
LEMPEL-ZIV FACTORIZATION USING LESS TIME AND

SPACE

LEMPEL-ZIV FACTORIZATION USING LESS TIME AND

SPACE

BY

GANG CHEN, B.Eng.

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT

MCMASTER UNIVERSITY

HAMILTON, ONTARIO, CANADA

AUGUST 2007

© Copyright by Gang Chen, 2007

MCMASTER UNIVERSITY

DEPARTMENT OF

COMPUTING AND SOFTWARE

The undersigned hereby certify that they have read and

recommend to the Faculty of Engineering for acceptance a thesis entitled

"Lempel-Ziv Factorization Using Less Time and Space"

by Gang Chen in partial fulfillment of the requirements for the degree of

Master of Science.

Dated: August 2007

Supervisor:
Dr. William F. Smyth

Readers:

11

Author:

Title:

MCMASTER UNIVERSITY

Date: August 2007

Gang Chen

Lempel-Ziv Factorization Using Less Time and

Space

Department: Computing and Software

Degree: M.Sc. Convocation: October Year: 2007

Permission is herewith granted to McMaster University to circulate and

to have copied for non-commercial purposes, at its discretion, the above title

upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR'S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

iii

Table of Contents

Table of Contents

List of Tables

List of Figures

Abstract

Acknowledgements

1 Introduction

1.1 Background

1.2 Motivation

1.3 The New Algorithms

2 Definitions and Notation

2.1 Strings and Alphabet .

2.2 Suffix Tree

2.3 Suffix Array

2.4 Repetition and Run . .

2.5 Lempel-Ziv LZ-factorization

3 Previous Related Algorithms for Lempel-Ziv Construction

3.1 The Algorithm KK-LZ [22] .

3.2 The Algorithm AKO [1]

4 New Algorithms

4.1 Description of the Algorithms

4.2 Demonstration of New algorithms

iv

iv

vi

vii

viii

ix

1

1

3

5

7

7

10
14

15
16

19
20

24

28

28

32

5 Experiments 37

5.1 Testing Details 38

5.1.1 Environment 38

5.1.2 Timing 38

5.1.3 Memory usage . 38

5.1.4 Test Data ... 39

5.2 Test Results 39

5.3 Conclusions of Experiments 39

6 An Application of the New Algorithm 45

6.1 Background of Algorithms For Repetitions 45

6.2 The improvements on KK algorithm [22] 47

7 Conclusions and Future Work 49

Bibliography 51

v

List of Tables

5.1 Description of the data set used in experiments. 40

5.2 Runtime in milliseconds for suffix array construction and LCP compu-

tation. 41

5.3 Runtime in milliseconds for various LZ factorization algorithms. Times

for CPSd-9n include times for suffix sorting and LCP array construction

with lcp9n; times for CPSa, CPSb, CPSc-13n and AKO include times for

suffix sorting and LCP construction with lcp13n (see Table 5.2). . . . 42

5.4 Standard deviation for runtime in milliseconds for various LZ factor­

ization algorithms. (The standard deviation of a random variable X is

defined as: a= V -tJ 2:~ 1 (xi- x) 2
, where x = -tJ 2:~ 1 (xi), x1, ... , XN

are the values of the random variable X, N is the number of samples. 43

5.5 Peak memory usage in bytes per input symbol for the LZ factorization

algorithms. 44

vi

List of Figures

2.1 The trie and Patricia trie on W=ab, abed, efg 11

2.2 The suffix trees for string x = abaab$ 13

3.1 Algorithm Ukkonen: constructing a suffix tree 21

3.2 Algorithm LZ: computing LZx ••• 0 • 22

3.3 The labelled suffix tree for x = abaababa 23

3.4 The lcp-interval tree of x = abaababa 25

3.5 Algorithm AKO: computing LZx 27

4.1 Algorithm CPS: computing LZx . 29

4.2 Computing LEN corresponding to POS[i] 31

4.3 Algorithm CPSa •• 0 ••• 34

4.4 Algorithm CPSb 35

4.5 Algorithm CPSc and CPSd 36

vii

Abstract

For 30 years the Lempel-Ziv factorization LZx of a string x = x[l..n] has been a

fundamental data structure of string processing, especially valuable for string com­

pression and for computing all the repetitions (runs) in x. When the Internet came

in, a huge need for Lempel-Ziv factorization was created. Nowadays it has become a

basic efficient data transmission format on the Internet.

Traditionally the standard method for computing LZx was based on 8(n)-time

processing of the suffix tree STx of x. Ukkonen's algorithm constructs suffix tree on­

line and so permits LZ to be built from subtrees of ST; this gives it an advantage, at

least in terms of space, over the fast and compact version of McCreight's STCA [37]

due to Kurtz [24]. In 2000 Abouelhoda, Kurtz & Ohlebusch proposed a 8(n)-time

Lempel-Ziv factorization algorithm based on an "enhanced" suffix array - that is, a

suffix array SAx together with other supporting data structures.

In this thesis we first examine some previous algorithms for computing Lempel­

Ziv factorization. We then analyze the rationale of development and introduce a

collection of new algorithms for computing LZ-factorization. By theoretical proof

and experimental comparison based on running time and storage usage, we show that

our new algorithms appear either in their theoretical behavior or in practice or both

to be superior to those previously proposed. In the last chapter the conclusion of our

new algorithms are given, and some open problems are pointed out for our future

research.

viii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to Dr. William F.

Smyth, my supervisor, for his enormous support throughout the research and this

thesis write-up. This thesis would not be done without his foresighted guidance and

careful corrections. Many thanks for his patience and help that kept me on the right

track.

I should thank Simon J. Puglisi for his constant assistance. He shared many great

ideas and source codes with me, and helped me for testing. I also should thank

Manzini and K ucherov for responding to my inquires.

Of course, special thanks to my parents and my whole family, who always support

me and encourage me to pursuit graduate study and career path. Thanks for their

endless love.

Thanks to (alphabetically) Feng Wang, Feng Xie, Hao Xia, Huan Wang, Jiaping Zhu,

Jie Gui, Kedong Lin, Lei Hu, Munira Yusufu, Qian Yang, Shu Wang, Wei Li, Wen

Yu, Xiang Ling, Zhe Li and many others in the Computing and Software department,

for their friendship.

Last but not least, thanks to my roommates, we had a lot of fun these years. They

were always curious about my research and listened to my explanations patiently,

although they could understand little.

Hamilton, Ontario, Canada

July, 2007

IX

Gang Chen

Chapter 1

Introduction

In this thesis we develop a collection of new algorithms for constructing Lempel­

Ziv factorization. In this introductory chapter we first give a brief overview of the

background of this problem. Then we introduce the motivation for our development.

Finally we detail the new features of our new algorithms.

1.1 Background

In the field of data compression, Huffman coding is optimal for a symbol-by-symbol

coding with a known input probability distribution [4]. In order to obtain the neces­

sary frequencies of symbols in the data to be compressed, Huffman coding either had

to rely on the ability to predict such occurrences or would require that the text be

read in beforehand.

In 1977, two Israeli information theorists, Abraham Lempel and Jacob Ziv, intro­

duced a radically different way of compressing data, which is called the Lempel-Ziv

1

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 2

algorithm. This algorithm is a dictionary-based data compression technique that

does not require making predictions or pre-reading data. The Lempel-Ziv code is not

designed for any particular source but for a large class of sources, such as GIF image

formats [5] or TIFF files. Because of these advantages, the Lempel-Ziv code became

a widely used technique for lossless file compression. For example, it is used for the

gzip (Unix), winzip and pkzip compression algorithms.

Two original versions of the Lempel-Ziv algorithm are described by these two

theorists in [26] and [27]. After Internet technology arrived, there was a huge need

for the Lempel-Ziv algorithm to compress transmission data. Since this algorithm is

so simple, others can change it slightly to make it optimal for a specific use. Then

LZ77 and LZ78 gave rise to a series of variants of this algorithm that form the family

of LZ algorithms. The variants are essentially identical to the method from which

they originate (either LZ77 or LZ78).

In this thesis we mainly discuss the algorithms for constructing Lempel-Ziv fac­

torization. The previous traditional algorithms use a suffix tree to construct LZ­

factorization. There exist many algorithms for computing suffix trees. Farach's suffix

tree construction algorithm (STCA) [9] executes in linear time, but in practice it is

not as fast as Ukkonen's algorithm [48] and McCreight's algorithm [37] as completed

by Kurtz [24]. Ukkonen's algorithm constructs the suffix tree on-line, and so the

LZ-factorization can be built at the same time. Kolpakov & Kucherov [22] described

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 3

an implementation of the LZ algorithm based on Ukkonen's algorithm, called the

KK-LZ algorithm. The KK-LZ algorithm is one of the most efficient suffix tree-based

LZ algorithms.

