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Abstract

Background: Due to the functional importance of intrinsically disordered proteins or protein

regions, prediction of intrinsic protein disorder from amino acid sequence has become an area of

active research as witnessed in the 6th experiment on Critical Assessment of Techniques for

Protein Structure Prediction (CASP6). Since the initial work by Romero et al. (Identifying

disordered regions in proteins from amino acid sequences, IEEE Int. Conf. Neural Netw., 1997),

our group has developed several predictors optimized for long disordered regions (>30 residues)

with prediction accuracy exceeding 85%. However, these predictors are less successful on short

disordered regions (≤30 residues). A probable cause is a length-dependent amino acid

compositions and sequence properties of disordered regions.

Results: We proposed two new predictor models, VSL2-M1 and VSL2-M2, to address this length-

dependency problem in prediction of intrinsic protein disorder. These two predictors are similar

to the original VSL1 predictor used in the CASP6 experiment. In both models, two specialized

predictors were first built and optimized for short (≤30 residues) and long disordered regions (>30

residues), respectively. A meta predictor was then trained to integrate the specialized predictors

into the final predictor model. As the 10-fold cross-validation results showed, the VSL2 predictors

achieved well-balanced prediction accuracies of 81% on both short and long disordered regions.

Comparisons over the VSL2 training dataset via 10-fold cross-validation and a blind-test set of

unrelated recent PDB chains indicated that VSL2 predictors were significantly more accurate than

several existing predictors of intrinsic protein disorder.

Conclusion: The VSL2 predictors are applicable to disordered regions of any length and can

accurately identify the short disordered regions that are often misclassified by our previous

disorder predictors. The success of the VSL2 predictors further confirmed the previously observed

differences in amino acid compositions and sequence properties between short and long

disordered regions, and justified our approaches for modelling short and long disordered regions

separately. The VSL2 predictors are freely accessible for non-commercial use at http://

www.ist.temple.edu/disprot/predictorVSL2.php

Published: 17 April 2006

BMC Bioinformatics 2006, 7:208 doi:10.1186/1471-2105-7-208

Received: 30 August 2005
Accepted: 17 April 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/208

© 2006 Peng et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16618368
http://www.biomedcentral.com/1471-2105/7/208
http://creativecommons.org/licenses/by/2.0
http://www.ist.temple.edu/disprot/predictorVSL2.php
http://www.ist.temple.edu/disprot/predictorVSL2.php
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2006, 7:208 http://www.biomedcentral.com/1471-2105/7/208

Page 2 of 17

(page number not for citation purposes)

Background
Intrinsically disordered, or natively unfolded, proteins or
protein regions do not fold into stable three dimensional
(3-D) structures under physiological conditions; they
instead exist as ensembles of non-cooperatively inter-
changing conformations in which the atom coordinates
and backbone Ramachandran angles vary significantly
over time with no specific equilibrium values [1-5].
Although lacking specific 3-D structures, many intrinsi-
cally disordered proteins/regions have been identified to
carry out important biological functions [1-7]. It was fur-
ther suggested that these functions indeed require disor-
dered regions of flexible, dynamic conformations instead
of rigid ordered regions [6]. Based on these findings, the
protein trinity [7] or quartet [8] model was proposed as an
alternative to the commonly accepted protein sequence-
to-structure-to-function paradigm [9]. That is, native pro-
teins or functional regions may exist in up to four forms –
ordered, molten globule (collapsed disordered), pre-mol-
ten globule (extended disordered), and random coil-like
(also extended disordered) – and functions may arise
from any of these forms or from the transitions between
them [7,8].

While the distinction between the molten globule and the
two extended forms is fairly clear, the distinction between
the pre-molten globule and the random coil-like forms is
less certain. That is, several pre-molten globules have been
observed to convert to molten globules by all-or-none
transitions, suggesting that these partially folded confor-
mations likely represent discrete forms [10]. On the other
hand, in comparison to the random coil-like form, the
pre-molten globule form is less extended, contains more
(usually transient) secondary structure and also exhibits
more evidence for hydrophobic clusters [11]. Further-
more, the pre-molten globule to random coil-like transi-
tion is featureless [10,12], suggesting that these two forms
lie on a continuum with regard to the degree of backbone
extension.

Due to their functional importance, it is essential to be
able to reliably detect intrinsically disordered regions and
such ability could have significant impact on a wide range
of biomedical research. Although many experimental
techniques exist [13,14], detecting intrinsic disorder
might still be costly and time-consuming. Furthermore, it
is often helpful to use more than one technique to com-
pletely characterize a disordered region since different
methods could reveal different aspects of intrinsic disor-
der [13,14]. Alternatively, various computational algo-
rithms have been developed for predicting intrinsically
disordered regions from amino acid sequence [15-29].
The success of these predictors strongly supports the
hypothesis that intrinsic disorder, like globular structure,
is also encoded by the amino acid sequence [16].

Although not perfect, these predictors have been success-
fully used in many real-life applications, e.g. designing
protein structure-function experiments [1,30], under-
standing the roles of disorder in cell-signalling and can-
cer-related proteins [31], improving prediction of protein
phosphorylation sites [32], and improving the through-
put of structural genomics pipelines [25,33]. Indeed,
recent NMR experiments suggest that intrinsic disorder is
a significant bottleneck in structural genomics efforts
[33,34].

Most existing disorder predictors use a sliding window to
map individual residues into a certain feature space,
where a binary classifier can then be built to classify the
residues as disorder or order using various machine learn-
ing algorithms. The features are usually extracted from the
partial amino acid sequence within the window that
directly reflects the compositional bias and unique prop-
erties that characterize intrinsic disorder. In some recent
approaches, e.g. VL3-P [24] and DISOPRED2 [23], fea-
tures are also derived from PSI-BLAST [35] generated pro-
files to incorporate evolutionary information. The
improved performance of these approaches was consist-
ent with the findings that intrinsically disordered regions
have distinct evolutionary characteristics [36,37].
Recently, several novel algorithms have been proposed
that do not require representing sequence with fixed
number of features. For example, Dosztanyi et al. used the
pairwise energy content estimated from amino acid com-
position to distinguish between folded and unfolded pro-
teins/regions [27]. Yang et al. applied the regional order
neural network (RONN) to estimate the disorder proba-
bility of a given sequence region based on its distances
from a set of "prototype" disordered/ordered regions [28].
In another study [26], Coeytaux and Poupon developed a
rule-based predictor for unfolded regions based on the
amino acid propensity of being disordered and the dis-
tance to the nearest hydrophobic cluster.

Like the structural classification of ordered proteins, e.g.
α-helix and β-sheet at the secondary structure level, and
all α, all β, α/β and α+β classes at the tertiary structure
level, we suggest that there are also several subtypes (fla-
vors) of intrinsic disorder distinguished by amino acid
compositions and sequence properties. It was first illus-
trated that long disordered regions characterized by differ-
ent methods – X-ray diffraction, NMR, and circular
dichroism (CD) – exhibited observable difference in
amino acid compositions [38]. Using a supervised cluster-
ing procedure, it was discovered that there were at least
three flavors (types) of long disorder, and three flavor-spe-
cific disorder predictors outperformed a global predictor
(VL2) on the corresponding flavors [19]. On the other
hand, amino acid compositions and sequence properties
might also vary among disordered regions of different
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lengths, as indicated in our initial study of intrinsic disor-
der prediction [16]. This observation was further con-
firmed in a recent study [39] using much larger datasets,
which clearly illustrated the significant differences
between a set of disordered regions shorter than 11 resi-
dues and another set of disordered regions longer than 30
residues. However, due to difficulties in collecting disor-
der data, we did not pursue this issue further but instead
focused on developing predictors specific for long disor-
dered regions (>30 residues).

As revealed in the CASP5 experiment [40], most of the
predictors that we tested were significantly less accurate
on short disordered regions (≤30 residues) than on long
disordered regions (>30 residues), with accuracies of 25–
66% versus 75–95%, for short versus long regions of dis-
order, respectively. Given the length-dependent heteroge-
neity in amino acid composition, such a discrepancy is
not surprising because these predictors were trained exclu-
sively on long disordered regions. Another contributing
factor might be the use of large sliding windows for fea-
ture construction (e.g. 41 residues) and output smoothing
(e.g. 61 residues). In the first case, a large window could
make residues from short disordered regions indistin-
guishable from those from ordered regions in the feature
space, since most features were based on the local amino
acid statistics within the window. In the second case, a
large window would inevitably filter out many predicted
short regions while improving prediction on long disor-
dered and ordered regions.

