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Abstract. We investigate the distribution of length of closed geodesics on geodesic
spheres and tubes around complex hyperplane in a non-flat complex space form. The
feature of the length spectrum of a geodesic sphere of radius $r$ in a complex projec-
tive space of holomorphic sectional curvature 4 is quite different according as $\tan^{2}r$

is rational or irrational. Each length spectrum is simple when $\tan^{2}r$ is irrationaj but
when $\tan^{2}r$ is rationaj it is not necessarily simple and moreover the multiplicity is not
uniformly bounded.

Introduction.

The aim of this paper is to study geodesics of geodesic spheres in a non-flat
complex space form and investigate their length spectrum in detail. It is well-
known that these spheres are typical examples of homogeneous spaces which are
diffeomorphic to standard spheres. For a compact Riemannian symmetric space
$M$, geodesics are well-understood: If it is of rank one, all geodesics are simple
closed curves with the same length and they are congruent each other under the
action of isometries of $M$, and if it is of rank greater than one, each geodesic

lies on a totally geodesic flat submanifold of $M$. We are hence interested in
geodesics of a compact non-symmetric Riemannian homogeneous space.

In this paper we restrict ourselves on geodesics of geodesic spheres in non-
flat complex space forms, which are a complex projective space and a complex
hyperbolic space. Geodesic spheres in non-flat complex space forms are nice
objects in intrinsic geometry as well as extrinsic geometry (that is, submanifold
theory).

From the viewpoint of intrinsic geometry, Weinstein [W] pointed out that
geodesic spheres of sufficiently large radius in a complex projective space are
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examples of Berger spheres, so that these spheres are homogeneous Riemannian
manifolds which are diffeomorphic to a sphere, whose sectional curvatures lie in
the interval $[\delta K, K]$ for some $\delta\in(0,1/9)$ , and which have closed geodesics of
length less than $2\pi/\sqrt{K}$ . These tell us that odd-dimensional version of Klin-

genberg’s lemma does not hold.
From the viewpoint of submanifold theory, they are the simplest real hy-

persurfaces in non-flat complex space forms. In a complex projective space, geo-
desic spheres are the only examples of real hypersurfaces with at most two dis-
tinct principal curvatures at each point (see [CR]). In a complex n-dimensional
complex hyperbolic space, horospheres, geodesic spheres and tubes around totally
geodesic complex $(n-1)$ -dimensional complex hyperbolic space are the examples
of such hypersurfaces. It is well-known that there exist no totally umbilic real
hypersurfaces in non-flat complex space forms.

In this context it is natural to study geodesics of these hypersurfaces. We

are interested in properties on lengths of all closed geodesics on these hyper-
surfaces. Our technique comes from submanifold theory. We study the extrin-
sic shape of geodesics on geodesic spheres by standing on the ambient non-flat
complex space form. This gives us information about length of closed geodesics

of such hypersurfaces. Once we obtain this information, our results come from
classical number theory.

One of the most remarkable results for us is that for a geodesic sphere of
radius $r$ with irrational $\tan^{2}r$ in a complex projective space of constant holo-
morphic sectional curvature 4 the length spectrum is simple (cf. Theorem 2.9).

This means that two closed geodesics on this geodesic sphere $M$ are congruent

each other with respect to some isometry of $M$ if and only if they have the same
length. On the contrary, for a geodesic sphere of radius $r$ with rational $\tan^{2}r$ in
a complex projective space, the multiplicity of length spectrum is not uniformly

bounded. We also get similar results for length spectrum of geodesic spheres and
tubes around complex hyperplane in a complex hyperbolic space (cf. Theorem
3.6).

Throughout this paper we suppose that a complex projective space $CP^{n}$ is
furnished with the standard metric of constant holomorphic sectional curvature

4 and a complex hyperbolic space $CH^{n}$ is furnished with the standard metric of

constant holomorphic sectional curvature -4.

1. Hypersurfaces with two distinct principal curvatures.

We summarize in this section some basic results which are useful in the fol-
lowing sections.

Let $\tilde{M}_{n}$ denote either a complex $n$-dimensional complex projective space $CP^{n}$

or a complex $n$-dimensional complex hyperbolic space $CH^{n}$ . Let $M^{2n-1}$ be an
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orientable real hypersurface of $\tilde{M}_{n}$ and $\Lambda^{r_{M}}$ a unit normal vector field on $M$ in
$\tilde{M}_{n}$ . The Riemannian connections $\tilde{\nabla}$ of $\tilde{M}_{n}$ and $\nabla$ of $M$ are related by

(1.1) $\tilde{\nabla}_{X}Y=\nabla_{X}Y+\langle AX, Y\rangle\Lambda^{r_{M}}$ and $\tilde{\nabla}_{X}\Lambda^{r_{M}}=-AX$ ,

for vector fields $X$ and $Y$ tangent to $M$, where $\langle$ , $\rangle$ denotes the Riemannian
metric on $M$ induced from the standard metric on $\tilde{M}_{n}$ , and $A$ is the shape
operator of $M$ in $\tilde{M}_{n}$ . Eigenvalues and eigenvectors of the shape operator $A$

are called principal curvatures and principal curvature vectors, respectively. It is
known that $M$ admits an almost contact metric structure $(\phi, \xi, \eta, \langle , \rangle)$ induced
from the K\"ahler structure $J$ of $\tilde{M}_{n}$ , which satisfies

$\phi^{2}=-I+\eta\otimes\xi$ , $\eta(\xi)=1$ , and $\langle\phi X, \phi Y\rangle=\langle X, Y\rangle-\eta(X)\eta(Y)$ ,

where I denotes the identity map of the tangent bundle $TM$ of $M$. It follows
from the equalities (1.1) that

(1.2) $(\nabla_{X}\phi)Y=\eta(Y)AX-\langle AX, Y\rangle\xi$

and

(1.3) $\nabla_{X}\xi=\phi AX$ .

The condition that the structure vector $\xi=-J\Lambda^{r_{M}}$ is principal is quite
natural. As was shown in [NR], for a real hypersurface $M^{2n-1}$ in $\tilde{M}_{n}(n\geq 2)$ , if
$A\xi=$ ct4 holds with some function 2 on $M$ then 2 is locally constant. In $CP^{n}$ ,

each real hypersurface $M$ lying on a tube of constant radius $r(>0)$ around a
complex submanifold of $CP^{n}$ satisfies this condition on 4 (cf. [CR]). In $CH^{n}$ ,

each real hypersurface $M$ lying on a tube around a complex submanifold or
around a totally real submanifold of $CH^{n}$ satisfies that condition (cf. [M]).

In this paper we study the following real hypersurfaces in non-flat complex
space forms:

(I) geodesic spheres of radius $r(0<r<\pi/2)$ in $CP^{n}$ ,

(II) a) horospheres in $CH^{n}$ ,

b) geodesic spheres of radius $r(0<r<\infty)$ in $CH^{n}$ ,

c) tubes of radius $r(0<r<\infty)$ around totally geodesic complex
hyperplane $CH^{n-1}$ in $CH^{n}$ ,

which are typical examples of real hypersurfaces with the condition that $\xi$ is
a principal curvature vector. It is known that each geodesic sphere of radius
$r(0<r<\pi/2)$ in $CP^{n}$ is congruent to a tube of radius $\pi/2-r$ around a totally
geodesic complex hyperplane $CP^{n-1}$ in $CP^{n}$ .

These hypersurfaces have two distinct constant principal curvatures. For a
geodesic sphere $M$ of radius $r$ in $CP^{n}$ , we have

$ A\xi=(2\cot 2r)\xi$ , and $Au=(\cot r)u$ ,
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for every tangent vector $u\in TM$ orthogonal to $\xi$ . For real hypersurfaces in $CH^{n}$

listed in (II), we have the following table for each tangent vector $u$ orthogonal to
$\xi$ :

These hypersurfaces listed in (I) and (II) are characterized as totally 7-umbilic
hypersurfaces in a non-flat complex space form. A real hypersurface $M$ of
$\tilde{M}_{n}(n\geq 3)$ is called totally $\eta$-umbilic if its shape operator $A$ is of the form
$ A=\alpha I+\beta\eta\otimes\xi$ for some functions 2 and $\beta$ on $M$. When $\tilde{M}_{n}$ is a complex
projective space, a totally $\eta$-umbilic hypersurface is locally congruent to a
geodesic sphere, and when $\tilde{M}_{n}$ is a complex hyperbolic space, it is locally con-
gruent to one of hypersurfaces listed in (II) (see [M], [T2]).

Moreover, if a real hypersurface $M$ of $\tilde{M}_{n}(n\geq 2)$ is locally congruent to

one of these hypersurfaces in (I) and (II), it satisfies the following ([NR]).

1) The structure tensor $\emptyset$ and the shape operator $A$ of $M$ in $\tilde{M}_{n}$ are com-
mutative: $\phi A=A\phi$ .

2) The covariant derivative of the shape operator $A$ satisfies

(1.4) $(\nabla_{X}A)Y=\mp\{\langle\phi X, Y\rangle\xi+\eta(Y)\phi X\}$ ,

where the double sign depends on the case that either $\tilde{M}_{n}$ is a complex
projective space or a complex hyperbolic space.

We here make mention of the sectional curvature of hypersurfaces $M$ of $\tilde{M}_{n}$

listed in (I) and (II). For orthonormal vectors $u,$ $v\in T_{X}M$ , the sectional curva-
ture Riem(u, $v$ ) of the plane spanned by these vectors is calculated by

Riem(u, $v$ ) $=\pm(1+3\langle\phi u, v\rangle^{2})+\langle Au, u\rangle\langle Av, v\rangle$ - $\langle$Au, $v\rangle^{2}$ .

Here the double sign also depends on the case that either $\tilde{M}_{n}$ is a complex pro-
jective space or a complex hyperbolic space. Therefore the sectional curvature

of a geodesic sphere of radius $r$ in $CP^{n}$ lies in the interval $[\cot^{2}r, (4+\cot^{2}r)]$ .

For hypersurfaces in $CH^{n}$ listed in (II), the sectional curvature lies in the inter-
val $[-(4-\coth^{2}r), \coth^{2}r]$ in the case of a geodesic sphere of radius $r$ , lies in the
interval $[-(4-\tanh^{2}r), \tanh^{2}r]$ in the case of a tube around $CH^{n-1}$ , and lies in
the interval [-3, 1] in the case of a horosphere.

We devote the rest of this section to study the isometry group of real hy-
persurfaces in (I) and (II). For a non-zero tangent vector $v\in T_{X}M$ we denote
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by $\langle v\rangle$ the 1-dimensional linear subspace of $T_{X}M$ spanned by $v$ , and by $\langle v\rangle^{\perp}$ the
orthogonal complement of $\langle v\rangle$ in $T_{X}M$ .

LEMMA 1.1. Let $M$ be a geodesic sphere in $CP^{n}$ . For any unit tangent

vectors $u\in\langle\xi_{X}\rangle^{\perp},$ $v\in\langle\xi_{y}\rangle^{\perp}of$ $M$ orthogonal to $\xi$ at arbitrary points $x,y$ , there

exist isometries $\tilde{\varphi}^{+},\tilde{\varphi}^{-}$ of $CP^{n}$ with
i) $\tilde{\varphi}^{+}(M)=\tilde{\varphi}^{-}(M)=M$ and $\tilde{\varphi}^{+}(x)=\tilde{\varphi}^{-}(x)=y$ ,

$ii)$ $d\tilde{\varphi}_{X}^{+}(u)=d\tilde{\varphi}_{X}^{-}(u)=v$ and $d\tilde{\varphi}_{X}^{+}(\xi_{X})=\xi_{y},$ $d\tilde{\varphi}_{X}^{-}(\xi_{X})=-\xi_{y}$ .

PROOF. Let 77 : $S^{2n+1}\rightarrow CP^{n}$ denote the Hopf fibration of a unit sphere
$S^{2n+1}$ in $C^{n+1}$ and $\hat{M}$ a hypersurface given by

$\{w=(w_{0}, w_{1}, \ldots, w_{n})\in C^{n+1}||w_{0}|=\cos r, |w_{1}|^{2}+\cdots+|w_{n}|^{2}=\sin^{2}r\}$ .

We see that 77 (M) is isometric to $\hat{M}$ .
For simplicity we only treat the case $n=2$ and $M=\Pi(\hat{M})$ . At a point

$w=(\cos r, \lambda e^{\sqrt{-1}\theta}, \mu e^{\sqrt{-1}\psi})\in\hat{M},$ $\lambda^{2}+\mu^{2}=\sin^{2}r$ , the tangent space of $\hat{M}$ is rep-
resented as

$T_{w}\hat{M}=\{(w, v)\in\{w\}\times C^{3}|{\rm Re}(w_{0}\overline{v_{0}})={\rm Re}(w_{1}\overline{v_{1}}+w_{2}\overline{v_{2}})=0\}$

$=\{(w, (\sqrt{-1}a, \sqrt{-1}b\lambda e^{\sqrt{-1}\theta}-\mu\alpha e^{-\sqrt{-1}\psi}, \sqrt{-1}b\mu e^{\sqrt{-1}\psi}+\lambda\alpha e^{-\sqrt{-1}\theta}))$

$|a,$ $b\in R,$ $\alpha\in C\}$ ,

where ${\rm Re}(\alpha)$ denotes the real part of a complex number 2. Let $T_{w}S^{5}=$

$\mathscr{H}_{w}\oplus \mathscr{V}_{w}$ denote the horizontal and vertical decomposition of the tangent space
of $S^{5}$ at $w$ with respect to the Hopf fibration. We denote by $(T_{w}\hat{M})^{\perp}$ the
orthogonal complement of $T_{w}\hat{M}$ in $T_{w}S^{5}$ . We find that the horizontal lift
$\Lambda^{\hat{r}_{w}}\in(T_{w}\hat{M})^{\perp}\cap \mathscr{H}_{w}$ of the unit normal $\Lambda^{r_{M}}$ at $\Pi(w)$ is of the form

$\Lambda^{\hat{r}_{w}}=(w, (-\sin r, \lambda\cot re^{\sqrt{-1}\theta},\mu\cot re^{\sqrt{-1}\psi}))$ .

We set $\hat{\xi}_{w}=-J\Lambda^{\hat{r}_{w}}$ and denote by $\langle\hat{\xi}_{w}\rangle$ the real linear subspace spanned by $\hat{\xi}_{w}$ .

Here we denote the complex structure of $C^{3}$ also by $J$. The horizontal part
$\langle\hat{\xi}_{w}\rangle^{\perp}\cap \mathscr{H}_{w}$ of the orthogonal complement subspace $\langle\hat{\xi}_{w}\rangle^{\perp}$ in $T_{w}S^{5}$ is repre-

sented as $\{(w, (0, -\mu\alpha e^{-\sqrt{-1}\psi}, \lambda\alpha e^{-\sqrt{-1}\theta}))|\alpha\in C\}$ .

Put $z=(\cos r, \sin r, 0)(\in\hat{M})$ . For $\alpha\in C$ with $|\alpha|=1$ the unitary matrix

$(_{0}^{1}0$ $(\mu/\sin r)e^{\sqrt{-1}\psi}(\lambda/\sin r)e^{\sqrt{-1}\theta}0$ $(-\mu\alpha/\sin r)e^{-\sqrt{-1}\psi}(\lambda\alpha/\sin r)e^{-\sqrt{-1}\theta}0)$

induces an isometry $\hat{\varphi}_{\alpha}$ of $S^{5}$ such that
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i) $\hat{\varphi}_{\alpha}(z)=w$ and $\hat{\varphi}_{\alpha}(\hat{M})=\hat{M}$ ,

$ii)$ $(d\hat{\varphi}_{\alpha})_{Z}(_{\vee}\hat{V}_{Z})=\Lambda^{\hat{r}_{w}}$ and $(d\hat{\varphi}_{\alpha})_{Z}(\langle\hat{\xi}_{Z}\rangle^{\perp}\cap \mathscr{H}_{Z})=\langle\hat{\xi}_{w}\rangle^{\perp}\cap \mathscr{H}_{w}$ ,

$iii)$ $(d\hat{\varphi}_{\alpha})_{Z}((z, (0,0,1)))=(w, (0, -\mu\alpha e^{-\sqrt{-1}\psi}/\sin r, \lambda\alpha e^{-\sqrt{-1}\theta}/\sin r))$ .

