
Aerospace Technology Congress, 8-9 October 2019, Stockholm, Sweden

Swedish Society of Aeronautics and Astronautics (FTF)

Lempel-Ziv-Markov Chain Algorithm Modeling using Models of Computation and
ForSyDe

Augusto Y. Horita1, Ricardo Bonna1, Denis S. Loubach2, Ingo Sander3, and Ingemar Söderquist4

E-mail: ahorita@fem.unicamp.br; rbonna@fem.unicamp.br; dloubach@ita.br; ingo@kth.se;

ingemar.soderquist@saabgroup.com
1Advanced Computing, Control & Embedded Systems Lab, University of Campinas – UNICAMP,

Campinas, SP, Brazil - 13083-860
2Department of Computer Systems, Computer Science Division, Aeronautics Institute of Technology – ITA,

São José dos Campos, SP, Brazil - 12228-900
3Division of Electronics/School of EECS, KTH Royal Institute of Technology, SE-164 40, Kista, Sweden

4Business Area Aeronautics, Saab AB, Linköping, Sweden

Abstract

The data link is considered a critical function of modern aircraft, responsible for exchanging

information to the ground and communicating to other aircraft. Nowadays, the increasing

amount of exchanged data and information brings the need for network usage optimization.

In this sense, data compression is considered a key approach to make data packages size smal-

ler. Regarding the fact that avionics systems are safety-critical, it is fundamental not losing

data nor performance during the compression procedures. In this context, manufacturers and

regulatory agencies usually follow DO-178C guidance. Targeting model-based embedded

design guidelines, DO-178C includes a supplement document, named DO-331. In this pa-

per, we describe a widely used data compression algorithm, the Lempel-Ziv-Markov Chain

algorithm (LZMA). Regarding formal model-based design, we argue that the synchronous

dataflow model of computation captures the algorithm behavior more directly. The Formal

System Design (ForSyDe) methodology is used to model the LZMA.

Keywords: data compression algorithm, avionics data link, DO-178C, DO-331, formal mod-

els of computation, synchronous dataflow.

1 Introduction

A wide range of aircraft functions with different safety re-

quirements is present in the avionic system of today’s modern

aircraft. One of these aircraft functions is the data link. It is

responsible for exchanging information to the ground, besides

communicating to other aircraft during flight.

As the number of aircraft functions increases, the complex-

ity of avionics systems exponentially grows. The number of

processors, transducers and exchanged data and information

also increase. This brings the need for network usage optim-

ization. In this sense, data compression is considered a key

approach to making data packages size smaller.

Considering that the avionics systems are safety-critical, it is

fundamental not losing data nor performance during the com-

pression procedures [1]. In this scenario, manufacturers and

regulatory agencies follow the DO-178C [2] guidance. That

document is developed and maintained by the Radio Tech-

nical Commission for Aeronautics. DO-178C aims to ensure

that software development for avionics systems is depend-

able, safe, and meet the specified requirements.

Because of this, formal models of computation (MoC) have

been used to model, simulate and verify algorithms in the sys-

tem design and implementation phases, considering the em-

bedded systems area. DO-178C includes a supplement docu-

ment describing model-based design guidelines, named DO-

331 [3].

Given this context, we address in this paper the formal

modeling and simulation of a widely used data compres-

sion algorithm, named Lempel-Ziv-Markov Chain algorithm

(LZMA). It is included as a CPU benchmark by the Standard

Performance Evaluation Corporation (SPEC) [4].

Regarding formal model-based design, we argue that the syn-

chronous dataflow (SDF) model of computation captures the

algorithm behavior more directly. The LZMA intends to gen-

erate a compressed file based on the processing of a general

data stream input. The Formal System Design (ForSyDe)

methodology [5] is used to model the LZMA in our paper.

