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Vector-borne diseases closely associated with the environment, such as leishmaniases, have been a usual argument about the
deleterious impact of climate change on public health. From the biological point of view interaction of different variables has
different and even conflicting effects on the survival of vectors and the probability transmission of pathogens. The results on
ecoepidemiology of leishmaniasis in Argentina related to climate variables at different scales of space and time are presented.
These studies showed that the changes in transmission due to change or increase in frequency and intensity of climatic instability
were expressed through changes in the probability of vector-human reservoir effective contacts. These changes of contact in turn
are modulated by both direct effects on the biology and ecology of the organisms involved, as by perceptions and changes in the
behavior of the human communities at risk. Therefore, from the perspective of public health and state policy, and taking into
account the current nonlinear increased velocity of climate change, we concluded that discussing the uncertainties of large-scale
models will have lower impact than to develop-validate mitigation strategies to be operative at local level, and compatibles with
sustainable development, conservation biodiversity, and respect for cultural diversity.

1. Introduction

Insect-borne diseases, especially those closely associated with
natural environments, such as malaria or leishmaniasis, have
been frequently cited as an argument on health risks related
to the change and instability of the climate.

However, many of these statements far from predictions
based on experimental data have added a new dose of
uncertainty in already uncertain models and conjectural
discussions [1–4]. Considering only the biological aspects
at individual level, the effects of the climate changes and
instability on vector-borne diseases transmission may be
the consequence of multiple variables such as daily and
mean, maximum and minimum temperature, amount of
days with temperature above a certain threshold, relative
humidity at different times of the day and across the
seasons, accumulated precipitation in different periods prior

to the date of interest, soil moisture, and changes associated
with human use of land. The effect of these variables is
more difficult to follow accurately when they are looked
at as interactions between each other and their impact on
the environment, which modulates the vector metabolism,
survival, and daily activity of larvae and adults (success of
trapping expressed sometimes as abundance), the infectious
period, the extrinsic incubation period, and the number of
infectious events [5–9]. Thus, according to the relative weight
given to each of the different climate-related variables and
the way that could affect each stage of the vector, it can be
projected an increase or decrease of parasite transmission,
and sometimes opposite trends simultaneously, which has
led to academic controversies [10–13]. The problem became
even further complex at the level of populations or com-
munities, including parasites, vectors, reservoirs, and hosts
(among them humans) distributed dynamically in space
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Figure 1: Leishmaniasis in Argentina by bio-eco regions. Distribution of outbreaks by site and period.

and time in a matrix of changing environment [14–16].
Despite noted difficulties, discussion section deals with many
attempts which were made for leishmaniases in different time
and space scales.

These words of caution should not be understood as
skepticism. However, climate change is an ongoing fact [17,
18], and today we look for strategies that in the short-term
could mitigate the climate change effects at operative scales
may have more impact from the public health point of view,
than to discuss theoretically the global models of climate
change.

Therefore, taking into account the network of causes and
results, in order to obtain a probable projection on actual
and specific scenarios, the impact assessment on collective
health of climate change, biodiversity conservation, and/or
sustainable development [19] requires the epistemological
framework of the ecoepidemiology [20, 21]. To do so it is
necessary (1) to address the consistency between assump-
tions, indicators, analysis, and conclusions and validate the
consistency with the units of reference, its space-time scale of
resolution, the quality of data sources, and analytical method
and (2) to integrate social variables with the biological ones
involved in change scenarios [2, 8, 22–25].

To illustrate the two statements mentioned the research
on leishmaniasis in Argentina is presented as a case study.

2. Leishmaniases in Argentina

Reported since the beginning of the XX century, American
cutaneous leishmaniasis (ACL) has significantly increased

its incidence in Argentina during the 1980s decade, while
the first human recorded autochthonous case of visceral
leishmaniasis (VL) was diagnosed during 2006 [26, 27].

