision with the environment. Leg

configurations qobs ∈ wobs which collide with the environment

are identified. The leg configurations which create a contact

with the environment, but not a collision, qfootholds, are then

queried from the CDRM. This is in contrast to approaches

such as [21] which require footholds to be generated in a pre-

processing phase.

3) Transition Validation: The planner is structured to move

each leg to a new position using a pre-defined creep gait order

and then translate the robot body. Therefore, each generated

foothold configuration must be valid and reachable from both

the current body pose Bnew and the previous body pose Bprev .

For each of the candidate foothold configurations, closed-form

Inverse Kinematics (IK) are used to generate a configuration

which reaches the same foothold in Bprev as in Bnew (a

transition foothold). If the IK solver cannot find a solution or

the IK-generated configuration collides with the environment,

the foothold is not reachable from the previous body pose and

is discarded.

When the body is at Bprev , each IK-generated transition

foothold must be reachable from a foothold that was used

at Bprev through the CDRM C-space roadmap. The closest k

configurations in the roadmap are found using a nearest neigh-

bours data structure and a straight line connection is attempted

to each of these configurations. A connected components data

structure is then used within the roadmap to identify if the

IK-generated solution can be connected to any footholds at

the preceding body pose B. Vertices which are invalidated

by the environment as identified in Sec. IV-B2 are not used.

Once one of the closest k configurations has been found by the

search, the foothold is known to be reachable by a collision-

free motion from a previous foothold. If no previous footholds

are found, the foothold is discarded.

4) Full-body State Generation: The body pose Bnew now

has, for each leg, at least one valid and reachable foothold

configuration. The final stage of body pose validation gen-

erates full-body states which combine the body pose with a

configuration for all legs. The planner generates these states

by randomly sampling from the available footholds for each

single leg, and then checking whether the full state is free

of self-collision and satisfies the stability criteria. Up to n

sampling attempts are used to generate up to m valid full-

body states. If no valid states can be generated, the body pose

is discarded.

Once a candidate set of full-body states has been generated,

the best one is selected using a heuristic cost function. For

the examples in this paper, the full-body state closest to

a reference configuration was selected. Alternative heuristic

functions could be used such as maximising the stability

robustness of the selected full-body configuration [2]. Gen-

erating multiple candidate states and selecting the best using

a heuristic function was found to significantly improve path

quality compared to selecting the first valid state found.

Once Bnew has a stable full-body state, the same foothold

positions must be checked for stability and self-collision at the

previous body pose Bprev . IK is used to generated the full-

body state with the previous body pose, and the same full-body

state is validated for self-collision and stability.

It is assumed that if the body satisfies the stability criteria

at both Bnew and Bprev with the same foot tip positions,

the intermediate body motion is also statically stable, as the

COM would remain over the support polygon formed by the

legs. If this condition is required to be explicitly validated the

path can be interpolated and static stability checked along the

entire path. Due to proximity it is also assumed that the legs

are collision free for body translation from Bnew to Bprev .

Finally, any footholds that are not used as an element of a

valid full-body state are discarded, as they are in inaccessible

regions. This prevents subsequently generated states from

attempting to connect to these footholds.

V. RESULTS

The planner was tested using the quadruped shown in Fig. 2.

Each of the four legs is kinematically identical, approximately

0.45m long and has three DOFs. Tests were run using a Core

i7 4700M CPU and 16GB RAM.

We first detail the generation of the CDRM in Sec. V-A,

including the key parameters chosen. Planning results are then

shown on planar terrains, individual challenging features and

extended paths in complex scenarios which combine multiple

of these features. We then compare our planner to a basic RRT

implementation and a state of the art full-body legged motion

planner.

To aid visualisation, only a few representative full-body

configurations for each path is shown, with red dots used

to show all footholds. The maximum allowed planning time

was 120s and the average time over 10 tests was taken. Dual-

axis plots are used to show the results with planning times on

the left axis and success rates on the right axis. Data points

where no solution was reached due to timeout are marked

with 0% success rate but not plotted in time axis. OMPL [17]

path simplification using short-cutting techniques was applied.

