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Abstract In this paper we consider flat metrics (semi-translation structures)

on surfaces of finite type. There are two main results. The first is a complete

description of when a set of simple closed curves is spectrally rigid, that is,

when the length vector determines a metric among the class of flat metrics.

Secondly, we give an embedding into the space of geodesic currents and use

this to obtain a compactification for the space of flat metrics. The geometric

interpretation is that flat metrics degenerate to mixed structures on the surface:

part flat metric and part measured foliation.
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1 Introduction

From the lengths of all, or some, curves on a surface S, can you identify

the metric? To be precise, fix a finite-type surface S, denote by C(S) the set

of homotopy classes of closed curves on S, and let S(S) be the homotopy

classes represented by simple closed curves (simply denoted by C and S when

S is understood). Given an isotopy class of metrics ρ and a curve α ∈ C,

we write ℓρ(α) to denote the infimum of lengths of representatives of α in

a representative metric for ρ, and we call this the length of α in ρ or the

ρ-length of α. For a set of curves � ⊂ C, we define the (marked) �-length

spectrum of ρ to be the length vector, indexed over �:

λ�(ρ) = (ℓρ(α))α∈� ∈ R
� .

For a family of metrics G = G(S), up to isotopy, and a family of curves �,

we are interested in the problem of deciding when λ�(ρ) determines ρ. In

other words, we ask

Question Is the map G → R
� given by ρ �→ λ�(ρ) an injection?

If this map is injective, so that ρ ∈ G is determined by the lengths of the

curves in �, we say that � is spectrally rigid over G .

For instance, we may take � = S, and G = T (S), the Teichmüller space of

complete finite-area hyperbolic (constant curvature −1) metrics on S. Here it

is a classical fact due to Fricke that the map T (S) → R
S is injective; that is,

S is spectrally rigid over T (S).

Another natural family of metrics arising in Teichmüller theory consists

of those induced by unit-norm quadratic differentials; these are locally flat

(isometrically Euclidean) away from a finite number of singular points with

cone angles kπ . We note that these are nonpositively curved in the sense of

comparison geometry, though they fail to be complete when S has punctures.

We will call these flat metrics on S (see Sect. 2 for a detailed discussion). For

example, identifying opposite sides of a regular Euclidean octagon produces

a flat metric on a genus-two surface, with the negative curvature concentrated

into one cone point of angle 6π . We denote this family of metrics by Flat(S).

Theorem 1 For any finite-type surface S, the set of simple closed curves S is

spectrally rigid over Flat(S).

Put in other terms, this theorem states that the lengths of simple closed

curves determine a quadratic differential up to rotation.

In fact, we obtain a much sharper version of Theorem 1 which provides a

complete answer to the motivating question above for simple closed curves

over flat metrics. Let P M F = P M F (S) denote Thurston’s space of projec-



Length spectra and degeneration of flat metrics 233

tive measured foliations on S. We use ξ = ξ(S) = 3g − 3 + n, where g is the

genus and n is the number of punctures, as a measure of complexity for S.

Theorem 2 If ξ(S) ≥ 2, then � ⊂ S ⊂ P M F is spectrally rigid over Flat(S)

if and only if � is dense in P M F .

This situation is quite different from the hyperbolic case, where there are

finite spectrally rigid sets for T (S), as is further discussed in Sect. 1.1. We

also remark that if ξ(S) ≤ 1 then it is easy to see that any set of three distinct,

primitive curves is spectrally rigid over Flat(S); see Proposition 17.

One direction of the proof of Theorem 2 requires us to construct flat struc-

tures which cannot be distinguished by the lengths of the curves in �. In

fact, we produce subspaces of Flat(S) with dimension approximately linear

in dim(Flat(S)) = 4ξ −2 on which the lengths of the curves in � are constant.

Theorem 3 Suppose ξ(S) ≥ 2. If � ⊂ S ⊂ P M F and � �= P M F , then

there is a deformation family 	� ⊂ Flat(S) for which 	� → R
� is constant,

and such that the dimension of 	� grows linearly with ξ(S), as does the

dimension of Flat(S) itself.

In particular, in the closed case, our construction produces a subspace

	� ⊂ Flat(S) of dimension 2g − 3, while the dimension of Flat(S) in this

case is 12g − 14.

Another result needed for the proof of Theorem 2 is a version of Thurston’s

theorem that the hyperbolic length function for simple closed curves contin-

uously extends to the space M F (S) of measured foliations (or laminations)

on S. In [4], Bonahon gave a very elegant proof of this for closed surfaces

based on a unified approach to studying hyperbolic metrics, closed curves

and laminations. Bonahon’s key idea is to embed C(S), T (S) and M F (S),

into the space of geodesic currents C(S). Our next result extends the theory

to flat structures.

Theorem 4 There is an embedding

Flat(S) → C(S)

denoted by q �→ Lq so that for q ∈ Flat(S) and α ∈ C, we have i(Lq , α) =
ℓq(α). Furthermore, after projectivizing, Flat(S) → P C(S) is still an embed-

ding.

As a consequence, we obtain a continuous homogeneous extension of the

flat length function in Corollary 28,

Flat(S) × M F (S) → R,

making it meaningful to discuss the length of a foliation.
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As P C(S) is compact, Theorem 4 provides a compactification of Flat(S),

and it is invariant under the action of the mapping class group. Bonahon

proved that for closed surfaces, the analogous compactification of T (S) is

precisely the Thurston compactification by projective measured laminations.

For the compactification of Flat(S), we also find a geometric interpretation of

the boundary points as mixed structures on S. A mixed structure is a hybrid

of a flat structure on a subsurface (with boundary length zero) and a mea-

sured lamination on the complementary subsurface. (The reader should com-

pare our mixed structures to forthcoming work of Cooper, Delp, Long and

Thistletwhaite, whose geometric description of degeneration in the setting of

real projective structures inspired this interpretation of the limit points.) We

view the space of mixed structures as a subspace of C(S), and thus for any

mixed structure η, there is a well-defined intersection number i(η, ·). This

theory is developed in Sect. 6.

Theorem 5 The closure of Flat(S) in P C(S) is exactly the space P Mix(S) of

projective mixed structures. That is, for any sequence {qn} in Flat(S), after

passing to a subsequence if necessary, there exists a mixed structure η and a

sequence of positive real numbers {tn} so that

lim
n→∞

tnℓqn(α) = i(α, η).

for every α ∈ C. Moreover, every mixed structure is the limit of a sequence in

Flat(S).

In Sects. 6 and 7 we make several other comparisons between this com-

pactification and the Thurston compactification of T (S).

Remark 6 For the purpose of geodesic currents, punctured surfaces are con-

sidered as surfaces with holes; this is treated carefully in Sect. 2.6. This

requires new definitions and makes the machinery of currents considerably

more technical. The results on spectral rigidity (Theorems 1–4) can be proved

for closed surfaces without using these definitions, but punctured surfaces are

unavoidable for the characterization of the boundary in Theorem 5, since the

boundary points even for closed surfaces involve currents on punctured sub-

surfaces. To read the spectral rigidity part of the paper for closed surfaces

alone, one would skip Sects. 2.6, 6, 7.2, and the Appendix.

1.1 Context: other spectral rigidity results

Spectral rigidity of S over T (S) was generalized considerably by Otal [24],

who showed that C is spectrally rigid over G−(S), the space of all negatively

curved metrics on S up to isotopy. Hersonsky-Paulin [16] generalized this
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further to show that C is spectrally rigid over negatively curved cone metrics.

This was pushed in a different direction by Croke [8], Fathi [10] and Croke-

Fathi-Feldman [7] where it was shown that C is spectrally rigid for various

qualities of nonpositively curved Riemannian metrics (for more precise state-

ments, see the references).

While these results treat rather large classes of metrics, the use of all closed

curves, not just the simple ones, is essential. Indeed, it follows from a result

of Birman-Series [2] that, in general, we should not expect S to be spectrally

rigid for an arbitrary class of negatively curved metrics, since simple closed

curves miss most of the surface (see Sect. 7).

We saw above in Theorem 2 that a set of curves must be dense in the

sphere P M F in order to be spectrally rigid over Flat(S). This stands in con-

trast with the situation for hyperbolic metrics, where it is known that there are

finite spectrally rigid sets; in fact, 2ξ + 1 curves, one more than the dimen-

sion of T (S), are sufficient (see [14, 15, 28]). In this regard, Flat(S) bears

a resemblance to Outer space, CV(Fn). The Culler–Vogtmann Outer space,

built to study the group Out(Fn) in analogy to the relationship between T (S)

and the mapping class group, consists of metric graphs X equipped with a

isomorphisms Fn → π1(X) (under the equivalence relation of graph isome-

tries which respect the isomorphism up to conjugacy). Recycling notation

suggestively, let C denote the set of conjugacy classes of nontrivial elements

of Fn. Given an element X ∈ CV(Fn), and a conjugacy class α ∈ C, we write

ℓX(α) for the minimal-length representative of α in X. We can define a length

spectrum just as above, letting

λ�(X) = (ℓX(α))α∈� ∈ R
�

for X ∈ CV(Fn) and � ⊂ C. Accordingly, we say that � is spectrally rigid

over CV(Fn) if X �→ λ�(X) is injective.

The full set C is spectrally rigid over CV(Fn) [1, 9]. However, Smillie and

Vogtmann (expanding on a similar result of Cohen, Lustig and Steiner [6])

showed that no finite subset � ⊂ C is spectrally rigid over Outer space (or

even the reduced Outer space) by finding a (2n − 5)-parameter family of

graphs over which λ� is constant [29]. Thus, Theorem 3 is the analog for

Flat(S) of the Smillie–Vogtmann result. Our proof of Theorem 3 adapts the

key idea from Smillie–Vogtmann to surfaces by appealing to Thurston’s the-

ory of train tracks; see Sect. 4. This justifies the remark that from the point of

view of length-spectral rigidity, flat metrics might be said to resemble metric

graphs more closely than hyperbolic metrics.

Finally, we briefly consider unmarked inverse spectral problems for the

metrics in Flat(S). Kac memorably asked in 1966 whether one can “hear the

shape of a drum,” or determine a planar region by the eigenvalues of its Lapla-

cian. Sunada’s work in the 1980s established a means of generating examples
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of hyperbolic surfaces which are not only isospectral with respect to their

Laplacians, but iso-length-spectral as well. That is, let the unmarked length

spectrum be the nondecreasing sequence of numbers

�C(ρ) = {ℓρ(γ1) ≤ ℓρ(γ2) ≤ · · · }γi∈C,

appearing as lengths of closed curves on S, listed with multiplicity. Sunada’s

construction produces a supply of examples of hyperbolic metrics m,m′ such

that �C(m) = �C(m′). In Sect. 7.3, we remark that the Sunada construction

carries over to our flat metrics in the same way.

2 Preliminaries: flat structures, foliations, and geodesic currents

In this section, we will briefly describe the background and preliminary mate-

rial on Teichmüller theory, semi-translation surfaces, flat metrics, Thurston’s

theory of projective measured foliations, and Bonahon’s theory of geodesic

currents. We refer the reader to [3, 4, 11, 12, 25, 30].

In what follows, S is a finite-type surface. That is, S is obtained from a

closed surface Ŝ by removing a finite set P ⊂ Ŝ of marked points. The genus

g and number of punctures n = |P | determine the topological complexity

ξ = ξ(S) = 3g − 3 + n.

Recall that Teichmüller space T (S), which parameterizes the isotopy classes

of hyperbolic metrics on S, is homeomorphic to a ball of dimension 2ξ .

2.1 Quadratic differentials and semi-translation structures

By a quadratic differential on S we mean a complex structure on Ŝ together

with an integrable meromorphic quadratic differential. The quadratic differ-

ential is allowed to have poles of degree one at marked points and is assumed

to be holomorphic on S. The space of all quadratic differentials, defined up

to isotopy, is denoted Q(S). A point of Q(S) will be denoted q , with the un-

derlying complex structure implicit in the notation. Reading off the complex

structures, we obtain a projection to the Teichmüller space

π : Q(S) → T (S).

