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Although signal exchange between legumes and their rhizobia is among the best-known
examples of this biological process, most of the more characterized data comes from
just a few legume species and environmental stresses. Although a relative wealth of
information is available for some model legumes and some of the major pulses such
as soybean, little is known about tropical legumes. This relative disparity in current
knowledge is also apparent in the research on the effects of environmental stress
on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a
relatively large body of research, whereas high-temperature stresses and drought are not
nearly as well understood. Both tropical legumes and their environmental stress-induced
effects are increasingly important due to global population growth (the demand for
protein), climate change (increasing temperatures and more extreme climate behavior),
and urbanization (and thus heavy metals). This knowledge gap for both legumes
and their environmental stresses is compounded because whereas most temperate
legume-rhizobia symbioses are relatively specific and cultivated under relatively stable
environments, the converse is true for tropical legumes, which tend to be promiscuous,
and grow in highly variable conditions. This review will clarify some of this missing
information and highlight fields in which further research would benefit our current
knowledge.
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Legume-Rhizobia Signal Exchange Importance and General
Information

Biological nitrogen fixation is one of the main biological cycles worldwide (Canfield et al., 2010)
and is estimated to contribute close to half (Herder et al., 2010) of the world’s biologically available
nitrogen. Most of that fixed nitrogen comes from the legume-rhizobia symbiosis, which is based
on a very large and constantly changing group of bacteria generically called rhizobia, including
Allorhizobium, Aminobacter, Azorhizobium, Bradyrhizobium, Devosia, Ensifer (Sinorhizobium),
Mesorhizobium, Methylobacterium, Microvirga, Ochrobactrum, Phyllobacterium, Rhizobium, and
Shinella among the α-Proteobacteria; Burkholderia, Cupriavidus, and Herbaspirillum among the
β-Proteobacteria (Vinuesa, 2015); and at least one Pseudomonas sp. from the γ-Proteobacteria
(Shiraishi et al., 2010). This usage of rhizobia as a catch-all name has been challenged recently
because it was based initially on the Rhizobium genus (then the Rhizobiaceae family), whereas
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we now know that at least three classes of the Proteobacteria
include at least one genus with this capability. In contrast, this
well-recognized term has been used extensively and, as such, is
used throughout this review.

This symbiosis begins with an elaborate signal exchange
process that is among the best studied between bacteria and
plants (Hirsch and Fujishige, 2012). Initially, the legume root
releases exudate compounds such as sugars, amino acids, several
classes of proteins classes (De-la-Peña et al., 2008, 2010; Badri and
Vivanco, 2009; Badri et al., 2009), and flavonoids, and phenolic
compounds (Broughton et al., 2003), such as flavone, flavonones,
isoflavones, and betains (Cooper, 2007). These compounds
induce chemoostatic reactions from the bacteria and act as
nodulation gene inducers (Hirsch and Fujishige, 2012; Ryu et al.,
2012).

These compounds may act as weak or strong inducers,
whereas others are inhibitors or have no effect on nodulation
(Mulligan and Long, 1985; Firmin et al., 1986; Peters et al., 1986;
Redmond et al., 1986; Hartwig et al., 1989, 1990; Hungria et al.,
1992; Bolaños-Vásquez and Werner, 1997; Begum et al., 2001;
Mabood et al., 2006; Subramanian et al., 2007).

Which compounds, or class of compounds, induce nodulation
the strongest varies among symbiotic pairs. For common beans
(Phaseolus vulgaris), the strongest inducers are genistein-3-
O-glucoside, eriodictyol, naringenin, daidzein, genistein, and
coumesterol (Hungria et al., 1991a; Dakora et al., 1993b);
this plant also releases other classes of compounds such as
anthocyanidins, flavonols, isoflavonoids, and flavones (Hungria
et al., 1992). For soybeans (Glycine max), the most effective plant-
to-bacteria signal has been variously found to be an isoflavone
(Subramanian et al., 2006), jasmonic acid and its derivatives
(Mabood and Smith, 2005), or genistein (Zhang and Smith,
1995).

After the nodulation genes are activated, the rhizobia release
nod factors, lipochitooligosaccharides specific to each symbiotic
association that are sufficient to activate nodule organogenesis
at least under some conditions, and these factors may induce
cellular modifications associated with early rhizobial root
infection (Oldroyd and Downie, 2004; Cooper, 2007; Jones
et al., 2007). In addition to the nod factors, several other
bacterial compounds affect several stages of the interaction,
including exopolysaccharides (EPS), lipopolysaccharides,
K-antigen polysaccharides, cyclic β-glucan, high-molecular-
weight neutral polysaccharides (glucomannan), and gel-forming
polysaccharides (Fraysse et al., 2003; Laus et al., 2006; Downie,
2010; Janczarek, 2011).