Since this post-processing only smoothed an existing valid

path, the time taken was not included in the results.
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Fig. 4: Terrain with roughness of ± 0.45m
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Fig. 5: Planning times and success rate vs. terrain roughness

for a 4m path

A. CDRM Generation

We generated a number of CDRMs with 10000 candidate

foothold configurations connected to their nearest 10 neigh-

bours. We varied the discretisation resolution and measured the

generation time, query time and CDRM size. Generation time

and size varied proportionally to the cube of the resolution,

while the query time also depended on the resolution of the

environment model. The size could be reduced by using DRM

compression techniques as in [8].

We selected a resolution of 0.01m as it provided ample

accuracy for the robotic system in question, without the

CDRM becoming too large in terms of memory usage. As

each leg is 0.45m long, the resolution is significantly smaller

than the reachability. During online execution, the position

error is likely to exceed 0.01m. For the CDRM parameters

selected, the offline generation time was 28 minutes and the

resulting CDRM was 2.4GB. The online query time during

planning was 0.04s to evaluate 10000 foothold positions for all

legs. Performing the same process online without the CDRM

took approximately 2.1s, demonstrating the efficiency of our

approach to rapidly evaluate foothold configurations.

B. Terrain

A planar terrain of 5m × 5m was created using 12800 trian-

gles. Each vertex was vertically displaced using a Perlin noise

texture [22] to approximate surfaces of different roughness

as shown in Fig. 4. The maximum vertical displacement was

varied from 0 (a flat surface) to ± 0.5m (a very rough surface

exceeding the reachability of the legs). Planning times and

success rates for a path 4m in length are shown in Fig. 5 for

several roughness values. As the roughness increases, planning

time also increases, but remains under 5s up to a roughness

of ± 0.2m.

The planning time for smooth ground is in the order of

only a few seconds, allowing paths in simple environments

to be planned very quickly. However, a gait-based planner

would be more suited to these problems and would produce

a faster and smoother path. As the terrain becomes rougher

our planner maintains a high success rate until the terrain

roughness exceeds the reachability of the robot. As the terrain

becomes more complex, full-body planning is increasingly

applicable as explored further in Sec. V-C.

Online planning requires generating motion plans within the

time it would take to execute them. To test if online planning

was possible, a path of one body length was planned on a

terrain with a high roughness of ± 0.45m, which is of the order

of the robot height. A plan to traverse a single body length was

found in 1.5s and the execution of this on a physical platform

would take significantly longer.

C. Features

A second set of experiments was run where a path was

planned over a single complex terrain feature to test if the

planner can deal with varied complex features while maintain-

ing low planning times and using the robot’s full reachability.

A 3m path was planned over: a step of varying height (Fig.

6), a gap of varying width (Fig. 7) and an overhanging bar at

a varying height (Fig. 8). Feature dimensions were varied to

simulate various difficulty levels.

a) Step (Fig. 6): The step height was varied between 0

and 0.5m, with the planning time remaining within 2s for a

height of up to 0.2m and under 10s for 0.4m. The success rate

was 100% until the step height reached 0.45m, which is the

limit of the robot leg’s reachability, demonstrating that the full

workspace of the leg was used.

b) Gap (Fig. 7): Planning time remained within 2.5s as

the gap size increased to 0.6m. Planning was also successful

until the gap reached 0.7m and the gap could no longer be

traversed. Again, this is at the limits of the robot’s reachability.

As can be seen in Fig. 7, the simplified stability criteria allows

the robot to place footholds inside the gap itself, allowing it to

cross such wide gaps and the planner took advantage of this.

c) Overhang (Fig. 8): An overhanging bar placed in a

flat environment which the robot must crawl under or climb

over. The planning time remains within ∼10s if the bar is ≤
0.1m or ≥ 0.2m high. A peak of 27s is observed when the bar

is set at 0.15m as the bar directly obstructs the robot body. As

the bar is raised, the robot transitions from climbing over the

bar to crawling underneath.