This guarantees the existence of an isometry $\tilde{\varphi}^{+}$ of $CP^{n}$ with desirable condi-
tions. We can similarly construct an isometry $\tilde{\varphi}^{-}$ and get the conclusion. $\square $

Such a result also holds in a complex hyperbolic space.

LEMMA 1.2. Let $M$ be one of a horosphere, a geodesic sphere, and a tube

around totally geodesic $CH^{n-1}$ in $CH^{n}$ . For any unit tangent vectors $u\in\langle\xi_{X}\rangle^{\perp}$ ,
$v\in\langle\xi_{y}\rangle^{\perp}$ of $M$ orthogonal to $\xi$ at arbitrary points $x,y$ , there exist isometries
$\tilde{\varphi}^{+},\tilde{\varphi}^{-}$ of $CH^{n}$ with

i) $\tilde{\varphi}^{+}(M)=\tilde{\varphi}^{-}(M)=M$ and $\tilde{\varphi}^{+}(x)=\tilde{\varphi}^{-}(x)=y$ ,

$ii)$ $d\tilde{\varphi}_{X}^{+}(u)=d\tilde{\varphi}_{X}^{-}(u)=v$ and $d\tilde{\varphi}_{X}^{+}(\xi_{X})=\xi_{y},$ $d\tilde{\varphi}_{X}^{-}(\xi_{X})=-\xi_{y}$ .

PROOF. Let $\Pi$ : $H_{1}^{2n+1}\rightarrow CH^{n}$ denote the Hopf fibration of an anti-de
Sitter space

$H_{1}^{2n+1}=\{w=(w_{0}, w_{1}, \ldots, w_{n})\in C^{n+1}|-|w_{0}|^{2}+|w_{1}|^{2}+\cdots+|w_{n}|^{2}=-1\}$

in $C^{n+1}$ . We denote by $\hat{M}$ a hypersurface given by one of the following;

$\{w=(w_{0}, w_{1}, \ldots, w_{n})\in C^{n+1}|-|w_{0}|^{2}+|w_{1}|^{2}+\cdots+|w_{n}|^{2}=-1|w_{0}-w_{1}|=1’\}$ ,

$\{w=(w_{0}, w_{1}, \ldots, w_{n})\in C^{n+1}||w_{0}|=\cosh r, |w_{1}|^{2}+\cdots+|w_{n}|^{2}=\sinh^{2}r\}$ ,

$\{w=$ $(w_{0}, w_{1}, . . . , w_{n})\in C^{n+1}|-|w_{0}|^{2}+|w_{1}|^{2}+\cdots+|w_{n-1}|^{2}=-\cosh^{2}r|w_{n}|=\sinh r’\}$ .

Then 77 (M) is isometric to $\hat{M}$ according as $M$ is a horosphere, a geodesic

sphere of radius $r$ or a tube of radius $r$ around a complex hyperplane in $CH^{n}$ ,

respectively.
For the cases that $M$ is a geodesic sphere or a tube around a complex

hyperplane, our proof is just the same as of Lemma 1.1. So we here make
mention of the case that $M$ is a horosphere. For simplicity we only treat the
case $n=2$ and $M=\Pi(\hat{M})$ . At a point $w=(w_{0}, w_{1}, w_{2})\in\hat{M}$ the tangent space
is represented as

$T_{w}\hat{M}=\{(w, v)\in\{w\}\times C^{3}|{\rm Re}((w_{0}-w_{1})\overline{v_{0}}-(w_{0}-w_{1})\overline{v_{1}})=0{\rm Re}(-w_{0}\overline{v_{0}}+w_{1}\overline{v_{1}}+w_{2}\overline{v_{2}})=0\}$ ,
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and the horizontal lift $\Lambda^{\hat{r}_{w}}\in(T_{w}\hat{M})^{\perp}\cap \mathscr{H}_{w}$ of the unit normal $\Lambda^{r_{M}}$ at $\Pi(w)$ is of

the forrn $\Lambda^{\hat{r}_{w}}=$ $(w, (-w_{1} , w_{0}-2w_{1} , -w_{2}, . . . , -w_{n}))$ .

Put $z=(1,0,0)(\in\hat{M})$ . For $\alpha\in C$ with $|\alpha|=1$ the matrix

$(_{w_{2}}^{w_{0}}w_{1}$
$w_{0}-2w_{1}-w_{2}-w_{1}$

$\alpha^{\overline{\frac{w}{w_{2}}}/(-)}\alpha_{2}/(-1\overline{\frac{w_{0}}{w_{0}\alpha}}\overline{\frac{w}{w_{1}}}))$

induces an isometry $\hat{\varphi}_{\alpha}$ of $H_{1}^{5}$ such that

i) $\hat{\varphi}_{\alpha}(z)=w$ and $\hat{\varphi}_{\alpha}(\hat{M})=\hat{M}$ ,

$ii)$ $(d\hat{\varphi}_{\alpha})_{Z}(_{\vee}\hat{V}_{Z})=\Lambda^{\hat{r}_{w}}$ and $(d\hat{\varphi}_{\alpha})_{Z}(\langle\hat{\xi}_{Z}\rangle^{\perp}\cap \mathscr{H}_{Z})=\langle\hat{\xi}_{w}\rangle^{\perp}\cap \mathscr{H}_{w}$ ,

$iii)$ $(d\hat{\varphi}_{\alpha})_{Z}((z, (0,0,1))=(w, (\alpha\overline{w_{2}}/(\overline{w_{0}}-\overline{w_{1}}), \alpha\overline{w_{2}}/(\overline{w_{0}}-\overline{w_{1}}),$
$\alpha)\in\langle\hat{\xi}_{w}\rangle^{\perp}\cap \mathscr{H}_{Z}$ .

Hence we obtain the conclusion in this case. $\square $

2. Geodesics on geodesic spheres in a complex projective space.

In this section we study geodesics on geodesic spheres in a complex projec-
tive space. A smooth curve $\sigma$ is said to be closed if there exists $t_{0}(\neq 0)$ with
$\sigma(t+t_{0})=\sigma(t)$ for all $t$ . The minimum positive $t_{0}$ with this property is called
the length of a closed curve $\sigma$ and is denoted by length(a). Two smooth curves
$\sigma_{1},$ $\sigma_{2}$ on a Riemannian manifold $N$ are said to be congruent if there exist an
isometry $\varphi$ of $N$ and a constant $T$ with $\sigma_{2}(t)=\varphi\circ\sigma_{1}(t+T)$ for every $t$ . One of
our goal in this section is to show that on each geodesic sphere in a complex
projective space there exist infinitely many congruency classes of closed geodesics

and the set of lengths is an unbounded discrete subset of the real line $R$ .
In order to investigate geodesics on geodesic spheres in $CP^{n}$ we study their

extrinsic shape in $CP^{n}$ . We start with recalling some terminology for helices on
a K\"ahler manifold. A smooth curve $\gamma=\gamma(t)$ parametrized by its arclength $t$ on
a Riemannian manifold $N$ with Riemannian connection $\nabla$ is called a helix of
proper order $d$ if there exist an orthonormal frame $\{X_{1}=\dot{\gamma}, X_{2}, \ldots, X_{d}\}$ along $\gamma$

and positive constants $\kappa_{1},$

$\ldots,$
$\kappa_{d-1}$ which satisfy the system of ordinary differ-

ential equations

(2.1) $\nabla_{\gamma}X_{i}(t)=-\kappa_{i-}$ J7-1 $(t)+\kappa_{i}X_{i+1}(t)$ , $i=1,$
$\ldots,$

$d$ ,

where $X_{0},$ $X_{d+1}$ are null vector fields, and $\nabla_{\gamma}$ denotes the covariant differen-
tiation along $\gamma$ . The constants $\kappa_{i}(1\leq i\leq d-1)$ and the orthonormal frame
$\{X_{1}, \ldots, X_{d}\}$ are called the curvatures and the Frenet frame of $\gamma$ , respectively. A
curve is called a helix of order $d$ if it is a helix of proper order $h(\leq d)$ . For

a helix of order $d$ which is of proper order $h(\leq d)$ , we use the convention in
(2.1) that $\kappa_{i}=0(h\leq i\leq d-1)$ and $X_{i}=0(h+1\leq i\leq d)$ . A helix of order 1
is nothing but a geodesic and a helix of order 2 is called a circle.
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When $N$ is a K\"ahler manifold with complex structure $J$ and Riemannian
metric $\langle$ , $\rangle$ , we define complex torsions $\tau_{ij}$ of a helix $\gamma$ on $N$ of order $d$ by

$\tau_{ij}(t)=\langle X_{i}(t), JX_{j}(t)\rangle$ for $1\leq i<j\leq d$ ,

where $\{X_{1}, \ldots, X_{d}\}$ is the associated Frenet frame for $\gamma$ . We call a helix $\gamma$ holo-

morphic when all its complex torsions are constant. One can easily find that
every circle on a K\"ahler manifold is holomorphic. In the study of helices in a
K\"ahler manifold their complex torsions play an important role. In their paper
[MOh], Ohnita and the second-named author proved that a smooth curve on a
complete simply connected K\"ahler manifold $\tilde{M}_{n}$ of non-zero constant holomor-
phic sectional curvature (that is, $\tilde{M}_{n}=CP^{n}$ or $CH^{n}$ ) is a holomorphic helix if

and only if it is generated by a holomorphic Killing vector field. They also
proved that two holomorphic helices $\gamma_{1},$ $\gamma_{2}$ in $\tilde{M}_{n}$ are congruent with respect to

an isometry of $\tilde{M}_{n}$ if and only if the following three conditions hold;

1) they have same proper order $d$,

2) they have same curvatures,

3) either

(cornplex torsion $\tau_{ij}$ of $\gamma_{1}$ ) $=$ (cornplex torsion $\tau_{ij}$ of $\gamma_{2}$ )

for every $1\leq i<j\leq d$ , or

(complex torsion $\tau_{ij}$ of $\gamma_{1}$ ) $=$ -(complex torsion $\tau_{ij}$ of $\gamma_{2}$ )

for every $1\leq i<j\leq d$ .
Here, in the condition 3), the former holds if $\gamma_{1},$ $\gamma_{2}$ are congruent with respect to

a holomorphic isomery, and the latter holds if they are congruent with respect to

an anti-holomorphic isometry.
Now let $M$ denote a geodesic sphere of radius $r(0<r<\pi/2)$ and $l$ an

isometric embedding of $M$ into $CP^{n}$ . We shall show that for every geodesic $\gamma$ on
a geodesic sphere $M$ the curve $ l\circ\gamma$ in $CP^{n}$ is a helix of order 4. By using (1.3)

and the equality $A\phi=\phi A$ we observe that $\langle\dot{\gamma}(t), \xi\rangle$ is constant along $\gamma$ :

(2.2) $\nabla_{\gamma}\langle\dot{\gamma}(t), \xi\rangle=\langle\dot{\gamma}(t), \phi A\dot{\gamma}\rangle=\langle\dot{\gamma}, A\phi\dot{\gamma}\rangle=-\langle\phi A\dot{\gamma},\dot{\gamma}\rangle=0$ .

We shall call this constant the structure torsion of $\gamma$ and denote by $\sin$ ? with
$0\leqq|\theta|\leqq\pi/2$ .

PROPOSITION 2.1. Let $M$ be a geodesic sphere of radius $r(0<r<\pi/2)$ in
$CP^{n}$ of holomorphic sectional curvature 4. We denote by $l$ an isometric embedding

of $M$ into $CP^{n}$ . Then the extrinsic shape $ l\circ\gamma$ of a geodesic $\gamma$ on $M$ is as follows:
(1) Suppose the radius $r$ satisftes $\pi/4\leq r<\pi/2$ . If the structure torsion of $\gamma$

is $\pm\cot r$ , then the curve $ l\circ\gamma$ is a geodesic.

(2) When $r\neq\pi/4$ , if the structure torsion of $\gamma$ is $\pm 1(i.e.\dot{\gamma}=\pm\xi)$ , then
the curve $ l\circ\gamma$ is a circle of curvature 2 $|\cot 2r|$ and of complex torsion
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$\mp sgn(\cot 2r)\cdot 1$ in $CP^{n}$ , where $sgn(a)$ denotes the signature of a real

number $a$ . This circle lies on a totally geodesic $CP^{1}$ .
(3) If $\gamma$ has null structure torsion ( $i.e.\dot{\gamma}$ is orthogonal to 4), then the curve

$ l\circ\gamma$ is circle of curvature $\cot r$ and of null complex torsion in $CP^{n}$ . This

circle lies on a totally geodesic $RP^{2}$ .
(4) Generally, if the structure torsion of $\gamma$ is of the form $\sin\theta(0<|\theta|<\pi/2$ ,

$\sin\theta\neq\pm\cot r)$ , then the curve $ l\circ\gamma$ is a holomorphic helix ofproper order
4 whose curvatures are described as

$\kappa_{1}=|\cot r-\tan r\cdot\sin^{2}\theta|$ , $\kappa_{2}=\tan r\cdot|\sin\theta|\cos\theta$ , X3 $=\cot r$ .

Its complex torsions are described as

$\tau_{12}=\{$

$-\sin\theta$ , if $\cot r-\tan r\cdot\sin^{2}\theta>0$

$\sin\theta$ , if $\cot r-\tan r\cdot\sin^{2}\theta<0$ ,

$\tau_{14}=\{$

$-sgn(\sin\theta)\cos\theta$ , if $\cot r-\tan r\cdot\sin^{2}$ $?>0$

$sgn(\sin\theta)\cos\theta$ , if $\cot r-\tan r\cdot\sin^{2}\theta<0$ ,

$\tau_{23}=sgn(\sin\theta)\cos\theta$ , $\tau_{34}=\sin\theta$ , $\tau_{13}=\tau_{24}=0$ .

This helix $ l\circ\gamma$ lies on a totally geodesic $CP^{2}$ .

We call a smooth curve simple if it does not have self-intersection points.
More precisely, an open curve $\sigma$ is called simple if $\sigma(t_{1})\neq\sigma(t_{2})$ for every $t_{1},$ $t_{2}$

$(t_{1}\neq t_{2})$ , and a closed curve $\sigma$ is called simple if $\sigma(t_{1})\neq\sigma(t_{2})$ for every $t_{1},$ $t_{2}$

( $0\leqq t_{1}<t_{2}<$ length(a)). This proposition guarantees that every geodesic on a
geodesic sphere in $CP^{n}$ is generated by some Killing vector field on $CP^{n}$ as a
curve in $CP^{n}$ . Thus we have

COROLLARY 2.2. Every geodesic on a geodesic sphere in a complex projective

space is a simple curve.

PROOF OF PROPOSITION 2.1. Let $\tilde{\nabla}$ and $\nabla$ denote the Riemannian connec-
tions of $CP^{n}$ and $M$, respectively. Let $\gamma$ be a geodesic with structure torsion
$\sin$ ? on $M$. For simplicity we also denote the curve $ l\circ\gamma$ by $\gamma$ . For the first

step, by use of (1. 1) we have

$\tilde{\nabla}_{\gamma}\dot{\gamma}=\nabla_{\gamma}\dot{\gamma}+\langle A\dot{\gamma},\dot{\gamma}\rangle_{\vee}V_{M}=\langle A\dot{\gamma},\dot{\gamma}\rangle_{\vee}V_{M}$ .

Therefore when $\langle A\dot{\gamma},\dot{\gamma}\rangle=\cot r-\tan r\cdot\sin^{2}\theta=0$ , which is the case of the first
assertion, the curve $ l\circ\gamma$ is a geodesic in $CP^{n}$ . If it is not this case, we set as

$\kappa_{1}=|\langle A\dot{\gamma},\dot{\gamma}\rangle|=|\cot r-\tan r\cdot\sin^{2}\theta|$ ,

$X_{2}=\{$

$\Lambda^{r_{M}}$ if $\langle A\dot{\gamma},\dot{\gamma}\rangle>0$ ,
$-\swarrow V_{M}$ if $\langle A\dot{\gamma},\dot{\gamma}\rangle<0$ .
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Since we have
$\tilde{\nabla}_{\gamma\swarrow}V_{M}=-A\dot{\gamma}=-\langle A\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}+(\langle A\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}-A\dot{\gamma})$ ,

and $||A\dot{\gamma}||^{2}=\cot^{2}r+$ $(\tan^{2}r- 2)$ $\sin^{2}\theta$ is constant along $\gamma$ , we obtain

$\tilde{\nabla}_{\gamma}X_{2}=-\kappa_{1}\dot{\gamma}+\kappa_{2}X_{3}$ ,

where

$\kappa_{2}=\sqrt{||A\dot{\gamma}||^{2}-\langle A\dot{\gamma},\dot{\gamma}\rangle^{2}}=\tan r|\sin\theta|\cos\theta$ ,

$X_{3}=\{$

$(1/\kappa_{2})(\langle A\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}-A\dot{\gamma})$ if $\langle A\dot{\gamma},\dot{\gamma}\rangle>0$ ,
$-(1/\kappa_{2})(\langle A\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}-A\dot{\gamma})$ if $\langle A\dot{\gamma},\dot{\gamma}\rangle<0$ .

