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Abstract 

For 30 years the Lempel-Ziv factorization LZx of a string x = x[l..n] has been a 

fundamental data structure of string processing, especially valuable for string com­

pression and for computing all the repetitions (runs) in x. When the Internet came 

in, a huge need for Lempel-Ziv factorization was created. Nowadays it has become a 

basic efficient data transmission format on the Internet. 

Traditionally the standard method for computing LZx was based on 8(n)-time 

processing of the suffix tree STx of x. Ukkonen's algorithm constructs suffix tree on­

line and so permits LZ to be built from subtrees of ST; this gives it an advantage, at 

least in terms of space, over the fast and compact version of McCreight's STCA [37] 

due to Kurtz [24]. In 2000 Abouelhoda, Kurtz & Ohlebusch proposed a 8(n)-time 

Lempel-Ziv factorization algorithm based on an "enhanced" suffix array - that is, a 

suffix array SAx together with other supporting data structures. 

In this thesis we first examine some previous algorithms for computing Lempel­

Ziv factorization. We then analyze the rationale of development and introduce a 

collection of new algorithms for computing LZ-factorization. By theoretical proof 

and experimental comparison based on running time and storage usage, we show that 

our new algorithms appear either in their theoretical behavior or in practice or both 

to be superior to those previously proposed. In the last chapter the conclusion of our 

new algorithms are given, and some open problems are pointed out for our future 

research. 

viii 



Acknowledgements 

First and foremost, I would like to express my deepest gratitude to Dr. William F. 

Smyth, my supervisor, for his enormous support throughout the research and this 

thesis write-up. This thesis would not be done without his foresighted guidance and 

careful corrections. Many thanks for his patience and help that kept me on the right 

track. 

I should thank Simon J. Puglisi for his constant assistance. He shared many great 

ideas and source codes with me, and helped me for testing. I also should thank 

Manzini and K ucherov for responding to my inquires. 

Of course, special thanks to my parents and my whole family, who always support 

me and encourage me to pursuit graduate study and career path. Thanks for their 

endless love. 

Thanks to (alphabetically) Feng Wang, Feng Xie, Hao Xia, Huan Wang, Jiaping Zhu, 

Jie Gui, Kedong Lin, Lei Hu, Munira Yusufu, Qian Yang, Shu Wang, Wei Li, Wen 

Yu, Xiang Ling, Zhe Li and many others in the Computing and Software department, 

for their friendship. 

Last but not least, thanks to my roommates, we had a lot of fun these years. They 

were always curious about my research and listened to my explanations patiently, 

although they could understand little. 

Hamilton, Ontario, Canada 

July, 2007 

IX 

Gang Chen 



Chapter 1 

Introduction 

In this thesis we develop a collection of new algorithms for constructing Lempel­

Ziv factorization. In this introductory chapter we first give a brief overview of the 

background of this problem. Then we introduce the motivation for our development. 

Finally we detail the new features of our new algorithms. 

1.1 Background 

In the field of data compression, Huffman coding is optimal for a symbol-by-symbol 

coding with a known input probability distribution [4]. In order to obtain the neces­

sary frequencies of symbols in the data to be compressed, Huffman coding either had 

to rely on the ability to predict such occurrences or would require that the text be 

read in beforehand. 

In 1977, two Israeli information theorists, Abraham Lempel and Jacob Ziv, intro­

duced a radically different way of compressing data, which is called the Lempel-Ziv 

1 
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algorithm. This algorithm is a dictionary-based data compression technique that 

does not require making predictions or pre-reading data. The Lempel-Ziv code is not 

designed for any particular source but for a large class of sources, such as GIF image 

formats [5] or TIFF files. Because of these advantages, the Lempel-Ziv code became 

a widely used technique for lossless file compression. For example, it is used for the 

gzip (Unix), winzip and pkzip compression algorithms. 

Two original versions of the Lempel-Ziv algorithm are described by these two 

theorists in [26] and [27]. After Internet technology arrived, there was a huge need 

for the Lempel-Ziv algorithm to compress transmission data. Since this algorithm is 

so simple, others can change it slightly to make it optimal for a specific use. Then 

LZ77 and LZ78 gave rise to a series of variants of this algorithm that form the family 

of LZ algorithms. The variants are essentially identical to the method from which 

they originate (either LZ77 or LZ78). 

In this thesis we mainly discuss the algorithms for constructing Lempel-Ziv fac­

torization. The previous traditional algorithms use a suffix tree to construct LZ­

factorization. There exist many algorithms for computing suffix trees. Farach's suffix 

tree construction algorithm (STCA) [9] executes in linear time, but in practice it is 

not as fast as Ukkonen's algorithm [48] and McCreight's algorithm [37] as completed 

by Kurtz [24]. Ukkonen's algorithm constructs the suffix tree on-line, and so the 

LZ-factorization can be built at the same time. Kolpakov & Kucherov [22] described 
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an implementation of the LZ algorithm based on Ukkonen's algorithm, called the 

KK-LZ algorithm. The KK-LZ algorithm is one of the most efficient suffix tree-based 

LZ algorithms. 

In 2004, Abouelhoda, Kurtz & Ohlebusch [1] showed how to compute LZx from a 

suffix array, together with other linear structures, rather than from a suffix tree. Since 

there now exist practical linear-time suffix array construction algorithms (SAGAs) 

[16, 19], it thus becomes feasible to compute LZx in x in 8(n) time for large values 

of n. In this thesis, we will compare our new algorithm with the KK-LZ [22] algorithm 

and the AKO algorithm [1]. 

1.2 Motivation 

Although LZ factorization has always been of great importance in data compression 

[38], our immediate motivation for developing new LZ construction algorithms is the 

central role of LZ in computing repetitions in strings, as we now explain. 

A repetition in a string xis a substring w = ue of x, with maximum e ~ 2, where 

u is not itself a repetition in w. See section 2.4 for a complete definition. A run in x 

is a substring w = ueu* of "maximal periodicity", where ue is a repetition in x and 

u* a maximum-length possibly empty proper prefix of u. A run may encode as many 

as lui repetitions. The maximum number of repetitions in any string x = x[l..n] is 

well known [6] to be 8(nlogn). 

Computing all the runs (maximal repetitions/periodicities) in a string is one way 
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to list all the repetitions the string contains. Repetitions and other forms of period­

icity have long been considered important theoretical characteristics of strings, and 

today the detection of repetitions has become of practical interest, primarily in the 

field of bioinformatics, with algorithms for the task a standard part of any software 

for whole genome analysis. 

In 2000 Kolpakov & Kucherov showed that the maximum number of runs in xis 

O(n); they also described a 8(n)-time algorithm, based on Farach's 8(n)-time suffix 

tree construction algorithm (STCA), 8(n)-time Lempel-Ziv factorization, and Main's 

8(n)-time leftmost runs algorithm, to compute all the runs in x. 

The original motivation of our research comes from the observation that the KK 

algorithm [20] uses a suffix tree to compute the Lempel-Ziv factorization. The fact 

that a suffix tree consumes huge memory space makes the KK algorithm difficult to 

perform for a large string. The main idea is to replace suffix trees with enhanced 

suffix arrays. We can replace Farach's algorithm [20] with the AKO algorithm [1] 

to construct a Lempel-Ziv factorization using suffix arrays instead of suffix trees. 

