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Abstract

In this paper a method for multiresolution deformation of planar piecewise linear curves that preserves
the curve length is presented. In a wavelet based multiresolution editing framework, the curve can be
deformed at any level of resolution through its control points. Enforcing the length constraint is carried
out in two steps. In a first step the multiresolution decomposition of the curve is used in order to
approximate the initial curve length. In a second step the length constraint is satisfied exactly by
iteratively smoothing the deformed curve. Wrinkle generation is an application the paper particularly
focuses on. It is shown how the multiresolution definition of the curve allows to explicitly and intui-
tively control the scale of the generated wrinkles.

AMS Subject Classifications: 68U07, 68U05, 65D17, 65D18.

Keywords: Multiresolution analysis, length constraint, deformation, curve length, linearization,
wrinkle generation.

1. Introduction

Multiresolution analysis is widely used in various domains including visualization,
geometric modeling and computer graphics. Multiresolution representations
based on wavelets have been developed for parametric curves [3], and can be
generalized to tensor-product surfaces, to surfaces of arbitrary topological type
[13], to spherical data [17], and to volume data [4].

General multiresolution editing or deformation techniques for parametric curves
have been explored in detail by Finkelstein and Salesin [8], Gortler and Cohen [9],
Elber and Gotsman [6] using B-splines. Multiresolution curve editing methods
with the constraint of constant enclosed area have been developed in [5, 11].

This paper introduces a multiresolution editing tool for piecewise linear planar
curves which allows to satisfy the non-linear constraint of length preservation.
Following traditional principles of animation [12], constant length deformation
as well as constant volume or area, is generally required when modeling or
animating deformable objects naturally. Beside general deformations through
select-and-drag control points, the present paper focuses on a particular type of
deformation: the generation of wrinkles in case of shrinking or compressing the
curve.

Computing 72, 161–170 (2004)
Digital Object Identifier (DOI) 10.1007/s00607-003-0054-y



The paper is organized as follows. In section 2 the basic mathematical tools are
given. Section 3 presents a method of length preserving via optimization, based on
a linearization of the length constraint. This method is discussed and improved in
a two-step method presented in section 4. It is shown in particular how the
generation of wrinkles is controlled in a whole editing process. Section 5 con-
cludes and gives some possible future works.

2. Tools

Let us briefly sketch the notation of the wavelet based multiresolution analysis
that will be used in this section. For more details see [14]. Suppose we have a
certain functional space E and some nested linear approximation spaces V j � E
with V 0 � V 1 � � � � � V n. Let V n be of dimension N . Let V j be spanned by a basis
of scaling functions uj ¼ ½uj

1; . . . ;uj
m�

T . A detail space W j is the complement of V j

in V jþ1. Its basis of wavelets wj ¼ ½wj
1; . . . ;wj

N�m�
T is such that together with uj

they form a basis of V jþ1. The space V n can therefore be decomposed as follows:

V n ¼ V n�1 � W n�1 ¼ V n�2 �
n�1

j¼n�2
W j ¼ � � � ¼ V 0 �

n�1

j¼0
W j: ð1Þ

A multiresolution curve is then defined as a planar parametric curve
cðtÞ ¼ ðcnÞT ðunÞ, element of V n, where cn is a column of its N control points in R2.
Due to property (1) the same curve can be expressed at any level of resolution
e 2 ½0; n�, i.e. as an element of V ea

n�1
j¼e W j. In terms of the basis functions, some

coarse control points ce form approximations (global shape) of the initial control
polygon and the detail coefficients de; . . . ; dn�1 encode the character of the object:

cðtÞ ¼ ðceÞT ðueÞ þ ðdeÞT ðweÞ þ � � � þ ðdn�1ÞT ðwn�1Þ; e ¼ 0; . . . ; n:

The filter bank algorithm [14, 8] is used to compute the coefficients of all levels of
resolutions from the initial coefficients cn and vice versa.

The length of a parametric curve cðtÞ ¼ ðxðtÞ; yðtÞÞ is given by

L ¼
R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0ðtÞ2 þ y0ðtÞ2
q

dt: The curves the present paper is dealing with are con-
tinuous and piecewise linear. In that case the length simplifies to
L ¼

PN�2
i¼0 jjciþ1 � cijj2; where ci denote the control points at level n.

For the multiresolution representation of piecewise linear curves the scheme based
on the Lazy wavelets [18] is used:

cj
i ¼ cjþ1

2i

dj
i ¼ cjþ1

2iþ1 � 1
2 ðc

jþ1
2i þ cjþ1

2iþ2Þ:

(

The reasons for the particular choice of working only with piecewise linear curve
are twofold. First, the length preserving deformation method of chapter 3 is
intended to work dynamically. Linear curves in contrast to higher order poly-
nomial curves simplify and accelerate the computations. Second, the particular
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effect of wrinkle creation in response to the motion of a control point is a purely
visual effect. Therefore, on a computer screen no visual difference can be observed
between displaying a dense polygonal curve or a rasterized polynomial curve.