DOI

10.3384/ecp19162017

152

ahorita@fem.unicamp.br; rbonna@fem.unicamp.br; dloubach@ita.br; ingo@kth.se; ingemar.soderquist@saabgroup.com
ahorita@fem.unicamp.br; rbonna@fem.unicamp.br; dloubach@ita.br; ingo@kth.se; ingemar.soderquist@saabgroup.com

2 Background

This section presents the concepts used along with this pa-

per including models of computation (MoC), synchronous

dataflow (SDF) MoC, and the Lempel-Ziv-Markov Chain al-

gorithm (LZMA).

2.1 Model of Computation (MoC)

An MoC represents an abstraction of a real computing device

[6], which may have different behaviors and applications. It

includes the relevant characteristics and properties for that

particular model. Thus, different MoCs are used for modeling

different systems depending on their behavior.

MoCs can be defined as an abstract rules collection stating

the semantics of execution and concurrency in computational

systems.

In this context, the tagged signal model (TSM) is also present.

It is introduced as a meta-model, or even a framework, de-

fining systems as compositions of processes acting on sig-

nals [7].

A signal is a set of events ei = (ti,vi), which are elementary

units of information composed by a tag ti ∈ T , and a value

vi ∈V . A signal can be viewed as a subset of T ×V . A process

P is a set of possible behaviors acting on a signal. The set

of output signals SO is given by the intersection between the

input signals SI and the process: SO = SI
∩P. A process is

functional when there is a single value mapping f : SI
→ SO

which describes it. Therefore, a functional process has either

one behavior or no behavior at all.

TSM divides MoCs basically into timed and untimed. In a

timed MoC, the set of tags T is totally ordered, i.e. one can

order every event included in the model based on its tag. On

the other hand, in an untimed MoC, the set of tags T is par-

tially ordered, i.e. only local groups of events can be ordered

based on its tag, e.g. the ones belonging to the same signal.

2.2 Synchronous Dataflow (SDF) MoC

A subclass included in the untimed MoCs comprehends the

dataflows, which are directed graphs where each node repres-

ents a process and each arc represents a signal path. When a

process is activated, i.e. fired, it consumes a certain amount of

data, denominated tokens, from its input ports and generates

another amount of tokens for its output ports. The amount of

tokens consumed and produced by the ports in a single activ-

ation cycle is denominated token rate [8].

In SDF, the token rates are fixed and predefined, represented

by a natural number associated with each input and output

ports. An actor can fire only if the input signal paths have

enough tokens to supply the amount needed by all input ports

of the actor. As a consequence, no signal path can have a

negative amount of tokens.

The predefined and fixed token rates of SDF actors allows ef-

ficient modeling of systems like signal processing or finding a

static schedule for single and multi-processor implementation

and also buffer size definitions [8].

2.3 Data Compression Algorithms

Data compression has been used to optimize storage and com-

munication buses. One of the compression techniques is

based on dictionaries, which consists of saving strings of a

previously read input stream interval, composing a dictionary.

When new groups of symbols are being read in, the algorithm

searches through the dictionary, then the matches are encoded

as pointers and sent as the output.

Abraham Lempel and Jacob Ziv have presented their first

dictionary-based compression method in 1977 [9], which is

referred to as LZ77. That method limits the previously read

interval to a determined size window, which follows the data

processing, creating the concept of sliding window encoding

(SWE), which makes the algorithm simple and faster [10]. In

1978, LZ78 was presented [11]. The difference is that its dic-

tionary is composed of all the symbol strings from previously

read stream and it builds a single character at a time, making

this algorithm longer but with a higher compression rate.

The algorithm analyzed in this paper, LZMA, was first used

in 7z file format [12] and is presented as a benchmark by

SPEC [4], comparing its implementation using different ar-

chitectures.

2.3.1 Lempel-Ziv-Markov Chain Algorithm (LZMA)

LZMA was created as an LZ77 optimization, providing

higher compression rate and fast decompression, with lower

memory requirements [13]. It is open source and implemen-

ted in several different programming languages, including C,

and Java, as an SDK [12].

LZMA can be divided into two steps, although an additional

filtering step can be added before LZMA, aiming the optim-

ization of the compression algorithm, as illustrated in Fig. 1.