Signal Exchange Diversity and Legume
Promiscuity

The complex signal exchange between plant and bacterial
partners in symbiosis is also a key component of symbiotic
specificity, which varies from highly specific to highly
promiscuous. For example, although Sinorhizobium sp. NGR234
nodulates 232 legume species from 112 distantly related genera,
with varying efficacy, some strains of Rhizobium leguminosarum

bv. viciae do not nodulate pea (Pisum sativum) cultivars from
different origins (Ovtsyna et al., 1998; Masson-Boivin et al.,
2009).

The lack of effective signal exchange between legumes and
bacteria precludes symbiosis establishment for incompatible
partners, but in some situations, nodules may be formed in which
the rhizobia do not enter, are not liberated from the infection
thread, or do not fix nitrogen (Miller et al., 2007). This lack
of recognition may occur even after the initial signal exchange.
For example, R. leguminosarum bv. trifolii (Rlt) strain ICC105
does not fix nitrogen with white clover (Trifolium repens),
whereas this strain is effective when paired with Caucasian clover
(T. ambiguum). According to Miller et al. (2007), this difference
is due to a region between the nifH gene and the fixA promoter
that is differentially activated when in symbiosis with the two
Trifolium species. It is not clear if this difference is due to positive
or negative regulation by a specific plant signal, nor is it clear how
NifA activity is regulated (Miller et al., 2007).

The combination of a vast range of compounds secreted by
both plants and bacteria is one of the main characteristics of this
symbiotic compatibility. Because the first step is exudation by the
plant, this step may be considered the most important one. These
exudates are continuously secreted into the rhizosphere, but both
the number and concentration of these compounds increases
when compatible bacteria are detected by the plant (Zaat et al.,
1989; Dakora et al., 1993a,b; Hassan and Mathesius, 2012).

These plant-bacteria signals activate three main groups of
nodulation genes in the bacteria: the common nodABC genes
that are present in almost all rhizobia (the exception being some
photosynthetic bradyrhizobia and some Burkholderia, Giraud
et al., 2007) and are required to produce the basic structure of
the nod factors; host-specific nod genes that are linked to specific
modifications of the basic nod factor structure that allows for
symbiotic specificity, such as nodEF, nodG, nodH, nodPQ, and
nodRL; and regulatory genes that are linked to the activation
and transcription of both the common and specific nod genes
(Horvath et al., 1986; Göttfert et al., 1990; Lerouge et al., 1990;
Sanjuan et al., 1994; Moulin et al., 2001; Schlaman et al., 2006).

Nod factor perception is mediated by Nod factor receptors
(NFRs), which are serine/threonine kinases that are located
in the plasma membrane and that contain LysM motifs in
their extracellular domains (Limpens et al., 2003; Madsen
et al., 2003; Radutoiu et al., 2003; Arrighi et al., 2006). These
NFRs correspond to the Nod factor structure and act as host
determinants for symbiotic specificity. This specificity was shown
by the transfer of Lj-NFR1 and Lj-NFR5 to Medicago truncatula,
which enabled nodulation by the Lotus japonicus symbiont
Mesorhizobium loti (Radutoiu et al., 2007); the specificity of two
Lotus species is the function of a single amino acid residue in one
of the LysM domains of Lj-NFR5 (Radutoiu et al., 2007).

In addition to Nod factors, some rhizobia secrete proteins that
are involved in nodulation via a type III secretion system (T3SS;
Fauvart and Michiels, 2008; Deakin and Broughton, 2009). These
proteins, called nodulation outer proteins (Nops), are believed
to contribute to legume immune response suppression or to
modulate root cell cytoskeletal rearrangement during nodule
development (Bartsev et al., 2004; Skorpil et al., 2005; Soto et al.,
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2009). The nopP and nopL genes are found in Rhizobium sp.
NGR234, Sinorhizobium fredii and Bradyrhizobium japonicum
and are absent in pathogenic bacteria (Deakin and Broughton,
2009). In Rhizobium sp. NGR234, these genes are required for
the nodulation of the tropical legumes Tephrosia vogelii and
Flemingia congesta (Marie et al., 2003; Skorpil et al., 2005).
Moreover, the nodulation of Vigna unguiculata by S. fredii is also
affected by Nop proteins injected by S. fredii in a T3SS-dependent
fashion (Schechter et al., 2010), but further studies on their effects
on host specificity are still necessary.