This projection is canonically identified with the cotangent bundle to T (S);

hence Q(S) has a real dimension of 4ξ .

Integrating the square root of a nonzero quadratic differential q in a small

neighborhood of a point where q is nonzero produces natural coordinates ζ

on S in which q = dζ 2. The collection of all natural coordinates gives an atlas



Length spectra and degeneration of flat metrics 237

on the complement of the zeros of q for which the transition functions are

given by maps of the form z �→ ±z + c for c ∈ C (called semi-translations).

The Euclidean metric is preserved by these transition functions and so pulls

back to a Euclidean metric on the complement of the zeros of q in S. The

integrability of q implies that the metric has finite total area.

The completion of the metric is obtained by replacing the zeros of q as well

as the points P to obtain the surface Ŝ. If q has a zero of order p at one of the

completion points, then there is a cone singularity with cone angle (2 + p)π .

A pole at a point of P is thought of as a zero of order −1, and hence has cone

angle π . Thus the metric on S is locally CAT(0) (or nonpositively curved in

the sense of comparison geometry)—however, the metric on Ŝ may not be,

because of the discrete positive curvature occurring at poles. We also use q to

denote the completed metric on Ŝ.

A semi-translation structure is a locally CAT(0) Euclidean cone metric on

S, whose completion is Ŝ, together with a maximal atlas defining the met-

ric away from the cone points, for which the transition functions are semi-

translations. The atlas determines a preferred vertical direction, and the met-

ric together with the vertical direction determines the semi-translation struc-

ture. Given a semi-translation structure, there is a unique complex structure

and integrable holomorphic quadratic differential for which the charts in the

atlas are natural coordinates. This determines a bijection between the set of

nonzero quadratic differentials and the set of semi-translation structures on S,

which we use to identify the two spaces. The Teichmüller metric is induced

by the co-norm on Q(S) which comes from the area of the associated semi-

translation structure on S. The unit cotangent space, Q1(S), is thus precisely

the set of unit-area semi-translation structures on S.

A semi-translation structure can also be described combinatorially as a col-

lection of (possibly punctured) polygons in the Euclidean plane with sides

identified in pairs by gluing isometries that are the restrictions of semi-

translations.

The group SL2(R) acts naturally on the space of quadratic differentials

by R-linear transformation on the natural coordinates. The geodesics in the

Teichmüller metric are precisely projections to T (S) of orbits of the diagonal

subgroup of SL2(R) on an initial quadratic differential q0:

γ (t) =
{
π(At .q0) : At =

(
et 0

0 e−t

)
, t ∈ R

}
.

The Teichmüller disk Hq of a quadratic differential q is the projection to T (S)

of its entire SL2(R) orbit; it is an isometrically embedded copy of the hyper-

bolic plane of curvature −4.

We let p : S̃ → S denote the universal covering of S, with π1(S) acting

by covering transformations. The metric q pulls back to a metric q̃ = p∗(q)
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on S̃ which is again locally CAT(0). When S is a closed surface, (S̃, q̃) is a

complete, geodesic CAT(0) space. If S has punctures, then (S̃, q̃) is incom-

plete, and we write (S̄, q̃) for the completion, obtaining a geodesic CAT(0)

space. The covering p : S̃ → S can be extended to the completions which we

also denote by p. This extension can be viewed as a branched cover, infinitely

branched over P , and we let P̃ denote the preimage of P in S̄.

Example 7 Consider again the unit-area regular octagon (with opposite sides

identified and one pair of sides parallel to the vertical direction) as a point

Q1(S), for S the closed surface of genus two. The universal cover is made

up of isometric copies of the octagon, glued together with eight around each

vertex to create cone points of angle 6π . This metric q̃ on S̃ is a discrete

model of the hyperbolic plane (it is quasi-isometric to H), and with this metric

S̃ has a circle as its boundary at infinity.

2.2 Measured foliations and measured laminations

We now recall Thurston’s theory of singular topological foliations of surfaces,

equipped with transverse measures; see [11] for a detailed discussion and

reference for the facts stated here. We write M F = M F (S) for the space

of (measure classes of) measured foliations on S, and P M F = P M F (S)

to denote the space of projective measured foliations. Thurston showed that

P M F (S) is a sphere, and used it to compactify the Teichmüller space.

A curve α ∈ S canonically determines a measured foliation with all nonsin-

gular leaves closed and homotopic to α. We use this to view R+ × S and S as

subsets of M F and P M F , respectively. The image of S in P M F is dense,

so P M F may be thought of as a completion of the set of simple closed

curves.

We also write

i : M F × M F → R

for Thurston’s geometric intersection number. This is the unique homoge-

neous continuous extension of the usual geometric intersection number on

S × S, via the inclusion mentioned above.

The vertical foliation for a nonzero quadratic differential q ∈ Q(S) is given

by |Re(
√

q)|. Let νθ
q be the foliation |Re(eiθ√q)| for θ ∈ RP1, so that the

vertical foliation of q is νq := ν0
q . By setting

M F (q) := {t · νθ
q : θ ∈ RP1, t ∈ R+},

we obtain the set of all measured foliations which are straight in some direc-

tion on q , with measure proportional to Euclidean distance between leaves.

We write P M F (q) for the projectivization of M F (q).
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It will be useful to pass back and forth between measured foliations and

measured laminations. We denote the space of measured laminations by M L

and the projective measured laminations by P M L. We identify M F with

M L and P M F with P M L in the natural way extending the canonical in-

clusions of S. See [19] for an explicit procedure for constructing laminations

from foliations.

2.3 The space of flat metrics

Quadratic differentials that represent the same metric differ only by a rotation.

Accordingly, the space of flat metrics is defined as

Flat(S) = Q1(S)/q ∼ eiθq.

Equivalently, an element of Flat(S) is a Euclidean cone metric on S which is

locally CAT(0), with holonomy in {±I }, completion Ŝ, and total area one.

This is almost identical to the notion of a quadratic differential, but there is

one forgotten piece of data, namely the preferred vertical direction which is

determined by the atlas of natural coordinates. We write q to denote a point

in Q1(S) or the associated equivalence class in Flat(S). Note that M F (q)

and P M F (q) are well-defined for q ∈ Flat(S). Also, each Teichmüller disk

Hq lifts to an embedded disk in Flat(S), and in fact, Flat(S) is foliated by

Teichmüller disks.

2.4 Geodesics

Let q be a quadratic differential on S and (S̄, q̃) the completion of the pull-

back metric q̃ on S̃. Every curve α ∈ C has a q-geodesic representative in the

following sense: for a map α : S1 → S from the unit circle to S, there is an

isometric map α̃q : R → (S̄, q̃) (i.e., a geodesic of S̄) such that a subgroup of

π1(S) corresponding to the curve α preserves the image α̃q(R). The projec-

tion of this to Ŝ is the q-geodesic representative of α and we denote it by αq .

(This definition seems cumbersome, but when P �= ∅ the map αq alone does

not determine the homotopy class α, whereas α̃q does. See [27] for more

details.) We call the q̃-geodesic α̃q , or any π1(S)-translate of it, a lift of αq .

To describe geodesics concretely, it will be useful to define saddle con-

nections: these are geodesic segments whose endpoints are (not necessarily

distinct) singularities or points of P , and which have no singularities or points

of P in their interiors.

Remark 8 We make an elementary but very useful observation that identifies

the geodesics in a flat metric q . First consider the case that S is closed. Given a

representative of α built as a concatenation of saddle connections α1 · · ·αk , a
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necessary and sufficient condition for this to be a q-geodesic is that the angles

between successive αi measure at least π on both sides. When P is nonempty,

we need to modify this slightly. Suppose α1 · · ·αk is a representative of α in

Ŝ and consider a lift of this representative to S̄; that is, α1 · · ·αk is a limit of

representatives of α in S and the lift is a limit of lifts. Then we require that an

angle of at least π is subtended at each point in P̃ as well. (Note that points

of P̃ are locally modeled on the infinite cyclic branched cover of the plane,

branched over the origin, so there is exactly one finite angle at each such point

met by the lift.)

The geodesic representative of α is unique (up to parameterization), ex-

cept when there are a family of parallel geodesic representatives foliating a

flat cylinder. We also note that the geodesic representative of a simple closed

curve need not be simple. However, for every curve α, there is always a se-

quence of representatives of the homotopy class of α in S converging uni-

formly to αq .

When S is a punctured surface, we will also be interested in homotopy

classes of essential proper paths in S. These are paths α : I → Ŝ, defined on

some closed interval I , for which the interior of I is mapped to S and the

endpoints are mapped to P . Here, two such paths are homotopic if there is

a homotopy relative to the endpoints so that throughout the homotopy the

interior of I is mapped to S. We denote the set of all homotopy classes of

essential curves and paths by C
′(S), which is equal to C(S) if S is closed.

Every element of C
′(S) has a unique geodesic representative, which we view

as the projection of an isometric embedding α̃q : I → (S̄, q̃) to Ŝ, and is

again denoted by αq . Again, αq is a uniform limit of representatives of the

homotopy class of α.

When a curve α has non-unique geodesic representatives that foliate a

cylinder, we say α is a cylinder curve and we define the cylinder set of q ,

denoted by cyl(q), to be the set of all cylinder curves with respect to q .

When α ∈ C
′(S) is not a cylinder curve, the (unique) geodesic representa-

tive is made up of concatenations of saddle connections. (In fact, each bound-

ary component of a cylinder is a union of saddle connections, so even cylinder

curves have representatives of this form.) If we write this concatenation as

αq = α1 · · ·αk,

and let rj denote the Euclidean length of αj , then ℓq(α) is just r1 + · · · + rk .

If we view q as a quadratic differential (and not just as a flat structure),

then each αj makes some angle θj with the horizontal direction.

Lemma 9 For all q ∈ Q1(S) and α ∈ C
′(S), we have

ℓq(α) = 1

2

∫ π

0

i(νθ
q , α)dθ.
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Proof This is a computation:

∫ π

0

i(νθ
q , α) dθ =

∫ π

0

(
k∑

j=1

∫

αj

|Re(eiθ√q )|
)

dθ

=
k∑

j=1

∫ π

0

rj | cos(θ + θj )|dθ =
k∑

j=1

2rj = 2ℓq(α).
�

While the q-geodesics αq and βq are not necessarily embedded or trans-

verse, they do meet minimally in a certain sense. Namely, appealing to the

CAT(0) structure, we first note that any two lifts α̃q and β̃q meet in a point, in

a geodesic segment, or they are disjoint. If the endpoints at infinity of α̃q and

β̃q nontrivially link, then we call these intersections essential intersections.

It follows that i(α,β) is the number of π1(S)-orbits of essential intersections

over all lifts of αq and βq .

2.5 Geodesic currents: closed surfaces

The theory of geodesic currents was initiated in a sequence of papers by

Bonahon and an excellent overview can be found in [4]. For this discussion,

we first restrict to the closed case (P = ∅), which is the case treated by Bona-

hon in [4].

Fix any geodesic metric g on S. We can pull back this metric by the univer-

sal covering p : S̃ → S, so that the covering group action of π1(S) on S̃ is by

isometries. We let S̃∞ denote the Gromov boundary of S̃, making S̃ ∪ S̃∞ into

a closed disk. This compactification is independent of the choice of metric (in

the sense that a different choice of metric gives an alternate compactification

for which the identity extends to a homeomorphism of the boundary circles).

We consider the space

G(S̃) = (S̃∞ × S̃∞ \ �)/(x, y) ∼ (y, x).

With respect to our metric, this is precisely the space of unoriented bi-infinite

geodesics in S̃ up to bounded Hausdorff distance. We endow G(S̃) with the

diagonal action of π1(S).