Endemic in ten Northern provinces and four bioecolog-
ical tropical/subtropical regions (Foothills of Yungas Forest,
Dry Chaco, Wet Chaco, and Paranaense Forest) (Figure 1),
the cases of ACL were usually isolated in time and space or
related to a “common source” like a punctual deforestation
up to the decade of 1980. The reports by year usually
fluctuate between 40 and 90 for the whole country. However
since 1985 the cases clustered in outbreaks up to 900 cases,
beginning in the northwest (Yungas) and following in the
next years by new outbreaks to the east, reaching the Eastern
border of the endemic area by 1998 [28] (Figure 1). The last
epidemic year was 2002 with 748 human cases throughout
the ten endemic provinces (rate of incidence/year 0.2/10 000
inhabitants), and since then it began up to now an interepi-
demic period with smaller foci sparse in the whole endemic
area (150–370 cases). As the usual agent of ACL present in
the country is also related to mucocutaneous leishmaniasis
(L. braziliensis) the decrease of incident cutaneous cases, and
the past cutaneous epidemics, resulted in an increase in the
ratio of mucosal to cutaneous cases (2010 : 28 : 138) (SNVS
National System of Surveillance, Ministry of Heath).

Three species of Leishmania have been isolated from
humans with ACL in the country, L. (Viannia) braziliensis,
L. (Leishmania) amazonensis, and L. (Viannia) guyanensis,
and from VL cases L. (Leishmania) chagasi. Of these, L.
braziliensis has been the main agent associated with ACL
outbreaks and with mucosal involvement. The reservoir of
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L. braziliensis remains undefined although many mammals
(e.g., Canidae, Equidae, and rodents) are naturally infected;
no one animal completely fulfills the requirements to be
defined as the single reservoir [29]. Since the first reported
outbreak of ACL in Argentina in 1985–87 (Figure 1), 28 dif-
ferent species of Phlebotominae have been reported. Among
these, Nyssomyia neivai, Ny. whitmani, Mygonemyia migonei,
and Evandromyia cortelezzii-sallesi have been incriminated as
vectors of L. braziliensis [30, 31].

The first known report of a human case of VL, with
infected dogs and the vector Lu. longipalpis in its urban
courtyard, was reported in Posadas, Misiones, in northeast-
ern Argentina in 2006 (Figure 1), probably infected during
the previous year [27]. However, the vector was found in
urban environments since 2004 in the Paraguay-Argentina
border, in the province of Formosa [30] (Figure 1). Most
of the human cases are still from the province of Misiones,
with L. infantum (syn. chagasi) isolated from humans, dogs,
and vectors [32], but the vector of VL spread to the south
and the west of the country, in three provinces (Corrientes,
Entre Rı́os, Chaco), and human cases were recorded in
Corrientes province, at the south of Misiones province [31,
33, 34] (Figure 2). In the western area of the country sparse
human cases (Santiago del Estero and Salta provinces) were
associated with My. migonei as its putative vector [35, 36]
(Figure 2). The accumulated VL cases reported from 2006
to July 2011 are 81, while dogs infected by L. infantum
were reported in almost all the country due to the social
and commercial networks related to dog relocation (SNVS
National System of Surveillance, Ministry of Heath).

3. Materials and Methods

Captures of vectors of leishmaniases were performed with
minilight traps CDC-like operating overnight and Shannon
traps. The design of the captures varies covering different
extensions of space and periods of time according to the
objectives of each particular study. The captures were made
by the researchers of the Argentinean Network of Research
in Leishmaniasis (REDILA) in 12 provinces, belonging to
the three bioecological regions included in the endemic
area of leishmaniases: Yungas Forest (Northwest) Catamarca,
Jujuy, Tucuman, Salta; Chaco Savanna (wet and dry): Chaco,
Córdoba, Formosa, Santiago del Estero; Paranaense Forest:
Corrientes, Entre Rı́os, Misiones, Santa Fe (Figure 1). The
insects were cleared and the species assigned using the keys
of Young and Duncan [37] and Galati [38]. The parasites
detected in natural infections were genotypified by PCR-
RFLP specific for species, with subsequent sequencing or
dotblot. The variables of climate and landscape were ana-
lyzed by multiple correlation and time series ARIMA models
and the spatial integration and forecasting by maximum
entropy’s modeling system (MaxEnt). The anthropological
studies involved key informants, in-depth interviews, and
participant observation. The description of the specific
methodology, the criteria for the selection of the sites of
capture, and the analytic strategy of each study could be
found in the references cited in the following section.
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Figure 2: Lutzomyia longipalpis spread (black circles) and human
cases associated with My. migonei as its putative vector (white
circles). Southernmost record of Phlebotominae and records of
competent vectors.