Based on these findings, we developed a composite pre-
dictor called VSL1 [41] to address this length-dependent
heterogeneity problem in disorder data. It consisted of
three component predictors in a two-level architecture: at
the first level there are two specialized predictors opti-
mized for long (>30 residues) and short (≤30 residues) dis-

ordered regions, respectively; at the second level is a meta
predictor for integrating the specialized predictors' out-
puts. As blind-test results in the latest CASP6 experiment
showed, VSL1 significantly improved the prediction per-
formance on short disordered regions, while retaining
high accuracy on long disordered regions comparable to
our previous long disorder predictors [41]. It also
achieved the best prediction performance in almost all
evaluation criteria used by the independent assessor [42].

In this report we describe two new predictors that are sim-
ilar to VSL1. Although VSL2-M1 has identical architecture
to VSL1, VSL2-M2 adopted a different approach (meta
predictor) to integrate the specialized predictors. Another
difference is that VSL2 component predictors were built as
linear support vector machine (SVM) [43] instead of logis-
tic regression models [44] in VSL1. Finally, the training
dataset for VSL2 is slightly different from VSL1 by remov-
ing 8 mislabelled sequences. As the 10-fold cross-valida-
tion results showed, both VSL2 predictors achieved well-
balanced prediction accuracies of about 81% on the two
types of disordered regions, and were clearly superior to
using either one of the specialized predictors alone. Com-
parisons over VSL2 training dataset via 10-fold cross-vali-
dation and a blind-test set of unrelated recent PDB chains
indicated that VSL2 predictors were significantly more
accurate than several existing predictors of intrinsic pro-
tein disorder. The results also showed that VSL2 had
improved sensitivity over VSL1 but at the cost of reduced
specificity.

Implementation
Datasets

Training dataset

A total of 1,327 non-redundant protein sequences, with
pairwise sequence identity ≤25%, were used for VSL2 pre-
dictor training. These proteins were assembled from four
other datasets: 153 sequences from DisProt (version 1.2)
[45] with 160 long (>30 residues) and 28 short (≤30 resi-
dues) disordered regions, 511 PDB chains with 42 long
and 929 short disordered regions [39], 290 completely
folded PDB chains [39,46], and 373 recent PDB chains
(released before June, 2004) with 15 long and 432 short
disordered regions. His-tags and initial methionines were
removed for further consideration from any applicable
sequence.

In total there were 1,606 disordered regions with 34,911
residues and their length distribution is shown in Table 1.
Of these disordered residues, about 72% came from 217
long disordered regions. While these long disordered
regions were determined and validated by literature
searches, the 1,389 short disordered regions were prima-
rily identified as regions of missing electron density map
in X-ray structures. In this study, we did not include the

Table 1: Length distributions of disordered regions. VSL2 

training dataset contained 1,327 sequences, while the blind-test 

dataset had 1,304 recent PDB chains that were unrelated to any 

training sequences. Both datasets were non-redundant with 

pairwise identity ≤25%.

VSL2 training dataset Blind-test dataset

length range

# regions # residues # regions # residues

1–3 483 1,044 791 1,440

4–15 758 5,650 1,012 7,343

16–30 148 3,118 151 3,173

31–100 154 8,039 50 2,236

>100 63 17,060 4 545

Total 1,606 34,911 2,008 14,737
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483 very short disordered regions of 1–3 residues in either
predictor training or accuracy estimation. Such short dis-
ordered regions are probably as likely to result from non-
fitting structural environments as from their intrinsic
sequences. Of the remaining 906 short disordered regions
of 4–30 residues, 269 and 240 were at N- and C- termini,
and contained 2,516 and 2,368 residues, respectively.

The training dataset contained a total of 406,342 ordered
residues from the 1,327 sequences. For 320,339 of them
we were able to extract their Cα B-factors from PDB. These
B-factors were first normalized to zero mean and unit var-
iance after removing outliers, chain by chain, using a pro-
cedure by Smith et al. [46] The ordered residues were then
assigned to two sets as high-B-factor (25,628 residues) and
low-B-factor (294,711 residues) depending on whether
their normalized B-factor values were higher than 2.0. The
high-B-factor ordered residues were shown to have amino
acid compositions and sequence properties similar to
short disordered regions [39]. We therefore excluded high-
B-factor ordered residues from predictor training since
they might affect the training process. However, they were
included in accuracy estimation.

Blind-test dataset

To facilitate performance comparison to other protein dis-
order predictors, we also constructed a blind-test dataset
[see Additional File 1] of 1,304 recent PDB chains based
on 2,101 PDB entries deposited between September 1,
2004 and December 21, 2005. All these structures (no
protein/nucleic acid complexes) were determined by X-
ray diffraction with resolution ≤2.5Å and R-value ≤0.25.
For each chain in an entry, the sequence segments
extracted from structural data, e.g. REMARK 465 (miss-
ing), ATOM, HETATM, and TER (terminal) records, were
aligned to the corresponding SEQRES sequence. If any
inconsistency or error was detected, the whole entry was
discarded. In total 1,662 of the initial 2,101 entries were
successfully processed, resulting in 3,967 chains of ≥40
residues. After removing His-tags or leading/trailing seg-
ments, disordered regions were then identified as residues
of missing electron density based on the REMARK 465
record.

We then performed clustering analysis to remove redun-
dant chains and chains similar to training sequences. The
NCBI BLASTClust program [47] was applied to the union
set of the new chains and the training sequences, with
identity threshold of 25% (- S 25), minimal length cover-
age of 100% (-L 1.0) on only one sequence of a pair (-b
F). If two chains fall into different clusters, they should
have pairwise sequence identity <25%. Thus, the blind-
test dataset was constructed by selecting one representa-
tive chain from each of the clusters that contained no
training sequences, with the criteria as (a) highest resolu-
tion, (b) lowest R-value, and (c) most disordered residues.
In total, the blind-test dataset contained 1,304 chains
with 14,737 disordered residues and 318,431 ordered res-
idues. The length distribution of these disordered regions
is shown in Table 1. In this blind-test dataset about 19%
of all disordered residues came from 54 long disordered
regions, while in the VSL2 training dataset this proportion
was about 72%.

VSL2 architecture

Both VSL2-M1 and VSL2-M2 consist of three component
predictors in two-level architectures (Figure 1). At the first
level, there are two specialized predictors: a short disorder
predictor, VSL2-S, for disordered regions of ≤30 residues,
and a long disorder predictor, VSL2-L, for disordered regions
of >30 residues. At the second level, there is a meta predic-
tor that combines outputs of the two specialized predic-
tors into the final prediction. All component predictors
are built as binary classifiers that approximate the poste-
rior class probability p(c=1|x), where x is the feature
(input) vector and c is the class label. For the two special-
ized predictors, class 1 data corresponds to short disorder or
long disorder, while class 0 data corresponds to order. Sim-
ilar to previous disorder predictors, a set of features are

VSL2 predictor architecturesFigure 1
VSL2 predictor architectures. The final prediction for 
VSL2-M1 is calculated as OL × OM + OS × (1 – OM), while for 
VSL2-M2 it is the output of meta predictor M2. The inputs 
for M2 are 2 × Win predictions by VSL2-L and VSL2-S for the 
neighbouring residues in a window of length Win. All compo-
nent predictors are built using classification algorithms that 
approximate the posterior probability p(c = 1|x), where x is 
the feature (input) vector and c is the class label.
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extracted from the amino acid sequence and other related
data using the standard sliding window approach.

Meta predictor M1 is trained independently of the two
specialized predictors (Figure 1A). Its class 1/0 data corre-
sponds to residues that are either within or at most (Win –
1)/2 positions away from a long/short disordered region,
where Win is an odd number. If the output OM is close to
1 (or 0), the current residue is more likely to be within or
close to a long (or short) disordered region, and thus the
specialized predictor VSL2-L (VSL2-S) should be given
greater importance. If OM is close to 0.5, the current resi-
due is more likely to be in an ordered region and both spe-
cialized predictors should contribute equally. Therefore,
the final prediction can be calculated as OL × OM + OS × (1
– OM), where OL and OS are outputs of VSL2-L and VSL2-
S. For meta predictor M2 (Figure 1B), the inputs are 2 ×
Win predictions by VSL2-S and VSL2-L for residues within
a symmetric window of length Win. Its output is the final
disorder prediction.

Feature construction

For the two specialized predictors and meta predictor M1,
features were constructed for each residue based on an
input (sliding) window of length Win (odd number) centred
at the residue, where the value of Win is selected to maxi-
mize the prediction accuracy. The window was extended
outside the N-/C- terminus by padding it with (Win- 1)/2
special spacer characters. This approach is equivalent to
the extra input per residue used in other protein structure
predictors to indicate when the window spans the termini
(e.g. [48-50]). In total, four sets of 54 features were calcu-
lated from amino acid sequences, sequence profiles, and
secondary structure predictions.