In 2004, Abouelhoda, Kurtz & Ohlebusch [1] showed how to compute LZx from a

suffix array, together with other linear structures, rather than from a suffix tree. Since

there now exist practical linear-time suffix array construction algorithms (SAGAs)

[16, 19], it thus becomes feasible to compute LZx in x in 8(n) time for large values

of n. In this thesis, we will compare our new algorithm with the KK-LZ [22] algorithm

and the AKO algorithm [1].

1.2 Motivation

Although LZ factorization has always been of great importance in data compression

[38], our immediate motivation for developing new LZ construction algorithms is the

central role of LZ in computing repetitions in strings, as we now explain.

A repetition in a string xis a substring w = ue of x, with maximum e ~ 2, where

u is not itself a repetition in w. See section 2.4 for a complete definition. A run in x

is a substring w = ueu* of "maximal periodicity", where ue is a repetition in x and

u* a maximum-length possibly empty proper prefix of u. A run may encode as many

as lui repetitions. The maximum number of repetitions in any string x = x[l..n] is

well known [6] to be 8(nlogn).

Computing all the runs (maximal repetitions/periodicities) in a string is one way

M.Sc. Thesis - Gang Chen McMaster University - Computing & Software 4

to list all the repetitions the string contains. Repetitions and other forms of period­

icity have long been considered important theoretical characteristics of strings, and

today the detection of repetitions has become of practical interest, primarily in the

field of bioinformatics, with algorithms for the task a standard part of any software

for whole genome analysis.

In 2000 Kolpakov & Kucherov showed that the maximum number of runs in xis

O(n); they also described a 8(n)-time algorithm, based on Farach's 8(n)-time suffix

tree construction algorithm (STCA), 8(n)-time Lempel-Ziv factorization, and Main's

8(n)-time leftmost runs algorithm, to compute all the runs in x.

The original motivation of our research comes from the observation that the KK

algorithm [20] uses a suffix tree to compute the Lempel-Ziv factorization. The fact

that a suffix tree consumes huge memory space makes the KK algorithm difficult to

perform for a large string. The main idea is to replace suffix trees with enhanced

suffix arrays. We can replace Farach's algorithm [20] with the AKO algorithm [1]

to construct a Lempel-Ziv factorization using suffix arrays instead of suffix trees.

However the AKO algorithm depends on a structure called an lcp-interval tree, which

makes the AKO algorithm slow and expensive in terms of memory space. Therefore

the result of this improvement is not as notable as had been expected.

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 5

We considered the Lempel-Ziv factorization carefully and discovered a more effi­

cient version with linear time. Replacing Farach's algorithm [20] with this new al­

gorithm can greatly improve the KK algorithm either in running time or in memory

space usage. We will detail the improvements for the KK algorithm later in chapter

6. A series of new algorithms named CPSa, CPSb, CPSc and CPSd are described;

each of them runs in linear time and has its own features.

1.3 The New Algorithms

In this thesis we first describe our new linear-time algorithm (CPS) that, given the

suffix array and the corresponding longest common prefix array LCP x, computes

LZx in guaranteed 8(n) time and, according to our experiments, does so faster than

either of the algorithms AKO [1] or KK [20]. Note however [39] that the linear-time

algorithms [16, 19] for computing SAx are not, in practice, as fast as other algorithms

[36, 34] that have only supralinear worst-case time bounds. Thus in testing AKO and

CPS we make use of the supralinear SACA [34] that is probably at present the fastest

in practice. Similarly, for testing purposes, we use an implementation of KK that,

instead of Farach's algorithm, uses a fast, compact, but still supralinear version of

McCreight's STCA [37] due to Kurtz [24].

In Chapter 2 we will give definitions and notation for string, suffix tree, suffix

array, and Lempel-Ziv factorization. In Chapter 3 we detail some previous relevant

algorithms. In Chapter 4 we describe our new algorithms CPS and its variants CPSa,

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 6

CPSb, CPSc and CPSd. We will analyze the features and the performances of these

algorithms. Chapter 5 summarizes the results of experiments that compare the al­

gorithms with each other and with existing algorithms. Chapter 6 discuss our work

on one of the applications of Lempel-Ziv. Finally Chapter 7 outlines our conclusions

and ideas for future work.

Chapter 2

Definitions and Notation

In this chapter, we give definitions of the terminology as well as of the notation which

will be used in this thesis.

2.1 Strings and Alphabet

General speaking, a string is a sequence of symbols. For example, a string might be

a word, a text file, a computer program or a DNA sequence. The important feature

of any string is the nature of its elements. Every element in a string is a member of a

set. This set is called an alphabet. In this thesis we use some definitions in [44] and

[50].

Definition 2.1.1 An alphabet A is a set whose elements are called letters. Suppose

A={h, l2, ... , la}, then for any 0 :S i :S a, we say that li is an element of A denoted

by li E A and a = JAI is the alphabet size, that is the number of all elements

contained in A. If a is infinite, we say that A is an infinite alphabet; otherwise, we

7

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 8

say that A is a finite alphabet.

For example, if we have an alphabet A such as A = {a, b, c, d}, then we say that

the alphabet size of A is 4 and it contains four elements a, b, c, d. Also we say that

0: = IAI = 4.

Definition 2.1.2 A string x is sequence of zero or more elements drawn from an

alphabet A. lxl denotes the length of string x.

A string can be represented by different data structures, such as an array, a linked

list or a suffix tree. In this thesis we use arrays to represent strings, because arrays

are simple and natural, and cost less space than linked lists and suffix trees.

For example, given a string x = baaabaabaababa, then we can present this string

as an array x = x[1..14] such as:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x=b a a a b a a b a a b a b a

This string x is defined on an alphabet A = {a, b} with alphabet size o: = 2 and

length 14. We say that x has 14 elements x[1] = b, x[2] =a, x[3] = a, ... , x[14] =a

and also we can say that x has 14 positions while position 1 is at the leftmost side

of x and position 14 is the rightmost side of x. Taking position 8 for example, we

say that x[8] = b, the previous element of x[8] is x[7] =a and the next element of

x[8] is x[9] =a.

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 9

Definition 2.1.3 The empty string is a string containing zero elements and denoted

by e. The length of the empty string is zero. The array model works also for the empty

string x = e which corresponds to an empty array and has length zero.

Definition 2.1.4 For a given string x = x[l..n], and any integers i and j that satisfy

1 ::; i ::; j ::; n, we define a substring x[i .. j] of x as follows:

x[i .. j] = x[i]x[i + 1] ... x[j]

We say that x[i .. j] occurs at position i of x and that it has length j- i + 1. If

i > j, x[i .. j] =e. If j- i + 1 < n, then x[i .. j] is called a proper substring of x.

Definition 2.1.5 For a given string x = x[l..n], we say that x[l..i] (0 ::; i ::; n) is

a prefix of x, and x[l..i] (0 ::; i < n) is a proper prefix of x. We also define that

x[j .. n] (1 ::; j ::; n + 1} is a suffix of x, and x[j .. n] (1 < j ::; n + 1} is a proper

suffix ofx.

Definition 2.1.6 (Lexicographical Order Definition)

In practice, the order of letters is defined by the ASCII code (American Standard

Code for Information Interchange). For example, a < b, if and only if the ASCII code

of a is less than that of b.

For two strings x = x1x2···Xm and y = Y1Y2···Yn, if Xi -=/= Yii for any position i

(1 ::; i ::=; m, n), let j be the first such i. If x1 < y1, then x < y, if x1 > y1, then

x > y. If xi = Yi for all i, then if m = n, x = y, while if m > n, x > y, and if

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 10

m < n, x < y.

2. 2 Suffix Tree

Before we discuss suffix trees, we should define tries and Patricia tries.

Definition 2.2.1 [50] Given a set W = {x1, x2, ... , Xm} of pairwise distinct strings,

a trie on W is a tree containing exactly m + 1 terminal nodes, one for each xi

(i = 1, 2, ... , m), plus one for c. The edges of a trie are labeled with the letters that

occur in the strings of W plus a special end-of-string marker conventionally denoted

by $. Thus the edges from the root of the trie to the terminal node for a string Xi spell

out Xi followed by $. Each edge of the trie is labeled with a single letter of one of the

strings in Wand no two edges out of a node can be labeled with the same letter. The

use of$ ensures that the m + 1 terminal nodes are in fact leaf nodes of the structure.

Actually a trie is a search tree that is very useful in string processing. That means,

given a set of strings, all the strings of this set can be retrieved by traversing the trie

along the edges from the root down to the leaf nodes.

For example, suppose we have a set W = ab, abed, efg, then the trie on W is

shown in Figure 2.1(a).