However the AKO algorithm depends on a structure called an lcp-interval tree, which 

makes the AKO algorithm slow and expensive in terms of memory space. Therefore 

the result of this improvement is not as notable as had been expected. 
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We considered the Lempel-Ziv factorization carefully and discovered a more effi­

cient version with linear time. Replacing Farach's algorithm [20] with this new al­

gorithm can greatly improve the KK algorithm either in running time or in memory 

space usage. We will detail the improvements for the KK algorithm later in chapter 

6. A series of new algorithms named CPSa, CPSb, CPSc and CPSd are described; 

each of them runs in linear time and has its own features. 

1.3 The New Algorithms 

In this thesis we first describe our new linear-time algorithm (CPS) that, given the 

suffix array and the corresponding longest common prefix array LCP x, computes 

LZx in guaranteed 8(n) time and, according to our experiments, does so faster than 

either of the algorithms AKO [1] or KK [20]. Note however [39] that the linear-time 

algorithms [16, 19] for computing SAx are not, in practice, as fast as other algorithms 

[36, 34] that have only supralinear worst-case time bounds. Thus in testing AKO and 

CPS we make use of the supralinear SACA [34] that is probably at present the fastest 

in practice. Similarly, for testing purposes, we use an implementation of KK that, 

instead of Farach's algorithm, uses a fast, compact, but still supralinear version of 

McCreight's STCA [37] due to Kurtz [24]. 

In Chapter 2 we will give definitions and notation for string, suffix tree, suffix 

array, and Lempel-Ziv factorization. In Chapter 3 we detail some previous relevant 

algorithms. In Chapter 4 we describe our new algorithms CPS and its variants CPSa, 
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CPSb, CPSc and CPSd. We will analyze the features and the performances of these 

algorithms. Chapter 5 summarizes the results of experiments that compare the al­

gorithms with each other and with existing algorithms. Chapter 6 discuss our work 

on one of the applications of Lempel-Ziv. Finally Chapter 7 outlines our conclusions 

and ideas for future work. 



Chapter 2 

Definitions and Notation 

In this chapter, we give definitions of the terminology as well as of the notation which 

will be used in this thesis. 

2.1 Strings and Alphabet 

General speaking, a string is a sequence of symbols. For example, a string might be 

a word, a text file, a computer program or a DNA sequence. The important feature 

of any string is the nature of its elements. Every element in a string is a member of a 

set. This set is called an alphabet. In this thesis we use some definitions in [44] and 

[50]. 

Definition 2.1.1 An alphabet A is a set whose elements are called letters. Suppose 

A={h, l2, ... , la}, then for any 0 :S i :S a, we say that li is an element of A denoted 

by li E A and a = JAI is the alphabet size, that is the number of all elements 

contained in A. If a is infinite, we say that A is an infinite alphabet; otherwise, we 

7 
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say that A is a finite alphabet. 

For example, if we have an alphabet A such as A = {a, b, c, d}, then we say that 

the alphabet size of A is 4 and it contains four elements a, b, c, d. Also we say that 

0: = IAI = 4. 

Definition 2.1.2 A string x is sequence of zero or more elements drawn from an 

alphabet A. lxl denotes the length of string x. 

A string can be represented by different data structures, such as an array, a linked 

list or a suffix tree. In this thesis we use arrays to represent strings, because arrays 

are simple and natural, and cost less space than linked lists and suffix trees. 

For example, given a string x = baaabaabaababa, then we can present this string 

as an array x = x[1..14] such as: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

x=b a a a b a a b a a b a b a 

This string x is defined on an alphabet A = {a, b} with alphabet size o: = 2 and 

length 14. We say that x has 14 elements x[1] = b, x[2] =a, x[3] = a, ... , x[14] =a 

and also we can say that x has 14 positions while position 1 is at the leftmost side 

of x and position 14 is the rightmost side of x. Taking position 8 for example, we 

say that x[8] = b, the previous element of x[8] is x[7] =a and the next element of 

x[8] is x[9] =a. 
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Definition 2.1.3 The empty string is a string containing zero elements and denoted 

by e. The length of the empty string is zero. The array model works also for the empty 

string x = e which corresponds to an empty array and has length zero. 

Definition 2.1.4 For a given string x = x[l..n], and any integers i and j that satisfy 

1 ::; i ::; j ::; n, we define a substring x[i .. j] of x as follows: 

x[i .. j] = x[i]x[i + 1] ... x[j] 

We say that x[i .. j] occurs at position i of x and that it has length j- i + 1. If 

i > j, x[i .. j] =e. If j- i + 1 < n, then x[i .. j] is called a proper substring of x. 

Definition 2.1.5 For a given string x = x[l..n], we say that x[l..i] (0 ::; i ::; n) is 

a prefix of x, and x[l..i] (0 ::; i < n) is a proper prefix of x. We also define that 

x[j .. n] (1 ::; j ::; n + 1} is a suffix of x, and x[j .. n] (1 < j ::; n + 1} is a proper 

suffix ofx. 

Definition 2.1.6 (Lexicographical Order Definition) 

In practice, the order of letters is defined by the ASCII code (American Standard 

Code for Information Interchange). For example, a < b, if and only if the ASCII code 

of a is less than that of b. 

For two strings x = x1x2···Xm and y = Y1Y2···Yn, if Xi -=/= Yii for any position i 

(1 ::; i ::=; m, n), let j be the first such i. If x1 < y1, then x < y, if x1 > y1, then 

x > y. If xi = Yi for all i, then if m = n, x = y, while if m > n, x > y, and if 
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m < n, x < y. 

2. 2 Suffix Tree 

Before we discuss suffix trees, we should define tries and Patricia tries. 

Definition 2.2.1 [50] Given a set W = {x1, x2, ... , Xm} of pairwise distinct strings, 

a trie on W is a tree containing exactly m + 1 terminal nodes, one for each xi 

(i = 1, 2, ... , m), plus one for c. The edges of a trie are labeled with the letters that 

occur in the strings of W plus a special end-of-string marker conventionally denoted 

by $. Thus the edges from the root of the trie to the terminal node for a string Xi spell 

out Xi followed by $. Each edge of the trie is labeled with a single letter of one of the 

strings in Wand no two edges out of a node can be labeled with the same letter. The 

use of$ ensures that the m + 1 terminal nodes are in fact leaf nodes of the structure. 

Actually a trie is a search tree that is very useful in string processing. That means, 

given a set of strings, all the strings of this set can be retrieved by traversing the trie 

along the edges from the root down to the leaf nodes. 

For example, suppose we have a set W = ab, abed, efg, then the trie on W is 

shown in Figure 2.1(a). 

In Figure 2.1(a), we say that the trie has 4 terminal nodes from nodes 1 to 4 

standing for strings ab, abed, e f g and $ respectively. And we see that all these 4 

terminal nodes are leaf nodes of the trie. On the other hand, the internal nodes of 
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a 

e 

ed$ 

(a) the trieon W={ab, abed, efg} (b) the Patricia trie on W={ab, abed, efg} 

Figure 2.1: The trie and Patricia trie on W=ab, abed, efg 

the trie are some prefixes of some strings Xi· For example, in figure 2.1(a), ab is 

a prefix of ab$ while efg is a prefix of efg$. and the edge leading to any node is 

different from every other; that means, common prefixes (such as ab or c:) of elements 

of W appear only once in the trie. In this figure, we see that traversing the trie along 

the edges from root down to the leaf nodes exactly gets all the strings in W denoted 

by Xi· 

Definition 2.2.2 [50] A Patricia trie (or compacted trie} is constructed from a trie 

by eliminating all internal nodes of degree 2 (those with a parent and just a single 

child}. 

