
LegoNet: Efficient Convolutional Neural Networks with Lego Filters

Zhaohui Yang 1 2 * Yunhe Wang 2 Hanting Chen 1 2 * Chuanjian Liu 2

Boxin Shi 3 4 Chao Xu 1 Chunjing Xu 2 Chang Xu 5

Abstract

This paper aims to build efficient convolutional

neural networks using a set of Lego filters. Many

successful building blocks, e.g. inception and

residual modules, have been designed to refresh

state-of-the-art records of CNNs on visual recog-

nition tasks. Beyond these high-level modules,

we suggest that an ordinary filter in the neural net-

work can be upgraded to a sophisticated module

as well. Filter modules are established by assem-

bling a shared set of Lego filters that are often of

much lower dimensions. Weights in Lego filters

and binary masks to stack Lego filters for these

filter modules can be simultaneously optimized in

an end-to-end manner as usual. Inspired by net-

work engineering, we develop a split-transform-

merge strategy for an efficient convolution by ex-

ploiting intermediate Lego feature maps. The

compression and acceleration achieved by Lego

Networks using the proposed Lego filters have

been theoretically discussed. Experimental results

on benchmark datasets and deep models demon-

strate the advantages of the proposed Lego filters

and their potential real-world applications on mo-

bile devices.

1. Introduction

The success of deep convolutional neural networks (CNNs)

has been well demonstrated on a wide variety of computer

vision (CV) tasks, such as object recognition (Simonyan

and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016;

* This work was done when Zhaohui Yang and Hant-
ing Chen were interns at Huawei Noah’s Ark Lab. 1Key
Laboratory of Machine Perception (Ministry of Education),
Peking University. 2Huawei Noah’s Ark Lab. 3National
Engineering Laboratory for Video Technology, Peking
University 4Peng Cheng Laboratory. 5School of Com-
puter Science, University of Sydney. Correspondence to:
Zhaohui Yang <zhaohuiyang@pku.edu.cn>, Yunhe Wang
<wangyunhe@pku.edu.cn>, Chang Xu <c.xu@sydney.edu.au>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Huang et al., 2017), detection (Ren et al., 2015; Liu et al.,

2016), segmentation (He et al., 2017a), and tracking (Luo

et al., 2017b). Due to the powerful feature expression ability

of CNNs, building deeper networks will result in higher

performance, but lead to the need for more resources. For

instance, more than 90MB memory and 109 FLOPs (floating-

number operations) are required for launching the ResNet-

50 (He et al., 2016), which limits the application of these

deep neural networks on mobile phones, laptops, and other

edge devices. Thus, we are motivated to explore portable

deep neural networks with high performance.

A number of algorithms have been proposed to reduce mem-

ory and FLOPs of convolutional networks with different

concerns. (Han et al., 2015) introduced pruning, quanti-

zation and Huffman coding for generating extremely com-

pact deep models without obviously affecting their accu-

racy. (Jaderberg et al., 2014) used matrix factorization

to decompose spatial structure of kernels. (Li et al., 2016)

proposed to learn 2-bit weight and constructed binary neu-

ral networks. (Molchanov et al., 2016) investigated Taylor

expansions to eliminate side effects caused by removing

filters. (He et al., 2017b) fine-tuned the pruned model for

higher efficiency. (Gao et al., 2018) pruned useless chan-

nels during the inference stage to accelerate. (Wang et al.,

2018b) discarded redundant coefficients of parameters in

the DCT frequency domain and introduced a data-driven

method. (Xie et al., 2018) decompose convolution kernels

along channel and spatial dimensions. (Buciluǎ et al., 2006;

Hinton et al., 2015; Romero et al., 2014; Polino et al., 2018)

introduced teacher-student distillation strategy. (Wu et al.,

2018; Juefei-Xu et al., 2017) build light-weight network

with depth-wise convolution. (Wang et al., 2017) intro-

duced circulant matrix to construct convolution kernels.

Moreover, (Wu et al., 2016) compressed network based on

product quantization, (Wang and Cheng, 2017) decomposed

a weight matrix into two ternary matrices and a non-negative

diagonal matrix to reduce memory and computational com-

plexity. (Rastegari et al., 2016; Courbariaux et al., 2015) fur-

ther studied the weight binarization problem in deep CNNs.

Although these methods can produce very high compression

and speed-up ratios, they often involve special architectures

and operations (e.g. sparse convolution, fixed-point multipli-

cation, and Huffman codebooks), which cannot be directly

LegoNet: Efficient Convolutional Neural Networks with Lego Filters

satisfied on off-the-shelf platforms and hardwares. Most

importantly, these methods rely on a pre-trained network of

heavy design and the performance of compressed models is

usually upper bounded by this particular network.

Besides manipulating well-trained convolutional neural net-

works, an alternative is to design efficient network architec-

tures for learning representations. A set of network design

principles have been developed in network engineering. For

example, VGGNets (Simonyan and Zisserman, 2014) and

ResNets (He et al., 2016) stack building blocks of the same

shape, which reduces the free choices of hyper-parameters.