In Figure 2.1(a), we say that the trie has 4 terminal nodes from nodes 1 to 4

standing for strings ab, abed, e f g and $ respectively. And we see that all these 4

terminal nodes are leaf nodes of the trie. On the other hand, the internal nodes of

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 11

a

e

ed$

(a) the trieon W={ab, abed, efg} (b) the Patricia trie on W={ab, abed, efg}

Figure 2.1: The trie and Patricia trie on W=ab, abed, efg

the trie are some prefixes of some strings Xi· For example, in figure 2.1(a), ab is

a prefix of ab$ while efg is a prefix of efg$. and the edge leading to any node is

different from every other; that means, common prefixes (such as ab or c:) of elements

of W appear only once in the trie. In this figure, we see that traversing the trie along

the edges from root down to the leaf nodes exactly gets all the strings in W denoted

by Xi·

Definition 2.2.2 [50] A Patricia trie (or compacted trie} is constructed from a trie

by eliminating all internal nodes of degree 2 (those with a parent and just a single

child}.

The main difference between a Patricia trie and a trie is that an edge of a Patricia

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 12

trie can spell out a substring rather than a single letter. For example, we give the

Patricia trie on Win Figure 2.1(b).

In Figure 2.1(b), the leaf node i (1 ::; i::; 4) identifies the element xi represented

at that node.

Both tries and Patricia tries can be used to search, not only for any string in W,

but also for any prefix of any string in W. The difference is that, in a trie, any prefix

of any string in W is a node of the trie, but in a Patricia trie, the prefix may not be a

node; that means, it is possible that the prefix is just "on an edge". Thus, searching

a prefix of a string in W by traversing the Patricia trie needs to visit both edges and

nodes, while by traversing the trie one only needs to visit nodes.

Definition 2.2.3 [50] Given a string x with length n, suppose a set W contains n + 1

elements that are the suffixes of x including $, then we say that the suffix tree Tx

of x is the Patricia trie on W.

Note that Tx contains exactly n + 1 terminal nodes and at most n internal nodes.

Thus, there are at most 2n + 1 nodes and at most 2n edges in Tx.

Taking string x = abaab for example, we give the suffix tree Tx in figure 2.2(a).

In Figure 2.2(a), we see that there are 6 leaf nodes in Tx and each leaf node i

(1 ::; i ::; 6) presents the suffix x[i .. 6] of x. And in Tx, each edge labels a substring of

x. We can replace the substring in each edge by two integers identifying the position

of the substring in x. Thus, in this way, we can bound the space required for each

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 13

(a) The suffix tree Tx of string x=abaab

1 '1

4.6A22 m· 3
3.x6.6

oJ m
(b)The suffix tree T'x of string x=abaab

Figure 2.2: The suffix trees for string x = abaab$

edge by a constant. We give the suffix tree T~ in Figure 2.2(b).

In figure 2.2(b), the labels of the terminal nodes identify the positions in x at

which each suffix begins, while 6 denotes the empty suffix.

As we discussed in the previous chapter, suffix trees are very important intrinsic

patterns in strings. Once formed, they can be used to solve many string problems.

For example, given a string x, the suffix tree Tx can be used to determine whether

a given pattern u is a substring of x; the longest repeated substring of x can be

represented by the deepest internal node of Tx and the repetitions as well as the

number of distinct substrings of x also can be computed by using Tx. Furthermore,

suffix trees are especially valuable in cases where x is not subject to change, searches

are frequent, and the alphabet size is very small (for example, DNA sequences).

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 14

Note that although suffix trees are very useful in string processing, the space

needed by a suffix tree is very large. Thus, in order to reduce the space requirement

of suffix trees, some other suffix structures such as suffix arrays have been investigated

by researchers.

2.3 Suffix Array

Definition 2.3.1 Given a string x = x[l..n] on an alphabet A of size a, we refer to

the suffix x[i .. n], i E l..n, simply as suffix i. The suffix array of the string x, or

SAx is defined to be the array on l..n in which SAx [j] = i iff suffix i is the jth in

lexicographical order among all the suffixes of x.

Definition 2.3.2 Given two strings x 1 and x 2, the longest common prefix

(lcp) of these two strings is the longest prefix of both x 1 and x2. We denote it

by lcp(x 11 x2).

Given a string x = x[l..n], for the suffixes x[i .. n] and x[j .. n] (1 :S i,j :S n) of x,

we can denote lcp(x[i .. n], x[j .. n]) by lcpx(i,j).

For example, for string x = x[1..14],

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x=b a a a b a a b a a b a b a

We have lcp(aabaababa, aababa) = lcpx(6, 9) = aaba, while lcpx(3, 7)

lcpx(3, 8) = e.

a and

M.Sc. Thesis - Gang Chen McMaster University - Computing & Software 15

Definition 2.3.3 Let lcpx(il, i2) denote the longest common prefix of suffixes i 1

and i 2 ofx. Then LCPx is the array on l..n-t-1 in which LCPx[1] = LCPx[n-t-1] = -1,

while for j E 2 .. n,

LCPx[j] = llcPx (SAx[}-1], SAx[}]) I·

When the context is clear, we write SA for SAx, LCP for LCP x. For example:

2345678 9

x= a b a a b a b a

SAx = 8 3 6 1 4 7 2 5

LCPx = -1 1 1 3 3 0 2 2 -1

2.4 Repetition and Run

Definition 2.4.1 Given a nonempty string u and an integer e ~ 2, we say that ue

represents a repetition; if u itself can not be represented by a repetition, then ue is

said to represent a proper repetition. Given a string x, a repetition in x is a

substring

x[i .. i+e!u!-1] = ue,

where ue is a proper repetition and neither x [i+e!u! .. i+(e+1)!u!-1)] nor x[i-lu! .. i-1]

equals u. Following [44], we say the repetition has generator u, period !u!, and

exponent e; it can be specified by the integer triple (i, !u!, e).

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 16

Definition 2.4.2 [44] Let p* be the minimum period of x = x[l..n], and let r* = n/p*,

u = x[l..p*]. Then the decomposition x = ur* is called the normal form of x. If

r* = 1, we say that x is primitive; otherwise, x is periodic.

Definition 2.4.3 A string u is a run iff it is periodic of (minimum) period p :S [u[/2.

A substring u = x[i .. j] of x is a run in x iff it is a run of period p and neither

x[i-l..j] nor x[i .. j+1] is a run of period p (i.e., it is nonextendible). The run u

has exponent e = lfuf/p J and possibly empty tail t = x[i+ep .. j] (proper prefix of

x[i .. i+p-1]).

For example, for a string x = baaabaabaababa,

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x=b a a a b a a b a a b a b a

Then x has a run x[3 .. 12] = (aab) 3a of period p = 3 and exponent e = 3 with tail

t =a of length t = [t[= 1. It can also be specified by a triple (i,j,p) = (3, 12,3),

and it includes the repetitions (aab)3
, (aba)3 and (baa)2 of period p = 3. For the run

x[10 .. 14] = (ab) 2a of period p = 2 and e = 2 with tail t = a of length t = [t[= 1,

it includes two repetitions (ab) 2
, (ba) 2

• In general, for e > 2 a run encodes p

repetitions; for e = 2, t+ 1 repetitions. Clearly, computing all the runs in x specifies

all the repetitions in x.

2.5 Lempel-Ziv LZ-factorization

There are two (non-equivalent) common definitions for LZ-factorization.

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 17

Definition 2.5.1 (Weak Definition) An LZ-factorization is a decomposition x =

wiw2 ... wk, such that each Wj, j E l..k, is

(a) a letter that does not occur in x = wiw2 ••• wj-I; or otherwise

(b) the longest substring that occurs at least once in x = WIW2···Wj-I·

Definition 2.5.2 (Strong Definition) An LZ-factorization is a decomposition x =

WIW2···wk, such that each Wj, j E l..k, is

(a) a letter that does not occur in x = WIW2···Wj-I; or otherwise

(b) the longest substring that occurs at least twice in x = WI w 2 ••• wi.

For example, given a string x = ababacba,

The weak LZ-factorization is: a I b I ab I a I c I ba I

The strong LZ-factorization is: a I b I aba I c I ba I

Many previous algorithms such as Mn [29] and KK [20] use the strong definition,

because the strong LZ-factorization is more efficient and practical than the weak

LZ-factorization. In this thesis we use the strong definition.

The strong LZ-factorization of the example can also be represented as:

WI = a, w2 = b, wa = aba, w4 = c, w5 = ba

We specify each Wj in the LZ-factorization by pairs (POS,LEN), where POS

is the starting position of the left occurrence of the repeating substring Wj in x

and LEN = Jwil is the substring's length. If Wj is a letter that does not occur in

x = wiw2 ••• wj-b then POS is the position of Wj, and LEN is 0. Thus, the strong

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 18

LZ-factorization of x can be specified by

(1,0), (2,0), (1,3), (6,0), (2,2).

We observe that Ws has two left occurrences in x = w 1w 2 ••• wj, Since POS is not

necessarily the leftmost position of occurrence, the strong LZ-factorization can also

be specified by

(1,0), (2,0), (1,3), (6,0), (4,2).