Thus, when $\theta=0$ or $\theta$ $=\pm\pi/2$ , we have $\kappa_{2}=0$ and observe that the curve $ l\circ\gamma$

is a circle of curvature $\cot r$ or 2 $|\cot 2r|$ , respectively.
We continue the calculations for general case. It follows from the formula

(1.4) on the covariant derivative of the shape operator that

$\tilde{\nabla}_{\gamma}(\langle A\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}-A\dot{\gamma})=-\kappa_{2^{\vee}}^{2}V_{M}+\langle\dot{\gamma}, \xi\rangle\phi(\dot{\gamma})$ .

Since we see that $||\phi\dot{\gamma}||^{2}=1-\langle\dot{\gamma}, \xi\rangle^{2}=1-\sin^{2}\theta$ is constant along $\gamma$ , we obtain

$\tilde{\nabla}_{\gamma}X_{3}=-\kappa_{2}X_{2}+\kappa_{3}X_{4}$ ,

with

$\kappa_{3}=\frac{1}{\kappa_{2}}|\langle\dot{\gamma}, \xi\rangle|\sqrt{1-\langle\dot{\gamma},\xi\rangle^{2}}=\cot r$ ,

$X_{4}=\{$

$(1/\sqrt{1-\langle\dot{\gamma},\xi\rangle^{2}})\phi(\dot{\gamma})=(1/\cos\theta)\phi(\dot{\gamma})$ , if $\langle A\dot{\gamma},\dot{\gamma}\rangle$ . $\langle\dot{\gamma}, \xi\rangle>0$ ,

$(-1/\sqrt{1-\langle\dot{\gamma},\xi\rangle^{2}})\phi(\dot{\gamma})=(-1/\cos\theta)\phi(\dot{\gamma})$ , if $\langle A\dot{\gamma},\dot{\gamma}\rangle$ . $\langle\dot{\gamma}, \xi\rangle<0$ .

Finally we have
$\tilde{\nabla}_{\gamma}\phi(\dot{\gamma})=\langle\dot{\gamma}, \xi\rangle A\dot{\gamma}-\langle A\dot{\gamma},\dot{\gamma}\rangle\xi$ .

As we find
$|\langle\langle\dot{\gamma}, \xi\rangle A\dot{\gamma}-\langle A\dot{\gamma},\dot{\gamma}\rangle\xi, X_{3}\rangle|=\kappa_{3}\cos\theta$ ,

$||\langle\dot{\gamma}, \xi\rangle A\dot{\gamma}-\langle A\dot{\gamma},\dot{\gamma}\rangle\xi||^{2}=\cot^{2}r\cdot\cos^{2}\theta=\kappa_{3}^{2}\cos^{2}\theta$ ,

we get
$\tilde{\nabla}_{\gamma}X_{4}=-\kappa_{3}X_{3}$ ,

and know that $ l\circ\gamma$ is a helix of proper order 4 when $\sin$ $?\neq 0,$ $\pm 1,$ $\pm\cot r$ . By

direct computation one can easily obtain the assertion on complex torsions. $\square $

Proposition 2.1 also tells congruency of two geodesics on a geodesic sphere.
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PROPOSITION 2.3. On a geodesic sphere $M$ in a complex projective space, two

geodesics are congruent if and only if the absolute values of their structure torsion

coincide.

PROOF. Let $\gamma_{1}$ and $\gamma_{2}$ be geodesics on $M$. By Proposition 2.1 and Maeda-
Ohnita’s result on congruency of helices on a complex projective space, we find
that two holomorphic helices $l\circ\gamma_{1}$ and $l\circ\gamma_{2}$ are not congruent as curves in
$CP^{n}$ if the absolute values of their structure torsion do not coincide; $|\langle\dot{\gamma}_{1}, \xi\rangle|\neq$

$|\langle\dot{\gamma}_{2}, \xi\rangle|$ . We here note that the isometric immersion $l$ is equivariant, so that
for each isometry $\varphi$ on $M$ there is an isometry $\tilde{\varphi}$ on $CP^{n}$ with $\tilde{\varphi}\circ l=l\circ\varphi$ .

Therefore in this case $\gamma_{1}$ and $\gamma_{2}$ are not congruent.

Conversely, we suppose that they have the same absolute value of structure

torsion. When $\langle\dot{\gamma}_{1}(0), \xi\rangle=\langle\dot{\gamma}_{2}(0), \xi\rangle$ , we can set $\dot{\gamma}_{1}(O)=(\cos\theta)u+(\sin\theta)\xi_{\gamma_{1}(0)}$

and $\dot{\gamma}_{2}(O)=(\cos\theta)v+(\sin\theta)\xi_{\gamma_{2}(0)}$ with unit tangent vectors $u,$ $v$ orthogonal to
$\xi$ . Then we can choose by Lemma 1.1 an isometry $\varphi$ of $M$ with $d\varphi_{\gamma_{1}(0)}(u)=v$

and $d\varphi_{\gamma_{1}(0)}$ $(\xi_{\gamma_{1}(0)})$ $=\xi_{\gamma_{2}(0)}$ . Hence, $d\varphi_{\gamma_{1}(0)}(\dot{\gamma}_{1}(0))=\dot{\gamma}_{2}(0)$ , so that $\varphi\circ\gamma_{1}(t)=\gamma_{2}(t)$

for any $t$ . When $\langle\dot{\gamma}_{1}(0), \xi\rangle=-\langle\dot{\gamma}_{2}(0), \xi\rangle$ , we also obtain the desired isometry
by Lemma 1.1 and get the conclusion. $\square $

We are now in a position to study length of closed geodesics on a geo-
desic sphere in a complex projective space. Let 77 : $S^{2n+1}\rightarrow CP^{n}$ denote the
Hopf fibration of a unit sphere. For a smooth curve $\gamma$ on $CP^{n}$ a smooth curve
$\tilde{\gamma}$ is called a horizontal lift of $\gamma$ if $\tilde{\gamma}.(t)$ is a horizontal vector and $d\Pi(\tilde{\gamma}.(t))=\dot{\gamma}(t)$

for all $t$ . Our idea lies on considering a horizontal lift of a holomorphic helix
$ l\circ\gamma$ for every geodesic $\gamma$ on a geodesic sphere. The following elementary lemma
is useful in our argument.

LEMMA 2.4. Let $\sigma$ be a smooth simple curve on $CP^{n}$ . Suppose a horizontal

lift $\tilde{\sigma}$ of $\sigma$ on a standard unit sphere $S^{2n+1}$ is represented as

$\tilde{\sigma}(t)=Ae^{\sqrt{-1}at}+Be^{\sqrt{-1}bt}+Ce^{\sqrt{-1}ct}+De^{\sqrt{-1}dt}$ ,

which is a curve on $C^{n+1}$ with non-zero vectors $A,$ $B,$ $C,$ $D\in C^{n+1}$ and mutually

distinct real numbers $a,$ $b,$ $c,$
$d$ which satisfy $a+b+c+d=0$ and $a\neq 0$ . Then $\sigma$

is closed if and only if all the ratios $b/a,$ $c/a,$ $d/a$ are rational. In this case, its

length is

length(a) $=2\pi\times L.C.M$ . $\{\frac{1}{|b-a|},$ $\frac{1}{|c-a|},$ $\frac{1}{|d-a|}\}$ .

Here for positive numbers $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ , we denote by $L.C.M.\{\alpha_{1} , \alpha_{2}, \alpha_{3}\}$ the minimum

value of the set $\{j\alpha_{1}|j=1,2, \ldots\}\cap\{j\alpha_{2}|j=1,2, \ldots\}\cap\{j\alpha_{3}|j=1,2, \ldots\}$ .

PROOF. Suppose $\sigma$ is a closed curve with length $t_{0}$ . There is a number $\psi$

with $\tilde{\sigma}(t_{0})=e^{\sqrt{-1}\psi}\tilde{\sigma}(0)$ . Without loss of generality, we may suppose $ at_{0}=\psi$ .



384 T. ADACHI, S. MAEDA and M. YAMAGISHI

Since $\sigma$ is simple we find that $\tilde{\sigma}^{(k)}$

$(t_{0})$
$=e^{\sqrt{-1}\psi}\tilde{\sigma}^{(k)}(0)$ for every $k=0,1,2,$ $\ldots$ .

Generally, if non-zero vectors $v_{1}$ , $v_{2},$
$v_{3}\in C^{n+1}$ and complex numbers $\lambda_{1},$ $\lambda_{2},$ $\lambda_{3}$

satisfy

$\{$

$\lambda_{1}v_{1}+\lambda_{2}v_{2}+\lambda_{3}v_{3}=0$ ,
$\lambda_{1}a_{1}v_{1}+\lambda_{2}a_{2}v_{2}+\lambda_{3}a_{3}v_{3}=0$ ,
$\lambda_{1}a_{1}^{2}v_{1}+\lambda_{2}a_{2}^{2}v_{2}+\lambda_{3}a_{3}^{2}v_{3}=0$ ,

for some relatively distinct real numbers $a_{1},$ $a_{2},$ $a_{3}$ , then $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$ .

Therefore we find that $(b-a)t_{0}/(2\pi),$ $(c-a)t_{0}/(2\pi)$ and $(d-a)t_{0}/(2\pi)$ are in-
tegers, hence $(c-a)/(b-a)$ and $(d-a)/(b-a)$ are rational. Since $a+b+c+$
$d=0$ , this tells us that $b/a$ is rational. By the same argument as above we can
see that $c/a$ and $d/a$ are rational.

Conversely, we suppose that $b/a,$ $c/a$ and $d/a$ are rational. Then one can
easily find that $\sigma$ is closed by considering the reverse of this argument. Its length
$t_{0}$ is the smallest number with satisfying that all $(b-a)t_{0}/(2\pi),$ $(c-a)t_{0}/(2\pi)$ and
$(d - a)t_{0}/(2\pi)$ are integers. Thus we get the conclusion. $\square $

THEOREM 2.5. Let $\gamma$ be a geodesic on a geodesic sphere $M$ of radius
$r(0<r<\pi/2)$ in $CP^{n}$ of holomorphic sectional curvature 4.

(1) If the structure torsion of $\gamma$ is $\pm 1$ , then $\gamma$ is closed and its length is
$\pi\sin 2r$ .

(2) If $\gamma$ has null structure torsion, then $\gamma$ is also closed and its length is
$2\pi\sin r$ .

(3) When the structure torsion of $\gamma$ is of the form $\sin\theta(0<|\theta|<\pi/2)$ , it

is closed if and only if

$\sin\theta=\frac{\pm q}{\sin r\sqrt{p^{2}\tan^{2}r+q^{2}}}$

with some relatively prime positive integers $p$ and $q$ with $q<p\tan^{2}r$ . In

this case, its length is

length(y) $=\{$

$2\pi\sqrt{p^{2}\sin^{2}r+q^{2}\cos^{2}r}$ , if $pq$ is even

$\pi\sqrt{p^{2}\sin^{2}r+q^{2}\cos^{2}r}$ , if $pq$ is odd.

PROOF. The assertions of (1) and (2) are direct consequences of Proposi-
tion 1 and Theorem of [AMU, p. 718]. We here show (3). If we denote the
Riemannian connection on a standard unit sphere $S^{2n+1}$ by $\hat{\nabla}$ , then it satisfies
$\hat{\nabla}_{U}V=\tilde{\nabla}_{U}V+\langle U, JV\rangle J\Lambda^{r_{S^{2n+1}}}$ for each vector field $U,$ $V$ on $CP^{n}$ . Here $\swarrow V_{S^{2n+1}}$

denotes the outward unit normal vector field on $S^{2n+1}$ in $C^{n+1}$ and vector fields
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on $CP^{n}$ are regarded as horizontal vector fields on $S^{2n+1}$ with respect to the Hopf
fibration. By use of this relation and Proposition 2.1, we can easily check that
every horizontal lift $\hat{\gamma}$ of $ l\circ\gamma$ onto $S^{2n+1}$ is a helix of proper order 3:

$\{$

$\hat{\nabla}_{\hat{\gamma}}\hat{\gamma}$

.
$=$

$\ell_{1}\hat{X}_{2}$ ,

$\hat{\nabla}_{\hat{\gamma}}\hat{X}_{2}=-\ell_{1}\hat{\gamma}$

.
$+\ell_{2}\hat{X}_{3}$ ,

$\hat{\nabla}_{\hat{\gamma}}\hat{X}_{3}=$
$-\ell_{2}\hat{X}_{2}$ ,

where

$\ell_{1}=|\cot r-\tan r\cdot\sin^{2}\theta|$ , $\ell_{2}=|\sin\theta|\sqrt{\tan^{2}r\cos^{2}\theta+1}$ ,

$\hat{X}_{2}=\{$

$\Lambda^{r_{M}}$ , if $\cot r-\tan r\cdot\sin^{2}\theta>0$ ,
$-\swarrow V_{M}$ , if $\cot r-\tan r\cdot\sin^{2}\theta<0$ ,

$\hat{X}_{3}=\{$

$(1/\ell_{2})(\langle A\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}-A\dot{\gamma}-\sin\theta J_{\vee}V_{S^{2n+1}})$ , if $\cot r-\tan r\cdot\sin^{2}\theta>0$ ,
$(-1/\ell_{2})(\langle A\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}-A\dot{\gamma}-\sin\theta J_{\vee}V_{S^{2n+1}})$ , if $\cot r-\tan r\cdot\sin^{2}\theta<0$ ,

with the shape operator $A$ of $M$ in $CP^{n}$ and the complex structure $J$ on $C^{n+1}$ .
Regarding $\hat{\gamma}$ as a curve in $C^{n+1}$ , we find that it satisfies the following ordinary

differential equation:

$\hat{\gamma}^{(4)}+(\cot^{2}r+\cos^{2}\theta+\tan^{2}r\sin^{2}\theta)\hat{\gamma}^{\prime\prime}+\sin^{2}\theta(\tan^{2}r\cos^{2}\theta+1)\hat{\gamma}=0$ .

Thus we can see that $\hat{\gamma}$ is of the form

$\hat{\gamma}(t)=A\exp(\sqrt{-1}t\tan r\sin?)$ $+B\exp(-\sqrt{-1}t\tan r\sin?)$

$+C\exp(\sqrt{-1}t\sqrt{\cot^{2}r+\cos^{2}\theta})+D\exp(-\sqrt{-1}t\sqrt{\cot^{2}r+\cos^{2}\theta})$

with some non-zero vectors $A,$ $B,$ $C,$ $D\in C^{n+1}$ which span the complex 3-space $C^{3}$

which is also spanned by $\hat{\gamma}(0)$ and horizontal lifts of $\dot{\gamma}(0)$ and $\xi_{\gamma(0)}$ .

Put $\alpha_{r}(\theta)=\sqrt{(\cot^{2}r+\cos^{2}\theta)\cot^{2}r\sin^{-2}\theta}$ . Since $\gamma$ is simple, we know by

Lemma 2.4 that $\gamma$ is closed if and only if $\alpha_{r}(\theta)$ is rational. In this case, its length

1S

length(\gamma ) $=2\pi\times L.C.M$ . $\{\frac{1}{2\tan r|\sin\theta|},$ $\frac{1}{|\sqrt{\cot^{2}r+\cos^{2}\theta}-\tan r|\sin\theta||}$ ,

$\frac{1}{\sqrt{\cot^{2}r+\cos^{2}\theta}+\tan r|\sin\theta|}\}$ .

When $\alpha_{r}(\theta)$ is rational, denoting $\alpha_{r}(\theta)=p/q$ by relatively prime positive in-
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tegers $p$ and $q$ , we see that $\sin\theta=\pm q(\sin r\sqrt{p^{2}\tan^{2}r+q^{2}})^{-1}$ . As $\sin^{2}\theta<1$ , we
get $q<p\tan^{2}r$ . By direct calculation we find

length(7) $=2\pi\sqrt{p^{2}\sin^{2}r+q^{2}\cos^{2}r}\times$ L.C.M. $\{\frac{1}{2q}$ , $\frac{1}{|p-q|}$ , $\frac{1}{p+q}\}$ .

