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Abstract—An automatic method for road extraction from satel-
lite imagery is presented. The core of the proposed method is lo-
cally excitatory globally inhibitory oscillator networks (LEGION).
The road extraction task is decomposed into three stages. The first
stage is image segmentation by LEGION. In the second stage, the
medial axis of each segment is computed, and the medial axis
points corresponding to narrow regions are selected. The third
is the road grouping stage. Alignment-dependent connections be-
tween selected points are established, and LEGION is utilized to
group well-aligned points, which represent the extracted roads.
Due to the selective gating mechanism of LEGION, different
roads in an image are grouped separately. Road extraction results
on synthetic and real images are presented. A comparison with
other methods shows that the proposed method produces very
competitive extraction results.

Index Terms—Locally excitatory globally inhibitory oscillator
networks (LEGION), medial axis transform, oscillatory correla-
tion, road extraction.

I. INTRODUCTION

ROAD extraction from digital imagery has been intensively

studied in the computer vision and remote sensing fields.

It is largely motivated by the rapidly increasing volume of

collected imagery, which makes manual processes exceedingly

time consuming. Many techniques have been proposed, and

they are classified according to whether an approach requires

human intervention. In semiautomatic approaches, a human

operator provides information such as starting points or starting

directions, which provide critical assistance in tracking roads

[2], [16], [28]. By contrast, automatic approaches attempt to

achieve true operational autonomy. Although reliable perfor-

mance is more difficult to achieve, automatic approaches still

attract a great deal of research due to potential productivity

gains [1], [4]–[6], [19].

Manuscript received September 21, 2009; revised November 8, 2010 and
February 1, 2011; accepted March 31, 2011. Date of publication May 31, 2011;
date of current version October 28, 2011. This work was supported in part
by the National Geospatial-Intelligence Agency University Research Initiatives
under Grant HM 1582-07-1-2027.

J. Yuan and D. Wang are with the Department of Computer Science
and Engineering and the Center for Cognitive Science, The Ohio State
University, Columbus, OH 43210 USA (e-mail: yuanj@cse.ohio-state.edu;
dwang@cse.ohio-state.edu).

B. Wu was with the Mapping and GIS Laboratory, The Ohio State University,
Columbus, OH 43210 USA. He is now with the Department of Land Surveying
and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong
Kong (e-mail: lsbowu@polyu.edu.hk).

L. Yan, and R. Li are with the Mapping and GIS Laboratory, Depart-
ment of Civil and Environmental Engineering and Geodetic Science, The
Ohio State University, Columbus, OH 43210 USA (e-mail: yan.351@osu.edu;
li.282@osu.edu).

Digital Object Identifier 10.1109/TGRS.2011.2146785

Objects appear in natural scenes as groups of similar sensory

features. Gestalt psychology reveals a set of principles to guide

the grouping process based on local features. Elements tend to

be perceptually grouped if they are close to each other (proxim-

ity), are similar to one another (similarity), form a smooth and

continuous curve (good continuation), or have similar temporal

behaviors (common fate) [20]. Since roads in satellite imagery

tend to have uniform features that are distinct from neighboring

regions, it is reasonable to expect that they can be automatically

extracted using Gestalt grouping principles.

Dynamical systems represent a promising approach to object

segmentation [14]. In particular, locally excitatory globally

inhibitory oscillator networks (LEGION) proposed by Terman

and Wang provide a framework to group object features and

segment different objects through oscillatory correlation [21],

[23]. The oscillatory correlation theory asserts that oscilla-

tors corresponding to the pixels of the same object synchro-

nize, and those corresponding to pixels of different objects

desynchronize. It has been shown that a LEGION network

consisting of relaxation oscillators can rapidly achieve syn-

chronization within a locally coupled oscillator assembly and

desynchronization between different assemblies. LEGION has

been successfully applied to a number of scene analysis tasks,

including image segmentation, object selection, and speech

segregation [23].