The main difference between a Patricia trie and a trie is that an edge of a Patricia 
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trie can spell out a substring rather than a single letter. For example, we give the 

Patricia trie on Win Figure 2.1(b). 

In Figure 2.1(b), the leaf node i (1 ::; i::; 4) identifies the element xi represented 

at that node. 

Both tries and Patricia tries can be used to search, not only for any string in W, 

but also for any prefix of any string in W. The difference is that, in a trie, any prefix 

of any string in W is a node of the trie, but in a Patricia trie, the prefix may not be a 

node; that means, it is possible that the prefix is just "on an edge". Thus, searching 

a prefix of a string in W by traversing the Patricia trie needs to visit both edges and 

nodes, while by traversing the trie one only needs to visit nodes. 

Definition 2.2.3 [50] Given a string x with length n, suppose a set W contains n + 1 

elements that are the suffixes of x including $, then we say that the suffix tree Tx 

of x is the Patricia trie on W. 

Note that Tx contains exactly n + 1 terminal nodes and at most n internal nodes. 

Thus, there are at most 2n + 1 nodes and at most 2n edges in Tx. 

Taking string x = abaab for example, we give the suffix tree Tx in figure 2.2(a). 

In Figure 2.2(a), we see that there are 6 leaf nodes in Tx and each leaf node i 

(1 ::; i ::; 6) presents the suffix x[i .. 6] of x. And in Tx, each edge labels a substring of 

x. We can replace the substring in each edge by two integers identifying the position 

of the substring in x. Thus, in this way, we can bound the space required for each 
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(a) The suffix tree Tx of string x=abaab 

1 '1 

4.6A22 m· 3
3.x6.6 

oJ m 
(b)The suffix tree T'x of string x=abaab 

Figure 2.2: The suffix trees for string x = abaab$ 

edge by a constant. We give the suffix tree T~ in Figure 2.2(b). 

In figure 2.2(b), the labels of the terminal nodes identify the positions in x at 

which each suffix begins, while 6 denotes the empty suffix. 

As we discussed in the previous chapter, suffix trees are very important intrinsic 

patterns in strings. Once formed, they can be used to solve many string problems. 

For example, given a string x, the suffix tree Tx can be used to determine whether 

a given pattern u is a substring of x; the longest repeated substring of x can be 

represented by the deepest internal node of Tx and the repetitions as well as the 

number of distinct substrings of x also can be computed by using Tx. Furthermore, 

suffix trees are especially valuable in cases where x is not subject to change, searches 

are frequent, and the alphabet size is very small (for example, DNA sequences). 
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Note that although suffix trees are very useful in string processing, the space 

needed by a suffix tree is very large. Thus, in order to reduce the space requirement 

of suffix trees, some other suffix structures such as suffix arrays have been investigated 

by researchers. 

2.3 Suffix Array 

Definition 2.3.1 Given a string x = x[l..n] on an alphabet A of size a, we refer to 

the suffix x[i .. n], i E l..n, simply as suffix i. The suffix array of the string x, or 

SAx is defined to be the array on l..n in which SAx [j] = i iff suffix i is the jth in 

lexicographical order among all the suffixes of x. 

Definition 2.3.2 Given two strings x 1 and x 2, the longest common prefix 

(lcp) of these two strings is the longest prefix of both x 1 and x2. We denote it 

by lcp(x 11 x2). 

Given a string x = x[l..n], for the suffixes x[i .. n] and x[j .. n] (1 :S i,j :S n) of x, 

we can denote lcp(x[i .. n], x[j .. n]) by lcpx(i,j). 

For example, for string x = x[1..14], 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

x=b a a a b a a b a a b a b a 

We have lcp(aabaababa, aababa) = lcpx(6, 9) = aaba, while lcpx(3, 7) 

lcpx(3, 8) = e. 

a and 
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Definition 2.3.3 Let lcpx(il, i2) denote the longest common prefix of suffixes i 1 

and i 2 ofx. Then LCPx is the array on l..n-t-1 in which LCPx[1] = LCPx[n-t-1] = -1, 

while for j E 2 .. n, 

LCPx[j] = llcPx (SAx[}-1], SAx[}]) I· 

When the context is clear, we write SA for SAx, LCP for LCP x. For example: 

2345678 9 

x= a b a a b a b a 

SAx = 8 3 6 1 4 7 2 5 

LCPx = -1 1 1 3 3 0 2 2 -1 

2.4 Repetition and Run 

Definition 2.4.1 Given a nonempty string u and an integer e ~ 2, we say that ue 

represents a repetition; if u itself can not be represented by a repetition, then ue is 

said to represent a proper repetition. Given a string x, a repetition in x is a 

substring 

x[i .. i+e!u!-1] = ue, 

where ue is a proper repetition and neither x [i+e!u! .. i+(e+1)!u!-1)] nor x[i-lu! .. i-1] 

equals u. Following [44], we say the repetition has generator u, period !u!, and 

exponent e; it can be specified by the integer triple (i, !u!, e). 
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Definition 2.4.2 [44] Let p* be the minimum period of x = x[l..n], and let r* = n/p*, 

u = x[l..p*]. Then the decomposition x = ur* is called the normal form of x. If 

r* = 1, we say that x is primitive; otherwise, x is periodic. 

Definition 2.4.3 A string u is a run iff it is periodic of (minimum) period p :S [u[/2. 

A substring u = x[i .. j] of x is a run in x iff it is a run of period p and neither 

x[i-l..j] nor x[i .. j+1] is a run of period p (i.e., it is nonextendible). The run u 

has exponent e = lfuf/p J and possibly empty tail t = x[i+ep .. j] (proper prefix of 

x[i .. i+p-1]). 

For example, for a string x = baaabaabaababa, 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

x=b a a a b a a b a a b a b a 

Then x has a run x[3 .. 12] = (aab) 3a of period p = 3 and exponent e = 3 with tail 

t =a of length t = [t[ = 1. It can also be specified by a triple (i,j,p) = (3, 12,3), 

and it includes the repetitions ( aab )3
, ( aba )3 and (baa )2 of period p = 3. For the run 

x[10 .. 14] = (ab) 2a of period p = 2 and e = 2 with tail t = a of length t = [t[ = 1, 

it includes two repetitions (ab) 2
, (ba) 2

• In general, for e > 2 a run encodes p 

repetitions; for e = 2, t+ 1 repetitions. Clearly, computing all the runs in x specifies 

all the repetitions in x. 

2.5 Lempel-Ziv LZ-factorization 

There are two (non-equivalent) common definitions for LZ-factorization. 
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Definition 2.5.1 (Weak Definition) An LZ-factorization is a decomposition x = 

wiw2 ... wk, such that each Wj, j E l..k, is 

(a) a letter that does not occur in x = wiw2 ••• wj-I; or otherwise 

(b) the longest substring that occurs at least once in x = WIW2···Wj-I· 

Definition 2.5.2 (Strong Definition) An LZ-factorization is a decomposition x = 

WIW2···wk, such that each Wj, j E l..k, is 

(a) a letter that does not occur in x = WIW2···Wj-I; or otherwise 

(b) the longest substring that occurs at least twice in x = WI w 2 ••• wi. 

For example, given a string x = ababacba, 

The weak LZ-factorization is: a I b I ab I a I c I ba I 

The strong LZ-factorization is: a I b I aba I c I ba I 

Many previous algorithms such as Mn [29] and KK [20] use the strong definition, 

because the strong LZ-factorization is more efficient and practical than the weak 

LZ-factorization. In this thesis we use the strong definition. 