For relatively prime positive integers $p,$ $q$ we see that $2q,$ $|p-q|,p+q$ are relatively
prime if $pq$ is even, and that $q,$ $|p-q|/2,$ $(p+q)/2$ are relatively prime if $pq$ is
odd. We hence obtain the expression of length(y) . Conversely, if $\sin$ ? is of that
form then $\alpha_{r}(\theta)$ is rational. Therefore we get the conclusion. $\square $

REMARK. When the structure torsion is not equal to $\pm 1$ , every horizontal
lift $\hat{\gamma}$ of $ l\circ\gamma$ for a geodesic $\gamma$ on $M$ is closed if and only if $\gamma$ is closed.

When we study the length spectrum of geodesics on a Riemannian manifold
$N$, in order to avoid the influence of the action of the isometry group of $N$,

we consider the moduli space of geodesics under the action of isometries. The
moduli space Geod(N) of geodesics on $N$ is the quotient space of the set of all
geodesics on $N$ under the congruency relation. We call a smooth curve $\sigma$ open
if it is not closed. For convenience we set length(a) $=\infty$ for an open curve
$\sigma$ . We define the length spectrum $\mathscr{L}_{N}$ : Geod(N) $\rightarrow R\cup$ $\{ \infty \}$ of $N$ by $\mathscr{L}_{N}([\gamma])=$

length(y): where $[\gamma]$ denotes the congruency class containing a geodesic $\gamma$ . We

also call the image Lspec(N) $=\mathscr{L}_{N}$ (Geod(N)) $\cap R$ the length spectrum of $N$.

For example, the length spectrum of a standard unit sphere is $Lspec(S^{m})=\{2\pi\}$ .

As a direct consequence of Theorem 2.5, for a geodesic sphere $M$ of radius $r$

in $CP^{n}$ , we can see that

Lspec $( \#)$ $=\{\pi\sin 2r\}\cup\{2\pi\sin r\}$

$\cup\{2\pi\sqrt{p^{2}\sin^{2}r+q^{2}\cos^{2}r}$ $positiveeintegerswhichsatisfypandqarerelativelyprimepqisevenandq<p\tan^{2}r\}$

$\cup\{\pi\sqrt{p^{2}\sin^{2}r+q^{2}\cos^{2}r}$ $positiveepandpqisoddandq<p\tan^{2}rqarere11ative1yprimeintegerswhichsatisfy\}$ .

Therefore we obtain the following.

THEOREM 2.6. On a geodesic sphere $M$ in $CP^{n}$ , there exist infinitely many
congruency classes of closed geodesics. Moreover the length spectrum Lspec $( \#)$

of $M$ is a discrete unbounded subset in the real line $R$ .

For a length spectrum $\lambda\in$ Lspec(N) we call the cardinality $m_{N}(\lambda)$ of the
set $\mathscr{L}_{N}^{-1}(\lambda)$ the multiplicity of /5. When the multiplicity of a length spectrum is 1
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we say it is simple. Clearly for a geodesic sphere $M$ in a complex projective
space, we see by the expression of Lspec $( \#)$ that $ m_{M}(\lambda)<\infty$ at each /5. We

here study the first, the second and the third length spectrum, that is, the
minimum, the second minimum and the third minimum of the length spectrum.

PROPOSITION 2.7. Let $M$ be a geodesic sphere of radius $r(0<r<\pi/2)$ in
$CP^{n}$ of holomorphic sectional curvature 4.

(1) The first length spectrum of $M$ is $\pi\sin 2r$ , which is the length of geodesics

with structure torsion $\pm 1$ . It is simple.
(2) The second length spectrum of $M$ is also simple. When $0<r\leq\pi/4$ ,

it is $2\pi\sin r$ , which is the length of geodesics with null structure torsion.

When $\pi/4<r<\pi/2$ , it is $\pi$ , which is the length of geodesics with struc-

ture torsion $\pm\cot r$ .
(3) The third length spectrum is also simple. When $\pi/4<r<\pi/2$ , it is

$2\pi\sin r$ , which is the length of geodesics with null structure torsion.

When $\sqrt{2m-1}\leq\cot r<\sqrt{2m+1}$ $(m=1$ , 2, . . . $)$ , in particular, $ 0<r\leq$

$\pi/4$ , it is $\pi\sqrt{4m(m+1)\sin^{2}r+1}$, which is the length of geodesics with

structure torsion $\pm 1/(\sin r\sqrt{(2m+1)^{2}\tan^{2}r+1})$ .

PROOF. (1) We compare $\pi\sin 2r,$ $2\pi\sqrt{p^{2}\sin^{2}r+q^{2}\cos^{2}r}$ for relatively prime

positive integers $p,$ $q$ with even $pq$ and $p\tan^{2}r>q$ , and $\pi\sqrt{p^{2}\sin^{2}r+q^{2}\cos^{2}r}$

for relatively prime positive integers $p,$ $q$ with odd $pq$ and $p\tan^{2}r>q$ . When
$r\leq\pi/4$ , as $\tan r\leq 1$ , we have

$\{$

$\sqrt{p^{2}+q^{2}\cot^{2}r}\geq\sqrt{4+\cot^{2}r}>\sqrt{5}>\cos r$ if $pq$ is even,

$\sqrt{p^{2}+q^{2}\cot^{2}r}\geq\sqrt{9+\cot^{2}r}>\sqrt{10}>2\cos r$ if $pq$ is odd,

and when $r>\pi/4$ , as $\tan r>1$ , we have

$\{$

$\sqrt{p^{2}\tan^{2}r+q^{2}}>1>\sin r$ if $pq$ is even,

$\sqrt{p^{2}\tan^{2}r+q^{2}}\geq\sqrt{\tan^{2}r+1}>2\sin r$ if $pq$ is odd.

In any case we obtain $\pi\sin 2r=2\pi\sin$ rcos $r$ is the minimum length spectrum.
(2) It is trivial that $2\pi\sin r<2\pi\sin r\sqrt{p^{2}+q^{2}\cot^{2}r}$ for positive integers $p,$ $q$ .

When $r>\pi/4$ , we have $ 2\pi\sin r>\sqrt{2}\pi>\pi$ and $\pi\sqrt{p^{2}\sin^{2}r+q^{2}\cos^{2}r}\geq\pi$ , where
equality holds if and only if $(p, q)=(1,1)$ . When $r\leq\pi/4$ , for relatively prime
positive integers $p,$ $q$ with odd $pq$ and $p\tan^{2}r>q$ , we have $\sqrt{p^{2}+q^{2}\cot^{2}r}\geq$

$\sqrt{9+\cot^{2}r}\geq\sqrt{10}>2$ .
(3) We can obtain similarly this assertion. $\square $



388 T. ADACHI, S. MAEDA and M. YAMAGISHI

Since the sectional curvature of a geodesic sphere $M$ of radius $r$ in $CP^{n}$ lies
in the interval $[\cot^{2}r, 4+\cot^{2}r]$ , the first length spectrum of $M$ is smaller than
$2\pi/\sqrt{4+\cot^{2}r}$ if $\tan^{2}r>2$ . Hence $M$ is an example of a Berger sphere, as was
pointed out in [W]. But for other length spectrum we find the following lemma
of Klingenberg’s type holds, which is well-known for some geometers.

COROLLARY 2.8. Let $M$ be a geodesic sphere of radius $r$ in $CP^{n}$ of holo-

morphic sectional curvature 4. Except geodesics with structure torsion $\pm 1$ , every
geodesic $\gamma$ on $M$ satisftes length(7) $>2\pi/\sqrt{4+\cot^{2}r}$ .

Length spectrum is of course not necessarily simple. For example when $M$

is a geodesic sphere of radius $\pi/4$ in $CP^{n}$ , we have

Lspec $( \#)$ $=\{\pi,$ $\sqrt{2}\pi,$ $\sqrt{5}\pi,$ $\sqrt{10}\pi,$ $\sqrt{13}\pi,$ $\sqrt{17}\pi,$ $5\pi,$ $\sqrt{26}\pi,$ $\sqrt{29}\pi$ ,

$\sqrt{34}\pi,$ $\sqrt{37}\pi,$ $\sqrt{41}\pi,$ $\sqrt{50}\pi,$ $\sqrt{53}\pi,$ $\sqrt{58}\pi,$ $\sqrt{61}\pi,$ $\sqrt{65}\pi,$ $\sqrt{73}\pi,$
$\ldots\}$

and the multiplicity of $\sqrt{65}\pi$ is two; it is the common length of geodesics

of structure torsions $3/\sqrt{65}$ and $7/\sqrt{65}$ . Every spectrum which is smaller than
$\sqrt{65}\pi$ is simple.

THEOREM 2.9. Let $M$ be a geodesic sphere of radius $r(0<r<\pi/2)$ in $CP^{n}$

of holomorphic sectional curvature 4.
(1) If $\tan^{2}r$ is irrational, then every length spectrum of $M$ is simple.
(2) If $\tan^{2}r$ is rational, then the multiplicity of each length spectrum of

$M$ is finite. But it is not uniformly bounded; $\lim\sup_{\lambda\rightarrow\infty}m_{M}(\lambda)=\infty$ .

In this case, the growth order of $m_{M}$ is not so rapid. It satisftes
$\lim_{\lambda\rightarrow\infty}\lambda^{-\delta}m_{M}(\lambda)=0$ for arbitrary positive J.

This theorem guarantees that on a geodesic sphere of radius $r$ with irrational
$\tan^{2}r$ in a complex projective space, two closed geodesics are congruent if and
only if they have the same length. On the other hand, if $\tan^{2}r$ is rational, this
theorem shows that we can not classify congruency classes of geodesics only by

their length.

PROOF OF THEOREM 2.9. (1) If two distinct pairs of positive integers $(p, q)$

and $(\tilde{p},\tilde{q})$ satisfy $p^{2}\sin^{2}r+q^{2}\cos^{2}r=\tilde{p}^{2}\sin^{2}r+\tilde{q}^{2}\cos^{2}r$ , we see that $\tan^{2}r=$

$(\tilde{q}^{2}-q^{2})/(p^{2}-\tilde{p}^{2})$ is rational. Since $\pi\sin 2r$ and $2\pi\sin r$ are simple by Propo-

sition 2.7, we get the assertion.
(2) The assertion is a direct consequence of the following Lemmas 2.10

and 2.11. We apply these lemmas by putting $\tan^{2}r=a/b$ with relatively prime
positive integers $a,$

$b$ and $\epsilon_{1}=0,$ $\epsilon_{2}=\tan^{2}r$ . $[$
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In order to complete the proof of Theorem 2.9, we need to make a study

of integers. For relatively prime positive integers $a,$
$b$ and a positive integer $\lambda$ ,

we define a set $\mathscr{S}(a, b;\lambda)$ of pairs of integers as

$\mathscr{S}(a, b;\lambda)=\{(p, q)\in Z\times Z|pandqarere1ative1yprimeintegerswhichsatisfypqisevenandap^{2}+bq^{2}=\lambda\}$ .

For relatively prime positive integers 2, $v$ we introduce a map

$\mathscr{S}(a, b;\lambda)\times \mathscr{S}$ ( $1$ , ab; $v$ ) $\rightarrow \mathscr{S}(a, b;\lambda v)$

by
$((p, q),$ $(\tilde{p},\tilde{q}))\mapsto(p, q)\star(\tilde{p},\tilde{q})=(p\tilde{p}-bq\tilde{q},\tilde{p}q+ap\tilde{q})$ .

Since 2 and $v$ are relatively prime, it is well-defined; $p\tilde{p}-bq\tilde{q}$ ’ 0, $\tilde{p}q+ap\tilde{q}$ ’ 0.
It satisfies the following properties.

Pl) If we denote as $(P, Q)=(p, q)\star(\tilde{p},\tilde{q})$ we have

$\sqrt{a}P+\sqrt{-b}Q=(\sqrt{a}p+\sqrt{-b}q)(\tilde{p}+\sqrt{-ab}\tilde{q})$ .

In particular,

$\arg(\sqrt{a}P+\sqrt{-b}Q)=\arg(\sqrt{a}p+\sqrt{-b}q)+\arg(\tilde{p}+\sqrt{-ab}\tilde{q})$ ,

where $\arg(z)$ denotes the argument of a complex number $z$ with
$|\arg(z)|\leq\pi/2$ .

P2) If we define the conjugate $\overline{(p,q)}$ of $(p, q)\in \mathscr{S}(a, b;\lambda)$ by $\overline{(p,q)}=$

$(p, -q)$ , we have
$(p, q)\star(\tilde{p},\tilde{q})=\overline{(p,q)}\star\overline{(\tilde{p},\tilde{q})}$ .

P3) For fixed $(p, q)$ the correspondence $(\tilde{p},\tilde{q})\mapsto(p, q)\star(\tilde{p},\tilde{q})$ is injective,
and the correspondence $(p, q)\mapsto$ $(p, q)\star$ $(\tilde{p},\tilde{q})$ is also injective for fixed
$(\tilde{p},\tilde{q})$ .

P4) When $a=1$ , the operation $\star$ is commutative; $(p, q)\star(\tilde{p},\tilde{q})=$

$(\tilde{p},\tilde{q})\star(p, q)$ for every $(p, q)\in \mathscr{S}(1, b;\lambda)$ and $(\tilde{p},\tilde{q})\in \mathscr{S}(1, b;v)$ .

We here note that $(p, q)\neq\overline{(p,q)}$ for every $(p, q)\in \mathscr{S}(a, b;\lambda)$ , because $q\neq 0$ .

LEMMA 2. 10. For arbitrary real numbers $\epsilon_{1}$ , $\epsilon_{2}$ with $\epsilon_{2}>\epsilon_{1}\geq 0$ , the cardi-
nality $m_{(a,b;\epsilon_{1},\epsilon_{2})}(\lambda)$ of the set $\{(p, q)\in \mathscr{S}(a, b;\lambda)|\epsilon_{1}p<q<\epsilon_{2}p\}$ satisftes

$\lim_{\lambda\rightarrow}\sup_{\infty}m_{(a,b;\epsilon_{1},\epsilon_{2})(\lambda)}=\infty$
.

PROOF. Take an arbitrary pair of relatively prime positive integers $(p_{0}, q_{0})$

which satisfies $\epsilon_{1}p_{0}<q_{0}<\epsilon_{2}p_{0}$ and $p_{0}q_{0}$ is even. We put $\lambda_{0}=ap_{0}^{2}+bq_{0}^{2}$ . For a
small positive real number $\delta$ we inductively choose odd integers $p_{i}(i=1,2, \ldots)$ as

i) $ 2\sqrt{ab}\cot\delta<p_{1}<p_{2}<p_{3}<\cdots$ ,
$ii)$ $p_{i}\not\equiv\pm p_{j}(mod ?)$ for all $j<i$ and for all prime divisors 1 of $p_{j}^{2}+4ab$ .
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We set $\lambda_{i}=p_{i}^{2}+4ab$ . It is easy to see that any two of $\lambda_{1},$ $\lambda_{2},$ $\lambda_{3},$

$\ldots$ are
relatively prime. Thus, omitting finite number of $p_{i}’ s$ if necessary, we obtain
$(p_{i}, 2)\in \mathscr{S}$ ( $1$ , ab; $\lambda_{i}$ ) $(i\geq 1)$ such that any two of $\lambda_{0},$ $\lambda_{1},$ $\lambda_{2},$

$\ldots$ are relatively prime

and that $|\arg(p_{i}+2\sqrt{-ab})|\leq\delta(i\geq 1)$ .

Now consider the subset

$l_{k}=\{(p_{0}, q_{0})\star(p_{1}, q_{1})\star\cdots\star(p_{k}, q_{k})|q_{i}=\pm 2, i=1,2, \ldots, k\}$

of $\mathscr{S}(a, b;\lambda_{0}\lambda_{1}\lambda_{2}\cdots\lambda_{k})$ . We find the cardinality of this set is $2^{k}$ by the following

argument. Suppose

$(p_{0}, q_{0})\star(p_{1}, q_{1})\star\cdots\star(p_{k}, q_{k})=(p_{0}, q_{0})\star(p_{1}, q_{1}^{\prime})\star\cdots\star(p_{k}, q_{k}^{\prime})$ .