4. Results and Discussion

4.1. Argentina Case Study

4.1.1. Microscale. The microfocus scale refers to the events
that happen within the area surrounding the sampling point
with a radius that varies according to the subject of focus of
the study: autonomous flight of the vector (adult), territory
of the reservoir, space where the householders develop their
activities, and so forth. Variables as land cover, land use,
and extreme weather events such as floods to model species
distribution become usually more important on smaller
spatial scales [25, 39, 40].

In this scale the variables associated with the climate, as
the low temperatures, mainly the winter in the latitudes with
distinct seasons it was suggested as a period with no adult
activity from vectors of leishmaniases. However, competent
vectors have been captured during temperate winter nights
in microhabitats protected from sudden climate changes, as
primary forest remnant patches [41], or habitats that mod-
erate these changes as patches of secondary vegetation [42].
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Thus, suggesting even a small increase in temperature could
lead to continuous generations of vectors and increased risk
of parasite transmission at “hot-spots.” But this increase in
temperature should have a minimal range, as isolated warm
nights probably do not provide the females time enough to
have a second bloodmeal, the former to get the infection
and the second one to transmit it. On the other hand, if the
accumulated temperature/days (ADD) [5] allows the parasite
cycle to be completed, so the period of active transmission
could be longer than that observed during a regular year.

In this sense, environmental management, or just any
anthropic or climate-driven changes in the landscape, can
generate or destroy these temporary shelters of vectors.
This fact is even more important for artificial refuges,
such as those built for breeding domestic animals, with
temperature and humidity favorable for the sand flies, and
continuous source of food (for larvae: organic matter in
soil; for adults: blood). Shelters, in turn, are associated with
greater abundances of vectors in the edge of deforestation—
cluster analysis [43], as a local population from a source
population located within a dense vegetation patch cross-
correlation/metapopulation structure [44], or consequence
by the deforestation itself in the interface with cultures
generating a “border effect” nonmetric multidimensional
scaling and Kendall correlation coefficients [45].

In relation to the abundance activity per hour, the vector
of VL Lu. longipalpis in December (summer) in the Northeast
of the country (NEA) showed a curve associated positively
with the average temperature and relative humidity (RH),
in the case of females. The “window” (best temperature and
humidity condition) of greater abundance for females was
between 26◦ and 28◦C and 63 and 68 RH%; the 90% of the
females were captured between 20:30 pm and 1:30 am [46].
In the case of Ny. neivai in the Northwest (NOA) although
with a bimodal pattern, in January (summer) the peak of
greater activity was at 00:00 am with the temperature as
the variable that best explained abundance by hour and in
April (autumn) at 03:00 am with the humidity as the critical
variable [47]. Thus, the effect of temperature and humidity
on the abundance activity of sandflies varies according to
the species, with different critical variables according to the
season and region.

Furthermore, taking into account the micro focus bio-
logical frame, an increase in temperature or humidity,
preserving the light-darkness period, would not only change
the transmission risk by the duration of night activity of
the females but also could be accompanied by changes of
the habits of humans. This human behavior changes would
increase the vulnerability discriminated by socioeconomic
variables. For instance, in very hot and humid nights (more
prolonged activity of vectors) some families spend more time
in the courtyard during and after the supper, while other
families spend this period indoors with air conditioning or
roof fans, increasing so the inequity in the distribution of
health events.