Chapter 3

Previous Related Algorithms for

Lempel-Ziv Construction

In order to better understand the new algorithms that we were going to develop, let us

discuss previous fundamental algorithms for computing the Lempel-Ziv factorization.

Generally speaking, previous algorithms can be classified into two categories, the

suffix tree-based algorithm, and the suffix array-based algorithm. KK-LZ [22] is one

of the most efficient suffix tree-based algorithms for LZ-factorization, because it takes

advantage of Ukkonen's algorithm to compute LZ on-line. There is only one suffix

array-based algorithm for computing LZ-factorization, that is the AKO algorithm [1],

which was invented in 2004. We will detail the KK-LZ and AKO algorithms in this

chapter to demonstrate how Lempel-Ziv factorization is traditionally computed, and

what the features of KK-LZ and AKO are. Then we can see in next chapter what

the improvement of our new algorithms is.

19

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 20

3.1 The Algorithm KK-LZ [22]

The algorithm KK-LZ for computing LZ-factorization, is a suffix tree-based imple­

mentation of Ukkonen's algorithm [48] by Kolpakov and Kucherov specifically de­

signed for alphabet size a ::::; 4. Ukkonen's algorithm is an on-line algorithm for

constructing the suffix tree; it inserts the prefixes x[l..i], i = 1, 2, ... , n iteratively.

Therefore algorithm LZ [26] can be performed to compute the LZ-factorization at the

same time that the suffix tree is constructed.

KK-LZ uses Algorithm LZ [26] to compute LZ-factorization from a suffix tree. The

process is described clearly in [44]: "We specify each factor Wj in the s-factorization

of x by a pair (iL,£), where iL is the starting position of the leftmost occurrence of

the repeating substring Wj in x and£= fwil is the substring's length. Let io be the

current position in x- that is, the first position following the prefix w 1 w2 ... wj-l·

For each i 0 we imagine computing the correct value of £ by searching Tx from the

root for the suffix x[i0 .. n] that will of course lead to the terminal node io. In order to

search, we initialize i +--- i0 , then match on x[i], incrementing i until matching starts

along a downward edge of Tx whose lower end is a node labeled io. If at that point

the last node traversed has a nonzero label, say v, then we set iL +--- v and set£ equal

to the length of the substring represented by v. If the last node traversed was the

root node of label 0, we set (i£,£) +--- (i0 ,0), indicating that a new letter has been

identified." The Pseudo-code of Algorithm LZ is presented in Figure 3.2.

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 21

Ukkonen's Algorithm [48, 44]

- Compute the linked suffix tree Tx on-line
construct T1 - with suffix link (root) =root
j L +--- 1; - leaf nodes added in order 1, 2, ...
u +--- c:; - the initial prefix node is the root
fori+--- 1 ton do - transition i from Ti to 7i+1

- the last branch node formed in the repeat loop must have
- its suffix link updated upon exit from the loop

Wprev <---- E

exit+--- FALSE
repeat - creat new leaf nodes if necessary
- locate the suffix w = uv = x[jL + l..i] in 7i
- and update the prefix node u if necessary

(u, w) +--- smartscan(u, v)
if there exists no downward path labelled x[i + 1] from w then

- a new leaf node must be formed
]L +---]L + 1; if]L > i then exit+--- TRUE

- insert node w on its edge if necessary
if node w does not exist in Ti then

creat node w;
label downward edge to w
label downward edge from w

add leaf node]L and the "infinity edge" from w to]L
- set suffix link from previous node processed

if Wprev =/= E then s (Wprev) <---- W
- set prefix node for next execution

u +--- s(u)
else

- the suffix j L + 1 in 7i extends to suffix j L + 1 in 'Ii+1,
- and so do all subsequent suffixes
- set suffix link for last node processed

if Wprev =/= E then
s(wprev) +--- w - w must already exist as a node

exit+--- TRUE
exit if j L > i or if no more leaf nodes can be added

until exit

Figure 3.1: Algorithm Ukkonen: constructing a suffix tree

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 22

Algorithm LZ (44]

- Using the labelled suffix tree Tx,
- compute the s-factorization of x as a sequence of pairs (iL, £)

io +--- 1
while i 0 :.:; n do

(i1,£) +--- match(io,Tx)
output (i1, £)
io +--- io + £

Figure 3.2: Algorithm LZ: computing LZx

For example, a string x = abaababa, with s-factorization w 1 = a, w 2 = b, w 3 =

a, w 4 = aba, w 5 = ba. That can also be represented as ajbjajabajba. Its labelled

suffix tree Tx is represented in Figure 3.3. The label of the root of Tx is 0, and the

label of a internal node is the minimum of its children's labels. We use this example

to illustrate how to compute the Lempel-Ziv factorization from a labelled suffix tree.

To compute the LZ-factorization, for the first step i 0 = 1, we match the suffix

x[1..8] = abaababa on Tx to find node 1. We search abaababa from the root, until we

find the first node labeled 1. In Figure 3.3 we follow along the left downward edge;

we find node 1, then we set iL = 1,£ = 0, because the last visited node is the root.

Output (1,0), and set i 0 = i 0 + 1 = 2.

In the second step we match x[2 .. 8] = baababa on Tx to find node 2. We follow

the right downward edge from the root; we find node 2, then we set iL = 2,£ = 0,

because the last visited node is still the root. Output (2,0), and set i 0 = i 0 + 1 = 3.

In the third step we match x[3 .. 8] = aababa on Tx to find node 3. We follow the

M.Sc. Thesis - Gang Chen McMaster University - Computing & Software 23

Figure 3.3: The labelled suffix tree for x = abaababa

left downward edge from the root to match a, then we follow the middle downward

edge to match ababa; we find node 3. We set iL = 1,£ = 1, because the last visited

node is 1, the length of the substring is 1. Output (1,1), and set i 0 = i 0 + 1 = 4.

In the fourth step we match x[4 .. 8] = ababa on Tx to find node 4. We follow

the left downward edge from the root to match a, then we follow the right edge to

match ba, next we still follow the right edge to match ba, then we find node 4. We

set iL = 1,£ = 3, because the last visited node is 1, the length of the substring is 3.

Output (1,3), and set i 0 = i 0 + 3 = 7.

In the fifth step we match x[7 .. 8] = ba on Tx to find node 7. We follow the right

downward edge from the root to match ba, then we follow the left edge; we find node

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 24

7. We set iL = 2,£ = 2, because the last visited node is 2, the length of the substring

is 2. Output (2,2), and set i 0 = i 0 + 2 = 9. We finish here.

The output of the algorithm would be (1,0), (2,0), (1,1), (1,3), (2,2).

3.2 The Algorithm AKO [1]

The central concept of AKO algorithm is to use a tree structure, namely the lcp­

interval tree. The lcp-interval tree can be generated from a LCP array in linear time,

then from lcp-intervals it can easily compute the Lempel-Ziv factorization.

Definition 3.2.1 [1] Given a string x = x[l..n]. An interval [i .. j], 0 ~ i < j ~ n, is

an lcp-interval of lcp-value £ if

{1) LCPx[i] < £,

{2) LCPx[k] ?: £for all k with i + 1 ~ k ~ j,

{3) LCPx[k] =£for at least one k with i + 1 ~ k ~ j,

(4) LCPx[J + 1] < £ .

We can use £ - [i .. j] to represent an lcp-interval [i .. j] of lcp-value £.

We still use the example x = abaababa. Its suffix array, LCP array, and lcp­

interval tree are shown in the following figures. Comparing Figure 3.3 with Figure

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 25

3.4, we can see that the lcp-interval tree is similar to its suffix tree.

012345678

X= a b a a b a b a

SAx = 8 3 6 1 4 7 2 5

LCPx = -1 1 1 3 3 0 2 2 -1

I 3-[2 . .41 I

Figure 3.4: The lcp-interval tree of x = abaababa

An lcp-interval is a node in the lcp-interval tree. All lcp-intervals are computed

with the help of a stack, the elements of which are lcp-intervals represented by tuples

(lcp, lb, rb, childList, min), where lcp is the lcp-value of the interval, lb is its left

boundary, rb is its right boundary, childList is a list of its child intervals, and min

is the minimum value of suffix array SAx[lb .. rb]. The Lempel-Ziv factorization is

represented by arrays POS[O .. n-1] and LEN[O .. n-1] (Definition 2.5.2). Furthermore,

_L stands for an undefined value, []stands for an empty list, add([c1 , ... , ck], c) appends

the element c to the list[c1, ... , ck] and returns the result.

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 26

Alllcp-intervals can be bottom-up generated. Every time an lcp-interval is gener­

ated, it calls a procedure to update POS and LEN arrays. Lempel-Ziv factorization

can be computed on-line in linear time by a bottom-up construction of the lcp-interval

tree. The pseudo-code of this process is represented in Figure 3.5.