Another important strategy is split-transform-merge in In-

ception models (Szegedy et al., 2015), where the input is

split into a few embeddings of lower dimensionalities, trans-

formed by a set of specialized filters, and merged by concate-

nation. The representational power of large and dense layers

can therefore be approximated using this split-transform-

merge strategy, while the computational complexity could

be considerably lower. These insightful network design prin-

ciples then produce a number of successful neural networks,

e.g. Xception (Chollet, 2017), MobileNet (Howard et al.,

2017). Shufflenet (Zhang et al., 2017), and ResNeXt (Xie

et al., 2017). As filter is the basic unit in constructing deep

neural networks, we must ask whether these network de-

sign principles are applicable for re-designing filters in deep

learning.

In this paper, we propose Lego Networks (LegoNets) that

are efficient convolutional neural networks constructed with

Lego filters. A set of lower-dimensional filters are discov-

ered and taken as Lego bricks to be stacked for more com-

plex filters, as shown in Fig. 1. Instead of manually stacking

these Lego filters, we develop a method to learn the optimal

permutation of Lego filters for a filter module. As these

filter modules share the same set of Lego filter but with

different combinations, we adapt the split-transform-merge

strategy to accelerate their convolutions, which further de-

crease the maximum serial FLOPS of standard convolution.

Firstly, Lego filters are convolved with splitted part from

input features, and then merge the convolved results. Ex-

perimental results on benchmark datasets and CNN models

demonstrate the superiority of the proposed Lego filters in

establishing portable deep neural networks with acceptable

performance.

2. Lego Network

In this section, we first define the problem of how to com-

press deep neural networks from a macro point of view.

Then we introduce the concept of Lego Filters (LF), which

are basic unit in our efficient convolutional networks. At

last, we demonstrate the way of combining Lego filters.

(a) conv filters (b) Lego filters (c) stacked filters

Figure 1. The diagram of convolution filters represented by Lego

filters. From left to right are conventional convolution filters,

Lego filters with smaller sizes, and convolution filters stacked by

exploiting a series of Lego filters

2.1. Lego Filters for Establishing CNNs

Most of existing convolutional neural networks are over-

parameterized with numerous parameters and enormous

computational complexity. It is common to have more than

one thousand of parameters in convolution filter (e.g. 3×
3× 128 = 1152), but it will produce only one convolution

response for a given 3 × 3 input patch. There could be

considerable redundancy in these learned convolution filters.

To reduce the required number of parameters in deep neu-

ral networks, some works proposed to decompose high-

dimensional convolution filters into different efficient repre-

sentations. For example, (Wu et al., 2016) exploited vector

quantization. (Zhang et al., 2016) utilized singular value

decomposition (SVD). (Kim et al., 2015) applied tensor de-

composition, and (Cheng et al., 2015) replaced convolution

filters by circulate matrices.

Although these schemes make tremendous efforts to repre-

sent weights in deep CNNs with less parameters, most of

them are proposed to compress and accelerate pre-trained

neural networks, which cannot be directly applied for learn-

ing CNNs from scratch. In addition, the performance of

compressed neural networks is usually worse than that of

original models, due to the loss caused by quantization or

decomposition. Therefore, we are motivated to alleviate the

redundancy between these filters during the stage of network

design instead of waiting for solutions after all filters have

been optimized through back propagation.

Given an arbitrary convolutional layer L with its n convo-

lution filters F = {fi, ..., fn} ∈ R
d×d×c×n, where d× d is

the size of filters and, c is the channel number, the convolu-

tion operation can be formulated as

Y = L(F,X), (1)

where X and Y are input data and output features of this

layer. Convolution filters F are then solved from the follow-

ing minimization problem by exploiting the feed-forward

and back-propagation strategy, i.e.

F̂ = argmin
F

1

2
||Ŷ − L(F,X)||2F (2)

LegoNet: Efficient Convolutional Neural Networks with Lego Filters

where Ŷ is the ground-truth of desired output of this layer,

and || · ||F is the Frobenius norm for matrices.

Here, we propose a set of smaller filters B = {b1, ..., bm} ∈
R

d×d×c̃×m with fewer channels (c̃ ≪ c), namely Lego

filters, and apply them to establish

F = G(b1, b2, ..., bm), (3)

where G is a linear transformation for stacking these Lego

filters. Though F in Eq. 3 looks like a classical filter in Eq. 1,

we take it as a filter module, as it is the assembled with Lego

filters. Each Lego filter can be utilized for multiple times

in constructing a filters module F , as shown in Figure 1.

Hence, the attention of the optimization problem Eq. 2 has

been turned to these Lego filters B of fewer parameters, i.e.

B̂ = argmin
B

1

2
||Y,L(G(B), X)||F2 . (4)

We can stack B̂ to construct F using Eq. 3 and then calculate

the output data by exploiting the conventional convolution

operation. The compression can be achieved if

d× d× c× n

d× d× c̃×m
=

c× n

c̃×m
> 1. (5)

Note that, there is a constraint over the number of channels

of Lego filters. In practice, we need to select o = c/c̃ Lego

filters from B to stack a general convolution filter, and o
should be an integer for subsequent processing.