The strong LZ-factorization of the example can also be represented as: 

WI = a, w2 = b, wa = aba, w4 = c, w5 = ba 

We specify each Wj in the LZ-factorization by pairs (POS,LEN), where POS 

is the starting position of the left occurrence of the repeating substring Wj in x 

and LEN = Jwil is the substring's length. If Wj is a letter that does not occur in 

x = wiw2 ••• wj-b then POS is the position of Wj, and LEN is 0. Thus, the strong 
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LZ-factorization of x can be specified by 

(1,0), (2,0), (1,3), (6,0), (2,2). 

We observe that Ws has two left occurrences in x = w 1w 2 ••• wj, Since POS is not 

necessarily the leftmost position of occurrence, the strong LZ-factorization can also 

be specified by 

(1,0), (2,0), (1,3), (6,0), (4,2). 



Chapter 3 

Previous Related Algorithms for 

Lempel-Ziv Construction 

In order to better understand the new algorithms that we were going to develop, let us 

discuss previous fundamental algorithms for computing the Lempel-Ziv factorization. 

Generally speaking, previous algorithms can be classified into two categories, the 

suffix tree-based algorithm, and the suffix array-based algorithm. KK-LZ [22] is one 

of the most efficient suffix tree-based algorithms for LZ-factorization, because it takes 

advantage of Ukkonen's algorithm to compute LZ on-line. There is only one suffix 

array-based algorithm for computing LZ-factorization, that is the AKO algorithm [1], 

which was invented in 2004. We will detail the KK-LZ and AKO algorithms in this 

chapter to demonstrate how Lempel-Ziv factorization is traditionally computed, and 

what the features of KK-LZ and AKO are. Then we can see in next chapter what 

the improvement of our new algorithms is. 

19 
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3.1 The Algorithm KK-LZ [22] 

The algorithm KK-LZ for computing LZ-factorization, is a suffix tree-based imple­

mentation of Ukkonen's algorithm [48] by Kolpakov and Kucherov specifically de­

signed for alphabet size a ::::; 4. Ukkonen's algorithm is an on-line algorithm for 

constructing the suffix tree; it inserts the prefixes x[l..i], i = 1, 2, ... , n iteratively. 

Therefore algorithm LZ [26] can be performed to compute the LZ-factorization at the 

same time that the suffix tree is constructed. 

KK-LZ uses Algorithm LZ [26] to compute LZ-factorization from a suffix tree. The 

process is described clearly in [44]: "We specify each factor Wj in the s-factorization 

of x by a pair (iL,£), where iL is the starting position of the leftmost occurrence of 

the repeating substring Wj in x and£= fwil is the substring's length. Let io be the 

current position in x- that is, the first position following the prefix w 1 w2 ... wj-l· 

For each i 0 we imagine computing the correct value of £ by searching Tx from the 

root for the suffix x[i0 .. n] that will of course lead to the terminal node io. In order to 

search, we initialize i +--- i0 , then match on x[i], incrementing i until matching starts 

along a downward edge of Tx whose lower end is a node labeled io. If at that point 

the last node traversed has a nonzero label, say v, then we set iL +--- v and set£ equal 

to the length of the substring represented by v. If the last node traversed was the 

root node of label 0, we set (i£,£) +--- (i0 ,0), indicating that a new letter has been 

identified." The Pseudo-code of Algorithm LZ is presented in Figure 3.2. 



M.Sc. Thesis - Gang Chen McMaster University- Computing & Software 21 

Ukkonen's Algorithm [48, 44] 

- Compute the linked suffix tree Tx on-line 
construct T1 - with suffix link (root) =root 
j L +--- 1; - leaf nodes added in order 1, 2, ... 
u +--- c:; - the initial prefix node is the root 
fori+--- 1 ton do - transition i from Ti to 7i+1 

- the last branch node formed in the repeat loop must have 
- its suffix link updated upon exit from the loop 

Wprev <---- E 

exit+--- FALSE 
repeat - creat new leaf nodes if necessary 
- locate the suffix w = uv = x[jL + l..i] in 7i 
- and update the prefix node u if necessary 

(u, w) +--- smartscan(u, v) 
if there exists no downward path labelled x[i + 1] from w then 

- a new leaf node must be formed 
]L +--- ]L + 1; if ]L > i then exit+--- TRUE 

- insert node w on its edge if necessary 
if node w does not exist in Ti then 

creat node w; 
label downward edge to w 
label downward edge from w 

add leaf node ]L and the "infinity edge" from w to ]L 
- set suffix link from previous node processed 

if Wprev =/= E then s ( Wprev) <---- W 
- set prefix node for next execution 

u +--- s(u) 
else 

- the suffix j L + 1 in 7i extends to suffix j L + 1 in 'Ii+1, 
- and so do all subsequent suffixes 
- set suffix link for last node processed 

if Wprev =/= E then 
s(wprev) +--- w - w must already exist as a node 

exit+--- TRUE 
exit if j L > i or if no more leaf nodes can be added 

until exit 

Figure 3.1: Algorithm Ukkonen: constructing a suffix tree 
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Algorithm LZ (44] 

- Using the labelled suffix tree Tx, 
- compute the s-factorization of x as a sequence of pairs ( iL, £) 

io +--- 1 
while i 0 :.:; n do 

(i1,£) +--- match(io,Tx) 
output ( i1, £) 
io +--- io + £ 

Figure 3.2: Algorithm LZ: computing LZx 

For example, a string x = abaababa, with s-factorization w 1 = a, w 2 = b, w 3 = 

a, w 4 = aba, w 5 = ba. That can also be represented as ajbjajabajba. Its labelled 

suffix tree Tx is represented in Figure 3.3. The label of the root of Tx is 0, and the 

label of a internal node is the minimum of its children's labels. We use this example 

to illustrate how to compute the Lempel-Ziv factorization from a labelled suffix tree. 

To compute the LZ-factorization, for the first step i 0 = 1, we match the suffix 

x[1..8] = abaababa on Tx to find node 1. We search abaababa from the root, until we 

find the first node labeled 1. In Figure 3.3 we follow along the left downward edge; 

we find node 1, then we set iL = 1,£ = 0, because the last visited node is the root. 

Output (1,0), and set i 0 = i 0 + 1 = 2. 

In the second step we match x[2 .. 8] = baababa on Tx to find node 2. We follow 

the right downward edge from the root; we find node 2, then we set iL = 2,£ = 0, 

because the last visited node is still the root. Output (2,0), and set i 0 = i 0 + 1 = 3. 

In the third step we match x[3 .. 8] = aababa on Tx to find node 3. We follow the 
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Figure 3.3: The labelled suffix tree for x = abaababa 

left downward edge from the root to match a, then we follow the middle downward 

edge to match ababa; we find node 3. We set iL = 1,£ = 1, because the last visited 

node is 1, the length of the substring is 1. Output (1,1), and set i 0 = i 0 + 1 = 4. 

In the fourth step we match x[4 .. 8] = ababa on Tx to find node 4. We follow 

the left downward edge from the root to match a, then we follow the right edge to 

match ba, next we still follow the right edge to match ba, then we find node 4. We 

set iL = 1,£ = 3, because the last visited node is 1, the length of the substring is 3. 

Output (1,3), and set i 0 = i 0 + 3 = 7. 