A geodesic current on S is a π1(S)-invariant Radon measure on G(S̃). The

set of all geodesic currents is made into a (metrizable) topological space by

imposing the weak* topology, and we denote this space C(S). The associated

space of projective currents is the quotient of the space of nonzero currents

by positive real scalar multiplication, and we denote it P C(S).

The simplest examples of geodesic currents are defined by closed curves

α ∈ C as follows. Given such a curve α, we first realize it by a geodesic
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representative (with respect to our fixed metric). The preimage p−1(α) in

S̃ determines a discrete subset of G(S̃) (independent of the metric), and to

this we can associate a Dirac measure on G(S̃), for which π1(S)-invariance

follows from the invariance of p−1(α). This injects the set C into C(S), and

we will thus view C as a subset of C(S) when convenient. While these are

very special types of geodesic currents, the set of positive real multiples of all

curves is in fact dense in C(S), as shown in [4].

In [3], Bonahon constructs a continuous extension for the geometric inter-

section number to all currents.

Theorem 10 (Bonahon) The geometric intersection number i : C(S) ×
C(S) → R has a continuous, bilinear extension

i : C(S) × C(S) → R.

Moreover, in [24], Otal proved that i and C can be used to separate points:

Theorem 11 (Otal) Given μ1,μ2 ∈ C(S), μ1 = μ2 if and only if i(μ1, α) =
i(μ2, α) for all α ∈ C.

From this, one can easily deduce a convergence criterion and also define a

metric on the space of currents which will be convenient for our purposes.

Theorem 12 A sequence μk ∈ C(S) converges to μ ∈ C(S) if and only if

lim
k→∞

i(μk, α) = i(μ,α)

for all α ∈ C. Furthermore, there exist tα ∈ R+ for each α ∈ C so that

d(μ1,μ2) =
∑

α∈C

tα
∣∣ i(μ1, α) − i(μ2, α)

∣∣

defines a proper metric on C(S) which is compatible with the weak* topology.

Before we prove this theorem, we recall one further fact due to Bonahon

[4] which we will need. We say that a geodesic current ν is binding if for

every (x, y) ∈ G(S̃), there is an (x′, y′) in the support of ν such that (x, y)

and (x′, y′) link in S̃∞. With respect to any fixed metric, this is equivalent to

requiring that every bi-infinite geodesic in S̃ intersects some geodesic in the

support of ν. It follows, as discussed by Bonahon, that any binding current

and any nonzero current have positive intersection number. As an example,

any filling curve or union of curves determines a binding current.
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Proposition 13 (Bonahon) If ν is a binding geodesic current and R > 0, then

the set

{μ ∈ C(S) | i(μ, ν) ≤ R}
is a compact set. Consequently, the set

{
μ

i(μ, ν)

∣∣∣μ ∈ C(S) \ {0}
}

is compact, and hence so is P C(S).

Proof of Theorem 12 Continuity of i implies i(μk, α) → i(μ,α) for all α ∈ C

if μk → μ. To prove the other direction, assume i(μk, α) → i(μ,α) for all

α ∈ C. In particular, if we let α0 ∈ C be a filling curve (so the associated

current is binding), then i(μk, α0), i(μ,α0) ≤ R for some R > 0. So, {μk} ∪
{μ} is contained in some compact set by Proposition 13.

Since C(S) is metrizable, it follows that there is a convergent subsequence

μkn → μ′ for some μ′ ∈ C(S). Continuity of i implies that i(μ,α) = i(μ′, α)

for all α, and so Theorem 11 guarantees that μ = μ′. Since this is true for any

convergent subsequence of {μk} it follows that μk → μ. This completes the

proof of the first statement of the theorem.

To build the metric we must first find the numbers {tα}. For this, we observe

that for any μ ∈ C(S) and fixed choice of a filling curve α0, the numbers

{
i(μ,α)

i(α0, α)

}

α∈C

=
{

i

(
μ,

α

i(α0, α)

)}

α∈C

are uniformly bounded. This follows from the fact that the set of currents

{
α

i(α0, α)

}

α∈C

is precompact by Proposition 13.

Now we enumerate all closed curves α0, α1, α2, . . . ∈ C (α0 still denoting

our filling curve). Set tk = tαk
= 1/(2k i(α0, αk)). It follows that

∞∑

k=0

tk i(μ,αk) =
∞∑

k=0

1

2k
i

(
μ,

αk

i(α0, αk)

)

converges and hence the series for d given in the statement of the proposition

converges. Symmetry and the triangle inequality are immediate, and positivity

follows from Theorem 11. The fact that the topology agrees with the weak*

topology is a consequence of the first part of the Theorem and the fact that



244 M. Duchin et al.

C(S) is metrizable (hence first countable, so determined by its convergent

sequences).

Finally, we verify that the metric is proper. Proposition 13 implies that for

any binding current ν ∈ C(S), the set

A =
{

μ

i(μ, ν)

∣∣∣μ ∈ C(S) \ {0}
}

is compact. Since d is continuous, the distance from 0 to any point of A is

bounded above by some R > 0 and below by some r > 0. Furthermore, for

any μ ∈ C(S) and t ∈ R+, we have

d(tμ,0) = t · d(μ,0).

Hence, the compact set

A′ = {tμ |μ ∈ A, t ∈ [0,1]}

is contained in the ball of radius R and contains the ball of radius r . From

this and the preceding equation, it follows that for any ρ > 0, the closed ball

of radius ρ > 0 about 0 is a compact set. That is, d is a proper metric. �

2.6 Geodesic currents: punctured surfaces

The situation for punctured surfaces requires more care. First, we replace all

punctures by holes, so that we may uniformize S by a convex cocompact hy-

perbolic surface. That is, we give S a complete hyperbolic metric (of infinite

area) so that S contains a compact, convex core which we denote core(S).

To describe core(S) concretely, first consider the universal covering S̃ → S

(with S̃ isometric to the hyperbolic plane) together with the isometric action

of π1(S) by covering transformations. We denote the limit set of the action on

the circle at infinity of S̃ by � ⊂ S̃∞. The convex hull of � in S̃ is a closed,

π1(S)-invariant set which we denote hull(�), and the quotient by π1(S) is

precisely core(S). The inclusion core(S) ⊂ S is a homotopy equivalence and

convex cocompactness means that core(S) is compact. Let G(hull(�)) denote

the space of geodesics in S̃ with both endpoints in �. Thus,

G(hull(�)) ∼= (� × � − �)/(x, y) ∼ (y, x).

A geodesic current on S is now defined to be a π1(S)-invariant Radon mea-

sure on G(hull(�)). Equivalently, we are considering π1(S)-invariant mea-

sures on G(S̃) for which the support consists of geodesics that project en-

tirely into core(S). We use the same notation as before and denote the space

of currents on S by C(S), endowed with the weak* topology. Bonahon [3]
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also proves that the associated projective space P C(S) is compact and that

the geometric intersection number on closed curves extends continuously to

a symmetric bilinear function

i : C(S) × C(S) → R.

In this setting, the conclusion of Theorem 11 is not true: the geodesic cur-

rents associated to boundary curves have zero intersection number with every

geodesic current. We remedy this as follows.

First suppose that α : R → S is a proper bi-infinite geodesic (note that α

determines an element of C
′(S)). If we let α̃ : R → S̃ denote a lift of α, then

both endpoints limit to points in S̃∞ − �. As such, the set of all geodesics

in G(hull(�)) which transversely intersect α̃(R) is a compact set which we

denote Aα̃ . Given μ ∈ C(S), we define

i(μ,α) = μ(Aα̃).

Lemma 14 For any proper bi-infinite geodesic α : R → S, the function

C(S) → R

given by μ �→ i(μ,α) is continuous and depends only on the proper homotopy

class of α ∈ C
′(S).

Proof The π1(S)-equivariance of μ shows that i(μ,α) is independent of the

chosen lift α̃ : R → S̃. Moreover, a proper homotopy αt of α lifts to a homo-

topy α̃t for which no endpoint ever meets �. It follows that Aα̃t
= Aα̃ for all

t and so i(μ,α) depends only on the homotopy class α ∈ C
′(S).

All that remains to prove is continuity. Suppose μk → μ in C(S). Then

since the characteristic function χ of Aα̃ is a compactly supported continuous

function, it follows that

i(μk, α) =
∫

G(hull(�))

χdμk →
∫

G(hull(�))

χdμ = i(μ,α)

as required. �

Appealing to the closed case, this provides us with enough intersection

numbers to separate points in C by their intersections with C
′, as will be

shown below.

Let DS be the double of core(S) over its boundary, which naturally inher-

its a hyperbolic metric from core(S). We consider core(S) as isometrically

embedded in DS. The cover of DS associated to π1(core(S)) < π1(DS)

is canonically isometric to S, and we can identify the two surfaces, writ-

ing S → DS for this cover. Thus we have a canonical identification of
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universal covers S̃ = D̃S. The action of π1(S) on S̃∞ is the restriction to

π1(S) < π1(DS) of the action of π1(DS). Any geodesic current μ ∈ C(S)

can be extended to a current in C(DS), which we also denote μ, by pushing

the measure around via coset representatives of π1(S) < π1(DS), making it

π1(DS)-equivariant.

This defines an injection C(S) → C(DS), and it is straightforward to check

that this is an embedding. It follows from Bonahon’s construction of the inter-

section number function that i on C(S) is just the restriction, via this embed-

ding, of i on C(DS). If α is any closed geodesic on DS, then there are a finite

(possibly zero) number of lifts of α to the cover S → DS that nontrivially

meet core(S), and we denote these

α1, . . . , αk : R → S.

If the image is entirely contained in core(S), then there is only one lift, and

it covers a closed geodesic. Otherwise, α1, . . . , αk is a union of proper geo-

desics in S. An inspection of Bonahon’s definition of i reveals that for any

μ ∈ C(S),

i(μ,α) =
k∑

i=1

i(μ,αi).

We can now prove the required analog of Theorem 11.

Theorem 15 Given μ1,μ2 ∈ C(S), μ1 = μ2 if and only if i(μ1, α) = i(μ2, α)

for all α ∈ C
′(S).

Proof If μ1 �= μ2, we must find α ∈ C
′(S) so that i(μ1, α) �= i(μ2, α). By

Theorem 11, there exists α ∈ C(DS) so that i(μ1, α) �= i(μ2, α). If α is con-

tained in core(S), then α ∈ C(S) ⊂ C
′(S) and we are done. Otherwise, let

α1, . . . , αk ∈ C
′(S) be the lifts as described above. Then

k∑

i=1

i(μ1, α
i) = i(μ1, α) �= i(μ2, α) =

k∑

i=1

i(μ2, α
i).

But then i(μ1, α
i) �= i(μ2, α

i) for some i, completing the proof. �

We also easily obtain a version of Theorem 12.

Theorem 16 A sequence {μk} ∈ C(S) converges to μ ∈ C(S) if and only if

lim
k→∞

i(μk, α) = i(μ,α)
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for all α ∈ C
′(S). Furthermore, there exist tα ∈ R+ for each α ∈ C

′(S) so that

d(μ1,μ2) =
∑

α∈C′(S)

tα
∣∣ i(μ1, α) − i(μ2, α)

∣∣

defines a proper metric on C(S) which is compatible with the weak* topology.

Proof Although we do not have Proposition 13 for S, this proposition applied

to DS implies that if α0 ∈ C(DS) is a filling curve, then the associated proper

geodesics α1, . . . , αk ∈ C
′(S) have the property that

A =
{

μ∑
j i(μ,αj )

∣∣∣∣μ ∈ C(S) \ 0

}

is compact. The proof continues as for Theorem 12. �

3 Spectral rigidity for simple closed curves

This section is devoted to the proof of Theorem 1. We begin by considering

the case of the torus. This is not a step in proving the theorem, but the proof

illustrates a useful principle used later, and also shows that Theorem 2 is

false for tori (and similarly for once-punctured tori and four-times-punctured

spheres).