2.2. Learning to Stack Lego Filters

A new convolution framework with Lego filters was pro-

posed in Eq. 4 to reduce the space complexity of convolution

filters in deep CNNs, and a transformation G for stacking

Lego filters is proposed. In fact, we can design many ways

to stack Lego filters, e.g. random projection and circulate

matrix.

Admittedly, the optimal transformation G can be also

learned during the training procedure of deep CNNs if it

is exactly a linear projection, and different filters would

have their own combinations of Lego filters. Dividing X
into q = H ′ ×W patches and verctorizing them, we have

X = [vec(x1), ..., vec(xq)] ∈ R
d2c×q. The output and fil-

ters in L can be reformulated as Y = [vec(y1), ..., vec(yn)]

and F = [vec(f1), ..., vec(fn)] ∈ R
d2c×n, respectively.

The conventional convolution operation as described in Eq. 1

can be rewritten as

Y = X
⊤
F. (6)

Then, according to Eq. 3, we further divide the input data

X into o = c/c̃ fragments [X1, ...,Xo], and stack m Lego

filters to a matrix B = [vec(b1), ..., vec(bm)] ∈ R
d2c̃×m.

Algorithm 1 Forward and Backward of LegoNet

Require: Hyper-parameter o, m. Network architecture N .

Total training iterations n. Learning rate η.

1: Initialize Lego Filters B, float gradient accumulator N

for each convolution layer L1, . . . ,Lk by using o and

m. Task criterions C.

2: for iter = 1 . . . n do

3: Get mini-batch data X, target Y.

4: Calculate M for each layer using N according to

Eq. 9.

5: Construct convolution filters F for each layer using

lego filters B and binary matrix M. Filters are con-

structed as F = BM(Eq. 3).

6: Forward LegoNet N (X) with stacked convo-

lution kernels F , get prediction P, Y =
∑

X
⊤(BM)(Eq. 7).

7: Calculate loss L using prediction P and ground truth

Y, L = C(P,Y).
8: Backward gradients related to parameters B and M,

which denoted as ∆B and ∆M.

9: For each convolution layer, backward gradients M

to parameters N according to N using STE, which

denoted as ∆N.

10: Update parameters B,N in Network N , B̂ = B −
η ×∆B, N̂ = N− η ×∆N.

11: end for

Ensure: Trained Network N ∗

Since output feature maps are calculated by accumulating

convolution response extracted from all fragments of the in-

put data, for the j-th feature maps Yj generated by the j-the

convolution filter, i.e. the j-th column in F the convolution

opearation using Lego filters can be formulated as

Y
j =

o
∑

i=1

X
⊤

i (BM
j
i), (7)

where M
j
i ∈ {0, 1}m×1 and ||Mj

i || = 1 is a vector mask

for selecting only one Lego filter from B to process the

i-th fragment of the input data. Therefore, the objective

function for simultaneously learning Lego filters and their

combination is

min
B,Mj

o
∑

i=1

1

2
||Yj −X

⊤

i (BM
j
i)||

2
F ,

s.t. Mj
i ∈ {0, 1}m×1, ||Mj

i ||1 = 1, i = 1, ..., o.

(8)

By minimizing the above function, we can obtain m Lego

filters with corresponding n masks for stacking them to orig-

inal convolution filters, as illustrated in Figure 1. By using

masks, Lego filters could construct complete convolution

filters as Fig. 1(c) shows.

LegoNet: Efficient Convolutional Neural Networks with Lego Filters

2.3. Optimization

The proposed convolution operation needs the cooperation

between Lego filters and stacking masks, which are to be

optimized in the training procedure of deep neural network,

i.e. B and M in Eq. 8. Since M
j
i ∈ {0, 1}m×1 is a binary

matrix and optimizing M is a NP-hard problem, which

makes it difficult to discover an optimal result using SGD.

We thus proceed to relax the object function for learning M.

We introduce N ∈ R
n×o×m with the same shape as M.

During training, M is binarized from N as follow,

M
j
i,k =

{

1, if k = argmaxNj
i

0, otherwise

s.t. j = 1, . . . , n, i = 1, . . . , o.

(9)

During forward, Eq. 9 is used to produce binary mask M,

however, it is a step function which is undifferentable. To

enable gradients to pass through the binary mask, we refer to

the Straight Through Estimator (STE) (Hubara et al., 2016).

STE strategy is popular in training Binary Neural Network

like (Rastegari et al., 2016). For any undifferentable trans-

formation Eq. 9, the gradient ∆N for float parameters N is

same with the gradient ∆M for output feature M.

Compared to Binary Neural Network with binarized weights

and activations in {−1, 1}, our target matrix M’s weights

are in {0, 1}. Besides, there is no constraint on the number

of each value in binary neural network, while we have the

constraint M, ||Mj
i ||1 = 1, which constraints Lego filters

are concatenated brick by brick. The training pipeline is

summarized in Alg. 1.

