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Abstract 22 
 23 
Rusts are major biotic constraints of legumes worldwide. Breeding for rust resistance is 24 

regarded as the most cost efficient method for rust control. However, in contrast to 25 

common bean for which complete monogenic resistance exists and is efficiently used, 26 

most of the rust resistance reactions described so far in cool season food legumes are 27 

incomplete and of complex inheritance. Incomplete resistance has been described in 28 

faba bean, pea, chickpea and lentil and several of their associated QTLs have been 29 

mapped. However, the relatively large distance between the QTLs and their associated 30 

molecular markers hampers their efficient use for MAS. Their large genome size 31 

drastically hampers the development of genomic resource and limits the saturation of 32 

their genetic maps. The use of model plants such as the model legume Medicago 33 

truncatula may circumvent this drawback. The important genetic and genomic 34 

resources and tools available for this model legume can considerably speed up the 35 

discovery and validation of new genes and QTLs in resistance to legume pathogens. 36 
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Here, the potential of M. trunctula as a model to study rust resistance in legumes, and to 1 

transfer rust resistance genes to cool season grain legumes is reviewed.    2 

 3 

Rusts of legume crops 4 

There are about 5000 species of rust that attack an extremely wide range of crops 5 

worldwide. Several rust species can infect grain and forage legumes, most of them 6 

belonging to the genus Uromyces, such as U. appendiculatus (Pers.) Unger on common 7 

bean (Phaseolus vulgaris L.), U. ciceris-arietini Jacz. in Boyer & Jacz. on chickpea 8 

(Cicer arietinum L.), U. lupinicolus Bub. on lupine (Lupinus sp.), U. pisi ([Pers.] D.C.) 9 

Wint. on pea (Pisum sativum L.) and grasspea (Lathyrus sp.), U. striatus J. Schröt. on 10 

alfalfa (Medicago sativa L.), U. viciae-fabae (Pers.) J. Schröt. on faba bean (Vicia faba 11 

L.), lentil (Lens culinaris Medik.) and common vetch (V. sativa L.) and U. vignae 12 

Barclay on cowpea (Vigna unguiculata (L.) Walp.). Rust species belonging to other 13 

genera can also be major problems on legumes such as Phakopsora pachyrhizi Sydow 14 

and P. meibomiae (Arthur) Arthur on soybean (Glycine max (L.) Merr.) or Puccinia 15 

arachidis Speg. on groundnut (Arachis hypogaea L.) (Rubiales et al. 2002; Sillero et al. 16 

2006; Emeran et al. 2008).  17 

Breeding for rust resistance is regarded as the most cost efficient method for rust 18 

control. In tropical legumes such as common bean and soybean, complete monogenic 19 

resistance reactions have been described. Due to their economic importance, these 20 

sources have been largely studied leading to the identification of their associated rust 21 

resistance genes and closely linked markers that are readily used in marker-assisted 22 

backcrossing (Faleiro et al. 2004; Miklas et al. 2006; Hyten et al. 2007; García et al. 23 

2008) (Table 1). By contrast, most of the rust resistance reactions described so far in 24 

cool season food legumes are incomplete. Phenotypic expression of rust resistance is 25 
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usually poorly described. As a consequence of this, and of the poorly developed 1 

genomic resources usually available in most cool season legumes, genetic basis of 2 

resistance is, in most cases, largely unknown. Although QTL mapping studies have 3 

been performed for most cool season legumes such as chickpea (Millán et al. 2006; 4 

Madrid et al. 2008), faba bean (Torres et al. 2006), lentil (Muehlbauer et al. 2006) or 5 

pea (Barilli et al. 2010), in most cases no markers are yet readily available for QTL 6 

selection and Marker Assisted Selection (MAS) (Table 1). 7 

Incomplete rate reducing resistance not based on hypersensitivity is very 8 

common in cool season legumes and is often the only type of resistance available 9 

(Sillero et al. 2006). Several sources of resistance against U. viciae-fabae have been 10 

reported in faba bean in the last decades, being mainly of incomplete expression and not 11 

based on hypersensitivity (Sillero et al. 2010). Information on the genetic basis of this 12 

incomplete resistance is still scant. A number of race-specific genes has been postulated 13 

causing reduced pustule size (Conner and Bernier 1982; Rashid and Bernier, 1986). 14 