Proposition 17 The lengths of any three distinct primitive closed curves de-

termine a flat metric on the torus.

Proof The Teichmüller space of unit-area flat tori is the hyperbolic plane H.

Within this parameter space, prescribing the length of a given curve picks out

a horocycle in H. The intersection of two horocycles is at most two points,

so by choosing three arbitrary curves, we can determine the flat metric on a

torus by their lengths. �

The first part of spectral rigidity for simple closed curves is to establish that

cylinder curves for q are determined by q-lengths of simple curves. Given

α ∈ S, we write Tα for the Dehn twist in α.

Proposition 18 For α ∈ S and q ∈ Flat(S), we have α �∈ cyl(q) if and only if

there exists β ∈ S with i(α,β) �= 0 so that the following condition holds:

ℓq(Tα(β)) − ℓq(β) = ℓq(α) · i(α,β). (1)

Lemmas 19 and 20 prove the two implications needed for the Proposition.
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Fig. 1 A representative of

the image of an arc δ under

Tα

Lemma 19 For α ∈ cyl(q) and any curve β ∈ S with i(α,β) �= 0,

ℓq(Tα(β)) − ℓq(β) < ℓq(α) · i(α,β). (2)

The idea of this proof is simple and can be previewed by looking at Fig. 1:

the cylinders have Euclidean geometry, so geodesic representatives will never

make a “sharp turn” in the middle of a cylinder, but will always follow a

shorter hypotenuse.

Proof Fix any β with i(α,β) �= 0. We must show that α,β, q satisfy (2).

Let αq denote a q-geodesic representative contained in the interior of its

Euclidean cylinder neighborhood C and let βq denote a q-geodesic represen-

tative of β . Either βq is obtained by traversing a finite number of saddle con-

nections or else is itself a cylinder curve (defining a different cylinder than α)

and contains no singularities. It follows that βq ∩ C consists of finitely many

straight arcs connecting one boundary component of C to the other and the

number of transverse intersections of αq and βq is i(α,β).

We can construct a representative of Tα(β) as follows. An arc δ of the

intersection δ ⊂ βq ∩ C is cut by αq into two arcs δ = δ0 ∪ δ1. To obtain

Tα(β), surger in a copy of αq traversed positively; see Fig. 1. Observe that

this is necessarily not a geodesic representative since it makes an angle less

than π at each of the surgery points.

Because αq and βq are transverse, the number i(α,β) counts the number

of intersection points of αq and βq which in turn counts the number of arcs δ

of intersection that βq makes with C. The length of the representative Tα(β)

we have constructed is thus precisely

ℓq(β) + ℓq(α) · i(α,β).

As we noted above, our representative is necessarily not geodesic, and hence

ℓq(Tα(β)) < ℓq(β) + ℓq(α) · i(α,β).

This completes the proof, since β was arbitrary. �

This proves one direction of Proposition 18. For the other direction, we

must establish the following.
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Fig. 2 The figure shows αq

and βq as concatenations of

saddle connections, sharing

at least one full saddle

connection in common

Lemma 20 If α �∈ cyl(q), then there exists β ∈ S with i(α,β) �= 0 so that the

following condition holds:

ℓq(Tα(β)) − ℓq(β) = ℓq(α) · i(α,β).

Before we begin with the proof, we again briefly explain the idea. It is

illuminating to consider first the simplified situation when the geodesic rep-

resentative αq is embedded. In this case, we seek a curve β whose geodesic

representative meets αq in a singularity, then turns right along αq follow-

ing at least one saddle connection, before exiting αq on the other side, as in

Fig. 2. (We note that right/left is defined with reference to an orientation of

the surface and not of the curves. This requirement is to match the conven-

tion that Dehn twists turn right.) Then angle considerations suffice to see that

ℓq(Tα(β)) = ℓq(β)+ℓq(α). That is, since βq is a geodesic, the angles marked

in the figure must be ≥ π . This means that surgering in an additional copy of

αq gives a representative of Tα(β) that is necessarily geodesic.

What the proof will show is that such a curve (following αq for at least

one full saddle connection) can be produced by starting with any curve inter-

secting α and replacing it by a sufficiently high twist about α. For the general

immersed case, the proof is greatly clarified by working in the universal cover.

For any α /∈ cyl(q) and any lift α̃, say with endpoints a±, let H±, S± be the

two halfspaces and two subarcs into which α̃ divides the universal cover and

its boundary circle (see Fig. 3). Recall the following standard fact about the

lifts of Dehn twists to S̃: there is a lift T̃ 2
α of T 2

α whose restriction to the

boundary fixes a± and has prescribed dynamics on the boundary:

lim
N→∞

T̃ 2N
α b = a± if b ∈ S±. (3)

This lift is obtained by first choosing any lift of T 2
α that leaves α̃ invariant

then composing with an appropriate covering transformation, also fixing α̃.

(The square is needed to get the right dynamics on both halfspaces.)

Proof Assume for simplicity that S is closed (again, the punctured case is

similar). Take α̃q , H±, S± as above.
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Fig. 3 The lift α̃q is shown on the left together with the halfspaces it defines, the singularities

with angles > π marked, and the rays γ ±. The dynamics of T̃ 2
α on the boundary attract points

into A±. On the right is a schematic showing only the lift α̃q and the rays γ ±, to illustrate that

any bi-infinite geodesic with endpoints in A± must coincide with α̃q between x+ and x−. This

is because the shaded region together with the geodesic segment from x+ to x− is convex, so

a geodesic can not leave it and re-enter

Because α is not a cylinder curve, α̃q is a concatenation of saddle connec-

tions meeting at singularities of q̃ . Consider the angles made on each of the

two sides at the singularities. If the angles were always π on one side, then

there is a parallel curve on S that is nonsingular, which means α itself is in

cyl(q), contrary to assumption. Thus, there is a singularity x+ so that the an-

gle at x+ on the H+ side made by the saddle connections meeting there is

strictly greater than π , and likewise there is x− chosen relative to H−.

We choose arbitrary geodesic rays γ ± contained in H± based at x± and

continuing straight (i.e., making an angle of exactly π with α̃q ). Let A± be

the subarcs of the circle at infinity bounded by a± and the endpoint of γ ±, as

in Fig. 3.

Let β0 ∈ S be any curve with i(α,β0) = k �= 0. From the previous descrip-

tion of the behavior of Dehn twists on S̃, it follows that for large enough N ,

the curve β = T 2N
α (β0) has the following property: for each 1 ≤ j ≤ k, there

is a lift β̃j (corresponding to the j th point of intersection of α with β) with

one endpoint in A+ and the other in A−. To achieve this, first choose initial

lifts β̃
j

0 (corresponding to the intersections of β0 with α) whose endpoints link

the endpoints a± of α̃. Then, appealing to (3), we can choose Nj sufficiently

large for the desired property to hold for the j th arc; finally, let N = maxNj .

Observe that each such β̃j must coincide with α̃q for (at least) the portion

between x− and x+. To see this, note that the shaded region (together with

the geodesic segment from x+ to x−) on the right in Fig. 3 is the intersection

of two halfspaces, so it is geodesically convex. Therefore, any geodesic from

A− to A+ must stay in this region. Finally, for each of the k essential inter-
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sections of β with α, we have shown that the curve β shares at least a saddle

connection with α. It follows that the geodesic representative of Tα(β) is now

exactly obtained from β by surgering in k copies of α, as in the discussion

preceding the Lemma. This completes the proof. �

Lemmas 19 and 20 imply Proposition 18. As an immediate corollary, it

follows that cyl(q) is determined by λS(q).

Corollary 21 If q, q ′ ∈ Flat(S) and λS(q) = λS(q
′), then cyl(q) = cyl(q ′).

The next lemma shows that having the same set of cylinder curves is very

restrictive.

Lemma 22 If cyl(q) = cyl(q ′), then Hq = Hq ′ .

Proof Suppose cyl(q) = cyl(q ′). First lift q and q ′ to arbitrary representatives

in Q1, also called q and q ′, so that it is well-defined to talk about particular di-

rections. Note that a cylinder curve, since it belongs a parallel family of non-

singular representatives, has a well-defined direction θ ∈ RP1. Next, recall

that for any quadratic differential, the set of directions with at least one cylin-

der is dense in RP1 by a result of Masur [21]. Thus, for every uniquely ergodic

foliation νθ
q ∈ P M F (q), there is a sequence of cylinder curves αi ∈ cyl(q) for

which the directions converge: θi → θ . It follows that

νθi
q → νθ

q as i → ∞.

Since i(ν
θi
q , αi) = 0, it follows that in P M F , up to subsequence, we have

αi → μ ∈ P M F with i(μ, νθ
q ) = 0. Since νθ

q is uniquely ergodic, this means

that μ and νθ
q are equal, and hence αi → νθ

q in P M F . From the assumption

that cyl(q ′) = cyl(q), it follows that νθ
q is also in P M F (q ′). Thus the sets of

uniquely ergodic foliations in P M F (q) and P M F (q ′) are identical.

Consider a pair of uniquely ergodic foliations μ0 and ν0 in P M F (q) ∩
P M F (q ′). There is a matrix M (respectively, M ′) in SL2(R) so that μ0 and

ν0 are the vertical and the horizontal foliations of Mq (respectively, M ′q ′).
However, there is a unique Teichmüller geodesic connecting μ0 and ν0 ([13]).

Therefore, there is a time t for which

M ′q ′ = AtMq for At =
(

et 0

0 e−t

)
.

That is, q ′ is in the SL(2,R) orbit of q , and hence Hq = Hq ′ . �

We can now assemble these facts together.
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Proof of Theorem 1 Suppose λS(q) = λS(q
′). By Corollary 21, cyl(q) =

cyl(q ′) and so Lemma 22 implies Hq = Hq ′ . A level set of the length of a

given cylinder curve on Hq = Hq ′ is a horocycle. So if α,β, γ ∈ cyl(q) =
cyl(q ′) have distinct directions, then q and q ′ are contained in the intersection

of the same three distinct horocycles. As in the case of flat tori (Proposi-

tion 17), this implies q = q ′. �

4 Iso-length-spectral families

Here we show constructively that for a set of curves to be spectrally rigid, its

projectivization must not miss any open set of P M F .

Theorem 3 Suppose ξ(S) ≥ 2. If � ⊂ S ⊂ P M F and � �= P M F , then

there is a deformation family 	� ⊂ Flat(S) for which 	� → R
� is constant,

and such that the dimension of 	� grows linearly with ξ(S), as does the

dimension of Flat(S) itself.

In particular, no finite set of curves determines a flat metric. We will build

deformation families of flat metrics in this section based on a train track argu-

ment. We remind the reader of one specific fact which we will need (Propo-

sition 23 below) and refer to [26] for a detailed discussion of train tracks.

A train track τ on S is said to be complete if all complementary regions

are either triangles or once-punctured monogons. By a weight on τ we mean

a nonnegative vector in R
B , where B is the set of branches of τ , satisfying

the switch condition: the sum of the weights on all branches coming in to any

switch is equal to the sum of the weights on the branches going out of that

switch. We say that τ is recurrent if there is a weight on τ which is strictly

positive. An equivalent formulation of recurrence which is often easily veri-

fied is that for each branch of τ there is a simple closed curve carried by τ

which traverses that branch (that is, the associated weight vector is positive on

that branch). The necessary result which we will need is the following conse-

quence of [26, Theorem 2.7.4] regarding the set Uτ ⊂ P M L(S) of measured

laminations carried by τ , which can be thought of as the projectivization of

the space of weights on τ .

Proposition 23 If τ ⊂ S is a complete, recurrent train track, then Uτ contains

an open subset of P M L(S).