These three scenarios demonstrate that the planner is flex-

ible enough to deal with a number of representative terrain

features while maintaining low planning times. Failure rates

only become high as the environmental complexity approaches

the limits of the robot’s reachability. This illustrates that the

density of the CDRM is sufficient to exploit the extent of the

robot’s dexterity, while still remaining quick to search.
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(a) Climbing a 0.4m step
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Fig. 6: Step and planning results

(a) Crossing a 0.5m gap
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Fig. 7: Gap and planning results

(a) Crawling (i) over a 0.15m and (ii) under
a 0.25m overhang
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Fig. 8: Overhang and planning results

Fig. 9: Moving through the inside of an obstructed pipe

Truss (Fig. 1) Pipe (Fig. 9)

Planning time (s) 76.9 86.3
Success (%) 80 90
Foothold generation (s) 67.5 67.5
State generation (s) 1.45 1.92
Transition validation (s) 7.84 16.7

TABLE I: Planning times and success rates for the scenarios

D. Scenarios

Full-body motion planning enables traversal of complex 3D

structures, where cyclic gait-based planners would not suc-

ceed. Two sample scenarios shown in Figs. 1 and 9 show such

complex scenarios which are composed of many individually

challenging features, such as narrow passages and steps. We

present the planning times and success rates for these two

example problems in Table I.

a) Truss: The scenario in Fig. 1 shows a robot climbing a

complex 3D truss structure. The planned path is approximately

4m long and took 76.9s to plan with a success rate of 80%.

As the planning time was approaching the limit of 120s, the

success rate was not 100%. This occasional failure in complex

environments is mitigated by the ability to re-plan due to the

relatively short planning time.

b) Pipe: A 7m path was planned through a pipe with

several obstructions. This scenario is inspired by a robot with

magnetic feet being used to perform an inspection task. Results

were similar to the previous scenario, with a planning time of

86.3s, and success rate of 90%. The footholds being placed on

the ceiling is due to the simplified stability criteria and would

need to be adjusted for real-world usage.

These scenarios show the ability to plan extended motion

paths which traverse a series of complex features. Most of the

planning time is spent evaluating footholds, demonstrating the

benefits of using the CDRM to optimise this.

E. Comparisons

To validate our approach, we compared our CDRM planner

with two other full-body planners (a) a naive 18-DOF (12

DOF leg configuration + 6 DOF body pose) RRT planner,

and (b) the state of the art Reachability Based PRM (RB-

PRM) planner [4]. All three approaches were run on the robot

kinematic model shown in Fig. 2.

We evaluated the RRT planner on a planar terrain where

samples that did not place all feet on the ground were rejected.

This took approximately 180s to generate a single valid

sample, illustrating this approach is not feasible for planning

with contacts as the probability of selecting valid contact

configurations is small.

Next, we ran the RB-PRM planner from the open-source

Humanoid Path Planner package [23] on the same robot for

two scenarios: rubble (Fig. 10) and the truss (Fig. 1). The crux

of [4] is that if each robot leg is operating within its reacha-

bility limits, it is assumed a stable full-body configuration can
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Fig. 10: Crossing over rubble-strewn ground (from [23])

be generated. For the rubble scenario shown in Fig. 10, our

planner took on average 44s to generate a motion plan, while

the RB-PRM planner took between 10s and 15s which was

comparable to the 7s reported in [4] using the HyQ platform.

We then tested both approaches on the truss shown in Fig. 1.

Our planner generated paths in 77s, but RB-PRM failed to plan

the vertical transitions, likely as the reachability assumption

did not hold. These results show that on planar terrains our

planner is within the same order of magnitude performance as

[4], while enabling planning in complex environments such

as Fig. 1 where computing a guide path and subsequently

generating contacts may fail.

VI. CONCLUSION

We have presented CDRMs which extend DRMs with

contact information. These can be used to rapidly identify

footholds for legged motion planning. Pre-computing foothold

and collision information ahead of time allows valid footholds

for a body pose to be identified with minimal collision

checks, by directly querying the CDRM. This allows using

a sampling-based planner to generate full-body plans which

satisfy leg contact and stability criteria constraints in complex

3D environments with high success rates. This differs from

approaches which serially decouple planning such as [4] in

that a failure in a later planning stage can be recovered from.

Our planner was demonstrated on individual terrain features

as well as complex 3D environments.

The planner has a number of limitations: it is most applica-

ble in environments with complex obstacles. For more open,

planar and continuous environments a decoupled planner such

as [4] or a gait-based planner may produce better results. The

generated footholds are also limited to by the resolution and

quality of the CDRM.

Future developments to this work include using post-

processing to improve path quality. We also hope to integrate

a more complete stability model such as [14]. We are imple-

menting the planner on a physical platform, for which a more

robust stability criteria is the key improvement required.
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[17] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning

Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.
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