Because of the use of the lcp-interval tree structure, the AKO algorithm is not a

pure suffix array-based algorithm for LZ-factorization construction. The AKO algo­

rithm computes the suffix array and LCP array from a string, and then constructs

an lcp-interval tree. Since an lcp-interval tree costs nearly the same space as a suf­

fix tree, the performance of AKO is not better than a suffix tree-based algorithm in

terms of time and space. However the AKO algorithm illustrates that a suffix array

of a string, together with its LCP array, has enough information for computing its

LZ-factorization. Actually it proves that every algorithm using a suffix tree can sys­

tematically be replaced by an algorithm using an enhanced suffix array (i.e., a suffix

array enhanced with the LCP array).

M.Sc. Thesis - Gang Chen

Algorithm AKO [1]

last! nterval := ..l
push((0, 0, ..l,[], ..l))
fori:= 1 ton do

lb := i- 1
while LCP[i] < top.lcp

top.rb := i- 1;
last! nterval :=pop
process(last! nterval)
lb := last! nterval.lb
if LCP[i] ~ top.lcp then

McMaster University- Computing & Software 27

top.childList := add(top.childList, lastlnterval)
lastinterval := ..l

if LC P[i] > top.lcp then
if last! nterval #- ..l then

push((LCP[i], lb, ..l, [last! nterval], ..l))
lastlnterval := ..l

else push((LCP[i], lb, ..l,[], ..l))

procedure process(lastinterval)
i .-- last! nterval.lb;
j <-- last!nterval.rb;
M = {SA[q] I q E [i .. j]}
lastlnterval.min .-- min(M)
for all p E M with q #- min;

POS[p] := min
LEN[p] := last!nterval.lcp

Figure 3.5: Algorithm AKO: computing LZx

Chapter 4

New Algorithms

4.1 Description of the Algorithms

Given a string x = x[l..n] on an alphabet A of size a, its SAx and LCPx can be

computed in 8(n) time [18, 35]. For example:

2 3 4 5 6 7 8 9

X= a b a a b a b a

SAx= 8 3 6 1 4 7 2 5

LCPx = -1 1 1 3 3 0 2 2 -1

We use the strong LZ-factorization definition (Definition 2.5.2). For our example

Typically, integer pairs (POS, LEN) specify the factorization, where POS gives a

position in x and LEN the corresponding length at that position (by convention zero

if the position contains a "new" letter). The example thus yields (POS, LEN) =

(1, 0), (2, 0), (3, 1), (4, 3), (7, 2). As mentioned above, LZx can be quickly computed

28

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 29

from STx in 8(n) time [26], also from SAx [1]. Our new algorithm is displayed in

Figure 4.1.

Algorithm CPS

- Using SAx and LCPx, compute POS[l..n] and LEN[l..n].
it f- 1; i2 f- 2; i3 f- 3
while i 3 ::; n+ 1 do
- Identify the next position i2 < i3 with LCP[i2] > LCP[i3].

while LCP[i2] ::; LCP[i3] do
push(S,it); it+--- i2; i2 +--- i3; i3 +--- i3+1

- Backtrack using the stack S to locate the first it < i2 such that
- LCP[it] < LCP[i2], at each step setting the larger position in POS
- corresponding to equal LCP to point leftwards to the smaller one,
- if it exists; if not, then POS[i] +--- i.

P2 +--- SA[i2]; f2 +--- LCP[i2]
assign(POS, LEN, Pt, P2)

while LCP[it] = .e2 do
it +--- pop(S)
assign(POS, LEN,Pt.P2)

SA[it] +--- P2
- Reset pointers for the next stage.

if it > 1 then
z2 +--- Zt; it +--- pop(S)

else

procedure assign(POS, LEN,pt,P2)
Pt +--- SA[it]
if Pt < P2 then

POS[p2] +--- Pt; LEN[p2] +--- f2; P2 +--- Pt
else

POS[pt] +--- P2; LEN[pt] +--- f2

Figure 4.1: Algorithm CPS: computing LZx

The basic strategy of CPS is first to locate, in a left-to-right traversal of SA, a

next position i2 such that LCP[i2] > LCP[i3] for some least i3 > i2; then second

to backtrack (using the stack S) from i2, setting POS[p2] +--- pl or POS[p1] +--- p2

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 30

depending on whether p1 = SA[i1] < p2 or not, until the LCP value for the position i1

popped from S falls below LCP[i2]. This processing does not guarantee that, for equal

LCP (LEN), each corresponding position in POS necessarily points to the leftmost

occurrence in x, as normally required for LZ decomposition; however, the Main and

KK algorithms do not require this property for their correct functioning, they require

only that each position in POS should point left. In other terminology, what is in

fact computed by CPS is a quasi suffix array (QSA) [12]. We call the algorithm

of Figure 4.2 CPSa.

Now observe that none of the position pointers i1, i2, i3 will ever point to any posi­

tion i in SA such that POS (SA[iJ] has been previously set. It follows that the storage

for SA and LCP can be dynamically reused to specify the location and contents of the

array POS, thus saving 4n bytes of storage- neither the Main nor the KK algorithm

requires SA/LCP. In Figure 4.2 this is easily accomplished by inserting i 2 +- i 1 at

the beginning of the second inner while loop, then replacing

POS[p2] +- P1 by SA[i2] +- p2; LCP[i2] +- P1

POS[p1] +- P2 by SA[i2] +- P1; LCP[i2] +- P2

POS can then be computed by a straightforward in-place compactification of SA and

LCP into LCP (now redefined as POS). We call this second algorithm CPSb.

But more storage can be saved. Remove all reference to LEN from CPSb, so that

it computes only POS and in particular allocates no storage for LEN. Then, after

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 31

POS is computed, the space previously required for LCP becomes free and can be

reallocated to LEN. Observe that only those positions in LEN that are required for

the LZ-factorization need to be computed, so that the total computation time for

LEN is 8(n). In fact, without loss of efficiency, we can avoid computing LEN as an

array and compute it only when required; given a sentinel value POS[n+1] =$,the

simple function of Figure 4.2 computes LEN corresponding to POS [i]. We call the

third version CPSc.

Function LEN for CPSc

function LEN(x, POS, i)
j <--- POS[i]
if j = i then

LEN<--- 0
else

£ f- 1
while x[i+£] = x[j +£] do

£ f- £+1
LEN<--£

Figure 4.2: Computing LEN corresponding to POS[i]

Since at least one position in POS is set at each stage of the main while loop, it

follows that the execution time of CPS is linear in n. For CPSa space requirements

total 17n bytes (for x, SA, LCP, POS & LEN) plus 4s bytes for a stack of maximum

size 8- at most the maximum depth of STx. For x =an, 8 = n, but in the expected

case, 8 E O(log
0

n) [17]. For CPSb the space required is 13n bytes. However, CPSc

can be handled in two different ways, so that in fact two new variants, CPSc and

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 32

CPSd, are introduced. As we shall see, CPSc is faster than CPSd, but requires more

space.

Observe that for CPSa and CPSb the original (and somewhat faster) method [18]

for computing LCP can be used, since it requires 13n bytes of storage, not greater

than the total space requirements of these two variants. However, to achieve 9n bytes

of storage, the Manzini variant [35] for computing LCP must be used, that leads to

the variant CPSd. In fact, thus CPSc requires 13n bytes including the stack, while

CPSd requires 9n bytes plus stack. The difference between CPSc and CPSd is that

CPSc uses the original LCP calculation [18] (and therefore requires no additional

space for the stack), and CPSd uses the Manzini variant.

4.2 Demonstration of New algorithms

In this section we use an example to demonstrate our algorithms clearly.

Given a string x = abaababa of length 8, and its corresponding suffix and LCP

arrays, the goal of algorithm CPS is to compute its LZ-factorization. In Figures 4.3,

4.4 and 4.5, we respectively show how algorithm CPSa, CPSb, and CPSc work.

In Figure 4.3 we can observe that the shaded positions in SA and LCP array will

never be used. Therefore the difference between CPSb and CPSa is to reuse these

positions. The SA and LCP arrays can be reused as POS array.

Algorithm CPSa and CPSb both compute POS and LEN arrays. Using POS and

LEN arrays we can easily compute LZ-factorization. However during the process

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 33

for computing LZ-factorization, we can compute LEN array from POS and string x

(Figure 4.2) when required. Therefore algorithm CPSc does not compute LEN array.

The process for computing LZ-factorization using POS and LEN arrays is

i = 1, output (POS[1], LEN[1])=(1,0), then i = i + 1 = 2;

i = 2, output (POS[2], LEN[2])=(2,0), then i = i + 1 = 3;

i = 3, output (POS[3], LEN[3])=(1,1), then i = i + 1 = 4;

i = 4, output (POS[4], LEN[4])=(1,3), then i = i + 3 = 7;

i = 7, output (POS[7], LEN[7])=(2,2), then i = i + 2 = 9 = n + 1; stop

Finally we get LZ-factorization (1,0), (2,0), (1,1), (1,3), (2,2).