Given a metric ρ on S (with metric completion Ŝ), we call a train track τ ⊂
S magnetic with respect to ρ if there exists a magnetizing map f : (Ŝ,P ) →
(Ŝ,P ), homotopic to the identity rel P , such that if γ ⊂ τ is a curve carried

by τ , then f (γ ) is a ρ-geodesic representative of γ (up to parametrization).
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The magnetizing map f should be thought of as taking a smooth realization

of the train track to a geodesic realization (compare Fig. 7 below). In the

examples in this section, f is a homeomorphism isotopic to the identity. More

complicated maps f are used to deal with the case of punctures, as presented

in the appendix.

Informally, a train track is magnetic if geodesics “stick to it”: geodesics

carried by τ actually live inside of the one-complex f (τ) as concatenations

of the branches. We will construct magnetic train tracks for flat metrics below,

but remark that they do not exist for any hyperbolic metric (or in fact for any

complete Riemannian metric), except when the train track is a simple closed

curve. We also note in passing that a complete magnetic train track can be

found on any flat metric q ∈ Flat(S) by taking the geodesic representative

of any ending lamination with triangular complementary regions that is not

straight on q (i.e., not in P M L(q)). However, not every magnetic train track

admits appropriate deformations, so we will take more care in this section to

construct a deformable magnetic train track.

The strategy for proving Theorem 3 is to first construct an initial train track

τ on S and a deformation family 	 ⊂ Flat(S) so that τ is magnetic in q for all

q ∈ 	 and so that the length of any curve γ carried by τ is constant on 	. The

train track τ we construct is complete and recurrent, and so by Proposition 23,

Uτ ⊂ P M L has nonempty interior. Then, if � ⊂ S is not dense, we will

find a mapping class ψ adapted to � such that � ∈ ψUτ = Uψτ , and the

deformation family promised in the theorem will then be ψ	.

The main ingredient needed to prove Theorem 3 is thus the following.

Proposition 24 If ξ(S) ≥ 2, then there exists a complete recurrent train track

τ and a positive-dimensional family of flat structures 	 ⊂ Flat(S) such that:

• τ is magnetic in q for all q ∈ 	, and

• the length of any curve γ carried by τ is constant on 	.

Proof If τ is a magnetic train track for a metric ρ, then there is a nonnegative

length assigned to each branch of τ (the length of its image under f ). We

record this as a vector in R
B , where B is the set of branches of τ , and call it

the associated length vector for ρ. Then, the ρ-length of any curve carried by

τ can be computed as the dot product of the weight vector for the curve with

the length vector for ρ.

To prove the proposition, we must construct the family 	 ⊂ Flat(S) so

that the difference between the length vectors for any two q, q ′ ∈ 	 lies in

the orthogonal complement of the space of weights on τ . Geometrically, this

means that the difference in length vectors for q, q ′ ∈ 	 can be distributed

among the switches so that at each switch, the increase in length of the in-

coming branches is exactly equal to the decrease in length for each outgoing

branches; see Fig. 4.
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Fig. 4 Changing the length

vectors will be accomplished

by “folding or unfolding” at

switches which leaves the

length of curves carried by

the train track constant

Fig. 5 One basic building

block � and its train track τ .

The cylinder C1 is pictured

on the top and C2 on the

bottom. Copies of � can be

glued together end to end to

obtain a copy of S

Fig. 6 Metric pictures of the

two cylinders C1 (left) and

C2 (right) which make up �

The idea is to build metrics and partial train tracks on “basic building

blocks”, then glue them together in an appropriate pattern to obtain S. For

simplicity, we only provide the details for closed surfaces in this section,

as these can all simultaneously be handled by constructing a single build-

ing block. To prove the theorem for all surfaces S with ξ(S) ≥ 2 it suffices to

construct six more building blocks, using the same general ideas. For com-

pleteness, we have included a description of these remaining building blocks

in an appendix at the end of the paper.

The basic building block � is a genus-one surface with two boundary com-

ponents described here and shown in Fig. 5. We will put a metric and a train

track on �, and then assemble S from g −1 copies of � by gluing the bound-

ary components in pairs. Choose nonperipheral arcs α (with endpoints a1, a2)

and β (endpoints b1, b2) joining each boundary component to itself. Then the

complement of those arcs is a pair of annuli. For any choice of t > 0, there

is a unique flat metric on � so that ℓ(α) = ℓ(β) = t , the two complementary

annuli Ci are Euclidean cylinders with boundary lengths 2t and heights t , and

a1 is the closest point on its boundary circle to b1 on the other (the last re-

quirement controls the twist—see Fig. 6). This means each cylinder will have

area 2t2, so � will have area 4t2.
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Choose the value of t so that 4t2(g −1) = 1 (in order that the glued surface

will have total area one). After gluing g − 1 copies of � together end to end,

we obtain a flat metric q0 on S, whose singular points come from the ai

and bi in the pieces �. We will choose to initially glue with a quarter-twist

(compare Fig. 9), so that there are four evenly spaced singularities around the

gluing curves, and these singularities all have cone angle 3π .

Next we build a one-complex T0 of geodesic segments in q0. In each piece

�, let α′, α′′ be the minimal-length segments connecting a2 to b1 in C1, and

likewise β ′, β ′′ connecting a1 to b2 in C2 (the length of each of these will

be
√

2t); see Fig. 5. Then the edges (branches) of T0 are the saddle con-

nections which belong to the boundary of a piece �, together with the arcs

α,α′, α′′, β,β ′, β ′′ in those pieces. There are vertices (switches) for T0 at all

of the singularities in the flat metric q0.

Each 1-cell of this complex T0 is smoothly embedded in S. However, there

is no well-defined tangent space at the switches. To obtain a train track τ ,

we apply an appropriate homeomorphism F which is isotopic to the identity.

For this, it suffices to specify at each switch which branches are incoming and

which are outgoing. For each complex T occurring in the deformation family,

every switch in T will have total angle 3π and five incident branches, one of

which is separated from its neighboring branches by angle π on each side.

We use this to determine the tangencies as in Fig. 7.

Any curve γ ⊂ τ is mapped by f = F−1 to a concatenation of geodesic

segments which are branches of T0 = f (τ). But then any f (γ ) meets the an-

gle conditions that suffice for geodesity (Remark 8), so τ is magnetic with

respect to q0. The complementary regions of the train track τ are triangles, so

τ is complete. (We remark that this is a statement about the train track τ , and

not the graph T0, whose complementary 2-cells are not all triangles.) Further-

more, it is straightforward to find sufficiently many curves carried by τ , thus

showing that it is recurrent.

Next we describe a deformation space 	0 of q0 parameterized by 2(g − 1)

real numbers (small compared to t) so that a choice of parameters specifies a

Fig. 7 The homeomorphisms of S pictured here map between a geodesic one-complex T and

a train track τ . This figure shows how to use the angles in T to read off the illegal turns at

each switch, which specifies the tangent spaces for τ . The inverse map f is the magnetizing

homeomorphism for τ with respect to the flat metric
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modified flat metric q and geodesic 1-complex T . The 1-complex T is combi-

natorially equivalent to T0 and satisfies the same necessary angle inequalities

to guarantee that τ is magnetic in q , but the lengths have changed as pre-

scribed by the parameters. The difference in corresponding length vectors of

q and q0 for τ will lie in the orthogonal complement of the space of weight

vectors for τ , and hence we will have ℓq(α) = ℓq0
(α) for every curve α car-

ried by τ , as required.

We carry out the deformations in each block, and then glue the pieces to-

gether appropriately. In each block �, the deformations are parameterized by

two numbers ǫ and δ (small compared to t) so that the change in lengths of

edges is given by the following table.

A1 A2 B1 B2 α α′ α′′ β β ′ β ′′

+ǫ − δ −ǫ + δ +ǫ − δ −ǫ + δ +ǫ + δ +2ǫ +2ǫ +ǫ + δ +2δ +2δ

We now verify that (a) this change in lengths can be realized by a flat metric

built from Euclidean cylinders similar to the construction above, and (b) after

gluing all the pieces, the change in length vectors is orthogonal to the space

of weight vectors.

To verify (a), we refer to Fig. 8 which shows how the required changes in

length data are metrically realized by deformations of the Euclidean cylin-

ders.

For (b), let ǫi, δi denote the parameters of the deformation of the ith block

�i . To guarantee that the difference in length vectors is orthogonal to the

space of weight vectors, we must be able to distribute the difference vector

among the switches so that the increase in length of the incoming branches is

exactly equal to the decrease in length for each outgoing branches. One can

check that the change in lengths near the switches shown in Fig. 9 satisfies

this condition, and moreover the deformations on each �i (as described by

the table) can be glued to accomplish this change.

If we write (ǭ, δ̄) = (ǫ1, δ1, . . . , ǫg−1, δg−1) for the vector of the parame-

ters, then we obtain a 2(g − 1)-dimensional deformation space from the per-

Fig. 8 We have two parameters ǫ, δ to perturb the flat structures in each piece �. Metrically,

this can be achieved by deforming the rectangles to parallelograms, adjusting the height and

shear appropriately. (Compare Fig. 6)
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Fig. 9 The changes in

lengths assigned to τ near

one of the gluing curves. On

the left side the deformations

are parameterized by (ǫi , δi)

in the block �i and on the

right by (ǫi+1, δi+1) in the

block �i+1. The branches

which leave the picture are

incident on other switches

and local changes in lengths

occur at such switches

according to a similar

picture (with an appropriate

shift in indices)

turbed metrics 	0 = {q0(ǭ, δ̄)}. We let

	 = 	0 ∩ Flat(S),

which is the subspace with unit area; this has codimension 1, so dim(	) =
2g − 3. �

We can now prove Theorem 3 by finding a mapping class to apply to � so

that all of the image curves are carried by τ .

Proof of Theorem 3 Let 	 ⊂ Flat(S) and τ ⊂ S be as in Proposition 24. Since

τ is complete and recurrent, the subset Uτ ⊂ P M L consisting of those mea-

sured laminations carried by τ has nonempty interior. Let h ∈ Mod(S) be

a pseudo-Anosov mapping class whose attracting point in P M L is a lam-

ination λ+ ∈ Uτ . By assumption, � is not dense, so there is an open set

W ∈ P M L such that � ∩ W = ∅.

Since any orbit of the mapping class group is dense in P M L, there is

some mapping class ϕ ∈ Mod(S) such that λ− ∈ ϕW , where λ− is the re-

pelling lamination of h. But then ϕ� misses a neighborhood of λ−, so for n

sufficiently large, any curve in hnϕ� is carried by τ . Equivalently, any curve

in � is carried by ϕ−1h−nτ .

Now we set

	� = {ϕ−1h−nq |q ∈ 	},
and observe that the length of any curve γ ∈ � is constant on 	� since it is

carried by ϕ−1h−n(τ ), and the property of being magnetic is clearly preserved
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when both the train track and the metric are modified by the same mapping

class. �

Remark 25 Here, we obtain a deformation family of dimension 2g − 3. We

make no claim that this is optimal, but note that the optimal dimension is

bounded above and below by linear functions in g, since Flat(S) itself has

dimension 12g − 14. For the cases covered in the appendix, which allow

punctures and boundary components, this proportionality holds as well: the

number of parameters in the deformation space is linearly comparable to g +
n, as is the complexity of S and therefore the dimension of Flat(S).

5 Flat structures as currents

Bonahon’s space of geodesic currents derives its utility from the fact that so

many spaces embed into it in natural ways with respect to the intersection

form. For example, the space of measured laminations M L, being the com-

pletion of S with respect to i, is easily seen to embed into C(S), and the re-

striction of i to M L × M L is Thurston’s continuous extension of geometric

intersection number from weighted simple curves to measured laminations.

In this section, we see that Flat(S) embeds naturally as well.

For closed surfaces, Bonahon constructs an embedding of T (S) into C(S)

in [4] by sending a hyperbolic metric m to its associated Liouville current

Lm. This was extended to all negatively curved Riemannian metrics by Otal

in [24] and to negatively curved cone metrics by Hersonsky–Paulin in [16].

Given any such metric m, we will denote the associated current by Lm. The

naturality with respect to i is expressed by the equation

i(Lm, α) = ℓm(α).