3. Efficient Implementation of Lego Filters

A two-stage approach underlines Eq. 7, that is concatenation

and convolution. Lego filters firstly construct convolution

filters and apply convolution onto input feature maps. How-

ever, repeated convolutions will be introduced during the

convolution stage. For example, if two filter modules j1
and j2 contain same Lego filter at the same position, i.e.

M j1
i = M j2

i , i ≤ o, as shown in Fig. 1(c) , their convolve

convolution results will be exactly the same, i.e.

X
⊤

i M
j1
i = X

⊤

i M
j2
i . (10)

Towards an efficient convolution using Lego filters, we pro-

pose a three stage pipeline, split-transform-merge. In the

split stage, input feature maps are split into o fragments.

In the transform stage, these fragments are convolved with

each individual Lego filter, which leads to o×m intermedi-

ate feature maps in total. At last, these intermediate feature

maps are summed according to M. We argue that this three

stage convolution is equivalent to the aforementioned two-

stage operation.

1. Split: We split input feature maps X ∈ R
d2c×q into o

fragments [X1, . . . ,Xo], where each fragment Xi ∈

R
d2c̃×q will be the basic feature map to be convolved

with Lego filters.

2. Transform: Taking feature fragment Xi, i ≤ o as the

basic component for convolution, for each Lego filter

Bj , j ≤ m, we can calculate the convolution as

Iij = X
⊤

i Bj . (11)

By launching this convolution between each feature

fragment and each Lego filter, there would be o×m
intermediate Lego feature maps Ii,j , i ≤ o, j ≤ m in

total.

We name this process as Lego Convolution, as the clas-

sical convolution operation is split into convolutions

over many smaller fragments cut from the original in-

put feature map. Note that the major float operations

are done in this stage, which could reduce the total

number of float operations compared to the standard

convolution operation.

3. Merge: In this stage, the desired output feature maps

Y is produced from intermediate Lego feature maps

I. However, in standard convolution, o different Lego

kernels have to be concatenated for a complete convo-

lution filter first, and then conduct convolutions with

input feature mapX. In the above split and transform

stages, we have pre-calculated convolution results be-

tween input feature fragments and Lego filters and

recorded them as intermediate Lego feature map. It

is instructive to note that in previous two-stage con-

volution, M is used to select Lego filter, while in the

proposed three-stage pipeline, M is used for picking

Lego feature maps from I and summarizing them.

Equivalent We next proceed to prove the equivalence be-

tween the proposed efficient three-stage convolution and the

standard convolutions using Lego filters in Theorem. 1.

Theorem 1. Suppose we reverse the convolution by split-

transform-merge three-stage pipeline, the result should be

equal to concat lego filters B using M to form standard

kernels K and then convolve with feature map X.

Proof. In two-stage convolution, we calculate output feature

maps X by firstly constructing a complete convolution filter

and then conduct convolutions over input feature maps X,

Y = X
⊤(BM) (12)

For the j’th output Yj , the corresponding can be written as,

Y
j =

o
∑

i=1

X
⊤

i (BM
j
i). (13)

LegoNet: Efficient Convolutional Neural Networks with Lego Filters

Figure 2. Lego Unit(LU). This figure shows how the three-stage pipeline split-transform-merge operates on input feature maps. X is the

input feature map, lego filters B are convolved with different parts from X, which result in intermediate feature maps I. Output feature

map Y is generated by merging according to M.

From the perspective of matrix, Yj can be calculated as,

Y
j =

o
∑

i=1

(X⊤

i B)Mj
i . (14)

The first item X
⊤

i B denotes the intermediate Lego feature

map I. M selects feature maps from I and summarizes them

to generate output Y. Hence, the proposed split-transform-

merge strategy can result in the same output feature map.

A convolution layer reformed by the proposed split-

transform-merge pipeline can be equivalent to the two-stage

construct-convolve solution. By using this split-transform-

merge pipeline, repeated computations are eliminated, and

the network could feed forward efficiently. Efficient Lego

networks can be established using Lego Unit shown in

Fig. 2.

4. Analysis on Compression Performance

Compared with standard convolution, convolution kernels

constructed by Lego filters can greatly reduce the number of

parameters. Further, by using our proposed split-transform-

merge convolution strategy for Lego filters, neural network

calculation could be accelerated. In this section, we analyze

the memory and float operations in detail.

4.1. Compression

We define the size of the convolution kernel F as d2× c×n
and the size of the input feature map X as d2x× c. We divide

that input channel into o segments and have m Lego Filters

at hand. All parameters are saved with float-32 data type

except for M matrix with binary weights. The compression

rate is calculated by

n× c× d2

m× c
o
× d2 + n× o×m+

≈
n× o

m
. (15)

In the denominator, m× c
o
× d2 denotes the memory occu-

pied by Lego filter takes. n× o×m is the memory for M.

Since the binary matrix M is relatively small compared to

the Lego filter parameters, the total compression ratio for

convolution layer would be approximately n×o
m

.

