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Abstract Mineral nitrogen deficiency is a frequent charac-

teristic of arid and semi-arid soils. Biological nitrogen

fixation by legumes is a sustainable and environmental-

friendly alternative to chemical fertilization. Therefore,

legumes have a high potential for the reclamation of

marginal soils. Such issue is becoming more urgent due to

the ever-rising requirement for food and feed, and the

increasing extension of salinized and degraded lands, both

as a consequence of global change and irrigation practices.

This manuscript reviews current research on physiological

and molecular mechanisms involved in the response and

tolerance to environmental stresses of the Rhizobium–

legume symbiosis. We report in particular recent advances

on the isolation, characterization, and selection of tolerant

rhizobial strains and legume varieties, both by traditional

methods and through biotechnological approaches. The

major points are the following. (1) Understanding mecha-

nisms involved in stress tolerance is advancing fast, thus

providing a solid basis for the selection and engineering of

rhizobia and legumes with enhanced tolerance to environ-

mental constraints. (2) The considerable efforts to select

locally adapted legume varieties and rhizobial inocula that

can fix nitrogen under conditions of drought or salinity are

generating competitive crop yields in affected soils. (3)

Biotechnological approaches are used to obtain improved

legumes and rhizobia with enhanced tolerance to abiotic

stresses, paying particular attention to the sensitive

nitrogen-fixing activity. Those biotechnologies are yielding

transgenic crops and inocula with unquestionable potential.

In conclusion, the role of legumes in sustainable agricul-

ture, and particularly, their use in the reclamation of

marginal lands, certainly has a very promising future.

Keywords Legume . Rhizobium . Soil . Nitrogen fixation .

Nodule . Stress . Salinity . Drought
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1 Introduction

Over recent decades, anthropogenic activities such us urban

development, road construction, industrial processes, min-

ing, and inadequate agricultural practices have resulted in

the eutrophication and pollution of soils and fresh water

resources, soil degradation, loss of soil fertility, and

desertification (McLauchlan 2006; Spiertz 2010; Gordon

et al. 2010). Agriculture management, including activities

such as tillage, fertilization, and biomass alteration, has

a critical impact on food and environmental quality

(McLauchlan 2006). In addition, arid and semi-arid regions

are particularly prone to salinization, which might occur

naturally or as a consequence of mismanaged irrigation, a

process that has a profoundly negative effect on crop

production (Szabolcs 1994). In fact, almost 40% of the

world’s land surface is affected by salinity-related problems

(Zahran 1999). Nutrient depletion and soil acidification are

two other common consequences of inadequate soil

management (Hungria and Vargas 2000). Nitrogen is an

essential nutrient for plant growth, and its availability is one

of the most limiting factors in agricultural systems. For

decades, nitrogen fertilizers have been continuously used to

improve crop yield. However, the use of nitrogen fertilizers

accelerates the depletion of large amounts of fossil, non-

renewable energy resources, and it contributes substantially

to environmental pollution through atmospheric emission

and leaching of nitrogenated compounds to ground or

surface water (Bohlool et al. 1992; Peoples and Crasswell

1992; Velthof et al. 2009).

Sustainable agriculture involves ecological management,

which implies considering elements, such as biodiversity,

nutrient cycling, and energy flux, in order to avoid the loss

of nutrients and soil and to prevent the attack of pests and

diseases (Spiertz 2010). Biological nitrogen fixation, that is,

the assimilation of atmospheric nitrogen in form of organic

compounds, is a sustainable source of nitrogen in cropping

systems, as fixed nitrogen can be used directly by the plant,

and it is less susceptible to volatilization, denitrification,

and leaching (Jensen and Hauggaard-Nielsen 2003; Garg

and Geetanjali 2007). Thus, biological nitrogen fixation in

agrosystems can mitigate the use of fertilizers and conse-

quently reduce global warming and water contamination

(Bohlool et al. 1992). Nitrogen fixation (diazotrophy) is an

exclusive property of prokaryotic organisms containing the

nitrogenase enzyme complex. Diazotrophs include some

archaea and within the eubacteria, members of proteobac-

teria, cyanobacteria, actinobacteria, and others. Eukaryotic

organisms cannot fix nitrogen, and as such, different types

of symbiotic interactions have been established between

certain eukaryotes and diazotrophic bacteria. These associ-

ations range from loose interactions to highly regulated

intracellular symbioses, whereby eukaryotic organisms

supply nutrients and energy to the diazotrophs in exchange

for fixed nitrogen (Kneip et al. 2007).

The most important nitrogen-fixing agents in agricultural

systems are the symbiotic associations between legumes

and the group of soil bacteria collectively designated as

rhizobia. Rhizobia are a group of diazotrophs, most of them

belonging to the α-proteobacteria, that include the genera

Rhizobium, Mesorhizobium, Ensifer (formerly Sinorhi-

zobium), Bradyrhizobium, Azorhizobium, Methylobacte-

rium, Devosia, Ochrobactrum, Phyllobacterium, and

Shinella. Some nodulating bacteria within the genera

Burkholderia, Cupriavidus, and Herbaspirillum included

in the β-proteobacteria class have also been described

(Masson-Boivin et al. 2009 and references therein; Weir

2009). In conditions of limited nitrogen availability in the

soil, specific recognition between the plant and the micro-

symbiont takes place by signal molecule exchange:

legume plants secrete flavonoids and other compounds

to the rhizosphere, inducing the rhizobial lipo-chito-

oligosaccharides, the so-called Nod factors (Cooper 2007).

These molecules act as mitogens and the cell division they

induce in the root cortex leads to the formation of a new

organ, the root nodule, involving the progressive differen-

tiation of specialized cells and tissues. Concomitant with

the development of the nodule primordium, bacteria enter

the root cortex and in most cases, they form intracellular

infection threads in root hair cells that grow inwardly until

reaching the nodule primordium cells. The rhizobia infect

cells of the nodule primordium entering the nodule host cell

by an endocytosis-like process (González-Sama et al.

2004), becoming surrounded by a host-derived membrane.

The intracellular bacteria and enveloping membrane

becomes known as the symbiosome (Brewin 1991; Jones

et al. 2007), which is the basic nitrogen-fixing unit of the

nodule. Subsequently, transport of reduced carbon com-

pounds from the plant to the nodule and of fixed nitrogen

from the bacteroids to the host plant cytoplasm occurs.

Many other metabolites are also exchanged (Udvardi and

Day 1997; Hinde and Trautman 2002).

Legumes are second to grasses in their importance to

humans and among grain crops, legumes rank third behind

cereals and oilseeds in world production. It is estimated that

about 88% of legume species examined to date can form

nitrogen-fixing nodules with rhizobia, being responsible for

up to 80% of the biological nitrogen fixation that takes

place in agricultural settings. Owing to this capacity,

legumes are a major source of food, fodder, timber,

phytochemicals, phytomedicines, nutriceuticals, and nitro-

gen fertility in agrosystems (Graham and Vance 2000,

2003). Thus, legumes may play a key role in sustainable

agriculture. Most importantly, mineral nitrogen deficiency

is an important limiting factor for plant growth in arid and

semi-arid regions, and rhizobia–legume symbioses are the
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primary source of fixed nitrogen in such areas (Zahran

1999). Nitrogen rhizodeposition by legumes occurs by

death and decomposition of nodules and roots and by

exudation of soluble nitrogen compounds. Rhizodeposition

of nitrogen, as a percentage of total plant nitrogen, can vary

from 4% to 71% (Fustec et al. 2010, and references

therein). Exudation of amino acids into the rhizosphere

helps prevent loss of organic matter from the soil (Brophy

and Heichel 1989). Legume-based pastures can rehabilitate

degraded land by improving soil aggregation and by

stimulating the activity of different soil organisms that

modify soil structure (Parker 1986; Karlen et al. 1994).

Legume cover crops also help prevent erosion during the

establishment of the plantation (Giller and Wilson 1991).

Some legumes, such as alfalfa, have deep roots able to

absorb nutrients and water that are not available to other

crop plants (Karlen et al. 1994). Phosphorus availability is

another limiting factor in many agrosystems. Symbiotic

nitrogen fixation and ammonium assimilation induce soil

acidification (Raven 1986), which may benefit alkaline

soils by solubilizing phosphorus from rock phosphates

(Israel and Jackson 1978). Some legumes, such as lupin,

can secrete organic anions into the soil, hereby inducing

phosphorus solubilization in phosphorus-deficient soils

(Weisskopf et al. 2009).

It has long been known that cereals, oilseeds, grasses,

and herbs produce higher protein grains and higher

yields when grown after or in conjunction with legumes

(Dakora and Keya 1997; Jensen and Hauggaard-Nielsen

2003; Danga et al. 2009). Accordingly, legumes are

frequently rotated with non-legume crops such as cereals.

Intercropping legumes and cereals annually may be

beneficial to the environment because it permits more

efficient exploitation of the available nutrients, leading to

a better use of nitrogen in the agrosystem and reducing

post-harvest nitrogen availability and nitrate leaching.

Intercropping can also reduce pests and diseases as well

as the use of fertilizers and pesticides (Jensen and

Hauggaard-Nielsen 2003).

The benefits of nitrogen fixation by legumes are

summarized in Fig. 1. In conclusion, the introduction of

legumes and their nodulating rhizobia can have an

important effect on the reclamation of degraded and

marginal soils for sustainable agriculture. Such recovery is

becoming an urgent matter due to the increasing extension

of salinized land and the ever-rising requirements for food

and feed. Both rhizobia and legumes have a low or

moderate tolerance to abiotic stresses. Moreover, symbiosis

and nodule functions are very sensitive to abiotic stresses,

more so than the host legume or the rhizobia (Delgado et al.