LZMA

Input Data

Stream

Uncompressed

Data

Delta Encoding Delta Decoding

Sliding

Dictionary

Encoding (LZ77)

Sliding

Dictionary

Decoding (LZ77)

Range Encoding Range Decoding

Compressed

Data

Figure 1: LZMA compression and decompression block dia-

gram, based on [10].

Step1 Delta encoding – this step consists of an optional data fil-

tering that encodes the input stream outputting, for each

byte, a byte representing the difference between the cur-

rent and the previous bytes. The first byte output is itself.

This process makes the sliding window more efficient;

Step2 Sliding dictionary encoding – this step is based on the

LZ77 algorithm, although it supports larger dictionaries.

Y. Horita et al. Lempel-Ziv-Markov chain algorithm modeling

DOI

10.3384/ecp19162017

Proceedings of the 10th Aerospace Technology Congress

October 8-9, 2019, Stockholm, Sweden

153

Optimized search algorithms were implemented to per-

form faster searches in these dictionaries, named hashed

chain and binary trees [13]. The output is, as in LZ77, a

sequence of triplets, composed by the distance from the

string in the look-ahead buffer to its match in the search

buffer, the length of the string, and the next input symbol;

and

Step3 Range encoding – this step is context-based. The com-

pressed range in each iteration is estimated based on

probabilistic algorithms and can form a set of predefined

types of packages depending on the input range size.

This was first presented by [14]. In LZMA, the com-

pression adopted context is the output of Step2 in each

firing cycle.

3 Lempel-Ziv-Markov Chain Modeling

This section presents the LZMA modeling based on the SDF

MoC. Next, a brief model description is presented, followed

by the model design using ForSyDe.

3.1 Model Description

The LZMA compression has as input a data stream, which

is processed by a sequence of defined steps, outputting a

compressed and encoded byte stream. Such behavior can be

modeled using a dataflow MoC. Towards simple modeling,

our paper presents the LZMA compression model based on

SDF MoC, considering the decompression to be a similar pro-

cess.

LZMA has a set of parameters that are user-defined at the

compression beginning. These parameters configure the al-

gorithm behavior, data structures, and performance. For an

initial formal modeling purpose, this paper considers some

specific configurations. The following introduces a list of as-

sumptions taken into consideration to model the simplified

LZMA version.

A1 the absence of the delta encoding filter;

A2 the sliding window encoder step is changed to use a sim-

ilar algorithm, i.e. LZ78 sliding window encoder [11]

was adopted instead; and

A3 a fixed probability range encoder.

Figure 2 illustrates the LZMA modeled as a SDF functional

graph.

Aswe Are

Sis 1 1 Sfc

[LZtok]

1 1

Hdr

Scs

1

[SWEFBtok]

1 1

[REFBtok]

1

Figure 2: LZMA SDF MoC graph

The model blocks and communication paths are defined as

follows:

• Aswe – Sliding window encoding block. It encodes the

input stream based on a dictionary structure, outputting a

literal, a match or an absent value in each process firing;

• Are – Range encoding block. It performs a bit-wise com-

pression of the literals and matches, generating a byte for

each one, resulting in the final compressed stream;

• Sis – Input stream. It comprehends the input to be com-

pressed;

• Sfc – Compressed stream first step. It contains the tokens

already compressed using the sliding window encoding

method;

• Scs – Compressed stream. It represents the final LZMA

output;

• SWEFBtok – Sliding window encoding feedback token. It

is composed of the dictionary data structure, updated at

each Aswe firing;

• REFBtok – Range encoding feedback token. It is com-

posed of the considered range, lower limit and encoded

character cache memory, updated at each Are firing;

• LZtok – Sliding window encoder output token. It can

have an absent value or a tuple, depending on the Aswe

read input token. In the latter case, the tuple is com-

posed by a read character and another entry. If the read

character is not in the dictionary, the first tuple entry is

an absent value, and the token represents a Literal. Oth-

erwise, the first entry represents the number of charac-

ters that was repeated inside the sliding window, and the

token represents a Match; and

• Hdr – Initial bytes contained in the output compressed

stream. It comprehends the configuration setup, besides

the dictionary and uncompressed input stream sizes.