By using Lego filters to construct filter modules according

to binary matrix M, we can save a large volume of parame-

ters, which make compressed network applicable for mobile

devices.

4.2. Acceleration

In order to accelerate inference time, we develop the split-

transform-merge strategy, which can largely reduce the num-

ber of float operations in LegoNet. For a standard convolu-

tion layer, float operations number is calculated as

n× c× d2 × d2x, (16)

For Lego networks, firstly generating standard convolution

filter using Lego filters B and binary matrix M, and then

conducting convolve as usual would not increase any extra

float operations. Hence, Eq. 16 provides an upper bound

of the number of float operations. In other words, even

in the worst case, applying Lego filters will not increase

computational burden.

In some cases, if the number of Lego filters m is smaller

than the output channel number n, it could be optimized

using split-transform-merge strategy. The theoretical speed

up for an optimized convolution layer can be calculated as

LegoNet: Efficient Convolutional Neural Networks with Lego Filters

n× c× d2 × d2x
m× o× c

o
× d2 × d2x + n× o× d2x

≈
n

m
. (17)

m× o× c
o
× d2k × d2x is number of float operations required

by Lego convolution. It would generate m× o intermediate

Lego features with channel equal to 1. In the merge stage,

n× o× d2x FLOPS are taken to sum up these Lego feature

maps.

5. Experiments

Experiment Setup. We have developed a novel convo-

lution framework using Lego filters in the above section,

here we will first test the proposed method on the CIFAR-

10 (Krizhevsky and Hinton, 2010) dataset with different

parameters and settings. The CIFAR-10 dataset consists

of 60000 natural images with 32× 32 resolution split into

train/test fold. We select the VGGNet-16 (Simonyan and

Zisserman, 2014) as the baseline model, which is a classi-

cal deep neural network and has a 93.25% accuracy on the

CIFAR-10 benchmark. This network contains 13 convolu-

tion layers, followed by 3 fully-connected layers, which is

widely used in visual recognition, detection and segmenta-

tion tasks. In order to apply VGGNet-16 on the CIFAR10

dataset, we replace the last convolutional layer by a global

average pooling layer and then reconfigure a fully-connected

layer for conducting the classification task with 10 cate-

gories. The network will be trained 1,000 epochs with the

batch size of 128 using the conventional SGD. The initial

learning rate is set as 0.1, which will be reduced by a fac-

tor of 10 at 200, 400, 600, 800, 900 epochs, respectively.

Weight decay is set to 5 × 10−4 for regularization. The

momentum parameter is set to 0.9. In addition, images in

the training set are firstly padded by 4 pixels, and 32× 32
patches will be randomly sampled for padded images for

data augmentation. Code is available at github 1.

Binary v.s. Weighted. Conventional filters in CNNs are

divided into two parts by using the proposed approach, i.e.

Lego filters B and corresponding binary mask M for record-

ing their permutations. In order to solve these two vari-

ables efficiently, an intermediate variable N was introduced

in Eq. 9 for relaxing the constrain of the binary mask M.

Therefore, besides to permute Lego filters to conventional

filters using M, we also can utilize N to obtain another

permutation of Lego filters with o× n floating numbers to

assign each Lego filter a learnable weight. Considering that,

there are d2 × c̃×m parameters in the given conventional

layer, these coefficients do not account for an obvious pro-

portion for storing the entire neural network. Thus, we first

test the performance of Lego networks with and without

additional coefficients on Lego filters.

1https://github.com/zhaohui-yang/LegoNet pytorch

Figure 3. Impact of two parameters o and m, o indicates how many

fragments input feature maps are splitted into. m is set to 0.125,

0.25 and 0.5 times to the original output features. Upper line is

LegoNet with coefficients, which verify the impact of introduced

coefficients.

Impact of Parameters. We evaluate the performance of

our proposed LegoNet as described in the previous section

on CIFAR10 dataset.

Lego filters could construct convolution filters with and

without coefficients while concatenating, in order to full

explore the impact of coefficients, we test LegoNet with

a range of compression ratios. We set hyper-parameter o
to be 2 for whole network, which indicates that input fea-

tures are splitted into two fragments, m ∈ R
+ indicates the

ratio of Lego filters compared to the original output chan-

nels. We set m ranging from 0.125 to 0.5, which compress

VGGNet-16 by a factor of 4-16×. Fig. 3 shows the results,

for any compression ratio, Lego filters concatenating with

coefficients(denoted as o = 2, coeff) always performs bet-

ter than directly concatenating without coefficients(denoted

as o = 2, w/o coeff). Under same parameters budget, by

introducing few more coefficients, LegoNet would enhance

the expression ability by a large margin. As compression

ratio increases, coefficients play an more important role, in

the extreme compression situation of 16×, LegoNet with

coefficient could maintain performance about 90% accuracy,

compared to 86% accuracy of LegoNet without coefficient.

We argue that if parameters are not too few, parameters are

enough to learn comparable results, e.g. , Lego-VGGNet-

16-w(o=2,m=0.5) in Tab. 1. However, if VGGNet-16 is

compressed extremely, using Lego filters would introduce

many repeat calculations among different filter modules.