If $q_{i}\neq q_{i}^{\prime}$ we have $(p_{i}, q_{i}^{\prime})=\overline{(p_{i},q_{i})}$ . As any element of $\mathscr{S}$ ( $1$ , ab; $\lambda_{1}\cdots\lambda_{k}$ ) is not

equal to its conjugate, properties P2) and P3) guarantee that $q_{i_{0}}=q_{i_{0}}^{\prime}$ for some $i_{0}$

$(i_{0}\geq 1)$ . We can then cancel $(p_{i_{0}}, q_{i_{0}})$ by properties P4) and P3), and conclude
by induction that $q_{i}=q_{i}^{\prime}$ for all $i$ . Since every $(p, q)\in l_{k}$ satisfies

$|\arg(\sqrt{a}p+\sqrt{-b}q)-\arg(\sqrt{a}p_{0}+\sqrt{-b}q_{0})|$

5 $|\arg(p_{1}+2\sqrt{-ab})|+\cdots+|\arg(p_{k}+2\sqrt{-ab})|\leq k\delta$ ,

by taking $\delta$ so that it satisfies

$\delta(=\delta_{k})<\frac{1}{k}\min\{\tan^{-1}(\sqrt{\frac{b}{a}}\frac{q_{0}}{p_{0}})-\tan^{-1}(\sqrt{\frac{b}{a}}\epsilon_{1})$ ,

$\tan^{-1}(\sqrt{\frac{b}{a}}\epsilon_{2})-\tan^{-1}(\sqrt{\frac{b}{a}}\frac{q_{0}}{p_{0}})\}$

we find that $l_{k}$ is contained in $\{(p, q)\in \mathscr{S}(a, b;\lambda)|\epsilon_{1}p<q<\epsilon_{2}p\}$ and get the
conclusion. $\square $

For positive integers $a,$
$b$ and 2 we denote by $\tilde{m}_{a,b}(\lambda)$ the cardinality of the

set $\{(p, q)\in Z\times Z|ap^{2}+bq^{2}=\lambda\}$ , and by $d(\lambda)$ the number of positive divisors
of /5. Trivially we have $m_{(a,b;\epsilon_{1},\epsilon_{2})(\lambda)}\leq\tilde{m}_{a,b}(\lambda)$ for every $\epsilon_{1}$ and $\epsilon_{2}$ .

LEMMA 2.11. (1) We have $\tilde{m}_{a,b}(\lambda)\leq w_{ab}\min\{d(a), d(b)\}d(\lambda)$ , where $w_{ab}$ is

the number of roots of unity in the quadratic field $Q(\sqrt{-ab})(i.e$ . $w_{ab}=4$ if $ab=1$ ,

$w_{ab}=6$ if $ab=3$ , and $w_{ab}=2$ , otherwise).

(2) In particular, we have $\lim\sup_{\lambda\rightarrow\infty}\lambda^{-\delta}\tilde{m}_{a,b}(\lambda)=0$ for all positive J.

PROOF. The second assertion follows from the first assertion and the well-
known result $\lim_{\lambda\rightarrow\infty}\lambda^{-\delta}d(\lambda)=0$ (see [HW, Theorem 315]). We show the first

assertion (cf. $[HW,$ \S 18.7] for the case $a=b=1$ ).
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First we treat the case $a=1$ . Let $\lambda=\prod_{\ell}\ell^{n(\ell;\lambda)}$ be the factorization of $\lambda$ .

Here 1 runs over all primes and $n(\ell;\lambda)$ is a non-negative integer with $n(\ell;\lambda)=0$

for almost all 1. We denote by fl the ring of integers of the imaginary qua-
dratic field $Q(\sqrt{-b})$ , which is either $Z[\sqrt{-b}]$ or $Z[(1+\sqrt{-b})/2]$ . (Concerning

basic facts on quadratic fields, see for example $[IR, \S 13.1])$ . For a prime 1 there
are three possibilities for the prime ideal decomposition of 1 in $\mathscr{O}$ :

i) 1 ramifies: $\ell(!)$ $=\mathfrak{p}_{\ell}^{2}$ ,
$ii)$

$\ell$ decomposes: $\ell \mathscr{O}=\mathfrak{p}_{\ell}\overline{\mathfrak{p}}_{\ell}(\mathfrak{p}_{\ell}\neq\overline{\mathfrak{p}}_{\ell})$ ,
$iii)$ $\ell$ remains prime: $\ell \mathscr{O}=\mathfrak{p}_{\ell}$ ,

where $\mathfrak{p}_{\ell}$ is a prime ideal of fl $and-:\mathscr{O}\rightarrow \mathscr{O}$ denotes the automorphism of fl

induced by $\sqrt{-b}\mapsto-\sqrt{-b}$ . We denote by $\mathscr{P}_{r},$ $\mathscr{P}_{d},$ $\mathscr{P}_{p}$ the set of primes 1 which
ramify, decompose, remain prime in fl respectively. When there is a pair $(p, q)$

of integers with $ p^{2}+bq^{2}=\lambda$ , we put $\mathfrak{a}=(p+\sqrt{-b}q)\mathscr{O}$ . It follows from $\lambda(!)$ $=\mathfrak{a}\overline{\mathfrak{a}}$

that the prime ideal decomposition of $\mathfrak{a}$ must be of the form

$\mathfrak{a}=\square \mathfrak{p}_{\ell}^{n(\ell;\lambda)}II_{d}^{\mathfrak{p}_{\ell}^{i(\ell)}\overline{\mathfrak{p}}_{\ell}^{n(\ell;\lambda)-i(\ell)}}II_{p}^{\mathfrak{p}_{\ell}^{n(\ell;\lambda)/2}}\ell\in \mathscr{P}_{r}\ell\ell$ ’

with some integer $i(\ell)$ with $0\leq i(\ell)\leq n(\ell;\lambda)$ for $1\in \mathscr{P}_{d}$ . Hence for this $\lambda$ , the
possibility for $\mathfrak{a}$ is at most $\prod_{\ell\in \mathscr{P}_{d}}(n(\ell;\lambda)+1)$ . If two pairs $(p, q)$ and $(\tilde{p},\tilde{q})$ give
the same $\mathfrak{a}$ , which means that $(p+\sqrt{-b}q)\mathscr{O}=(\tilde{p}+\sqrt{-b}\tilde{q})\mathscr{O}$ , then $(p+\sqrt{-b}q)/$

$(\tilde{p}+\sqrt{-b}\tilde{q})$ is a unit of $\mathscr{O}$ . As fl has no unit other than roots of unity, we have
$\tilde{m}_{1,b}(\lambda)\leq w_{b}\prod_{\ell\in \mathscr{P}_{d}}(n(\ell; 2)+1 )$ . Since $d(\lambda)=\prod_{\ell}(n(\ell;\%)+ 1)$ : we complete the
proof for the case $a=1$ .

In general case, if a pair $(p, q)$ of integers satisfies $ ap^{2}+bq^{2}=\lambda$ , then the
pair $(P, Q)=(ap, q)$ of integers satisfies $P^{2}+abQ^{2}=a2.$ Therefore we have
$\tilde{m}_{a,b}(\lambda)\leq w_{ab}d(a\lambda)\leq w_{ab}d(a)d(\lambda)$ . Changing the role of $a$ and $b$ , we also have
$\tilde{m}_{a,b}(\lambda)\leq w_{ab}d(b)d(\lambda)$ , so that we get the conclusion. $\square $

REMARK. In Theorem 2.9 (2), even if we give a restriction on structure

torsion of geodesics on $M$, we obtain the same assertion; the multiplicity of length

spectrum of geodesics with restricted structure torsion is not uniformly bounded.
For arbitrary $\alpha,\beta$ with $0\leq\alpha<\beta\leq 1$ , we denote by $Geod_{(\alpha,\beta)}(M)$ the set of
congruency classes of geodesics on $M$ whose structure torsion lies in the interval
$(\alpha,\beta)$ . Restrict the length spectrum $\mathscr{L}_{M}$ onto this set and denote by $\mathscr{L}_{(\alpha,\beta)}$ .
Then the multiplicity $m_{(\alpha,\beta)}(\lambda)$ of the restricted length spectrum $\mathscr{L}_{(\alpha,\beta)}$ also
satisfies $\lim\sup_{\lambda\rightarrow\infty}m_{(\alpha,\beta)}(\lambda)=\infty$ .

Finally we make mention of the growth of the number of congruency
classes of geodesics with respect to their length spectrum for a geodesic sphere in
a complex projective space. For a Riemannian manifold $N$ we denote by $n_{N}(\lambda)$

the cardinality of the set { $[\gamma]\in$ Geod(N) $|\mathscr{L}_{N}([\gamma])\leq\lambda$ }.
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THEOREM 2.12. For a geodesic sphere $M$ of radius $r(0<r<\pi/2)$ in $CP^{n}$ of
holomorphic sectional curvature 4 we have

$\lim_{\lambda\rightarrow\infty}\frac{n_{M}(\lambda)}{\lambda^{2}}=\frac{3r}{\pi^{4}\sin 2r}$ .

PROOF. For positive real numbers $\alpha,\beta,$
$\lambda$ and a positive integer $d$, we put

$n_{\alpha,\beta}(\lambda)$ and $k_{\alpha,\beta}(\lambda;d)$ the cardinality of the sets

$\{(p, q)\in Z\times Z|p$ $andqarere1ative1yprrimeeintegers\alpha p^{2}+\beta q^{2}\leq\lambda^{2}and\alpha p>\beta q>0with\}$ ,

$K(\lambda;d)=\{(p, q)\in dZ\times dZ|\alpha p^{2}+\beta q^{2}\leq\lambda^{2}, \alpha p>\beta q>0\}$ ,

respectively. Here $dZ$ denotes the set $\{dj|j\in Z\}$ . Since the correspondence
$(p, q)\mapsto(dp, dq)$ of $K(\lambda/d;1)$ to $K(\lambda;d)$ is bijective, we find the following re-
lation between $n_{\alpha,\beta}(\lambda)$ and $k_{\alpha,\beta}(\lambda;1)$ by using the M\"obius function $\mu$ ;

(2.3)
$n_{\alpha,\beta}(\lambda)=\sum_{d\geq 1}\mu(d)k_{\alpha,\beta}(\lambda;d)=\sum_{1\leq d\leq[\lambda/\sqrt{\alpha+\beta}]}\mu(d)k_{\alpha,\beta}(\lambda/d;1)$

,

where [J] denotes the integer part of a real number J.
We first study the growth of $n_{\alpha,\beta}(\lambda)$ by estimating $k_{\alpha,\beta}(\lambda;1)$ . Consider the

following three sets in a plane $R^{2}$ ;

$E_{\lambda}=\{(x, y)\in R^{2}|\alpha x^{2}+\beta y^{2}\leq\lambda^{2}, \alpha x\geq\beta y\geq 0\}$ ,

$E_{\lambda}^{+}=\{(x, y)\in R^{2}|x\geq 0, y\geq 0, \alpha(x-1)^{2}+\beta(y-1)^{2}\leq\lambda^{2}, \alpha x\geq\beta(y-1)\}$ ,

$E_{\lambda}^{-}=\{(x, y)\in R^{2}|x\geq 0,y\geq 1, \alpha x^{2}+\beta y^{2}\leq\lambda^{2}, \alpha(x-1)\geq\beta y\}$ .

Since $k_{\alpha,\beta}(\lambda;1)$ coincides with the area of the union of quadrates

$R_{\lambda}=\bigcup_{(p,q)\in K(\lambda;1)}\{(x, y)\in R^{2}|p\leq x\leq p+1, q\leq y\leq q+1\}$
,

and $E_{\lambda}^{-}\subset R_{\lambda}\subset E_{\lambda}^{+}$ , we have Area $(E_{\lambda}^{-})$ $<k_{\alpha,\beta}(\lambda;1)<$ Area $(E_{\lambda}^{+})$ . Put

$C_{\alpha,\beta}=\frac{1}{2\sqrt{\alpha\beta}}\tan^{-1}\sqrt{\frac{\alpha}{\beta}}$ .

As $E_{\lambda}^{-}\subset E_{\lambda}\subset E_{\lambda}^{+}$ and Area(E\lambda ) $=C_{\alpha,\beta}\lambda^{2}$ , there exist positive constants $C_{1},$ $C_{2}$

with

(2.4) $|k_{\alpha,\beta}(\lambda;1)-C_{\alpha,\beta}\lambda^{2}|<$ Area $(E_{\lambda}^{+})-$ Area $(E_{\lambda}^{-})$ $<C_{1}\lambda+C_{2}$ ,
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for every /5. By using (2.3) and (2.4) we get

$|\frac{n_{\alpha,\beta}(\lambda)}{\lambda^{2}}-C_{\alpha,\beta}\sum_{1\leq d\leq[\lambda/\sqrt{\alpha+\beta}]}\frac{\mu(d)}{d^{2}}|<\frac{1}{\lambda^{2}}\sum_{1\leq d\leq[\lambda/\sqrt{\alpha+\beta}]}(C_{1}\frac{\lambda}{d}+C_{2})$

$<\frac{C_{1}}{\lambda}(1+\log(\lambda/\sqrt{\alpha+\beta}))+\frac{C_{2}}{\lambda\sqrt{\alpha+\beta}}$

$\rightarrow 0(\lambda\rightarrow\infty)$ .

We hence obtain

$\lim_{\lambda\rightarrow\infty}\frac{n_{\alpha,\beta}(\lambda)}{\lambda^{2}}=C_{\alpha,\beta}\sum_{d=1}^{\infty}\frac{\mu(d)}{d^{2}}=C_{\alpha,\beta}\prod_{\ell}(1-\frac{1}{\ell^{2}})=\frac{C_{\alpha,\beta}}{\zeta(2)}=\frac{6C_{\alpha,\beta}}{\pi^{2}}$ ,

where in the product 1 runs over all prime positive integers and $\zeta$ denotes the
Riemann zeta function.

We now put $n_{\alpha,\beta}^{o}(\lambda)$ and $n_{\alpha,\beta}^{e}$ (2 ) the cardinalities of the sets

$\{(p, q)\in Z\times Z$ $whicchsatissfypqisodd,$$\alpha p>\beta q>0andpandqarereelatitivelyprimeinteegeers\}$ ,
$\alpha p^{2}+\beta q^{2}\leq\lambda^{2}$

$\{(p, q)\in Z\times Z$

$whicchsattisffypqisevenpanndqarrereelattively,$

, $\alpha p>\beta q>0andpriimeintegers\}$ ,
$\alpha p^{2}+\beta q^{2}\leq\lambda^{2}$

respectively. In order to study the growth of $n_{\alpha,\beta}^{o}$ (2 ) we estimate the cardinality
$k_{\alpha,\beta}^{o}(\lambda;d)$ of the set

$K^{o}(\lambda;d)=\{(2p+1,2q+1)\in dZ\times dZ$ $\alpha(2p+1)^{2}+\beta(2q+1)^{2}\leq\lambda^{2}$ ,

$p$ and $q$ are positive integers
$with\}$ .

$\alpha(2p+1)>\beta(2q+1)>0$

Clearly we have $k_{\alpha,\beta}^{o}(\lambda;d)=0$ for even $d$, so that

$n_{\alpha,\beta}^{o}(\lambda)=\sum_{d\geq 1}\mu(d)k_{\alpha,\beta}^{o}(\lambda;d)=\sum_{1\leq d\leq[\lambda/\sqrt{\alpha+\beta}]}\mu(d)k_{\alpha,\beta}^{o}(\lambda/d;1)$

.

$d$ is odd

If $(2p+1,2q+1)\in K^{o}(\lambda;1)$ , then the pair of integer $(p, q)$ satisfies

$\alpha p^{2}+\beta q^{2}\leq\lambda^{2}/4$ and $\alpha p+(\alpha-\beta)/2>\beta q>0$ .