3.2 Modeling supported by ForSyDe

The ForSyDe framework was chosen to be used in the present

paper based on the frameworks comparison presented in [15].

In view of that, we use ForSyDe to model LZMA as described

in the previous section.

In ForSyDe, the SDF MoC actors, i.e. blocks presented in

last section, are modeled as processes, and the communica-

tion paths as signals.

Listing 1 presents the model processes definitions, using the

process constructors from the ForSyDe SDF library. For brev-

ity, this paper only presents the main processes and signals

models and definitions. However, the full functional imple-

mentation of the LZMA model can be found in [16].

Regarding the sliding window encoding, the Aswe actor was

modeled as lzA, using the ForSyDe SDF process constructor

actor22SDF, which indicates that the process has 2 inputs

and 2 outputs. The SWEFBtok dictionary was modeled as fb.

The LZMA input Sis was represented by the sIs signal, and

the Sfc by the sFc signal.

When modeling the range encoding step, the actor Are

was represented as rgA based on the process constructor

Y. Horita et al. Lempel-Ziv-Markov chain algorithm modeling

DOI

10.3384/ecp19162017

Proceedings of the 10th Aerospace Technology Congress

October 8-9, 2019, Stockholm, Sweden

154

actor22SDF. The REFBtok range encoding variables tuple

was modeled as sFb. The output compressed stream Scs was

modeled as sCs, and the initial header Hdr as initHdr.

Listing 1: LZMA code snippet in ForSyDe SDF/Haskell

1 -- LZ (Sliding Window) Encoding actor definition
2 -- Input is the lzma input stream Sis
3 -- Output is the first step compressed stream Sfc
4 lzA :: Signal Char -> Signal (Maybe (Maybe Int , Char))
5 lzA Sis = Sfc
6 where (Sfc , fb) = actor22SDF (1,1) (1,1) lzF Sis fb’
7 fb ’ = delaySDF [([],"" ,0)] fb
8
9 -- Range Encoding actor definition.

10 -- Input is the first step compressed stream Sfc
11 -- Output is the compressed LZMA stream output Scs
12 rgA :: Signal (Maybe (Maybe Int , Char))
13 -> Signal [Char]
14 rgA sFc = sCs ’
15 where (sCs ,sFb) = actor22SDF (1,1) (1,1) rangeFunc

sFc sFb ’
16 sCs ’ = delaySDF initHdr sCs
17 sFb ’ = delaySDF [(rangeInit ,0, chr 0)] sFb
18 initHdr = [([dictsize] ++ [inpLen])]
19 inpLen = (intToDigit (lengthS sFc))

Listing 2 presents how the simplified LZMA process network

lzmaSdf is assembled to compose the algorithm completely

written using ForSyDe MoC. The range encoding process rgA

is executed having the output of sliding window process lzA

as input.

Listing 2: LZMA process netword in ForSyDe SDF/Haskell

1 module Lzmasdf (
2 lzmaSdf
3) where
4
5 import ForSyDe.Shallow
6 import Rangesdf
7 import LZsdf
8 import Data.Char
9

10 -- Simplified LZMA process network
11 lzmaSdf :: Signal Char -> Signal [Char]
12 lzmaSdf sLzmaIs = sLzmaOut
13 where sLzmaOut = rgA (lzA sLzmaIs)

4 Summary

This paper presented a simplified Lempel-Ziv-Markov Chain

algorithm (LZMA) modeling based on the synchronous data-

flow (SDF) model of computation (MoC) using the ForSyDe

framework. Some configurations and behaviors assumptions

were adopted towards the definition of actors ports fixed token

rates. Those assumptions allowed for a first simple LZMA

formal modeling and simulation.

As future work, we plan to implement LZMA based on the

scenario-aware dataflow (SADF) modeling and simulation

framework introduced in [17], which supports variable token

rates, resulting in a more advanced LZMA model.

