
 Open access  Journal Article  DOI:10.1016/S1077-2014(02)00150-X

Length-speed ratio (LSR) as a characteristic for moving elements real-time
classification — Source link 

Miguel A. Fernández, Antonio Fernández-Caballero, María T. López, José Mira

Institutions: University of Castilla–La Mancha, National University of Distance Education

Published on: 01 Feb 2003 - Real-time Imaging (Academic Press)

Topics: Object detection

Related papers:

 Spatio-temporal shape building from image sequences using lateral interaction in accumulative computation

 Lateral interaction in accumulative computation: a model for motion detection

 Segmentation from motion of non-rigid objects by neuronal lateral interaction

 On motion detection through a multi-layer neural network architecture

 Knowledge modelling for the motion detection task: the algorithmic lateral inhibition method

Share this paper:    

View more about this paper here: https://typeset.io/papers/length-speed-ratio-lsr-as-a-characteristic-for-moving-
11uuypx065

https://typeset.io/
https://www.doi.org/10.1016/S1077-2014(02)00150-X
https://typeset.io/papers/length-speed-ratio-lsr-as-a-characteristic-for-moving-11uuypx065
https://typeset.io/authors/miguel-a-fernandez-4b94sijrhw
https://typeset.io/authors/antonio-fernandez-caballero-1avmz18yh0
https://typeset.io/authors/maria-t-lopez-58jidz4a0u
https://typeset.io/authors/jose-mira-4r1hb5ynk8
https://typeset.io/institutions/university-of-castilla-la-mancha-347ffmrl
https://typeset.io/institutions/national-university-of-distance-education-1lausgwy
https://typeset.io/journals/real-time-imaging-ou6kyr5l
https://typeset.io/topics/object-detection-1qpdjzi0
https://typeset.io/papers/spatio-temporal-shape-building-from-image-sequences-using-45mxjnv5sr
https://typeset.io/papers/lateral-interaction-in-accumulative-computation-a-model-for-5bex8myne9
https://typeset.io/papers/segmentation-from-motion-of-non-rigid-objects-by-neuronal-hnixq1iswk
https://typeset.io/papers/on-motion-detection-through-a-multi-layer-neural-network-n8k85a3373
https://typeset.io/papers/knowledge-modelling-for-the-motion-detection-task-the-uaovzylgko
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/length-speed-ratio-lsr-as-a-characteristic-for-moving-11uuypx065
https://twitter.com/intent/tweet?text=Length-speed%20ratio%20(LSR)%20as%20a%20characteristic%20for%20moving%20elements%20real-time%20classification&url=https://typeset.io/papers/length-speed-ratio-lsr-as-a-characteristic-for-moving-11uuypx065
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/length-speed-ratio-lsr-as-a-characteristic-for-moving-11uuypx065
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/length-speed-ratio-lsr-as-a-characteristic-for-moving-11uuypx065
https://typeset.io/papers/length-speed-ratio-lsr-as-a-characteristic-for-moving-11uuypx065


Real-Time Imaging 9 (2003) 49–59

Length–speed ratio (LSR) as a characteristic for moving elements

real-time classification

Miguel A. Fern!andeza, A. Fern!andez-Caballeroa,*, Mar!ıa T. L !opeza, Jos!e Mirab

aDepartamento de Informatica Escuela Politecnica Superior, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
bDepartamento de Inteligencia Artificial, UNED, Madrid, Spain

Received 20 December 2001; received in revised form 1 July 2002; accepted 5 November 2002

Abstract

In this article, the length–speed ratio (LSR) is proposed as a basic characteristic for the real-time detection of moving objects. We

define the LSR of a uniform moving zone as the relation between its length in the direction of motion and the speed of this motion.