4.1.2. Mesoscale. The mesofocus scale includes the
population-based studies, such those on epidemic outbreaks

or populations of vectors and/or reservoirs, and is the more
frequent scale of study of classical epidemiology.

In this scale many Phlebotominae species in several foci
presented peaks associated with the periods of rain [45, 48].
However it should be distinguished between the emergence
peaks of young adult vectors and the period with higher
probability of transmission of leishmaniasis, with peaks with
less amount of individuals but with more older ones (females
with at least one intake and therefore more likely to have
ingested parasites) [44]. Therefore, the peaks of cutaneous
leishmaniasis according to the probable date of start of the
lesion (ACL) are associated with the peaks of gravid females,
and not with the highest peaks of adults [28]. It means that
given the incubation period of leishmaniasis in humans, the
increase in cases is usually recorded in epidemics or during
endemic years, for ACL and VL, towards the end of the
season of activity of vectors, in Argentina during autumn,
especially in the month of April [49–51]. Consistently with
these results, the best combination of climatic predictors of
abundance of Phlebotominae usually includes rain [52], and
the vectors peak is positively associated at different times
after rainfall, with lag periods of rainfall-vector abundance
up to one year for Ny. neivai [28, 44, 53].

As climate phenomenon the rainfall is associated with
water balance and runoff coefficient, shadow-roofed pro-
tection available, and relative humidity temperature. These
effects modulated by the precipitation and temperature
would have in turn impact on the larval substrate, where
a “window” of moisture of the soil is necessary for the
survival, different effects from that of the weather variables
as metabolic velocity modulators on larvae but also on
adults. This differential effect by stage was suggested from
what was observed for Ny. whitmani and My. migonei in an
endemic of ACL area, recently deforested. There, the vector
abundance was associated positively with the temperature
at the time of capture (day 0) and 30–45 days before the
sampling but with the rain only showed a positive significant
association 30 days before the capture. The association
with rainfall disappears when the effect of temperature is
removed, which would indicate that in an area without
dry season the temperature becomes the critical variable
[54]. These delayed effects of the abiotic factors on the
sand fly population were also reported for Lu. longipalpis
in a VL focus of Brazil [55]. These variables, in turn,
could play different roles in source/sink populations of
a metapopulation structure, as it was observed for ACL
vectors [28, 42, 44], and VL vectors [56], that in Posadas
focus, had a spatial autocorrelation of 600 m [57, 58]. The
weather-associated variables together with the anthropic
environmental and animal management even could generate
a dynamic metapopulation with “hot spots” alternating in
time its role as source or sink populations.

4.1.3. Macroscale. The macro focus scale refers to regional
and subcontinental phenomena; it is the usual scale of
projective and predictive climate-based models. When it is
used to explain epidemiologic facts at meso- or microscales,
it can distort the forecasts, by compensation of field-data
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with opposite trends or by magnifying the data taking
only in account the more visible events (endemic pattern
analyzed using epidemic records). Therefore, alterations in
rainfall would have a direct effect on the regulation of the
populations of Phlebotominae, and although climate change
affect large regions (macroscale) in each one (focus scale)
could result in a different scenario of transmission, clustered
in time and space (microfocal scale). So, for instance, high
instability due to El Niño South Oscilation (macroscale)
increases or decreases the incidence of leishmaniases with
extraordinary rainfalls and drought at different foci (meso-
scale). The actual distribution of “hot spots” with increased
probability of transmission during excessive rains could
be clustered in high topographic locations that remain
relatively dry, while during droughts the “hot spots” could be
located in shadowed depressions of the landscape that retains
humidity [59].