On the other hand if a pair of positive integers $(p, q)$ satisfies

$\alpha(p+1)^{2}+\beta(q+1)^{2}\leq\lambda^{2}/4$ and $\alpha p+(\alpha-\beta)/2>\beta q$ ,
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then $(2p+1,2q+1)\in K^{o}(\lambda;1)$ . Hence we find by similar argument on
$k_{\alpha,\beta}(\lambda/d;1)$ that

$|k_{\alpha,\beta}^{o}(\lambda;1)-\frac{C_{\alpha,\beta}}{4}\lambda^{2}|<C_{1}^{\prime}\lambda+C_{2}^{\prime}$ ,

for every 2 with some positive constants $C_{1}^{\prime},$ $C_{2}^{\prime}$ . Thus we obtain

$\lim_{\lambda\rightarrow\infty}\frac{n_{\alpha,\beta}^{o}(\lambda)}{\lambda^{2}}=\frac{C_{\alpha,\beta}}{4}\sum_{1\leq d<\infty},\frac{\mu(d)}{d^{2}}=\frac{C_{\alpha,\beta}}{4}\prod_{\ell}(1-\frac{1}{\ell^{2}})=\frac{4}{3}\frac{C_{\alpha,\beta}}{4\zeta(2)}=\frac{2C_{\alpha,\beta}}{\pi^{2}}$ ,

$d$ is odd

where in the product 1 runs over all prime positive integers with $\ell$ $\neq 2$ . This
also leads us to

$\lim_{\lambda\rightarrow\infty}\frac{n_{\alpha,\beta}^{e}(\lambda)}{\lambda^{2}}=\lim_{\lambda\rightarrow\infty}(\frac{n_{\alpha,\beta}(\lambda)}{\lambda^{2}}-\frac{n_{\alpha,\beta}^{o}(\lambda)}{\lambda^{2}})=\frac{4C_{\alpha,\beta}}{\pi^{2}}$ .

Coming back to our situation, we see by use of Theorem 2.5 that

$n_{M}(\lambda)=2+n_{\sin^{2}r,\cos^{2}r}^{e}(\frac{\lambda}{2\pi})+n_{\sin^{2}r,\cos^{2}r}^{o}(\frac{\lambda}{\pi})$ , for $\lambda>2\pi\sin r$ ,

hence we obtain the conclusion. $\square $

3. Geodesics on geodesic spheres and tubes around complex hyperplanes

in a complex hyperbolic space.

In this section we study geodesics on horospheres, geodesic spheres and tubes
around complex hyperplanes in a complex hyperbolic space.

Let $M$ be a real hypersurface in $CH^{n}$ which is congruent to either one of

a horosphere, a geodesic sphere of radius $r(0<r<\infty)$ , or a tube of radius $r$

$(0<r<\infty)$ around a totally geodesic complex hyperplane $CH^{n-1}$ , and $l$ be an
isometric embedding of $M$ into $CH^{n}$ . For every geodesic $\gamma$ on $M$ we see by (2.2)

that $\langle\dot{\gamma}, \xi\rangle$ is constant along $\gamma$ . We call this constant the structure torsion of $\gamma$ .

By just the same calculation as in the proof of Proposition 2.1, we find that $ l\circ\gamma$

is a helix of order 4 in $CH^{n}$ :

(3.1) $\{$

$\tilde{\nabla}_{\gamma}\dot{\gamma}=$ $\kappa_{1}X_{2}$ ,

$\tilde{\nabla}_{\gamma}X_{2}=-\kappa_{1}\dot{\gamma}+\kappa_{2}X_{3}$ ,
$\tilde{\nabla}_{\gamma}X_{3}=$ $-\kappa_{2}X_{2}+\kappa_{3}X_{4}$ ,
$\tilde{\nabla}_{\gamma}X_{4}=$ $-\kappa_{3}X_{3}$ ,

where

$\kappa_{1}=\langle A\dot{\gamma},\dot{\gamma}\rangle$ , $\kappa_{2}=\sqrt{||A\dot{\gamma}||^{2}-\langle A\dot{\gamma},\dot{\gamma}\rangle^{2}}$ ,

$\kappa_{3}=\frac{1}{\kappa_{2}}|\langle\dot{\gamma}, \xi\rangle|\sqrt{1-\langle\dot{\gamma},\xi\rangle^{2}}$ ,
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$X_{2}=\Lambda^{r_{M}}$ , $X_{3}=\frac{1}{\kappa_{2}}(\langle A\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}-A\dot{\gamma})$ ,

$X_{4}=\{$

$(1/\sqrt{1-\langle\dot{\gamma},\xi\rangle^{2}})\phi(\dot{\gamma})$ , if $\langle\dot{\gamma}, \xi\rangle>0$ ,

$(-1/\sqrt{1-\langle\dot{\gamma},\xi\rangle^{2}})\phi(\dot{\gamma})$ , if $\langle\dot{\gamma}, \xi\rangle<0$ ,

with a unit normal vector field $\Lambda^{r_{M}}$ and the shape operator $A$ of $M$ in $CH^{n}$ .

Thus we get the following result on the extrinsic shape of geodesics on those real
hypersurfaces in $CH^{n}$ .

PROPOSITION 3.1. Let $M$ be a real hypersu face in $CH^{n}$ of holomorphic
sectional curvature -4 which is congruent to one of a horosphere, a geodesic sphere

of radius $r(0<r<\infty)$ , and a tube of radius $r(0<r<\infty)$ around complex hy-

perplane $CH^{n-1}$ . We denote by $l$ an isometric embedding of $M$ into $CH^{n}$ . Then

the extrinsic shape $ l\circ\gamma$ of a geodesic $\gamma$ on $M$ is as follows:
(1) If the structure torsion of $\gamma$ is $\pm 1$ , then the curve $ l\circ\gamma$ is a circle of

complex torsion ;1 in $CH^{n}$ . Its curvature is 2 if $M$ is congruent to $a$

horosphere, 2 $\coth 2r$ if $M$ is congruent to a geodesic sphere of radius $r$ or
a tube of radius $r$ around a complex hyperplane.

(2) If $\gamma$ has null structure torsion, then the curve $ l\circ\gamma$ is a circle of null

complex torsion in $CH^{n}$ . Its curvature is 1 if $M$ is a horosphere, $\coth r$

if $M$ is congruent to a geodesic sphere of radius $r$ , and $\tanh r$ if $M$ is

congruent to a tube of radius $r$ around a complex hyperplane.
(3) Generally, if the structure torsion of $\gamma$ is of the form $\sin\theta(0<|\theta|<\pi/2)$ ,

then the curve $ l\circ\gamma$ is a holomorphic helix ofproper order 4 whose com-
plex torsions are described as;

$\tau_{12}=-\tau_{34}=-\sin\theta$ , $\tau_{14}=-\tau_{23}=-sgn(\sin\theta)\cos\theta$ , $\tau_{13}=\tau_{24}=0$ .

Its curvatures are as the following table:

Each of these holomorphic helices lies on some totally geodesic complex
plane $CH^{2}$ in $CH^{n}$ .

This proposition and Lemma 1.2 guarantee the following.
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COROLLARY 3.2. Let $M$ be one of a horosphere, a geodesic sphere, and a tube

around a complex hyperplane in a complex hyperbolic space. Then two geodesics

on $M$ are congruent if and only if the absolute values of their structure torsion

coincide.

COROLLARY 3.3. Every geodesic on a horosphere, a geodesic sphere and $a$

tube around complex hyperplane in a complex hyperbolic space is a simple curve.

Let $H_{1}^{2n+1}$ denote an anti-de Sitter space in $C^{n+1}$ . In order to obtain in-
formation on length of closed geodesics on geodesic spheres and tubes around
complex hyperplanes, we study their horizontal lifts. Denoting the connection
on $H_{1}^{2n+1}$ by $\hat{\nabla}$ , for vector fields $U,$ $V$ on $CH^{n}$ we have

(3.2) $\hat{\nabla}_{U}V=\tilde{\nabla}_{U}V-\langle U, JV\rangle J_{\vee}V_{H_{1}^{2n+1}}$ ,

where $\swarrow V_{H_{1}^{2n+1}}$ denotes the time-like outward unit normal vector field on $H_{1}^{2n+1}$ in
$C^{n+1}$ and in the left-hand side $U,$ $V$ are regarded as horizontal vector fields on
$H_{1}^{2n+1}$ .

When $M$ is a geodesic sphere of radius $r$ in $CH^{n}$ , each horizontal lift $\hat{\gamma}$

of $ l\circ\gamma$ for a geodesic $\gamma$ on $M$ is a helix of order 3 in general sense: In fact,

denoting by $\sin$ ? $(0\leq|\theta|\leq\pi/2)$ the structure torsion of $\gamma$ , we find

$\{$

$\hat{\nabla}_{\hat{\gamma}}\hat{\gamma}$

.
$=$

$\ell_{1}\hat{X}_{2}$ ,

$\hat{\nabla}_{\hat{\gamma}}\hat{X}_{2}=-\ell_{1}\hat{\gamma}$

.
$+\ell_{2}\hat{X}_{3}$ ,

$\hat{\nabla}_{\hat{\gamma}}\hat{X}_{3}=$
$\ell_{2}\hat{X}_{2}$ ,

where

$\ell_{1}=\coth r+\tanh r\cdot\sin^{2}\theta$ , $\ell_{2}=|\sin\theta|\sqrt{1-\tanh^{2}r\cos^{2}\theta}$ ,

$\hat{X}_{2}=\Lambda^{r_{M}}$ , $\hat{X}_{3}=\frac{1}{\ell_{2}}(\langle A\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}-A\dot{\gamma}+\sin\theta J_{\vee}V_{H_{1}^{2n+1}})$ ,

with the shape operator $A$ of $M$ in $CH^{n}$ and the complex structure $J$ on $C^{n+1}$ .
Regarding $\hat{\gamma}$ as a curve in $C^{n+1}$ , we find that it satisfies the following ordinary

differential equation;

$\hat{\gamma}^{(4)}+(\coth^{2}r-\cos^{2}\theta+\tanh^{2}r\sin^{2}\theta)\hat{\gamma}^{\prime\prime}+\sin^{2}\theta(1-\tanh^{2}r\cos^{2}\theta)\hat{\gamma}=0$ .

Then $\hat{\gamma}$ is of the form

$\hat{\gamma}(t)=A\exp(\sqrt{-1}t\tanh r\sin?)$ $+B\exp(-\sqrt{-1}t\tanh r\sin?)$

$+C\exp(\sqrt{-1}t\sqrt{\coth^{2}r-\cos^{2}\theta})+D\exp(-\sqrt{-1}t\sqrt{\coth^{2}r-\cos^{2}\theta})$
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with some non-zero vectors $A,$ $B,$ $C,$ $D\in C^{n+1}$ which span the complex 3-space $C^{3}$

which is also spanned by $\hat{\gamma}(0)$ and horizontal lifts of $\dot{\gamma}(0)$ and $\xi_{\gamma(0)}$ . With the aid
of Lemma 2.4 we get the following.

THEOREM 3.4. Let $\gamma$ be a geodesic on a geodesic sphere $M$ of radius $r$

$(0<r<\infty)$ in $CH^{n}$ of holomorphic sectional curvature -4.
(1) If the structure torsion of $\gamma$ is $\pm 1$ , then it is closed with length $\pi\sinh 2r$ .

(2) If $\gamma$ has null structure torsion, then it is also closed and its length is
$2\pi\sinh r$ .

(3) When the structure torsion of $\gamma$ is of the form $\sin\theta(0<|\theta|<\pi/2)$ , it is

closed if and only if

$\sin\theta=\underline{\pm q}$

$\sinh r\sqrt{p^{2}\tanh^{2}r-q^{2}}$

with some relatively prime positive integers $p$ and $q$ with $q<p\tanh^{2}r$ .

In this case, its length is

length(y) $=\{$

$2\pi\sqrt{p^{2}\sinh^{2}r-q^{2}\cosh^{2}r}$ , if $pq$ is even

$\pi\sqrt{p^{2}\sinh^{2}r-q^{2}\cosh^{2}r}$ , if $pq$ is odd.

REMARK. When the structure torsion is not equal to $\pm 1$ , every horizontal
lift $\hat{\gamma}$ of $ l\circ\gamma$ for a geodesic $\gamma$ on $M$ is closed if and only if $\gamma$ is closed.

Next we study geodesics on a tube $M$ of radius $r$ around a complex hyper-
plane $CH^{n-1}$ . Let $\gamma$ be a geodesic on $M$ of structure torsion $\sin\theta(0\leq|\theta|\leq\pi/2)$ .

When $\cos\theta>\tanh r$ , by use of (3.1) and (3.2) we find that each horizontal lift $\hat{\gamma}$

of $ l\circ\gamma$ on $H_{1}^{2n+1}$ is a helix of proper order 3:

$\{$

$\hat{\nabla}_{\hat{\gamma}}\hat{\gamma}$

.
$=$

$\ell_{1}\hat{X}_{2}$ ,

$\hat{\nabla}_{\hat{\gamma}}\hat{X}_{2}=-\ell_{1}\hat{\gamma}$

.
$+\ell_{2}\hat{X}_{3}$ ,

$\hat{\nabla}_{\hat{\gamma}}\hat{X}_{3}=-\ell_{2}\hat{X}_{2}$ ,

where

$\ell_{1}=|\tanh r+\coth r\sin^{2}\theta|$ , $\ell_{2}=|\sin\theta|\sqrt{\coth^{2}r\cos^{2}\theta-1}$ ,

$\hat{X}_{2}=\Lambda^{r_{M}}$ , $\hat{X}_{3}=\frac{1}{\ell_{2}}(\langle A\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}-A\dot{\gamma}+\sin\theta J_{\vee}V_{H_{1}^{2n+1}})$ ,

with the shape operator $A$ of $M$ in $CH^{n}$ and the complex structure $J$ on $C^{n+1}$ .
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When $\cos$ $?\leq\tanh r$ , we see that each horizontal lift $\hat{\gamma}$ of $ l\circ\gamma$ onto $H_{1}^{2n+1}$ is a
helix of proper order 3 in general sense: When $\cos$ $?<\tanh r$ , it satisfies

$\{$

$\hat{\nabla}_{\hat{\gamma}}\hat{\gamma}$

.
$=$

$\ell_{1}\hat{X}_{2}$ ,

$\hat{\nabla}_{\hat{\gamma}}\hat{X}_{2}=-\ell_{1}\hat{\gamma}$

.
$+\ell_{2}\hat{X}_{3}$ ,

$\hat{\nabla}_{\hat{\gamma}}\hat{X}_{3}=$
$\ell_{2}\hat{X}_{2}$ ,

and when $\cos$ $?=\tanh r$ , it satisfies

$\{$

$\hat{\nabla}_{\hat{\gamma}}\hat{\gamma}$

.
$=\ell_{1}\hat{X}_{2}$ ,

$\hat{\nabla}_{\hat{\gamma}}\hat{X}_{2}=-\ell_{1}\hat{\gamma}$

.
$+\{\langle A\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}-A\dot{\gamma}+\sin\theta J_{\vee}V_{H_{1}^{2n+1}} \}$ ,

$\hat{\nabla}_{\hat{\gamma}}\{\langle A\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}-A\dot{\gamma}+\sin\theta J_{\vee}V_{H_{1}^{2n+1}} \}$ $=0$ .

Here $\ell_{1}$ , $\hat{X}_{2}$ and $\hat{X}_{3}$ are the same as in the case $\cos\theta>\tanh r$ , and

$\ell_{2}=|\sin\theta|^{\sqrt{1-\coth^{2}r\cos^{2}\theta}}$ .

In any case, regarding $\hat{\gamma}$ as a curve in $C^{n+1}$ , we find that it satisfies the following
ordinary differential equation;

$\hat{\gamma}^{(4)}+(\tanh^{2}r-\cos^{2}\theta+\coth^{2}r\sin^{2}\theta)\hat{\gamma}^{\prime\prime}+\sin^{2}\theta(1-\coth^{2}r\cos^{2}\theta)\hat{\gamma}=0$ .