In the case of polylines one can choose either to keep the total length constant or
to preserve the length of each segment. We choose the second way because of two
main reasons: first it ensures the balance between segment’s length that is to say
the control points don’t gather in a small part of the curve. Secondly it allows the
length constraints to be expressed in such a way that computationally inefficient
square roots evaluations can be avoided.

The length constraints on a deformed curve C with control points ci ¼ ðxi; yiÞ can
now be reformulated as follows:

fiðCÞ ¼ Dx2i þ Dy2i � l2i ¼ 0 for i ¼ 0; . . . ;N � 2 ;

where li is the reference length of segment ½ci; ciþ1� before deformation.

3. Length Preserving via Optimization

In a classical MR editing environment the user chooses a resolution level in which
the curve is modified by displacing one coarse control point. The shape of the
curve changes more or less locally depending on whether a low or a high reso-
lution level has been chosen. The same procedure can be applied when integrating
the additional constraint of keeping the curve length constant during deforma-
tion. We introduce here a method of length enforcing via optimization. Wrinkle
generation is a particular application, which should occur naturally in the case of
shrinking the curve or parts of it. The cost function to be minimize will take care
of this feature and simultaneously produce smooth shapes. After presenting the
basic ideas and the calculus we show some examples and discuss them.

Overview

Let CR be a given reference curve in V n. Its length is denoted by LR. Let CA be
another curve in V n (resulting from the edition of CR). The ðx; yÞ-coordinate
vectors of its control points are denoted by

�
XA; YA

�
and its length LA is assumed

to be different from LR. The problem to solve consists in length enforcing CA, i.e. in
finding a curve CF with control points

�
X ; Y

�
whose length is equal to LR and that

is close to CA. This is why CA is also named an attracting curve.

In the present context (see section 2), there are in total N � 1 length constraints to
satisfy and N vector degrees of freedom available, that is to say 2N scalar degrees
of freedom. Hence a lot of length enforcing deformations would be possible. Let
us illustrate in the following the use of a broad optimization method, i.e. mini-
mization of a cost function which integrates a smoothness term and a distance
term subject to the length constraints. The smoothness term prevents the resulting
curve to have unwanted wiggles. The distance term is needed in order to minimize
the distance to the attracting curve CA as much as possible.
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Smoothness Criterion

In variational design a physical model is used for the description of a ‘‘smooth’’ or
a ‘‘fair’’ curve or surface [15, 19, 2]. The most widely used fairness criterion
originate from the observation that the shape of a thin elastic beam or a thin plate
under deformation which minimizes the bending energy is always smooth, i.e. has
a visual pleasing shape.

Since the bending energy for a planar parametric curve, E ¼
R

j2ðtÞdt, is a non-
linear functional, it is common to use instead the linearized version [7, 1] (both
expressions are identical if jc0ðtÞj � 1):

E ¼
Z
jc}ðtÞj2dt ¼

Z
x}ðtÞ2 þ y}ðtÞ2dt :

In the case of a polyline, a discrete version is derived from a finite difference
approximation of the derivatives:

EðX ; Y Þ ¼
XN�2

i¼1
k 1
4
ðci�1 � 2ci þ ciþ1Þk2 ¼

1

2
ðX T HX þ Y T HY Þ

where

H ¼ 1

8

1 �2 1
�2 5 �4 1 0
1 �4 6 �4 1

. .
. . .

. . .
. . .

. . .
.

1 �4 6 �4 1
0 1 �4 5 �2
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; X ¼

x0
x1

..

.

xN�1

2
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..

.
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:

Length Preserving Deformation

The flexibility of an energy based optimization can be enhanced by introducing an
additional distance term: DðX ; Y Þ ¼ kX � XAk2 þ kY � YAk2 :

The problem we aim to solve is now the following optimization problem:

min
X ;Y
f ð1� bÞEðX ; Y Þ þ bDðX ; Y Þ g subject to fi ¼ 0 ; i ¼ 0; . . . ;N � 2 ; ð2Þ

where the constraints fi are defined in section 2.

0 � b � 1 is a scalar value which balances between a smoother curve and a curve
closer to CA.

The length constraints are quadratic expressions. Since minimizing a quadratic
cost function subject to quadratic constraints is costly and since one of our
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objectives is to provide a fast algorithm, let us approach the length constraint by
using linearized constraints instead.