For a given zone of the image with uniform gray level (or patch), the greater its length in the direction of motion and the smaller its

speed, the greater its LSR. A moving element is generally composed of various zones of uniform gray levels (or patches), which move

with the same speed but which have different lengths in the direction of motion and which therefore have a characteristic set of LSR

values. In this article, this ‘‘LSR footprint’’ is proposed as the basic characteristic for the detection and subsequent classification of

moving elements in image sequences. The problem of detecting a moving element in a sequence of images is transformed into the

recognition of a pattern on a static image, namely the LSR footprint. We also specify how to obtain this characteristic in real time,

we discuss its invariants and we consider the cases for which LSR detection of movement is applicable. We also present its use in

some significant examples and we compare it with other methods applicable to similar computational problems.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The processing of image sequences is a complex task

[1–13]. Firstly, the volume of information is very large: if

we consider the typical figures for a television signal,

images of 512� 512 pixels and a new image every 40ms,

real-time treatment of this data means processing more

than 6Mbytes per second. Secondly, the objectives are

more ambitious than those of the processing of one

single image. Clearly, the processes can be applied to a

single image (filtering, threshold, edge extraction, etc.).

But others, such as those designed for the analysis of

movement or for the analysis of 3D spatial relations

from a sequence of images, for example, are also

applicable. A great deal of techniques to process

image sequences in real time have been introduced so

far [14–17].

In this article, we discuss techniques for the analysis

of movement in sequences of images and, more

concretely, for the detection of moving elements. The

techniques used in this area can be divided into two

classes. The first class processes one complete image at a

time and is typically a sequential process, identifying

characteristic elements which can be re-identified in

subsequent images; for these tasks, algorithms based on

correlation, clustering, chain-coding, etc. are usually

employed. The principle problem with these algorithms

is that they consume an excessive amount of processing

time and require expensive hardware. They are also

difficult to implement in real time and are very sensitive

to variations in the results of the low-level processing.

The second class processes each individual point of the

image along a sequence of images, involving multiple

parallel processes (one for each pixel of the image). The

classical algorithms of this type are those based on

gradient analysis, the most well known being the optical

flow model [18–20]. The problem with algorithms of this

class is that the calculations are again very costly in

hardware [21] and, in addition, their implementation in

a real-time context requires many simplifications. Other

well-known methods of this type are those based on

image difference or on accumulated image difference

[20]; both methods require a reference image and both

are designed for use with a small sequence of images
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rather than an indefinite sequence. Of all these mechan-

isms, the accumulated image difference is the most

similar to the mechanisms used in the work reported on

in this article. However, the mechanisms used here differ

fundamentally from those of the accumulated difference

methods. The latter increment the difference memory on

finding a difference with the reference image, whereas, in

our case, as will be seen later, the permanence memory is

incremented when there is no variation with respect to

the previous image. In general, in image sequence

processing (or video processing), there are few char-

acteristics that are easy to extract while contributing at

the same with robust, valuable and discriminatory

information. In this article we propose the use of such

a characteristic for the detection of moving elements in

sequences of images. As we will show later, it is robust,

has good invariants and has good discriminatory

properties making it well suited to the real-time

detection and classification of moving elements using

simple hardware.

2. Definition of the LSR characteristic

We define the length–speed ratio (LSR) of a moving

image zone (or patch) as the ratio between its length in

the direction of movement (L) and its speed (V) (see

Fig. 1).

This descriptor can be interpreted as a measure of the

permanence of a given zone (or patch) over the sampling

point. In other words, the LSR value measures the time

that a certain element of the image activates a particular

coordinate in the array of sensors. The greater the length

of a uniform gray-level patch and the smaller its speed,

the greater the permanence it generates and the higher

its LSR value.

In the case of points at which the image is static, there

is no substantial modification of gray levels so that the

permanence value charges up to saturation and an LSR

value of zero is generated.

The rest of this article demonstrates the efficiency of

this technique through the presentation of its calculation

method, through the study of its invariants and through

the discussion concerning its similarities to biological

computation systems and that concerning the rest of its

properties. The best way to interpret it is to turn to its

basic geometric definition and its computational mean-

ing.