In this paper, a new automatic approach to road extraction

using LEGION dynamics is presented. This approach is based

on the observation that roads are relatively thin and homoge-

neous regions with smooth directional changes and large gray

level differences with surrounding regions. The method has

three stages: 1) image segmentation using a LEGION network;

2) medial axis extraction within each segment and selection

of points located in potential road areas; and 3) road medial

axis point grouping using a LEGION model with alignment-

dependent connections.

The remainder of this paper is organized as follows.

In Section II, the architecture and dynamics of LEGION are

reviewed. In Section III, the method comprising segmentation,

selection, and road grouping is presented. In Section IV, exper-

imental results and comparisons are reported. Conclusions and

further discussion are in Section V. This paper is an extended

version of a conference paper [27].

II. LEGION MODEL

LEGION is a network of Terman–Wang oscillators [14]. An

oscillator i is defined as a feedback loop between an excitatory

0196-2892/$26.00 © 2011 IEEE
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Fig. 1. Dynamics of a single oscillator. (a) Behavior of an enabled oscillator,
which produces a limit cycle trajectory. The arrows indicate the motion direc-
tion. (b) Behavior of an excitable oscillator. In this case, it approaches a stable
fixed point.

unit xi and an inhibitory unit yi

ẋi =3xi − x3
i + 2− yi + Ii + Si + ρ (1a)

ẏi = ε (α (1 + tanh(xi/β))− yi) (1b)

where Ii and Si denote external stimulation and overall internal

input from other parts of the network, respectively, and ρ is a

noise term. The variable ε is set to be a very small positive

number. In this case, (1) defines a typical relaxation oscillator,

as illustrated in Fig. 1. The x-nullcline of the oscillator is a

cubic, and the y-nullcline is a sigmoid. When Ii > 0, these

nullclines intersect along the middle branch of the cubic and the

oscillator is enabled [see Fig. 1(a)]. When Ii < 0, the oscillator

approaches a fixed point [seeFig. 1(b)]; in this situation, the

oscillator is in an excitable state. An excitable oscillator could

be activated if it receives large enough overall input Si. When

the oscillator becomes oscillatory, its periodic orbit alternates

between a silent phase, corresponding to low x activity, and

an active phase, corresponding to high x activity. The dynamic

evolution of the oscillator proceeds slowly within the silent or

the active phase, while the alternation between the two phases

occurs on a fast time scale, referred to as jumping. α is a

parameter to control the relative durations of the two phases,

and β determines the steepness of the sigmoid.

The simplest LEGION network is a 2-D grid, as shown in

Fig. 2. An oscillator is connected to its four nearest neighbors,

where the connections are all excitatory. A global inhibitor

receives excitation from every oscillator in the network and

Fig. 2. Architecture of a 2-D LEGION network.

inhibits all the oscillators. The coupling term Si in (1a) is then

defined as

Si =
∑

j∈N(i)

WijH(xj − θx)−WzH(z − θz). (2)

Here, Wij is a connection weight that determines the amount

of excitation that oscillator j sends to oscillator i, and N(i) is

the set of the neighboring oscillators that connect to i, the size

of which can be chosen differently for specific tasks. H denotes

the Heaviside step function. Both θx and θz are thresholds.

An oscillator sends excitation to its neighbors, and the global

inhibitor exerts inhibition, when their activities exceed their

respective thresholds. Wz is the weight of inhibition from the

global inhibitor z, whose activity is defined as

ż = φ(σ∞ − z) (3)

where φ is a parameter and σ∞ equals one if xi ≥ θx for at least

one oscillator and zero if otherwise.

The basic dynamics of LEGION can be briefly described as

follows. Once an oscillator is in the active phase, it triggers the

global inhibitor, which attempts to inhibit the entire network.

The inhibition prevents the oscillators of different assemblies

from jumping up but does not affect the oscillators of the same

assembly because of local excitation. An enabled oscillator

propagates its excitation to its neighbors and, from them, to its

further neighbors until all the oscillators of the same assembly

are active. Thus, the dynamics of LEGION is a process of both

synchronization and desynchronization, achieved respectively

by local cooperation through excitatory coupling and global

competition via the global inhibitor [21].