In the fifth step we match x[7 .. 8] = ba on Tx to find node 7. We follow the right 

downward edge from the root to match ba, then we follow the left edge; we find node 
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7. We set iL = 2,£ = 2, because the last visited node is 2, the length of the substring 

is 2. Output (2,2), and set i 0 = i 0 + 2 = 9. We finish here. 

The output of the algorithm would be (1,0), (2,0), (1,1), (1,3), (2,2). 

3.2 The Algorithm AKO [1] 

The central concept of AKO algorithm is to use a tree structure, namely the lcp­

interval tree. The lcp-interval tree can be generated from a LCP array in linear time, 

then from lcp-intervals it can easily compute the Lempel-Ziv factorization. 

Definition 3.2.1 [1] Given a string x = x[l..n]. An interval [i .. j], 0 ~ i < j ~ n, is 

an lcp-interval of lcp-value £ if 

{1) LCPx[i] < £, 

{2) LCPx[k] ?: £for all k with i + 1 ~ k ~ j, 

{3) LCPx[k] =£for at least one k with i + 1 ~ k ~ j, 

(4) LCPx[J + 1] < £ . 

We can use £ - [i .. j] to represent an lcp-interval [i .. j] of lcp-value £. 

We still use the example x = abaababa. Its suffix array, LCP array, and lcp­

interval tree are shown in the following figures. Comparing Figure 3.3 with Figure 
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3.4, we can see that the lcp-interval tree is similar to its suffix tree. 

012345678 

X= a b a a b a b a 

SAx = 8 3 6 1 4 7 2 5 

LCPx = -1 1 1 3 3 0 2 2 -1 

I 3-[2 . .41 I 

Figure 3.4: The lcp-interval tree of x = abaababa 

An lcp-interval is a node in the lcp-interval tree. All lcp-intervals are computed 

with the help of a stack, the elements of which are lcp-intervals represented by tuples 

(lcp, lb, rb, childList, min), where lcp is the lcp-value of the interval, lb is its left 

boundary, rb is its right boundary, childList is a list of its child intervals, and min 

is the minimum value of suffix array SAx[lb .. rb]. The Lempel-Ziv factorization is 

represented by arrays POS[O .. n-1] and LEN[O .. n-1] (Definition 2.5.2). Furthermore, 

_L stands for an undefined value, []stands for an empty list, add([c1 , ... , ck], c) appends 

the element c to the list[c1, ... , ck] and returns the result. 
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Alllcp-intervals can be bottom-up generated. Every time an lcp-interval is gener­

ated, it calls a procedure to update POS and LEN arrays. Lempel-Ziv factorization 

can be computed on-line in linear time by a bottom-up construction of the lcp-interval 

tree. The pseudo-code of this process is represented in Figure 3.5. 

Because of the use of the lcp-interval tree structure, the AKO algorithm is not a 

pure suffix array-based algorithm for LZ-factorization construction. The AKO algo­

rithm computes the suffix array and LCP array from a string, and then constructs 

an lcp-interval tree. Since an lcp-interval tree costs nearly the same space as a suf­

fix tree, the performance of AKO is not better than a suffix tree-based algorithm in 

terms of time and space. However the AKO algorithm illustrates that a suffix array 

of a string, together with its LCP array, has enough information for computing its 

LZ-factorization. Actually it proves that every algorithm using a suffix tree can sys­

tematically be replaced by an algorithm using an enhanced suffix array (i.e., a suffix 

array enhanced with the LCP array). 
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Algorithm AKO [1] 

last! nterval := ..l 
push( (0, 0, ..l,[], ..l)) 
fori:= 1 ton do 

lb := i- 1 
while LCP[i] < top.lcp 

top.rb := i- 1; 
last! nterval :=pop 
process( last! nterval) 
lb := last! nterval.lb 
if LCP[i] ~ top.lcp then 
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top.childList := add(top.childList, lastlnterval) 
lastinterval := ..l 

if LC P[i] > top.lcp then 
if last! nterval #- ..l then 

push( (LCP[i], lb, ..l, [last! nterval], ..l)) 
lastlnterval := ..l 

else push( (LCP[i], lb, ..l,[], ..l)) 

procedure process(lastinterval) 
i .-- last! nterval.lb; 
j <-- last!nterval.rb; 
M = {SA[q] I q E [i .. j]} 
lastlnterval.min .-- min(M) 
for all p E M with q #- min; 

POS[p] := min 
LEN[p] := last!nterval.lcp 

Figure 3.5: Algorithm AKO: computing LZx 



Chapter 4 

New Algorithms 

4.1 Description of the Algorithms 

Given a string x = x[l..n] on an alphabet A of size a, its SAx and LCPx can be 

computed in 8(n) time [18, 35]. For example: 

2 3 4 5 6 7 8 9 

X= a b a a b a b a 

SAx= 8 3 6 1 4 7 2 5 

LCPx = -1 1 1 3 3 0 2 2 -1 

We use the strong LZ-factorization definition (Definition 2.5.2). For our example 

Typically, integer pairs (POS, LEN) specify the factorization, where POS gives a 

position in x and LEN the corresponding length at that position (by convention zero 

if the position contains a "new" letter). The example thus yields (POS, LEN) = 

(1, 0), (2, 0), (3, 1), (4, 3), (7, 2). As mentioned above, LZx can be quickly computed 

28 
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from STx in 8(n) time [26], also from SAx [1]. Our new algorithm is displayed in 

Figure 4.1. 

Algorithm CPS 

- Using SAx and LCPx, compute POS[l..n] and LEN[l..n]. 
it f- 1; i2 f- 2; i3 f- 3 
while i 3 ::; n+ 1 do 
- Identify the next position i2 < i3 with LCP[i2] > LCP[i3]. 

while LCP[i2] ::; LCP[i3] do 
push(S,it); it+--- i2; i2 +--- i3; i3 +--- i3+1 

- Backtrack using the stack S to locate the first it < i2 such that 
- LCP[it] < LCP[i2], at each step setting the larger position in POS 
- corresponding to equal LCP to point leftwards to the smaller one, 
- if it exists; if not, then POS[i] +--- i. 

P2 +--- SA[i2]; f2 +--- LCP[i2] 
assign(POS, LEN, Pt, P2) 

while LCP[it] = .e2 do 
it +--- pop(S) 
assign(POS, LEN,Pt.P2) 

SA[it] +--- P2 
- Reset pointers for the next stage. 

if it > 1 then 
z2 +--- Zt; it +--- pop( S) 

else 

procedure assign(POS, LEN,pt,P2) 
Pt +--- SA[it] 
if Pt < P2 then 

POS[p2] +--- Pt; LEN[p2] +--- f2; P2 +--- Pt 
else 

POS[pt] +--- P2; LEN[pt] +--- f2 

Figure 4.1: Algorithm CPS: computing LZx 

The basic strategy of CPS is first to locate, in a left-to-right traversal of SA, a 

next position i2 such that LCP[i2] > LCP[i3] for some least i3 > i2; then second 

to backtrack (using the stack S) from i2, setting POS[p2] +--- pl or POS[p1] +--- p2 
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depending on whether p1 = SA[i1] < p2 or not, until the LCP value for the position i1 

popped from S falls below LCP[i2]. This processing does not guarantee that, for equal 

LCP (LEN), each corresponding position in POS necessarily points to the leftmost 

occurrence in x, as normally required for LZ decomposition; however, the Main and 

KK algorithms do not require this property for their correct functioning, they require 

only that each position in POS should point left. In other terminology, what is in 

fact computed by CPS is a quasi suffix array (QSA) [12]. We call the algorithm 

of Figure 4.2 CPSa. 