This extends easily to Flat(S), and in fact it is possible to carry out this

construction for surfaces which are not necessarily closed. Given q ∈ Q1(S),

we can view θ �→ νθ
q as a map RP1 → C(S).

Proposition 26 For any q ∈ Flat(S) there exists a current Lq such that

(1) for all α ∈ C
′, i(Lq , α) = ℓq(α);

(2) for all μ ∈ C(S) and any q ∈ Q1(S) inducing the given q ∈ Flat(S),

i(Lq ,μ) = 1

2

∫ π

0

i(νθ
q ,μ)dθ;

(3) i(Lq ,Lq) = π/2.
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Proof We can define Lq by a Riemann integral

Lq = 1

2

∫ π

0

νθ
qdθ

by which we mean a limit of Riemann sums. Since RP1 is compact, the map

f (θ) = νθ
q is uniformly continuous. As the metric d from Theorems 12 and 16

is complete, this integral exists.

For any α ∈ C
′, we recall the formula from Lemma 9

ℓq(α) = 1

2

∫ π

0

i(νθ
q , α) dθ.

Combining this with the uniform continuity of νθ
q implies part (1) and also

part (2) for any current μ which is a scalar multiple of a current associated to

a curve. For general currents we appeal to the density of R+ × C in C(S) and

the continuity of intersection number.

The foliations νθ
q have q-length 1, and so i(Lq , νθ

q ) = 1 (this also follows

from part (2)). Therefore, (3) follows from (2) by the computation

i(Lq ,Lq) = 1

2

∫ π

0

i(Lq, ν
θ
q ) dθ = 1

2

∫ π

0

dθ = π

2
.

�

Remark 27 In the closed case, an equivalent definition of Lq can be given as

a cross-ratio, as in Hersonsky-Paulin.

This proposition provides the tools needed to give the embedding of

Flat(S) into C(S).

Theorem 4 There is an embedding

Flat(S) → C(S)

denoted by q �→ Lq so that for q ∈ Flat(S) and α ∈ C
′, we have i(Lq, α) =

ℓq(α). Furthermore, after projectivizing, Flat(S) → P C(S) is still an embed-

ding.

Proof If qn → q in Flat(S), then ℓqn(α) → ℓq(α) for all α ∈ C
′, and hence

Lqn → Lq by Theorems 12 and 16. Thus, q �→ Lq is continuous.

Injectivity for Flat(S) → C(S) follows directly from Theorem 1, where

we have shown that even intersection with elements of S distinguishes flat

metrics. Injectivity for Flat(S) → P C(S) follows from the fact that i(Lq ,Lq)

is constant, which ensures that no two currents in the image of Flat(S) can be

multiples of one another.

Therefore, Flat(S) continuously injects into C(S). To show that this map is

an embedding, we need to show that if qn exits every compact set in Flat(S),
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then Lqn has no subsequence which converges to a point of (the image of)

Flat(S). This is a consequence of Theorem 5 proven below, which describes

precisely the subsequential limits of Lqn . �

As a consequence of the continuity of Flat(S) → C(S), we find that the

length of a lamination in a flat metric is well-defined, and moreover these

lengths vary continuously.

Corollary 28 The flat-length function Flat(S) × S(S) → R has a continuous

homogeneous extension

ℓ : Flat(S) × M F (S) → R

given by

(q,μ) �→ ℓq(μ) = i(Lq ,μ).

We can now prove the main theorem.

Theorem 2 If ξ(S) ≥ 2, then � ⊂ S ⊂ P M F is spectrally rigid over Flat(S)

if and only if � is dense in P M F .

Proof We first assume � is dense in P M F . Suppose q, q ′ ∈ Flat(S) have

ℓq(α) = ℓq ′(α) for all α ∈ �. For any μ ∈ M F , the density hypothesis im-

plies that there are scalars ti and curves αi ∈ � such that tiαi → μ. But

ℓq(tiαi) = ℓq ′(tiαi),

so Corollary 28 implies ℓq and ℓq ′ agree on μ. In particular, the two metrics

assign the same length to all simple closed curves. By Theorem 1, it follows

that q = q ′, and thus � is spectrally rigid.

Next assume that � is not dense in P M F . Theorem 3 implies the exis-

tence of a positive-dimensional family 	� ⊂ Flat(S) for which the lengths of

curves in � is constant. In particular, there exists a pair of distinct flat struc-

tures q, q ′ ∈ 	� for which ℓq(α) = ℓq ′(α) for all α ∈ �, and hence � is not

spectrally rigid. �

6 The boundary of Flat(S)

In this section we give a description of the geodesic currents that appear in

the closure of Flat(S) ⊂ P C(S). We will show that the limit points have geo-

metric interpretations as a hybrid of a flat structure on some subsurface and a

geodesic lamination on a disjoint subsurface (Theorem 5). We call such cur-

rents mixed structures. As a first step, we show that the description of Lq as



Length spectra and degeneration of flat metrics 261

average intersection number with foliations νθ
q (Proposition 26, part (2)) ex-

tends to any limiting geodesic current. This description greatly simplifies the

analysis of what geodesic currents can appear as degenerations of flat metrics.

To every nonzero quadratic differential, we consider again the map

RP1 → M L(q) ⊂ M L(S)

given by θ �→ νθ
q , the foliation in direction θ . We show that given a sequence

of quadratic differentials whose associated currents converge in C(S), these

maps converge uniformly (up to subsequence) to a continuous map from RP1

to M L(S).

Lemma 29 For all q ∈ Q1(S), α ∈ C
′, and angles θ0 and θ1, we have

∣∣ i(νθ1
q , α) − i(νθ0

q , α)
∣∣ ≤ ℓq(α) · |θ1 − θ0|.

It follows that θ �→ νθ
q is Lipschitz.

Proof Let ω be a saddle connection contained in a q-geodesic representative

of α. Assume ω is at angle φ. We have i(νθ
q ,ω) = ℓq(ω) · | sin(θ −φ)|. Hence

∣∣∣∣
d

dθ
i(νθ

q ,ω)

∣∣∣∣ = ℓq(ω) · | cos(θ − φ)| ≤ ℓq(ω).

Integrating the above inequality from θ0 to θ1 and adding up over all saddle

connections of α proves the lemma. �

Proposition 30 Let qn be a sequence of quadratic differentials so that snLqn

converges in C(S) to a geodesic current L∞. Then, after possibly passing to

a subsequence, the sequence of functions

fn : RP1 → M L(S), fn(θ) = snν
θ
qn

converges uniformly to a continuous function

f∞ : RP1 → M L(S).

Proof We can consider fn as maps from RP1 to C(S). Since M L(S) is a

closed subset of C(S), the image of the limiting map f∞ is automatically in

M L(S), provided it exists.

Equip C(S) with the metric in Theorem 12 (or 16 for punctured surfaces).

By the Arzelá-Ascoli theorem, it is sufficient to show that the family of maps

fn is equicontinuous and the union of the images have compact closure. For
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angles θ0 and θ1 we have

d
(
fn(θ1), fn(θ0)

)
=

∑

α∈C′(S)

sntα
∣∣ i(νθ1

qn
, α) − i(νθ0

qn
, α)

∣∣

≤ |θ1 − θ0|
∑

α∈C′(S)

sntα ℓqn(α)

= |θ1 − θ0| · d(snLqn,0).

The inequality follows from Lemma 29, and the equalities are immediate

from the definition of the metric, together with Proposition 26. Since

d(snLqn,0) → d(L∞,0),

there exists K > 0 such that d(snLqn,0) ≤ K , and so the family of maps {fn}
is equicontinuous.

It remains to show that the
⋃

n fn(RP1) has compact closure. Observe that

i(fn(θ), α) = i(snν
θ
q , α) ≤ snℓqn(α).

Therefore,

d(fn(θ),0) =
∑

α∈C′(S)

tα i(fn(θ), α) ≤
∑

α∈C′(S)

sntαℓqn(α) = d(snLqn,0).

and so
⋃

n fn(RP
1) is contained in the closed K-ball about 0. Since d is

proper, this ball is compact. �

We now define mixed structures on S. This requires us to first make precise

what we will mean by a flat structure on a subsurface.

Suppose X ⊂ S is a π1-injective subsurface of S with negative Euler char-

acteristic. We view X as a punctured surface (removing every boundary com-

ponent), and let Flat(X) denote the space of flat structures on X. By this

we mean a flat structure on each component of X as described in Sect. 2.3,

where we now require the sum of the areas of the components to be one.

The boundary curves of X are realized by punctures and hence have length 0.

Equivalently, an element of Flat(X) is given by a unit-norm quadratic dif-

ferential in Q(X), nonzero on all components, and well-defined up to mul-

tiplication by a unit-norm complex number in each component. Represent-

ing any q ∈ Flat(X) by a unit-norm quadratic differential, we have the map

RP1 → M L(X) given by θ �→ νθ
q as before. Extending measured laminations

on X to measured laminations on S in the usual way, we can view θ �→ νθ
q as

a map into M L(S) ⊂ C(S).
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Given a subsurface X ⊂ S as above, q ∈ Flat(X), and a measured lamina-

tion λ ∈ M L(S) whose support can be homotoped disjoint from X, we define

a mixed structure η = (X,q,λ) to be the geodesic current given by

η = λ + 1

2

∫ π

0

νθ
qdθ.

Here the integral is a Riemann integral, as in the proof of Proposition 26. For

brevity we can write η = λ + Lq . It follows that for every α ∈ C
′(S),

i(η,α) = i(λ,α) + 1

2

∫ π

0

i(νθ
q , α) dθ.

We also allow the two degenerate situations X = S and X = ∅. In these cases,

the corresponding mixed structure is a flat structure on S or a measured lam-

ination on S, respectively.

Now let Mix(S) ⊂ C(S) denote the space of all mixed structures, and

P Mix(S) its image in P C(S) under the projection C(S) → P C(S). Observe

that if

η ∈ Mix(S) \ M L(S)

then i(η, η) = π/2, just as in Proposition 26.

If α is a curve in ∂X, then i(νθ
q , α) = 0 and i(λ,α) = 0. Hence i(η,α) = 0,

although α may be contained in the support of λ (and thus η).

Theorem 5 The closure of Flat(S) in P C(S) is exactly the space P Mix(S) of

projective mixed structures. That is, for any sequence {qn} in Flat(S), after

passing to a subsequence if necessary, there exists a mixed structure η and a

sequence of positive real numbers {tn} so that

lim
n→∞

tnℓqn(α) = i(α, η)

for every α ∈ C. Moreover, every mixed structure is the limit of a sequence in

Flat(S).

Proof Let qn be a sequence of quadratic differentials such that tnLqn → L∞,

for some sequence of positive real numbers tn. We have to show that, up to

scaling, L∞ ∈ Mix(S).

If the sequence tn converges to zero, then

i(L∞,L∞) = lim
n→∞

t2
n i(Lqn,Lqn) = π

2
lim

n→∞
t2
n = 0.

That is, L∞ is a measured lamination (c.f. Bonahon [4]). Thus the theorem

holds with X = ∅.
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Since every geodesic current has finite self-intersection number, we can

conclude that tn does not tend to infinity. Therefore, after taking a subse-

quence, we can assume that the sequence tn is convergent, and in fact con-

verges to 1. That is, there is a geodesic current (which we again denote by

L∞) such that Lqn → L∞ in C(S). Applying Proposition 30 and taking a

further subsequence if necessary, we can also assume that fn converges uni-

formly to a continuous map f∞. As a consequence, for every curve α ∈ C,

i(L∞, α) = 1

2

∫ π

0

i
(
f∞(θ), α

)
dθ.