2.1. Permanence memories

Permanence memories work on television images

binarized (1 bit digitized) according to gray-level

thresholds or by other methods. For each sensor point

(pixel) Pij, where i (respectively j) ranges between 1 and n

(m), being n (m) the number of columns (rows), we

denote its gray level in frame t of the sequence by GLij(t)

and the value corresponding to the binarization for that

point in that frame by INij(t). The permanence memories

define a map of data items for each frame t. The value in

frame t of the permanence memory PMij [22], associated

to point Pij, is defined in terms of its value at time t�1

and the binarised input INij(t), as follows (the values

PMij(t) being referred to as permanence values):

PMijðtÞ ¼

PMijðt� 1Þ þ S ðup toMAX Þ

if INijðtÞ ¼ 1;

PMijðt� 1Þ � R ðdown toMINÞ

if INijðtÞ ¼ 0;

8

>

>

>

<

>

>

>

:
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where S (respectively, R) is the constant by which the

permanence memory is incremented (decremented),

MAX is the saturation constant, i.e. the maximum

possible permanence value, and MIN is the total

discharge constant, i.e. the minimum possible perma-

nence value. The values of parameters S, R, MIN and

MAX will be explained later on. An example of the

behavior of the permanence memories can be studied

from Fig. 2. In this figure it can be appreciated how the

permanence memory values grow to saturation point

when the object is over their associated pixels and slowly

decrease when the object has passed.

2.2. LSR characteristic extraction process

In what follows, we see that computationally the local

property LSR is basically an application of permanence

memories [22]. The LSR extraction process begins with

Fig. 1. Illustration of the LSR characteristic behavior: (a) Definition;

(b) different moving elements together with the permanence value they

generate at the sampling point.
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the binarization of the image, giving rise to an array of

values INij(t) one for each point Pij in the frame t,

according to the following procedure:

(1) the spectrum of possible gray values is divided into

bands;

(2) if gray level GLij recorded at sampling point Pij lies

in the same gray-level band GLBij as that recorded

at Pij in the previous frame, t-1, INij(t) remains 1,

otherwise it is set to zero. Thus, for each sampling

point in each frame t, we have

INijðtÞ ¼
1 if GLBijðtÞ ¼ GLBijðt� 1Þ;

0 if GLBijðtÞaGLBijðt� 1Þ:

(

ð2Þ

In the following we define the value of the charge

decrement R to be R = MAX. This setting is performed

to adjust the permanency effect to obtaining the LSR

characteristic, as it will be explained later on. Finally, we

obtain the LSR characteristic: for each sampling point

Pij and for each frame t, an LSRij(t) value, is generated.

In any given frame t, the set of values LSRij(t), where i

ranges between 1 and n, and j ranges between 1 and m, is

characteristic of the moving element which created it

and is denoted its LSR footprint. The calculation of the

LSR value LSRij(t) at each sampling point Pij and in

each frame t is carried out using the following

algorithm:

LSRijðtÞ ¼
PMijðt� 1Þ if INijðtÞ ¼ 0;

0 if INijðtÞ ¼ 1:

(

ð3Þ

That is, the value LSRij(t) is set to zero when there has

been no substantial variation in the gray level of the

point Pij between the previous frame t-1 and the current

frame t and takes the value PMij(t-1) (the charge value

of the permanence memory of the point Pij in the

previous frame) in the case where there has been such a

variation.

The value PMij associated to each point Pij charges up

progressively while the corresponding input GLij re-

mains in the same gray level band (INij(t)=1) and

discharges completely generating an LSR value equal to

PMij(t-1) when the input GLij changes from one band to

another (INij(t)=0).