Now observe that none of the position pointers i1, i2, i3 will ever point to any posi­

tion i in SA such that POS (SA[iJ] has been previously set. It follows that the storage 

for SA and LCP can be dynamically reused to specify the location and contents of the 

array POS, thus saving 4n bytes of storage- neither the Main nor the KK algorithm 

requires SA/LCP. In Figure 4.2 this is easily accomplished by inserting i 2 +- i 1 at 

the beginning of the second inner while loop, then replacing 

POS[p2] +- P1 by SA[i2] +- p2; LCP[i2] +- P1 

POS[p1] +- P2 by SA[i2] +- P1; LCP[i2] +- P2 

POS can then be computed by a straightforward in-place compactification of SA and 

LCP into LCP (now redefined as POS). We call this second algorithm CPSb. 

But more storage can be saved. Remove all reference to LEN from CPSb, so that 

it computes only POS and in particular allocates no storage for LEN. Then, after 
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POS is computed, the space previously required for LCP becomes free and can be 

reallocated to LEN. Observe that only those positions in LEN that are required for 

the LZ-factorization need to be computed, so that the total computation time for 

LEN is 8(n). In fact, without loss of efficiency, we can avoid computing LEN as an 

array and compute it only when required; given a sentinel value POS[n+1] =$,the 

simple function of Figure 4.2 computes LEN corresponding to POS [i]. We call the 

third version CPSc. 

Function LEN for CPSc 

function LEN(x, POS, i) 
j <--- POS[i] 
if j = i then 

LEN<--- 0 
else 

£ f- 1 
while x[i+£] = x[j +£] do 

£ f- £+1 
LEN<--£ 

Figure 4.2: Computing LEN corresponding to POS[i] 

Since at least one position in POS is set at each stage of the main while loop, it 

follows that the execution time of CPS is linear in n. For CPSa space requirements 

total 17n bytes (for x, SA, LCP, POS & LEN) plus 4s bytes for a stack of maximum 

size 8- at most the maximum depth of STx. For x =an, 8 = n, but in the expected 

case, 8 E O(log
0

n) [17]. For CPSb the space required is 13n bytes. However, CPSc 

can be handled in two different ways, so that in fact two new variants, CPSc and 
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CPSd, are introduced. As we shall see, CPSc is faster than CPSd, but requires more 

space. 

Observe that for CPSa and CPSb the original (and somewhat faster) method [18] 

for computing LCP can be used, since it requires 13n bytes of storage, not greater 

than the total space requirements of these two variants. However, to achieve 9n bytes 

of storage, the Manzini variant [35] for computing LCP must be used, that leads to 

the variant CPSd. In fact, thus CPSc requires 13n bytes including the stack, while 

CPSd requires 9n bytes plus stack. The difference between CPSc and CPSd is that 

CPSc uses the original LCP calculation [18] (and therefore requires no additional 

space for the stack), and CPSd uses the Manzini variant. 

4.2 Demonstration of New algorithms 

In this section we use an example to demonstrate our algorithms clearly. 

Given a string x = abaababa of length 8, and its corresponding suffix and LCP 

arrays, the goal of algorithm CPS is to compute its LZ-factorization. In Figures 4.3, 

4.4 and 4.5, we respectively show how algorithm CPSa, CPSb, and CPSc work. 

In Figure 4.3 we can observe that the shaded positions in SA and LCP array will 

never be used. Therefore the difference between CPSb and CPSa is to reuse these 

positions. The SA and LCP arrays can be reused as POS array. 

Algorithm CPSa and CPSb both compute POS and LEN arrays. Using POS and 

LEN arrays we can easily compute LZ-factorization. However during the process 
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for computing LZ-factorization, we can compute LEN array from POS and string x 

(Figure 4.2) when required. Therefore algorithm CPSc does not compute LEN array. 

The process for computing LZ-factorization using POS and LEN arrays is 

i = 1, output (POS[1], LEN[1])=(1,0), then i = i + 1 = 2; 

i = 2, output (POS[2], LEN[2])=(2,0), then i = i + 1 = 3; 

i = 3, output (POS[3], LEN[3])=(1,1), then i = i + 1 = 4; 

i = 4, output (POS[4], LEN[4])=(1,3), then i = i + 3 = 7; 

i = 7, output (POS[7], LEN[7])=(2,2), then i = i + 2 = 9 = n + 1; stop 

Finally we get LZ-factorization (1,0), (2,0), (1,1), (1,3), (2,2). 
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i 

SA 

LCP 

SA 

LCP 

SA 

LCP 

1 2 3 4 5 6 7 8 9 

8 3 6 1 4 7 2 5 

-1 1 1 3 3 0 2 2 -1 

il i2 i3 

1-
8

1 I : I 
6

1 : I : I : I : I ~ 1-1 I 

il 

il 

il' 

il 

il ' il i2 i3 

il' il i2 i3 -

Store: POS[4J=l, POS[6]=1 , 
LEN[4J=3, l..EN[6]=3, 

SA[3]=1 

Store: POS[3]=1 , POS[8] =1, 
i2 i3 - LEN[3]=1 , LEN[8]=1 , 

,.-,--...,--,-----, SA [l] =l 

i2 i3 

i2 Store: POS[5]=2, POS[7]=2, - LEN[5]=2, LEN[7]=2, 
SA[6]=2 

i2 i3 Store : POS[2]=2, POS [l]=l , - LEN[2]=0, LEN[l]=O, 

Finally vre get LEN and POS arrays : 
i 1 2 3 4 5 6 7 8 

POS 1 2 1 1 2 1 2 1 

LEN 0 0 1 3 2 3 2 1 

Figure 4.3: Algorithm CPSa 
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:i. 1 2 :3 <I 5 6 7 8 9 

SA 8 :3 6 1 <I 7 2 5 

LCP -1 1 1 :3 :3 0 2 2 -1 

il i2 i3 

~: 1-
8

1 I : I : I ~ I : I : I ~ I ~ 1-1 I 
il' i1 i2 i3 

~: 1-
8

1 I : I : I ~ I : I : I ~ I ~ 1- 1 I Store: SA[5)=4,LCP[5)=1; SA[4]=6,LCP[4]=1; 
LEN[4]=3, LEN[6]=3, il' il i2 i3 

SA[3]=1 

il' il i2 i3 

il ' 

Store: SA[3]=3,LCP[3]=1; SA[2]=8,LCP[2]=1; 
- LEN[3]=1, LEN[8]=1 , 

-,-,...---,----, SA[l]=l 

il ' il i2 i3 

il i2 i3 - Store: SA[8]=5,LCP[8]=2; SA[7]=7,LCP[7]=2; 
LEN[5]=2, LEN[7]=2, 
SA[6]=2 

- Store: SA[6]=2,LCP[6]=2; SA[l]=I,LCP[I]=I; 
LEN[2]=0, LEN[l]=O, 

- after in-place rearrangement, 
it can be reused as P 0 S array 

Figure 4.4: Algorithm CPSb 
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i 

SA 

LCP 

SA 

LCP 

SA 

LCP 

1 2 3 4 5 6 7 g 9 

s . 3 6 1 4 .. 7 2 5 

-1 1 1 3 3 0 2 2 -1 

il i2 i3 

1-g1 I : I 
6 

I ~ I : I : I : I ~ 1-1 I 
il' il i2 i3 

il' il i2 i3 -

Store : SA[5]=4,LCP[5]=1; SA[4]=6,LCP[4J;=l; 

SA[J]=l 

il ' il i2 i3 

il' 

il' il i2 i3 

il i2 i3 --+ Store: SA[8]=5,LCP{8]=2; SA[7]=7,LCP[7]=2; 

SA[6]=2 

i3 --+ Store : SA[6]=2,LCP[6]=2 ; SA[l)=l ,LCP[l]=l; 

--+ after in-place rearrangement, 

it can be reused as POS array 

Figure 4.5: Algorithm CPSc and CPSd 



Chapter 5 

Experiments 

As discussed in Chapter 3, LZ-factorization algorithms can be classified into two cat­

egories, according to whether they use suffix arrays and using suffix trees. Currently 

algorithm AKO of [AK004] is an efficient LZ-factorization algorithm using suffix ar­

rays, and algorithm KK-LZ of [KK99] is an efficient LZ-factorization algorithm using 

suffix trees. In this chapter we compare our new algorithm CPS with the algorithms 

AKO and KK-LZ. 