Define S0 ⊂ S to be the set of simple closed curves α for which

ℓqn(α) → 0. Equivalently, α ∈ S0 if and only if i(L∞, α) = 0. Let Z0 be

the subsurface of S that is filled by S0. That is, up to isotopy, Z0 is the largest

π1-injective subsurface Z (with respect to containment) having the property

that every closed curve in S which cuts Z has positive intersection number

with some curve in S0. If Z0 = S, then there is a finite set α1, . . . , αk of

curves in S0 such that
∑

αi is a binding current, and as L∞ lies in the span

of M L(S) ⊂ C(S), we have

∑
i(L∞, αi) > 0,

which is a contradiction. Therefore, Z0 is a proper subsurface of S.

We observe that, for each α0 ∈ S0,

1

2

∫ π

0

i(α0, f∞(θ)) dθ = i(L∞, α0) = 0.

Since f∞ is continuous, this implies that i(α0, f∞(θ)) = 0 for every θ . That

is, for every θ ∈ RP1, the support of f∞(θ) can be homotoped to be disjoint

from Z0. Hence, i(α,L∞) = 0 for every essential curve in Z0. However, the

restriction of L∞ to Z0 may not be zero; for an annular component A of Z0,

the restriction of f∞(θ) to A may be a measured lamination that is supported

on the core curve of A.

Now choose a component W of S \ Z0. Define

D(W) =
{

i

(
L∞,

α

ℓq0
(α)

)∣∣∣∣α ∈ S(W)

}
.

Observe that D(W) is bounded, since { α
ℓq0

(α)
} is precompact, being contained

in the compact set

{λ ∈ M L(S) |ℓq0
(λ) = 1}.

We argue in two cases.
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Case 1: inf(D(W)) > 0.

In this case, we have a uniform lower bound for the qn-length of any nonpe-

ripheral simple closed curve, and hence also any nonperipheral closed curve

in W . Since W is a component of S \ Z0, the qn-lengths of the boundary

curves of W go to zero. Therefore, after choosing a basepoint in W (away

from the boundary) and passing to a subsequence, we can assume that qn|W
converges to a flat structure on W geometrically, that is, after re-marking

by a homeomorphism. (See Appendix A of [22] for a thorough discussion

of the geometric topology on the space of quadratic differentials. In particu-

lar, McMullen establishes the existence of the relevant geometric limit in his

Theorem A.3.1 for points in moduli space.) Since any given curve in W has

a uniform upper bound to its qn-length, we may assume that the re-marking

homeomorphisms are isotopic to the identity in W , and hence qn|W converges

to a flat structure on W (though not necessarily of unit area).

Case 2: inf(D(W)) = 0.

In this case, we have a sequence of simple curves αn ∈ C(W) such that

lim
n→∞

i

(
L∞,

αn

ℓq0
(αn)

)
= 0.

Since { αn

ℓq0
(αn)

} is precompact, we may pass to a subsequence so that

αn

ℓq0
(αn)

→ λ,

for some lamination λ. The continuity of intersection number implies

i(L∞, λ) = 0.

We observe that λ has to fill W . To see this, let W ′ ⊂ W be the subsurface

filled by λ. Since i(L∞, λ) = 0, it follows that i(f∞(θ), λ) = 0. Therefore,

i(f∞(θ), ∂W ′) = 0 and hence i(L∞, ∂W ′) = 0. Thus ∂W ′ ∈ S0 and W = W ′.
The support of L∞ consists of geodesics having no transverse intersection

with the support of λ. Therefore, the support of L∞, restricted to W , equals

the support of λ. That is, L∞|W is a (filling) measured lamination in W .

We have shown that L∞ is a mixed structure (X,q,λ) where X is the union

of all W as in Case 1, q is the limiting flat structure in X and λ is the union

of limiting laminations in Case 2 and weighted curves from all the annular

components A where the restriction of some f∞(θ) to A is nontrivial. Since

i(L∞,L∞) = lim
n→∞

i(Lqn,Lqn) = π/2,

the sum of the areas of the flat structures is 1.

To finish the proof, we show that any mixed structure η = (X,q,λ) appears

as the limit of a sequence of flat structures. The idea is to build the metric
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from q on X, by making small slits at the punctures and gluing in a sequence

of metrics on the complement, limiting to λ and with area tending to zero.

First lift q to an arbitrary representative q ∈ Q1(X). Next write the lami-

nation λ as λ = λ0 + λ1, where λ0 is supported on a disjoint union of simple

closed curves, and λ1 has support a lamination with no closed leaves. We can

further decompose λ0 =
∑

i siαi for some αi ∈ S and si > 0. For each i and

all n ≥ 0, let Ci,n be a Euclidean cylinder with height si and circumference

2/n2. Let Y be the subsurface filled by λ1 (with boundary replaced by punc-

tures) and let q ′ ∈ Q1(Y ) be any quadratic differential for which ν0
q ′ = λ1.

Consider the Teichmüller deformation Anq
′, where

An =
(

n 0

0 1
n

)
.

This tends to the vertical foliation of q ′ (which was chosen to be λ1) by Propo-

sition 33 below.

Let Z be the union of the nonannular, non-pants components of S \(X∪Y).

Choose any quadratic differential q ′′ ∈ Q1(Z) for which the vertical foliation

is minimal (for simplicity).

Now we construct a flat structure qn as follows. At each puncture in q that

corresponds to an essential curve in S (that is, a boundary component of X in

S) we cut open a slit of size 1/n2 emanating from the given puncture, in any

direction. Similarly, letting

q ′(n) = 1

n
Anq

′ and q ′′(n) = 1

n
q ′′,

cut open slits of length 1/n2 along the vertical foliations of each, one starting

at each of the punctures of Y and Z that correspond to essential curves in S.

Note that since the vertical foliations of q ′(n) and q ′′(n) are minimal, these

constructions are possible. We glue these and the cylinders {Ci,n} along their

boundaries to recover the surface S with a quadratic differential qn, which we

scale to have unit norm (as n tends to infinity, the areas of q ′(n) and q ′′(n)

go to zero and the scaling factor tends to 1). We glue along the boundaries

by a local isometry, and if we further require the relative twisting of q0 and

qn along every gluing curve to be uniformly bounded, we obtain a sequence

limiting to η in P C(S), as desired. �

A dimension count The Thurston boundary is very nice as a topological

space: it is a sphere compactifying a ball, having codimension one in the

compactification T (S). Here, we show that the codimension of ∂Flat(S) is

three. To see this, first recall that for a connected surface S of genus g with n

punctures, T (S) is (6g + 2n − 6)-dimensional. The space Q(S) of quadratic
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differentials on S has twice the dimension and Flat(S) is a quotient of Q(S)

by an action of C. Hence

dim(Flat(S)) = 12g + 4n − 14.

For any π1-injective subsurface Y ⊂ S, we consider the subset ∂Y ⊂
∂Flat(S) consisting of those η = (X,q,λ) for which the support of the flat

metric is X = S \ Y . Observe that ∂Flat(S) is a disjoint union of subsets of

the form ∂Y , as Y varies over subsurfaces of S. In the case that Y is an annulus

with core curve α, we simply write ∂Y = ∂α . Points in ∂α are projective mixed

structures of the form wα + Lq , where q ∈ Flat(X) and the weights w on α

are nonnegative numbers. We first compute the dimension of the sets ∂α .

If α is a non-separating curve, then X is connected, has genus one less than

S and has 2 extra punctures. That is,

dim(Flat(X)) = 12(g − 1) + 4(n + 2) − 14 = 12g + 4n − 18.

To recover the space ∂α , we restore one extra dimension from the weight on

α, so that dim(∂α) = 12g +4n−17, giving that space codimension three with

respect to Flat(S).

Now let α be a separating curve. Then X = X1 ∪X2, where Xi is a surface

of genus gi with ni punctures (i = 1,2) so that g = g1 + g2 and n = n1 +
n2 − 2. Therefore, Q(X) has dimension

(12g1 + 4n1 − 12) + (12g2 + 4n2 − 12) = 12g + 4(n + 2) − 24

= 12g + 4n − 16.

The space Flat(X) is the quotient of Q(X) by scaling and rotation in each

component, but the total area must be one in the end, giving

dim(Flat(X)) = dim(Q(X)) − 3 = 12g + 4n − 19.

The space ∂α has one extra dimension from the weight on α and is (12g +
4n − 18)-dimensional. In the separating case, then, the codimension is four

with respect to Flat(S).

It is not difficult to see that for larger-complexity subsurfaces Y ⊂ S, the

subsets ∂Y have higher codimension in Flat(S), since for any subsurface W ,

dim M L(W) < dim Flat(W).

Since ∂Flat(S) is a countable union of sets of the form ∂Y , each of which can

be exhausted by compact (hence closed) sets, the dimension of ∂Flat(S) is the

maximum dimension of any subset ∂Y (by the Sum Theorem in [23]), which

is therefore 12g + 4n − 16. So we have seen that ∂Flat(S) has codimension

three in Flat(S).
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7 Remarks and questions

7.1 Rigidity for closed curves

Though we have a complete description of rigidity for � ⊂ S, the more gen-

eral case of � ⊂ C is still open.

We have already seen a sufficient condition for � ⊂ C to be spectrally

rigid over flat metrics: clearly if P M F ⊂ P(�), then � is spectrally rigid

because its lengths determine all those from S in that case. Here is a further

observation.

Proposition 31 If S is closed and � has nonempty interior as a subset of

C(S), then � is spectrally rigid over any class of metrics that embeds natu-

rally into C(S).

Proof Fix a pair of currents ν1,ν2 and set

f (μ) := i(ν1,μ) − i(ν2,μ).

Suppose there is an open set in f −1(0), which we can assume is Bǫ(μ0), the

ǫ-ball about some point μ0 in the metric from Theorem 12. By the linearity

of i and the definition of the metric, μ0 + δ ∈ Bǫ(μ0) for any δ ∈ Bǫ(0), and

since f (μ0 + δ) = 0, we have f (δ) = 0. But every current is a multiple of a

current in Bǫ(0) and f is linear, so this shows that ν1 and ν2 have the same

intersection number with all of the elements of C(S). We can conclude that

ν1 = ν2 by Otal’s theorem. In fact, we have shown that intersections with any

open set of currents suffice to separate points in C(S).

To apply this to a class of metrics such that G(S) →֒ C(S) and i(Lρ, α) =
ℓρ(α), suppose that λ�(ρ) = λ�(ρ′). Letting

ν1 = Lρ and ν2 = Lρ′,

we have f (μ) = 0 for all μ ∈ �, which contains an open set by assumption.

This then implies that ρ = ρ′. �

7.2 Remarks on the boundary of Flat(S)

Remark 32 (Visibility in the boundary) We observe that Teichmüller geodes-

ics behave well with respect to the compactification of Flat(S). For all the

points along a Teichmüller geodesic, the vertical and horizontal foliations are

constant, up to scaling. In this compactification, every geodesic limits to its

vertical foliation.
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Proposition 33 Let G : R → T (S) be a Teichmüller geodesic, let qt be the

corresponding quadratic differential at time t and ν0 be the initial vertical

foliation at q0. Then, considering ν0 as an element of C(S), we have

Lqt

et
→ ν0.

Proof The flat length of a curve is less than the sum of its horizontal length

and its vertical length and is larger than the minimum of its horizontal and

vertical lengths. That is, if μt and νt are the horizontal and the vertical folia-

tion at qt then for every α ∈ C
′(S) we have

min
(

i(α, νt ), i(α,μt )
)
≤ ℓqt (α) ≤ i(α, νt ) + i(α,μt ).

But i(α, νt ) = et i(α, ν0) and i(α,μt) = e−t i(α,μ0). Therefore,

i(Lqt , α)

et
= ℓqt (α)

et
→ i(α, ν0).

Theorems 11 and 15 assure us that a current is completely determined by

these intersections. �

This proposition shows not only that points along a Teichmüller geodesic

converge to a unique limit in ∂Flat(S) = P Mix(S), but also that different geo-

desic rays with a common basepoint have different limit points in the bound-

ary (because they have different vertical foliations). This is in contrast with

the situation for the Thurston boundary where both of the above statements

are false (see [18] and [20]).