Exopolysaccharides, bacterial cellular wall constituents, are
also known to have important effects on symbiosis. For example,
a defect on the EPS surface may induce failures both in the early
and late stages of symbiosis, such as those observed in strains
of S. meliloti presenting normal nodules in some ecotypes of
M. truncatula but defective nodules in others, and this pattern
may be transferred by a change in the EPS biosynthesis locus
(Simsek et al., 2007). Because M. loti EPS mutants result in
nonfunctional nodules in L. leucocephala but functional ones
in L. pedunculatus, the EPS surface has also been linked to
specificity in the nitrogen fixing phase (Hotter and Scott, 1991),
as demonstrated by a B. japonicum exoB mutant fixing nitrogen
in G. max but not in G. soja (Parniske et al., 1994) or some
R. leguminosarum LPS mutants fixing nitrogen in peas (Pisum
sativum), whereas other mutants do not (Kannenberg et al.,
1992).

One point that deserves attention is the almost complete
lack of literature on this signal exchange in tropical legumes,
which are typically more promiscuous than temperate ones.
Because of this knowledge gap, it is not known how the degree
of promiscuity of a legume affects the signal exchange process
because with the exception of Phaseolus, the best-studied legumes
are all generally considered to nodulate with a few species or
genera at the most (Michiels et al., 1998; Martínez-Romero, 2003;
Rodríguez-Navarro et al., 2011; Rufini et al., 2013). A synthesis
of a large portion of the literature identifying seed or root
exudate compounds with known nod-gene activating properties
(Table 1) indicates that more promiscuous (or less-selective)
legumes may exhibit a broader range of these compounds, as
per a comparison between P. vulgaris and G. max, which are
less and more selective, respectively, for the rhizobial partner
of the symbiosis. In contrast, the only paper we could find on
V. unguiculata identifies only three compounds, although it has
a very broad range of rhizobial partners. One further puzzle is
that genistein is a known inducer for G. max, P. vulgaris, and
V. unguiculata, although the rhizobia of these three species are
not identical.

A lack of depth in the literature on this topic leads to
ambiguity in how to relate legume promiscuity (or specificity)
with the signal exchange process, although this relationship is
expected to exist due to the specific nature of this exchange.
Thus, this relationship might be an interesting line of future
research; a better understanding of this relationship may
lead to biotechnological approaches to enhance or reduce the
compatibility profile of a given legume similarly, to soybean
breeding for broad bacterial compatibility in Africa (Gwata et al.,
2005).

TABLE 1 | Seed and root exudate compounds with known nod
gene-activating factors, from legumes with broad or narrow ranges of
symbiotic compatibility.

Species Source nod gene-
activating factors

Source

Glycine
max

Root exudates Daidzein, genistein,
coumestrol,
isoliquiritigenin

Kape et al. (1992),
Pueppke et al. (1998)

G. max Seeds Daidzein, genistein Pueppke et al. (1998)

Medicago
sativa

Seeds Chryoseriol, luteolin,
liquiritigenin

Maxwell et al. (1989),
Hartwig et al. (1990)

M. sativa Root exudates 4,7-dihydroxyflavone
formononetinin

Maxwell et al. (1989)

Phaseolus
vulgaris

Root exudates Genistein, eriodictyol,
naringenin, daidzein,
coumesterol

Davis and Johnston
(1990), Hungria et al.
(1991b), Dakora et al.
(1993b)

P. vulgaris Seeds Unidentified
isoflavone,
delphinidin, petunidin,
malvidin, myricetin,
quercetin, kaempferol

Hungria et al. (1991a)

Vigna
unguiculata

Root exudates Daidzein, genistein,
and glycitein

Dakora (2000)

Environmental Effects on Signal
Exchange

Although the interaction between environmental stresses and
legume-rhizobia signal exchange has been investigated, as will be
discussed, these studies have also centered on temperate climate
pulses, and their stresses.Much work is still needed to understand
how the signal exchange process of other legumes is affected by
their more typical stresses.

Temperature
Much research has examined low root zone temperatures and
their effects on signal exchange and nodulation, particularly in
soybeans, but little is known about the effects of high root zone
temperatures.