Linearizing the Length Constraints

With the technique of Lagrange multipliers [10], the minimization problem is
restated to finding a stationary point of the following function with respect to X ,
Y and K:

ð1� bÞEðX ; Y Þ þ bDðX ; Y Þ þ
XN�2

i¼0
kifi

where K ¼ ðk0; . . . ; kN�2ÞT is the vector of Lagrange multipliers. In order to lin-
earize each fiðX ; Y Þ ¼ ðDxiÞ2 þ ðDyiÞ2 � li, let us approach it by the linear part ~fi
of its Taylor expansion with respect to Dxi and Dyi in the neighborhood of DxA

i
and DyA

i . Hence one gets

~fi ¼ 2DxA
i Dxi � ðDxA

i Þ
2 þ 2DyA

i Dyi � ðDyA
i Þ

2 � l2i :

Remark. In order to replace fi by the linearized expression ~fi we have to ensure
that Dxi;Dyi are close to DxA

i ;DyA
i . In other words the curve CA must nearly satisfy

the length constraints.

Assuming that the approximation of fi by ~fi holds, the problem can be restated as
solving:

r!g ¼ 0 where gðX;Y;KÞ ¼ ð1� bÞEðX;YÞ þ bDðX;YÞ þ
X

ki ~fi : ð3Þ

A symmetric square sparse system of linear equations has to be solved:

ð1� bÞHX þ 2bX þ 2DX K ¼ 2bXA

ð1� bÞHY þ 2bY þ 2DY K ¼ 2bYA

2DT
X X þ 2DT

Y Y ¼ b

8
><

>:
ð4Þ

where where b ¼ ðl2i þ ðDxA
i Þ

2 þ ðDyA
i Þ

2ÞTi¼0...N�2, and where DX (resp. DY with y
instead of x) is a N � ðN � 1Þ matrix:

DX ¼

�DxA
0

DxA
0 �DxA

1 0

DxA
1

. .
.

. .
. . .

.

0 . .
.

�DxA
N�2
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N�2

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

:

Length Preserving Multiresolution Editing of Curves 165



Let us note that due to the linearization the result ðX ; Y Þ is not exact for the length
constraints. In order to increase the precision, the solving can be encapsulated in a
loop which iterates the system solving.

Examples and Discussion

Figure 1 illustrates the role of b : a deformation is applied to the initial curve by
editing it at the coarsest level of resolution. Fig. 1(a) shows the initial curve
together with its coarsest approximation consisting of 2 control points. Fig. 1(b)
shows the deformed coarse polygon and the corresponding reconstructed curve
without length preservation. This is the attracting curve CA. The problem is then
solved for different values of b, see Figures 1(c), 1(d), and 1(e). As expected, the
role of b is to control the shape of the resulting curve. A small value gives
preference to a smooth curve in the sense of minimal bending energy. A higher
value keeps the mean distance to CA (gray) as small as possible. In the particular
case of shrinking the initial curve, as illustrated in that figure, b controls the
creation of wrinkles. A high value produces small and frequent wrinkles, while a
small value stands for larger and less frequent wrinkle.

These results suggest that this method could be used as it is, because it allows the
curve to be deformed at a given scale (controlled through the value of b) while
preserving its length. But two reasons make it impractical to use:

	 If the edited curve CA is far from satisfying the length constraint, then the error
due to linearization is important. We hence have to iterate the solving in order
to bound the error below some threshold which may be expensive (tens of
solvings are necessary for Fig. 1).

	 As shown in Fig. 1, b controls the appearance of the curve. However the choice
of b must take into account a lot of parameters including the scale of the
wrinkles and the number of control points. Hence it is quite impractical to
choose the wrinkling scale. We aim to have an easy-to-use editing tool.

Fig. 1. Role of b: the initial curve (a) with 129 control points is edited at the coarsest level (b) (in gray:
reconstructed attracting curve). In (c), (d) and (e): 3 final length preserving curves (in black) are given

for different values of b
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However, if the attracting curve nearly satisfies the length constraint, this opti-
mization method is very effective in precisely meeting the prescribed length.

4. Control of Wrinkle Generation

In this section we introduce a new step into the editing process taking place before
the optimization method presented in the previous section. In order to compen-
sate for the drawbacks of the optimization, it aims to compute in linear time an
attracting curve suitable for the optimization step because it sufficiently approx-
imates the lengths constraints while the scale of the deformations induced by these
constraints can be explicitly and intuitively controlled by the user.

The main idea is to modify the details of the edited curve at an intermediate level
eOw < n so that the control polygon at level wþ 1 has the same length as the
initial coarse polygon. Hence this step is called explicit length preserving. An
important advantage of modifying details is that the attractive curve built in this
way is close to the edited curve because their coarse control polygons at level w
match whenever possible. That is to say this curve follows as much as possible the
modification applied by the user.