1994; Serraj et al. 1997). Thus, it is of interest to obtain

bacterial inocula and legume varieties with enhanced

tolerance to abiotic stresses for use in soil reclamation,

which can be achieved by traditional trait selection or by

biotechnological procedures. We will review here the

current research into the physiological and molecular events

involved in the response and tolerance to environmental

stresses in legumes, rhizobia, and the Rhizobium–legume

symbiotic system. Elucidating the physiological and mo-

lecular mechanisms that determine sensitivity or tolerance

to abiotic stress in this biological system can help establish

different strategies to obtain rhizobia, legumes, and nodu-

lated legumes with enhanced tolerance to environmental

stresses that act efficiently in reclaiming marginal soils. In

the subsequent sections, we will report on recent research

concerning the isolation, characterization, and selection of

tolerant rhizobial strains and legumes both by traditional

methods and biotechnological approaches.

2 The Rhizobium–legume symbiosis

under environmental constraints

2.1 Effects of abiotic stresses on free-living rhizobia

The sensitivity of different rhizobial species and strains to

abiotic stress varies considerably (Hungria and Vargas

2000; Vriezen et al. 2007). Salt stress affects both bacteria

and plants in two ways: it induces ionic stress due to the

high concentration of ions and also osmotic stress through

the change in the solute concentration around the cells,

producing water deficit and desiccation. It has been

reported that fast growing rhizobia are more salt-tolerant

than slow-growing rhizobia (Zahran 1999) and that bacteria

subjected to salt stress may undergo morphological alter-

ations. Such alterations include cell expansion and distor-

tion of the cell envelope (Busse and Bottomley 1989).

Surface components, some of which are necessary to

establish symbiosis, can also suffer changes in a saline

environment. Decreasing exopolysaccharide synthesis

(Breedveld et al. 1991; Lloret et al. 1998; Vanderlinde et

al. 2010), structural alterations, and changes in side chain

length of lipopolysaccharides (Lloret et al. 1995; Soussi et

al. 2001; Bhattacharya and Das 2003; Campbell et al. 2003;

Vanderlinde et al. 2009), as well as the suppression or

Decrease:

use of fertilizers 

environmental pollution

loss of organic matter 

global warming 

N2 + 8H+ + 8e+ + 16ATP 2NH3 + H2 + 16ADP + 16Pi

Increase:

fertility in agrosystems

tolerance to abiotic stresses

phosphorus solubilization

sustainability

Fig. 1 Some benefits of nitrogen fixation by legumes
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alteration of periplasmic oligosaccharides that are involved

in bacterial osmotic adaptation (Miller et al. 1986; Ghittoni

and Bueno 1995) have been reported. Under osmotic stress,

the general metabolism of the Rhizobium slows down, and

there is a repression of genes involved in the tricarboxylic

acid cycle, in the uptake of carbon supply, in glycogen

metabolism, in the respiratory chains, and in ribosomal

genes (Dominguez-Ferreras et al. 2006). The expression of

genes encoding chaperones and elongation factors, as well

as genes involved in cell division, are also altered during

salt stress (Wei et al. 2004; Miller-Williams et al. 2006).

Compatible solute (osmolyte) intracellular accumulation

has been observed in some species of rhizobia when

subjected to salt stress. Higher intracellular concentrations

of carbohydrates such as sucrose, trehalose, and maltose

(Breedveld et al. 1991, 1993; Gouffi et al. 1999), amino

acids such as glutamate and proline (Hua et al. 1982;

Botsford and Lewis 1990; Ruberg et al. 2003; Dominguez-

Ferreras et al. 2006), and imino acids such as glycine

betaine (Talibart et al. 1997; Boncompagni et al. 1999),

ectoine (Talibart et al. 1994, 1997), and N-acetylgluta-

minyl-glutamine amide (Smith and Smith 1989; Fougère

and Le Rudulier 1990) have been reported. It is thought that

these substances and others like proline betaine (Alloing et

al. 2006) act as genuine osmoprotectants. In fact, betaine,

trehalose, and sucrose accumulation increase rhizobial

survival during desiccation (Sauvage et al. 1983; Leslie et

al. 1995; Streeter 2003). It was postulated that trehalose and

glycine betaine are accumulated to prevent starvation rather

than to function as osmotic stabilizers (Oren 1999).

Moreover, intracellular accumulation of potassium and

some polyamines has also been reported (Zahran 1999;

Vriezen et al. 2007 and references therein).

High soil temperatures in tropical and semi-arid regions

can also stress soil rhizobia, decreasing rhizobial survival

(Hungria and Vargas 2000; Rahmani et al. 2009).

High-temperature stress induces physiological and genetic

modifications in rhizobia, such as plasmid deletion (Trevors

1986) and genomic rearrangements (Soberón-Chavez et al.

1986). Rhizobial cell surface components such as exopoly-

saccharides and lipopolysaccharides are also altered under

high temperature conditions (Nandal et al. 2005), and

overproduction of heat-shock proteins has also been

observed (Nandal et al. 2005; Vriezen et al. 2007).

Concerning soil acidity stress, the rhizobial microsym-

biont is usually the most pH-sensitive partner. The optimum

pH for rhizobial growth is considered to be between 6.0 and

7.0, and relatively few rhizobia grow well at a pH below

5.0, although exceptions have been found (Jordan 1984;

Graham et al. 1994). It appears that acid pH tolerance in

rhizobia depends on the ability to maintain an intracellular

pH between 7.2 and 7.5, even at an acidic external pH

(Graham et al. 1994). Rhizobia exhibit an adaptive acid

tolerance response that is influenced by calcium (Glenn et

al. 1999). Indeed, low pH soils are often associated

with increased aluminium and manganese toxicity and

reduced calcium availability (Hungria and Vargas 2000 and

references therein). A range of genes are essential to

regulate intracellular pH and the growth of rhizobia at low

pH, including a two-component sensor regulatory system

that is essential to induce the adaptive acid tolerance

response (Glenn et al. 1999). Acidity can affect the size

and morphology of rhizobia and their potassium content

(Watkin et al. 2003). Furthermore, the activation of

glutathione synthesis might be essential for tolerance to

acid stress (Muglia et al. 2007).

To define the general stress response, gene characteriza-

tion and expression studies have been performed in

rhizobia. In Sinorhizobium meliloti, osmotic stress induces

genes involved in the transport of small molecules and

polysaccharide biosynthesis, whereas genes related to

motility and chemotaxis, amino acid biosynthesis, and iron

uptake are repressed (Ruberg et al. 2003). Some genes

related to low pH tolerance were identified in rhizobial

strains that nodulate French beans under arid and semi-arid

conditions (Priefer et al. 2001). Moreover, several gene loci

were identified in Rhizobium tropici that are required for

adaptation to high pH (Nogales et al. 2002). Gene

expression during osmotic stress has also been character-

ized by microarray technology (Ruberg et al. 2003), and the

expression patterns of up- and down-regulated genes in

response to acidic pH shifts have been studied in S. meliloti

(Hellweg et al. 2009). In addition, a sigma factor was

identified and characterized that acts as a general stress

response regulator in S. meliloti (Sauviac et al.; 2007;

Bastiat et al. 2010).

2.2 Effects of environmental stress on legumes

and their symbiotic performance

2.2.1 Plant growth and photosynthesis

Legumes have long been recognized as either sensitive or

only moderately resistant to salinity (Zahran 1991).

Legume seed germination is affected by salinity and other

stresses, like alkalinity or temperature (Guan et al. 2009).

Most legumes respond to moderate salinity by decreasing

their growth, both by inhibiting plant cell expansion due to

osmotic stress and through cell injury in transpiring leaves

and other plant tissues due to the accumulation of Na+ and

Cl− ions (Delgado et al. 1994; Soussi et al. 1998; Gholipoor

et al. 2000; Bayuelo-Jimenez et al. 2003; Ahmad and Jhon

2005; Manchada and Garg 2008). Ion toxicity induces

alterations in the acquisition and homeostasis of essential

nutrients, such as K+, Ca2+, and Mg2+, and even in nutrient

transport (Jeschke et al. 1992; Manchada and Garg 2008).
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Legumes usually respond to salinity by excluding Na+ and/

or Cl− ions and in fact, it is thought that salt tolerance in

legumes is related to their ability to avoid salt ion

accumulation in the leaves (Winter and Läuchli 1982;

Läuchli 1984; Lauter et al. 1988; Teakle et al. 2006; Cabot

et al. 2009). A vacuolar Na+/H+ antiporter was recently

isolated and characterized that plays an important role in

salt tolerance and ion homeostasis in legume Trifolium

repens, probably by inducing Na+ accumulation into the

vacuole (Tang et al. 2010). Almost all metabolic processes

are affected by salt and water stress. For example,

complex carbohydrates and proteins are broken down by

enzymes into simpler sugars and amino acids, respectively

(Pandey et al. 1984). Moreover, photosynthesis and the

export of photoassimilates from leaves declines upon salt

or water stress due to reduced stomatal conductance,

reducing transpiration and carbon dioxide entry (Nilsen

1992; Soussi et al. 1998; Iturbe-Ormaetxe et al. 1998;

Ohashi et al. 2000; Reddy et al. 2003; Nunes et al. 2009).

Disorganization of thylakoid and other cellular structures

has also been observed during water and heat stress

(Matos et al. 2002).

2.2.2 Nodule formation, structure, and physiology

Symbiosis and nodule functions are very sensitive to salt

stress, more so than the host legume or the rhizobia

(Delgado et al. 1994; Serraj et al. 1997; Zahran 1999 and

references therein). Salinity clearly affects nodule formation

and nitrogen fixation earlier and more severely than plant

growth (Verdoy et al. 2004; Fig. 2). Salt stress reduces the

number of rhizobia that colonize the root (Tu 1981), as well

as the number and shape of root hairs, and it interferes with

infection thread formation (Zahran and Sprent 1986). The

initial phases of nodulation are more sensitive to salt or acid

stress than later phases (Singleton and Bohlool 1984; Ikeda

1994; Miransari et al. 2006). Under conditions of acidity

and high temperature, the release of Nod factors by rhizobia

and/or the release of nod-gene inducers from the legume

roots decreases (Hungria 1995; Hungria and Stacey 1997;

Hungria and Vargas 2000). High temperature also inhibits

root hair formation, adherence of bacteria to root hairs, the

formation of the nodule primordium, and release from the

infection thread and bacteroid development (Hungria and

Vargas 2000 and references therein). Salt stress induces a

decrease in nodule weight and number (El-Sheikh and

Wood 1990; Cordovilla et al. 1999).