We now determine the range of LSR values that a

system based on this property can measure. Ignoring the

sensor characteristics in terms of camera optics and

speaking in terms of V (velocity, in pixels per frame, of

the patch on the sampling field constituted by the image

of the moving object), L (length, in pixels, of the patch

on the sampling field constituted by the image of the

moving object), and t (frames), the limitations on the

motion which the system is capable of detecting are as

follows:

(1) The system is not capable of detecting movements

with an LSR of less than one. This means that it will

not be able to detect the LSR created by patches

that do not remain over any sensor point for longer

than one frame. This condition is defined by the

equation:

VtoL: ð4Þ

(2) The system does not distinguish movement of

patches that activate the same sensor point for

longer than MAX/S frames since the permanence

values for the pixels that such patches pass over

reach saturation so that it is not possible to

calculate their true LSR value. This condition is

defined by the equation:

LoVt

MAX

S
ð5Þ

Changes in the LSR greater than the saturation value

or lower than zero are therefore not distinguishable by

the system. The range of LSR values, which the system

can differentiate, is thus given by the equation

VtoLoVt

MAX �MIN

S
: ð6Þ

We now describe the nature of the parameters used,

as well as the values adequate to each application.

Table 1.

Values of parameters S, R, MAX and MIN have to be

fixed according to the applications characteristics.

Concretely, values MAX and MIN have to be chosen

by taking into account that charge values will always be

between them. The value of S defines the charge

increment interval. Greater values of S allow arriving

in a quicker way to saturation. In order to calculate the

LSR, the best is to generate a discharge in the stored

permanency value of a pixel where motion is detected.

To achieve this goal, the best is to define R as MAX. A

pixel is this way discharged where motion is detected.

Results offered in this paper have been obtained by used

the following values: MAX=255, MIN=0, S=1 and

R=255. We now explain the reason for this choice:

Table 2.

Fig. 2. Behavior of the permanence memories (S=1, R=1).

M.A. Fern !andez et al. / Real-Time Imaging 9 (2003) 49–59 51



2.3. Information provided by LSR footprints

As described before, a moving element generates an

LSR footprint, on the map of discharges, depending on

its speed and on the different zones of uniform gray level

of which it is composed. The LSR footprint is, in reality,

a pattern that must be classified in order to identify the

moving element that created it. However, such an

analysis has important advantages over a direct analysis

of the image sequence, in particular:

(a) The information concerning static elements has

been suppressed.

(b) In each image frame, the LSR footprint is a static

pattern containing information about the move-

ment that has taken place in that scene in previous

frames.

(c) As the volume of data is much smaller, the moving

element can be identified more easily.

The problem of detecting a moving element in a

sequence of images has been transformed into the

recognition of a pattern on a static image, namely the

LSR footprint.

The extraction process for the LSR characteristic is

cheap, simple, robust and quick and the information

that is obtained is sufficient for the classification of

moving elements.

Once the LSR footprint has been obtained, as it is just

a static pattern in the current image, it is then possible to

choose from different methods of pattern classification.

In our case, we have opted for a very simple classifica-

tion method that we describe later on.

3. Some important facts about the LSR characteristic

3.1. Invariants of the LSR characteristic

Invariants are of great interest [23]. The invariants

that the LSR characteristic possesses can be described

with the aid of Fig. 3. As this figure indicates, the LSR

characteristic is invariant under changes in the distance

between the sensor and the moving element. That is to

say, a same element at a same velocity generates the

same discharge values independently from its distance to

the sensor. This affirmation is valid in those moments

where the distance to the sensor is constant. When the

element comes closer or moves away from the sensor, its

discharge values are altered. This statement can be

demonstrated carrying out a trigonometric analysis of

the problem. It is also invariant under changes in the

direction of movement.

Nevertheless, it is not invariant under rotations of the

moving element with respect to the direction of move-

ment. These invariants are useful in a multitude of real

applications, such as the detection of moving elements in

landscape scenes or in industrial scenarios. The lack of

invariance under rotations with respect to the direction

of movement does not impose many restrictions since in

Table 1

LSR parameters description

Parameter Description

MIN Discharge value.

MAX Saturation value.

MAX–MIN defines the charge capacity; associated to the number of steps that may exist between both values.