In the frame of this scale, the current and potential
distribution of Phlebotominae in Argentina was analyzed.
The southernmost specimens found were of the genus
Oligodontomyia, without known vector capacity, in the
plateau of Somuncurá, located between 40◦20′ and 41◦30′ S
and 65◦55′ and 70◦10′ W [60] (Figure 2). Further, the
presence of Evandromyia individuals was reported during
the early twentieth century in the Province of Buenos
Aires, but never afterward when these areas underwent an
intense transformation and urbanization. However, these
data demonstrate the ability of these insects to be present
and colonize places with usually considered adverse weather
conditions. So far the southernmost current captures
obtained from the competent vectors Ny. neivai and My.
migonei were at coordinates 31◦12′46′′ S–60◦09′22′′ W and
31◦35′15′′–31◦35′15′′ S–60◦17′48′′ W [61] (Figure 2), along
the gallery forest of the Paraná river under a process of
tropicalization [62].

The xerophytic bio region of the Chaco dry forest has its
own vectors, associated with sporadic zoonotic transmission
of ACL, My. Migonei, and Ev. cortelezzii-sallesi as prevalent
species, the last found with natural infection of L. braziliensis
[63]. However, an increase in precipitation and humidity,
as it was observed in the province of Santiago del Estero
both by global trends and water reservoir-irrigation devel-
opment projects [64, 65], could transform the pattern of
abundance/diversity towards the epidemic pattern found in
the humid Chaco, the Northwest and Northeast regions with
Ny. neivai, as the prevalent peridomestic species, followed
by My. migonei as a vector “hinge” connecting zoonotic and
anthropo zoonotic parasite transmission cycles [46, 52, 66].

Finally, when performing potential distribution models
(method of MaxEnt modeling) in northwest of Argentina
for Ny. neivai and My. Migonei, where the rainfall of the
driest month was variable that best generalized both models
[67], an increase of precipitation would increase the area of
dispersion of the species.

Lutzomyia longipalpis’s dispersion in Argentina, since the
urban reports in Campo Grande, Mato Grosso do Sul, in
Brazil and Asuncion, in Paraguay, was followed also in the
three analytical scales. Lutzomyia longipalpis in Argentina
was recorded by first time in 1951 in Candelaria, Misiones

(one female), and again in the year 2000 in Corpus, Misiones
(4 out of 9253 Phlebotominae), both rural areas with
very low human density at the time or place of capture.
Further, since 1990, more than 80000 Phlebotominae had
been captured and registered in Misiones and the other
8 provinces endemic for ACL in Argentina, but only Lu.
longipalpis was registered in the locality mentioned above
[68]. The first record of this vector associated with urban
habitats and epidemic scenarios in the country was to the
end of the year 2004 in Clorinda, province of Formosa
(Figure 1), just in front of the VL focus of Asunción-
Lambaré, in Paraguay, across the river [30]. The first urban
autochthonous focus in Argentina as it was already described
in the introduction was reported in province of Misiones
in June 2006 (Figure 1), with simultaneous presence of Lu.
longipalpis and an infected dog in the courtyard of a human
VL case, that probably would have been infected in the
second half of 2005 [27]. Lutzomyia longipalpis, humans
and dogs with VL were observed during the summer 2008–
2009 in the province of Corrientes south to Misiones, on
the shore of the Uruguay River and Parana River, including
areas with intensive captures over the previous 5 years, due to
transmission of ACL, but with no Lu. longipalpis found then
[31]. In the summer 2009-2010, Lu. longipalpis was further
dispersed to the south and it was found in Chajarı́, Entre
Rios (30◦40–46′ S–58◦00′–57◦57′ W), Bella Unión and Salto,
Uruguay (31◦23′49.9′′ S, 57◦57′50.4′′ W), and also spread
westward across the Parana River to Resistencia, Chaco
(27◦25–28′ S–58◦58–59′ W) in sites where regular captures
catches had been made without previous presence of this
species [33, 34, 69] (Figure 2).