Low root zone temperatures inhibit the synthesis and
secretion of plant-to-bacteria signals, as shown in G. max, in
which the root exudation of genistein is strongly reduced below
17.5◦C (Zhang and Smith, 1994, 1996a; Zhang et al., 1995; Pan
and Smith, 1998). Low root zone temperatures also reduce
nod factor synthesis and/or excretion in R. leguminosarum
bv. trifolii (McKay and Djordjevic, 1993) and B. japonicum
(Zhang et al., 2002). The molecular basis of this effect
indicates that the T3SS gene cluster was progressively
activated as temperatures increased, whereas the nod genes
were rapidly induced at 15◦C (Wei et al., 2010). Genistein
has been proposed to induce this gene cluster through a
regulatory cascade involving NodD1 and NodW (Krause et al.,
2002).

These signal exchange effects combine to delay nodulation
onset (Pan and Smith, 1998) and reduce the nodule growth
rate, leading to smaller nodules (Lira Junior et al., 2005).
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Further confirmation that these stresses are directly linked to
signal exchange is that the exogenous application of genistein is
sufficient to mitigate a delay in nodulation under environmental
conditions in which the root system temperature is below
this threshold and the shoot is above it (Zhang and Smith,
1995, 1997; Pan et al., 1997). This mitigation is stronger for
lower soil temperatures or stronger stresses (Zhang and Smith,
1996b).

Salinity
Although salinity is known to affect Nod factor production by
R. tropici CIAT 899 in the presence of apigenin (Estévez et al.,
2009), there are indications that high salt concentrations may
induce nod genes even in the absence of flavonoid inducers
(Guasch-Vidal et al., 2012).

However, increased salinity reduces Nod factor production by
S. arboris, which nodulates Acacia and Prosopis, both of which
are legume trees tolerant to salt stresses (Penttinen et al., 2013).
Similar effects were found for R. tropici andR. etli, which nodulate
P. vulgaris (Dardanelli et al., 2012).

Similarly, to what is observed at low soil temperatures, as
previously described, some of the salinity effects may be reduced
if the bacteria are pre-incubated with their respective legume
signals, such as genistein for B. japonicum (Miransari and Smith,
2009) or hesperetin and apigenin for R. tibeticum (Abd-Alla et al.,
2013).

Soil pH
Soil pH affects symbiosis in several ways, including signal
exchange (Hungria and Vargas, 2000). For example, both G. max
and P. vulgaris isoflavonoid exudation from roots were reduced
when the pH was lowered from 5.8 to 4.5 (Hungria and
Stacey, 1997), and some nodulation genes, including nodA, are
inactivated by reducing the pH in R. leguminosarum bv. trifolii
(Richardson et al., 1988a,b). The production and excretion of
Nod factors were also reduced in acidic soils (McKay and
Djordjevic, 1993).

Another effect is a change in the profile of the Nod factors
secreted by R. tropici CIAT 899, which is tolerant to acid
conditions. A total of 52 differentmolecules were produced under
an acidic pH and 29 at a neutral pH; only 15 are common to
both conditions (Moron et al., 2005). This phenomenon might
be linked to the reduction in nodC expression by the Arachis
hypogaea bacterial symbionts under acidic conditions (Angelini
et al., 2003).

In contrast to what is observed for low soil temperatures and
salinity, the addition of flavonoids did not reduce the effects of
low pH on acid-sensitive or acid-tolerant A. hypogaea (Angelini
et al., 2003), which was apparently due to increased flavonoid
uptake and toxicity.

Low pH also activates a systemic, shoot-controlled, and
GmNARK-dependent (Nodulation Autoregulation Receptor
Kinase) mechanism that negatively regulates initial nodule
development in soybeans (Lin et al., 2012), as confirmed by the
reduced expression of the GmENOD40b, GmNIN-2b, GmRIC1,
GmRabA2, and cytochrome P450 genes, which are critical to early
nodulation stages.

Iron and Phosphorus Deficiency
The legume-rhizobia symbiosis demands high levels of iron
due to its inclusion in the compositions of leghemoglobin,
nitrogenase, and cytochromes (Brear et al., 2013). Iron deficiency
effects vary between legume species and may include altered
nodule initiation, as seen in Lupinus angustifolius L. (Tang et al.,
1990), or late development, as seen in peanuts (A. hypogaea),
common beans (P. vulgaris), and soybeans (O’Hara et al., 1988;
Soerensen et al., 1988; Slatni et al., 2011).