S Charge increment (see formula (1), (5) and (6)). A high value of S leads to a great charge velocity, and therefore it reduces

the number of steps between discharge and saturation. A low value of S leads to a reduced charge velocity, and therefore the

number of steps between discharge and saturation augments.

R Charge decrement (see formula (1)). A high value of R leads to a great discharge velocity, and therefore it reduces the

number of steps between discharge and saturation. A low value of R leads to a reduced discharge velocity, and therefore the

number of steps between discharge and saturation augments.

Table 2

LSR parameter values explanation

Parameter

value

Explanation

MIN=0 This way, we define the widest working zone, adequate for the charge values presented next; and, this a value easy to

compute with.

MAX=255 This is also a value easy to compute with. It is sufficient for the moving elements lengths (L=20–50) and velocities

(V=1–4) used in our examples. Notice that by means of this value it is possible to obtain the LSR of elements with values

up to L=254 and V=1 in 512� 512 pixel images.

S=1 We use this value for parameter S to define an adequate number of steps between discharge and saturation (slow charge).

R=255 This way, we discharge all image pixels that do not correspond to any element of the scene (immediate discharge).

M.A. Fern !andez et al. / Real-Time Imaging 9 (2003) 49–5952



a very large number of applications the moving elements

do not move with these characteristics (generally, the

front arrives earlier than the rear). Moreover, this lack

of invariance can in fact be used to differentiate different

positions of the same element, since an element gives rise

to a different LSR footprint if its orientation with

respect to the direction of motion is modified.

3.2. Real-time measurement of the LSR characteristic

One of the main advantages of this characteristic is

that it can be measured in real time in the whole image

of a sequence supplied by a conventional video camera.

To obtain the LSR footprint from the binarized image—

according to algorithm (2)—it is sufficient to use a look-

up table (LUT), a previous-band memory and a simple

logic. The real-time calculation of the LSR can be

performed by means of the hardware sketched in Fig. 4.

As it can be seen from the figure the following

resources are sufficient: an image memory of n�m� 1

bits to store the values GLBij for the previous frame t�1,

a memory with a capacity n�m� 8 bits to store the

values PMij, and a simple logic capable of implementing

algorithms (1)–(3) for the updating of the permanence

values. The logic required reduces to a summation

operation, a pair of simple logical functions and a

multiplex. These operations can easily be carried out in

100 ns between pixel arrivals.

This hardware is sufficient to obtain the LSR value

generated for each pixel in real time. At the end of each

pixel frame, all LSR values for that frame’s pixels will be

available.

3.3. Applicability of the LSR characteristic

In principle, using the mechanisms presented in this

article, the LSR characteristic is applicable to the

detection of objects or invariant forms whose movement

is a plane [24]. This includes the movement of objects on

a conveyor belt, the tangential movement of distant

targets on landscape or sky backgrounds, as well as

movement in image sequences of metropolitan or traffic

scenes recorded by observation or security cameras.

However, both the LSR characteristic and the perma-

nence memories in general are applicable, using other

complementary mechanisms, both to 3D-image analysis

and to the analysis of variable forms, the latter

generating sequences of LSR vectors.

Fig. 3. Invariants of the LSR characteristic.

Fig. 4. Hardware for real-time extraction of the LSR characteristic.
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It is of interest to note that the classification

mechanisms described in this article can also be used

for the detection of certain movement situations. We

refer to scenes in which there is not one moving element

moving in a fixed manner but various types of moving

elements which can adopt movement configurations

characteristic of certain concrete states. Examples of this

type of application are found in the detection of rapid or

slow circulation of vehicles or the detection of different

states of movement of colonies of individuals in a

passive or an active state [25].