The specimens of Lu. longipalpis found in Posadas had
natural infection with L. infantum with a rate of at least
0.47% [32]; in order to understand its possible route of
dispersion from the northern foci, the sex pheromone
of the male was characterized as (S)-9-methylgermacrene-
B, the same described from Lu. longipalpis of Paraguay
and several populations of Brazil. However, the analysis of
the period gene sequences found that the populations of
Argentina are significantly different from those previously
studied in Northeastern and Southeastern Brazil, although
it would require further studies of intermediate locations
before characterizing these “southernmost” populations of
Lu. longipalpis as in the way to differentiation [70]. When
we applied the modeling of potential distribution to Lu.
longipalpis, with an analytic strategy similar to that used for
Ny. neivai and My. migonei, we observed that the vector of VL
can colonize the gallery forest of the Uruguay River, and the
precipitation was the variable that best generalized model.

The potential distribution derived from the modeling
shows that changes in the rainfall patterns (mean, variability,
frequency, distribution in time and space seasonality, avail-
ability of sources) [71, 72] will modulate the geographical
dispersion or extinction of the main vectors of ACL and VL
in the large scale.

Besides, in the Chaco bioregion, sporadic cases of human
VL have been associated with My. migonei as the putative
vector of L. infantum, without Lu. longipalpis, but in a
context of intensified parasite circulation (migration of



6 Journal of Tropical Medicine

infected dogs from endemic urban foci with Lu. longipalpis
and with a growing awareness of the health system due to
the outbreaks in the provinces of Misiones and Corrientes)
[35]. Thus, again, an increase in humidity of the Dry Chaco
region can eliminate the climate barrier to dispersal of the
urban epidemic form of VL produced by Lu. longipalpis.
This phenomenon was already proposed for ACL in the
twentieth century, for two bioregions, the foothills of Yungas
and central Chaco, where the increase in rainfall turned
profitable the deforestation followed by human settlement
for agriculture instead of just logging and abandonment
of the deforested lands [73–75]. This change in human
behavior driven by climate change increases consequently
the likelihood of effective human-vector contact and also
pushes the adaptation of the epidemic vector of ACL,
Ny. Neivai, to the anthropic modified landscapes, which
thereafter became prevalent and abundant in peridomestic
rural and ruralized periurban habitats (border effect and
domestic animal management).

5. Climate Change and
Leishmaniases in the World

The search for articles on climate change and leishmaniasis
(MEDLINE 25/07/2011) recorded 25 papers of which 14
are reviews. Defined geographically 13 belongs to Europe,
3 to Latin America, 2 to Asia, and 1 to North America.
The authors usually point to the need for intensified mon-
itoring of leishmaniasis due to the risk of geographic range
expansion and the intra-annual and interannual variability
of incidence due to changes in distribution, abundance,
and diversity of competent vectors. These projections are
based on expert knowledge of prevalence distribution or
biology and current distribution of the vector, overlapped
to a bioregion or climatic conditions, usually temperature
[76–84], only excluding the risk of latitudes as Denmark
[85]. With less conjectural methods, some authors develop
predictive models of potential distribution for competent
vectors making approaches in the macroscale through differ-
ent scenarios of expected changes in temperature [86]. With
this approach for Phlebotomus papatasi in Southwest Asia an
increase of 1◦C predicts an increase of endemic sites of 14%
(14 out of 115 stations considered, 71 currently endemic) if
the increase reaches 3◦C 15% additional sites are added, and
in 7% of the stations the seasonal transmission period would
be extended to the whole year [87]. In South America this
analytical strategy was used to project the distributions of
three species of sanitary importance, Ny. whitmani, Ny. neivai
and My. migonei, where an increase in temperature would
have more impact in the dispersion in the macro-scale, that
if will including topographic data [4]. This latest variable
was included for United States and Canada predicting a
doubling of humans exposed to vector-borne transmission
of leishmaniasis even with an occupation of the vector and
reservoir of 10% of favorable habitats [88] towards the 2080.
MaxEnT models with bioclimatic change scenarios at the
regional level were used for central Europe, and the favorable
regions were identified including the approach of least-cost