III. LEGION-BASED ROAD EXTRACTION

In this section, the proposed approach for road extraction

is presented, which is summarized in Fig. 3. After LEGION-

based image segmentation, the medial axis points of segments

are extracted, and candidate road points are selected. By es-

tablishing alignment-dependent connections between candidate

points, LEGION is further used to group the points representing

roads. While LEGION has been utilized for image segmen-

tation previously [9], [12], it has not been explored for road

extraction.
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Fig. 3. Flow diagram of the proposed system for automatic road extraction.

A. Segmentation

For processing a 2-D image, each oscillator in a LEGION

network corresponds to a pixel of the image and is connected

to its eight nearest neighbors. The connection weight between

two adjacent oscillators is set to Wij = IM/(1 + |Ii − Ij |),
where Ii is the value of pixel i and IM is the maximum pixel

value [24].

When handling real images, image noise can cause fragmen-

tation, which impairs LEGION segmentation. To address this

problem, a lateral potential for each oscillator is introduced

[24]. When an oscillator receives large excitation from its

neighborhood, it has a high lateral potential. Such an oscillator

is called a leader. A major oscillator block must contain at

least one leader, while a noisy fragment does not contain

a leader. In the segmentation process, leaders are stimulated

to activate oscillator groups. All the fragments correspond to

oscillators that cannot sustain oscillations and are hence con-

sidered as background. Moreover, to facilitate computation, an

algorithm following the main steps of LEGION dynamics has

been abstracted. A detailed description of this algorithm can be

found [24].

In order to provide better segmentation for road extraction, a

new step is introduced to produce more roadlike segments with

well-localized boundaries. Roads in a digital image appear as

thin and elongated regions. Since leaders are required to be at

the center of large homogeneous regions, roads rarely contain

leaders and thus tend to be segmented to the background. For

example, Fig. 4(b) shows a segmentation result of the image in

Fig. 4(a). In Fig. 4(b), each segment is labeled by a distinct

gray level. As can been seen, while the major regions are

segmented, roads are put into the background, indicated by

black areas. To obtain road segments, each background pixel

is treated as an oscillator and fed into a LEGION network

with a different coupling term where an oscillator is activated

if its corresponding pixel value is close to the mean gray

value of the active oscillators of a neighboring assembly [8].

Each background oscillator is stimulated, and if a stimulated

Fig. 4. LEGION image segmentation. (a) Satellite image containing roads.
(b) Result of LEGION segmentation where each gray level indicates a distinct
segment. (c) Result after the step of obtaining road segments.

oscillator can recruit a large enough oscillator assembly, the

corresponding area is considered as a new segment.

Roads typically have clear boundaries. In order to obtain ac-

curate road segments, boundary information is integrated in the

step introduced earlier. By applying a Laplacian of the Gaussian

filter to an image, the pixels on both sides of the boundaries

have large filter responses with opposite signs, while the pixels

within the boundaries have small responses. When a stimulated

oscillator propagates its excitation to its neighboring oscillators,

the filter responses of the corresponding pixels are checked, and

thresholding is applied so that the propagation stops at the pix-

els immediately outside the boundaries. In particular, for roads

brighter than the surroundings, the propagation stops if filter

responses are greater than a small positive number, whereas

for roads darker than the surroundings, the propagation stops

if filter responses are smaller than a small negative number.

Whether roads are brighter or darker than the surroundings

depends on the surface materials. For example, asphalt roads

appear dark and cement roads appear bright. The result after

this step with bright road thresholding is shown in Fig. 4(c),

where road segments are attained. Note that, at this stage, a road

will correspond to multiple disconnected segments for many

real images.
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Fig. 5. Medial axis approximated by the Voronoi diagram (from [3]). In each
column, the top is the Voronoi diagram for a set of samples on the boundary,
and the bottom is the Voronoi vertices and edges lying inside the shape.

In summary, segmentation is performed in two steps. The

first step is designed for regions and produces large and smooth

segments. The second step is designed to be sensitive to bound-

aries which tend to be missed in the first step, and this step

segments narrow areas with clear edges.