Remark 34 (Compatibility with the Thurston boundary) The boundary of

Flat(S) described here and the Thurston boundary of Teichmüller space are

compatible in a certain sense. Consider the projection

σ : Flat(S) → T (S)

which sends a flat metric q to the hyperbolic metric in its conformal class.

As flat structures degenerate to the boundary, the corresponding hyperbolic

metrics accumulate in P M L. The following proposition describes the rela-

tionship between the limiting structures: they have zero intersection number.

The results on Teichmüller geodesics in the previous remark illustrate a spe-

cial case of this.

Proposition 35 Let qn be a sequence of flat structures on S and σn = σ(qn).

Assume that σn → μ in the Thurston compactification and qn → η in P C(S),

where μ is a geodesic lamination and η is a mixed structure in ∂Flat(S). Then

i(μ,η) = 0.
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Proof We suppose that snqn → η as currents and tnℓσn(ν) → i(μ, ν) for all

ν ∈ M L(S). Since the σn and qn escape from T (S) and Flat(S), respectively,

we know that the tn tend to zero and the sn are bounded. There is a sequence

of approximating laminations μn to σn such that tnμn → μ in M L(S) and

i(μn, ν) ≤ ℓσn(ν) for all ν ∈ M L(S); see [11, Exposé 8]. Then we have

i(μ,η) = lim
n→∞

i(tnμn, snLqn)

= lim
n→∞

1

2

∫ π

0

i(tnμn, snν
θ
qn

) dθ

≤ lim
n→∞

1

2

∫ π

0

tnℓσn(snν
θ
qn

) dθ.

We also have that ℓσn(ν
θ
qn

) is bounded above by
√

A · Ext[σn](νθ
qn

), where

A is the σn-area of S, which is a constant. This is true for simple closed

curves by definition of extremal length, and holds for laminations because

both hyperbolic length and extremal length extend continuously to M L(S) =
M F (S); see [17]. Furthermore, extremal length of νθ

qn
is realized in the

quadratic differential metric for which the foliation is straight, namely qn.

Finally, since ℓqn(ν
θ
qn

) = 1 and since the product tnsn tends to zero, we con-

clude that i(μ,η) = 0, as desired. �

Remark 36 (Intersection of two flat structures) Note that if ρ is any metric in

the conformal class of q to which a current Lρ can be naturally associated,

the extremal length argument from Proposition 35 gives us that i(Lρ,Lq) ≤
π
2

√
A, for A the ρ-area of the surface. This gives an even simpler proof of

the previous theorem for the case of closed surfaces S by taking ρ to be the

hyperbolic metric in the conformal class of q . Furthermore, this also implies

the following interesting inequality:

i(Lq ,Lq ′) ≤ i(Lq ,Lq),

where q and q ′ are any two flat metrics in the same fiber over T (S), with strict

inequality when q ′ �= q . By continuity of i, this also means that i(Lq,Lq ′′) <

i(Lq ,Lq) can occur for q, q ′′ in different conformal classes, by perturbing

a q ′ as above. On the other hand, i(Lqt ,Lq) goes to infinity as qt follows a

Teichmüller ray, so in particular

i(Lqt ,Lq) > i(Lq ,Lq)

for large t . This should be contrasted with the case of hyperbolic metrics,

where Bonahon showed that i(Lσ ,Lσ ′) ≥ i(Lσ ,Lσ ) for all σ,σ ′ ∈ T (S). In-

deed, that inequality is essential to defining a metric on T (S) induced by i
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(which Bonahon shows to be the Weil-Petersson metric); this remark shows

that no positive-definite metric can be similarly defined on Flat(S).

Remark 37 (A boundary for Q1) The boundary for Flat(S) can be used to

construct a boundary for Q1(S). We have shown that, for a sequence qn of

quadratic differentials, after taking a subsequence, not only Lqn converge in

C(S), but by Proposition 30 the maps fn(θ) converge uniformly to a map f∞,

after appropriate scaling. One can equip the space

{
(μ,f )

∣∣μ ∈ C(S), f : RP1 → M L(S) continuous
}

with the product topology, from C(S) in one factor and uniform convergence

in the other. Then the map qn �→ (Lqn, fn) is an embedding and has compact

closure in the projectivization. However, it seems difficult to describe which

pairs (μ,f ) appear in the boundary of Q1(S).

7.3 Unmarked length spectrum does not suffice

The Sunada construction of distinct isospectral hyperbolic surfaces, originally

put forward in [31], is easily applied to metrics in Flat(S). We briefly sketch

the idea.

Sunada constructs non-isometric hyperbolic surfaces S1,S2 covering a

common S by choosing “almost-conjugate” subgroups Ŵ1,Ŵ2 of π1(S) and

lifting to corresponding covers. (Almost-conjugacy means that each conju-

gacy class of π1(S) intersects the two subgroups in the same number of

elements.) If a flat metric q is placed on S, then the argument that its

lifts q1, q2 are iso-length-spectral runs exactly as for the hyperbolic met-

rics: �C(q1) = �C(q2), because an element of π1(S) conjugating γ1 ∈ Ŵ1

to γ2 ∈ Ŵ2 associates a geodesic of q1 for which the associated deck transfor-

mation is γ1 to an equal-length q2-geodesic by acting on the lift to S̃. (See [5]

for a careful discussion.)

The key in using the Sunada construction is therefore to find examples

for which the metrics on S1 and S2 are not isometric, but such choices of

hyperbolic metrics on S are in fact generic. Now put a flat metric q on S in

the conformal class of such a hyperbolic metric, and lift it to flat metrics qi

on Si . If q1 is isometric to q2, then they are conformally equivalent, so the

corresponding hyperbolic metrics are equal, a contradiction. Thus there is a

ready supply of examples of distinct flat metrics for which �C(q1) = �C(q2).

Note that this argument is for the unmarked length spectrum �C of all

closed curves; the counts of lifts in the Sunada construction are not sensitive

to whether curves are simple. The question of whether there are distinct flat

surfaces with equal unmarked length spectrum for the simple closed curves S

remains open.
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Appendix: More building blocks

Here we sketch the construction of the remaining basic building blocks

needed to carry out the proof of Proposition 24 for a general surface S with

ξ(S) ≥ 2. The building blocks are surfaces �g,n,b where g is the genus, n,

is the number of punctures/marked points, and b is the number of boundary

components. If we let d denote the dimension of the space of metrics we

construct on �g,n,b, then the resulting pairs (�g,n,b, d) are:

(�1,0,2,2), (�1,0,1,2), (�1,1,1,2), (�0,2,1,0), (�0,3,1,2), (�0,4,1,2),

(�0,4,2,3).

The case of �1,0,2 was discussed in Sect. 4. Each building block will come

equipped with a train track that carries the boundary, and when the building

blocks are assembled to construct the surface S, the train tracks assemble to

a complete recurrent train track. The family of metrics for each will keep the

boundary length fixed, so that the deformations can be carried out indepen-

dently on each piece. Gluing together the deformations is carried out in a

fashion similar to that used for the closed case in Sect. 4.

By gluing the pieces above, one can construct flat structures and magnetic

train-tracks on any surface with ξ ≥ 2. In sketch, one can attach along their

boundaries copies of �1,0,2 (to add one to the genus) and �0,4,2 (to add four

punctures) to obtain a surface with two boundary components which has al-

most all the required genus and number of punctures. One then caps off the

two boundaries with the appropriate pieces to obtain the desired surface. The

resulting flat structure, q , and magnetic train track, τ , has a deformation for

which the length of every curve in τ remains constant. The dimension of this

deformation space is at least equal to the sum of the number of allowable de-

formations for the pieces involved. As before, keeping total area one imposes

a codimension-one condition at the end.

8.1 (�1,0,1,2)

The topological picture of �1,0,1 together with its train track are shown on

the left in Fig. 10.
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Fig. 10 The topological

picture of �1,0,1 and its

train track is on the left and

the metric picture is on the

right. The angles of at least

π are indicated in the metric

picture

The arcs in the boundary of the square are identified in pairs as indicated

by the arrows. The generic metric in the deformation family is shown on the

right in Fig. 10 and is described as follows. Starting with a parallelogram

having one horizontal side and one skew side with positive slope, we identify

the opposite sides by a translation as indicated by the arrows. Next we cut a

slit along a geodesic arc σ in the parallelogram, and we assume that σ has

negative slope. This produces a metric version of the topological surface, and

the geodesic version of the train track is obtained by adding the arcs α,β, γ

as indicated.

If we require the boundary length to be fixed, so the length of σ is fixed,

then the dimension of the space of all such metrics is 4: there are 3 dimensions

for the parallelogram and one for the angle σ makes with the horizontal side.

We now wish to impose constraints which guarantee that the change in lengths

of the branches can be distributed to the switches in such a way that at each

switch the increase in the lengths of the incoming branches is equal to the

decrease in lengths of the outgoing branches. In this case, one checks that

this can only be accomplished if each of the lengths of α,β, γ change by the

same amount. This imposes two conditions: the difference in lengths of α

and β is constant, and the difference in lengths of β and γ is constant. This

cuts the dimension of the deformation space down by two, resulting in the 2-

dimensional space of deformations that was claimed. It is interesting to note

that in this case, there are nontrivial deformations for which the length vector

on the train track itself remains constant.

8.2 (�1,1,1,2)

This building block is obtained by a minor modification of the previous one;

see Fig. 11. We leave the details to the reader, but point out one new fea-

ture in this example not present in the previous two pieces. Namely, the map

f : (Ŝ,P ) → (Ŝ,P ) in the definition of a magnetic train track cannot be taken

to be a homeomorphism. This is because the small branch that partially sur-

rounds the puncture is collapsed to a point—the length vector assigns this

branch zero length.
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Fig. 11 The case �1,1,1 is a

minor variation of �1,0,1

shown in Fig. 10

Fig. 12 The metric version

for �0,2,1 degenerates

Fig. 13 The dark lines in

the metric picture for �0,3,1

represent the image of the

three main branches of the

train track

8.3 (�0,2,1,0)

For this building block, the metric picture degenerates completely to an arc

and there is “no room” to construct any deformations; see Fig. 12. This piece

is used to cap off boundary components. The metric effect is simply to glue

the boundary component to itself.

8.4 (�0,3,1,1)

The generic metric is obtained from a parallelogram by identifying the arcs

in the sides as indicated by the arrows in Fig. 13 via an appropriate semi-

translation, then cutting open a slit in the interior emanating from one of the

marked points. The small-loop branches of the train track are assigned zero

length, and the three main branches (not in the boundary) are represented by

the darkened arcs in the metric picture. A dimension count as above reveals

that the deformation space has dimension 2.
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Fig. 14 Adding another

puncture to �0,3,1 to

produce �0,4,1

Fig. 15 The topological

picture of �0,4,2 together

with its train track

Fig. 16 The metric picture

of �0,4,2

8.5 (�0,4,1,1)

This building block is obtained from the previous one in a similar fashion to

the way �1,1,1 is obtained from �1,0,1; see Fig. 14. We leave the details to

the reader.

8.6 (�0,4,2,3)

The metric picture is formed from a parallelogram with sides identified as

illustrated, then slit open along two equal-length arcs as shown. We have la-

beled some of the branches of the train track in Figs. 15 and 16.

The space of allowable deformations has dimension 3. To see this, first

note that to properly distribute length changes at the switches, the lengths of

the arcs are allowed to vary according to the following:

α α′ β β ′ γ1 γ2 γ3 γ4

+ǫ + δ +ǫ + δ +ǫ + δ +ǫ + δ +ǫ +δ +ǫ +δ
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To see that these variations are indeed possible (for small ǫ and δ), we

again appeal to a dimension count. The space of parallelograms with a pair

of slits of fixed, equal length is 3 + 3 + 3 = 9 dimensions. The 9-dimensional

parameter space is subject to 6 equations derived from the geometry, leaving

3 degrees of freedom.
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