We implemented the four versions of CPS described above; we call them CPSa, 

CPSb, CPSc (13n-byte LCP calculation), and CPSd (9n-byte LCP calculation). For 

CPSc, the original (and somewhat faster) method [18] for computing LCP is used. 

For CPSd, to achieve 9n bytes of storage, the Manzini variant [35] for computing LCP 

is used. We also implemented the other SA-based LZ-factorization algorithm, AKD 

of [AK004]. The implementation KK-LZ of Kolpakov and Kucherov's algorithm was 

obtained from [KK99]. All programs were written in C or C++. We are confident 

37 
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that all implementations tested are of high quality. 

5.1 Testing Details 

5.1.1 Environment 

All experiments were conducted on an application server machine (Moore) with 4 

AMD Opteron 2.6GHz CPUs and 8GB memory in total. When executing the testing 

program one CPU is used. The operating system was RedHat Linux. The compiler 

was g++ (gee version 4.1.1) executed with the -03 option. 

5.1.2 Timing 

Times were recorded with the standard C getrusage function. All running times 

given are the minimum of 10 runs, and do not include time spent reading input 

files. This is represented in Table 5.3. Since our program is executed on a multi­

process server machine, it can be interfered with by other programs or a missed cache. 

Therefore the minimum running time reflects the actual running time better than the 

average running time. We also compute the standard deviation of the running times 

to show how widely spread the running times are, and the results are in Table 5.4. 

5.1.3 Memory usage 

Memory usage was recorded with the memusage command available with most Linux 

distributions. The peak of memory usage was recorded for each run (Table 5.5). 
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5.1.4 Test Data 

We test the programs on various data files, which are described in Table 5.1. File 

chr22 and chr1819 was originally on an alphabet of five symbols A,C,G,T,N but 

was reduced by replacing occurrences of N with random selection of the other four 

symbols. The N's represent ambiguities in the sequencing process. 

5.2 Test Results 

Times for the CPS implementations and AKD include time required for SA and LCP 

array construction. The implementation of KK-LZ is only suitable for strings on small 

alphabets (II: I :::; 4) so times are only given for some of the files. Results are not given 

for AKD on other files because the memory required exceeded the capacity of the test 

machine. 

5.3 Conclusions of Experiments 

Time spent computing the suffix array hurts the CPSa-d and AKO algorithms, as 

which can be observed from Table 5.2. We conclude: 

(1) KK remains the algorithm of choice for DNA strings of moderate size. 

(2) For other strings encountered in practice, CPSb is consistently faster than AKO 

except for very large alphabets; it also uses substantially less space, especially 

on run-rich strings. 
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Strin 
fibo35 
fibo36 
fss9 
fsslO 
random2 
random21 
ecoh 
chr22 
chr19 
chr1819 
prot-a 
prot-b 
brot-c 

ible 
howto 
mozilla 
rfc 

Table 5.1: Description of the data set used in experiments. 

9227465 2 34 3524578 35th Fibonacci string see SMY03 
14930352 2 35 5702887 36th Fibonacci string 
2851443 2 40 1217712 9th run rich string of [FSS03] 

12078908 2 44 5158310 lOth run rich string of fFSS03] 
8388608 2 385232 42 Random string, small alphabet 
8388608 21 1835235 9 Random string, larger alphabet 
4638690 4 432791 2805 E.Coh Genome 

34553758 4 2554184 1768 Human 8hromosome 22 
63811651 4 4411679 3397 Human hromosome 19 

139928804 4 9560771 3397 Human Chromosomes 18 & 19 
16777216 23 2751022 6699 Small Protem dataset 
33554432 24 5040051 16190 Medium Protein dataset 
67108864 24 8391184 16190 Large Protein dataset 
4047392 62 337558 549 King James Bible 

39422105 197 3063929 70718 Linux Howto files 
51220480 256 Mozilla binaries 

116421901 120 5656068 3317 IETF Request for comments 

(3) Overall, and especially for strings on alphabets of size greater than 4, CPSd(9n) 

is probably preferable since it will be more robust for main-memory use on very 

large strings: its storage requirement is consistently low (about half that of 

AKO, including on DNA strings) and it is only 25-30% slower than CPSb. 

(4) The results in Table 5.4 demonstrate that the standard deviations of running 

times are small with respect to the average. Therefore we are confident in the 

validity of the timing results. 
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Table 5.2: Runtime in milliseconds for suffix array construction and LCP computa-
tion. 

String sac a lcp13n lcp9n 
fibo35 10852 4347 5810 
fibo36 19253 7310 10166 

fss9 2921 1267 1534 
fss10 15346 5891 7047 

rand2 5542 3347 5465 
rand21 6110 5369 6734 

ecoli 3871 3136 3563 
chr22 29245 22543 26132 
chr19 65379 58430 65137 

chr1819 173452 152060 199294 
prot-a 14218 12576 15733 
prot-b 36725 32118 37632 
prot-c 49326 45321 59596 
bible 2225 2004 2386 

howto 23187 22573 29697 
mozilla 28213 29572 37439 

rfc 84497 82268 131404 
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Table 5.3: Runtime in milliseconds for various LZ factorization algorithms. Times 
for CPSd-9n include times for suffix sorting and LCP array construction with lcp9n; 
times for CPSa, CPSb, CPSc-13n and AKO include times for suffix sorting and LCP 

construction with lcp13n (see Table 5.2). 