Salt stress induces morphological and ultrastructural

alterations in the nodule, including cytoplasm disintegration

and loss of cell wall rigidity, a decrease in the packaging of

inner cortex cells, the appearance of lobulated nuclei,

variations in chromatin condensation, a decrease in the

volume of intercellular spaces, and an increase in the

epidermis and cortex membrane surface due to increased

numbers of vesicles (Swaraj and Bishnoi 1999 and

references therein; Coba de la Peña et al. 2003 and

references therein; Borucki and Sujkowska 2008).

Nodule function is affected by mild stress earlier and

more severely than photosynthesis (Djekoun and Planchon

1991). Nitrogenase catalyzes the fixation of atmospheric

dinitrogen into ammonia, and its enzymatic activity is

inhibited by free oxygen. A microaerobic environment is

present in the nodule due to the combined action of the

oxygen diffusion barrier in the nodular inner cortex and

leghemoglobin, which transports and supplies oxygen to

bacteroids for respiration. A decrease in nitrogen fixation,

nitrogenase activity, and respiration, and an increase in

fermentative activity have been observed in nodules

subjected to salt and drought stress. It is thought that this

effect is principally due to the decrease in oxygen

permeability at the oxygen diffusion barrier in stressed

nodules (Swaraj and Bishnoi 1999) and to a decrease in

leghemoglobin levels (Delgado et al. 1994). In fact, salt

tolerance of different legume varieties has been associated

NaCl

Nitrogenase

activity

Control

Fig. 2 The nitrogen-fixing activity is more sensitive to salt stress than

the legume plant
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with stability in nodule conductance (Aydi et al. 2004;

L’taief et al. 2007). High temperature also decreases the

synthesis of leghemoglobin and nitrogenase activity

(Hungria and Vargas 2000 and references therein). Simula-

tion models to estimate nitrogen fixation rates with several

biotic and abiotic factors, including drought and high

temperature, have been developed (Liu et al. 2010). The

mechanisms by which the diffusion barrier regulates and

changes the conductivity of oxygen under different envi-

ronmental conditions have not been clearly elucidated. It

seems that there is a correlation between those changes and

cellular elongation and glycoprotein extrusion in the

extracellular spaces of the inner cortex (Hunt and Layzell

1993; Iannetta et al. 1995). Ultrastructural modifications

induced by salt or chilling stress have also been observed in

the nodule cortex and infected zone (Serraj et al. 1995; Van

Heerden et al. 2008).

Plant adaptation to saline stress involves a transient

increase in the level of hormone abscisic acid (ABA). In

conditions of drought, salinity, and cold, ABA mediates the

closure of stomatal pores to limit water loss by transpira-

tion, and it confers tolerance to desiccation (Montero et al.

1997; Leung and Giraudat 1998). Auxins, such as indole-3-

acetic acid (IAA), are other hormones involved in the early

steps of nodule organogenesis (Ferguson and Mathesius

2003). Aldehyde oxidases (AOs) are enzymes involved in

the last steps of ABA and IAA synthesis and therefore, they

might regulate many aspects of plant growth, development,

and adaptation to a variety of stresses. Recently, several AO

genes were identified in Pisum sativum, and some of them

are induced by salt and/or ammonium stress (Zdunek-

Zastocka 2008). AO transcript accumulation and enzymatic

activity has been determined in nodules of Medicago

truncatula and Lupinus albus (Fedorova et al. 2005).

Cytokinins are another hormone type involved in the

establishment of legume–Rhizobium symbiosis and the

early steps of nodule organogenesis. Together with auxins

and nodulins (legume genes involved in nodulation),

cytokinins induce mitotic activity in root cortical cells,

leading to the formation of the nodule primordium

(Ferguson and Mathesius 2003). Cytokinins are thought to

have a protective effect on plants under stress (Chernyad’ev

2009). Cytokinins are sensed by hybrid-type histidine

kinases and transduced by a two-component signaling

system that involves a His-Asp phosphorelay (Kakimoto

2003 and references therein). In legumes, some members of

the cytokinin receptor multigenic family are essential for

nodulation (Murray et al. 2007), and cytokinin receptors are

involved in nodule morphogenesis, senescence, and stress

response (Coba de la Peña et al. 2008a, b). In Arabidopsis,

cytokinin receptors act as negative regulators during abiotic

stress and in ABA signaling, and they probably participate

in signaling cross-talk involving cytokinins, ABA, and

stress-signaling pathways (Tran et al. 2007; Coba de la

Peña et al. 2008c and references therein).

Sucrose availability may also be an important factor

involved in the inhibition of nitrogen fixation, as nitroge-

nase activity has been correlated with a decrease in sucrose

synthase activity and transcript levels in nodules under

conditions of drought and other environmental stress

(Gordon et al. 1997; Arrese-Igor et al. 1999). Nitrogen

assimilation is also affected by reducing glutamine synthe-

tase and glutamate synthase activities (Hungria and Vargas

2000). Ascorbate and ascorbate peroxidase activities also

seem to be important in regulating nitrogenase activity and

dinitrogen fixation in legumes (Ross et al. 1999). Indeed,

nodule nitrogen fixation appears to be inhibited by

feedback regulation of ureide accumulation in the shoot

during drought stress (Serraj et al. 1999), and a decrease in

the activity of the enzymes involved in ammonium

assimilation and in photosynthate influx into the nodule

have also been observed in nodules subjected to salt stress

(Coba de la Peña et al. 2003 and references therein).

Plants, like rhizobia, accumulate compatible solutes as

an adaptive mechanism to salt stress. These include non-

structural carbohydrates (sucrose, hexose), sugar alcohols

(mannitol, ononitol, and sorbitol), amino acids (proline,

alanine, arginine, glycine, and others), betaine and betaine-

derived molecules (glycine betaine), and amides (gluta-

mine, asparagine) (Keller and Ludlow 1993; Ashraf and

Waheed 1993; Ashraf 1994; Schubert et al. 1995; Márquez

et al. 2005; Manchada and Garg 2008). Proline is probably

the most widely distributed osmolyte (Delauney and Verma

1993), and a strong correlation between osmolyte accumu-

lation and osmotic stress tolerance has been widely reported

(Zhu 2002). Legume symbiotic nodules subjected to salt or

drought stress accumulate proline, other amino acids, sugars,

and other osmolytes (Fougère et al. 1991; Fernández-Pascual

et al. 1996; Swaraj and Bishnoi 1999; Larrainzar et al. 2009).

Proline accumulation in the symbiosome has also been

reported (Pedersen et al. 1996), and the accumulation of

transcripts for proline-rich proteins has been observed in salt-

stressed nodules (Verdoy et al. 2004). In order to explain the

effect of compatible solutes, it is suggested that these

molecules induce an osmotic adjustment, inducing a de-

crease in osmotic potential to allow an increase in water

absorption and a re-establishment of intracellular salt

concentration (Chen and Murata 2002). Other mechanisms

against stress that have been proposed for these solutes,

particularly for proline, include protection of plasma mem-

brane integrity, providing an energy sink or reducing power,

a source of carbon and nitrogen, protection of enzymes

against denaturation by direct molecular interaction, heavy

metal detoxification, and a signaling/regulatory role that

might activate multiple responses (Rai 2002 and references

therein).
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The generation of toxic reactive oxygen species (ROS)

is an unavoidable consequence of aerobic metabolism.

ROS include, among others, hydrogen peroxide, superox-

ide ion, the strongly toxic hydroxyl radical, and nitric

oxide. Oxygen species are principally generated in

mitochondria and chloroplasts as a consequence of the

electron transport associated with respiration and photo-

synthesis, respectively. During stress, increases in ROS

generation occur due to altered metabolism within these

organelles. It has been proposed that ROS induce

oxidative damage in several cellular components, affecting

proteins, nucleic acids, and membrane lipids. ROS play

also a role in orchestrating plant gene expression and

regulation (Foyer and Graham 2009; Chang et al. 2009).

The legume nodule is very sensitive to ROS, where

oxidative stress by ROS induces an array of toxic effects

and triggers nodule senescence. Salt stress induces nodule

senescence through the enhanced production of toxic ROS

and the lowering of antioxidant defenses (Gogorcena et al.

1995; Sheokand et al. 1995; Swaraj and Bishnoi 1999).

Nodule natural senescence also involves an increase in

ROS and a decrease in antioxidant levels (Evans et al.

1999; Hernández-Jiménez et al. 2002; Puppo et al. 2005).

Nodules are rich in leghemoglobin, which can undergo

autoxidation and generate ROS (Puppo et al. 1981; Dalton

et al. 1986). ROS induce leghemoglobin and protein

degradation, originating protein radicals and catalytic iron

(Davies and Puppo 1992) that induce lipid peroxidation,

as well as generating hydroxyl radicals and glutathione

oxidation, which in turn produce superoxide and oxygen

peroxide (Puppo and Halliwell 1988; Becana et al. 1998).

Hydroxyl radicals can damage sugars, lipids, proteins, and

DNA. The presence of specific proteins related to nitrogen

fixation in the nodule that are susceptible to auto-

oxidation, such as ferredoxin, uricase, and hydrogenase,

can also induce ROS generation (Dalton et al. 1991).

Plants have developed several antioxidant systems to

scavenge ROS that are also active in symbiotic nodules

(Dalton et al. 1986, 1993; Evans et al. 1999; Becana

et al. 2000; Matamoros et al. 2003; Puppo et al. 2005).