B. Selection

After segmentation of an image, the segments that corre-

spond to roads should be selected. The medial axis transform

is employed to achieve this goal [6]. The concept of the medial

axis transform is to transform a 2-D object into a 1-D line

representation that largely preserves the extent and connectivity

of the original object. The medial axis of an object is defined as

the loci of the centers of all circles that touch the boundaries at

two or more points. The radius of the circle recorded at a point

of the medial axis provides information about local thickness.

The shape of the original object can be recovered by plotting

circles at all the medial axis points.

A common approach to compute the medial axis is the

Voronoi diagram [3], [10], [17]. Given a set of points S in a

plane, the Voronoi diagram is a partition of the plane into cells,

each of which contains all the points in the plane closer to one

particular point in S than to any others. It has been pointed out

that the vertices of the Voronoi diagram for a set of samples on

a boundary curve in the object approximate the medial axis [3].

The more densely the space is sampled, the more accurate the

medial axis is, as illustrated in Fig. 5.

A closing operation is first performed to smooth the

boundary—closing is defined as a dilation operation where

each background pixel next to an object pixel is changed into

an object pixel, followed by an erosion operation where each

object pixel next to a background pixel is changed into a

background pixel. By treating the boundary pixels of segments

as the samples, the medial axis points of each segment are

obtained from the Voronoi diagram. Each medial axis point

with its radius indicates the position and size of the region that

it lies in. Since road regions are characterized by their narrow

widths, a medial axis point is selected as a candidate if its

radius is sufficiently small. The radius threshold is determined

Fig. 6. Illustration of horizontal connections. (a) Cocircularity constraint. θ
and φ are the tangents to the circle passing through A and B. (b) Connectivity
pattern of a horizontally oriented cell (from [26]). The cell is located at the
center of the image. The orientations of the lines represent the preferred
orientations, and the length of a line indicates connection strength.

by image resolution and target road width. Medial axis points

are selected instead of segments because there are segments

that partially belong to roads due to segmentation error, and

thus, selection based on medial axis points gives more accurate

results.

C. Road Grouping

After selection, the medial axis points corresponding to roads

are mostly extracted. However, there are nonroad points that

are also selected due to their small radii. In order to group road

points and eliminate nonroad points, a LEGION model with

alignment-dependent connections is proposed.

In an image containing oriented elements, some sets of

elements tend to be perceptually grouped [26]. It has been

suggested that this perceptual effect is mediated by long-range

horizontal connections within the visual cortex, which are

dependent on the positions of and orientations between the

elements [13], [26]. For an oriented element, there exist two

types of excitatory connections, one spreading along the axis of

the element orientation, called coaxial, and another limited to

a narrow zone orthogonal to the orientation axis, called trans-

axial [26].

The coaxial connection is a pattern similar to the cocircular

connectivity pattern [18], as shown in Fig. 6(a). For the element

at location A with local orientation θ, there is a preferred

orientation φ for the element at location B, which is determined

by the following rule. Given orientation θ and locations A and

B, a unique circle exists which passes through A and B and

has a tangent orientation at A identical to θ. Orientation φ is
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specified by the tangent to the circle at B, computed by the

following equation [26]:

φ = 2 tan−1
(y

x

)

− θ (4)

where (x, y) are the coordinates of B with the origin at A. If the

local orientation at B, denoted by ψ, accords with the preferred

orientation φ, A receives the strongest excitation from B. As

ψ deviates from φ, the connection weight falls off following a

Gaussian function. The connection weight also decreases as a

Gaussian function of the distance between A and B. Note that

the coaxial connections are confined to low curvature deviations

from the orientation axis.

For transaxial connection, the preferred orientation of an

element is parallel to that of the target element. This set of

connections is more spatially sensitive. The weights decrease

as the angle deviation increases much more quickly than those

of coaxial connections.