Solving this equation, we have

$\hat{\gamma}(t)=\{$

A $\exp(\sqrt{-1}t\coth r\sin?)$ $+B\exp(-\sqrt{-1}t\coth r\sin?)$

$+C\exp(t\sqrt{\cos^{2}\theta-\tanh^{2}r})+D\exp(-t\sqrt{\cos^{2}\theta-\tanh^{2}r})$ ,

if $\cos$ $?>\tanh r$ ,
$A+Bt+C\exp(\sqrt{-1}t\tan ?)$ , if $\cos$ $?=\tanh r$ ,

A $\exp(\sqrt{-1}t\coth r\sin?)$ $+B\exp(-\sqrt{-1}t\coth r\sin?)$

$+C\exp(\sqrt{-1}t\sqrt{\tanh^{2}r-\cos^{2}\theta})$

$+D\exp(-\sqrt{-1}t\sqrt{\tanh^{2}r-\cos^{2}\theta})$ , if $\cos$ $?<\tanh r$ ,

with some non-zero vectors $A,$ $B,$ $C,$ $D\in C^{n+1}$ which span the complex 3-space $C^{3}$

which is also spanned by $\hat{\gamma}(0)$ and horizontal lifts of $\dot{\gamma}(0)$ and $\xi_{\gamma(0)}$ . For example,
when $\cos$ $?=\tanh r$ we have

$A=\frac{1}{\sin^{2}\theta}\hat{x}+\frac{\cos\theta}{\sin^{2}\theta}\sqrt{-1}\hat{\xi}$ , $B=\cos\theta\hat{u}-\frac{\cos^{2}\theta}{\sin\theta}\hat{\xi}+\sqrt{-1}\cot\theta\hat{x}$ ,

$C=-\cot^{2}\theta\hat{x}-\frac{\cos\theta}{\sin^{2}\theta}\sqrt{-1}\hat{\xi}$ ,
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where $\hat{x}=\hat{\gamma}(0)\in C^{n+1}$ and \^u, $\hat{\xi}\in C^{n+1}\cong T_{\hat{X}}C^{n+1}$ are horizontal lifts of $u,$ $\xi_{\gamma(0)}\in$

$T_{\gamma(0)}M\subset T_{\gamma(0)}CH^{n}$ with $\dot{\gamma}(O)=(\cos\theta)u+(\sin\theta)\xi_{\gamma(0)}$ and $u\in\langle\xi_{\gamma(0)}\rangle^{\perp}$ .

We call a smooth curve $\sigma$ on a complex hyperbolic space $CH^{n}$ un-
bounded in both directions if both $\sigma([0, \infty))$ and $\sigma((-\infty, 0])$ are unbounded sets.

Considering the ideal boundary $\partial CH^{n}$ of $CH^{n}$ as a Hadamard manifold, we can
define its limit points

$\sigma(\infty)=\lim_{t\rightarrow\infty}\sigma(t)$ , $\sigma(-\infty)=\lim_{t\rightarrow-\infty}\sigma(t)\in\partial CH^{n}$ ,

at infinity if they exist. We shall call a smooth curve $\sigma$ on $CH^{n}$ horocyclic if the
following conditions hold.

i) It has single point at infinity; $\sigma(\infty)=\sigma(-\infty)$ .
$ii)$ If a geodesic $\rho$ on $CH^{n}$ with $\rho(\infty)=\sigma(\infty)$ crosses $\sigma$ , then they cross

orthogonally at their crossing point.
These conditions are equivalent to the condition that $\sigma$ is unbounded in both
directions and lies on a horosphere. As a consequence of the expressions of

horizontal lifts of geodesics on a tube around a complex hyperplane, we obtain
the following.

THEOREM 3.5. Let $\gamma$ be a geodesic of structure torsion $\sin$ ? $(0\leq|\theta|\leq\pi/2)$

on a tube $M$ of radius $r(0<r<\infty)$ around a complex hyperplane $CH^{n-1}$ in $CH^{n}$

of holomorphic sectional curvature -4.
(1) If the structure torsion of $\gamma$ is $\pm 1$ , then it is closed and its length is

$\pi\sinh 2r$ .
(2) If $\cos\theta>\tanh r$ , then it is unbounded in both directions, and has two

distinct points at infinity as a curve on $CH^{n}$ .
(3) If $\cos\theta=\tanh r$ , then it is horocyclic as a curve on $CH^{n}$ .
(4) If $ 0<\cos$ $?<\tanh r$ , then it is bounded. Under this situation, it is

closed if and only if

$\sin\theta=\underline{\pm p}$

$\cosh r\sqrt{p^{2}-q^{2}\coth^{2}r}$

with some relatively prime positive integers $p$ and $q$ with $ p\tanh$ $2\gamma>q$ .
In this case, its length is

length(y) $=\{$

$2\pi\sqrt{p^{2}\sinh^{2}r-q^{2}\cosh^{2}r}$ , if $pq$ is even

$\pi\sqrt{p^{2}\sinh^{2}r-q^{2}\cosh^{2}r}$ , if $pq$ is odd.

REMARK. When the structure torsion is not equal to $\pm 1$ , every horizontal
lift $\hat{\gamma}$ of $ l\circ\gamma$ for a geodesic $\gamma$ on $M$ is closed if and only if $\gamma$ is closed.
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Theorem 3.4 assures that the length spectrum of a geodesic sphere $M$ of

radius $r$ in $CH^{n}$ is of the following form;

Lspec $( \#)$ $=\{2\pi\sinh r\}\cup\{\pi\sinh 2r\}$

$\cup\{2\pi\sqrt{p^{2}\sinh^{2}r-q^{2}\cosh^{2}r}$ $positiveintegerswhichsatisfypqisevenandq<p\tanh^{2}rpandqarere11ative1yprime\}$

$\cup\{\pi\sqrt{p^{2}\sinh^{2}r-q^{2}\cosh^{2}r}$ $positiveintegerswhichsatisfypandqarere11ative1yprimepqisoddandq<p\tanh^{2}r\}$ ,

and Theorem 3.5 assures that the length spectrum of a tube $M$ of radius $r$ around
a complex hyperplane $CH^{n-1}$ in $CH^{n}$ is of the following form;

Lspec $( \#)$ $=\{\pi\sinh 2r\}$

$\cup\{2\pi\sqrt{p^{2}\sinh^{2}r-q^{2}\cosh^{2}r}$ $positiveintegerswhichsatisfypqisevenandq<p\tanh^{2}rpandqarere11ative1yprime\}$

$\cup\{\pi\sqrt{p^{2}\sinh^{2}r-q^{2}\cosh^{2}r}$ $positiveintegerswhichsatisfypandqarere11ative1yprimepqisoddandq<p\tanh^{2}r\}$ .

We obtain the following on the multiplicity of the length spectrum.

THEOREM 3.6. Let $M$ be either a geodesic sphere of radius $r$ or a tube of
radius $r$ around a complex hyperplane $CH^{n-1}$ in $CH^{n}$ of holomorphic sectional

curvature -4.
(1) The length spectrum Lspec $( \#)$ is a discrete unbounded subset of the real

line R. In particular, there exist infinitely many congruency classes of
closed geodesics.

(2) $Jf$
$\coth^{2}r$ is irrational of the form either

$\frac{1}{2q^{2}}\{(p^{2}+q^{2}-1)-\sqrt{\{p^{2}-(q-1)^{2}\}\{p^{2}-(q+1)^{2}\}}\}$

for some relatively prime positive integers $p,$ $q$ with even $pq$ and
$p\geq q+3$ , or

$\frac{1}{2q^{2}}\{(p^{2}+q^{2}-4)-\sqrt{\{p^{2}-(q-2)^{2}\}\{p^{2}-(q+2)^{2}\}}\}$

for some relatively prime positive integers $p,$ $q$ with odd $pq$ and $p\geq q+4$ ,

then the multiplicity of the spectrum $\pi\sinh 2r$ is two and other length

spectrum of $M$ is simple.
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(3) $Jf$
$\coth^{2}r$ is irrational and is not of the form in (2), then every length

spectrum of $M$ is simple.
(4) $Jf$

$\coth^{2}r$ is rational, the multiplicity of each length spectrum is finite.
But it is not uniformly bounded; $\lim\sup_{\lambda\rightarrow\infty}m_{M}(\lambda)=\infty$ . The growth

order of $m_{M}(\lambda)$ is not so rapid. It satisftes $\lim_{\lambda\rightarrow\infty}\lambda^{-\delta}m_{M}(\lambda)=0$ for
arbitrary positive J.

PROOF. (1) Let $\Lambda$ be an arbitrary positive number. If positive integers $p$

and $q$ satisfy $ p^{2}\tanh^{2}r-q^{2}<\Lambda$ and $p\tanh^{2}r>q$ , then $p^{2}(1-\tanh^{2}r)\tanh^{2}r<$

$\Lambda$ , so that the number of such pairs of integers is finite. Thus we know that
Lspec $( \#)$ is unbounded and discrete.

(2), (3) By the same argument as in the proof of Theorem 2.9 (1) we only

need to check the multiplicity of $\pi\sinh 2r$ . If relatively prime positive integers

$p,$ $q$ with even $pq$ satisfy $\sinh 2r=2\sqrt{p^{2}\sinh^{2}r-q^{2}\cosh^{2}r}$, then one finds that
$\coth^{2}r$ is of the first form in the assertion by noticing $p>q\coth^{2}r$ and $\coth^{2}r$ is

irrational. Similarly, the equality $\sinh 2r=\sqrt{p^{2}\sinh^{2}r-q^{2}\cosh^{2}r}$ for relatively
prime positive integers $p,$ $q$ with odd $pq$ leads us to the second form of $\coth^{2}r$ in
the assertion. Conversely, if $\coth^{2}r$ is one of these forms then the multiplicity of
$\pi\sinh 2r$ is two. We get the assertions (2) and (3).

(4) This assertion follows from the following Lemmas 3.7 and 3.8. We

apply these lemmas by putting $\tanh^{2}r=a/b$ with relatively prime positive inte-
gers $a,$ $b(a<b)$ and $\epsilon_{1}=0,$ $\epsilon_{2}=\epsilon=\tanh^{2}r$ . $[$

REMARK. In (4), the multiplicity of length spectrum of geodesics with re-
stricted structure torsion is not uniformly bounded; $\lim\sup_{\lambda\rightarrow\infty}m_{(\alpha,\beta)}(\lambda)=$ co , for
$\alpha,\beta$ with $0<\alpha<\beta<1$ in the case $M$ is a geodesic sphere and for $\alpha,\beta$ with
$1/\cosh r<\alpha<\beta<1$ in the case $M$ is a tube of radius $r$ around a complex hy-

perplane.

LEMMA 3.7. For relatively prime positive integers $a,$
$b$ and a positive integer $\lambda$ ,

we deftne a set $^{\varpi}(a, b;\lambda)$ of pairs of integers as

$^{\varpi}(a, b;\lambda)=\{(p, q)\in Z\times Z|pandqarerelativelyprimeintegerswhichsatisfypqisevenandap^{2}-bq^{2}=\lambda\}$ .

For arbitrary real numbers $\epsilon_{1},$ $\epsilon_{2}$ with $\epsilon_{2}>\epsilon_{1}\geq 0$ and $\epsilon_{2}<\sqrt{a}/b$, the cardinality
$m_{(a,b;\epsilon_{1},\epsilon_{2})(\lambda)}$ of the set { $(p,$ $q)\in ^{\varpi}(a,$ $b;\lambda)|\epsilon_{1}p<q<$ e2 $p$} satisftes

$\lim_{\lambda\rightarrow}\sup_{\infty}m_{(a,b;\epsilon_{1},\epsilon_{2})(\lambda)}=\infty$
.

PROOF. For relatively prime positive integers 2, $v$ we define a map

$^{\varpi}(a, b;\lambda)\times ^{\varpi}$( $1$ , ab; $v$ ) $\rightarrow ^{\varpi}(a, b;\lambda v)$
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by
$((p, q),$ $(\tilde{p},\tilde{q}))\mapsto(p, q)\star(\tilde{p},\tilde{q})=(p\tilde{p}+bq\tilde{q},\tilde{p}q+ap\tilde{q})$ .

Since 2 and $v$ are relatively prime, it is well-defined; $p\tilde{p}+bq\tilde{q}\neq 0,\tilde{p}q+ap\tilde{q}\neq 0$ .

It satisfies the following properties.
1) $\sqrt{a}P+\sqrt{b}Q=(\sqrt{a}p+\sqrt{b}q)(\tilde{p}+\sqrt{ab}\tilde{q})$ for $(P, Q)=(p, q)\star(\tilde{p},\tilde{q})$ .
2) $(p, q)\star(\tilde{p},\tilde{q})=\overline{(p,q)}\star\overline{(\tilde{p},\tilde{q})}$ , where $\overline{(p,q)}=(p, -q)$ .
3) For fixed $(p, q)$ the correspondence $(\tilde{p},\tilde{q})\mapsto(p, q)\star(\tilde{p},\tilde{q})$ is injective,

and the correspondence $(p, q)\mapsto(p, q)\star(\tilde{p},\tilde{q})$ is also injective for fixed
$(\tilde{p},\tilde{q})$ .

4) When $a=1$ , the operation $\star$ is commutative; $(p, q)\star(\tilde{p},\tilde{q})=$

$(\tilde{p},\tilde{q})\star(p, q)$ for every $(p, q)\in ^{\varpi}(1, b;\%)$ and $(\tilde{p},\tilde{q})\in ^{\varpi}(1, b;v)$ .

The property 1) guarantees that

$\tanh^{-1}(\frac{\sqrt{b}Q}{\sqrt{a}P})=\tanh^{-1}(\frac{\sqrt{b}q}{\sqrt{a}p})+\tanh^{-1}(\frac{\sqrt{ab}\tilde{q}}{\tilde{p}})$ .

Here one should note that $(\sqrt{b}q)/(\sqrt{a}p)<1$ for $(p, q)\in\varpi(a, b;\lambda)$ . We can prove
the assertion by replacing the role of $\arg(\sqrt{a}p+\sqrt{-b}q)$ by $\tanh^{-1}((\sqrt{b}q)/(\sqrt{a}p))$

in the proof of Lemma 2.10. lm

For positive integers $a,$ $b,$
$\lambda$ and a positive real number $\epsilon$ with $\epsilon<\sqrt{a}/b$,

we denote by $\tilde{m}_{a,b;\mathcal{E}}(\lambda)$ the cardinality of the set $\{(p, q)\in Z\times Z|ap^{2}-bq^{2}=\lambda$ ,

$\epsilon p>q>0\}$ . It is clear that $m_{(a,b;\epsilon_{1},\epsilon_{2})(\lambda)}\leq\tilde{m}_{a,b;\mathcal{E}}(\lambda)$ for every $\epsilon_{1}$ and $\epsilon_{2}$ with
$\epsilon_{1}<\epsilon_{2}\leq\epsilon$ .

LEMMA 3.8. (1) There exists a constant $C_{a,b;\mathcal{E}}$ depending only on $a,$
$b$ and $\epsilon$

such that $\tilde{m}_{a,b;\mathcal{E}}(\lambda)\leq C_{a,b;\mathcal{E}}d(\lambda)$ holds for arbitrary positive /5.

(2) In particular, we have $\lim_{\lambda\rightarrow\infty}\lambda^{-\delta}\tilde{m}_{a,b;\mathcal{E}}(\lambda)=0$ for arbitrary positive J.

PROOF. If a pair $(p, q)$ of integers satisfies $ ap^{2}-bq^{2}=\lambda$ and $0<q<$

$\epsilon p$ , then the pair $(P, Q)=(ap, q)$ of integers satisfies $P^{2}-abQ^{2}=a2$ and $0<$

$Q<(\epsilon/a)P$ . Since $\epsilon/a<1/\sqrt{ab}$ if $\epsilon<\sqrt{a}/b$ , we have $\tilde{m}_{a,b;\mathcal{E}}(\lambda)\leq\tilde{m}_{1,ab;\epsilon/a}(a\lambda)$ .

Hence we may assume $a=1$ because $d(a\lambda)\leq d(a)d(\lambda)$ .

When $b$ is a square, we can associate a pair of positive integers $(p, q)$ sat-

isfying $ p^{2}-bq^{2}=\lambda$ with a positive divisor $p+\sqrt{b}q$ of 2 which is greater than
$\sqrt{\lambda}$ . This shows that $\tilde{m}_{1,b;\mathcal{E}}(\lambda)\leq d(\lambda)/2$ . When $b$ is not a square, our proof
goes through almost similarly as that of Lemma 2.11 except the following mod-
ification. We denote by fl the ring of integers of the real quadratic field $Q(\sqrt{b})$ ,

and define the “hyperbolic argument” of $p+\sqrt{b}q\in(!)$ by

argh $(p+\sqrt{b}q)=\tanh^{-1}\frac{\sqrt{b}q}{p}$ .
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This is well-defined because $b$ is not a square. If there are distinct two pairs
$(p, q)$ and $(\tilde{p},\tilde{q})$ of integers with $0<q<\epsilon p,$ $0<\tilde{q}<\epsilon\tilde{q}$ and $(p+\sqrt{b}q)(!)=$

$(\tilde{p}+\sqrt{b}\tilde{q})\mathscr{O}$ , we find that $u=$ $(p+\sqrt{b}q)/(\tilde{p}+\sqrt{b}\tilde{q})$ is a unit of fl such that
i) $0<|argh(u)|<\tanh^{-1}(\epsilon\sqrt{b})$ ,

$ii)$ $u,\overline{u}>0$ (i.e. $u$ is totally positive).