These include the enzymes catalase, superoxide dismutase

(SOD) and peroxidase, as well as the ascorbate-

glutathione pathway, which includes ascorbate peroxidase,

monodehydroascorbate reductase, dehydroascorbate re-

ductase, and glutathione reductase (Dalton et al. 1986,

1992; Noctor and Foyer 1998; Becana et al. 2000). Low-

molecular weight antioxidants ascorbate and reduced

glutathione in this pathway can also scavenge superoxide

and hydrogen peroxide (Becana et al. 2000; Matamoros et

al. 2006; Loscos et al. 2008). In some legume species and

tissues, glutathione is partially or completely replaced by

homoglutathione, which presumably fulfils analogous

functions (Evans et al. 1999; Loscos et al. 2008).

Several recent studies have used molecular techniques,

including transcriptomics, proteomics, and metabolomics,

to define new genes, proteins, and metabolites involved in

abiotic stress in legumes. In this way, a set of differentially

expressed genes was identified during heat-shock treatment

of cowpea nodules (Simões-Araújo et al. 2002). Similarly,

expressed sequence tags (ESTs) have been analyzed in

drought-tolerant horsegram under various abiotic stress

conditions (Reddy et al. 2008), and a transcriptome study

was performed on alfalfa subjected to drought stress (Chen

et al. 2008). ESTs have also been characterized in pigeon

pea subjected to water deficit conditions (Priyanka et al.

2010), as have drought and salinity responsive ESTs in

chickpea (Varshney et al. 2009; Jain and Chattopadhyay

2010). Drought-induced genes were studied in peanut

(Govind et al. 2009) and microRNAs were identified in

Phaseolus vulgaris subjected to drought (Arenas-Huertero

et al. 2009). A gene expression atlas of M. truncatula was

obtained by comparative transcriptome analysis as a

resource for legume functional genomics (Benedito et al.

2008), and gene expression was analyzed in the roots of M.

truncatula subjected to salt stress (Merchan et al. 2007; Li

et al. 2009). The model legume Lotus japonicus has been

exposed to salt stress, and profiles were obtained at the

ionomic, transcriptomic, and metabolomic levels, in order

to perform integrative functional genomics (Sanchez et al.

2008). The characterization of genes and regulatory path-

ways involved in legume tolerance to abiotic stresses will

allow the mechanisms of stress tolerance in legumes to be

elucidated. These results hold promise for the future

engineering of legume crop plants with enhanced tolerance

to major abiotic stresses.

3 Rhizobial inoculants in the reclamation of marginal

soils

The fact that nitrogen fixation is an essential aspect of

agricultural sustainability has led to the development of

different strategies to maximize legume-derived nitrogen

fixation in agriculture: field inoculation with selected

rhizobial strains; growth of selected legume species and

varieties; and the selection and joint field application of

both bacteria and legumes. In this section, we will review

the current research concerning the identification and

selection of rhizobial strains with suitable characteristics

for field inoculation to induce legume nodulation and

nitrogen fixation under environmental constraints. We will

also review the existing knowledge on the role of rhizobia

as endophytes and plant growth-promoting rhizobacteria,

both in leguminous and non-leguminous plants. Finally,

research concerning the development of genetically engi-

neered stress-tolerant rhizobia will be examined.
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3.1 Selection of rhizobial inoculants that nodulate legumes

in stressed environments

Nodulation, nitrogen fixation, and growth can be improved

in legumes by inoculating plants with competitive and

stress-tolerant rhizobia. This is an economically feasible

way to increase legume production in stress-limited

environments, particularly when local rhizobia strains are

absent from soils or ineffective (Zahran 1999 and refer-

ences therein). An inoculant strain must display enhanced

competitive ability to successfully colonize plant roots,

form nodules, and subsequently perform nitrogen fixation.

Thus, complex interactions between the edaphic environ-

ment with genotypes of both the legume and its micro-

symbiont must be taken into account, and different

strategies have been developed to select quality inoculant

rhizobial strains to enhance legume-derived nitrogen fixa-

tion in agriculture (Sessitsch et al. 2002 and references

therein). Different legume inoculation techniques have been

developed, such as slurry, lime or phosphate pelleting,

vacuum impregnation for seed inoculation, and liquid and

granular inoculation for soil inoculation (Brockwell and

Bottomley 1995; Deaker et al. 2004).

Molecular and phylogenetic studies have been per-

formed in order to classify and evaluate the molecular

diversity of rhizobia (Wang and Martínez-Romero 2000;

Lloret and Martínez-Romero 2005; Mouhsine et al. 2007;

Elboutahiri et al. 2009; Binde et al. 2009), providing a

suitable means to identify and manage rhizobial isolates.

Evaluating rhizobial competition in the rhizosphere must

also be performed, and several specific determinants of

competitive nodulation have been identified. One such

factor is the secretion of rhizopines, myo-inositol deriva-

tives by various S. meliloti and Rhizobium leguminosarum

bv. viciae strains. Nodule bacteroids from these strains can

synthesize rhizopines, which are subsequently catabolized

by the corresponding free-living rhizobial strain and a few

other bacteria. Studies of competition have shown that in

the presence of a rhizopine-producing strain, the strain that

can catabolize the rhizopine occupies a higher percentage

of the nodules (Murphy et al. 1995 and references therein).

However, to date, the mechanism and biological functions

of rhizopines remain unclear. Another determinant of

competitive nodulation is the production of trifolitoxin, a

potent antirhizobial peptide that is produced by some R.

leguminosarum strains (Triplett and Barta 1987). Similarly, R.

leguminosarum strains can also produce bacteriocins, anti-

biotics that are active against closely related strains or species

(Oresnik et al. 1999; Yajima et al. 2008). As explained above,

the physiology of the bacterial surface may also be a

competitive factor, and the competitive capacity of rhizobial

mutants with altered lipopolysaccharides or exopolysacchar-

ides may be altered (Fraysse et al. 2003; Ormeño-Orrillo

2005). For example, the production of exopolysaccharides is

influenced by a complex network of environmental factors

such as phosphate, nitrogen, or sulphur (Skorupska et al.

2006). Finally, genetic exchange among rhizobia in the soil

and the often reported genome instability of Rhizobium may

affect competitiveness (Ding and Hynes 2009; Orozco-

Mosqueda et al. 2009). Understanding these and other factors

might facilitate the development of different approaches to

manipulate rhizobial competition (Sessitsch et al. 2002 and

references therein).

We shall now focus on some of the recent research

aimed at identifying rhizobial strains of interest and/or that

has focused on their use as inocula for legume nodulation in

marginal soils. Numerous studies have characterized the

effectiveness of different inoculants, and their competition

with indigenous strains has been determined. As such, field

inoculation of the common bean with selected R. tropici

strains induced nodulation and improved nitrogen fixation

rates, even in presence of high indigenous rhizobial

populations (Hungria et al. 2003). Moreover, the composi-

tion of the indigenous bacterial community was not clearly

affected by massive inoculation of selected strains. Several

indigenous rhizobial isolates with higher nitrogen fixation

effectiveness than some commercial inoculants have been

isolated and characterized (Zengeni and Giller 2007), some

of which are proposed to be new potential commercial

inoculants. A Rhizobium gallicum strain selected for its

competitiveness and symbiotic effectiveness was used to

nodulate common bean, inducing an increase in nodule

number and plant shoot dry weight, even in a soil with a

high population density of indigenous R. gallicum (Mnasri

et al. 2007). It is also interesting that this selected inoculum

produces antimicrobial activity against indigenous common

bean rhizobia. Studies of competition between introduced

and native R. leguminosarum strains have been performed

for nodulation of T. repens and Trifolium pratense in

Uruguay (Blanco et al. 2010). Interestingly, pre-treatment

of red clover seeds with specific Nod factors significantly

enhanced clover nodulation by an inoculant strain and the

subsequent growth of plants in the soil (Maj et al. 2009).

Improved legume production, particularly in arid and

semi-arid areas, requires the selection of effective rhizobial

strains. P. vulgaris and other food legumes are frequently

grown in rotation with cereals. Up to 30 osmotolerant

strains of Rhizobiaceae have been isolated and character-

ized from Moroccan saline soils in order to use them as

inoculants to improve common bean production in these

soils (Bouhmouch et al. 2001). In greenhouse experiments,

a comparative analysis of inoculation of P. vulgaris

cultivars was performed with reference rhizobial strains

and local isolates (Aouani et al. 1997), identifying certain

improvements following inoculation with selected strains.

Salt-tolerant rhizobia that were able to nodulate chickpea
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(Cicer arietinum) were characterized and selected in

conditions of water deficiency (Romdhane et al. 2008;

2009) and inoculation with selected salt-tolerant rhizobia

significantly increased nodule number and grain yield of

this pulse legume in the field. In some cases, improvement

in plant production was equal to or better than that of

nitrogen fertilization. Rhizobial species and strains isolated

from wild herbs and tree legumes from arid regions often

have a wide host range and are very tolerant of salinity,

high temperature, and desiccation. Such species hold

potential to inoculate wild and crop legumes cultivated in

reclaimed arid lands (Zahran 2001 and references therein).

The genetic diversity and symbiotic efficiency of

different rhizobial isolates obtained from nodules of peanut

(Arachis hypogaea) in Morocco has also been characterized

(El-Akhal et al. 2008). Isolates were grouped with species

belonging to both the Bradyrhizobium and Rhizobium

genera, and their phenotypic and genotypic characterization

allowed them to be classified in two groups: alkali- and

salt-sensitive slow growers and alkali- and salt-tolerant fast

growers (El-Akhal et al. 2009). Both groups exhibited

variability in their tolerance of heavy metals, and wide

genotypic diversity was observed at the strain level. In arid

and semi-arid regions of Morocco, strains of S. meliloti and

Sinorhizobium medicae were isolated that were tolerant to

salinity, water stress, high temperature, acidity, and heavy

metals, and the genetic diversity of these strains was

studied (Elboutahiri et al. 2010). This kind of characteriza-

tion provides a basis for selecting nodulating rhizobia that

may have applications in formulating appropriate inocula to

improve legume crop yield in stress-affected soils, includ-

ing marginal saline and acidic areas. Rhizobial strains were

also isolated from leguminous shrubs in semi-arid soils of

Central Spain (Ruiz-Díez et al. 2009), several of which

displayed salinity, acidity, alkalinity, and cadmium toler-

ance. The diversity and phylogeny of rhizobial bacteria

associated to nodules of the shrub legume Ononis triden-

tata have also been characterized in Spanish soils (Rincón

et al. 2008). This shrub legume is highly prized for the

revegetation of gypsum soils in semi-arid Mediterranean

areas and thus, this molecular characterization has implica-

tions for formulating suitable bacterial inocula to recover

gypsum ecosystems. The persistence of two Rhizobium etli

strains that nodulate beans in clay soil and silty loam soil

from Egypt was also established (Moawad et al. 2005).