The first set (AA) of 26 features was derived from local
amino acid composition of the partial sequence within
the input window, including the 20 amino acid frequen-
cies, the spacer character frequency, the K2-entropy meas-
ure of local sequence complexity [51], the average net
charge, the average hydrophobicity [52], the charge-
hydrophobicity ratio [17], and the average flexibility
index [53]. To incorporate evolutionary information,
sequence profiles were generated by PSI-BLAST [35]
searches (maximum 3 iterations) against the UniRef100
database [54]. As in the VL3-P predictor [24], the 20-col-
umn position-specific scoring matrix (PSSM) and the last
2 columns from the profile (i.e. information per position
and relative weight of gapless real matches to pseudocounts)
were averaged over the input window, resulting in the sec-
ond set (PSSM) of 22 features. In addition, three second-
ary structure prediction scores by the PHDsec predictor
[50] and another three by the PSIPRED predictor [48]
were also included. While the PHDsec predictions were
made without using multiple sequence alignment (evolu-

tionary information), PSI-BLAST profiles were used for
PSIPRED predictions. The prediction scores were then
averaged over the input window to obtain another 6 fea-
tures (PHD and PSI).

We applied feature selection using a permutation-test-
based feature filter [55] and several other algorithms
implemented in the WEKA data mining package [56].
Principal component analysis (PCA) was then performed
to de-correlate the selected features and further reduce the
sample dimensionality by keeping the variance at 95%.

Predictor model

The component predictors were built as linear support
vector machines (SVM) using the inner-product kernel
[43]. A hyperplane in the feature space is learned from the
training data to separate examples from the two classes
(disorder and order). By choosing the hyperplane that max-
imizes the margin, the resulting predictor could often
achieve better generalization performance on out-of-sam-
ple data [43]. If the two classes cannot be well separated
by a hyperplane in the original feature space, non-linear
kernels (e.g. radius-based-function or RBF) can be used to
map the data into a higher dimensional space where the
two classes become separable. Due to its ability to handle
complex, high-dimensional and noisy data, SVM has been
widely used in various computational biology problems
(for a review, please refer to [57]).

In this study we used the SVMlight [58] implementation for
building SVM predictors, since it is scalable and can han-
dle very large datasets efficiently. In addition, a single-
input logistic regression model was trained to calibrate
the SVM output into posterior probability p(c=1|x) [59].
Given a set of training sequences, an embedded 5-fold
cross-validation was performed to select the optimal
parameter C which represents the trade-off between train-
ing error and margin [58]. A final SVM predictor can then
be built with available sequences using the selected C.
Note that the available training sequences here are not
necessarily all 1,327 sequences in the training dataset, but
could be 9/10 of them as in the 10-fold cross-validation
procedure for accuracy estimation (see Performance eval-
uation below). To train the predictors, balanced datasets
were always used by randomly sampling from available
training sequences.

We also examined several other popular learning algo-
rithms such as logistic regression models [44], feed-for-
ward neural networks [60], neural network ensembles
[61], and non-linear SVMs [43]. However, our results
showed that none of them significantly outperformed lin-
ear SVMs.
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Output smoothing

As in our previous studies (e.g. [19] and [24]), a moving-
average approach was applied to smooth the raw predic-
tions to remove occasional misclassifications, based on
the assumption that neighbouring residues often share
the same structural property. In this approach, the final
prediction for a given residue is calculated as the average
of raw predictions for neighbouring residues within an
output window of length Wout (odd number) centred at that
residue. Like the input window length Win, Wout is also
subject to optimization to maximize the prediction accu-
racy.

Performance evaluation

A 10-fold cross-validation procedure was used to estimate
the out-of-sample prediction accuracies. First, the training
dataset D of 1,327 sequences were randomly divided into
10 disjoint subsets D

1
, D

2
, ..., D

10 
of roughly equal sizes.

Second, in the i-th fold, i = 1,2,...,10, a VSL2 predictor was
built with sequences in D – D

i 
only and then applied to

the sequences in D
i
. After the procedure is complete, pre-

dictions for all sequences from D can be obtained. In this
way, the prediction for any sequence is always made using
a predictor trained without that sequence. Finally, predic-
tion accuracies (see below) can be estimated using predic-
tions for all 1,327 sequences to evaluate the performance.

In the i-th fold, i = 1,2,...,10, component predictors were
first trained with all applicable sequences in D – D

i 
only.

The optimal SVM parameter C for each component pre-
dictor was selected using "embedded" 5-fold cross-valida-
tion as described above (see Predictor model). For
specialized predictors VSL2-S and VSL2-L, class 1 exam-
ples were drawn from short and long disordered regions
respectively, and class 0 examples were drawn from low-B-
factor ordered regions (see Datasets). The training data for
meta predictor was constructed as described above (see
VSL2 architecture), also using sequences from D – D

i 
only.

Once the component predictors were built, the VSL2 pre-
dictor was assembled and applied to sequences from D

i
.

For a given predictor, the overall accuracy (ACC) is meas-
ured as the average of sensitivity (SN) and specificity (SP),
where the sensitivity, or true positive rate, is the percentage
of class 1 examples correctly predicted, and the specificity,
or true negative rate, is the percentage of class 0 examples
correctly predicted, using a certain decision threshold
(typically 0.5). Compared to other performance meas-
ures, such as Q2 score (percentage of all correctly pre-
dicted residues) [62] and Matthews' correlation coefficient
[63], the ACC measure is more suitable for datasets of
imbalanced class proportions. In such a case, a random
predictor or a trivial predictor that assigns all examples to
one class will have an overall accuracy of 50%.

For both specialized predictors and the final predictors,
three sensitivities – SNS, SNL and SN – are reported for
short, long and all disordered regions, respectively. Accord-
ingly, the overall accuracies were calculated as ACCL =
(SNL + SP)/2 for VSL2-L, ACC = (SNS + SP)/2 for VSL2-S,
and ACC = (SN + SP)/2 for the final predictors. For meta
predictors, we did not explicitly estimate their accuracies
but instead used the accuracies of the corresponding final
predictors for performance evaluation.

Unless explicitly specified, the accuracies reported are per-
chain accuracies, i.e. SNS, SNL, SN and SP were first calcu-
lated on each individual chain (if applicable) and then
averaged over chains. Since about 72% of the disordered
residues in our training data came from long disordered
regions, per-residue accuracies (SN and ACC) could be
dominated by the performance on long disordered
regions. Even for the long disorder predictor VSL2-L, its
per-residue accuracy (SNL) could be biased toward certain
extremely long disordered regions. Therefore, we chose
per-chain accuracies for model selection and predictor
comparison but also reported per-residue accuracies. Note
that among the per-chain accuracies, SN could be higher
than both SNS and SNL because some chains may have
both short and long disordered regions and the three sen-
sitivities were averaged over different subsets of chains.

In addition to the accuracies calculated with the default
threshold 0.5, we also plotted the receiver operating char-
acteristic (ROC) curve and calculated the area under the
ROC curve (AUC) [64]. The ROC curve is a plot of sensi-
tivity against (1 – specificity), usually calculated at differ-
ent decision thresholds. That is, each point on the ROC
curve corresponds to a specific threshold used. The area
under the ROC curve (AUC) is known to be a useful meas-
ure of overall predictor quality, with a value of 100 for a
perfect predictor and 50 for a random predictor. Note that
ROC curves could also be per-chain or per-residue version,
depending on the type of sensitivity and specificity used.

Finally, a bootstrap [65] procedure was used to estimate
the standard error for each accuracy measure discussed
above. More specifically, 5,000 bootstrap replicated sam-
ples were drawn from of the 1,327 sequences with
replacement, and the accuracies were calculated on each
bootstrap sample. The standard errors were then reported
as one standard deviation of the results obtained over the
5,000 runs.

Results and discussion
Length dependent amino acid compositions

The amino acid compositions of short (4–30 residues)
and long (>30 residues) disordered regions were com-
pared to the composition of a reference ordered dataset,
Globular-3D [18]. As shown in Figure 2, both types of dis-
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ordered regions exhibit similar overall compositional bias
that characterizes intrinsic protein disorder [38], i.e.
depletion of the typically buried W, C, F, I, Y, V and L and
enrichment of the typically exposed K, E, P, S, Q and R.
However, there were also some significant differences.
Short disordered regions are more depleted in C, I, V and
L, while long disordered regions are more enriched in K, E
and P but are less enriched in Q and S. In addition, long
disordered regions are depleted in G and N, while short
disordered regions are enriched in G and D.