M.Sc. Thesis- Gang Chen McMaster University - Computing & Software 34

i

SA

LCP

SA

LCP

SA

LCP

1 2 3 4 5 6 7 8 9

8 3 6 1 4 7 2 5

-1 1 1 3 3 0 2 2 -1

il i2 i3

1-
8

1 I : I
6

1 : I : I : I : I ~ 1-1 I

il

il

il'

il

il ' il i2 i3

il' il i2 i3 -

Store: POS[4J=l, POS[6]=1 ,
LEN[4J=3, l..EN[6]=3,

SA[3]=1

Store: POS[3]=1 , POS[8] =1,
i2 i3 - LEN[3]=1 , LEN[8]=1 ,

,.-,--...,--,-----, SA [l] =l

i2 i3

i2 Store: POS[5]=2, POS[7]=2, - LEN[5]=2, LEN[7]=2,
SA[6]=2

i2 i3 Store : POS[2]=2, POS [l]=l , - LEN[2]=0, LEN[l]=O,

Finally vre get LEN and POS arrays :
i 1 2 3 4 5 6 7 8

POS 1 2 1 1 2 1 2 1

LEN 0 0 1 3 2 3 2 1

Figure 4.3: Algorithm CPSa

M.Sc. Thesis - Gang Chen McMaster University - Computing & Software 35

:i. 1 2 :3 <I 5 6 7 8 9

SA 8 :3 6 1 <I 7 2 5

LCP -1 1 1 :3 :3 0 2 2 -1

il i2 i3

~: 1-
8

1 I : I : I ~ I : I : I ~ I ~ 1-1 I
il' i1 i2 i3

~: 1-
8

1 I : I : I ~ I : I : I ~ I ~ 1- 1 I Store: SA[5)=4,LCP[5)=1; SA[4]=6,LCP[4]=1;
LEN[4]=3, LEN[6]=3, il' il i2 i3

SA[3]=1

il' il i2 i3

il '

Store: SA[3]=3,LCP[3]=1; SA[2]=8,LCP[2]=1;
- LEN[3]=1, LEN[8]=1 ,

-,-,...---,----, SA[l]=l

il ' il i2 i3

il i2 i3 - Store: SA[8]=5,LCP[8]=2; SA[7]=7,LCP[7]=2;
LEN[5]=2, LEN[7]=2,
SA[6]=2

- Store: SA[6]=2,LCP[6]=2; SA[l]=I,LCP[I]=I;
LEN[2]=0, LEN[l]=O,

- after in-place rearrangement,
it can be reused as P 0 S array

Figure 4.4: Algorithm CPSb

M.Sc. Thesis - Gang Chen McMaster University - Compu ting & Software 36

i

SA

LCP

SA

LCP

SA

LCP

1 2 3 4 5 6 7 g 9

s . 3 6 1 4 .. 7 2 5

-1 1 1 3 3 0 2 2 -1

il i2 i3

1-g1 I : I
6

I ~ I : I : I : I ~ 1-1 I
il' il i2 i3

il' il i2 i3 -

Store : SA[5]=4,LCP[5]=1; SA[4]=6,LCP[4J;=l;

SA[J]=l

il ' il i2 i3

il'

il' il i2 i3

il i2 i3 --+ Store: SA[8]=5,LCP{8]=2; SA[7]=7,LCP[7]=2;

SA[6]=2

i3 --+ Store : SA[6]=2,LCP[6]=2 ; SA[l)=l ,LCP[l]=l;

--+ after in-place rearrangement,

it can be reused as POS array

Figure 4.5: Algorithm CPSc and CPSd

Chapter 5

Experiments

As discussed in Chapter 3, LZ-factorization algorithms can be classified into two cat­

egories, according to whether they use suffix arrays and using suffix trees. Currently

algorithm AKO of [AK004] is an efficient LZ-factorization algorithm using suffix ar­

rays, and algorithm KK-LZ of [KK99] is an efficient LZ-factorization algorithm using

suffix trees. In this chapter we compare our new algorithm CPS with the algorithms

AKO and KK-LZ.

We implemented the four versions of CPS described above; we call them CPSa,

CPSb, CPSc (13n-byte LCP calculation), and CPSd (9n-byte LCP calculation). For

CPSc, the original (and somewhat faster) method [18] for computing LCP is used.

For CPSd, to achieve 9n bytes of storage, the Manzini variant [35] for computing LCP

is used. We also implemented the other SA-based LZ-factorization algorithm, AKD

of [AK004]. The implementation KK-LZ of Kolpakov and Kucherov's algorithm was

obtained from [KK99]. All programs were written in C or C++. We are confident

37

M.Sc. Thesis - Gang Chen McMaster University - Computing & Software 38

that all implementations tested are of high quality.

5.1 Testing Details

5.1.1 Environment

All experiments were conducted on an application server machine (Moore) with 4

AMD Opteron 2.6GHz CPUs and 8GB memory in total. When executing the testing

program one CPU is used. The operating system was RedHat Linux. The compiler

was g++ (gee version 4.1.1) executed with the -03 option.

5.1.2 Timing

Times were recorded with the standard C getrusage function. All running times

given are the minimum of 10 runs, and do not include time spent reading input

files. This is represented in Table 5.3. Since our program is executed on a multi­

process server machine, it can be interfered with by other programs or a missed cache.

Therefore the minimum running time reflects the actual running time better than the

average running time. We also compute the standard deviation of the running times

to show how widely spread the running times are, and the results are in Table 5.4.

5.1.3 Memory usage

Memory usage was recorded with the memusage command available with most Linux

distributions. The peak of memory usage was recorded for each run (Table 5.5).

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 39

5.1.4 Test Data

We test the programs on various data files, which are described in Table 5.1. File

chr22 and chr1819 was originally on an alphabet of five symbols A,C,G,T,N but

was reduced by replacing occurrences of N with random selection of the other four

symbols. The N's represent ambiguities in the sequencing process.

5.2 Test Results

Times for the CPS implementations and AKD include time required for SA and LCP

array construction. The implementation of KK-LZ is only suitable for strings on small

alphabets (II: I :::; 4) so times are only given for some of the files. Results are not given

for AKD on other files because the memory required exceeded the capacity of the test

machine.

5.3 Conclusions of Experiments

Time spent computing the suffix array hurts the CPSa-d and AKO algorithms, as

which can be observed from Table 5.2. We conclude:

(1) KK remains the algorithm of choice for DNA strings of moderate size.

(2) For other strings encountered in practice, CPSb is consistently faster than AKO

except for very large alphabets; it also uses substantially less space, especially

on run-rich strings.

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 40

Strin
fibo35
fibo36
fss9
fsslO
random2
random21
ecoh
chr22
chr19
chr1819
prot-a
prot-b
brot-c

ible
howto
mozilla
rfc

Table 5.1: Description of the data set used in experiments.

9227465 2 34 3524578 35th Fibonacci string see SMY03
14930352 2 35 5702887 36th Fibonacci string
2851443 2 40 1217712 9th run rich string of [FSS03]

12078908 2 44 5158310 lOth run rich string of fFSS03]
8388608 2 385232 42 Random string, small alphabet
8388608 21 1835235 9 Random string, larger alphabet
4638690 4 432791 2805 E.Coh Genome

34553758 4 2554184 1768 Human 8hromosome 22
63811651 4 4411679 3397 Human hromosome 19

139928804 4 9560771 3397 Human Chromosomes 18 & 19
16777216 23 2751022 6699 Small Protem dataset
33554432 24 5040051 16190 Medium Protein dataset
67108864 24 8391184 16190 Large Protein dataset
4047392 62 337558 549 King James Bible

39422105 197 3063929 70718 Linux Howto files
51220480 256 Mozilla binaries

116421901 120 5656068 3317 IETF Request for comments

(3) Overall, and especially for strings on alphabets of size greater than 4, CPSd(9n)

is probably preferable since it will be more robust for main-memory use on very

large strings: its storage requirement is consistently low (about half that of

AKO, including on DNA strings) and it is only 25-30% slower than CPSb.

(4) The results in Table 5.4 demonstrate that the standard deviations of running

times are small with respect to the average. Therefore we are confident in the

validity of the timing results.

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 41

Table 5.2: Runtime in milliseconds for suffix array construction and LCP computa-
tion.

String sac a lcp13n lcp9n
fibo35 10852 4347 5810
fibo36 19253 7310 10166

fss9 2921 1267 1534
fss10 15346 5891 7047

rand2 5542 3347 5465
rand21 6110 5369 6734

ecoli 3871 3136 3563
chr22 29245 22543 26132
chr19 65379 58430 65137

chr1819 173452 152060 199294
prot-a 14218 12576 15733
prot-b 36725 32118 37632
prot-c 49326 45321 59596
bible 2225 2004 2386

howto 23187 22573 29697
mozilla 28213 29572 37439

rfc 84497 82268 131404

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 42

Table 5.3: Runtime in milliseconds for various LZ factorization algorithms. Times
for CPSd-9n include times for suffix sorting and LCP array construction with lcp9n;
times for CPSa, CPSb, CPSc-13n and AKO include times for suffix sorting and LCP

construction with lcp13n (see Table 5.2).