The connectivity pattern of a horizontally oriented element is

illustrated in Fig. 6(b), which shows the preferred orientations

and connection strengths. The connection weight between two

elements can be written as suggested in [26]

W = G (|ψ − φ|acute, σψ)×G
(

√

x2 + y2, σd

)

(5)

where |ψ − φ|acute denotes the acute angle between ψ and φ, G
stands for a Gaussian function, and σψ and σd are set differently

for coaxial and transaxial connections.

Under the assumption that road segments are aligned

collinearly or curvilinearly (i.e., on a smooth curve), a new

LEGION model with long-range horizontal connections is pro-

posed and applied to selected medial axis points in order to

simulate the perceptual “pop-out” for well-aligned points and

thus implement road segment grouping.

Medial axis points, which are available from the previous

stage, are considered as oscillators. Due to the 1-D nature of

a medial axis, the orientation of each oscillator can be readily

calculated from its neighborhood. The coupling term Si of

oscillator i takes the following form:

Si = Maxj∈N(i) {WijH(xj − θx)} −WzH(z − θz) (6)

where Wij is determined by the long-range horizontal con-

nection, and N(i) is a window centered at i with a window

size of (2σd + 1)× (2σd + 1). Here, instead of summation, a

maximization operation is adopted, which focuses on the pair-

wise relations of oscillators [24]. The maximization operation

ensures that each oscillator, whether the corresponding medial

axis point is in the middle or the end of a road, has the same

overall effective connection weight from its neighbors.

Similar to applying LEGION to image segmentation, leaders

need to be selected and stimulated to avoid fragmentation. Here,

the lateral potential of an oscillator is defined as the total con-

nection weights that it receives through long-range horizontal

connection within its neighborhood. If an oscillator has a large

enough lateral potential from its neighbors, then it becomes a

leader. The neighborhood size and potential threshold are two

tunable parameters, where the neighborhood size can be differ-

ent from (2σd + 1)× (2σd + 1). Large neighborhood size and

potential threshold result in leaders that lie in longer and more

smoothly elongated roads.

By LEGION dynamics, oscillators corresponding to the

medial axis points of one road are synchronized, and those

corresponding to the medial axis points of different roads are

desynchronized. The oscillators that are not well aligned with

any of the leaders remain excitable throughout the process. As

a result, the medial axis points representing roads are extracted.

The extracted points have a dense distribution, resulting in road

centerlines. Based on the extracted points, the road regions can

be easily recovered. A pixel is labeled as a road region if it is in

the same segment as a medial axis point and within the circle

defined by the radius recorded at that point.

The selection stage produces some medial axis points cor-

responding to roadlike objects, e.g., sidewalks and trees, along

road sides. Since they are close and parallel to roads, they are

likely to be grouped into the resulting roads. In order to exclude

those nonroad points, the cue that roads have distinct gray value

is incorporated into the grouping stage. When a leader in road

regions is stimulated, it will only recruit the oscillator with a

similar pixel value, where the threshold is the same as in the

step of obtaining road segments. Hence, sidewalks and trees

with different pixel values can be excluded in this manner.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

A. Synthetic Image Example

To illustrate the behavior of the LEGION network with long-

range horizontal connections, a 50 × 50 oscillator network has

been simulated. A synthetic input image is shown in Fig. 7(a).

There are three patterns, which consist of discontinuous but

smoothly aligned points. These points can be considered as the

medial axis points of different road segments.

In the simulation, all oscillators corresponding to the object

pixels are stimulated with I = 2.0. The differential equations

are solved using the fourth-order Runge–Kutta method with

the following parameter settings: ε = 0.02, α = 5.0, β = 0.1,

θx = −0.5, θz = 0.1, φ = 10.0, and Wz = 3.0. The step size

is 0.2. The orientation of each oscillator is approximated by the

line that passes through the oscillator and its nearest neighbor.

For computing connection weights, σψ = 20◦ and σd = 30.