Iron absorption regulation by rhizobia in culture media has
been extensively researched, and iron-responsive transcription
regulators such as IrrA and RirA and the genes they control under
iron deficiency and sufficiency have been determined (Viguier
et al., 2005; Todd et al., 2006). Several of these genes encode
siderophore production, heme biosynthesis, and transporters,
such as the ferric siderophore ATP-binding cassette (ABC)-
related genes.

Under iron-limiting conditions, free-living rhizobia express
TonB-dependent receptors after activation by an iron regulator
(Small et al., 2009), although bacteriod active siderophore
transport is not necessary for symbiosis (Chang et al., 2007; Small
et al., 2009). Mutations in ABC transporters, TonB-dependent
receptors and TonB do not affect symbiosis establishment (Lynch
et al., 2001; Nienaber et al., 2001), suggesting that bacteriods
do not require a high affinity for siderophore absorption to
obtain iron during symbiosis (Brear et al., 2013), although
S. meliloti strains deficient in the siderophore absorption system
exhibited lower nodule occupation rates under iron-deficient
conditions than the corresponding wild types (Battistoni et al.,
2002).

N2 fixation has a high energy cost, and P deficiency is
an important restriction for legume production, particularly in
the low-P soils of most tropical regions (Sulieman and Tran,
2015). Organic phosphates are the main source to sustain nodule
symbiotic activities (Li et al., 2012), and several genes involved in
recycling P are up-regulated under low-P conditions (Hernandez
et al., 2009), particularly those encoding acid phosphatases
(Maougal et al., 2014; Zhang et al., 2014).

Generally, the specific activity of acid phosphatases in nodules
strongly increases when P supply is reduced in the growth
medium but is stable when P supply is high (Araujo et al.,
2008). The expression of several genes of the purple acid
phosphatase GmPAP family was highly induced in soybean
nodules under low-P availability (Li et al., 2012); the expression
of phytate and phosphoenol pyruvate phosphatase was also
increased in nodules under these conditions (Araujo et al.,
2008; Bargaz et al., 2012). Acid phosphatases may have multiple
functions, such as carbon metabolism, nodule permeability for
O2 diffusion, and oxidative stress attenuation (Sulieman and
Tran, 2015), which makes their study both more challenging and
necessary.

Drought and Flood
The current literature lacks information on the effects
of either drought or flooding on legume-rhizobia signal
exchange, although both situations are well known to reduce
nodulation and nitrogen fixation (Arayangkoon et al., 1990;
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Marcar et al., 1991; Purwantari et al., 1995; Hatimi, 1999). Thus,
further research is necessary on this topic. Nodule formation
ceases completely under sufficiently long or severe drought
conditions, and nitrogenase and nodule respiratory activities
are also strongly diminished in soybeans and common beans
(Gerosa-Ramos et al., 2003). In alfalfa, such nitrogenase activity
reduction has been linked to diminished bacteriod metabolic
capability and oxidative damage to nodule cell components (Naya
et al., 2007).

At the other extreme, several legumes are highly sensitive to
water-logged conditions, with nodule development and function
being more impaired than infection. Some of these effects,
including nitrogenase activity, may be even stronger than
observed for drought conditions. This phenomenon appears
to be mostly linked to reduced O2 availability (Andres et al.,
2012).

Heavy Metals and Pesticides
Although the literature contains little information on the effects
of pesticides and heavy metals on signal exchange, some in
vitro work with 30 different pesticides and environmental
contaminants showed that S. melilotiNodDwas affected, delaying
nodulation, and reducing biological nitrogen fixation byM. sativa
(Fox et al., 2001, 2004). M. sativa and G. max fungicide-treated
seeds also exhibited reduced nod gene activity for their respective
partners (Andrés et al., 1998).

More recently, it has been shown that R. alamii, an EPS
producer, modulates its metabolism in response to cadmium
(Schue et al., 2011) through the activation of biofilm formation,

both in the wild type and in EPS-deficient mutants, which may
reduce the effects of this heavy metal.

Overall Synthesis

Although signal exchange between legumes and their bacterial
symbionts is a well-studied process, much still needs to be
clarified, particularly in relation to tropical legumes, which have
been barely studied, and environmental effects other than low soil
temperature.

Under at least some conditions, a delay in nodulation onset
and, therefore, biological nitrogen fixation may be reduced by
the exogenous supply of the appropriate legume signal. Because
current predictions indicate a probable reduction in global
agricultural season lengths, this phenomenon should receive
increased attention.

Another field that deserves more attention is the study
of signal exchange with non-traditional rhizobia, such as
Burkholderia and Cupriavidus, and its effects on the plant host,
for which no literature was found.
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