String CPS a CPSb CPSc CPSd AKO KK-LZ 
fibo35 17347 16321 17160 18623 23839 19033 
fibo36 30273 26017 29176 32032 44146 30125 
fss9 4651 4256 4478 4745 5922 2310 
fsslO 25412 23835 25090 26246 31041 15455 
rand2 14688 13424 14165 16283 20335 19713 
rand21 16134 14235 14870 16235 20176 
ecoli 9452 9147 9336 9763 13245 3935 
chr22 83560 79265 82418 86007 120239 31254 
chr19 158613 152520 163653 170362 87842 
chr1819 483954 461245 461418 508652 - 263135 
prot-a 30836 30544 33368 36525 38233 
prot-b 73478 71105 74214 79731 85790 
prot-c 158712 143825 167036 181311 
bible 6656 5867 6749 7131 7832 
howto 66922 65579 67577 72701 65165 
mozilla 81745 80625 82058 89925 
rfc 218405 201305 220196 269332 
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Table 5.4: Standard deviation for runtime in milliseconds for various LZ factorization 

algorithms. (The standard deviation of a random variable X is defined as: (] = 

J ~ "5:.~ 1 (xi- x) 2
, where x = ~ "5:.~ 1 (xi), x 1 , ... , XN are the values of the random 

variable X, N is the number of samples. ) 

String CPS a CPSb CPSc CPSd AKO KK-LZ 

fibo35 50.6 50.5 50.8 51.9 64.5 52.4 

fibo36 95.4 95.4 96.4 98.5 125.6 97.8 

fss9 15.3 15.6 16.6 17.5 19.5 8.8 

fss10 76.1 74.1 77.3 78.2 85.5 38.2 

rand2 47.5 46.3 49.2 55.3 62.8 63.4 

rand21 53.9 54.7 57.8 60.5 78.9 

ecoli 35.3 35.7 35.2 35.0 38.3 13.4 

chr22 250.1 245.9 255.6 268.3 319.6 134.4 

chr19 513.8 506.3 546.4 554.2 286.9 

chr1819 1546.2 1479.0 1587.1 1684.2 809.7 

prot-a 104.6 103.3 132.6 165.8 187.4 

prot-b 237.7 225.6 243.8 256.1 284.3 

prot-c 579.6 568.5 590.6 639.8 

bible 23.5 24.4 25.5 31.5 34.7 

howto 213.7 211.3 266.7 307.8 209.1 

mozilla 243.7 241.7 257.0 275.6 

rfc 770.6 725.5 795.6 850.8 
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Table 5.5: Peak memory usage in bytes per input symbol for the LZ factorization 

algorithms. 

String CPS a CPSb CPSc CPSd AKO KK-LZ 
fibo35 19.5 15.5 13.0 11.5 26.5 20.0 

fibo36 19.5 15.5 13.0 11.5 26.5 20.8 

fss9 19.1 15.1 13.0 11.1 25.1 21.4 

fsslO 19.1 15.1 13.0 11.1 25.1 22.5 

rand2 17.0 13.0 13.0 9.0 17.1 11.8 

rand21 17.0 13.0 13.0 9.0 17.1 

ecoli 17.0 13.0 13.0 9.0 17.1 11.1 

chr22 17.0 13.0 13.0 9.0 17.1 11.1 

chr19 17.0 13.0 13.0 9.0 11.1 

chr1819 17.0 13.0 13.0 9.0 10.7 

prot-a 17.2 13.2 13.0 9.2 39.0 

prot-b 17.1 13.1 13.0 9.1 40.1 

prot-c 17.0 13.0 13.0 9.0 

bible 17.0 13.0 13.0 9.0 17.0 

howto 17.0 13.0 13.0 9.0 17.0 

mozilla 17.7 13.7 13.0 9.7 

rfc 17.0 13.0 13.0 9.0 



Chapter 6 

An Application of the New 

Algorithm 

Lempel-Ziv factorization is an important data structure for information. Its original 

purpose is for data compression. However recently it was used in linear time algo-

rithms for the computation of repetitions in a string [1, 29, 22]. This was also our 

initial motivation for improving the LZ-factorization construction algorithm. In this 

chapter we discuss the details of our work on the computation of repetitions. 

6.1 Background of Algorithms For Repetitions 

Periodicity (repetition) in infinite strings was the first topic of stringology [46]; count-

ing and computing the maximum-length adjacent repeating substrings (repetitions) 

in a finite string was, along with pattern-matching, one of the earliest computational 

problems on strings to be studied [28, 30]. 

During the period 1906-1914, Axel Thue published four papers which represented 

the pioneering work in stringology. Two of these papers [46, 4 7] deal with repetitions 
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in finite and infinite words. However, [14] Thue's results were ignored for a long time 

and rediscovered over and over by other researchers. More recently, Thue's results 

have become well known because the study of repetition was widely applied in various 

subjects, such as string matching algorithms, molecular biology, or text compression. 

In 1981 Crochemore [6] proved that a string with length n can contain O(nlogn) 

repetitions and several authors published algorithms to detect these structures in 

O(nlogn) time [2, 6, 31]. Slisenko [45] published a difficult 100-page algorithm in 

linear time for finding all periodicities; after that other researchers looked for simple 

algorithms for detecting repetitions more efficiently. 

In 1989 Main introduced the idea that a run or maximal repetition in a word 

describes several repetitions because its extension by one letter to the right or to the 

left yields a word with a bigger period. By computing all runs we are implicitly com­

puting all repetitions. Main proposed a linear time algorithm which finds all leftmost 

maximal repetitions in a word. This algorithm is based on a special factorization 

of the word, called LZ-decomposition (Lempel-Ziv decomposition). It shows how to 

compute the leftmost occurrence of every run in a string x = x[l..n] by 

(1) computing STx, the suffix tree of x [49]; 

(2) using STx to compute LZx, the Lempel-Ziv decomposition of x [25]; 

(3) using LZx to compute leftmost runs. 
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Since steps (2) and (3) require only 8(n) (linear) time, the use ofFarach's linear-time 

STCA [9] enables the leftmost runs to be computed in linear time. In [20] Kolpakov 

& Kucherov proved that the maximum number of runs in any string of length n is 

8(n), and then showed how to compute all the runs in x from the leftmost ones in 

linear time. Thus in theory all runs, hence all repetitions, could be computed in linear 

time, though Farach's algorithm is not practical for large n. 

In [I] Abouelhoda, Kurtz & Ohlebusch show how to compute LZx from a suffix 

array SAx, together with other linear structures, rather than from ST x. Since there 

now exist practical linear-time suffix array construction algorithms (SACAs), it thus 

becomes feasible to compute all the runs in x in 8(n) time for large values of n. 

6.2 The improvements on KK algorithm [22] 

We improve Kolpakov and Kucherov's implementation [22] for computing all the runs 

in a string. The KK algorithm is composed of four stages: 

(1) calculation of the suffix tree of x; 

(2) calculation of the Lempel-Ziv decomposition; 

(3) calculation of the leftmost runs in x [29]; 

( 4) calculation of the remaining runs. 

We replace the first two stages with the following stages: 

(1) computing the suffix array using the algorithm in [34] and the LCP array using 
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Kasai et al.'s algorithm [18]; 

(2) computing the Lempel-Ziv decomposition using the suffix and LCP arrays. 

These modifications significantly improve the KK algorithm's implementation in 

terms of time and space. 



Chapter 7 

Conclusions and Future Work 

In this thesis we have discussed the background of Lempel-Ziv factorization and its 

applications. We analyzed the previous algorithms for the Lempel-Ziv construction, 

and chose two efficient algorithms to illustrate how the Lempel-Ziv factorization is 

traditionally computed. Then we presented our new algorithm, and compared it 

with previous algorithms in terms of time and space. By comparisons we can see 

the features of our new algorithms. We conducted comprehensive experiments on all 

sorts of data files. The conclusions can be drawn from the results of tests. We also 

detailed our work on one of Lempel-Ziv's central applications, that is computing all 

the runs in a string. 

Since our new algorithms have many advantages, we would like to apply them in 

other applications. There are 4 variants of our algorithm CPS with different features, 

and their performances are dependent on the types of data file. We want to analyze the 

reasons and improve the performances. On the other hand, because our algorithms 
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use suffix array construction algorithms, which are time-inefficient, we will try to 

modify the suffix array construction algorithms to increase their efficiency. 

At last, we would like to extend our research to other approaches to computing 

Lempel-Ziv factorization, and more generally, on data compression and the compu­

tation of repetitions. 
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