The instantaneous activity of the network at different evolution

stages is shown in Fig. 7(b)–(e). The gray value of each pixel

is proportional to (x− xmin)/(xmax − xmin), where xmax and

xmin are the maximal and minimal x values of all the oscilla-

tors. It can be seen that the oscillators representing each pattern

reach their active phase and are separate from the rest of the

image. This successive “pop-out” of the patterns continues in a

stable periodic way. The temporal evolution of all the oscillators

is shown in Fig. 7(f). The activities of the oscillators of each

pattern are combined as one trace. The effect of synchrony and

desynchrony can be clearly observed.

B. Satellite Images

Next, the results of applying the method to real satellite

images are shown. To alleviate the computational burden when
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Fig. 7. Road segment extraction. (a) 50 × 50 synthetic image containing three interrupted roads. (b) Snapshot at the beginning of dynamic evolution showing
random phases of the corresponding oscillators. (c–e) Sequence of snapshots after (b) showing extracted road segments. (f) Upper three traces show the combined
x activities of all the oscillators, where the oscillators representing the same pattern are combined in one trace. The bottom trace shows the activity of the global
inhibitor.

processing large real images, the abstracted algorithm of LE-

GION mentioned earlier [24] is adopted in the first and third

stages. To accurately detect the local orientation of an oscillator,

the angles of the lines passing through the oscillator and its

neighbors are calculated in an 11 × 11 window. The angles are

rounded to the nearest 10 ◦, and the orientation of the oscillator

is set to the angle shared by the most neighbors. If the neighbors

sharing the angle are fewer than one-tenth of all the neighbors,

the oscillator is eliminated.

As explained earlier, two kinds of filter response thresholding

are applied for dark and bright roads, respectively. Since an

automatic method cannot involve human intervention, both

kinds of thresholding are applied to an image to produce two

segmentation results. Through bright road thresholding, few

and relatively small dark road segments are obtained, which can

rarely generate leaders of dark roads in the road grouping stage.

As a result, bright road thresholding tends to only produce

bright roads. Even if some leaders of dark roads are selected,

the extracted dark roads usually lie within those produced via

dark road thresholding. The same analysis applies for dark road

thresholding. Hence, the final extraction is simply given by

combining the two sets of results.

A number of parameters are used in the system. In LEGION

segmentation, a leader generation method proposed in [9] is

adopted, in which three parameters are involved. Rp is the size

of the neighborhood. Tµ and Tσ are two thresholds to reflect

region homogeneity. For the experiments in this paper, they are

fixed as Rp = 3, Tµ = 0.1, and Tσ = 2.0. Wz is the inhibition

weight, the choice of which has been discussed at length [24].

For the step of obtaining road segments, the threshold of the

gray value difference is set to 20, and the minimal size of a new

segment is set to 20 pixels.

Six parameters are involved in computing long-range hori-

zontal connections. For both coaxial and transaxial connections,

σψ denotes the standard deviation of the angle Gaussian func-

tion, σd denotes the standard deviation of the distance Gaussian

function, and K denotes the maximum curvature deviation

allowed in order to establish the connections. These parame-

ters capture the curvature tolerance of extracted roads. In the

experiments, fixed values are used: For coaxial connections,

σψ = 20◦, σd = 30, and K = 15◦, and for the transaxial ones,

σψ = 10◦, σd = 5, and K = 10◦.

There are different types of roads. For example, interstate

roads are more important to extract than field paths. Important

roads appear longer and change directions more smoothly.

Ideally, a system should be able to generate multiple sets of

roads according to their importance. This flexibility can be

reflected to a certain degree by the parameters of neighborhood

size Np and potential threshold θp used in leader selection.

Tight parameter constraints lead to fewer leaders with more

prominent roads, which are generally of high importance. On

the other hand, a loose threshold results in more leaders with

smaller roads and also introduces more false alarms that are

roadlike regions.

Wzg is the inhibition weight in the LEGION network for road

grouping. Too large a value may cause incomplete extracted

roads, while too small a value may include nonroad pixels.