We thus need few coefficients for weighted concatenation

to strength the expression ability. Further experiments are

all conducted with coefficients during concatenating.

There are two parameters o and m in LegoNet, i.e. , o indi-

cates how many fragments input feature maps are splitted

into, m indicates the number of Lego filters compared to the

LegoNet: Efficient Convolutional Neural Networks with Lego Filters

Table 1. Comparison results of different neural networks on the CIFAR-10 datasets.

Model Acc (%) Params(M) Comp ratio FLOPS(M) Speed Up

VGGNet-16(Simonyan and Zisserman, 2014) 93.25 14.7 1× 298.7 1×

Lego-VGGNet-16-w(o=2,m=0.5) 93.23 3.7 4× 149.4 2×
Lego-VGGNet-16-w(o=2,m=0.25) 91.97 1.9 8× 74.7 4×
Lego-VGGNet-16-w(o=4,m=0.5) 92.42 1.9 8× 149.4 2×
Lego-VGGNet-16-w(o=4,m=0.25) 91.35 0.9 16× 74.7 4×

original of each layer. We conduct our experiments on dif-

ferent o and m which compress VGGNet-16 by a factor of

4-64×. Fig. 3 shows the relationship between performance

and two parameters.

As mentioned above, Lego-VGGNet-16-w could compress

the network by a factor of m/o. When we set different o
or m to achieve a compression ratio less than 8×, accuracy

drops less than 1%, e.g. , Lego-VGGNet-16-w(o=4, m=0.5)

in Tab. 1. As the parameter grows, the accuracy will in-

crease, which in consistent with our motivation, however,

this will lead to larger model size or much more flops. There

is thus a trade-off between accuracy, model size and speed.

In order to analysis the relationship between params and

flops, as previous figures show, under the same budget of

parameters, the performance are approximately the same.

The number of parameters directly indicates the final perfor-

mance of the network. Under the budget of approximately

same parameters, higher o which indicates much more frag-

ments, which could achieve higher performance, e.g. , Lego-

VGGNet-16-w(o=2, m = 0.25) achieves 91.97% accuracy,

which is almost the same accuracy with Lego-VGGNet-16-

w(o=4, m = 0.5) with 92.42% accuracy. However, float

operations vary a lot for two networks. Lego-VGGNet-

16-w(o=4, m = 0.5) costs twice flops compared to model

Lego-VGGNet-16-w(o=2, m = 0.25). Note that using our

proposed three-stage strategy by split-transform-merge, the

number of FLOPS is proportional to the number of Lego

filters for each layer. Thus, under same parameters budget,

though larger o introduce higher performance, but takes

much more flops. Take flops into consideration, in order to

balance the model size and flops, we set o = 2 in the rest

of our experiments, which reduce a large amount of flops

while maintain comparable accuracy.

Large-Scale Datasets. We test our LegoNet on a large-

scale classification task, ILSVRC2012, with several dif-

ferent architectures. We evaluate LegoNet based on

ResNet50 (He et al., 2016), VGGNet-16 (Simonyan and

Zisserman, 2014) and MobileNet (Howard et al., 2017) net-

work architecture. Images are resized with 256 pixels for

shorter side and 224 × 224 pixels patchs are randomly

sampled from resized image as data augmentation. Each

batch contains 256 images for training. Center crop is used

for testing. We trained 300 epochs in total. Learning rate

started with 10−1 and decayed by a factor of 10 every 80

epochs. Note that although the last fully connected layer

for classification has lots of parameters, if we use Lego fil-

ters to compress the last layer, many classes would share

similar features, which would introduce side effect on per-

formance, especially fine-grained classification. Besides,

if the network backbone is used in tasks like detection and

segmentation, the last fully connected layer is replaced by

other layers, so we do not compress the last fully connected

layer in all our experiments.

In VGGNet-16 network, 138M parameters are mainly occu-

pied by fully connected layer, which requires a large amount

of memory resources. However, this could be removed by

introducing Global Average Pooling(GAP) after all con-

volution layers, about 10% parameters left after removing

fully connected layers, with almost same accuracy. Then

a 1000 classes fully connected layer followed by a soft-

max layer is used for classification. We apply our Lego

filters onto VGGNet-16-GAP network. Lego-VGGNet-16-

w(o=2,m=0.5) compressed original VGGNet-16 by a fac-

tor of approximately 30× and achieved comparable per-

formance as Tab. 2 shows. Such a small model would be

sufficient for mobile devices. As VGGNet-16 network has

been largely used in many different computer vision tasks,

deploying such a small Lego-VGGNet-16-w(o=2,m=0.5)

could satisfy most of the needs. 2× float operations are

reduced which speed up inference time.