We here note that $\epsilon\sqrt{b}<1$ and that the unit $u^{-1}=(\tilde{p}+\sqrt{b}\tilde{q})/(p+\sqrt{b}q)(=\overline{u})$

satisfies argh(u-1)=-argh(u). As the multiplicative group of totally positive
units of fl is an infinite cyclic group, we choose its generator $u_{0}$ with minimum
positive hyperbolic argument. We then obtain the number of totally positive
units $u$ of fl with $0<$ argh(u) $<\tanh^{-1}(\epsilon\sqrt{b})$ is not greater than $C_{1,b;\mathcal{E}}=$

$\tanh^{-1}(\epsilon\sqrt{b})\times\{argh(u_{0})\}^{-1}$ , because $argh(u_{0}^{k})=kargh(u_{0})$ . This completes the
proof with the aid of the argument in the proof of Lemma 2.11. $[$

REMARK. When $a<b$ , we can put $\epsilon=a/b$ in Lemma 3.8. Hence in this
case, the cardinality $\tilde{m}_{a,b}(\lambda)$ of the set $\{(p, q)\in Z\times Z|ap^{2}-bq^{2}=\lambda, ap>bq>0\}$

satisfies $\lim_{\lambda\rightarrow\infty}\lambda^{-\delta}\tilde{m}_{a,b}(\lambda)=0$ for arbitrary positive J.

We here study the first and the second length spectrum of geodesic spheres
and tubes around complex hyperplanes in a complex hyperbolic space.

PROPOSITION 3.9. Let $M$ be a geodesic sphere of radius $r$ in $CH^{n}$ of hol-

omorphic sectional curvature -4.
(1) The first length spectrum is $2\pi\sinh r$ , which is the length of geodesics with

null structure torsion. It is simple.
(2) The second length spectrum is also simple. When $r>(1/2)\log(2+\sqrt{3})$

$(i.e. \coth^{2}r<3)$ , it is $\pi\sqrt{8\sinh^{2}r-1}$ , which is the length of geo-

desics with structure torsion $\pm 1/(\sinh r\sqrt{9\tanh^{2}r-1})$ . When $ r\leq$

$(1/2)\log(2+\sqrt{3})$ , it is $\pi\sinh 2r$ , which is the length of geodesics with

structure torsion +1.

PROOF. We prove this proposition by reductive absurdity.
(1) If we suppose that relatively prime integers $p,$ $q$ with odd $pq$ and

$p>q\coth^{2}r$ satisfy

$2\pi\sinh r\geq\pi\sqrt{p^{2}\sinh^{2}r-q^{2}\cosh^{2}r}$ ,

then $3\leq p<2\cosh r$ , so that $\coth^{2}r<p^{2}/(p^{2}-4)$ . Since $p-2$ is an odd in-
teger and satisfies $p>(p-2)\coth^{2}r$ , we have $q\leq p-2$ , hence

4 $\sinh^{2}r\geq p^{2}\sinh^{2}r-q^{2}\cosh^{2}r\geq 4(p-1)\sinh^{2}r-(p-2)^{2}$ .

Thus we obtain $p^{2}-4<4\sinh^{2}r\leq p-2$ , which is a contradiction.
Next, if we suppose that relatively prime integers $p,$ $q$ with even $pq$ and

$p>q\coth^{2}r$ satisfy

$2\pi\sinh r\geq 2\pi\sqrt{p^{2}\sinh^{2}r-q^{2}\cosh^{2}r}$ ,
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then $2\leq p<\cosh r$ , so that $\coth^{2}r<p^{2}/(p^{2}-1)$ . Since $p>(p-1)\coth^{2}r$ , we
have $q\leq p-1$ , hence

$\sinh^{2}r\geq p^{2}\sinh^{2}r-q^{2}\cosh^{2}r\geq(2p-1)\sinh^{2}r-(p-1)^{2}$ .

Thus we obtain $2(p^{2}-1)<2\sinh^{2}r\leq p-2$ , which is also a contradiction. We

therefore obtain the assertion as $2\pi\sinh r<\pi\sinh 2r$ .
(2) Repeating the same argument as above, one can easily get the assertion.

$\square $

REMARK. The sectional curvature of a geodesic sphere $M$ of radius $r$ in $CH^{n}$

lies in the interval $[-(4-\coth^{2}r), \coth^{2}r]$ , so that it has positive sectional cur-
vature if $\coth r>2$ . However for this geodesic sphere $M$, every geodesic $\gamma$ on $M$

satisfies length(7) $>2\pi/\sqrt{\coth^{2}r}$ . Hence it is not an example of a Berger sphere.

PROPOSITION 3.10. Let $M$ be a tube of radius $r$ around a complex hyperplane
$CH^{n-1}$ in $CH^{n}$ of holomorphic sectional curvature -4.

(1) The first length spectrum is simple. It is

$\{$

$\pi\sqrt{8\sinh^{2}r-1}$ , when $\coth r<\sqrt{3}(i.e. r>(1/2)\log(2+\sqrt{3}))$ ,

$\pi\sinh 2r$ , when $\coth r\geq\sqrt{3}(i.e. r\leq(1/2)\log(2+\sqrt{3}))$ .

It is the length of geodesics with structure torsion $\pm 3/(\cosh r\sqrt{9-\coth^{2}r})$

and $\pm 1$ , respectively.
(2) The second length spectrum is also simple. It is

$\{$

$2\pi\sqrt{3\sinh^{2}r-1}$ , when $\coth r<\sqrt{2}(i.e. r>\log(1+\sqrt{2}))$ ,

$\pi\sinh 2r$ , when $\sqrt{2}\leq\coth r<\sqrt{3}$

$(i.e. (1/2)\log(2+\sqrt{3})<r\leq\log(1+\sqrt{2}))$ ,

$\pi\sqrt{4m(m+1)\sinh^{2}r-1}$ ,

when $\sqrt{2m-1}\leq\coth r<\sqrt{2m+1},$ $(m=2,3, \ldots)$

$(i.e$ . $(1/2)\{\log(\sqrt{2m+1}+1)-\log(\sqrt{2m+1}-1)\}<r$

$\leqq(1/2)\{\log(\sqrt{2m-1}+1)-\log(\sqrt{2m-1}-1)\})$ .

It is the length of geodesics of structure torsion $\pm 2/(\cosh r\sqrt{4-\coth^{2}r})$ ,

$\pm 1$ and $\pm(2m+1)/(\cosh r\sqrt{(2m+1)^{2}-\coth^{2}r})$ , respectively.

We now make mention of the growth of the number of congruency classes of
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geodesics with respect to their length. Since for positive real numbers $\alpha,\beta$ with
$\beta>\alpha$ , the area Area $(E_{\lambda})$ of the set

$E_{\lambda}=\{(x, y)\in R^{2}|\alpha x^{2}-\beta y^{2}\leq\lambda^{2}, \alpha x\geq\beta y\geq 0\}$

is $(\lambda^{2}/2\sqrt{\alpha\beta})\{\log(\sqrt{\alpha}+\sqrt{\beta})-(1/2)\log(\beta-\alpha)\}$ , we obtain the following by just
the same way as in the proof of Theorem 2.12.

THEOREM 3.11. Let $M$ be either a geodesic sphere of radius $r$ or a tube of
radius $r$ around a complex hyperplane $CH^{n-1}$ in $CH^{n}$ of holomorphic sectional

curvature -4. Then the number $n_{M}(\lambda)$ of congruency classes of geodesics with
length not greater than 2 satisftes

$\lim_{\lambda\rightarrow\infty}\frac{n_{M}(\lambda)}{\lambda^{2}}=\frac{3r}{\pi^{4}\sinh 2r}$ .

Finally we study geodesics on a horosphere $M$. We shall show that every
geodesic on a horosphere is an unbounded open curve. Every horizontal lift $\hat{\gamma}$ of
$ l\circ\gamma$ for a geodesic $\gamma$ on $M$ is a helix of order 3 in general sense: If we denote by
$\sin$ ? $(0\leq|\theta|\leq\pi/2)$ the structure torsion of $\gamma$ , we have

$\{$

$\hat{\nabla}_{\hat{\gamma}}\hat{\gamma}$

.
$=$

$\ell_{1}\hat{X}_{2}$ ,

$\hat{\nabla}_{\hat{\gamma}}\hat{X}_{2}=-\ell_{1}\hat{\gamma}$

.
$+\ell_{2}\hat{X}_{3}$ ,

$\hat{\nabla}_{\hat{\gamma}}\hat{X}_{3}=$
$\ell_{2}\hat{X}_{2}$ ,

where
$\ell_{1}=1+\sin^{2}\theta$ , $\ell_{2}=\sin^{2}\theta$ ,

$\hat{X}_{2}=\Lambda^{r_{M}}$ , $\hat{X}_{3}=\frac{1}{\ell_{2}}(\langle A\dot{\gamma},\dot{\gamma}\rangle\dot{\gamma}-A\dot{\gamma}+\sin\theta J_{\vee}V_{H_{1}^{2n+1}})$ ,

with the shape operator $A$ of $M$ in $CH^{n}$ and the complex structure $J$ on $C^{n+1}$ .

Regarding $\hat{\gamma}$ as a curve in $C^{n+1}$ , we find that it satisfies the ordinary differential
equation

$\hat{\gamma}^{(4)}+2\sin^{2}\theta\hat{\gamma}^{\prime\prime}+\sin^{4}\theta\hat{\gamma}=0$ .

Then we know that $\hat{\gamma}$ is of the form

$\hat{\gamma}(t)=(A+Bt)\exp(\sqrt{-1}t\sin ?)$ $+(C+Dt)\exp(-\sqrt{-1}t\sin\theta)$

with some non-zero vectors $A,$ $B,$ $C,$ $D\in C^{n+1}$ which span the complex 3-space $C^{3}$

which is also spanned by $\hat{\gamma}(0)$ and horizontal lifts of $\dot{\gamma}(0)$ and $\xi_{\gamma(0)}$ . Therefore we
get the following.

PROPOSITION 3.12. Every geodesic on a horosphere in a complex hyper-
bolic space is unbounded in both directions, hence it is horocyclic as a curve on $a$

complex hyperbolic space.
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4. Some characterizations.

It is well-known that a hypersurface $M^{n}$ in a Euclidean space $R^{n+1}$ is 10-
cally congruent to a standard sphere if and only if all geodesics on $M$ are circles
of positive curvature in $R^{n+1}$ . On the contrary, there do not exist real hyper-
surfaces in a non-flat complex space form $\tilde{M}_{n}$ all of whose geodesics are circles
in $\tilde{M}_{n}$ . This fact shows that the condition “all geodesics on $M$ are circles in the
ambient space $\tilde{M}_{n}$

” is too strong for real hypersurfaces $M$ in a non-flat complex
space form. So we shall consider a weaker condition.

In this section we give some characterizations of geodesic spheres, tubes
around complex hyperplanes and horospheres in a non-flat complex space form
in connection with Propositions 2.1 and 3.1.

PROPOSITION 4.1. A real hypersurface $M^{2n-1}$ in a non-flat complex space

form $\tilde{M}_{n},$ $n\geq 3$ (that is, $\tilde{M}_{n}=CP^{n}$ or $CH^{n}$ ) is locally congruent to one of $a$

geodesic sphere, a tube around complex hyperplane, and a horosphere if and only if
at each point $x\in M$ there exist orthonormal tangent vectors $v1,$ $v_{2},$

$\ldots,$
$v_{2n-2}\in T_{X}M$

orthogonal to the structure vector $\xi_{X}$ such that all geodesics on $M$ emanating $x$ in

the direction $v_{i}+v_{j}(1\leq i\leq j\leq 2n-2)$ are circles of positive curvatures in $\tilde{M}_{n}$ .

PROOF. The “if” part is a consequence of Propositions 2.1 and 3.1. So we
show the “only if” part. Let $\gamma_{i}$ $(1\leq i\leq 2n- 2)$ be geodesics on $M$ with $\gamma_{i}(O)=x$

and $\dot{\gamma}_{i}(0)=v_{i}$ which satisfy $\tilde{\nabla}_{\gamma_{i}}(\tilde{\nabla}_{\gamma_{i}}\dot{\gamma}_{i})=-\kappa_{i}^{2}\dot{\gamma}_{i}$ with some positive constants $\kappa_{i}$ . It

follows from (1.1) that

$\tilde{\nabla}_{\gamma_{i}}(\tilde{\nabla}_{\gamma_{i}}\dot{\gamma}_{i})=\langle(\nabla_{\gamma_{i}}A)\dot{\gamma}_{i},\dot{\gamma}_{i}\rangle_{\vee}V_{M}-\langle A\dot{\gamma}_{i},\dot{\gamma}_{i}\rangle A\dot{\gamma}_{i}$ .

Comparing the tangential components of these equations on $\tilde{\nabla}_{\gamma_{i}}(\tilde{\nabla}_{\gamma_{i}}\dot{\gamma}_{i})$ , we find
$\langle A\dot{\gamma}_{i},\dot{\gamma}_{i}\rangle A\dot{\gamma}_{i}=\kappa_{i}^{2}\dot{\gamma}_{i}$ , so that at $t=0$

(4.1) $\langle Av_{i}, v_{i}\rangle Av_{i}=\kappa_{i}^{2}v_{i}$ .

Since $\kappa_{i}\neq 0(1\leqq i\leq 2n-2)$ , this implies

(4.2) $Av_{i}=\kappa_{i}v_{i}$ or $Av_{i}=-\kappa_{i}v_{i}$ for $i=1,$
$\ldots,$

$2n-$ $2$ .

This guarantees that $\xi$ is principal and that

$\langle Av_{i}, v_{j}\rangle=0$ for $1\leq i<j\leq 2n-2$ .

Let $\gamma_{ij}(1\leq i<j\leq 2n-2)$ be geodesics on $M$ with $\gamma_{ij}(0)=x$ and $\dot{\gamma}_{ij}(0)=$

$(v_{i}+v_{j})/\sqrt{2}$ . We similarly find from (4.1) that

$\langle A(v_{i}+v_{j}), (v_{i}+v_{j})\rangle A(v_{i}+v_{j})=2\kappa_{ij}^{2}(v_{i}+v_{j})$
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for some positive $\kappa_{ij}$ . Thus we have $\langle A(v_{i}+v_{j}), v_{i}-v_{j}\rangle=0$ for $ 1\leq i<j\leq$

$2n-$ $2$ , so that

(4.3) $\langle Av_{i}, v_{i}\rangle=\langle Av_{j}, v_{j}\rangle$ for $1\leq i,$ $j\leq 2n-2$ .

It follows from (4.2) and (4.3) that $Av=\kappa v$ holds for each tangent vector
$v\in T_{X}M$ orthogonal to $\xi_{X}$ with some $\kappa$ . This implies that $M$ is $\eta$-umbilic at
$x$ . Since $x$ is arbitrary, we get that $M$ is totally $\eta$-umbilic in $\tilde{M}_{n}$ , which leads us
to the conclusion (see, [M], [T2]). $\square $

Finally we give a characterization of a horosphere in a complex hyperbolic
space.

PROPOSITION 4.2. A real hypersu face $M^{2n-1}$ in $CH^{n}n\geq 2$ of holomorphic
sectional curvature -4 is locally congruent to a horosphere if and only if at each
point $x\in M$ there exist orthonormal tangent vectors $v1,$ $v_{2},$

$\ldots,$
$v_{2n-2}\in T_{X}M$ orthog-

onal to the structure vector $\xi_{X}$ such that all geodesics on $M$ emanating $x$ and with

the initial vector $v_{i}(1\leq i\leq 2n-2)$ are circles of curvature 1 on $CH^{n}$ .

PROOF. The “if” part follows from Proposition 3.1. We show the “only
if” part. By the discussion in the proof of Proposition 4.1 we find that $Av_{i}=$

$\pm v_{i}$ and so that $\xi$ is principal. Therefore $M$ has constant principal curvatures 2

and $\pm 1$ , where $ A\xi=\alpha\xi$ . From the well-known classification theorem on Hopf
hypersurfaces with constant principal curvatures in $CH^{n},$ $n\geq 2$ we can see that $M$

is locally congruent to a horosphere (for details, see [B]). lm

Added in proof. After this paper having been accepted for publication the
authors ([AM2], [A]) obtained corresponding results on length spectrum of
geodesic spheres in other symmetric spaces of rank one.
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