Mapping studies using a recombinant inbred line (RIL) population to identify QTLs and 15 

to develop molecular markers useful in MAS for the non-hypersensitive resistance 16 

(Torres et al. 2006), but no results are available yet. On the other hand, hypersensitive 17 

resistance was recently described in faba bean germplasm (Sillero et al. 2000; Rubiales 18 

and Sillero 2003). It is controlled by genes with major effects (Sillero et al. 2000). Use 19 

of Bulk Segregant Analysis (BSA) allowed identifying three Random Amplified 20 

Polymorphic DNA (RAPD) markers linked to resistance gene (Uvf1) (Avila et al. 21 

2003). Three RAPD markers (OPD13736, OPL181032 and OPI20900) were mapped in 22 

coupling phase to the resistance gene Uvf-1. No recombinants between OPI20900 and 23 

Uvf-1 were detected. Two additional markers (OPP021172 and OPR07930) were linked to 24 

the gene in repulsion phase at a distance of 9.9 and 11.5 cM, respectively. The 25 
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simultaneous use of both types of markers allows their use as a codominant marker. 1 

Different genes might be available in the different accessions displaying 2 

hypersensitivity reported so far (Sillero et al. 2000; Sillero and Rubiales 2002; Rubiales 3 

and Sillero 2003), but genetic analysis has so far been performed only with one of them 4 

(Avila et al. 2003). Obviously, this preliminary work ought to be complemented with 5 

the identification of the different genes and the associated markers before an efficient 6 

pyramidization programme can be achieved. 7 

In pea, only incomplete resistance has been described against both U. viciae-8 

fabae (Chand et al. 2006) and U. pisi (Barilli et al. 2009a, b). Preliminary mapping 9 

studies have yielded identification of several QTLs for resistance to U. viciae-fabae 10 

(Vijayalakshmi et al. 2005) and to U. pisi (Barilli et al. 2010) but results are far for 11 

being usable in MAS (Table 1). Partial resistance to U. viciae-fabae has been justified 12 

as the expression of a single major gene (Ruf) (Vijayalakshmi et al. 2005). Two RAPD 13 

markers, SC10-82360 (10.8 cM) and SCRI-711000 (24.5 cM), were detected flanking the 14 

gene Ruf, but these markers were not close enough to allow a reliable MAS approach 15 

for rust resistance (Vijayalakshmi et al. 2005). A QTL explaining 63% of the resistance 16 

to U. pisi has been located in the linkage group 3. Two RAPDs markers, OPY111316 17 

(26.9 cM) and OPV171078 (46.3 cM) showed significant association with rust resistance 18 

(Table 1). These results must be validated across diverse locations and genetic 19 

backgrounds before the application of MAS in pea breeding programs. Inclusion of new 20 

standard markers and transformation into SCARs of the RAPDs tightly linked to the 21 

detected QTLs is needed to enhance their applicability for MAS. 22 

Similarly, only incomplete resistance was identified in chickpea against U. 23 

ciceris-arietini (Rubiales et al. 2001). A QTL explaining 81% of the resistance in adult 24 

plants was located on linkage group 7 of the chickpea genetic map (Madrid et al. 2008). 25 
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It was hypothesized to correspond to a single gene (Uca1/uca1) according to the 1 

segregation analysis. Two STMS markers were identified that flank this resistance gene. 2 

In this particular case, the distance between the STMS markers and the resistance gene 3 

is short enough (3.9cM apart) to allow reliable MAS for rust resistance in chickpea 4 

(Table 1).  5 

Lentil rust resistance has been reported mainly as partial resistance, although 6 

some hypersensitive resistant sources have also been described (Rojas et al. 2004; 7 