3.4. Some biological connections of the LSR

characteristic

When designing artificial systems which attempt to

implement functions very efficiently as in biological

systems—this is the case in artificial vision—it may not

be essential to find biological mechanisms similar to the

artificial ones used in our designs, but to do so is

certainly encouraging. In the case of the LSR character-

istic under consideration, the amount of encouragement

that we obtain by looking at biological systems is

significant. We can find important similarities between a

multitude of biological processes and this characteristic,

the one that perhaps stands out the most being the

function implemented by type E neurons of the Pipiens

frog [26], which is very similar to the extraction of the

LSR. Additionally, the permanence processes discussed

in this work are similar to processes of local accumula-

tion of persistent activity at the level of the synapse [27].

4. A classification example based on the LSR footprint

We now describe a process for the classification of

LSR footprint created by various different moving

elements. It should be made clear that many other

processes can be used. We chose this one due to the fact

that, as well as being adequate for the applications in

which we use it, it is cheap, robust and can be carried

out in real time.

Supposing that there is only one moving element in

the scene, in each frame of the image the LSR values

generated for that element will be available. If this

moving element is a stable form that travels with a

uniform speed without any variation in its orientation

with respect to the direction of movement, it will

generate in each frame a LSR footprint whose position

changes with time but whose form does not.

On this LSR footprint there are different parameters,

both quantitative and morphological, on which to base

the classification process. In our case, we have chosen to

base the detection on processes that only look for the

existence of a particular combination of LSR values in

the scene, without carrying out any morphological or

other type of analysis of the LSR footprint. We classify

the moving elements according to the analysis of the

LSR footprint, by considering that a given moving

element is identified through the appearance of a given

combination of LSR values, without considering in any

way the spatial or morphological distribution of the

footprint. This implies loss of information and also

limits the field of application, but for the applications of

interest here it is beneficial since it leads to a large

reduction in the computational costs.

We describe the process of classification according to

the LSR footprint using Fig. 5. Parts (b) and (c) from

this figure show in a generic fashion how the LSR

footprint generated by a moving element (Fig. 5a) is

obtained. Parts (d) and (e) of the figure show a concrete

process that we have used to classify the moving

elements in real time with simple hardware based on

their LSR footprint. We now describe this process

explicitly.

4.1. Obtaining the discharge vector from the LSR

footprint

The process that we have implemented is represented

graphically in Figs. 5d and e consists of the conversion

of the LSR footprint into a discharge vector of k bits

and its later classification to identify the moving element

that generated it. To carry out this process, the spectrum

of LSR values is divided into k bands, each band being

associated to one bit of the discharge vector. In the

example represented, the value of the LSR is greater

than or equal to one and less than or equal to 8. In this

case, the bands have been chosen as small as possible, so

that each band only covers one possible LSR value. The

first band is associated to an LSR value of one, the

second to an LSR value of two and so on up to the eight

bands associated to an LSR value of eight.

The first step is to construct a histogram in which, for

each of the possible bands of LSR values, the number of

LSR values in that band in the current frame (Fig. 5d) is

indicated, without recording the position of each of

these discharges. Next, as explained below, the actual

values of the discharge vector are calculated. If the

number of LSR discharges in a given band of the

histogram is greater than a predefined threshold, the bit

corresponding to this band is set to 1, and otherwise it is

set to 0. The mentioned threshold has to be defined by a

value such that we eliminate those discharge intervals

where the only existent discharges are due to noise or to

elements that are not of our interest due to their size. In

our experience, when working with 512� 512 pixel

images, we have noticed that a threshold between 5 and

10 is sufficient to eliminate discharges due to noise. On

the other hand, when trying to eliminate those

discharges due to elements lower in size than a given

value, we have to adapt the threshold to the number of

M.A. Fern !andez et al. / Real-Time Imaging 9 (2003) 49–5954



discharge points associated to those elements. This

way we have generated the set of values referred

to as the discharge vector, which basically indicates

the LSR bands in which the moving element traversing

the image at this moment generates discharges

(LSR values). Therefore, in order to detect a moving

element, first we generate its LSR footprint, next we

extract the discharge vector from this LSR footprint and

finally we classify this vector. The detection of a moving

element is reduced to the classification of the discharge

vectors, this being a much smaller volume of informa-

tion than the sequence of images constituting the initial

input. This classification can be obtained through

numerous methods, in our case a classification based

on concepts similar to the Hamming distance is

performed.