Although, in the experiments, this parameter is slightly adjusted

to produce more accurate results, a fixed value of 0.85 works

well.
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Fig. 8. Road extraction from a satellite image. (a) Satellite image containing a road with 300 × 120 pixels. (b) LEGION segmentation result with bright road
thresholding. (c) LEGION segmentation result with dark road thresholding. (d) Candidate medial axis points in (b). (e) Candidate medial axis points in (c).
(f) Grouped medial axis points based on (e). (g) Road extraction result. The parameters used here are Wz = 60, θp = 45, Np = 50, and Wzg = 0.85.

The first test image is shown in Fig. 8(a), which is an Earth

Observing-1 (EO-1) satellite image with a resolution of 30

m collected at Silver Lake in Mojave Desert, California. This

image contains one main road. Two segmentation results using

two kinds of thresholding are shown in Fig. 8(b) and (c), where

each gray value indicates a distinct segment. The candidate

medial axis points are then selected based on both segmentation

results, shown in Fig. 8(d) and (e). The result of grouping the

candidate medial axis points extracted from Fig. 8(e) is shown

in Fig. 8(f). Because of the absence of leaders in the road

grouping stage, no road medial axis points are extracted based

on Fig. 8(d). The restored road region is presented in Fig. 8(g).

The road is successfully extracted. Worth mentioning is that,

in the image, a short road with the corresponding segment

obtained in Fig. 8(c) is not extracted in the final result, which

is due to the parameter settings in leader selection. This road

could be easily extracted by loosening parameter constraints so

that some leaders of this road are stimulated.

The next test image is an IKONOS satellite image with a

resolution of 4 m collected at Tampa, Florida. This image con-

tains two major roads, as shown in Fig. 9(a). Two segmentation

results are shown in Fig. 9(b) and (c), and Fig. 9(d) and (e)

shows the corresponding road extraction results. In Fig. 9(d),

two roads are produced separately, indicated by different gray

values. As can be seen, both roads are clearly extracted. Since

the separators of the right road appear as thin, elongated,

and homogeneous regions, coinciding with the assumption of

roads, these regions are extracted as dark roads, as shown in

Fig. 9(e). Eliminating regions of this kind entails detecting more

complex characteristics of road properties. These as well as

other results not shown demonstrate that the proposed approach

for automatic road extraction is successful in extracting roads

from satellite imagery.

The experiments with different parameter settings show that

qualitatively similar results can be obtained when parameter

values are chosen within certain ranges. As already mentioned,

there are four parameters that need to be tuned in the method.

The parameters θp and Np are used for generating leaders in

the road grouping stage, where θp is chosen according to Np.

Wz and Wzg are two inhibition weights of the LEGION models

in the first and third stages. The parameter value ranges for the

images in Figs. 8(a) and 9(a) are summarized in Table I.

C. Comparisons

Mayer et al. [15] set up a European Spatial Data Research

(EuroSDR) test to compare different approaches for automatic

road extraction. To put the performance of our algorithm in
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Fig. 9. Road extraction from another satellite image. (a) Satellite image
containing two main roads with 300 × 200 pixels. (b) LEGION segmentation
result with bright road thresholding. (c) LEGION segmentation result with dark
road thresholding. (d) Road extraction result based on (b). (e) Road extraction
result based on (c). The parameters used here are Wz = 40, θp = 55, Np =

60, and Wzg = 0.85.

TABLE I
VALID PARAMETER VALUE RANGES FOR

IMAGES IN FIGS. 8(a) AND 9(a)

perspective, the system was applied to the benchmark images

used in the test, and the results were compared with those

provided [15]. The experiments were performed using three

1600 × 1600 IKONOS images, the Ikonos3-Sub1, Ikonos3-

Sub2, and Ikonos1-Sub1, at the resolution of 2 m. Each of the

images has four spectral bands: red, green, blue, and infrared.

In the experiments, the red band is utilized, which gives slightly

better results than the other bands. Like other test participants, a

Normalized Difference Vegetation Index was incorporated into

the approach, which is first computed from the red and the

infrared bands. After segmentation, if 80% of the pixels in a

segment have positive values, the segment is considered to be a

vegetation area and thus discarded in subsequent processing.