Negussie et al. 2005). Monogenic resistance has been described (Erskine et al. 1994) 8 

and preliminary information on chromosome location and associated molecular markers 9 

is being produced (Kant et al. 2004; Table 1). More recently, a sequence related 10 

amplified polymorphism (SRAP) marker, F7XEM4a, has been identified at 7.9 cM 11 

from the gene for resistance (Saha et al. 2010) (Table 1). The F7XEM4a marker could 12 

be used for MAS but additional markers closer to the resistance gene are needed. 13 

Resistance to rust has also been identified in L. sativus (Vaz Patto and Rubiales 14 

2009) and L. cicera (Vaz Patto et al. 2009) germplasm but genetic studies have only 15 

recently been initiated by generation of proper mapping populations (unpublished). 16 

In peanuts, genetic studies indicated that resistance to the rust fungus Puccinia 17 

arachidis is complex and of polygenic nature. In this sense, Khedikar et al. (2010) 18 

recently identified and located 12 QTLs associated with resistance to rust of the TAG24 19 

genotype. Among them, the QTLrust01 was detected in all environmental conditions 20 

tested and explained up to 55.2% of the phenotypic variation. This QTL co-localized 21 

with the SSR marker IPAHM103 (Khedikar et al. 2010). Using the same resistant 22 

genotype, Mondal and co-workers (2008) found one RAPD marker, J71300, closely 23 

associated with rust resistance. In addition, these authors exploited the natural genetic 24 

variation existing in cultivated peanuts to identify three additional SSR markers PM 35 25 
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PM 50 and PM 179 associated with rust resistance (Mondal and Badigannavar, 2009). 1 

All these molecular markers are promising tool for future peanuts breeding against rust 2 

although effort should be made to reduce the still important genetic distance separating 3 

the rust resistance QTL and the existing molecular marker.     4 

In general, the scarce genomic resources developed for cool season legumes and 5 

the limited saturation of the genomic regions bearing putative QTLs makes it difficult to 6 

identify the most tightly-linked markers and to determine the accurate position of QTLs 7 

(Torres et al. 2006; Rubiales et al. 2009; Rispail et al. 2010). Effectiveness of MAS 8 

might soon increase with the adoption of the new improvements in marker technology 9 

together with the integration of comparative mapping and functional genomics. But rust 10 

resistance breeding is not only slow due to the difficulty and the relatively low 11 

investment on genetics, genomics and biotechnology of the legume crops, but also, and 12 

mainly because of the little knowledge on the biology of the rust pathogens. 13 

Comprehensive studies on host status and virulence of the various rust species are often 14 

missing, and in most of the examples listed above, there is little agreement on the 15 

existence of races and on their distribution. This is a major limitation for any breeding 16 

programme. Also, available information on levels of resistance and on the responsible 17 

mechanisms is often incomplete. Only after significant input to improve existing 18 

knowledge on biology of the causal agents as well as on the plant, resistance breeding 19 

will be efficiently accelerated. 20 

Current progress in the genomic and biotechnological research will soon provide 21 

important understanding of some crucial developmental mechanisms in both the 22 

parasites and their host plants. Transcriptomic and proteomic approaches developed for 23 

model plants can be used to understand the molecular components and identify 24 

candidate genes involved in defence against rust pathogens. Traditional breeding efforts 25 
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will be greatly enhanced through collaborative approaches using functional, 1 

comparative and structural genomics. Molecular genetic and genomic analyses promise 2 

the transfer of technology from model to crop legumes. 3 

 4 

Medicago truncatula as a model legume 5 

The development of Arabidopsis thaliana as a unique model improved greatly our 6 

understanding of complex biological processes (Jones and Dangl 2006; De Smet and 7 

Jurgens 2007). However, A. thaliana is not the best suited model to study plant defence 8 

mechanisms to rust. Indeed, there is no available fungus that causes a natural rust 9 

disease in A. thaliana, although the A. thaliana - U. vignae system has been used to 10 

characterize the nonhost signalling pathway (Mellersh and Heath 2003). Other 11 

alternative species such as the legume species Medicago truncatula and Lotus japonicus 12 

have been more recently developed as model to address specific issues of legumes. M. 13 

truncatula (barrel medic) is an annual, self-fertile, diploid legume species that has 14 

became a model for studying various aspects of legume genomics and biology (Cook 15 