String CPS a CPSb CPSc CPSd AKO KK-LZ
fibo35 17347 16321 17160 18623 23839 19033
fibo36 30273 26017 29176 32032 44146 30125
fss9 4651 4256 4478 4745 5922 2310
fsslO 25412 23835 25090 26246 31041 15455
rand2 14688 13424 14165 16283 20335 19713
rand21 16134 14235 14870 16235 20176
ecoli 9452 9147 9336 9763 13245 3935
chr22 83560 79265 82418 86007 120239 31254
chr19 158613 152520 163653 170362 87842
chr1819 483954 461245 461418 508652 - 263135
prot-a 30836 30544 33368 36525 38233
prot-b 73478 71105 74214 79731 85790
prot-c 158712 143825 167036 181311
bible 6656 5867 6749 7131 7832
howto 66922 65579 67577 72701 65165
mozilla 81745 80625 82058 89925
rfc 218405 201305 220196 269332

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 43

Table 5.4: Standard deviation for runtime in milliseconds for various LZ factorization

algorithms. (The standard deviation of a random variable X is defined as: (] =

J ~ "5:.~ 1 (xi- x) 2
, where x = ~ "5:.~ 1 (xi), x 1 , ... , XN are the values of the random

variable X, N is the number of samples.)

String CPS a CPSb CPSc CPSd AKO KK-LZ

fibo35 50.6 50.5 50.8 51.9 64.5 52.4

fibo36 95.4 95.4 96.4 98.5 125.6 97.8

fss9 15.3 15.6 16.6 17.5 19.5 8.8

fss10 76.1 74.1 77.3 78.2 85.5 38.2

rand2 47.5 46.3 49.2 55.3 62.8 63.4

rand21 53.9 54.7 57.8 60.5 78.9

ecoli 35.3 35.7 35.2 35.0 38.3 13.4

chr22 250.1 245.9 255.6 268.3 319.6 134.4

chr19 513.8 506.3 546.4 554.2 286.9

chr1819 1546.2 1479.0 1587.1 1684.2 809.7

prot-a 104.6 103.3 132.6 165.8 187.4

prot-b 237.7 225.6 243.8 256.1 284.3

prot-c 579.6 568.5 590.6 639.8

bible 23.5 24.4 25.5 31.5 34.7

howto 213.7 211.3 266.7 307.8 209.1

mozilla 243.7 241.7 257.0 275.6

rfc 770.6 725.5 795.6 850.8

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 44

Table 5.5: Peak memory usage in bytes per input symbol for the LZ factorization

algorithms.

String CPS a CPSb CPSc CPSd AKO KK-LZ
fibo35 19.5 15.5 13.0 11.5 26.5 20.0

fibo36 19.5 15.5 13.0 11.5 26.5 20.8

fss9 19.1 15.1 13.0 11.1 25.1 21.4

fsslO 19.1 15.1 13.0 11.1 25.1 22.5

rand2 17.0 13.0 13.0 9.0 17.1 11.8

rand21 17.0 13.0 13.0 9.0 17.1

ecoli 17.0 13.0 13.0 9.0 17.1 11.1

chr22 17.0 13.0 13.0 9.0 17.1 11.1

chr19 17.0 13.0 13.0 9.0 11.1

chr1819 17.0 13.0 13.0 9.0 10.7

prot-a 17.2 13.2 13.0 9.2 39.0

prot-b 17.1 13.1 13.0 9.1 40.1

prot-c 17.0 13.0 13.0 9.0

bible 17.0 13.0 13.0 9.0 17.0

howto 17.0 13.0 13.0 9.0 17.0

mozilla 17.7 13.7 13.0 9.7

rfc 17.0 13.0 13.0 9.0

Chapter 6

An Application of the New

Algorithm

Lempel-Ziv factorization is an important data structure for information. Its original

purpose is for data compression. However recently it was used in linear time algo-

rithms for the computation of repetitions in a string [1, 29, 22]. This was also our

initial motivation for improving the LZ-factorization construction algorithm. In this

chapter we discuss the details of our work on the computation of repetitions.

6.1 Background of Algorithms For Repetitions

Periodicity (repetition) in infinite strings was the first topic of stringology [46]; count-

ing and computing the maximum-length adjacent repeating substrings (repetitions)

in a finite string was, along with pattern-matching, one of the earliest computational

problems on strings to be studied [28, 30].

During the period 1906-1914, Axel Thue published four papers which represented

the pioneering work in stringology. Two of these papers [46, 4 7] deal with repetitions

45

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 46

in finite and infinite words. However, [14] Thue's results were ignored for a long time

and rediscovered over and over by other researchers. More recently, Thue's results

have become well known because the study of repetition was widely applied in various

subjects, such as string matching algorithms, molecular biology, or text compression.

In 1981 Crochemore [6] proved that a string with length n can contain O(nlogn)

repetitions and several authors published algorithms to detect these structures in

O(nlogn) time [2, 6, 31]. Slisenko [45] published a difficult 100-page algorithm in

linear time for finding all periodicities; after that other researchers looked for simple

algorithms for detecting repetitions more efficiently.

In 1989 Main introduced the idea that a run or maximal repetition in a word

describes several repetitions because its extension by one letter to the right or to the

left yields a word with a bigger period. By computing all runs we are implicitly com­

puting all repetitions. Main proposed a linear time algorithm which finds all leftmost

maximal repetitions in a word. This algorithm is based on a special factorization

of the word, called LZ-decomposition (Lempel-Ziv decomposition). It shows how to

compute the leftmost occurrence of every run in a string x = x[l..n] by

(1) computing STx, the suffix tree of x [49];

(2) using STx to compute LZx, the Lempel-Ziv decomposition of x [25];

(3) using LZx to compute leftmost runs.

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 47

Since steps (2) and (3) require only 8(n) (linear) time, the use ofFarach's linear-time

STCA [9] enables the leftmost runs to be computed in linear time. In [20] Kolpakov

& Kucherov proved that the maximum number of runs in any string of length n is

8(n), and then showed how to compute all the runs in x from the leftmost ones in

linear time. Thus in theory all runs, hence all repetitions, could be computed in linear

time, though Farach's algorithm is not practical for large n.

In [I] Abouelhoda, Kurtz & Ohlebusch show how to compute LZx from a suffix

array SAx, together with other linear structures, rather than from ST x. Since there

now exist practical linear-time suffix array construction algorithms (SACAs), it thus

becomes feasible to compute all the runs in x in 8(n) time for large values of n.

6.2 The improvements on KK algorithm [22]

We improve Kolpakov and Kucherov's implementation [22] for computing all the runs

in a string. The KK algorithm is composed of four stages:

(1) calculation of the suffix tree of x;

(2) calculation of the Lempel-Ziv decomposition;

(3) calculation of the leftmost runs in x [29];

(4) calculation of the remaining runs.

We replace the first two stages with the following stages:

(1) computing the suffix array using the algorithm in [34] and the LCP array using

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 48

Kasai et al.'s algorithm [18];

(2) computing the Lempel-Ziv decomposition using the suffix and LCP arrays.

These modifications significantly improve the KK algorithm's implementation in

terms of time and space.

Chapter 7

Conclusions and Future Work

In this thesis we have discussed the background of Lempel-Ziv factorization and its

applications. We analyzed the previous algorithms for the Lempel-Ziv construction,

and chose two efficient algorithms to illustrate how the Lempel-Ziv factorization is

traditionally computed. Then we presented our new algorithm, and compared it

with previous algorithms in terms of time and space. By comparisons we can see

the features of our new algorithms. We conducted comprehensive experiments on all

sorts of data files. The conclusions can be drawn from the results of tests. We also

detailed our work on one of Lempel-Ziv's central applications, that is computing all

the runs in a string.

Since our new algorithms have many advantages, we would like to apply them in

other applications. There are 4 variants of our algorithm CPS with different features,

and their performances are dependent on the types of data file. We want to analyze the

reasons and improve the performances. On the other hand, because our algorithms

49

M.Sc. Thesis- Gang Chen McMaster University- Computing & Software 50

use suffix array construction algorithms, which are time-inefficient, we will try to

modify the suffix array construction algorithms to increase their efficiency.

At last, we would like to extend our research to other approaches to computing

Lempel-Ziv factorization, and more generally, on data compression and the compu­

tation of repetitions.

Bibliography

[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz & Enno Ohlebusch, Replacing

suffix trees with enhanced suffix arrays, J. Discrete. Algs. 2 (2004) 53-86.

[2] Alberto Apostolico & Franco P. Preparata, Optimal off-line detection of

repetitions in a string, Theoret. Comput. Sci. 22 (1983) 297-315.