In Brazil, numerous efficient nitrogen-fixing rhizobia

have been selected to nodulate legume trees in order to

revegetate poor or depleted soils and to restore their fertility

(Franco and De Faria 1997). In Australia, extensive

clearing of native vegetation has contributed to major

environmental problems, including land degradation,

dryland salinity, soil erosion, and loss of biodiversity. A

low-cost revegetation approach has been to inoculate

different native leguminous shrubs and trees with elite

strains of native rhizobia in order to re-establish plant–soil

interactions in degraded lands (Thrall et al. 2005). The

diversity and salt tolerance of native isolated rhizobia

nodulating Acacia has also been characterized in saline

and non-saline Australian soils (Thrall et al. 2009), and

rhizobial populations derived from saline soils had higher

salt tolerance and grew better. A Mesorhizobium sp. strain

with high tolerance to salinity, pH, and temperature and that

displayed a wide host range of nodulation, was isolated and

characterized from a semi-arid region of northwestern

China (Wei et al. 2008).

Acidity is an increasing problem in tropical and arid

soils, and it was seen that rhizobia isolated from acid soils

were significantly more tolerant to acidity than isolates

from neutral soils (Gemmell and Roughley 1993). Indeed,

an acid-tolerant R. leguminosarum strain has been selected

that had higher nodule occupancy at low pH in different

bean cultivars than an acid-sensitive strain (Vargas and

Graham 1989). Mesorhizobium isolated from Portuguese

soils that were able to grow at acid pH could be used to

develop highly effective inoculants for chickpea in acid

soils (Brigido et al. 2007). The genetic diversity of alfalfa

rhizobia isolated from volcanic soils in southern Chile was

evaluated, and several acid-tolerant S. meliloti strains with

high symbiotic effectiveness under acidic conditions were

identified and characterized (Langer et al. 2008). In field

experiments to evaluate the potential Rhizobium inoculants

suitable for pulse legume production in acidic soils of

South-East Australia storage, temperature and humidity

conditions were established to maintain the viability of the

inoculant (Evans 2005). Field competition experiments

have been carried out in Southern Spain and different

inoculant strains of Sinorhizobium fredii were selected that

can nodulate soybean in alkaline or acid soils (Albareda et

al. 2009). Halotolerant and desiccation-resistant rhizobial

strains nodulating Acacia were isolated from Moroccan

desert soil, and tolerant and sensitive strains accumulated

different types of endogenous osmolytes (Essendoubi et

al. 2007). Novel strains of the β-proteobacteria Burkhol-

deria capable of nodulating an herbaceous legume,

Rhynchosia ferulifolia, and with a potential role in

nitrogen fixation adapted to acid, infertile soils were

characterized (Garau et al. 2009).

High temperatures diminish rhizobial survival and

establishment in tropical soils. Repeated inoculation of

soybean compensates the detrimental effects of high

temperatures and increases nodulation, nitrogen fixation

rates, and crop yield in Brazil (Vargas and Hungria

1997). In tropical Brazilian soils, nodulation of common

bean and other legumes is usually poor, this failure being

attributed to high soil temperature, and rhizobial temper-

ature tolerance is not always closely related to the
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geographical origin of a strain (Hungria and Vargas 2000

and references therein). Different studies have shown that

R. tropici tolerates significantly higher temperatures than

other rhizobia like R. leguminosarum and R. etli.

Moreover, R. tropici is genetically more stable, maintain-

ing symbiotic properties under stress (Martínez-Romero

et al. 1991; Hungria et al. 1993), which makes it very

interesting for inoculation programs. Thermotolerant

bradyrhizobial strains have been isolated to perform

nodulation of soybean in semi-arid regions of Iran

(Rahmani et al. 2009) and in the greenhouse, some of

the thermotolerant isolates displayed good nitrogen-fixing

activity even at 38°C.

In terms of reclamation or bioremediation of different

types of contaminated soils, efficient strains of Bradyrhi-

zobium sp. were isolated from mine spoils and used to

inoculate seeds of the legume Albizia lebbeck grown in

both gypsum and limestone mine spoils (Rao and Tak

2001). Improved nodulation and nitrogen-fixing activity

was observed, and therefore, this system may be useful for

revegetation of mine spoils. Indigenous toluate-tolerant

bacteria were isolated from the oil-contaminated rhizo-

sphere of Galega orientalis, and they constitute a potential

system for bioremediation of oil-contaminated soil

(Lindström et al. 2003). It has also been reported that

wastewater sludge, a worldwide recyclable waste, has good

potential for rhizobial inoculant production, both as a

growth medium and as a carrier source for inoculant

production (Ben Rebah et al. 2007).

3.2 Rhizobia as endophytes and plant growth promoting

rhizobacteria in legumes and non-legumes

In non-nodulating legumes, rhizobia have been encountered

inside roots without forming nodules (Allen and Allen

1991). Indeed, rhizobia have also been found as common

rhizosphere colonizers of a wide range of plants and also

as endophytic bacteria in legumes and non-leguminous

plants such as rice, sugarcane, wheat, and maize (Sessitsch

et al. 2002 and references therein). It has been shown that

rhizobia can successfully colonize the mainstream roots,

stems, and leaves of non-leguminous plants, and in many

cases, these endophytic rhizobia benefit the host through

plant growth promotion (PGP), producing a marked

increase in plant growth, vigor and yield, and stress

tolerance (Sessitsch et al. 2002; Hossain and Martensson

2008; Bhattacharjee et al. 2008 and references therein;

Bano and Fatima 2009). In exchange, endophytes enjoy a

more favorable environment than rhizospheric bacteria,

being protected from stress and enjoying the direct

provision of nutrition within the host (Sevilla and Kennedy

2000). The traditional legume (berseem clover)–cereal

(rice) association in Egypt involves an endophytic activity

of R. leguminosarum, which induces PGP in rice. More-

over, inoculation of R. trifolii to a rice variety significantly

increases its total nitrogen content and grain yield (Yanni et

al. 1997, 2001; Biswas et al. 2000a, b). Examples of

endophytic or rhizospheric rhizobia associations with non-

leguminous plants are reviewed and listed in Sessitsch et al.

(2002) and Bhattacharjee et al. (2008).

The entry of endophytic rhizobia takes place through

root tips, lateral root cracks, sites of injury, and damaged

stomata. Infection thread-like structures have also been

observed in inoculated plants. It seems that bacteria

colonize intercellular spaces of root cortex and extend to

the xylem vessel for further propagation, and they can

propagate to the next plant generation through the seeds

(Bhattacharjee et al. 2008 and references therein). There are

several propositions to explain the PGP effects of rhizobia

on the non-legume host plant. Endophytic rhizobia have

been reported to induce nitrogen accumulation in the host

plant, which may be due to nitrogen fixation by rhizobia

(Oliveira et al. 2002) or an increase in nitrogen uptake from

the soil (Yanni et al. 1997). In fact, the expression of

nitrogenase was detected in epidermal cells, in the

intercellular region of the root cortex and in vascular tissue

of the roots of rice and other plants (Egener et al. 1999).

Alternatively, the legume or non-legume plant growth

stimulation might be due to the production and secretion

of plant growth regulators by rhizobia, such as indole-3-

acetic acid (IAA), gibberellins, and cytokinins (Yanni et al.

2001; Verma et al. 2001; Boiero et al. 2007; Vargas et al.

2009). Endophytic or rhizospheric rhizobia also favor the

solubility of phosphorus through the production of

phosphate-solubilizing enzymes (Verma et al. 2001).

Bacteria also secrete 1-aminocyclopropane-1-carboxylate

(ACC) deaminase, which diminishes ACC levels, a

precursor of ethylene, thereby reducing the levels of

ethylene (Glick 2005; Duan et al. 2009). Rhizobia can also

produce strain-specific siderophores that can help overcome

iron starvation (Jin et al. 2006; Vargas et al. 2009). In some

cases, rhizobia-produced LPS can induce systemic resis-

tance which buffers the deleterious effects of phytopath-

ogens (Reitz et al. 2001).

An increasing number of bacteria other than rhizobia

have been identified as rhizospheric and/or endophytic

nitrogen fixers in a variety of cereal crops and pasture

grasses (Franche et al. 2009, and references therein). Sugar

cane is a good example of a crop that can benefit from

nitrogen fixation (Boddey et al. 2001, 2003). Other

associations with Gramineae and grasses have also been

described (Boddey and Döbereiner 1982; Reis et al. 2001).

These discoveries suggest that it is possible to increase

biological nitrogen fixation in cereal crops by inoculation

with wild-type or genetically modified nitrogen-fixing

bacteria (Franche et al. 2009).
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3.3 Genetically modified stress-tolerant rhizobia

One aim of the genetic engineering of rhizobia (Table 1) is

to develop stress-tolerant strains that can be used as

inoculants in marginal soils. However, the release of

genetically improved strains is often restricted by National

regulations. Several studies have been performed on field

inoculation with genetically modified rhizobia carrying

chromosomally located antibiotic resistance markers in

order to study the population dynamics of indigenous and

genetically modified rhizobia over a period of several years

(Hirsch and Spokes 1994; Hirsch 1996). The luciferase

gene-tagged S. meliloti L33 strain has also been used as

inoculant in greenhouse and field experiments to evaluate

the efficacy of different strategies to eliminate an estab-

lished population of inoculated Rhizobium when its

function is completed (Miethling and Tebbe 2004).