1999; Ané et al. 2008; Young and Udvardi 2009; Rispail et al. 2010).  16 

Several germplasm collections of M. truncatula are available to search for 17 

genetic polymorphism for particular traits which lead to the generation of several 18 

genetic and cytogenetic maps instrumental for map-based cloning, genome sequencing 19 

and comparative genomics (Ané et al. 2008; Kulikova et al. 2001). In addition, M. 20 

truncatula genome sequencing is near completion with more than 250 Mb already 21 

sequenced and annotated (http://www.medicagohapmap.org/; release 3.5) and more than 22 

260,000 expressed sequence tags (ESTs) are available from public DNA database (Ané 23 

et al. 2008). In parallel postgenomic tools such as transcriptomic and proteomic 24 

platforms as well as several reverse genetic and functional analysis approaches 25 
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including the creations of several chemical and insertional mutant collections, TILLING 1 

platforms, RNA interference or VIGS technologies have been developed for M. 2 

truncatula (Young and Udvardi 2009; Rispail et al. 2010).  3 

 4 

Application of M. truncatula to rust resistance  5 

The fact that M. truncatula is susceptible to alfalfa (U. striatus) and chickpea rusts (U. 6 

ciceris-arietini) (Skinner and Stuteville 1995; Stuteville et al. 2010) opens the way for 7 

its use to unravel legume-rust interactions. U. striatus is an important disease of 8 

worldwide distribution, being particularly damaging in alfalfa (Medicago sativa) grown 9 

for seed (Koepper 1942; Leath et al. 1988). It has a broad host range comprising many 10 

species from the tribes Trifolieae, Cicereae, and Vicieae, including alfalfa and annual 11 

medics including barrel medic (Skinner and Stuteville 1995).  12 

A range of resistance mechanisms against U. striatus are operative in M. 13 

truncatula accessions. Once the fungus has successfully penetrated the stoma, and 14 

formed a first haustorium, nutrients are taken from the invaded plant cell to allow 15 

further intercellular growth and haustoria formation. Previous studies comparing host 16 

and nonhost resistance to rust fungi have shown that nonhost resistance is typically 17 

expressed before the formation of the first haustorium (Heath 1981). By contrast, R 18 

gene-controlled host resistance is almost invariably expressed after the formation of the 19 

first haustorium, often in the form of hypersensitive death of invaded cell. Histological 20 

investigations, revealed significant differences in resistance to rust among M. truncatula 21 

accessions that were more evident once the stomata were penetrated by the infection 22 

structures (Rubiales and Moral 2004; Kemen et al. 2005). Similarly to most rust hosts 23 

(Niks and Rubiales 2002), prepenetration resistance mechanism including reduction of 24 

urediospore germination and fungal development on the leaf surface in M. truncatula 25 
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are of marginal importance against U. striatus, at best, in reducing infection levels 1 

(Rubiales and Moral 2004). Prehaustorial resistance can also be identified in host 2 

interactions, playing a major role in the so-called partial resistance, which may be more 3 

durable than resistance controlled by R genes (Niks and Rubiales 2002). A significant 4 

proportion of infection units fails to form any haustoria in some M. truncatula 5 

genotypes. Posthaustorial resistance was clear in other genotypes (Rubiales and Moral 6 

2004; Kemen et al. 2005). 7 

M. truncatula is already being studied to unravel resistance to a broad number of 8 

pathogens, from parasitic plants (Fernández-Aparicio et al. 2008), bacterial pathogens 9 

(Vailleau et al. 2007), nematodes (Moussart et al. 2007) to fungal and oomycete 10 

pathogens (O’Neill and Bauchan 2000; Yaege and Stuteville 2000; Barbetti and Allen 11 

2005; Ellwood et al. 2006; Tivoli et al. 2006; Barbetti 2007; Moussart et al. 2007; Prats 12 

et al. 2007). Microarray analysis have been performed to determine genes involved in 13 

defence mechanisms against Erysiphe pisi (Curto et al. 2007; Foster-Hartnett et al. 14 