[3] Michael A. Bender & Martin Farach-Colton, The LCA problem revisited,

Latin American Theoretical Informatics (2000) 88-94.

[4] Rainer Bauer & Joachim Hagenauer, Symbol-by-Symbol MAP Decoding

of Variable Length Codes, 3rd ITG Conference Source and Channel Coding,

Munich, Germany (2000) 111-116.

[5] David Salomon, Data Compression, Springer (1997) 147-150.

[6] Maxime Crochemore, An optimal algorithm for computing the repeti­

tions in a word, Inform. Process. Lett. 12-5 (1981) 244-250.

51

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 52

[7] Jean-Pierre Duval, Roman Kolpakov, Gregory Kucherov, Thierry Lecroq & Ar­

naud Lefebvre, Linear-time computation of local periods, Theoret. Comput.

Sci. 326-1-3 (2004) 229-240.

[8] Kangmin Fan, Simon J. Puglisi, W. F. Smyth & Andrew Turpin, A new peri­

odicity lemma, SIAM J. Discrete Math. 20-3 (2006) 656-668.

[9] Martin Farach, Optimal suffix tree construction with large alphabets,

Proc. 38th IEEE Symp. Found. Computer Science (1997) 137-143.

[10] Paolo Ferragina & Giovanni Manzini, Opportunistic data structures with

applications, Proc. 41st IEEE Symp. Found. Computer Science (2000) 390-398.

[11] Johannes Fischer & Volker Heun, Theoretical and practical improvements

on the RMQ-problem, with applications to LCA and LCE, Proc. 11th

Annual Symp. Combinatorial Pattern Matching, M. Lewenstein & G. Valiente

(eds.) (2006) 36-48.

[12] Frantisek Franek, Jan Holub, W. F. Smyth & Xiangdong Xiao, Computing

quasi suffix arrays, J. Automata, Languages & Combinatorics 8-4 (2003) 593-

606.

[13] Frantisek Franek, R. J. Simpson & W. F. Smyth, The maximum number of

runs in a string, Proc. 14th Australasian Workshop on Combinatorial Algs, M.

Miller & K. Park (eds.) (2003) 26-35.

M.Sc. Thesis - Gang Chen McMaster University - Computing & Software 53

[14] G. A. Hedlund, Remarks on the work of Axel Thue on sequences, Nordisl.

Mat. Tidskr. 16 (1967) 148-150.

[15] Dov Harel & Robert E. Tarjan, Fast algorithms for finding nearest common

ancestors, SIAM J. Computing 13-2 (1984) 338-355.

[16] Juha Kiirkkiiinen & Peter Sanders, Simple linear work suffix array con­

struction, Proc. 3oth Internat. Colloq. Automata, Language & Programming

(2003) 943-955.

[17] S. Karlin, G. Ghandour, F. Ost, S. Tavare & L. J. Korn, New approaches for

computer analysis of nucleic acid sequences, Proc. Natl. Acad. Sci. USA

80 (1983) 5660-5664.

[18] T. Kasai, G. Lee, H. Arimura, S. Arikawa & K. Park, Linear-time longest­

common-prefix computation in suffix arrays and its applications, Proc.

12th Annual Symp. Combinatorial Pattern Matching, LNCS 2089, Springer­

Verlag (2001) 181-192.

[19] Pang Ko & Srinivas Aluru, Space efficient linear time construction of

suffix arrays, Proc. 14th Annual Symp. Combinatorial Pattern Matching, R.

Baeza-Yates, E. Chavez & M. Crochemore (eds.), LNCS 2676, Springer-Verlag

(2003) 200-210.

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 54

[20] Roman Kolpakov & Gregory Kucherov, On maximal repetitions in words,

J. Discrete Algs. 1 (2000) 159-186.

[21] Roman Kolpakov & Gregory Kucherov, Finding repeats with fixed gap,

Proc. Seventh Symposium on String Processing 8 Information Retrieval, (2000)

162-168.

[22] Roman Kolpakov & Gregory Kucherov, http: //bioinfo .lifl. fr /mreps/.

[23] Roman Kolpakov & Gregory Kucherov, Finding approximate repetitions

under Hamming distance, Theoret. Comput. Sci. 303-1 (2003) 135-156.

[24] Stefan Kurtz, Reducing the space requirement of suffix trees, Software,

Practice 8 Experience 29-13 (1999) 1149-1171.

[25] Abraham Lempel & Jacob Ziv, On the complexity of finite sequences, IEEE

Trans. Information Theory 22 (1976) 75-81.

[26] Abraham Lempel & Jacob Ziv, A universal algorithm for sequential data

compression, IEEE Trans. Information Theory 23 (1977) 337-342.

[27] Abraham Lempel & Jacob Ziv, Compression of individual sequences via

variable-rate coding, IEEE Trans. Information Theory 24 (1978) 530-536.

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 55

[28] Andre Lentin & Marcel P. Schi.itzenberger, A combinatorial problem in the

theory of free monoids, Combinatorial Mathematics f3 Its Applications, R. C.

Bose & T. A. Dowling (eds.), University of North Carolina Press (1969) 128-144.

[29] Michael G. Main, Detecting leftmost maximal periodicities, Discrete Ap­

plied Maths. 25 (1989) 145-153.

[30] Michael G. Main & Richard J. Lorentz, An 0(n log n) Algorithm for Recognizing

Repetition, Tech. Rep. CS-79-056, Computer Science Department, Washington

State University (1979).

[31] Michael G. Main & Richard J. Lorentz, An O(nlogn) algorithm for finding

all repetitions in a string, J. Algs. 5 (1984) 422-432.

[32] Udi Manber & Gene Myers, Suffix arrays: a new method for on-line string

searches, SIAM J. Computing 22-5 (1993) 935-948.

[33] Veli Makinen & Gonzalo Navarro, Compressed full-text indices, ACM Com­

puting Surveys (2006) to appear.

[34] Michael Maniscalco & Simon J. Puglisi, Faster lightweight suffix array con­

struction, Proc. 17th Australasian Workshop on Combinatorial Algs., J. Ryan

& Dafik (eds.) (2006) 16-29.

M.Sc. Thesis- Gang Chen McMaster University- Computing & Software 56

[35] Giovanni Manzini, Two space-saving tricks for linear time LCP computa­

tion, Proc. 9th Scandinavian Workshop on Alg. Theory, LNCS 3111, T. Hagerup

& J. Katajainen (eds.), Springer-Verlag (2004) 372-383.

[36] Giovanni Manzini & Paolo Ferragina, Engineering a lightweight suffix array

construction algorithm, Algorithmica 40 (2004) 33-50.

[37] Edward M. McCreight, A space-economical suffix tree construction algo­

rithm, J. Assoc. Compul. Mach. 32-2 (1976) 262-272.

[38] Mark Nelson & Jean loup Gailly, The Data Compression Book, M&T Books

(1995) 541 pp.

[39] Simon J. Puglisi, W. F. Smyth & Andrew Turpin, A taxonomy of suffix array

construction algorithms, ACM Computing Surveys (2006) to appear.

[40] Simon J. Puglisi, W. F. Smyth & Andrew Turpin, Inverted files versus suffix

arrays for in-memory pattern matching, Proc. 13th Symposium on String

Processing f3 Information Retrieval (2006) 122-133.

[41] Wojciech Rytter, Grammar compression, LZ-encodings, and string algo­

rithms with implicit input, Proc. 31st Internat. Colloq. Automata, Languages

f3 programming (2004) 15-27.

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 57

[42] Wojciech Rytter, The number of runs in a string: improved analysis of

the linear upper bound, Proc. 23rd Symp. Theoretical Aspects of Computer

Science, B. Durand & W. Thomas (eds.), LNCS 2884, Springer-Verlag (2006)

184-195.

[43] J.S. Sim, D.K. Kim, H. Park & K. Park, Linear-time search in suffix arrays,

Proc. 14th Australasian Workshop on Combinatorial (2003) 139-146.

[44] Bill Smyth, Computing Patterns in Strings, Pearson Addison-Wesley (2003).

[45] A. Slisenko, Detection of periodicities and string matching in real time

, Journal of Soviet mathematics 22 (1983) 1316-1386.

[46] Axel Thue, Uber unendliche zeichenreihen, Norske Vid. Selsk. Skr. I. Mat.

Nat. Kl. Christiana 7 (1906) 1-22.

[47] Axel Thue, Uber die genenseitige Lage gleicher Teile gewisser Zeichen­

reihen , Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 1 (1912) 1-67.

[48] Esko Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995)

249-260.

[49] Peter Weiner, Linear pattern matching algorithms, Proc. 14th Annual IEEE

Symp. Switching f3 Automata Theory (1973) 1-11.

M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 58

[50] Xiangdong Xiao, Computing Quasi suffix arrays, M.Sc. thesis. Department

of computing and Software, McMaster University (2003).