Acid-tolerant strains of R. leguminosarum have been

constructed with enhanced capacity for nitrogen fixation by

replacing the symbiotic plasmid pSym (Chen et al. 1991).

Transfer of pSym to a genetically modified strain of R.

leguminosarum conferred advantages in the rhizosphere by

increasing host fitness in the field (Clark et al. 2002). An

enhanced salt-tolerant R. leguminosarum strain was also

obtained by transformation with DNA from a salt tolerant

Bacillus species (El-Saidi and Ali 1993), and the plant yield

of host legumes nodulated by this strain increased, as did

the nitrogen content in arid soils. Transformed R. trifolii

and R. leguminosarum were obtained that constitutively

expressed a chimeric nodD gene, involved in the regulation

of Nod factor synthesis (Spaink et al. 1989). Legumes

nodulated by these transformed rhizobia displayed signifi-

cantly higher nitrogen fixation. Moreover, in a field

experiment, a genetically modified S. meliloti strain over-

expressing the putA gene, which codes for proline dehydro-

genase (an enzyme that catalyzes the conversion of proline

present in root exudates to glutamate), has a competitive

advantage over natural rhizobial populations with regards to

infecting and nodulating alfalfa roots subjected to drought

stress (Van Dillewijn et al. 2001, 2002).

A S. meliloti recombinant strain was produced that

contained additional copies of nifA and dctABD genes to

increase nitrogen fixation, and thus, the yield of alfalfa

(Bosworth et al. 1994). nifA is involved in regulating the

expression of nitrogen fixation genes, and dctABD genes are

involved in the transport of dicarboxylic acids, which are

required as a carbon energy source. This recombinant strain

has been commercialized and tested in the field, inducing an

improvement in biomass yield where soil nitrogen and organic

matter content were low. A hemoglobin gene from Vitreoscilla

sp. was introduced in R. etli, and the recombinant bacteria

obtained had greater respiratory activity, chemical energy, and

expression of the nitrogen fixation gene nifH. Plants inocu-

lated with this recombinant strain had enhanced nitrogenase

activity and total nitrogen content when compared with plants

inoculated with the wild-type strain (Ramírez et al. 1999). A

Rhizobium tropici mutant with enhanced respiration and

symbiotic performance was obtained by mutating the

glycogen synthase gene (Marroquí et al. 2001).

Symbiotic nitrogen fixation is an energy-consuming

process that takes place under microaerobic conditions,

since nitrogenase activity is inhibited by oxygen. Terminal

oxidase cbb3 has an extremely high oxygen affinity, and it

is efficiently coupled to ATP production and is essential for

nitrogen-fixing endosymbiosis. However, due to the pres-

ence of oxygen, the cbb3 gene is not usually expressed in

the free-living state. NtrC, a transcriptional activator that

modulates gene expression in response to nitrogen,

represses the free-living cell production of this terminal

oxidase. Overexpression of the Bradyrhizobium japonicum

terminal oxidase cbb3 in a R. etli ntrC mutant increased

nitrogen fixation (Soberón et al. 1999). S. meliloti strains

have been constructed that contain different copy numbers

of a symbiotic gene region covering a regulatory gene

(nodD1), the common nodulation genes (nodABC), and a

gene essential for nitrogen fixation (nifN). The strains with

a moderate increase in copy number of this symbiotic gene

region were associated with significantly improved nodu-

lation, nitrogenase activity, plant nitrogen content, and plant

growth (Castillo et al. 1999).

Inoculated strains must compete with native soil bacteria

for root nodulation. As indicated above, a strategy to

alleviate this problem is to produce the anti-rhizobial

peptide trifolitoxin. Under field conditions, inoculation of

a genetically engineered R. etli strain that produces this

peptide increased nodule occupancy (Robleto et al. 1997,

1998). Several rhizobial strains of the genus Bradyrhi-

zobium possess a hydrogen uptake (Hup) system able to

recycle the hydrogen evolved by nitrogenase, resulting in

more energy efficient nitrogen fixation. The Hup gene

cluster has been introduced into various Rhizobium strains

(Báscones et al. 2000), and in some strains, high levels of

hydrogenase activity were achieved, leading to nodules that

release no hydrogen. In a field experiment, the yield of P.

vulgaris inoculated with a trifolitoxin-producing Hup+ R.

leguminosarum strain was significantly increased (Iniguez

et al. 2004).

S. meliloti possesses several betaine transporters. Bacte-

roids overexpressing a high-affinity betaine transporter

accumulated high concentrations of proline betaine, the

endogenous betaine synthesized by alfalfa plants, in

nodulated alfalfa plants subjected to salt stress. Moreover,

nitrogen fixation was better maintained in nodulated plants

(Boscari et al. 2006). A novel pathway for IAA synthesis

was introduced into R. leguminosarum using a construct

containing the iaaM gene from Pseudomonas syringae and
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Table 1 Genetic engineering of rhizobia to obtain abiotic stress tolerance and enhanced nitrogen fixation

Gene Origin Host Rhizobium Enhanced trait or effect Proposed mechanism Reference

Chimeric nodD S. meliloti and R.
trifolii

R. trifolii and R.
leguminosarum

Enhanced nitrogen fixation
in Vicia sativa and
Trifolium repens

Enhanced production of
Nod factors

Spaink et al. (1989)

Sym plasmid R. leguminosarum R. leguminosarum Acid tolerance in free-
living rhizobia

Enhanced efficiency of
nodulation genes located
in the plasmid

Chen et al. (1991)

Enhanced nitrogen fixation
in Trifolium
subterraneum at low pH

Chromosomal DNA Salt tolerant Bacillus
sp.

R. leguminosarum Salt tolerance in free-living
rhizobia

Transfer of genes
determining salt tolerance

El-Saidi and Ali (1993)

Plant yield and nitrogen
content of nodulated host
lentil in arid soils

nifA and dctABD S. meliloti S. meliloti Enhanced nitrogen fixation
and biomass yield of
alfalfa nodulated plants in
soils with low nitrogen
and organic matter
content

Enhanced regulation of
nitrogen fixation and
increased dicaboxylic
acid import to bacteroids

Bosworth et al. (1994)

Trifolitoxin R. leguminosarum R. etli Enhanced nodule
occupancy in host
Phaseolus vulgaris

Antibiotic activity Robleto et al.
(1997, 1998)

Haemoglobin VHb Vitreoscilla sp. R. etli Nitrogenase activity and
total nitrogen content in
nodulated bean plants

Stimulated respiratory
efficiency in free-living
rhizobia and bacteroids

Ramírez et al. (1999)

Terminal oxidase cbb3 Bradyrhizobium
japonicum

R. etli ntrC mutant Nitrogen fixation in
nodulated Phaseolus
vulgaris plants

Enhanced ATP supply to
nitrogenase

Soberón et al. (1999)

Symbiotic gene region
containing nodD1,
nodABC and nifN

S. meliloti S. meliloti Nodulation, nitrogenase
activity, plant nitrogen
content and growth in
alfalfa

Increase in Nod factor
production and in
regulation of nitrogen
fixation

Castillo et al. (1999)

Glycogen synthase GlgA R. tropici R. tropici Symbiotic performance and
dry weight of Phaseolus
vulgaris nodulated plants

Block of glycogen
synthesis and putative
pleiotropic effects

Marroquí et al. (2001)

Proline dehydrogenase
putA

S. meliloti S. meliloti Advantage over natural
rhizobial populations to
infect and nodulate
alfalfa under drought
stress

Oxidation of proline from
alfalfa root exudates to
glutamate as energy
source for rhizobia

Van Dillewijn
et al. (2001, 2002)

Trifolitoxin and Hup gene
cluster

R. leguminosarum and
Bradyrhizobium sp.

R. leguminosarum Dry seed weight yield in
nodulated Phaseolus
vulgaris plants

Antibiotic activity and
recycling and oxidation
of hydrogen derived from
nitrogenase activity

Iniguez et al. (2004)

Betaine transporter BetS S. meliloti S. meliloti Nitrogen fixation in
nodulated alfalfa
subjected to salt stress

Accumulation of osmolytes
proline betaine and
glycine betaine in
bacteroids under osmotic
stress

Boscari et al. (2006)

iaaM and tms 2 Pseudomonas syringae
and Agrobacterium
tumefaciens

R. leguminosarum and
S. meliloti

Nitrogen fixation in Vicia
hirsuta nodulated plants

Enhanced IAA synthesis Camerini et al. (2008)

Tolerance to heat, cold, salt
and UV-irradiation
stresses in free-living
rhizobia

General hormone
re-modulation in the
plant

Imperlini et al. (2009)

Nitrogen-fixing activity,
stem dry weight and salt
tolerance in M.
truncatula nodulated
plants.

Bianco and Defez (2009)

Flavodoxin Anabaena variabilis S. meliloti Delayed nodule senescence
in alfalfa nodulated plants

Enhanced ROS
detoxification

Redondo et al. (2009)

Nitrogen fixation with
enhanced cadmium
tolerance in alfalfa
nodulated plants.

Changes in antioxidant
metabolism

Shvaleva et al. (2010)

ROS Reactive oxygen species, IAA indole-3-acetic acid
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the tms2 gene from Agrobacterium tumefaciens under the

control of a stationary phase-induced promoter from Agro-

bacterium rhizogenes (Camerini et al. 2008). The iaaM

gene codes for an indolacetamide hydrolase that converts

tryptophan into indolacetamide (IAM), and the tms2 gene

encodes a tryptophan monooxigenase that converts IAM

into IAA. Free-living bacteria harboring this construct

release 14-fold more IAA into the growth medium than

wild-type strains. When vetch (Vicia hirsuta) roots were

nodulated with the transformed rhizobia, nodules contained

up to 60-fold more IAA than nodules infected by the wild-

type strain. These nodules were heavier in terms of dry

weight, with enlarged and more active meristems, signifi-

cantly augmenting nitrogen fixation (Camerini et al. 2008).