Specialized predictors – window lengths

The optimal Win/Wout combination was selected from all
169 possible pairs of Win ∈ {11, 15, 21, 25, ..., 71} and
Wout ∈ {1, 5, 11, 15, ...,61}, to maximize the overall accu-
racy, i.e. the average of sensitivity and specificity. Using all
54 features, the two predictors were built as linear SVMs
with parameter C, which represents the trade-off between
training error and margin [58], set to 0.5 and 1, respec-
tively. In this way, the optimal Win/Wout combination for
the short disorder predictor VSL2-S was selected as 15/5,
considerably smaller than 41/31 for the long disorder pre-
dictor VSL2-L. As shown in Table 2, with the selected Win/
Wout values, VSL2-S achieved much higher accuracy on
short disordered regions than on long ones (SNS:82.0 ±
1.1% versus 44.1 ± 1.8%), while VSL2-L was significantly
more accurate on long disordered regions but with a
smaller difference (SNL: 82.1 ± 2.2% versus 70.7 ± 1.9%).
On ordered regions, VSL2-L was more accurate than VSL2-
S (SP: 87.3 ± 0.5% versus 81.5 ± 0.3%).

Also shown in Table 2 are prediction accuracies for several
non-optimal Win/Wout values. A general conclusion from
these results is that smaller windows are necessary for pre-

dicting short disorder. Using a large input window (Win),
it might be more difficult to distinguish short disorder res-
idues from order residues in the feature space, since most
features were based on the local amino acid composition
within the window. In such a case, too many neighbour-
ing order residues may be included in the window and the
compositional bias information necessary for predicting
short disorder would be weakened. Similarly, a large out-
put window (Wout) would inevitably filter out many pre-
dicted short regions while improving prediction on long
disordered and ordered regions.

Table 2 also suggests that window length alone could not
account for accuracy discrepancy between short and long
disorder by either VSL2-S or VSL2-L. When Wout was
increased from 5 to 31, VSL2-S improved only slightly on
long disordered regions (71.3%) but deteriorated signifi-
cantly on short disordered regions (56.5%). Increasing
both Win and Wout did not significantly improve VSL2-S
accuracy on long disordered regions (74.3%), either. Sim-
ilarly, when Wout was decreased from 31 to 5, VSL2-L still
performed poorly on short disordered regions (50.1%)
and it was slightly less accurate on long disordered regions
(80.9%). Decreasing both Win and Wout significantly
improved VSL2-L accuracy on short disordered regions
(70.8%), but it was still much lower than VSL2-S. These
results indicate that the difference in amino acid compo-
sitions between short and disordered regions is signifi-
cant.

Specialized predictors – feature selection

Once the optimal window lengths were selected, we per-
formed feature selection for both specialized predictors
using a permutation-test-based feature filter [55] and sev-
eral other algorithms implemented in the WEKA data
mining package [56]. However, no improvements in pre-
diction accuracy were observed for either of the predictors.
If removing about half (27) of the features, the prediction
accuracies of both predictors would decrease by 1–2%.
Such phenomenon might be explained by the relatively
high correlations among features. Since the principal
component analysis (PCA) was always performed (keep-
ing 95% variance) before predictor training, such correla-
tions would be removed and are unlikely to cause
problems. Furthermore, the number of available training
examples (residues) is sufficiently large compared to the
number of features (54) and the overfitting problem
might be less likely to occur. Therefore, we did not exclude
any features but used PCA only to reduce the dimension-
ality.

In Table 3 we list the 20 features ranked on top according
to their permutation test Z-scores [55]. The absolute value
of such a Z-score reflects the relevance of a given feature,
while the sign indicates if the feature is positively/nega-

Comparison of amino acid compositions between short and long disordered regionsFigure 2
Comparison of amino acid compositions between 
short and long disordered regions. The y-axis repre-
sents the difference in amino acid compositions (fractions) 
from a reference dataset of ordered proteins, Globular-3D. 
The error bars correspond to one standard deviation esti-
mated using 5,000 bootstrap samples. His-tags and initial 
methionines were not counted.
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tively correlated with the target variable (i.e. 1 for disorder
and 0 for order). The top feature for VSL2-S is the spacer
frequency (freq_spacer), which indicates if a residue is
close to a terminus (see Feature construction). Its high
positive Z-score is consistent with the fact that many short
disordered regions in our dataset were at termini. Another
observation from Table 3 is that many of the features were
PSI-BLAST profile based (PSSM_*) but only few were
amino acid frequencies (freq_*). This suggests that the
profile based features with evolutionary information
indeed have higher discriminative power in prediction of
both short and long disorder. Note that hydrophilic resi-
dues were more conserved in both short and long disor-
dered regions as compared to ordered, while hydrophobic
residues were more conserved in ordered regions.

In total there are 12 features in common between the two
subsets selected for VSL2-S and VSL2-L, but they typically
had different ranks. Among these features, K2-entropy
(local sequence complexity) [51], flexibility [53] and hydro-
phobicity [52] are known indicators of protein disorder,
PSSM_D, PSSM_E, PSSM_K, PSSM_P, PSSM_Q and
PSSM_S correspond to disorder-promoting residues [18],
and PSSM_I corresponds to an order-promoting residue
[18]. Another two shared features are PSI_C and PHD_L
derived from the secondary structure predictions for coils
(loops) by the PHDsec and PSIPRED predictors, respec-
tively. The different ranks for VSL2-S and VSL2-L of certain
features might be directly connected with the composi-
tional difference between short and long disorder (Figure
2), e.g. PSSM_P and PSSM_K.

Specialized predictors – choice of learning algorithm

We also examined other learning algorithms for compo-
nent predictors, including a logistic regression model
[44], a feed-forward neural network of single hidden layer
(5 hidden nodes) [60], a bagging ensemble of 10 neural

networks [61], and a non-linear SVM with radius-based-
function (RBF) kernel [43]. The accuracies reported in
Table 4 were estimated using the 10-fold cross-validation
procedure (see Performance evaluation). The optimal
model parameters, e.g. C for linear SVM and C and gamma
for RBF SVM, were selected using embedded 5-fold cross-
validation (see Predictor model) independently for each
fold of the 10-fold cross-validation procedure. We exam-
ined C from {2-2, 2-1, 1, 2, 4, 8} for linear SVMs, and C
and gamma from {2-2, 2-1, 1, 2, 4, 8} × {2-6, 2-5, 2-4, 2-3, 2-

2, 2-1, 1} for RBF SVMs. It turned out that identical param-
eters were selected in most of the 10 folds for accuracy
estimation (results not shown). These parameters were
reported in Table 4 and used for building the final VSL2
predictors for blind-test comparison with other predic-
tors.

As shown in Table 4, the algorithms examined had similar
prediction accuracies as linear SVM but none of them out-
performed it significantly. The small differences between
linear and nonlinear models are consistent with the obser-
vations in our previous studies [19,24], which reflected
the linear nature of the disorder prediction problem. Since
it has been shown that SVM often have better generaliza-
tion performance than other learning algorithms, in the
subsequent analyses we report results for linear SVM only.

Combining specialized predictors

The VSL2-S and VSL2-L predictors were then integrated
into the composite VSL2-M1 and VSL2-M2 predictors
using two different meta predictors, M1 and M2, respec-
tively. Meta predictor M1 was trained independently of
VSL2-S and VSL2-L using the same set of 54 features.
Inputs of meta predictor M2 were Win neighbouring pre-
dictions from both VSL2-S and VSL2-L, and its output was
the final prediction of VSL2-M2. Both M1 and M2 were
built as linear SVM (C = 1). Using the 10-fold cross-vali-

Table 2: Prediction accuracies of the specialized predictors. The per-chain accuracies and standard errors were estimated via a 10-fold 

cross-validation procedure (see Performance evaluation). Using all 54 features, the two predictors were built as linear SVMs with 

parameter C, which represents the trade-off between training error and margin, set to 0.5 and 1, respectively. Default decision 

threshold of 0.5 was used for both predictors. SNS and SNL are sensitivities, or true positive rates, on short and long disordered regions, 

respectively. SP is specificity, or true negative rate, on ordered regions. ACCS is the overall accuracy for VSL2-S calculated as (SNS + SP)/

2, while ACCL is for VSL2-L as (SNL + SP)/2.

Win Wout SNS SNL SP ACCS/ACCL

15 5 82.0 ± 1.1 70.7 ± 1.9 81.5 ± 0.3 81.7 ± 0.6

VSL2-S 15 31 56.5 ± 1.7 71.3 ± 2.3 89.1 ± 0.4 73.0 ± 0.8

41 5 79.8 ± 1.3 72.8 ± 1.9 81.2 ± 0.4 80.5 ± 0.7

41 31 68.8 ± 1.6 74.3 ± 2.2 85.3 ± 0.4 77.1 ± 0.8

15 5 70.8 ± 1.4 78.6 ± 1.9 80.1 ± 0.6 79.4 ± 1.0

VSL2-L 15 31 53.4 ± 1.7 79.9 ± 2.2 84.9 ± 0.6 82.4 ± 1.1

41 5 50.1 ± 1.7 80.9 ± 2.1 85.7 ± 0.5 83.3 ± 1.1

41 31 44.1 ± 1.8 82.1 ± 2.2 87.3 ± 0.5 84.7 ± 1.2



BMC Bioinformatics 2006, 7:208 http://www.biomedcentral.com/1471-2105/7/208

Page 9 of 17

(page number not for citation purposes)

dation procedure (see Performance evaluation), the opti-
mal Win/Wout values were selected as 61/1 and 31/1 for M1
and M2, respectively.