For automatic road extraction, two indices, completeness and

correctness, are widely used to quantitatively evaluate extrac-

tion results, which were introduced by Wiedemann et al. [25].

Completeness is the percentage of the reference road pixels

that lie within a buffer area around the extracted roads, and

correctness is the percentage of the extracted road pixels that lie

TABLE II
RESULT OF THE QUANTITATIVE EVALUATION

within a buffer area around the reference roads. In the test, the

buffer width is set to 5 pixels, and the corresponding reference

data are provided in the form of the centerlines of the roads.

Evaluation results of the test participants as reported in [15],

as well as results from the proposed system, are shown in

Table II. For each image, the best result in terms of the average

of completeness and correctness scores is marked in bold.

Ikonos3-Sub1 and Ikonos3-Sub2 are two rural hilly scenes.

Fig. 10(a) and (c) shows the red bands of the images, where the

reference road data are marked in black. The extracted medial

axis points from the proposed method are overlaid on the orig-

inal images and displayed in Fig. 10(b) and (d). It can be seen

from Table II that the results are the most complete for these two

images. Although the correctness rates are lower than the best

results, a close comparison indicates that a considerable portion

of the extracted results, while not matched with the reference

data, are very likely roads based on the image appearance.

Ikonos1-Sub1 is from an urban/suburban area in a hilly

terrain. Fig. 11(a) shows the red band of the image with the

reference road data. It has been stated [15] that this scene is

very challenging for the existing approaches. A large number

of roads are partially occluded or confused with surrounding

objects. The extraction result from the proposed system is

shown in Fig. 11(b), where many highly fragmented roads



4536 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 11, NOVEMBER 2011

Fig. 10. Road extraction from Ikonos3-Sub1 and Ikonos3-Sub2. (a) Red band image of Ikonos3-Sub1 with reference data marked in black. (b) Extraction result
from (a) using the proposed method with the parameters Wz = 90, θp = 50, Np = 40, and Wzg = 0.85. The extracted road centerlines, shown in black, are
overlaid on the original image. (c) Red band image of Ikonos3-Sub2. (d) Extraction result from (c) using the proposed method with the parameters Wz = 90,
θp = 50, Np = 40, and Wzg = 0.75.

are successfully extracted owing to the grouping stage. The

quantitative measure in Table II shows that the proposed

method yields the most complete result while the correctness

rate is not far from the best.

This analysis as well as earlier ones [27] indicates that the

proposed method produces very competitive road extraction

results. The performance may be attributed to the use of the LE-

GION network with long-range horizontal connections, which

can effectively extract smoothly aligned patterns.

V. CONCLUDING REMARKS

In this paper, a new automatic road extraction method based

on LEGION has been presented. Three stages are employed

for road extraction: image segmentation, selection of candidate

medial axis points, and road grouping. While some aspects of

the first two stages have been developed in previous studies, a

number of improvements have been introduced in these stages.

These improvements, together with the newly introduced road

grouping stage, result in a novel automatic road extraction

method. Quantitative evaluations confirm the effectiveness of

this method.

The fundamental idea of the proposed method is to group

similar features and segregate dissimilar ones. In the first stage,

the gray level is used as a feature, which can be interpreted

as similarity, and in the third stage, orientation is taken as

a feature, which can be interpreted as good continuation.

Both features are encoded in the LEGION model, which uses
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Fig. 11. Road extraction from Ikonos1-Sub1. (a) Red band image of Ikonos1-Sub1 with reference road data marked. (b) Extraction result using the proposed
method with the parameters Wz = 60, θp = 35, Np = 40, and Wzg = 0.85.

dynamics of oscillatory correlation to achieve grouping. The

generality of the underlying idea implies that the method could

be used in a wide range of applications where region and

boundary information need to be considered.

While the proposed method is not very sensitive to particular

choices of parameters, the experiments show that fine tuning

of parameters could further improve extraction results. Future

work needs to address the issue of automatically determining

the optimal parameters for different types of images (see,

e.g., [7]).
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