path, obtained from expert information about vectors and
topography. Thus, while ecological niche models develop
algorithms correlating records of presences absences of a
species with quantitative ecological variables, the integration
of these results with alternative climate change models and
species-specific dispersal ability (least-cost analysis) allows to
project new potential distributions [86]. These projections
show an increase in appropriate habitats for vectors since the
second half of the 21st century, although the Phlebotominae
would not be occupied all due to limitations in their ability
to spread and the Alps as a barrier to expansion towards the
North [89]. It is interesting to note that this potential for
dispersal and reintroduction (depending on the scale of time
used) in central Europe varies to Austria according to the
species and station, so with an increase of 1◦C for Ph. mascitti
appropriate habitats would occur in January, while for Ph.
neglectus in July [90]. Models using degree/day have been also
applied to estimate the number of generations, peak activity,
and annual variability in Iran [91].

The species to deal with changes in its preferred bio-
climatic niches and to spread to other suitable-available
habitats driven by climate change are limited by its
own intrinsic biological resilience or potentiality and its
population-metapopulation dynamics, but interacting with
the dynamics of other coexistent species and the dynamics
of fragmented landscapes. Therefore, as it has been pointed
out on numerous occasions, it is very difficult to extrapolate
these models outside of the area used for its construction,
integrate statistical spatial models based on climate with
biological models, and develop based on these models early
warning systems with appropriate field-based surveillance
response [38, 39, 92–95].

However, despite so many statements in lectures and
documents, unfortunately the evidences of the actual impact
of climate change on the transmission of leishmaniasis with
field-based data are still few or weak and ever closely related
with changes in human behavior. In the United Kingdom it
was noted that 105 out of 183 dogs came from Spain with L.
infantum infection. The authors highlight the risk of moving
infected reservoirs to sites that can become favorable to the
development of vectors and provide a possible association
between the increase and canine incidence in the period
1994–2007, with other areas not experiencing the same
process (55). The migration of infected pets treated with
medications approved locally is also indicated as a variable
of risk of dispersion within Europe due to “a flourishing
market for dogs of miserable appearance suffering from
leishmaniases (that) has been developed by profit-oriented
opportunists” [96] and to spread of parasite strains that
are resistant to drugs used for humans in other continents
[97]. In this sense both the world trade of goods, humans
and animals and the climate change and seasonal variability
drive the pattern of dispersion, range of dissemination,
amplification, and persistence in new environments of
pathogens such as Leishmania [89, 98, 99].

On the other hand, the difficulty to understand these
phenomena with events measured in different scales, as it was
mentioned in the results, was also emphasized when com-
paring macroscale indicators, as the intensity of “El Niño” or
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“La Niña” with changes in the global incidence of leishma-
niasis discriminated by departments/provinces/states [100],
where climatic instability creates different scenarios of
transmission, even with opposite sign at the same time in
the mesoscale and microscale [1]. In this regard it should
be taken into account the change and climatic instability
along with other variables such as land use, management
of water, human population growth and urbanization,
chemical pollution and the movements of people, animals
and property as parts of a global change, each one different
in velocity and local impact, defying in a different way the
adaptive capacity of each community, its regional economy,
and the quality and coverage of their health systems [84, 98,
101]. Mixed scales were often seen both conceptually and
in actual field designs discussing altitude range as subrogate
of climate and vegetation ranges, and mean temperature or
rainfall together with border effect, wind obstacles as walls,
species of trees, domestic blood sources, the lacking of paved
roads.