In Table 5 we show prediction accuracies of the two com-
posite VSL2 predictors, as well as the two specialized pre-
dictors. Among the four predictors, VSL2-M1 achieved the
highest sensitivity (SN) of 82.3 ± 1.1% and overall accu-
racy (ACC) of 81.6 ± 0.5%, and VSL-M2 had very similar
performance. Although the short disorder predictor VSL2-
S also had relatively high SN of 79.8 ± 1.0% and ACC of
80.7 ± 0.5%, it was significantly less accurate (by 11%) on
long disordered regions. On the other hand, both VSL2-
M1 and VSL2-M2 had well-balanced per-chain accuracies
(SNS and SNL) of >81% on short and long disordered
regions, which are comparable to the accuracies by the
corresponding specialized predictors. On ordered regions,
both VSL2-M1 and VSL2-M2 were significantly less accu-
rate than VSL2-L but still comparable to VSL2-S.

Length-dependent prediction accuracy

To better characterize the predictor performance, we fur-
ther divided the disordered regions into five length groups
of 1–3, 4–15, 16–30, 30–100, and >100 residues and
examined the per-residue accuracy (sensitivity) on each
group separately. Note that short disordered regions of 1–
3 residues were not used in predictor training or accuracy
estimation. As shown in Figure 3, VSL2-L performed
poorly on very short disordered regions, and exhibited a
monotonic increase in accuracy as the disordered region
length increases. VSL2-S had the highest accuracies on
short disordered regions of 1–3 and 4- 15 residues, but
was significantly less accurate on long disordered regions
than VSL2-L. On the other hand, both VSL2-M1 and VSL2-
M2 achieved almost uniform prediction accuracies over
different length groups. In every length group the two
composite predictors achieved similar or even higher
accuracies than the corresponding specialized predictor.

Another observation from Figure 3 is that VSL2-M1 and
VSL2-M2 were less successful on disordered regions of
16–30 residues than on those from the other length
groups. One possible explanation is that the threshold of
30 for partitioning disordered regions into short and long
is artificial [6], and therefore is not necessarily optimal. It
is also likely that the amino acid compositions of disor-
dered regions of different lengths form a continuum.
Therefore, partitioning disordered regions into short and
long by a single length threshold might not be the most
appropriate approach. However, it could be helpful to
introduce a third length group of medium disordered
regions, but a larger dataset would be necessary. A better
approach might be applying a competition procedure

Length-dependent prediction accuraciesFigure 3
Length-dependent prediction accuracies. Per-residue 
accuracies (sensitivities) are reported on disordered regions 
from different length ranges.

Table 3: 20 features ranked on top using permutation test Z-

scores. The features were ranked according to the absolute 

values of their permutation test Z-scores (see text). Name 

prefixes " PSSM_", "freq_", "PHD_" and " PSI_" denote PSI-

BLAST profile based, amino acid frequency based, PHDsec 

prediction based, and PSIPRED prediction based features, 

respectively. PSSM_41 and PSSM_42 denote the two features 

derived from the last two columns of a PSI-BLAST profile (-Q 

option), i.e. information per position and relative weight of gapless 

real matches to pseudocounts.

VSL2-S VSL2-L

rank

feature name Z-score feature name Z-score

1 freq_spacer 166.3 K2-entropy -265.6

2 K2-entropy -91.4 PSSM_P 257.2

3 PSI_C 83.6 PSSM_S 228.3

4 PHD_L 81.2 PSSM_K 219.3

5 PSSM_S 78.3 PSSM_E 216.0

6 PSSM_Q 74.2 PSI_C 206.2

7 hydrophobicity -70.5 PSSM_Q 189.3

8 freq_H 70.3 hydrophobicity -183.5

9 PSSM_E 64.9 PSSM_F -174.8

10 PSSM_K 64.7 PHD_L 170.8

11 PSSM_42 -63.7 PSSM_T 161.9

12 flexibility 58.4 PSSM_L -156.9

13 PSSM_N 56.1 PSSM_I -144.6

14 PSSM_P 51.7 freq_P 138.8

15 PSSM_R 46.3 flexibility 126.0

16 PSSM_I -46.2 freq_E 122.0

17 PSSM_D 44.2 PSSM_D 99.3

18 PSSM_V -42.9 PSSM_M -97.2

19 PSSM_H 42.9 freq_K 96.2

20 PSSM_41 -40.9 freq_I -90.0
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developed previously [19] to further improve the initial
partitioning obtained by the length threshold.

Since VSL2-M1 was slightly more accurate than VSL2-M2,
it was used exclusively in the following analyses. For brev-
ity, we will refer to it as "VSL2".

Importance of computationally expensive features

As shown in Table 3, most of the top-ranked features for
the specialized predictors were based on PSI-BLAST pro-
files (PSSM_*) or secondary structure predictions (PSI_C
and PHD_L). However, obtaining the PSI-BLAST profile
and/or PSIPRED prediction is time-consuming due to the
need for searching against large sequence databases. On a
workstation with a 3GHz Pentium® 4 processor and 2GB

memory, it took 3.3 minutes on average for a single PSI-
BLAST search consisting of 3 iterations against the
UniRef100 database [54] (May 2004 release, 1, 115,083
sequences, required by PSIPRED). Clearly, this may result
in a computational bottleneck if VSL2 is used in genomic-
scale studies. Therefore, it is important to examine the
accuracy tradeoffs if these computational expensive fea-
tures are not included.

Table 6 compares the prediction accuracies of VSL2 and its
7 variants which use different combinations of the four
feature sets AA, PHD, PSI and PSSM. The amino acid
composition based (AA) features were always included
since it can be calculated directly from the sequence. Note
that VSL2 used all four feature sets. The baseline predictor

Table 5: Prediction accuracies of VSL2 predictors. The accuracies and standard errors were estimated via a 10-fold cross-validation 

procedure described (see Performance evaluation). The default decision threshold 0.5 was used for all four predictors. SN is the overall 

sensitivity, or true positive rate, on all disordered regions, and ACC is the overall accuracy calculated as (SN + SP)/2.

SN SP ACC SNS SNL

VSL2-S 79.8 ± 1.0 81.5 ± 0.3 80.7 ± 0.5 82.0 ± 1.1 70.7 ± 1.9

VSL2-L 54.2 ± 1.6 87.3 ± 0.5 70.7 ± 0.8 44.1 ± 1.8 82.1 ± 2.2

VSL2-M1 82.3 ± 1.1 81.0 ± 0.5 81.6 ± 0.5 81.3 ± 1.2 82.3 ± 1.8

VSL2-M2 82.1 ± 1.0 80.7 ± 0.5 81.4 ± 0.5 81.1 ± 1.2 81.8 ± 1.8

(a) per-chain

SN SP ACC SNS SNL

VSL2-S 75.2 ± 2.5 81.3 ± 0.3 78.3 ± 1.3 78.1 ± 1.3 74.1 ± 3.5

VSL2-L 74.7 ± 2.9 89.0 ± 0.5 81.9 ± 1.6 47.3 ± 2.0 84.4 ± 3.1

VSL2-M1 82.9 ± 2.1 81.6 ± 0.4 82.3 ± 1.1 77.6 ± 1.4 84.7 ± 2.7

VSL2-M2 82.8 ± 2.1 81.6 ± 0.5 82.2 ± 1.1 78.3 ± 1.3 84.3 ± 2.6

(b) per-residue

Table 4: Choice of learning algorithms. Learning algorithms tested: LR – logistic regression; NN – neural network of 5 hidden nodes; 

NNE – bagging ensemble of 10 NNs; SVM/linear – linear support vector machine (inner-product kernel), with C = 0.5 for VSL2-S and C 

= 1 for VSL2-L; SVM/RBF – nonlinear support vector machine (radius-based-function kernel), with C = 2, gamma = 2-4 for VSL2-S and C 

= 1, gamma = 2-2 for VSL2-L. All 54 features were included to build the predictor models. The SVM parameters were selected by 

embedded 5-fold cross-validation (see Predictor model).