References

[1] Paul Berthier, Corentin Bresteau, and José Fernandez.

On the security of aircraft communication networks. In

Gregorio D’Agostino and Antonio Scala, editors, Crit-

ical Information Infrastructures Security, pages 266–

269, Cham, 2018. Springer International Publishing.

[2] Radio Technical Commission for Aeronautics - RTCA.

DO-178C - Software Considerations in Airborne Sys-

tems and Equipment Certification, 2012.

[3] Radio Technical Commission for Aeronautics - RTCA.

DO-331 - Model-Based Development and Verification

Supplement to DO-178C and DO-278A, 2011.

[4] Standard Performance Evaluation Corporation

(SPEC). 657.xz_s spec cpu 2017 benchmark de-

scription. http:/www.spec.org/cpu2017/Docs/

benchmarks/657.xz_s.html, 2019.

[5] Ingo Sander. The forsyde methodology. In Swedish

System-on-Chip Conference, 2002.

[6] Axel Jantsch. Models of embedded computation., 2005.

Embedded Systems Handbook, chapter Models of Em-

bedded Computation. CRC Press.

[7] E.A. Lee and A. Sangiovanni-Vincentelli. A framework

for comparing models of computation. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Trans-

actions on, 17(12):1217–1229, Dec 1998.

[8] E.A. Lee and D.G. Messerschmitt. Synchronous data

flow. Proceedings of the IEEE, 75(9):1235–1245, 1987.

[9] J. Ziv and A. Lempel. A universal algorithm for sequen-

tial data compression. IEEE Transactions on Informa-

tion Theory, 23(3):337–343, May 1977.

[10] Epiphany Jebamalar Leavline. Hardware implementa-

tion of lzma data compression algorithm. In Interna-

tional Journal of Applied Information Systems (IJAIS),

2013.

[11] J. Ziv and A. Lempel. Compression of individual se-

quences via variable-rate coding. IEEE Transactions on

Information Theory, 24(5):530–536, Sep. 1978.

[12] Igor Pavlov. 7z format. http://www.7-zip.org/7z.

html, 2019.

[13] David Salomon. Data Compression: The Complete Ref-

erence. Springer, 2007. With contributions by Giovanni

Motta and David Bryant.

[14] G. Nigel Martin. Range encoding: an algorithm for re-

moving redundancy from a digitised message. In Video

and Data Recording Conference, 1979.

[15] Augusto Y. Horita, Ricardo Bonna, and Denis S.

Loubach. Analysis and comparison of frameworks sup-

porting formal system development based on models of

computation. Springer - Advances in Intelligent Systems

and Computing, 2019.

[16] A. Y. Horita. Forsyde simplified lzma sdf model source

code. https://github.com/AugustoHorita/

LzmaForSyDeSdf, 2019.

[17] Ricardo Bonna, Denis S. Loubach, George Ungureanu,

and Ingo Sander. Modeling and simulation of dynamic

applications using scenario-aware dataflow. ACM Trans-

actions on Design Automation of Electronic Systems,

2019.

Y. Horita et al. Lempel-Ziv-Markov chain algorithm modeling

DOI

10.3384/ecp19162017

Proceedings of the 10th Aerospace Technology Congress

October 8-9, 2019, Stockholm, Sweden

155

http:/www.spec.org/cpu2017/Docs/benchmarks/657.xz_s.html
http:/www.spec.org/cpu2017/Docs/benchmarks/657.xz_s.html
http://www.7-zip.org/7z.html
http://www.7-zip.org/7z.html
https://github.com/AugustoHorita/LzmaForSyDeSdf
https://github.com/AugustoHorita/LzmaForSyDeSdf

	Introduction
	Background
	Model of Computation (MoC)
	Synchronous Dataflow (SDF) MoC
	Data Compression Algorithms
	Lempel-Ziv-Markov Chain Algorithm (LZMA)

	Lempel-Ziv-Markov Chain Modeling
	Model Description
	Modeling supported by ForSyDe

	Summary