Once the classification process has been described, it is

appropriate to comment on the parameters used in this

process. Firstly, it is important to underline the key role

played by the threshold value, since the choice of this

value determines the number of LSR values detected.

The division of the spectrum of LSR values into bands

also plays an important role. In the case study treated in

the next section, this division into bands is adjusted via a

learning process, which we do not describe in this article,

oriented towards optimizing the capacity to differentiate

the elements of the training sets.

4.2. Hardware required for obtaining the discharge vector

To describe the hardware needed for obtaining the

discharge vector we will refer to the diagram shown in

Fig. 6. The input to this piece of hardware is an LSR

value for each point of the image (an item of input data

every 100 ns). To detect which discharge band this input

belongs to, it is sufficient to use an LUT addressed by

Fig. 5. (a) Moving element; (b) permanence memory values (S=1, R=MAX); (c) LSR footprint; (d) histogram of discharges in LSR bands; and (e)

discharge vector.
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the LSR values and containing data words in which each

bit is associated to a discharge band. Each position of

this LUT contains a word with all bits set to zero apart

from the one corresponding to the band to which the

value addressing it belongs. The output of this LUT is

fed into a bank of registers, one for each LSR band. The

register corresponding to the bit that is set to one for the

current pixel is then incremented by one while the other

registers are left unchanged.

Before starting each frame, the value of all the

registers is set to zero. At the end of each frame, the

bank of registers contains the histogram of LSR

discharges in each band (the histogram of Fig. 5d). To

calculate the discharge vector for each frame of the

image (typically every 40ms), the register values only

have to be binarized according to whether they are

above or below the predefined threshold. This can be

done during the vertical blanking period.

With this simple hardware we obtain in real time a

discharge vector for each frame of the image. We have

transformed the problem of classifying a moving

element by processing an image of n�m pixels with

n�m� 8 bits of information (assuming the gray level is

coded in 8 bits) to one of classifying a vector of k bits.

The process of classifying the discharge vector can be

performed by general-purpose hardware since the

volume of information is far smaller than that of

the original input and the time available to do so is the

frame duration time (40ms).

5. Experimental data and results

The system has been simulated on a general-purpose

machine using various different families of moving

elements. Some of these were obtained synthetically

while others were extracted from CCIR-standard images

taken with a black and white television camera [24].

Here, we choose to use the synthetic images since they

are more illustrative as far as the presentation of the

mechanisms defined here is concerned.

In the simulation, the mechanisms described in the

previous sections were used with the following concrete

values: S=1, R=255, MAX=255, MIN=0, k=8, 0o

LSRo255.

The groups of moving elements (icons) used to train

the system are shown in Fig. 7. The training was carried

out using the scene background also shown in this

Figure and the speed of all the icons, as indicated in the

Figure was 1 pixel per frame. During the training phase,

the system was shown a series of sequences of images in

which each icon was moved, one at a time, in front of

the scene background. The presence of each icon in the

scene was accompanied by an entry signal (RF in

Fig. 7), indicating to the system the denomination of this

icon. Once the learning phase was concluded, the system

was shown the same sequences without the accompani-

ment of the icon denomination signal (without indicat-

ing RF). The system recognized each icon, identifying it

by its corresponding reference.

Next, a series of test icons were constructed by

introducing some defects into the icons of the family

used for the original training. We show the results

related to these defective icons to highlight that our

method is capable of classifying them up to a high

degree of corruption. These icons and their speed are

shown in Fig. 8.

The correspondence between these icons and those of

Fig. 7 is as follows:

* The icon DS0 of Fig. 8 is a defective version of icon

S0 from Fig. 7.
* The icon DS1 of Fig. 8 is a defective version of icon

S0 from Fig. 7.
* The icon DS2 of Fig. 8 is a defective version of icon

S2 from Fig. 7.