Learning algorithm SNS SNL SP ACCS/ACCL

LR 81.8 ± 1.1 70.2 ± 1.9 81.9 ± 0.3 81.8 ± 0.6

VSL2-S NN 81.1 ± 1.1 68.6 ± 1.9 82.0 ± 0.3 81.5 ± 0.6

NNE 81.5 ± 1.1 68.8 ± 2.0 83.3 ± 0.3 82.4 ± 0.6

SVM/linear 82.0 ± 1.1 70.7 ± 1.9 81.5 ± 0.3 81.7 ± 0.6

SVM/RBF 81.0 ± 1.1 70.0 ± 1.9 81.0 ± 0.3 81.0 ± 0.6

LR 42.1 ± 1.8 80.3 ± 2.2 87.8 ± 0.5 84.0 ± 1.2

VSL2-L NN 31.3 ± 1.7 76.6 ± 2.4 90.3 ± 0.5 83.4 ± 1.2

NNE 31.9 ± 1.7 76.1 ± 2.4 91.9 ± 0.5 84.0 ± 1.2

SVM/linear 44.1 ± 1.8 82.1 ± 2.2 87.3 ± 0.6 84.7 ± 1.1

SVM/RBF 38.2 ± 1.7 80.2 ± 2.2 87.7 ± 0.6 83.9 ± 1.1
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using only AA features (Table 6, 1st row) will be denoted
as "VSL2B" in the following discussions. Compared to
VSL2B, VSL2 significantly improved the sensitivities (SN,
SNS and SNL) by 4. 1–5.5% and the specificity (SP) by
1.1%. If using only AA and PSSM features (Table 6, 5th

row), the resulting predictor achieved accuracies similar to
VSL2, with only 1.3% lower in SN and 0.6% lower in SP
– we will denote it as "VSL2P". The PHD features could be
calculated relatively efficiently (4.8 seconds per sequence
on average) since we did not use multiple sequence align-
ment for PHDsec predictions. As expected, it was less
informative than the PSI features (Table 6, 2nd and 3rd

rows).

Although the baseline predictor VSL2B was 3% and 2.1%
inferior to VSL2 and VSL2P, respectively, in the overall
accuracy (ACC), it also achieved relatively balanced accu-
racies on short and long disordered regions, and was more
accurate than several previous disorder predictors (see
below). Therefore it may still be useful in some genome-
scale studies. For example, VSL2B can be applied first to a
whole proteome to identify a smaller sequence subset of
interest, and then the more accurate but time-consuming
VSL2 (or VSL2P) can be used to further improve the
results.

Prediction on high-B-factor ordered regions

As shown by Radivojac et al. [39], high-B-factor ordered
regions were similar to, but also had some significant dif-
ferences from, short disordered regions in terms of amino
acid compositions and sequence properties. In addition,
they could be predicted fairly accurately from amino acid
sequence using features similar to those for disorder pre-
diction. We therefore excluded high-B-factor ordered
regions from VSL2 predictor training and examined the
prediction accuracy on these regions. Indeed, VSL2 had a
much higher false positive error rate on the high-B-factor
residues than on the low-B-factor residues (43% versus

17%). On the outliers (i.e. residues with extremely high B-
factors, detected during the normalization procedure
[46]) the false positive rate was even higher (51%). How-
ever, due to the small proportion (8%) of high-B-factor res-
idues, the overall false positive rate was only slightly
higher (19%) than on low-B-factor residues. Note that the
predictions used were obtained using the 10-fold cross-
validation procedure (see Performance evaluation); the
prediction for any sequence was made using a predictor
trained without this sequence.

Representative predictions

In Figure 4 we show representative predictions on two
PDB chains: (A) 1REP:C with four short disordered
regions at residues 1–14, 50–55, 98–109, and 247–251;
(B) 1B70:A with a long disordered region at residues 1–
85. The short disorder predictor VSL2-S successfully
detected all four short disordered regions in 1 REP:C,
while the long disorder predictor VSL2-L predicted only
part of the two terminal regions and completely missed
the two internal regions (Figure 4A). On the other hand,
VSL2-L correctly identified the whole long disordered
region from 1B70:A, while VSL2-S predicted only 37 of
the 85 residues as disordered (Figure 4B).

It can be observed from Figure 4 that the final VSL2 pre-
diction is more similar to VSL2-S over short disordered
and ordered regions, while it is more similar to VSL2-L
over long disordered regions. In Figure 4A, VSL2 predic-
tion was almost indiscernible from VSL2-S prediction
along the whole sequence. In Figure 4B, VSL2 prediction
was similar to VSL2-L prediction over the first 85 long dis-
ordered residues, and then started resembling VSL2-S pre-
diction over the remaining region. This illustrates the
effectiveness of the meta predictor. It also partly explains
the relatively low specificity (81.0%) of VSL2 (Table 5),
since VSL2-S tends to predict many false short disordered
regions over ordered regions (Figure 4B).

Table 6: Importance of computationally expensive features. A "+" mark indicates if a feature set was included in predictor 

construction. The feature sets were: AA -26 features directly calculated from the amino acid sequence; PSSM – 22 features as average 

PSI-BLAST profiles over the input window; PHD – 3 features as average secondary structure prediction scores by the PHDsec 

predictor; PSI – 3 features as average secondary structure prediction scores by the PSIPRED predictor. F is the total number of 

features included. The 1st, 5th, and 8th rows correspond to VSL2B, VSL2P, and VSL2, respectively. All accuracies are per-chain 

accuracies.

AA PSSM PHD PSI F SN SP ACC SNS SNL

+ 26 77.3 ± 1.1 79.9 ± 0.4 78.6 ± 0.6 75.8 ± 1.3 78.2 ± 1.9

+ + 29 77.9 ± 1.1 80.4 ± 0.4 79.1 ± 0.6 76.6 ± 1.3 78.5 ± 2.0

+ + 29 79.9 ± 1.1 79.9 ± 0.4 79.9 ± 0.5 78.7 ± 1.3 79.9 ± 2.0

+ + + 32 79.8 ± 1.1 80.3 ± 0.4 80.1 ± 0.5 78.6 ± 1.2 79.8 ± 2.0

+ + 48 81.0 ± 1.0 80.4 ± 0.5 80.7 ± 0.6 79.8 ± 1.2 80.9 ± 1.9

+ + + 51 81.3 ± 1.0 81.0 ± 0.5 81.2 ± 0.5 80.0 ± 1.2 81.4 ± 1.8

+ + + 51 82.3 ± 1.0 80.5 ± 0.5 81.4 ± 0.5 81.1 ± 1.2 81.9 ± 1.9

+ + + + 54 82.3 ± 1.1 81.0 ± 0.5 81.6 ± 0.5 81.3 ± 1.2 82.3 ± 1.8
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Comparison to a global predictor

For comparison, we also built a global disorder predictor
as a single binary classifier. It was trained in the same way
as the two specialized predictors, but with disorder resi-
dues equally sampled from all disordered regions. The
optimal Win/Wout values were determined as Win/Wout= 21/
11, right between the optimal values for VSL2-S and VSL2-
L (Table 2). Its accuracies were estimated as SNS= 76.9 ±
1.4%, SNL= 76.3 ± 1.9% and SP = 83.9 ± 0.4% on short
disorder, long disorder and order, respectively. Although
having well-balanced performance on the two types of
disorder, the global predictor was significantly less accu-
rate than VSL2 (Table 5).

Comparison to previous disorder predictors

In this section we compare three VSL2 predictors (VSL2B,
VSL2P and VSL2) to six previously developed protein dis-
order predictors over both VSL2 training dataset via 10-
fold cross-validation and a blind-test set of 1,304 unre-
lated recent PDB chains. These predictors included three
of our previous long disorder predictors, VL-XT [18], VL3-
E [24] and VSL1 [41], as well as three predictors developed
by other groups, i.e. DisEMBL (remark 465 definition
only) [21], RONN [28] and DISOPRED2 [23]. There are
several other disorder predictors were not included for dif-

ferent reasons. For example, PreLink [26] does not pro-
vide numeric predictions, Foldlndex© [66] and GlobPlot
[20] do not provide predictions for all residues, while
IUPred predictor [27] provides separate predictions for
short disordered, long disordered, and structured
(ordered) regions, thus makes it difficult to compare.

Comparison over VSL2 training dataset via 10-fold cross-validation

Predictions by the three VSL2 predictors were made via
the 10-fold cross-validation procedure, i.e. the prediction
for any sequence was made with a predictor trained with-
out that sequence, while all other predictors were applied
to the 1,327 sequences directly. RONN predictions were
obtained from its website, while DisEMBL and
DISOPRED2 were downloaded and run locally. Figure 5
compares both per-chain and per-residue ROC curves plot-
ted by varying the decision threshold in increments of
0.001. The corresponding AUC values were approximated
using the trapezoid rule and reported in Table 7. Also
shown in Table 7 are prediction accuracies calculated with
default thresholds. A threshold of 0.5 was used for all six
predictors from our group.