Therefore, although socioeconomic variables are more
often associated with other diseases as malaria or cholera,
while leishmaniasis for many studies looks like to be only
affected by abiotic factors [102], it should be taken into
account that the cultural factors are not an additional
approach to the biological problems, but part of it [103].
This theoretical frame involves also approaches in different
scales from the macroscale as the perception of climate
change by researchers, media, and community [104, 105];
migrations due to drought, war, or global economic market
oscillations as it was the development of intensive cocoa and
rubber cultures associated with outbreaks of leishmaniasis in
Brazil [82, 106, 107] the impact of climate change on local
knowledge and traditional technologies [108] the dispersion
of reservoirs through social and commercial networks such
as dogs in the case of VL [109] and the microscale as the risk
and environment perception, which is itself a risk variable,
compete with the necessity when the space of daily activities
(handling pets, housing, collecting water or firewood) are
constructed and defined by householders [110, 111], but
the consistency of scales should again be essential both
to support conclusions and to generate appropriate and
feasible recommendations with actual impact in the health
of individuals and communities [112].

Finally the modification of the environment is also
closely associated with both cultural issues as climate change,
generating a cascade of events that can start with deforesta-
tion, followed by changes in land use and human settlements,
habitat fragmentation, border effect, increased abundance or
contact with synanthropic reservoirs, clustered food sources
for vectors (domestic animals), pressure for adaptation
of vectors to modified environments and anthropophily,
irrigation and water storage systems and optimization of
vector and reservoirs breeding conditions [113], human sus-
ceptible migration and unplanned urbanization (favorable
habitats), impoverishment and immune status of the human
population and deterioration of the public health systems
[82, 114].

6. Conclusion

The impact of climate change on vector-borne diseases,
as leishmaniasis, although intuitively logical and currently
in an ongoing stage, requires more strong and earlier
biological-based evidences, such as those obtained by long-
term monitoring in transects to determine the altitudinal and
latitudinal range of each species of vector [115]. However, it
is also essential to be able to refute the skeptic discourse [116]
to bring a strong scientific support to the climate change
vector-borne disease debate, to discriminate the hypotheses
data conclusions in adequate and consistent scales of time
and space, and to take into account the intermingled net of
physical-abiotic, biological, and social-driven variables that
are playing in these changing scenarios.

In conclusion, in order to transform the knowledge into
actual mitigation actions at local level it should be developed
the following.

(1) Risk Maps. To define in each scale the spatial and
temporal vulnerability of dispersión colonization of vec-
tors/outbreak of disease, by assessing the risk variables
(biomedical, bioecological, sociocultural) prioritized by
experts, and overlap these risk variables to the probability
associated with changed scenarios in climate, environment,
market, and demography.

(2) Monitoring. To identify at each scale indicators and
sources of data that allow adequate monitoring in time
and space and with appropriate quality (resolution, units,
sensitivity, specificity, accuracy, etc.).

(3) Early Warning. To determine the events discriminated
by scale, region, and period and for each one the field-
monitoring threshold, which trigger enhanced surveil-
lance or previously defined-validated actions of mitigation-
control.

(4) Strategy of Prevention. To make recommendations of
prevention consistent with the events already defined (risk
maps, monitoring, early warning) and discriminated by
scale, region and period, for example (a) microscale: perido-
mestic animals management, (b) mesoscale: building of
dams or locality edgedeforestation for new neighborhoods,
(c) macroscale, population migrations, droughts, floods.

Acknowledgments

The authors thank the members of the Research Network
of leishmaniasis in Argentina for their permanent collabora-
tion: Soraya Acardi, Denise Fuenzalida, Ignacio Gould, Javier
Liotta, Mariana Manteca, Mariela Martı́nez, A. Mastrángelo,
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identificação dos táxons da América,” in Flebotomı́neos do
Brasil, E. F. Rangel and R. Lainson, Eds., pp. 53–175, Fiocruz,
Rio de Janeiro, Brazil, 2003.

[39] R. G. Pearson and T. P. Dawson, “Predicting the impacts of
climate change on the distribution of species: are bioclimate
envelope models useful?” Global Ecology and Biogeography,
vol. 12, no. 5, pp. 361–371, 2003.
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[111] A. V. Mastrángelo and O. D. Salomón, “Contribución de
la antropologı́a a la comprensión ecoepidemiológica de
la Leishmaniasis Tegumentaria Americana en las “2000
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