Fig. 6. Hardware to obtain the discharge vector.
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* The icon DS3 of Fig. 8 is a defective version of icon

S2 from Fig. 7.
* The icon DS4 of Fig. 8 is a defective version of icon

S2 from Fig. 7.
* The icon DS5 of Fig. 8 is a defective version of icon

S2 from Fig. 7.
* The icon RS0 of Fig. 8 is icon S1 from Fig. 7 but with

1
2
the size and 1

2
the speed.

* The icon RS1 of Fig. 8 is icon S1 from Fig. 7 but with
1
4
the size and 1

4
the speed.

Of these defective icons, those that appear in Fig. 8

with references DS0, DS2, DS3, DS5, RS0 and RS1

were correctly identified. Those with reference DS1 and

DS4 were incorrectly identified.

It is worth drawing attention to the behavior of the

system with respect to the temporary hiding of part of

the moving element behind static elements of the three

dimensional scene. In these cases, the system is quite

robust since maintaining the previous discharges for the

short space of time for which the moving element is

hidden is sufficient.

6. Conclusions

In this article we defined the LSR and proposed its use

for the detection of moving elements, or of characteristic

movement situations, in image sequences. We also

described how this characteristic could be continuously

Fig. 7. Synthetic scene background and family of moving icons used for training.

Fig. 8. Defective synthetic icons.
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derived from image sequences in real time and we

presented a concrete system design based on the LSR

characteristic, commenting on the results obtained from

its simulation.

In conclusion, we can state that the LSR character-

istic is very well suited to use in the detection process for

moving elements in sequences of synthetic images, as

shown in this paper. We continue working on real

images, and the results obtained in our tests are also

satisfactory. The process of simplification of informa-

tion that is carried out on extracting the LSR

characteristic is of great help to the tasks of detection

or classification. This is because it converts a sequence of

images with moving elements into an image with a stable

pattern in which the information concerning elements of

the scene that are not moving has been eliminated. At

the same time, it provides information concerning the

speed of the moving elements. Furthermore, its invar-

iant properties, both the invariance with respect to the

direction of movement and invariance with respect to

distance from the sensor, make it well suited to a range

of different applications. In addition, the LSR char-

acteristic is quite robust with respect to changes in the

static scene backgrounds since these are filtered out due

to its nature. The characteristic also has good discrimi-

natory capacity, since LSR footprints are in general

significantly different for different moving elements.

Another important aspect of the LSR characteristic is

that it is possible to extract it in real time over the whole

image using simple hardware at low cost.

The limitations of the LSR characteristic are asso-

ciated with the loss of information suffered in obtaining

it. The use of specific descriptors does not guarantee a

complete description. Not all the knowledge contained

in the image sequence is stored in the LSR. This means

that elements that generate the same LSR are not

distinguishable by the system, In the same way, the

invariants described impose limitations on the applica-

tions which can be treated. Though it is worth

mentioning that the lack of invariance under rotations

with respect to the direction of movement can be used to

detect different orientations of the same element.

In addition, with respect to the concrete application

of this characteristic to a problem of moving element

detection, as described in this article, in the simulation

of this system, the LSR characteristic produced the

expected results. It successfully detected moving ele-

ments in both synthetic images and in images obtained

from a television camera. That the proposed system

based on the LSR characteristic can be implemented to

work in real time with simple hardware has also been

confirmed.

In summary, the LSR characteristic and the rest of

the mechanisms presented in this article are valid for the

detection tasks under the conditions we have stated. We

are convinced that this characteristic and the informa-

tion generated by the permanence memories offer great

possibilities for the analysis of movement in image

sequences. In our research group we are using this

information both for detection of moving elements and

for analysis of 3D scenes captured by moving cameras.

We are also working on the study of other character-

istics to support the LSR with the aim of increasing the

reliability of the results and widening the field of

application.
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