As in Figure 5A and Table 7a, VSL2P, VSL2 and VSL1 had
very close per-chain ROC curves with similar AUC values
of 88.0 ± 0.6, 89.2 ± 0.5 and 89.9 ± 0.6, which were signif-
icantly higher than those of other predictors. Overall VSL2
was slightly less accurate than VSL1, with ACC of 81.6 ±
0.5% versus 82.2 ± 0.6%. However, VSL2 had significantly
higher sensitivities on disordered regions with differences
>3%, while its specificity was 4.3% lower (Table 7a). Dis-
EMBL and DISOPRED2 exhibited very high specificity
coupled with low sensitivity, which is not surprising since
they were tuned to generate very few false positives. As the
ROC curves (Figure 5) suggested, VSL2 could also achieve
similar trade-off between specificity and sensitivity by
adjusting its decision threshold.

VL3-E was the most accurate on long disordered regions
with a per-chain sensitivity (SNL) of 82.5 ± 2.2% (Table 7a)
and a per-residue sensitivity of 85.7 ± 2.7% (Table 7b).
Although VSL2 also achieved similar accuracy on long dis-
ordered regions, its specificities SP were more than 10%
lower than VL3-E. On the other hand, VL3-E was the least
accurate on short disordered regions. Since about 72% of
the disordered residues in our dataset came from long dis-
ordered regions, it is not surprising that per-residue SN of
VL3-E was much higher than its per-chain SN (70.4 ± 3.1%
versus 38.7 ± 1.6%). Furthermore, VL3-E had the highest
AUC value of 90.9 ± 1.0 among the per-residue ROC
curves, but it was just slightly higher than those of VSL2
and VSL1 (Figure 5B). RONN also exhibited much higher
accuracy on long disordered regions, possibly due to the
exclusive use of disordered regions longer than 20 resi-
dues in training [28].

Representative predictions on two PDB chainsFigure 4
Representative predictions on two PDB chains. (A) 
1REP:C with four short disordered regions at residue 1–14, 
50–55, 98–109, and 247–251. (B) 1B70:A with a long disor-
dered region at residue 1–85. These disordered regions are 
marked as thick line segments. Residues with predictions 
above 0.5 are interpreted as predicted disordered.



BMC Bioinformatics 2006, 7:208 http://www.biomedcentral.com/1471-2105/7/208

Page 13 of 17

(page number not for citation purposes)

Comparison over a blind-test set

The non-redundant blind-test set [see Additional File 1]
consisted of 1,304 recent PDB chains that were unrelated
to any sequence for VSL2 training. In Table 8 we show
both prediction accuracies and areas under ROC curves
(AUC) for the nine predictors. Note that the three VSL2
predictors were re-trained using all 1,327 training
sequences for this comparison. We did not use the 791
very short disordered regions of 1–3 residues in estimat-

ing accuracies (SNS and SN) since such short regions of
disorder could result from many causes other than intrin-
sic sequence features. However, VSL2 predicted a higher
proportion of residues as disordered in these regions than
in those longer than 3 residues (79.8% versus 74.7%).

Comparing Table 7 and Table 8, the predictor rankings by
per-chain ACC/AUC were very similar, with VSL1, VSL2
and VSL2P constantly ranked on top. The main difference
is that based on per-residue ACC/AUC VL3-E moved from
the top in Table 7b to the 8 th/7th place in Table 8b. It is
evident from Table 7 and Table 8 that SNL, accuracy of all
predictors dropped significantly with differences ranging
from 9.2% (DisEMBL) to 26.5% (VL3-E), while SNS accu-
racy on short disordered regions and SP accuracy on
ordered regions were less affected for most predictors.
Overall, VL3-E and RONN were the two most affected pre-
dictors, with performance drops of 17.3% and 9.0% in
per-residue ACC, and 15.0 and 10.2 in per-residue AUC,
respectively.

By examining VSL2 prediction on the 54 long disordered
regions, we observed that the prediction accuracy was
>80% for 34 regions, 60–80% for 5 regions, and <45% for
the remaining 15 regions. We attempted to obtain further
information regarding these 15 regions with low predic-
tion accuracies. However, at the time of this writing only
five of them had been published as indicated by their PDB
records and literature search. Based on the available pub-
lications, we examined three regions in more detail,
namely 2A6T:B (residues 1–34, accuracy 20.6%) [67],
1Y44:A (residues 159–196, accuracy 21.1%) [68], and
1YYH:B (residues 1–54, accuracy 37.0%) [69]. The results
demonstrate the uncertainties in labelling of long regions
of missing electron density and may help explain the low
prediction accuracies on some of these regions.

PDB entry 2A6T contains crystal structure of the 266-resi-
due N-terminal of Dcp2 protein from S. pombe [67]. It
forms a dimer of two identical chains in the asymmetric
unit. However, the regions of missing electron density are
not exactly the same for the two chains. Residues 1–34 are
missing in chain B but are visible with ordered structure in
chain A. As She et al. [67] suggested, this missing region
might be caused by crystal packing. In addition, visible
parts of the N-terminal domain of chain B seem to be
superimposed well with the equivalent parts of chain A.
Similarly, PDB entry 1Y44 also contains a dimer of two
identical chains but with different missing regions [68].
Residues 159–196 missing in chain A correspond to the
long "flexible arm" which is clearly folded in chain B.
Thus, these two regions might be intrinsically ordered but
missing in the electron density maps due to other reasons,
which explains the low prediction accuracies on them. On
the other hand, it is also possible that a sequence region

Comparison of receiver operating characteristic (ROC) curvesFigure 5
Comparison of receiver operating characteristic 
(ROC) curves. The ROC curves were plotted using (A) 
per-chain and (B) per-residue accuracies, by varying the deci-
sion thresholds from 0 to 1 in increments of 0.001. The cor-
responding AUC values were approximated using the 
trapezoid rule and reported in Table 7.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2A6T
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1Y44
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that is intrinsically disordered as a monomer might
undergo disorder-to-order transition upon multimer for-
mation [70]. Clearly, both scenarios raise a unique ques-
tion in data labelling.

We also examined PDB entry 1YYH (chain B) which con-
tains crystal structure of the human Notch 1 ankyrin
domain [69]. This domain consists of seven ANK
(ankyrin) repeats and also forms a dimer of two identical
chains, with almost identical missing density region (res-
idues 1–51 for chain A and 1–54 for chain B). This region
is considered to be a putative ANK repeat, i.e. the 1st
repeat in the domain, which is comprised of two predicted
a-helices connected by an unusually long loop of 16 resi-
dues [69] (note that the current Jpred [71] and PSIPRED
[48] predictors both predicted another α-helix inside this
region, but at low confidence). It was further suggested
that the whole repeat is only partially folded due to the
large number of charged or polar residues in the long loop
[72].

In Figure 6, we plot VSL2 prediction score (disorder prob-
ability) on 1YYH:B. In the missing density region (resi-
dues 1–54), VSL2 predicted two ordered regions (residues
5–22 and 35–49) that roughly correspond to the two pre-

dicted α-helices. It also predicted one short disordered
region (residues 23–34) that covers most of the loop
region between the two predicted α-helices. In total, 20
(37.0%) of the 54 residues of this missing density region
were predicted to be disordered. In the same figure we also

VSL2 prediction on PDB chain 1 YYH:BFigure 6
VSL2 prediction on PDB chain 1 YYH:B. VSL2 predic-
tion (disorder probability) is plotted in blue sold line. Resi-
dues with predictions above 0.5 are interpreted as predicted 
disordered. The long region of missing electron density (resi-
dues 1–54) is marked as thick red segment. The fourteen 
short green segments correspond to the α-helices in the 
seven ANK repeats (two helices for each repeat).

Table 7: Comparison to other protein disorder predictors over VSL2 training dataset via 10-fold cross-validation. Predictions by 

VSL2B, VSL2P and VSL2 were made via the 10-fold cross-validation procedure, while other predictors were applied to the 1,327 

sequences directly. Default thresholds were used for all predictors, e.g. 0.5 for VL-XT, VL3-E, VSL1, VSL2B, VSL2P and VSL2. Also 

shown are the areas under ROC curves (AUC) in Figure 5.