Free-living S. meliloti transformed with the same construct

displayed increased activities for some enzymes in the

tricarboxylic acid cycle, enhanced acetyl-CoA, and poly-

beta-hydroxybutyrate content; they accumulated more

endogenous osmolyte trehalose and survived better

(Imperlini et al. 2009). The transformed bacteria also better

tolerated heat, cold, and salt stress, as well as UV-

irradiation (Imperlini et al. 2009; Bianco and Defez 2009).

M. truncatula plants nodulated by the IAA-overexpressing

S. meliloti strain showed an induction of nitrogen-fixing

activity, increased stem dry weight production (Imperlini et

al. 2009), and enhanced salt tolerance (Imperlini et al.

2009; Bianco and Defez 2009). Similarly, these M.

truncatula plants had a higher proline content, almost

unchanged hydrogen peroxide levels, enhanced activities of

several antioxidant enzymes, reduced foliar senescence,

higher nitrogenase activity, and lower expression of

ethylene signaling genes than plants nodulated by the

wild-type strain. These effects seem to be due to general

phytohormone re-modulation in the plant (Bianco and

Defez 2009).

Flavodoxins are electron carrier flavoproteins present in

prokaryotes and some eukaryotic algae (Erdner et al. 1999).

They contain a flavin mononucleotide (FMN) group acting

as a redox center that transfers electrons at low potentials

(Pueyo et al. 1991; Pueyo and Gómez-Moreno 1991). In

cyanobacteria and enterobacteria, flavodoxin levels increase

several-fold upon exposure to oxidative stress (Zheng et al.

1999; Yousef et al. 2003). Transformation of S. meliloti

with the A. variabilis flavodoxin gene provided enhanced

tolerance to stresses involving ROS generation in free-

living bacteria. Flavodoxin-overexpressing S. meliloti was

used to nodulate alfalfa plants and bacteroids overexpress-

ing flavodoxin induced changes in antioxidant metabolism,

affecting antioxidant enzymes, ascorbate-glutathione cycle

enzymes and their metabolites, and inducing delayed

senescence and starch accumulation in alfalfa root nodules

(Redondo et al. 2009). Moreover, the nitrogen-fixing

activity of alfalfa nodules elicited by the flavodoxin-

overexpressing S. meliloti had enhanced tolerance to

cadmium stress (Shvaleva et al. 2010). These results

suggest that rhizobia overexpressing flavodoxin may serve

as biotechnological tools to improve the symbiotic perfor-

mance of legumes subjected to environmental stress

involving damage by ROS generation.

4 Legume plants for the reclamation of marginal soils

There are numerous recent studies aimed at identifying

legume species with the potential to enhance the cultivation

and revegetation of marginal areas. These will be consid-

ered along with the current efforts to select stress-tolerant

legume varieties by classical methods or transgenic

approaches.

4.1 Selection of new legumes and the breeding of old traits

Genetic variability within a plant species causes variations

in plant responses to abiotic stress and nutrient imbalances,

and it allows crops to be selected that are tolerant to abiotic

stresses. For example, legumes that grow in saline soils are

considered to be naturally selected salt-tolerant genotypes

with potential value as genetic resources for saline areas. In

fact, the best strategy is to select a tolerant legume in

combination with a tolerant Rhizobium (Zahran 1991 and

references therein; Herridge and Danso 1995; Howieson

and Ballard 2004). However, to a large extent, breeding to

improve nitrogen fixation has not been fully successful,

maybe due to the difficulty in combining different traits and

agricultural management techniques and the lack of

screening technologies (Herridge et al. 2001).

Different studies have been performed to identify and

select tolerant legume genotypes that can be employed in

sustainable agriculture. For example, several studies aimed

at identifying salt-tolerant genotypes and to evaluate

genotype variation in response to salinity have been carried

out in different species and lines of legumes, such as

chickpea, Lotus sp. or Trifolium sp. (Rogers et al. 1997;

Sadiki and Rabih 2001; Nichols et al. 2008; Teakle et al.

2010). Different drought-tolerant and sensitive cultivars of

the important oilseed crop legume, groundnut (Arachis

hypogea), have been analyzed to elucidate drought toler-

ance traits that might enable appropriate genetic enhance-

ment strategies to be developed to increase yield in drought

environments (Reddy et al. 2003). The yield of the lentil

(Lens culinaris Medik.), a food legume crop, is markedly

affected by drought, heat, and salt stress, as well as by iron

deficiency. Comparative genomics and a consensus genetic

map for the lentil are under development to identify and

select resistant germplasm (Muehlbauer et al. 2006 and

references therein). Different lines of annual and perennial
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legumes have been tested to evaluate their agronomic

potential in semi-arid climates (Small 2003; Caravaca et al.

2003; Merou and Papanastasis 2009). Different legume

cultivars have also been tested for drought (Acuna et al.

2010; Kostopoulou et al. 2010), frost (Ratinam et al. 1994;

Meyer and Badaruddin 2001), flooding (Vignolio et al.

1999), cold (Gan et al. 2009) and acid (Howieson et al.

1995) tolerance, as well as for winter survival (Annicchiarico

and Iannucci 2007). Different perennial legumes that can use

phosphorus efficiently were screened for their potential use

in revegetating Australian soils with phosphorus deficiency

(Pang et al. 2010). The influence of the legume cultivar to

improve performance in rotation systems is also being

evaluated (Cock 1992; Adjei-Nsiah et al. 2007; Soon and

Lupwayi 2008).

There is great interest in rapidly improving both plant

and microbial germplasms (Sprent et al. 2010). In Mediter-

ranean areas, shrub legumes and their corresponding

rhizobia microsymbionts have a strong potential to enhance

nitrogen and carbon levels in arid and acidic soils, making

them suitable candidates for revegetation of these areas

(Alegre et al. 2004; Rodríguez-Echevarría and Pérez-

Fernández 2005; Villar-Salvador et al. 2008). This potential

has even been observed in soils containing composted

sewage sludge (de Andrés et al. 2007). A new species of

the annual arrowleaf clover (Trifolium vesiculosum Savi)

has been identified and characterized recently with

improved pastoral production in dryland areas in the

central-southern region of Chile (Ovalle et al. 2010).

Numerous legume tree species have also been tested for

their capacity to help revegetate degraded soils in Brazil

and Australia (Franco and De Faria 1997). Lupinus

argenteus (Pursh.), a legume native to sagebrush steppes,

is also of interest for revegetation as it favors nitrogen

availability and cycling under conditions of water stress

(Goergen et al. 2009). In India, little known wild legumes

are being characterized as potential germplasms for use in

the reclamation of marginal soils. One example is the

biochemical characterization of some Canavalia spp.,

which are naturally distributed in sand dunes and mangrove

areas. The stress-tolerant rhizobia of these plants are also

being characterized (Seena and Sridhar 2006). Tropical

Stylosanthes species from Australia, Colombia, Brazil, and

Ethiopia have been introduced in India, and they constitute

a new germplasm to improve soil fertility and provide

nutritive forage in rain-fed situations of heavy clay and

cracking soil types (Chandra 2009). Different halophytes,

including several legumes, were described within the desert

flora of Central Asia, and they are very attractive to reclaim

degraded and drought-affected soils (Toderich et al. 2009).

Africa has a vast array of indigenous legumes that are

adapted to soil and climatic conditions, in particular

drought and low nutrients, ranging from large rainforest

trees to small annual herbs. These legumes and their

rhizobial microsymbionts have so far been a poorly

exploited source of germplasms for the revegetation of

marginal soils (Sprent et al. 2010). There is a wide diversity

of food legumes adapted to drought-prone, low nutrient

environments, and they are used in rotation or as intercrops

with cereals in Bostwana. Moreover, African tree and shrub

legumes are a major source of phytopharmaceuticals (Pule-

Meuelenberg and Dakora 2007). Malawian smallholder

farmers have adopted legumes, mainly edible legume

intercrops like pigeon pea and groundnut, to improve both

human nutrition and soil fertility (Kerr et al. 2007).

Classical heritability studies of selected traits are also

ongoing (Pimratch et al. 2009) and new molecular

techniques, such as microsatellite characterization (Lazrek

et al. 2009) and transcriptome and proteome studies, will

help to better classify and characterize tolerant and sensitive

legume cultivars.

4.2 Transgenic legumes with enhanced stress tolerance

Several biotechnological approaches are available to

enhance biotic and abiotic stress tolerance in legumes,

including molecular marker-assisted (MAS) breeding,

tissue culture, and gene transformation (Dita et al. 2006

and references therein). Here, we will focus on research

developed to obtain abiotic stress-tolerant legumes by gene

transformation and expression. A gene transfer method

used in legumes involves the use of A. tumefaciens as a

vector for transformation (Fig. 3), although A. rhizogenes is

also used to transform some species to produce composite

plants with hairy roots or hairy root cultures. Another

method used involves transformation by particle gun

bombardment (Eapen 2008 and references therein). The

distinct protocols for genetic transformation of the main

legumes are in constant development to ensure food and

environmental safety (Popelka et al. 2004 and references

therein; Eapen 2008 and references therein).

Biotic stresses often involve monogenic traits and several

legume cultivars have been transformed in order to enhance

resistance to biotic stress (Dita et al. 2006 and references

therein). Abiotic stresses generally involve perturbation of

several cellular activities and the activation of complex

metabolic pathways, as explained above. Tolerance to

different abiotic stresses is considered polygenic traits, and

therefore, successful genetic transformation to enhance

tolerance in legumes requires a thorough physiological and

molecular understanding of these stresses. Recent advances

in understanding the physiological and molecular events and

the pathways involved in abiotic stress and tolerance in

legumes, together with progress in developing gene transfer

protocols, have helped to generate transgenic legumes with

enhanced tolerance to abiotic stresses (Table 2).
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Overexpression of the WXP1, a putative M. truncatula

AP2 domain-containing transcription factor gene, increases

cuticular wax production and accumulation, and it enhances

drought tolerance in transgenic alfalfa (Zhang et al. 2005).