4.1. Editing Loop with Explicit Length Preservation Step

Let CRðtÞ 2 V n be the initial planar piecewise linear curve the user wants to edit
while keeping its length constant. Two resolution levels may be specified by the user:
level e, at which the user will edit the control polygon, and level w, at which wrinkles
will be generated if required by the length constraint. The editing process follows
the graph of Fig. 2. Each of the six arrows corresponds to a particular action
described in the following paragraphs and illustrated by a real example in Fig. 3:

Decomposition: The curve is decomposed into Ce
R at the level e, chosen by the user

(see Fig. 3(a)). The superscripts denote the level of resolution.

Edition: The coarse control polygon Ce
R at level e is modified by the user. In

Fig. 3(b) the user ‘‘pinched’’ the right part of the curve. The corresponding de-

C

C

C

C

C

C

C
decomposition

reconstruction

Step 1
explicit method

optimization

edition

Step 2

reconstruction

n
R

n
F

n
A

D

w
A

e
D

e
R

w

Fig. 2. Enhanced editing loop for wrinkle generation
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formed curve CD (doted line in Fig 3(b)) has not the same length as the reference
curve CR. Notice that the choice of level e determines the extent of the deformation.

Reconstruction: The deformed curve is then partially reconstructed at level w
(e � w < n), chosen by the user (in Fig. 3(c): w ¼ eþ 1).

Explicit Length Preserving: An attracting curve CA is constructed (see Fig. 3(d)).
This curve is obtained by modifying Cw

D using the details gradually along the
control polygon in order to obtain a control polygon Cwþ1

A whose edges have the
same length as the control polygon segments of CR at level wþ 1. Some control
points at level w may be modified as well in case of stretching. More details can be
found in [16]. Modifying details at level w is equivalent to modifying corre-
sponding control points at level wþ 1. In the example they are highlighted as dark
dots in Fig. 3(c). The choice of w > e for length approximation increases the
number of coarse control points defining the same portion of the curve and hence
determines the number of wrinkles on this portion. The closer to the highest level
n is w the higher is the frequency of the wrinkles.

Reconstruction: The attractive curve is then completely reconstructed (Fig. 3d) by
re-inserting the details of CR at the levels wþ 1; . . . ; n. After reconstruction, the
length of CA is close to satisfy the length constraint thanks to the length preser-
vation at level wþ 1. Note, that the use of a lazy wavelet scheme leads to some
sharp features in the reconstructed curve.

Length Preserving by Smoothing: The optimization method (see section 3) applied
to CA leads to the final curve CF (Fig. 3(e)). It precisely satisfies the length con-
straints, has a smooth shape, and it is close to the attracting curve CA. The main
role of this optimization step remains now to smooth the curve. Figure 3(d)
illustrates the effect of the smoothing, whose cost dramatically drops.

4.2. Results

We present here an example of MR editing that illustrates the important points
we focused on.

The Fig. 4 shows two successive deformations at different levels of decomposition
(of the same curve as Fig. 1), i.e. the result of two editing loops. The initial curve
4a with 129 control points is edited at the coarsest level e ¼ 0 and its length is

Fig. 3. The editing loop. The curves decomposed at the level e or w are represented by their control
polygon
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adapted at the scale w ¼ 1. Hence it provides large wrinkles (4(b)). Then it is
edited at the scale e ¼ 3 (Fig. 4(c)): 2 neighboring control points are moved closer.
Since the length is preserved at the scale w ¼ 6, small wrinkles are created
(Fig. 4(d)). Let us note that the curve is modified locally. We also see that mul-
tiresolution provides a flexible framework for curve editing. The levels e and w can
be chosen in order to get exactly the deformation at the scale you want and on the
extent you want.

The whole algorithm works dynamically, i.e. the user selects-and-drags a coarse
control point immediately the length preserving curve is displayed. In fact, the
first step has linear complexity and the second step needs generally no more than 5
linear system solvings. It is implemented with sparse matrices efficient conjugate
gradient methods for reducing the computing time. As an example, the defor-
mations of the curve in Fig. 4 are obtained in less than some tens ms each.

5. Conclusion

A method for length preserving multiresolution editing of planar curves has been
introduced. The method combines an explicit length preserving step together with
an optimization step in order to provide smooth results with an explicit and
intuitive control of the scale of the deformations.

Current and future research concerns the integration of other non-linear con-
straints into a multiresolution editing environment and the generalization to space
curves and surfaces.
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Université Joseph Fourier, 2002.
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