SN SP ACC SNS SNL AUC

VL-XT 58.6 ± 1.3 78.6 ± 0.4 68.6 ± 0.7 56.3 ± 1.6 63.5 ± 2.1 75.7 ± 0.8

VL3-E 38.7 ± 1.6 92.7 ± 0.5 65.7 ± 0.8 23.5 ± 1.6 82.5 ± 2.2 76.0 ± 0.8

DisEMBL 31.4 ± 1.4 97.8 ± 0.1 64.6 ± 0.7 30.5 ± 1.6 32.8 ± 2.2 84.5 ± 0.6

RONN 45.8 ± 1.4 87.0 ± 0.4 66.4 ± 0.7 39.6 ± 1.7 63.0 ± 2.3 72.2 ± 0.9

DISOPRED2 56.9 ± 1.3 94.1 ± 0.2 75.5 ± 0.7 56.5 ± 1.6 55.1 ± 2.4 85.7 ± 0.6

VSL1 79.0 ± 1.1 85.3 ± 0.4 82.2 ± 0.6 78.0 ± 1.3 78.1 ± 2.0 89.9 ± 0.6

VSL2B 77.3 ± 1.1 79.9 ± 0.4 78.6 ± 0.6 75.8 ± 1.3 78.2 ± 1.9 86.0 ± 0.6

VSL2P 81.0 ± 1.0 80.4 ± 0.5 80.7 ± 0.6 79.8 ± 1.2 80.9 ± 1.9 88.0 ± 0.6

VSL2 82.3 ± 1.1 81.0 ± 0.5 81.6 ± 0.5 81.3 ± 1.2 82.3 ± 1.8 89.2 ± 0.5

(a) per-chain

SN SP ACC SNS SNL AUC

VL-XT 58.9 ± 1.7 79.2 ± 0.3 69.0 ± 0.9 51.4 ± 1.7 61.6 ± 2.2 75.7 ± 1.2

VL3-E 70.4 ± 3.1 94.5 ± 0.4 82.5 ± 1.6 27.2 ± 1.9 85.7 ± 2.7 90.9 ± 1.0

DisEMBL 32.5 ± 2.0 98.2 ± 0.1 65.4 ± 1.0 28.7 ± 1.5 33.9 ± 2.7 80.0 ± 1.1

RONN 61.1 ± 2.9 87.6 ± 0.3 74.4 ± 1.5 42.7 ± 1.9 67.6 ± 3.3 81.5 ± 1.5

DISOPRED2 60.2 ± 3.7 95.1 ± 0.2 77.6 ± 1.8 50.1 ± 1.7 63.7 ± 4.6 87.7 ± 1.2

VSL1 78.1 ± 2.3 86.7 ± 0.3 82.4 ± 1.2 71.4 ± 1.5 80.4 ± 2.9 90.3 ± 1.0

VSL2B 77.0 ± 2.2 81.5 ± 0.3 79.3 ± 1.1 67.6 ± 1.6 80.4 ± 2.7 87.1 ± 1.2

VSL2P 81.7 ± 2.2 82.2 ± 0.4 81.9 ± 1.1 75.6 ± 1.5 83.8 ± 2.7 89.8 ± 1.2

VSL2 82.9 ± 2.1 81.6 ± 0.4 82.3 ± 1.1 77.6 ± 1.4 84.7 ± 2.7 90.5 ± 1.1

(b) per-residue

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1YYH
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marked the 6 pairs of α-helices of the other 6 ANK repeats
in the human Notch 1 ankyrin domain [69]. Interestingly,
there are 6 peaks (from the 3rd one) corresponding to the
6 beta turn regions between each pair of neighbouring
ANK repeats.

In summary, just as in the two recent CASP experiments
[42,62], disordered regions in our blind-test dataset were
identified from missing electron densities in X-ray struc-
tures using an automatic procedure. As we discuss above,
some of these regions are likely to be incorrectly labelled
since missing density regions can be caused by reasons
other than intrinsic disorder. For example, crystal packing
irregularities can lead to missing electron density. Also,
long regions of missing density can be structured, "wob-
bly domains" [3,13,73] that move as rigid bodies and thus
fail to scatter X-rays coherently. Further experiments (e.g.
protease digestion and NMR) as well as computational
analysis can be used to identify such cases. Another situa-
tion is that a long missing density region is partially
folded (or unfolded); as in the case of PDB:1YYH[69],
labelling the whole region as disordered resulted in poor

accuracy even though the predictor actually predicts the
real situation. Finally, as in the case of PDB:2A6T[67] and
PDB:1Y44[68], protein complexation can result in ambi-
guity in labelling, i.e. identical chains may have different
missing density regions. From the beginning we have
been aware of the possibility of mislabelling when disor-
der is identified only from missing coordinates in X-ray
structures [16], and for this reason we have tried to cor-
roborate our main findings with disorder identified by
other methods such as CD and NMR [13,18,38,73].

Conclusion
In this study we addressed the length-dependency prob-
lem in prediction of intrinsic protein disorder, i.e. that the
amino acid compositions and sequence properties may
vary among disordered regions of different lengths. As
already observed in several previous studies, such length-
dependency could result in inferior predictions if it is not
taken into account explicitly. Therefore, we proposed two
new predictor models, VSL2-M1 and VSL2-M2, in which
specialized predictors were built for short disordered
regions (≤30 residues) and long disordered regions (>30
residues) and then integrated via the meta predictor. The
results suggested that the proposed VSL2 predictors
achieved well-balanced accuracies on both short and long
disordered regions and were significantly more accurate
than several previous intrinsic protein disorder predictors.

The success of VSL2 predictors can be attributed to (a) the
enlarged training data containing both long disordered
regions (>30 residues) and short disordered regions (≤30
residues), and (b) the architecture for explicitly exploiting
the data heterogeneity, or length dependency in the
amino acid compositions and sequence properties of dis-
ordered regions. Under the two-level architecture, the spe-
cialized predictors, VSL2-S and VSL2-L, could be
optimized separately on more homogeneous data. Both
meta predictors proved effective in combining the two
specialized predictors with comparable or even improved
performance on both short and long disordered regions.
These results further confirmed the previously observed
differences between short and long disordered regions
and justified our approach to model them separately.

There are several directions for further improving the
VSL2 predictors. While the prediction performance of the
long disorder predictor VSL2-L seems to be approaching
its limit, there might be room for improving the short dis-
order predictor VSL2-S, e.g., by reducing its false positive
rate. To achieve this, we will examine the relationships
between short disordered regions and high B-factor
ordered regions, oligomer interfaces and crystal contacts
in more detail. Special treatment of terminal disordered
regions needs to be developed, while techniques for
denoising the training data and improving data represen-

Table 8: Comparison to other protein disorder predictors over a 

blind-test set. The non-redundant blind-test set contained 1,304 

recent PDB chains that were unrelated to any VSL2 training 

sequence. The three VSL2 predictors were re-trained with all 

1,327 training sequences. The prediction accuracies were 

calculated at default thresholds, e.g. 0.5 for VL-XT, VL3-E, VSL1, 

VSL2B, VSL2P and VSL2.

SN SP ACC SNS SNL AUC

VL-XT 56.0 77.9 67.0 55.8 53.0 74.4

VL3-E 28.4 91.4 59.9 26.8 59.7 69.2

DisEMBL 25.9 97.9 61.9 25.7 26.5 83.9

RONN 34.7 88.8 61.8 33.6 56.4 67.2

DISOPRED2 53.8 94.7 74.2 53.5 48.6 84.6

VSL1 75.6 85.8 80.7 76.1 63.6 88.5

VSL2B 73.7 80.8 77.3 74.2 63.1 84.1

VSL2P 78.4 80.4 79.4 78.5 71.6 86.7

VSL2 79.4 81.4 80.4 79.6 73.7 87.5

(a) per-chain

SN SP ACC SNS SNL AUC

VL-XT 54.2 79.2 66.7 54.7 52.3 74.0

VL3-E 36.5 93.9 65.2 30.5 59.2 75.9

DisEMBL 25.3 98.3 61.8 25.4 24.7 80.1

RONN 41.6 89.1 65.4 39.1 51.2 71.3

DISOPRED2 47.8 95.6 71.7 48.7 44.6 83.4

VSL1 68.3 87.4 77.9 70.9 58.3 86.2

VSL2B 67.1 82.6 74.8 68.9 60.3 82.0

VSL2P 72.7 82.5 77.6 74.2 67.1 85.3

VSL2 74.7 82.8 78.7 76.1 69.4 86.3

(b) per-residue

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1YYH
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2A6T
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1Y44


BMC Bioinformatics 2006, 7:208 http://www.biomedcentral.com/1471-2105/7/208

Page 16 of 17

(page number not for citation purposes)

tation should also be employed. Finally, new approaches
that incorporate long-range interactions and other infor-
mation should also be investigated.

Availability and requirements
The VSL2 (VSL2-M1) predictors are freely accessible for
non-commercial use via the web site at http://
www.ist.temple.edu/disprot/predictorVSL2.php. This site
provides web interface to two VSL2 variants, VSL2B and
VSL2P (see Importance of computationally expensive fea-
tures). Due to available computational resources, the
number of predictions that can be provided per IP address
per day is limited.

One can also download the VSL2 predictor package (Java
executable) from the same website at http://www.ist.tem
ple.edu/disprot/download/VSL2.tar.gz. Note that the sec-
ondary structure predictors (PHDsec and PSIPRED), PSI-
BLAST and sequence database are not included in this
package, but should be downloaded separately from
related websites. For detailed installation instructions,
please refer to the README file in the package or a web
page at http://www.ist.temple.edu/disprot/
readmeVSL2.htm.
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