Indeed, transgenic white clover (T. repens) overexpressing

the same WXP1 gene displays improved tolerance to

drought stress (Jiang et al. 2010). Alfalfa has been trans-

formed with the AVP1 gene, a vacuolar H+-pyrophospha-

tase (H+-PPase) from Arabidopsis thaliana (Bao et al.

2009). These transgenic plants accumulate more Na+, K+,

Somatic embryogenesisPlantlet regeneration

Callus inductionWild-type M. truncatula 

Agrobacterium tumefaciens

Cocultivation

Transgenic M. truncatula 

Fig. 3 Agrobacterium-mediated

transformation of Medicago

truncatula

Table 2 Transgenic approaches to engineer abiotic stress tolerance and enhanced nitrogen fixation in legumes

Gene Origin Host
legume

Enhanced trait or
effect

Proposed mechanism Reference

Superoxide dismutase Nicotiana tabacum Medicago
sativa

Drought and freezing
stress tolerance, and
winter survival

Enhanced overall defense
system induced by SOD-
induced production of H2O2.
Reduction in secondary ROS
injury symptoms

McKersie et al. (1993,
1996, 1999, 2000)

Putative transcription
factor Alfin1

M. sativa M. sativa Salt tolerance Enhanced expression of proline-
rich protein MsPRP2 and
probably regulation of the
expression of other genes

Winicov and Bastola
(1999)

Superoxide dismutase Nicotiana plumbaginifolia
and Arabidopsis thaliana

M. sativa Mild water stress
tolerance

Enhanced ROS detoxification Rubio et al. (2002)

Transcription factor
WPX1

M. truncatula M. sativa Drought tolerance Increased cuticular wax
accumulation in leaves

Zhang et al. (2005)

Δ1-pyrroline-5-
carboxylate synthetase
P5CS

Vigna aconitifolia M. truncatula Nitrogen fixation under
osmotic stress

Proline accumulation Verdoy et al. (2006)

Antisense beta-1,
3-glucanase gene
LjGlu1

Lotus japonicus L. japonicus Nodule number and
nitrogen fixation

Unknown mechanism
mediated by
suppressing LjGlu1
expression

Suzuki et al. (2008)

Vacuolar H+

-pyrophosphatase
AVP1

A. thaliana M. sativa Salt and drought
tolerance

Enhanced electrochemical
gradient of H+ across the
tonoplast, favouring Na+

compartmentalization and
rhizosphere acidification

Bao et al. (2009)

Phytase MtPHY1 and
purple acid phosphatase
MtPAP1

M. truncatula Trifolium
repens

Tolerance to
phosphate
deficiency

Accumulation of total
phosphorus

Ma et al. (2009)

Transcription factor
WPX1

M. truncatula T. repens Drought tolerance Unknown. Putative activation
or suppression of target genes

Jiang et al. (2010)

Flavodoxin Anabaena variabilis M. truncatula Nitrogen fixation
under salt stress

Enhanced ROS
detoxification

Coba de la Peña
et al. (2010)

Changes in antioxidant
metabolism

SOD Superoxide Dismutase, ROS Reactive Oxygen Species
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and Ca2+ in leaves and roots under salt and drought stress

conditions, and they retain more water during drought

stress. Thus, transgenic plants overexpressing AVP1 display

enhanced tolerance to salt and drought stress. Increased K+

uptake and root activity in transgenic alfalfa may be a

consequence of rhizosphere acidification resulting from

expression of AVP1. Transgenic expression of Alfin1, a

transcription factor that binds to promoter elements in genes

regulated by salt or drought stress, improves tolerance to

salinity in transgenic alfalfa plants (Winicov and Bastola

1999).

Phosphate is one of the most limiting macronutrients,

restricting crop production in many ecosystems. Phytases

are enzymes that catalyze the hydrolysis of phytic acid, and

a product of this hydrolysis is inorganic phosphate. Purple

acid phosphatases are enzymes that hydrolyze phosphate

esters and anhydrides under acidic conditions. A phytase

gene and a purple acid phosphatase gene, both isolated

from the model legume M. truncatula, have been intro-

duced into white clover. Transgenic expression of both

these genes in white clover enhanced phytase and acid

phosphatase activities in root apoplasts, and transgenic

plants were more capable of utilizing organic phosphorus in

response to phosphorus deficiency (Ma et al. 2009). It was

hypothesized that root nodule formation would be promot-

ed by weaker expression of a beta-1,3-glucanase gene,

since expression of this gene is increased in transgenic L.

japonicus which has reduced nodulation (Suzuki et al.

2008). When the expression of this gene was suppressed by

introducing an antisense gene into L. japonicus, transgenic

plants harbored more root nodules after inoculation with

Mesorhizobium loti, and the nitrogen fixation of transgenic

plants was enhanced.

As explained above, plants accumulate proline and

other osmolytes under osmotic stress. Transgenic plants

that accumulate high levels of proline better tolerate salt

and osmotic stress, as well as cold and frost (Kishor et al.

2005 and references therein). Transgenic M. truncatula

plants overexpressing the Δ1-pyrroline-5-carboxylate-syn-

thetase (P5CS) gene from Vigna aconitifolia, an enzyme

involved in the first two steps of proline biosynthesis,

accumulate more proline, resulting in stronger tolerance to

salt and osmotic stress when compared with control plants

(Verdoy et al. 2006). Transgenic M. truncatula accumulate

more proline in leaves, roots and nodules, and the proline

levels increase in transgenic plants following salt treat-

ment. When compared to wild-type plants, when subjected

to salt stress, the transgenic plants have significantly

higher nitrogen-fixing activity and no significant ultra-

structural alterations to nodules (Verdoy et al. 2006). To

our knowledge, these are the first transgenic legumes that

displayed nitrogen-fixing activity with enhanced tolerance

to osmotic stress.

A correlation has been suggested between antioxidant

levels and tolerance to several abiotic stresses. Transformed

plants overexpressing antioxidant enzymes often show

increased tolerance to salt and other abiotic stresses, such

as drought, cold and heavy metal stress (Ashraf 2009 and

references therein). Transgenic alfalfa plants overexpressing

a superoxide dismutase (SOD) displayed enhanced toler-

ance to water deficit, freezing stress and winter survival

(McKersie et al. 1993, 1996, 1999, 2000; Rubio et al.

2002). As explained above, flavodoxin expression in S.

meliloti led to oxidative stress tolerance in alfalfa nodules.

Indeed, transgenic tobacco plants expressing a cyanobacte-

rial flavodoxin displayed increased tolerance to multiple

sources of stress (Tognetti et al. 2006, 2007a, b). These

effects seem to be due to the capacity of flavodoxin to

mediate electron transfer and to react with ROS, facilitating

ROS detoxification and protecting against oxidative dam-

age. Expression of flavodoxin in transgenic M. truncatula

plants does not confer saline tolerance to the whole plant,

although the sensitive nitrogen-fixing activity was main-

tained under salt stress in this transgenic legume (Coba de

la Peña et al. 2010). Small but significant flavodoxin-

induced changes in enzymatic activity associated with the

nodule redox balance might be responsible for the positive

effect on nitrogen fixation.

5 Conclusions and prospects

The studies reviewed here have provided clear evidence of

the considerable effort being made to select legume

varieties and rhizobial inocula that can fix nitrogen and

generate competitive crop yields in degraded and marginal

stress-affected soils. Furthermore, better understanding the

physiological and molecular mechanisms involved in the

tolerance to environmental stresses is giving rise to

numerous biotechnological approaches aimed at obtaining

improved legumes and rhizobia with enhanced tolerance to

abiotic stress, paying particular attention to the sensitive

nitrogen-fixing activity.

In a context of global and climate change, with a

growing population and an increasing demand for food and

feed, the importance of legumes in sustainable agriculture,

and particularly in the reclamation of marginal lands, seems

beyond any doubt. Needs might diverge in different parts of

the globe, often in close connection with the regional

development, the natural and acquired richness of the

countries and the level of wellbeing, environmental

awareness or unacceptable poverty of their peoples. For

different and often cumulative reasons, sustainable agricul-

ture is an ever increasing and universal need. While

developing countries focus on providing sufficient food to

their population, which requires both increasing yields and
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reclaiming yet-unexploited marginal lands, developed states

are increasingly aware of the importance of the quality of

their food and of the need to restore degraded environ-

ments. In either case, improved legumes are equally

advantageous. High yields without the added costs of

nitrogen fertilization are becoming a must for precarious

economies (Chianu et al. 2010, and references therein),

whereas chemical-free, organic foods and feed are in

increasing demand in advanced societies.

Given that research in the field of legume and inoculant

stress tolerance is increasingly necessary, it appears that

field experimentation is still insufficient, and laboratory and

greenhouse results must be contrasted in cultivation.

Despite some astounding success stories, much still remains

to be achieved in this respect, which is necessarily

associated with technology transfer and the spread of

knowledge to farmers, including the acquisition of agricul-

tural management practices to maximize biological nitrogen

fixation, such as intercropping or limited tillage. Selecting

locally adapted legumes and rhizobia proves to be essential

and as such, small scale approaches are indispensable.

Regarding transgenic approaches, the perspectives are

extremely promising as our understanding of the mecha-

nisms involved in stress tolerance is advancing in great

bounds. Transcriptomic approaches are being comple-

mented by proteomics, metabolomics and gene regulation

studies, and new genes and traits are being made available

to engineer tolerance in the extremely complex legume–

Rhizobium–soil–climate system. Thus, research is under-

way, and unprecedented local and global success is

expected.
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