ResNet50 usually contains 1x1 and 3x3 convolutions. 1x1

convolution layers are mainly used for channel-wise trans-

formation and 3x3 convolution is used to merge spatial

features. We used the same compression method as that

on CIFAR10, thus setting parameter o to be 2 and controls

the number of Lego filters m. We compress two types of

layers without difference. In the ResNet50 network, the

convolutional feature extractor is followed by classification

layer of the network. The final classification layer occupies

2M parameters. Tab. 2 shows Lego-Res50 with 2-3 × com-

pression ratio. Accuracy keeps to be almost the same with

3× compression ratio. Meanwhile, float operations reduced

a lot in these networks by approximately 2×. Compared to

the original, Lego-Res50-w(o=2,m=0.5) is a more portable

alternative to the original.

In addition, we evaluate LegoNet-Res50 with and without

coefficients on large scale dataset. Compared to weighted

concatenation of Lego filters, Lego-Res50(o=2,m=0.5)

LegoNet: Efficient Convolutional Neural Networks with Lego Filters

Table 2. Comparison results of different neural networks on the ILSVRC2012 datasets.

Model Top-5 Acc(%) Params(M) Comp Ratio FLOPs(B) Speed Up

ResNet50 (He et al., 2016) 92.2 25.6 1.0× 4.1 1.0×
ThiNet-Res (Luo et al., 2017a) 88.3 8.7 2.9× 2.2 1.9×
Versatile (Wang et al., 2018a) 91.8 11.0 2.3× 3.0 1.4×

Lego-Res50(o=2,m=0.5) 89.7 8.1 3.2× 2.0 2.0×
Lego-Res50-w(o=2,m=0.5) 90.6 8.1 3.2× 2.0 2.0×
Lego-Res50-w(o=2,m=0.6) 91.3 9.3 2.8× 2.0 1.7×

VGGNet-16 (Simonyan and Zisserman, 2014) 90.1 138.0 1.0× 15.3 1.0×
ThiNet-VGG (Luo et al., 2017a) 90.3 38.0 3.6× 3.9 3.9×
Lego-VGGNet-16-w(o=2,m=0.5) 88.9 4.2 32.9× 7.7 2.0×
Lego-VGGNet-16-w(o=2,m=0.6) 89.2 5.0 27.6× 9.2 1.7×

MobileNet (Howard et al., 2017) 88.9 4.2 1.0× 0.6 1.0×
Lego-Mobile-w(o=2,m=0.9) 87.5 2.5 1.7× 0.5 1.1×
Lego-Mobile-w(o=2,m=1.5) 88.3 3.5 1.2× 0.6 1.0×

(a) FRCNN (b) Lego-FRCNN

Figure 4. Example object detection results on PASCAL VOC

dataset.

drops 2% more accuracy, which proves that the introduced

coefficients indeed improve LegoNet expression ability. For

VGGNet-16 and MobileNet, we only tested the performance

which contains coefficients.

Further, we adopt proposed LegoNet onto mobile setting

networks, MobileNet (Howard et al., 2017). VGGNet-16

and ResNet50 are designed for a higher classification perfor-

mance. Given much more parameters, higher accuracy can

be achieved. Compressing these kinds of networks while

preserving their performance is easier than compressing

MobileNet like efficient network designs.

Mobilenet consists depthwise convolutional filters and point-

wise convolution which are 3×3 and 1×1 convolution.

Depthwise convolution learns a transform for each chan-

nel using 3× 3 convolution with group number equals to

input channels. 1×1 pointwise convolution takes most of the

parameters in MobileNet, thus we mainly adopt our Lego

filters onto those 1×1 convolution. We test our proposed

Lego-MobileNet-w on ILSVRC2012 and achieved less than

1% accuracy drop with 1.2× compression. Note that for

model Lego-Mobile-w(o=2,m=1.5), the number of Lego

filters for each layer is 1.5× compared to the original, di-

rectly using our proposed split-transform-merge three-stage

pipeline, flops is larger than the original. For this model, it

reaches the upper bound and we forward this network by

firstly reconstruct convolution filters and then forward input

data, which achieves same float operations and inference

time as the original.

Generalization Ability. In order to full explore the gen-

eralization ability of LegoNet, we evaluate our LegoNet

on VOC object detection task(Everingham et al., 2010).

Faster-RCNN (Ren et al., 2015) was used as the detection

framework, VOC07 train+val dataset was used to train the

network. We used Lego-Res50-w(o=2,m=0.5) as the detec-

tion backbone. Tab. 3 shows the results of trained network.

Comparing baseline network, our LegoNet achieves compa-

rable results with much less parameters.

Table 3. Object detection results on the VOC2007 dataset.

Model mAP(%) Params(M)

ResNet50 72.8 23.8

Lego-Res50(o=2,m=0.5)-w 71.3 6.3

Here, we give the example of Faster-RCNN detection result.

It can be seen from Fig. 4 that the difference between the

original ResNet50 and our LegoNet is quite small.

6. Conclusion

In this work, we propose a new method to construct ef-

ficient convolutional neural networks with a set of Lego

filters. We first define the problem of network compression

from the perspective of how to construct convolution filters

with a shared set of Lego filters. Then we propose a learn-

ing method to simultaneously optimize binary masks and

weights in end-to-end training stage. We further develop a

split-transform-merge three-stage strategy for efficient con-

volution. We evaluate LegoNet with different backbones

and compare their performance, parameters, float operations

and speed up. The proposed LegoNet could combine with

any state-of-the-art architecture and can be easily deployed

onto mobile devices.