2007), Orobanche crenata (Dita et al. 2009) or to Mycosphaerella pinodes (Fondevilla 15 

et al. 2009). In addition, Affymetrix chips are also commercially available for M. 16 

truncatula (http://www.affymetrix.com) and a novel generation of M. truncatula gene 17 

chip complemented with 1,850 M. sativa transcripts will be soon available to facilitate 18 

transcriptomic analysis of closely related species (Ané et al. 2008). All these 19 

transcriptomic platforms will allow large improvements in our understanding of legume 20 

rust interaction.  21 

In parallel, expression of more than 1000 transcription factors (TFs) have been 22 

monitored by quantitative real-time PCR during resistance reaction to rust in M. 23 

truncatula (Madrid et al. 2010), in order to refine hypothesis about TFs function in 24 

defense response as well as in the regulation of cross-talk between different signaling 25 
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pathways. A total of 107 putative TF genes were differentially expressed between the 1 

susceptible and resistant genotypes. Thirteen of these TFs are known to be relevant in 2 

cellular defense. Some of the TFs are pathogenesis-related transcription factors,  3 

ethylene response factor (PR-ERF), and WRKY TFs which are involved in the response 4 

to biotic stress in plant (Singh et al. 2004). These data suggest that resistance could be 5 

mediated both by genes that are constitutively expressed and by genes which are 6 

induced/repressed when plants are inoculated. These TFs could be candidates for future 7 

experiments to elucidate the genes that control this agronomically important trait.  8 

However, the role they play in the interaction need to be clarified in order to completely 9 

understand the pathways involved in the plant’s defense against this pathogen. On the 10 

other hand, taking advantage of the synteny between Medicago and Cicer (Cannon et al. 11 

2006) these defense related TFs sequences were amplified in chickpea DNA. 12 

Amplification analysis of the tested primers showed high transferability between both 13 

M. truncatula and C. arietinum. Two of these genes were mapped on the linkage group 14 

4 of the chickpea map (Madrid et al. 2010). In this linkage group two QTLs for 15 

ascochyta blight resistance have been reported (Tekeoglu et al. 2002; Iruela et al. 2006). 16 

These TFs could be candidates for future experiments to elucidate the genes that control 17 

this agronomically important trait.  18 

Postgenomic approaches are also being applied to tackle other pathogens. 19 

Substractive Suppression Hybridisation (SSH) libraries allowed the identification of 20 

defence genes to Aphanomyces eusteiches (Nyamsuren et al. 2003), or to O. crenata 21 

(Die et al. 2007). The range of application of proteomic approaches has been broadened 22 

to include M. truncatula - U. striatus (Castillejo et al. 2010) as well as interactions with 23 

other pathogens such as Aphanomyces (Colditz et al. 2004, 2005, 2007; Trapphoff et al. 24 

2009), E. pisi (Curto et al. 2008) and O. crenata (Castillejo et al. 2009). Comparison of 25 
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the proteome between susceptible and resistant accessions of M. truncatula upon rust 1 

inoculation revealed significant changes in the expression pattern of several proteins 2 

(Castillejo et al. 2010). For instance, several enzymes of the energetic metabolism 3 

pathway and many stress-related proteins including the ascorbate peroxidase were 4 

expressed at higher level in the resistant genotype (Castillejo et al. 2010). Similar results 5 

have been observed in other systems studied, such as M. truncatula–O. crenata 6 

(Castillejo et al. 2009).  7 

Efficient transfer to legume crops of the knowledge gained on the M. truncatula 8 

– rust interaction requires the identification of the actual function of the candidate genes 9 

identified by genomics and post-genomic approaches (Rispail et al. 2010).  To this 10 

purpose, it may be worth exploring the different chemical and insertional mutant 11 

collections and the TILLING and RNAi platforms developed for M. truncatula that can 12 

also help identifying new genes involved in M. truncatula resistance to rust (Rispail et 13 

al. 2010).   14 

Discovery of markers linked to rust resistance in M. truncatula may provide a 15 

tool to identify the same characteristic in the otherwise unexplored legume crop in 16 

which genomic studies are hampered by the large genome size and complex ploidy. It 17 

therefore becomes critical that molecular linkage maps of legume crops include both 18 

ESTs and phenotypes (including QTLs) relating to rust resistance, and that variation for 19 

these phenotypes is mapped to such conserved EST markers. The nearly completed 20 

genome sequences of M. truncatula will greatly aid in this area of research 21 

(http://www.medicagohapmap.org/). 22 
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Table 1. List of QTLs identified in legumes against rust diseases. 1 

 2 

 3 

Ur3 OK14620 RAPD B11 Haley et al.  1994

Ur4 OA141100 RAPD B6 Miklas et al. 1993

Ur5 OI19460 RAPD B4 Haley et al.  1993

Ur-6 SOBC06.308 SCAR B11 Park et al.  2004
Ur7 OAD12.550 and OAF17.900 RAPD B11 Park et al. 2003
Ur9 OA4.1050 RAPD B1 Park et al. 1999
Ur11 OAC20490 RAPD B11 Johnson et al.  1995

Ur12 B7 Kelly et al. 2003
Ur13 KB126 and KB4 Hha  I SCAR and CAB8 Mienie et al. 2005

B4 Kelly et al.  2003
B11 Miklas et al. 2006

Ur-Ouro NegroSCARBA08 and SCARF10 SCAR B4 Correa et al. 2000

Vicia faba Uvf-1 OPI20900 RAPD Avila et al., 2003

Pisum sativum Ruf SC10-82360  and SCRI-711000 RAPD Vijayalakshmi et al.  2005

F7XEM4a SRAP LG-3 Saha et al. 2010
OPX-15760 and OPX-171075 RAPD Kant et al.  2004

Uromyces pisi Pisum fulvum Up1 OPY111316 and OPV171078 RAPD LG-3 Barilli et al. 2010

Uromyces ciceris-arietini Cicer arietinum Uca1 /uca1 TA18 and TA180 STMS LG-7 Madrid et al. 2008

QTLrust01 IPAHM103 and pPGSseq19D6 SSR LG-6 Khedikar et al. 2010

QTLrust02 PM436 and Lec-1 SSR LG-1 Khedikar et al. 2010

QTLrust03 TC11A04 and IPAHM524 SSR LG-2 Khedikar et al. 2010

QTLrust04 TC1B02 and TC9F04 SSR LG-3 Khedikar et al. 2010

QTLrust05 TC4E09 and IPAHM121 SSR LG-7 Khedikar et al. 2010

QTLrust06 pPGSseq13E6 and PM3 SSR LG-8 Khedikar et al. 2010

QTLrust07 pPGSseq19G7 and TC2C07 SSR LG-8 Khedikar et al. 2010

QTLrust08 TC2G05 and TC9H09 SSR LG-9 Khedikar et al. 2010

QTLrust09 GM624 and TC4G10 SSR LG-9 Khedikar et al. 2010

QTLrust10 PM434 and TC4F02 SSR LG-8 Khedikar et al. 2010

QTLrust11 TC9H09 and GM624 SSR LG-9 Khedikar et al. 2010

QTLrust12 PM377 and TC1A01 SSR LG-10 Khedikar et al. 2010

J71300 RAPD Mondal et al.  2008

Rpp1 Sct_187 and Sat_064 SSR LG-G Hyten et al. 2007
Rpp2 Sat_255 and Satt620 SSR LG-J Silva et al. 2008
Rpp3 Satt460 and Sat_263 SSR LG-C2 Hyten et al.  2009
Rpp4 Satt288 and AF162283 SSR LG-G Silva et al. 2008
Rpp5 Sat_275 and Sat_280 SSR LG-N Garcia et al. 2008

Puccinia arachidis Arachis hypogaea

Ur-Dorado

Uromyces appendiculatus Phaseolus vulgaris

Lens culinaris

Vigna unguiculata 
Rr1

Marker type Linkage group References

Phakopsora pachyrhizi Glycine max

Rust species Legume species Gene(s)/QTL Associated Markers

Uromyces viciae-fabae

ABRSAAG/CTG98 SCAR Li et al. 2007Uromyces vignae
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