Acknowledgement

This work is supported by National Natural Science Foun-

dation of China under Grant No. 61876007, 61872012 and

Australian Research Council Project DE-180101438.

LegoNet: Efficient Convolutional Neural Networks with Lego Filters

References

C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. Model compres-
sion. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
535–541. ACM, 2006.

Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-F.
Chang. An exploration of parameter redundancy in deep net-
works with circulant projections. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 2857–2865,
2015.

F. Chollet. Xception: Deep learning with depthwise separable
convolutions. arXiv preprint, pages 1610–02357, 2017.

M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Train-
ing deep neural networks with binary weights during propaga-
tions. In Advances in neural information processing systems,
pages 3123–3131, 2015.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zis-
serman. The pascal visual object classes (voc) challenge. Inter-
national journal of computer vision, 88(2):303–338, 2010.

X. Gao, Y. Zhao, L. Dudziak, R. D. Mullins, and C. Xu. Dynamic
channel pruning: Feature boosting and suppression. arXiv:
Computer Vision and Pattern Recognition, 2018.

S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In
Computer Vision (ICCV), 2017 IEEE International Conference
on, pages 2980–2988. IEEE, 2017a.

Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very
deep neural networks. international conference on computer
vision, pages 1398–1406, 2017b.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks. In CVPR, volume 1,
page 3, 2017.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio.
Binarized neural networks. In Advances in neural information
processing systems, pages 4107–4115, 2016.

M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up con-
volutional neural networks with low rank expansions. arXiv
preprint arXiv:1405.3866, 2014.

F. Juefei-Xu, V. Naresh Boddeti, and M. Savvides. Local binary
convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages
19–28, 2017.

Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Com-
pression of deep convolutional neural networks for fast and low
power mobile applications. arXiv preprint arXiv:1511.06530,
2015.

A. Krizhevsky and G. Hinton. Convolutional deep belief networks
on cifar-10. Unpublished manuscript, 40(7), 2010.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710,
2016.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg. Ssd: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer, 2016.

J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning
method for deep neural network compression. In 2017 IEEE
International Conference on Computer Vision (ICCV), pages
5068–5076. IEEE, 2017a.

W. Luo, P. Sun, F. Zhong, W. Liu, and Y. Wang. End-to-end
active object tracking via reinforcement learning. arXiv preprint
arXiv:1705.10561, 2017b.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning
convolutional neural networks for resource efficient transfer
learning. CoRR, abs/1611.06440, 2016.

A. Polino, R. Pascanu, and D. Alistarh. Model compression via
distillation and quantization. arXiv preprint arXiv:1802.05668,
2018.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural
networks. In European Conference on Computer Vision, pages
525–542. Springer, 2016.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages 91–
99, 2015.

A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio. Fitnets: Hints for thin deep nets. arXiv preprint
arXiv:1412.6550, 2014.

K. Simonyan and A. Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.

P. Wang and J. Cheng. Fixed-point factorized networks. computer
vision and pattern recognition, pages 3966–3974, 2017.

Y. Wang, C. Xu, C. Xu, and D. Tao. Beyond filters: Compact
feature map for portable deep model. In Proceedings of the
34th International Conference on Machine Learning-Volume
70, pages 3703–3711. JMLR. org, 2017.

Y. Wang, C. Xu, X. Chunjing, C. Xu, and D. Tao. Learning
versatile filters for efficient convolutional neural networks. In
Advances in Neural Information Processing Systems, pages
1615–1625, 2018a.

LegoNet: Efficient Convolutional Neural Networks with Lego Filters

Y. Wang, C. Xu, C. Xu, and D. Tao. Packing convolutional neural
networks in the frequency domain. IEEE transactions on pattern
analysis and machine intelligence, 2018b.

B. Wu, A. Wan, X. Yue, P. Jin, S. Zhao, N. Golmant, A. Gho-
laminejad, J. Gonzalez, and K. Keutzer. Shift: A zero flop,
zero parameter alternative to spatial convolutions. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9127–9135, 2018.

J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized convolu-
tional neural networks for mobile devices. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pages 4820–4828, 2016.

G. Xie, T. Zhang, K. Yang, J. Lai, and J. Wang. Decoupled
convolutions for cnns. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated
residual transformations for deep neural networks. In Computer
Vision and Pattern Recognition (CVPR), 2017 IEEE Conference
on, pages 5987–5995. IEEE, 2017.

X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very deep
convolutional networks for classification and detection. IEEE
transactions on pattern analysis and machine intelligence, 38
(10):1943–1955, 2016.

X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An ex-
tremely efficient convolutional neural network for mobile de-
vices. CoRR, abs/1707.01083, 2017. URL http://arxiv.

org/abs/1707.01083.

http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083

